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Abstract 

Systems of differential-algebraic equations (DAEs) arise in numerious applications, 

and there has been considerable research on solving DAE initial value problems 

(IVPs). Existing methods and software for solving DAEs usually handle at most 

index-three problems. However, DAE problems of index three and higher do arise, 

for example, in actuator dynamics, multi-stage processes, and optimization. 

We present the method ofJ. Pryce and N. Nedialkov for solving DAEs, which can 

be of high index, fully implicit, and contain derivatives of order higher than one. We 

solve such DAEs by expanding their solution in Taylor series (TS). To compute Taylor 

coefficients, we employ J. Pryce's structural analysis and automatic differentiation. 

Then we compute an approximate TS solution with appropriate stepsize and project 

this solution to satisfy the constraints (explicit and hidden) of the problem. 

This thesis discusses the algorithms involved in this method, including the al

gorithms for Taylor coefficients computation, consistent point projection, error esti

mation, stepsize control, and the overall integration process. The author has imple

mented a software package named HIDAETS (High-Index DAE by Taylor Series). 

In this thesis, we present the specification, design, implementation, and usage of HI

DAETS. Numerical results on several high-index DAEs are reported. These results 

demonstrate that HIDAETS is efficient and accurate for solving IVP in DAEs. 
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Chapter 1 

Introduction 

We consider a differential-algebraic equation (DAE) initial value problem (IVP) inn 

dependent variables Xj = Xj(t), with t a scalar independent variable, of the form 

fi(t, the Xj and the derivatives of them) = 0, 1 :::; i :::; n. (1.1) 

We assume that /i are suitably smooth. We allow derivatives of order higher than 

one and derivatives of Xj to appear nonlinearly in (1.1). 

The goal of this thesis is studying, designing, implementing, and documenting a 

numerical method [NP03] for solving (1.1) directly by expanding its solution in Taylor 

series (TS). 

1.1 Motivation 

The importance of solving DAE initial value problems numerically has been recog

nized for over 20 years [BCP96]. Interest in DAEs arose because many mathematical 

models in mechanical, chemical, or electrical engineering, occur naturally as systems 

of differential equations with algebraic constraints. 

The development of efficient numerical methods for solving DAEs has been an 

active research area and a variety of efficient methods already exist [BCP96]. Several 

numerical methods have been proposed, including backward differentiation formula 

(BDF) or implicit Runge-Kutta (IRK) methods. There are also several methods de

signed specifically for particular applications such as constrained mechanics or electri

cal circuits. These approaches have proven very useful, and the availability of codes 

1 



1. Introduction 2 

has encouraged a wider consideration of DAE models. However, these methods are 

limited to problems of low index or special structure. Informally, the index of a DAE 

is the minimum number of differentiations needed to convert it to an ODE [AP98]. 

An ODE is of index zero. Generally, the higher the index of a DAE, the more difficult 

it is to solve. 

Initially most of the numerical work on DAEs assumed that a DAE was of index 

one [Cam95]. High-index DAEs (index 2: 2) were thought perhaps not important 

in applications. This has changed within the past ten years, with the realization 

that many of the problems in mechanics are initially formulated as index-two or 

higher-index DAEs. However, there were no general code available for even index

two problems before 1995 (CH96]. Even till now, existing methods and software for 

solving DAEs are restricted to at most index-three problems. Most of these solvers 

first reformulate the problem to first-order, lower-index forms, and then use existing 

numerical methods and codes for the reformulated problem to solve the original high

index, high-order problem. 

Nedialkov and Pryce [NP03] present a new approach for solving numerically DAEs 

in the general form {1.1). The DAEs can be of high index, fully implicit, and contain 

derivatives of order higher than one. Their method does not reduce a DAE to a first

order, lower-index form- they solve it directly by expanding its solution in Taylor 

series. To compute Taylor coefficients (TCs), they employ the structural analysis (SA) 

of Pryce [Pry01] and automatic differentiation (AD). Nedialkov [NP03] implements 

the method into a C++ prototype DAE solver named DAETS. 

The algorithms behind a high-index DAE solver employing SA and TS methods 

need to be studied and presented in detail. These algorithms include Taylor coef

ficients computation. Jacobian computation, error estimation, stepsize control, TS 

solution projection, and the whole integration process. 

Besides the algorithms, a well-designed, flexible, easy-to-usc, and well-documented 

software package is needed. First, the software package must be open to the user. 

For example, the user can use his/her own numerical routines for computing TCs, or 

employ his/her own algorithm in stepsize control. Second, this new software package 

may be used by people without knowledge of the particular DAE algorithms; there

fore, it must be easy-to-use. Last, a well-documented softwarA package is important 

for later maintenance and improvement. 
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1.2 Background 

DAE solvers. There are several excellent and widely used software packages for 

solving DAEs. There are also many codes designed specifically for simulating con

strained mechanical systems. Table 1.1 lists some standard DAE solvers. In [MI03], 

the authors summarize more DAE solvers and report various numerical results. 

Name Author(s) Methods DAE index 
DASSL Petzold fixed-leading -coefficient :::;1 

[BS96a] BDF 
GAMD Iavernaro and Generalized Adams :::;3 

Mazzia [MI03] Methods (GAMs) 
MEBDFI Abdulla and Modified Extended BDF :::;3 

Cash [HW96] of Cash 
RADUA5 Hairer and Implicit Runge-Kutta :::;3 

Wanner method (Radau IIa) of 
[HW96] order 5 

Table 1.1: Some existing DAE solvers. 

All of these solvers are only applicable to at most index-three problems. Most of 

them arc restricted to DAEs of special form or derivatives at most the first. This 

may be inconvenient, since a high-index, high-order DAE needs to be converted to a 

lower-index, first-order DAE. 

DAE structural analysis. Pantelides [Pan88] proposes a graph-theoretical algo

rithm to locate subsets of the system equations which need to be differentiated. Pryce 

[Pry98, Pry01] compares Pantelides' method with his structural analysis and proves 

these two methods are equivalent to each other. However, the algorithms of Panten

lides can only apply to first-order DAEs, which is in the form of f(t, x, x') = 0. 

Mattsson and Soderlind [MS93] present a technique for solving high-index DAE 

problems by index reduction approach. (Their numerical method is related to Pryce's 

structural analysis.) 

Campbell-Gear's derivative array equations [CG95] is another approach for high

index DAEs, but more complex than the structural analysis of Pryce. Their approach 

requires symbolic software to preprocess the equations, which may be h:::.rd to apply 

automatically to program code. 
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Pryce in [Pry98, PryOl] presents the theory of his structural analysis. From the 

results in [Pry98, PryOl], a DAE given in the form {1.1) can be either solved directly 

using Taylor series or converted to an ODE which can then be solved. 

Taylor series solution of DAEs. Taylor series method for the solution of IVP 

for an ODE has been well studied. Successful software packages for solving ODE by 

Taylor series are AUTOMFT [CC94), VNODE (NJ02], and COSY [Ber97]. 

Chang and Corliss [CC94] present how to generate Taylor series for the simple 

pendulum {2.2) in an ad hoc way. Then Corliss and Lodwick [CL96] extend it to 

validated solution for (2.2) using Lohner's Anfangswertaufgabe (AWA) program. 

Pryce [Pry98) presents a Taylor method for solving high-index DAE systems by 

expanding the solution as a high-order Taylor series. He has implemented a prototype 

in MATLAB ·code that solves the DAE using Taylor coefficients, without converting 

to an ODE. 

Nedialkov [NP03] has implemented the method into a prototype DAE solver 

named DAETS in C++ program. He computes TCs by operator overloading without 

parsing and code generation. As in Pryce's structural analysis, the DAE is solved 

without reducing to low-order, low-index forms. 

1.3 Contributions 

The contributions of this thesis include two parts. The first part is the presentation 

of algorithms for a general high-index DAE solver based on structural analysis and 

Taylor series. Numerical algorithms and methods such as TCs computation, error 

estimation, and stepsize control are presented in both pseudo code and C++ code. 

The second contribution is the design, documentation, and numerical studies for 

HIDAETS. We employ the object-oriented design method and present in detail doc

umentations for specification, design, implementation, and usage of HIDAETS. In 

addition, more than ten DAE and ODE and the testing results for five high-index 

DAE problems are presented in this thesis. 

Numerical results demonstrate that HIDAETS can be accurate, efficient, and 

suitable for solving DAEs of an index too high for the existing methods and solvers 

to handle. 
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1.4 Thesis structure 

This thesis is organized as follows. 

Chapter 2 presents the main steps of Pryce's structural analysis and describes 

how the Taylor series method works using a simple example. 

Chapter 3 presents numerical algorithms in HIDAETS. We describe algorithms 

for signature matrix and offsets computation, computing Jacobians, projecting initial 

point, Taylor coefficients computation, error estimation, and stepsize control. We 

also present the overall integration process of HIDAETS. All of these algorithms are 

demonstrated in pseudo code after each description. Corresponding C++ code is 

given ~n Appendix D. 

Chapter 4 discusses numerical software issues. First, we present specification and 

design documentation. Since we employ object-oriented design, we give both high

level design and low-level design with detailed documentation. We also illustrate how 

to install and use HIDAETS at the end of this chapter. 

Chapter 5 reports numerical results of HIDAETS. We have tested more than 

ten DAE and ODE problems with HIDAETS. In this thesis, we study five high-index 

DAEs in detail. We present results such as work precision diagrams, stepsize behavior, 

and dependence of the work on the order of the method. 

In the last chapter, Chapter 6, we draw conclusions and suggest directions for 

future work. 

In appendix A, we give the acronyms. Appendix B is the knowledge about au

tomatic differentiation. Appendix C is some UML legends used in this thesis. In 

appendix D, we present some source code for the algorithms discussed in Chapter 3. 



Chapter 2 

Theoretical Background 

2.1 Structural analysis 

Here we present the main steps of Pryce's structural analysis. More details can be 

found in [Pry01, NP03]. We first give some definitions and then illustrate the process 

with the single pendulum problem (2.2) step by step. 

A transversal T of ann x n matrix (o-ii) is a set of n positions in this matrix with 

one element in each row and column. The value ofT is !ITII = 'L,(iJ)ET CTij· A highest 

value transversal (HVT) is a transversal T that makes IITII as large as possible. 

A consistent point for {1.1) is a set of the xi and derivative of them, at a time t, 

that specify a unique solution. 

The degrees of freedom (DOF) of a DAE system is the number of independent 

initial conditions required. 

Given a DAE in the form of (1.1), we perform the following steps. 

1. Form the n x n signature matrix :E = ( uii), according to 

a-·. _ { highest order of derivative to Xj occurs in fi; 
tJ - -oo if xi does not occur in k 

or 
(2.1) 

Example 2.1. Throughout this chapter, we give examples based on the single 

6 



2. Theoretical Background 

pendulum [AP98]: 

0 = f = x" + x>., 

0 = g = y" + y>. - G, 

0 = h = x2 + y2- £2, 

7 

(2.2) 

where G > 0, L > 0 are constants, and the dependent variables are x(t), y(t), 
and >.(t). 

Its signature matrix L:, labeled by equations and variables, is 

X y 

~ (-~ -;a 
h 0 0 

~ )· 
-oo 

2. Find an HVT for L:. 

Example 2.2. There are two HVTs for the single pendulum problem: one in 

positions (f,>.),(g,y),(h,x), the other in positions (f,x),(g,>.),(h,y). In both 

HVTs, IITII = 2. 

3. Find n-dimensional integer vectors c and d, with all£; ;:::: 0, satisfying 

{

di- ci;:::: rJij for all i,j = 1, ... , n, 

di- £; = rJij for all (i,j) E T, 
(2.3) 

where T is an HVT. We call the smallest c and d (in the sense of a :::; b if 

ai :::; bi for each i) the offsets of the problem. We name c equation offsets, and 

d variable offsets. 

Example 2.3. For the single pendulum problem, the offsets are c = (0, 0, 2) 

and d = (2, 2, 0) for both HVTs1: 

1The * inside of the signature matrix annotates the positions of HVT. 
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X y A Ci X y A Ci 

~(-~ 
-X O·r 'C* 

-oo or 2* 0 0 and g -00 2 0* 0 

h 0* 0 -oo 2 h 0 0* -00 2 

dj 2 2 0 dj 2 2 0 

4. Form then x n System Jacobian matrix 

a (fie!), ... , ~~en)) 
J= . 

a ( x~di), ... 'x~d,.)) 
(2.4) 

From Griewank's lemma in [NP03], (2.4) is equivalent to 

{ 

a fi if d. - Ci = (7·. 
£l (O"ij) J ~)' 

Jij = vxj 

0 otherwise. 

Example 2.4. For the single pendulum problem, we have 

J = [It' .; ~] = [ ~ ~ :0]· 
oh oh 0 2x 2y ox 8y 

F. d al c {kj) . fy" f(l·) - 0 h . . - 1 . k -5. m v ues tor xi satls mg i ' - , w ere z, J - , ... , n, i -

0, ... , di; li = 0, ... , <;. If such values are found, and J is nonsingular, a con

sistent point as defined above is found. Then the structural analysis method 

succeeds. 

Example 2.5. For the single pendulum, we need to solve 

f x" + xA 

g y" + YA- G 
h - x2 + y2 _ £2 =0. 

h' 2xx' + 2yy' 

h" 2xx" + 2yy" + 2x12 + 2y12 
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To find values for (x, x', x"; y, y', y"; >.), we need to solve h = 0 for x, y, and then 

h' = 0 for x', y'. Then f, g, h" form a linear system of x", y'', and>. as 

0 x] [x"] [ 0 ] 1y y"+ G 

2y 0 >. 2x12 + 2y12 

=0, 

where the first matrix is just J. Since det J = -2(x2 + y2 ) = -2£2 =1- 0, we can 

solve this linear system. 

Thus the method succeeds for the single pendulum problem. 

When the method succeeds, there are some properties: 

• The DAE has L:j di - L:i Ci DOF, which also equals the value of the HVT. 

• The differentiation index vd, see [CG95], of the DAE is less than or equal to the 

Taylor index 

{ 
1 if some di = 0, 

VT =m~Ci+ O · otherwise. 

In many cases, vr = vd. 

Example 2.6. The single pendulum problem has 2 DOF, and vd = vr = 3. 

2.2 Taylor series 

A Taylor series expansion of a coo function f(t) about a point t = t* is given by 

f "(t*) J(n) (t*) 
J(t) = f(t*) + J'(t*)(t- t*) + -

1
-(t- t*)2 + ... + I (t- t*)n + .... 

2. n. 

We assume that for some N 2: 1, each function fi in (1.1) has (N +Ci) continuous 

derivatives in a neighborhood of a point (t*,x*) at which J is nonsingular. Thus, 

from Theorem 4.2 in [NP03], we can compute TCs for xi(t) up to order (N + dj)· 

For ODE initial value problems, Taylor series methods are well known (CC82, 

Pry98, Ncd99]. Their implementation is based on AD to evaluate Taylor coefficients 

to arbitrary order. 

For DAE systems, this method meets some difficulties. 
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1. The required initial values are not obvious in general. 

2. Simultaneous equations must be solved to find Taylor coefficients. 

3. It is no longer possible to find first all the first coefficients, then all the second 

coefficients, and so on, as done in standard ODE TS methods. 

Pryce [Pry98, Pry01] and Nedialkov and Pryce [NP03] have presented a "stag

gered" way to find TCs for a general DAE. Here, we outline how their method works. 

We denote the lth TC of a function f of a real variable t at a point t* by 

Denote 

J(ll(t*) 
(f)t = l! . 

kc = -m~ e;, and kd = -m~ dj, 
• 3 

where ci and dj are the offsets defined in (2.3). 

(2.5) 

(2.6) 

The solution scheme for computing TCs is to solve a system of equations on each 

stage k = kd, kd + 1, .... Each system contains 

(h)k+c; = 0 for all i such that k + e;, ~ 0, (2.7) 

and we solve for 

(xj)k+di for all j such that k + dj ~ 0, 

where all previously computed (xj)t occurring in (2.7) are to be treated as constants. 

Example 2.7. For the pendulum, we have the following recipe2 : 

Stage uses equations to obtain 

k = -2 0 = ho Xo,Yo 

k= -1 0 =hi XI, YI 

k=O 0 = fo,go,h2 x2,y2, .Ao 

k=1 0 = JI,g11 ha xa, Ya, AI 

2This example is from (NP03]. For simplicity, we use xi instead of (x); for the single pendulum 
problem. A similar rule applies to other variables in that problem. 
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At stage k = kd = -2, we find x0 , y0 that satisfy 

At stage k = -1, we find X1, y1 that satisfy 

taking the previously computed x0 , y0 as constants. 

At stage k = 0, we find x2 , y2 , >.0 that satisfy 

0 = fo = 1 · 2x2 + xo>.o, 

0 = go = 1 · 2y2 + YoAo - G, (2.8) 

0 = h2 = 2xox2 + x~ + 2YoY2 + y~, 

taking the previous computed x0 , y0 , Xt, Yt as knowns. 

In general, at stage k 2 0, we find Xk+2' Yk+2, >.k satisfying fk, gk, hk+2 = 0, subject 

to all the already found values. 

By summing relevant TCs at current timet* with appropriate stepsize h, we obtain 

an approximate TS solution at t* + h. 

Thus, the whole algorithm employing TS processes is summarized as follows. 

1. At current t = t*, an approximate solution is given, which comprises (xi)1, 

where 0 ~ l ~ di. 

2. Stages k = kd, ... , 0 convert (xi)l to a consistent initial point. 

3. Stages k = 1, 2, ... compute further TCs up to some specified order. 

4. Summing relevant TCs with appropriate stepsize h obtains the approximate 

(xi)l at point t = t* +h. Go back to 1. and update t = t* +h. The process 

repeats. 



Chapter 3 

Numerical Algorithms 

This chapter describes the algorithms in HIDAETS. First we introduce some of the 

notation we need later. Then we describe the overall integration process and each 

step in detail. 

3.1 Notation 

The notation here follows closely [NP03]. 

Let 

I={(i,l)li=l, ... ,n; l=O,l, ... }. 

Given the n-dimensional equation offsets c and variable offsets d, we define for all 

k E Z, 

or equivalently, 

h = {(i, l) E Ill= k + c;}, 

Jk = { (j, l) E Ill= k + di}, 

h = {(i,l) ll = k+ci ~ 0}, 

Jk = {(j, l) ll = k + dj ~ 0}. 

Here h is empty for k < kc, and Jk is empty for k < kd, where kc, kd are defined by 

(2.6). 

12 
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3 .1.1 Notation for Taylor coefficients 

We interpret the (xj)t defined by (2.5) as variables, and (Ji)L as the function for 

evaluating the lth TC of k The lth TC for xi(t) at t* is denoted by (xi)i- An 

approximation for the lth TC of xi(t) at t* is denoted by (xi)I-
Let 

mk = Jhl and nk = IJkl, 

where lSI denotes the number of elements in setS. 

We denote by XJk the nk-dimensional vector with components {(xi)L I (j, l) E Jk} 

ordered in increasing j. That is, 

(3.1) 

where ir, r = 1, ... , nk, are in increasing order. 

Similarly, we denote by fh the mk-dimensional vector with components {(Ji)L 
( i, l) E h} ordered in increasing i: 

where in r = 1, ... , mk, are in increasing order. 

We define J -:;k to be the union of the lr for r :S k. This is the union for r = 

kd, ... , k, since lr is empty for r < kd. Then we define XJ~k to be the vector of 

{ (xi)L I (j, l) E 1-:;k}. In block-vector notation, the components of XJ9 are arranged 

in the order 

We define I-:;k to be the union of the Ir for r :S k. This is the union for r = 

kc, ... , k, since Ir is empty for r < kc. Then we define f1~k to be the vector of 

{ (Ji)t I (i, l) E 1-:;k}. In block-vector notation, the components of f1~k are arranged in 

the order 

f[~k = (fhc' fhc+I'. •. 'fh)T • 

In a similar manner, we define XJ<k and f1<k, respectively. In block-vector notation, 

we may write 
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3.1.2 Notation for derivatives 

We denote the lth derivative of Xj by x)l) and the lth derivative of fi by JP). 
Similar to the notation for Taylor coefficients, we denote 

(3.2) 

where Jr, r = 1, ... , nk, are in increasing order1
. 

Let 

hk = (!Xd, ... ,fi~:k>) T' 

where in r = 1, ... , mk, are in increasing order. 

Denote also 

XJs,k (xJkd' XJkd+l' ••• 'XJk) T, 

JI<,k = (!Jkc' hkc+l' · · · l fh) T• 

We also define XJ<k and h<k' respectively. In block-vector notation, we have 

In HIDAETS, all variables are represented in Taylor coefficient format. Most of 

the following algorithms handle Taylor coefficients directly except for the integration 

process and tolerance computation, which use variables in derivative format. 

3.2 The integration process 

To help describe the integration process, we denote 

• n: number of variables; 

• h: stepsize; 

• p: order of Taylor series; 

• t0 : starting point of the integration interval; 

1The only difference between (3.1) and (3.2) is the font of x: bold for Taylor coefficients, and 
normal for derivatives. 
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• tend: end point of the integration interval; 

• XICs: set of initial values (specified by the user); 

• atol: absolute tolerance; 

• rtol: relative tolerance. 

In subsection 4.1, we give detailed explanations for these variables. 

The user provides 

• function for evaluating (1.1); 

• XICs· 

Optionally, the user provides atol, rtol, and p. 

By evaluating the function, we compute the signature matrix and generate com

putational graphs for computing TCs. After finding the offsets, we try to compute a 

consistent initial point. If HIDAETS fails to cc,mpute one, it cannot solve the problem 

with the given initial point XICs· If it succeeds, we continue with the integration. 

After obtaining a consistent initial point, we compute Taylor coefficients. We 

also form tolerance tol using the solution at t0 , atol, and rtol, and then we compute 

stepsize h. With this h, we compute an approximate TS solution at t = t 0 + h by 

summing the series. 

Now, we have to ensure that this numerical solution satisfies the equation con

straints (obvious and hidden). For this purpose, we find the closest point by projecting 

it as illustrated in Figure 3.1. If HIDAETS fails to obtain such a consistent point, we 

reduce the stepsize h, recompute a TS solution with the new h, and project it again. 

We repeat this process, till we obtain a consistent solution. 

We iterate the above process by updating t, till t = tend· If tend is reached, 

HIDAETS succeeds in solving the given DAE problem. 

The integration process is given in the pseudo code below and in the flow chart 

in Figure 3.2. Here, compDAE denotes the function for evaluating the DAE. 

lNTEGRATE-DAE(n, to, tend, XIC8 , compDAE) 
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TS solution 

.. ·· I·· . . · .. 
---

projected solut~qQ __ ~:. 
.. --------

initial_poirit 

Figure 3.1: One step of the integration process. 

1 Evaluate compDAE 

2 Compute signature matrix and offsets 

3 if computing a consistent initial point fails 

4 then error "solver fails to compute a consistent initial point" 

5 else t ~ t0 

6 while t < tend 
7 do Compute Taylor coefficients at t 
8 Select stepsize h 

9 if lhl < hmin 1> h too small 

10 then error "stepsize is too small" 

11 return 

12 Compute TS solution with h 

13 while projecting TS solution fails 

14 do reduce stepsize h 

15 if lhl < hmin 
16 then error "stepsize is too small" 

17 return 

18 Compute TS solution with h 

19 t ~ t + h 

The corresponding C++ code is on page 121. 
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obtain problem definition 

output solution 

y 

reduce h 

Figure 3.2: The integration process of HIDAETS. 
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3.3 Computing signature matrix and offsets 

Given a DAE in the form of (1.1), we first form then x n signature matrix~= (aij) 
following (2.1). 

To compute the signature matrix, we need to do some work like parsing. In 

HIDAETS, we use a C++ class sigma implemented by Nedialkov. It generates a 

~ matrix through operator overloading by executing the function for evaluating the 

DAE. The algorithm for computing ~ is presented in [NP03]. 

After obtaining the signature matrix, we compute the equation offsets c and the 

variable offsets d. From Pryce's structural analysis, we need first to find an HVT. 

Then we compute the offsets by finding n-dimensional integer vectors c and d that 

satisfy (2.3). 

Finding HVT can be written as a Linear Programming (LP) problem: compute 

s.t. "' .. XiJ. = 1 for each i, ut,J 

"' .. XiJ. = 1 for each j, ut,J 

Xij E {0, 1} i,j = 1,2, ... ,n. 

The HVT is the set of (i,j), where Xij = 1 in the solution of (3.3). 

(3.3) 

In HIDAETS, we use the LAP [JV87] program to solve (3.3). It returns with an 

n-vector column solution o:, such that o:i = j is the position (j, i) in HVT. 

Example 3.1. In the single pendulum problem, we have two HVTs as 

X y X y 

and f ( 2* 
g -00 

h 0 

-00 

Then, for the first HVT, o: = (3, 2, 1f; for the second HVT, o: = (1, 3, 2f. 

From [Pry01], finding c and d can be treated as a dual LP problem which has 

the same optimal value with (3.3). After obtaining HVT, we first initi~.lize c and 

d to 0. Then we set di to the maximum of O"ij + ci, for i = 1, ... , n. We update c 
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following the relation of c and d, that is di- ci = aij, for (i,j) E HVT. To ensure 

that all ci 2:: 0, we iterate the above process till d equals dotd, where dotd stores d's 

previous value. This method for computing the offsets vectors is due to Pryce [Pry01]. 

COMPUTE-0FFSETS(n, c, d, 'E) 
1 compute HVT of 'E, obtain column solution a 

2 c~ 0 

3 d~ 0 

4 while true 

5 do dotd ~ d 

6 for j ~ 1 ton 

7 do dj ~maxi (aii + ci) 

8 if d = dotd 

9 then break 

10 else for j ~ 1 to n 

11 do i ~ ai 

12 Ci ~ dj - O"ij 

The corresponding C++ code is on page 125. 

3.4 Computing Jacobians 

Instead of computing the system Jacobian J (2.4) directly, we compute a Jacobian of 

Taylor coefficients 8fh I 8x.Jk. 

We apply the forward mode of AD to differentiate each component of fh with respect 

to XJk. We first set all gradients of each component of XJ<5k corresponding to XJk to 

0, and then set the gradients of each component of XJk corresponding to itself to 1. 

Then we propagate gradients through the code list2 of fh. Finally, we can evaluate 

2The rode list means a sequence of expressions containing elementary arithmetic operations and 
standard functions. See also Appendix B. 



3. Numerical Algorithms 20 

8fhj8xJk with the computation of fh. 

The above explanation is based on how FADBAD++ computes Jacobians, while 

ADOL-C has a different scheme presented in [GW04]. The method here is not efficient 

but convenient to implement; a source code translation approach is given in [NP03], 

which is more efficient, but also more difficult to implement. 

Example 3.2. For the single pendulum, we want to compute 8fr0 /8XJ0 • At stage 

k = 0, we have 

fr0 = (fo, go, h2f, 

XJo = (x2, Y2, .Ao)T, 

XJ~o = (xo,XI,X2,Yo,YI,y2,,\0)T, 

and the system equations satisfy {2.8). 

First, we initialize 8xJ~0 /8xJ0 to 

'Vxo (0,0,0) 

'Vx1 (0,0,0) 

'Vx2 {1,0,0) 

'Vyo (0,0,0) 

'Vyl (0,0,0) 

'Vy2 (0, 1, 0) 

'V..\o (0,0, 1) 

Then, we evaluate 8f10 /8xJ0 = ('V f0 , 'Vg0, 'Vh2)T as shown in Tables 3.1, 3.2, and 3.3. 

t1 = X2 'Vt1 = 'Vx2 (1,0,0) 
t2 = Xo 'Vt2 = 'Vxo (0,0,0) 
t3 = .Ao 'Vt3 = 'V..\o {0,0,1) 
t4 = 2tl 'Vt2 = 2'Vx2 (2,0,0) 
ts = t2t3 'Vts = t2 'Vt3 + t3 'Vt2 (0, 0, x0) 
t6 = t4 + ts 'Vt6 = 'Vt4 + 'Vts (2, 0, xo) 
fo = t6 'Vfo = 'Vt6 (2, 0, xo) 

Table 3.1: Evaluation of the gradient code list for fo = 2x2 + ..\oxo. 
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t1 = Y2 '\lh = '\ly2 (0, 1, 0) 
ts =Yo '\lts = '\lyo (0,0,0) 
tg = Ao '\lt9 = '\7 Ao (0,0,1) 
tw = 2t7 '\ltw = 2'\lt7 (0,2,0) 
tn = tstg Vtn = ts '\ltg + tg '\lts (0, 0, Yo) 
ti2 = tw + tn '\lti2 = '\ltw + Vtn (0, 2, Yo) 
9o = ti2 '\7 9o = '\lti2 (0, 2, Yo) 

Table 3.2: Evaluation of the gradient code list for go= 2y2 + AoYo- G. 

ti3 = Xo Vti3 = '\lxo (0,0,0) 

ti4 =XI '\lti4 = '\7 XI (0,0,0) 
ti5 = X2 Vti5 = '\lx2 (1,0,0) 
t16 =Yo '\lt16 = '\lyo (0,0,0) 

t11 = YI '\lt17 = '\lyi (0,0,0) 

tis= Y2 Vtis = '\ly2 (0, 1,0) 
ti9 = 2ti3 '\lti9 = 2'\lti3 (0,0,0) 
t2o = ti9ti5 '\lt2o = ti9 Vti5 + ti5 '\lti9 (2xo, 0, 0) 
t2I = t14t14 '\lt2I = 2ti4 '\lti4 (0,0,0) 
t22 = 2ti6 '\lt22 = 2'\lt16 (0,0,0) 

t23 = t22ti8 '\lt23 = t22 '\lt1s + tis '\lt22 (0, 2y0 , 0) 

t24 = ti7ti7 '\lt24 = 2t17'\lti7 (0,0,0) 

t25 = t2o + t2I + t23 + t24 '\lt25 = '\lt2o + '\lt2I + '\lt23 + '\lt24 (2xo, 2yo, 0) 

h2 = t25 '\7 h2 = '\7 t25 (2xo, 2yo, 0) 

Table 3.3: Evaluation of the gradient code list for h2 = 2xox2 + x~ + 2YoY2 + y~. 
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Thus, we obtain 

=~0 = [~::j = [ ~ ~ :0:] . (3.4) 
\lh2 2xo 2yo 

In HIDAETS, we use FADBAD++ as our default AD package. It implements 

automatic differentiation through operator overloading. It provides data types 

F<double> for the forward mode of AD and T <double> for the Taylor series compu

tation. The T <double> type can be built on top of F<double>. Thus, when a Taylor 

series computation is performed on F<double> objects, both TCs and their gradients 

are produced. 

Remark. In this computation, FADBAD++ performs operations with gradients 

containing only zeros. If such operations are recognized, for example, through "if'' 

statements, and avoided, the computation may be more efficient. 

COMPUTE-JACOBIAN(k, d) 
1 &xJ<k +-- 0 

&xJk 

2 for j +-- 1 to n 

3 do Li +-- k + di 

4 if Li 2: 0 
8(xj)L 

5 then ~a( ·) = 1 
XJ Lj 

6 Evaluate 8f1k/8x.Jk by computing fh with T < F<double> >objects 

The corresponding C++ code is on page 127. 

3.4.2 The relation between afik/ OXA and J 

From COMPUTE-JACOBIAN, we can compute 8fh/8x.Jk for any k. How to form the 

system Jacobian from it? Do we really need to compute Jacobian for all k? Nedialkov 

and Pryce [NP03] present some useful propositions to answer these questions. Here, 

we first quote these propositions, and then draw our algorithms for printing Jacobian 

Jk as defined in (3.5). 

From Proposition 4.1 in [Pry01], we have 

J = 8fio and 
OXJ0 

(3.5) 
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and J k is the submatrix of J by deleting those rows i where k + Ci < 0 and columns 

j where k + di < 00 If k 2:: 0, then Jk = J, since all k + Ci 2:: 0 and k + di 2:: 00 
From [NP03], the relation between f)fh/&x.Jk and J is 

or 

where Ck, Dk are diagonal matrices defined by 

ck = diag((k + Ci)! 1 for those i with k + Cj ;:::: o], 
Dk = diag((k + dj)! I for those j with k + dj 2:: o] 0 

Example 3.3. For the single pendulum, when k = 0, 

[
1 0 0] 

Co= 0 1 0 , 

0 0 2 

(306) 

Thus, we just need to compute fJfh/&x.h fork= kd, 0 .. , 0. Then we can compute 

the system Jacobian J from fJfJ0 /fJXJ0 , and obtain 8f1J8xJk fork> 0 by scaling J. 

Example 3.4. For the single pendulum, from (3.4) and (3.6), we have 

J = Co f)flo D()l 
OxJo 

[
1 0 0] [ 2 
0 1 0 0 

0 0 2 2xo 
0 

1 
2yo 

xol 
~· 

0 

2 
2yo 

xol [~ Yo 0 
0 0 Hl 

In fact, if just obtaining system Jacobian and f)fhjoxJk' we only need to compute 

8f10 jfJxJ0. In general, from Pryce's structural analysis, the values of XJ:5oo cannot be 

determined without processing stages k ~ 0, so we need to compute f)fh/&x.Jk for 

k = kd, 0 .. , 0 to obtain a consistent initial point. 
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PRINT-JACOBIAN(k, c, d) 
1 for i +- 0 to n 

2 doLi= k + ci 

3 if Li 2:: 0 

4 

5 

6 

then for j +- 0 to n 

doLi= k + di 

if Lj 2:: 0 

7 then Print 
Li! {)(ji)Li 

Li! &(xi)Li 

The corresponding "C++ code is on page 127. 
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Note that the Jacobian can be obtained in sparse or dense format. In HIDAETS, 

we obtain it in both formats and implement it by function overloading. 

3.5 Computing TCs 

From Pryce's structural analysis [Pry98, Pry01], for stages k 2:: kd, the f19 functions 

of XJ::,k, must satisfy 

fh(t*,xj<k'xjk) = 0. 

At each stage k = kd, kd + 1, ... , the x*J have already been solved, and the x*J are <k k 

the unknowns. 

From this structural analysis, stages k ::; 0 form nonlinear systems in general to 

comprise the projection on the constraints manifolds, while stages k > 0 form square 

linear systems only. 

3.5.1 Computing a consistent point 

For stages k ::; 0, we solve the system3 

minllx~k-XJkll2 subjectto fh(t*,xj<k'XJk)=fh(xJk)=O. (3.7) 

Example 3.5. For the simple pendulum, at stage k = -2, 

fL 2 = ho and XJ_2 = (x0 , y0 )T. 

3f~o may be linear in XJk· However, we still solve (3.7) to obtain a consistent point. 
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Given an initial guess xJ-_
2 

for XJ_2, we solve 

min llxj_
2 

- XJ_2 1!2 subject to fL 2 = x~ + Y5 = 0. 

In HIDAETS, we employ IPOPT (WB04] to solve (3.7). To use IPOPT, we need to 

provide the objective function, the gradients of the objective function, the evaluation 

of the constraints, and the Jacobian of the constrains. For simplicity, we replace 

llxj._k -xLklb by 0.5llxj_k -xLklb then the gradient becomes xj_k -xLk· We use 
AD to compute the constraints and their Jacobians, as illustrated in subsection 3.4.2. 

Solving (3.7) from k = kd to k = 0 in order, we obtain a consistent initial point. 

In fact, at each integration step, data is available in the form of "guesses" xaJ for 
$0 

the desired values of xjso· Thus, we use (3.7) to compute a consistent point for both 

the first step and each integration step afterwards. 

COMPUTE-CONSISTENT-POINT( k, xj.k) 

1 Define objective function 0.5llxJ.k - XJk I b 
2 Define constraints function fik(t*,xj<k'XJk) 

3 Define functions needed by optimization package 

4 Compute optimal solution by an optimization package 

The corresponding C++ code is on page 128. 

3.5.2 The linear case 

Let 

When fh is linear in XJk, from 

we have 

From (3.6), we transform (3.8) into 

(3.8) 

(3.9) 
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If 8f1j&x.Jk is nonsingular, we can solve (3.8) for zk in the usual sense. Then, 

Example 3.6. At stage k = 1, 

fh = (JI, g1, h3f and xh = (x3, y3, .\I)T. 

We have 

= 
[100][1 0 xo] [ 3 

0 

~] 0 1 0 0 1 Yo o 3 

0 0 ~ 2x0 2yo 0 0 0 

[ 3~0 
0 x•] 3 i 3yo 

Since arh I &xh is nonsingular' we compute Zl by solving the 3 X 3 system 

arh f ( * a ) 
!l... Z1 = h XJ< 1 , XJ1 ,. 
UXJ1 
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Hence, we need first to solve Zk for the linear case. Generally, we first obtain the 

system Jacobian without scaling. Then we scale it following (3.6) to obtain 8fh/ &x.Jk. 

We compute fh(xj<k'x~k) with an initial guess x~k for XJk by AD. After that, we 
solve (3.8) to obtain zk. Finally, we compute xjk by 

However, to solve (3.8), we need to do LU factorization for 8f1j&x.Jk first, whose 

running time is O(n3 ). If we do it for each stage k, it is obviously not efficient. We 

want to do LU factorization once for all stages, and then do some scaling to solve xh 

for each stage k. 

We denote me = maJCi Ci and by II · II the max norm of a vector or a matrix. Then 

liCk II = (k +me)! and 

1 . [(k+ci)! (k+en)!J 
liCk II ck = dmg (k +me)!' 0 0 0

, (k +me)! , 

-1 . [(k +me)! (k +me)!] 
liCk II ck = dlag (k + cl)! , 0 0 0

, (k +en)! 0 
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For the pendulum problem, 

. [ k! k! (k + 2)!] 
= dtag ( k + 2)! ' ( k + 2)! ' ( k + 2)! 

= diag [ ( k + 1 )
1
( k + 2 )' ( k + 1 )

1
( k + 2) ' 

1
] ' 

= d" [(k+2)! (k+2)! (k+2)!] 
mg k! ' k! ' (k + 2)! 

= diag((k + 1)(k + 2), (k + l)(k + 2), 1]. 

Similar for Dk/IICkli and IICkll Dj; 1
• 

Multiplying both sides of (3.9) by Ck/IICkll, we obtain 

Jli~kliDkzk = ~~~kliCkfh(x~<k'xJk). 
Let Yk = Dk/IICkli zk, then 

(3.10) 

To solve (3.10), we do not nEed to do LU factorization for each k. We just need to 

do LU factorization of J once, and then use it directly for each stage k. 

Finally, we compute xjk by 

For the Taylor series, we repeat the above process from 1 to the required order p. 

COMPUTE-TS(n, c, d,x,p) 

1 J f- System Jacobian at stage 0 

2 compute LU factorization of J 

3 for i f- 1 to n 

4 do Ui f- 1/ci! 

5 Vi f- 1/di! 

6 for k f- 1 to p 



3. Numerical Algorithms 

7 do COMPUTE-TERM(n, x, k, u, v) 

COMPUTE-TERM(n, x, k, u, v) 

1 for i <---- 1 to n 

2 do ui <---- ui/(k + q) 

3 vi <---- vd(k + di) 

4 for i <---- 1 to n 

5 do 9i <----compute (fi)k+e; 

6 9i <---- gd(ui · (k +me)!) 
7 s <---- solution of (3.10) using the LU factors 

8 for j <---- 1 to n 

9 do (xj)k+di <---- -SjVi(k +me)! 

The corresponding C++ code is on page 130. 

3.6 Error estimation 

If the Xj have infinite Taylor series expansions, for a given h = t - t*, 

28 

If we approximate xY> by a Taylor series with highest-order term of order p, we can 

write 

(3.11) 

(3.12) 

For simplicity, we shall omit tin x]l)(t) and xj1>(t), and use x]l) and x]1>, respectively. 
( +1+") In general, from (3.11) and (3.12), we can use lx/ 1 i/(p+ 1)! jhjP+l as the error 

estimation for x]i). 
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In HIDAETS, we compute xji) by 

and we use lxf+dj)l/(p + di - i)! lhlp+dri as the error estimation for xji) at t. 

Since x;l), for all j = 1, ... , nand alll = 0, ... , di, are used to obtain an approxi

mate solution, we must consider all these x;l) when estimating the error. 

Hence, an error estimation for x;z> is lx;p+dj)l/{p + di - l)! ihiP+drl, where l = 
0, ... , di. Usually, lhl « p. We have 

ihiPfp! > ihiP+lj(p+ 1)! > ··· > ihlp+dij(p+dj)! 

This implies 

Then we can use 

as an error estimation for x;l), for alll = 0, ... , di. The error for the whole system is 

II ell. 
Therefore, we can form error estimate for the current step as 

est= llell, where e = ~~~P (ix~p+dl)l, ... , lx~+dn)l) T. (3.13) 

Since the variables are represented as Taylor coefficients in HIDAETS, by replacing 

derivatives by TCs in (3.13), we have 

e = lh~P (l(xl)p+d1 (p + dl)!l, .. ·, l(xn)p+dn (p + dn)!l) T. (3.14) 
p. 

ESTIMATE-ERROR(n,x, d, h,p) 

1 for j +-- 1 to n 

2 do ei +-- i(xj)p+di llhiP(p + 1) · · · (p + di) 
3 return NORM(e) 

The corresponding C++ code is on page 132. 
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3. 7 Stepsize control 

3. 7.1 Stepsize selection 

Tolerance computation 

We use a mixture of relative and absolute error control. The user gives absolute 

tolerance atol and relative tolerance rtol. Then 

tol = rtolllxJ:.:;o II + atol. 

COMPUTE-TOLERANCE( n, x, d, atol, rtol) 

1 for j ~ 1 ton 

2 do (3i ~ rtol II (x)0
), ... , x]dj)) II 

3 tol ~ atol + 11!311 
4 return tol 

The corresponding C++ code is on page 132. 

Selecting stepsize 

After obtaining a consistent initial point, we compute the Taylor coefficients at current 

integration time. Then we need the error estimate to be ::; tol for this step. From 

(3.13) and (3.14), we have 

where, 

I= ;! II ( (xl)p+d1 (p + d1)!,. · ·, (xn)p+dn (p + dn)l) Til· 

Since we have already obtained a consistent initial point, we can compute tol. We can 

also compute 1 by the Taylor coefficients which are knowns. Then, we use formula 

h = (tol/1)1
/P 

to compute the stepsize. 

COMPCTE-STEPSIZE(n, x, d,p, tol) 
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1 I <-- ESTIMATE-ERROR( n, x, d, 1.0, p) 
2 h <-- (tol/1)1/P 

3 return h 

The corresponding C++ code is on page 133. 

3. 7.2 Final stepsize selection 
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About the final step, one may think of using tend- t as the final stcpsizc. However, it 

may be too small. In HIDAETS, after computing the stepsize h, we compare !tend- ti 
with lhl. Table 3.4 shows how we deal with different conditions. Here, 

Condition Stepsize 
2lhl < !tend - ti sign(tend- t)ihl 

lhl < !tend - ti :S 2lhl (tend- t)/2 
lhl 2: !tend - ti tend- t 

Table 3.4: Selection of the final stepsize. 

sigH(x) = -
{

1 when x > 0, 

-1 when x < 0. 

We use lhl to ensure that the integration handles special cases such as h < 0, or 

tend < t0 . For instance, we could integrate the single pendulum problem from t0 = 100 

to tend = 0. Note that this is the first time we usc lhl, and we use h in COMPUTE

STEPSIZE. 

Besides these, we must ensure that the stepsize does not become too small. We 

set a threshold hmin in HIDAETS. After computing the final stepsize or reducing 

stepsize in the integration process as illustrated in subsection 3.2, we check whether 

h 2: hmin. If h < hmin, HIDAETS sets Ind, an indicator defined in subsection 4.1, 

appropriately and exits. 

CHECK-FINAL-STEPSIZE(t, tend, h) 

1 if 2lhl < !tend - ti 
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2 then if tend > t 
3 then return lhl 
4 else return -lhl 
5 else if lhl < !tend - ti 
6 then return {tend- t)/2 

7 else return tend - t 

The corresponding C++ code is on page 133. 



Chapter 4 

Numerical Software 

In this chapter, we follow general software development process to describe HIDAETS 

as we did in developing it. First we give an informal specification for HIDAETS, then 

discuss design issues, and finally illustrate how to install and use it. 

4.1 Informal specification 

The requirement specification is organized as follows. Section 4.1.1 provides the 

overall description of the system to make the requirements in section 4.1.2 easier to 

understand. Section 4.1.2 contains all detailed requirements. Section 4.1.3 includes 

supporting information important to a system's development. Section 4.1.4 lists all 

possible changes in the software development life cycle. 

4.1.1 General system description 

This section gives a general description of the system. 

System context 

Figure 4.1 shows the sketch of the system context. A circle represents an external 

entity outside the system and a rectangle is the system itself. Arrows represent the 

data flows between the system and its environment. 

33 
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DAE system 

Initial point, 
integration interval 

If fail, error 
message 

If succeed. 
solution 

Figure 4.1: Sketch of system context diagram. 
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This system is independent and self-contained. The main external interaction of 

the system is the user interface. The responsibilities of the user and the system are 

listed as follows. 

• User responsibilities: 

1. Prepare a set of input information including system equations, an initial 

point, and the integration interval. 

2. Assure there is not input data error caused by human oversight like typing 

mistakes. 

• System responsibilities: 

1. Decide whether the problem is solvable. If not, output relevant error mes~ 

sage. 

2. If the problem solvable, compute a numerical solution at the end point of 

the integration interval. 

User characteristics 

The typical user would be from an Engineering area who may have no knowledge 

about the algorithms and the programming languages of the software system. The 

user must have the necessary prerequisite knowledge and skills to use the system. 

The knowledge and skills include defining the DAE problem, providing the system 

input following the instructions, and running script files. 

System constraints 

The system will employ Pryce's structural analysis and Taylor series methods. To 

compute Taylor coefficients, we use automatic differentiation. 
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In numerical methods for ODEs/DAEs, we normally want a solution at an end 

point. In this work, we do not provide a continuous numerical solution. 

The software system needs several numerical packages, such as AD, optimization, 

and linear assignment problem. Table 4.1 lists these packages. 

Name Description 
ADOL-C AD package in C/C++ 
FAD BAD++ AD package in C/C++ 
IPOPT optimization package in Fortran with C interface 
LAP linear assignment problem solver in C/C++ 
LAPACK subroutines for solving linear systems in Fortran 

Table 4.1: Packages in HIDAETS 

For these external packages, the user needs to download and install them following 

their instructions. 

As a numerical software package, considering efficient and usability, we usually 

choose C/C++ or Fortran to implement it. Since ADOL-C, FADBAD++, and LAP 

only have C/C++ interfaces, it is very difficult to call C/C++ function from Fortran. 

Therefore, we implement the system in C/C++ language. 

We want to use a free compiler which is easy to manage and close to ANSI C++, 

thus we choose g++ 3.2. 

The system is implemented and tested in a Unix environment and is expected to 

be portable to other Unixes, Linux, and MacOS X. 

4.1.2 System description 

This section describes the system requirements in detail. 

Functional requirements 

• Problem description 

A DAE initial value problem includes the following items. 

1. System of equations 

The problem is a DAE initial value problem in the form of (1.1). 
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The number of equations must match the number of dependent variables 

in the DAE system. The functions are assume to be real-valued. 

This system is represented in a computer program using a finite number 

of constants, variables, elementary operations ( +, -, *, and /), differ

entiation operators, and smooth functions (sin, cos, exp, log, etc.). The 

representation excludes nonsmooth functions, such as, branches, abs, and 

mm. 

2. Set of initial values 

The initial values for the DAE system. Generally, this is a subset of XJ<;,o· 

The values are in the floating point format. 

3. Integration interval 

[to, tend]· The values are in the floating point format. to is the starting 

point of the integration interval, and tend is the end point of the integration 

interval. Here, tend can be less than t0 , such as integrating the problem 

from to= 0 to tend= -10. 

• Goals statement 

Basic. We want to solve numerically the DAE initial value problem described 

above. If the system fails to solve the problem, it outputs the relative error 

message. If it succeeds, it computes the solution at tend, and outputs relative 

information as described in the output requirement. 

Besides these, the system could take the user's optional input as specified below. 

Advanced. Since the system needs some external packages, we also allow the 

"expert" user, familiar with the particular algorithms and the C++ program

ming language to substitute a package with another one providing the same 

functionality. The exchangeable packages are specified in section 4.1.4. 

• Optional input 

1. Tolerances 
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Absolute and relative error tolerances, which indicate how accurately the 

solution is to be computed. The values are in the floating point format. 

Default values are 10-13 . 

2. Order 

This is Taylor series order. The values are in the integer format. Default 

value is 20. 

3. Indicator 

On initial entry, it must be set to tillend, onestep, or jacobian. Its default 

value is tillend. The user can re-enter the integration with Ind = tillend, 

onestep, or Jacobian. Ind = Jsingular, conspoint, and smallstepsize indi

cate errors as shown below. 

Ind DAE solver 

tillend integrates from current t to tend 

onestep takes a step and exits 

jacobian computes E, c, d, J and exits 

normal exit normal exit 

Jsingular J is singular 

conspoint J is nonsingular, fails to obtain a consistent point 

smallstepsize stepsize is too small 

4. Output parameters 

The integration system output includes several levels, as listed below: 

outpulnd DAE solver 

solution outputs the solution at tend 

stat solution + statistics information 

process stat + integration process 

offsets process + signature matrix and offsets 

initpoint offsets + consistent initial point 

scheme initpoint + solution scheme 

• Printed output 

Based on the system input, the output system has several levels. 
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1. Returns 

The system returns success or fail. If success, output information based 

on the output parameters. If fail, output the failure reason. 

2. Solution at tend 

Solution values and derivative values of the variables in the system. In 

practice, we output XJ5oo at tend· These values are in the floating point 

format. 

3. Statistics information 

It includes 

(a) number of steps 

(b) number of rejected steps 

(c) user CPU time 

4. Signature matrix, degrees of freedom, and structural index 

This prints the system signature matrix, offsets, degree of freedom, and 

structural index. 

5. Integration process 

This prints the system integration process: current integration time and 

the estimated local error. 

6. Consistent initial point 

This prints the consistent initial point generated by the system. In prac

tice, we output XJ5oo at to. These values ate in the floating point format. 

7. Solution scheme 

This part illustrates how to obtain a consistent initial point. It shows at 

each stage, which functions are used and for which variables are solved. 

Non-functional requirement 

• Accuracy of the input data 

The input data is given directly by the user of the system, assuming no human 

error, there are no inp'..:t data error or measurement error. In other word, the 

input data of the system are assumed to be accurate. 
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• Tolerance of the solution 

It is always hard to find a true solution for the DAE problem we solve. We 

compare the solution with the reference solution generated by the system with 

small tolerances (for example, 10-16), which is supposed correct. We can also 

compare our reference solution with other reference solutions presented in the 

literature or generated by other existing solver to assess the correctness of our 

reference solution. 

• Solution validation strategies 

We compute the number of signature digits at the end point of the integration 

interval for different tolerances. If the number of significant digits increases 

with the tolerance's decreasing, the solution is assumed reliable. 

• Look and feel requirements 

The user's input interface is to define the problem by implementing relative 

C++ functions almost in mathematical form. The output interface should be 

straightforward enough to provide the information. 

• Usability requirements 

The system should be easy to learn and use, and it should take a considerable 

amount of time for a user with the necessary background specified in subsection 

4.1.1 to use the system to solve a problem. 

• Performance requirements 

The system is facing to solve high-index DAE problems. It can solve the prob

lems whose index is too high for existing solvers to handle. The system is also 

expected to be competitive to existing solvers when the problems can be solved 

by both and high accuracy (global error:::; 10-10) is demanded. 

• Maintainability requirements 

This system should be developed in a way that the efforts spent on maintaining 

the system (including document and code) or upgrading the system would be 

minimal. The release frequency of the system sh01 dd be less than once within 
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one year. The time and effort for each upgrade should be less than 1/5 of the 

time and effort for developing the original system. 

• Portability requirements 

The system should be easily ported to Mac OS, Linux, and Unix environment 

with g++ 3.2 or later. It depends on the g++ compiler and some Unix system 

functions (like time()), which are also available on Mac OS and Linux. Thus the 

system takes same time and effort to be installed on these operating systems. 

4.1.3 Other system issues 

Open issues 

Due to roundoff and truncation error, our computed solutions are not the mathe

matically correct ones. If an interval computation can be applied, we will be able to 

assess the accuracy of the computed solution. 

Waiting room 

Due to the explicit nature of the Taylor series methods, the system is not efficient for 

stiff DAE problems. New algorithms and implementation needs to be developed for 

stiff problems. 

The user can change algorithms in one part without influencing other parts. These 

parts include 

1. Computing signature matrix and offsets. The algorithms for computing signa

ture matrix from the evaluation of the DAE system and generating offsets from 

the signature matrix. 

2. Projecting a consistent solution. The algorithms for computing a consistent 

point from an approximate one. 

3. Computing TCs. The algorithms for computing Taylor coefficients to some 

specified order by automatic differentiation. 

4. Computing Jacobians. The algorithms for computing the related Jacobia11s 

from the evaluation of the DAE system by automatic differentiation. 
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5. Error estimation. The algorithms for estimating the local error per step. 

6. Stepsize control. The algorithms for predicting an appropriate stepsize. 

4.1.4 Likely changes 

Numerical packages 

The user can substitute any one of the packages in the system by his/her own same 

functional packages without influencing others. These packages include 

1. AD packages for computing TCs and Jacobians. If the package is a non-C++ 

based AD package, the interfaces for computing TCs and Jacobians must be 

possible to be called by C++. If the package is a non-overloading based AD 

package, it must take the function (in the computer program) used to generate 

the computational graph in the form of (1.1). 

2. Optimization packages for projecting solutions. The projection problem is for 

k :::; 0, we solve the system 

to compute xjk by standard least-square methods. 

3. Linear assignment problem solver for computing an HVT. 

4. Linear algebra packages for solving linear system. 

Printed output 

The system output may have the following changes: 

1. The order of output items. We define the levels for the output system for current 

version. It may need to change the order of the levels and contents in each level. 

2. More output information. In the future, the system may need to output more 

information. 
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(a) Feedback to user's input. There may be human errors from the user, the 

output system should response with relevant indicating information. 

(b) Plots of dependent variables over the integration interval. 

(c) Plots of the stepsize behavior. The user can investigate the stepsize be

havior, therefore, the stepsize control algorithms. 

(d) Dynamic simulation of the problem. This will be useful in the real ap

plication. We can show the user dynamic simulation of the problem by 

animation or other graph representation method. 
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4.2 Design 

In this section, we follow an object-oriented approach. First we decompose the system 

into components. Then, for each component, we display class diagrams and give 

detailed interfaces. 

4.2.1 High-level design 

This subsection describes the structure of HIDAETS. It consists of the following 

components: DAEProblem, IntegrationParameters, SignatureMatrix, Offsets, Con

sistentinitialPoint, AD, ErrorEstimation, StepsizeSelection, and Projection. Figure 

4.2 depicts the solver structure. We describe each part in turn. 

In each interface description, we use the following form 

Component Description 

where the column with Component is the name of the component using this interface, 

and the column with Description is the description how the component uses this 

interface. 

1. DAEProblem 

This component obtains the definition of a DAE problem, which includes system 

equations, initial point xrcs, to, and tend· 

Interface: computeDAE, getlnitialPoint 

(a) computeDAE 

This interface provides the system equations of the DAE problem. It is 

used by: 

Component Description 

SignatureMatrix It computes the signature matrix. 

AD It uses system equations to generate compu-

tational graphs for co::-~1puting Taylor coeffi-

cients and Jacobians. 
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(b) getinitialPoint 

This interface obtains the initial point from the user. It is used by: 

Component 

ConsistentinitialPoint 

2. IntegrationParameters 

Description 

It first checks whether the initial point 

is consistent; If not, it tries to find a 

consistent one. 
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This component obtains integration parameters from the user. They include 

absolute tolerance (atol), relative tolerance (rtol), tolerance for optimization 

package (dtol1), order (Ord), indicator (Ind), and output control information 

(outputind). More details are given in subsection 4.1. 

Interface: getParameters 

This interface provides the integration parameters. It is used by: 

Component Description 

AD It sets the order of Taylor series to Ord. 

StepsizeSelection It uses atol, rtol, and Ord when selecting a stepsize 

for next step. 

Projection It uses dtol when projecting an initial point or 

approximate TS solution. 

3. SignatureMatrix 

This component obtains the signature matrix from the definition of the DAE 

system. 

Interface: computeSignatureM atrix 

This interface computes the system signature matrix. It is used by: 

Component 

Offsets 

Description 

It computes offsets based on the generated signature 

matrix. 

1 In H~DAETS, we integrate IPOPT as our nonlinear syst~m solver. When an error estimate 
[WB04] becomes less than dtol, IPOPT succeeds and returns with solution. 
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4. Offsets 

This component obtains offsets c and d from the signature matrix of the DAE 

system. 

Interface: computeOffsets 

This interface computes equation offsets and variable offsets. It is used by: 

Component 

Projection 

Description 

It uses offsets when projecting an initial point or TS 

solution. 

5. ConsistentinitialPoint 

This component computes a consistent point based on the structural analysis. 

It checks whether the initial point given by the user is consistent; if not, it tries 

to find a consistent one. 

Interface: computeConsistentPoint 

This interface tries to find a consistent point. It is used by: 

Component 

AD 

6. AD 

Description 

It uses the consistent initial point to compute Taylor 

coefficients and Jacobians. 

This component computes and provides Taylor coefficients, Taylor series solu

tion, and J acobians. It uses interfaces: 

(a) computeDAE from DAEProblem; 

(b) computeConsistentPoint from ConsistentinitialPoint; 

(c) computeStepsize from StepsizeSelection; 

(d) projectSolution from Projection; 

(e) getParameters from InteuationParameters. 
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Interface: getCoefficients, computeTSSolution, computeJacobian 

(a) getCoefficients 

This interface provides the Taylor coefficients. It is used by: 

Component 

Error Estimation 

(b) computeJacobian 

Description 

It estimates error for the approximate TS so

lution. 

This interface computes Jacobians. It is used by: 

Qomponent 

Projection 

(c) computeTSSolution 

Description 

It uses Jacobian when projecting an initial point 

or approximate solution. 
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This interface computes Taylor series solution based on Taylor coefficients 

with a given stepsize and order. It is used by: 

Component 

Projection 

7. Error Estimate 

Description 

It uses TS solution when projecting a Taylor series 

solution. 

This component estimates the error of an approximate TS solution. 

Interface: computeError Estimate 

This interface estimates error from the Taylor coefficients. It is used by: 

Component Description 

StepsizeSelection It decides next stepsize based on the estimated 

error. 
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8. StepsizeSelection 

This component selects stepsize for the next integration step. It computes next 

stepsize based on the estimated error and the tolerances. 

Interface: computeStepsize 

This interface computes next stepsize. It used by: 

Component Description 

AD It uses stepsize when computing Taylor series solution. 

9. Projection 

This component projects the initial point provided by the user or the approxi

mate solution computed by the AD component. It uses the interfaces: 

(a) computeTSSolution from AD component; 

(b) computeJacobian from AD component; 

(c) computcOffsets from Offsets component; 

(d) getParameters from IntegrationParameters component. 

After it obtains corresponding data, it uses an optimization package (IPOPT) 

to project an initial point or solution. 

Interface: projectSolution 

This interface projects an initial point or the computed TS solution. 

Component Description 

AD It computes Taylor coefficients and Jacobians 

using the projected consistent solution. 

ConsistentinitialPoint It projects the initial point provided by the 

user to a consistent one. 
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4.2.2 Low-level design 

This subsection describes the class diagrams in HIDAETS. We have the following 

classes: DAEProblem, Parameters2 , SignatureMatrix, Offsets, InitialPoint, AD, Er

rorEst, Stepsize, Projection, and DAESolver.' For each class, we present the corre

sponding class diagram and a description. 

1. DAEProblem 

An AD package based on operator overloading usually requests the parameters 

of compDAE in its own defined type, and the Sigma class also demands the 

variables of the evaluation function in Sigma type. We could employ templates 

to implement it as follows: 

template < typename T > 
class DAEProblem 
{ 

} 

public: 

virtual void compDAE( T *f, T *X, T &t ) = 0; 

II ... 

private: 

II ... 

template < typename T > 
class DAEProblem_1 : public DAEProblem < T > 
{ 

} 

public: 

void compDAE( T *f, T *X, T &t ); 

II ... 

private: 

I I ... 

The advantage is that the user can declare his/her own variables to set problem 

parameters. For example, the user can define the single pendulum problem as 

2 Usually, text ;;hat is related to programs is typed in typewriter font. We use normal font, as it 
is clear from the context. 
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template < typename T > 
class Pendulum : public DAEProblem < T > 
{ 

} 

private: 
double g, L; 
II ... 

public: 

void setParam( double *param ) 
{ 

g = param[O]; 
L = param[1]; 

} 

void compDAE( T *f, T *X, T &t ) 
{ 

} 

II 

f(O] = diff(Y[0],2) + Y[O]*Y(2]; 
f(1] = diff(Y[1],2) + Y[1]*Y[2] - g; 
f(2] = Y[O]*Y(O] + Y(1]*Y(1] - L*L; 
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Then, in the main function, the user could change g, Land integrate the new 

problem without changing the definition of it. 

However, the interfaces become quite complicated. First, to implement the 

class Pendulum, the user needs to know about class inheritance, templates, 

and overloading. Second, in the main function, we have to create more than 

one Pendulum objects with different types. That means when we change some 

values in the DAE problem, we have to do the same thing on all the Pendulum 

objects, which also complicates usage. For example, to use FADBAD++ and 

set problem parameters, we would have the following code in the main function. 

int main() 
{ 

II ... 
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DAEProblem <Sigma> *ptrPendl =new Pendulum <Sigma>(); 
DAEProblem < F<double> > *ptrPend2 =new Pendulum< F<double> >(); 
DAEProblem < T< F<double> > > *ptrPend3 =new Pendulum< T< F<double> > >(); 

} 

double param[2]; 

param[O] = 9.8; param[l] = 10; 

ptrPendl->setParam( param ) ; 
ptrPend2->setParam( param ); 
ptrPend3->setParam( param ) ; 

II ... 

The above main function seems complicated. To simplify it, in HIDAETS we 

define a DAE problem by a template function. The user needs only to provide 

such function as shown in subsection 4.3.2. To enable the user to change problem 

parameters, we add one parameter, a void pointer to the problem parameters, 

in the template function. For the single pendulum problem, we define it as 

below. 

template < typename T > 
void Pendulum( T *f, T *x, T &t, void *DAEParam) 
{ 

} 

double *d = (double *) DAEParam; 

g = d[O]; 
L = d[l]; 

f[O] = diff(Y[O] ,2) + Y[O]*Y[2]; 
f[l] = diff(Y[1),2) + Y[l)*Y[2] - g; 

f[2] = Y[O]*Y[O] + Y[l)*Y[l] - L*L; 

Because there are many relations between DAEProblem and other classes, we 

need a class diagram consisting of necessary methods to represent this compo

nent and illustrate associated relations. Then, we could present the class dia

grams by UML easily and demonstrate the relations among components clearly. 
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2. Parameters 

This class provides functions for setting and obtaining parameters such as atol, 

rtol, Ord, Ind, and outputlnd. For more details, refer to subsection 4.1; see also 

Figure 4.3 and Table 4.2. 

Remark. All methods in Parameters are inline functions. 

3. SignatureMatrix 

Parameters 

setAbsTol() 
getAbsTol() 
setReiTol() 
getReiTol() 
setDTol{) 
getDTol() 
setOrder() 
getOrder() 
setlnd() 
getlnd() 
setOutput() 
getOutput() 

Figure 4.3: Class diagram: Parameters. 

The SignatureMatrix class obtains the signature matrix from system equations. 

It uses compDAFJ method to obtain system equations as illustrated in Figure 

4.4. Table 4.3 demonstrates its document in detail. 

4. Offsets 

Figure 4.4 shows the Offsets class diagram. The Offsets class computes problem 

offsets based on the computed signature matrix. There are four classes in this 

part: Offsets, LAPSolver, LAP. Offsets class inherits from the SignatureMatrix 

class, and has an LAPSolver class. LAP denotes class that implements interfaces 

defined in the LAPSolver class; see Tables 4.4, 4.5, and 4.6. 

3This compDAE refers to the function describing the DAE, not a method of non-existing class. 
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Parameters 
Methods Type Description 

setAbsTol void Sets absolute tolerance. 
getAbsTol double Obtains absolute tolerance. 
setRelTol void Sets relative tolerance. 
getRelTol double Obtains relative tolerance. 
setDTol void Sets tolerance for the optimization 

packages. 
getDTol double Obtains tolerance for the optimization 

packages. 
set Order void Sets order value. 
get Order unsigned integer Obtains order value. 

setlnd void Sets Ind value. 
getlnd unsigned integer Obtains· Ind value. 

setOutput void Sets output information value. 
getOutput unsigned integer Obtains output information value. 

Table 4.2: Methods of the Parameters class. 

SignatureMatrix 

I Methods Type Description 

I compSignatureMatrix void Computes the signature 
system equations. 

matrix from ··1 

Table 4.3: Method of the SignatureMatrix class. 
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SignatureMatrix DAEProblem 

----------;.. 
compSignatureMatrix() compDAE() 

~ 

Offsets 

compOffsets() LAPSovler 
,..., 

getCVector() ......... 
getDVector() compHVT() 
getCi() 

~ getDj() 

LAP 

compHVTO 

Figure 4.4: Class diagram: SignatureMatrix and Offsets. 
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From Figure 4.4, the user can use his/her own linear assignment problem solver 

by inheriting the LAPSolver class and implementing it. 

Methods 

compOffsets 

getCVector 
getDVector 

getCi 
getDj 

Methods 

compHVT 

Methods 

compHVT 

5. InitialPoint 

Offsets 
Type Description 

void Computes the equation offsets and variable offsets 
from the HVT of signature matrix. 

int * Obtains equation offsets. 
int * Obtains variable offsets. 
int Returns equation offset for a given index. 
int Returns variable offset for a given index. 

Table 4.4: Methods of the Offsets class. 

Type 

void 

LAP Solver 

I Description 

I 
Virtual function to compute the HVT from the sig
nature matrix of DAE system. 

Table 4.5: Method of the LAPSolver class. 

LAP 

Description 

Inherits from LAPSolver class and provides an im
plementation. 

Table 4.6: Method of the LAP class. 

Figure 4.5 illustrates the class diagram of InitialPoint. It uses interfaces ge

tlnitialPoint from DAEProblem and projectSolution from Projection. It first 

decides whether the initial point provided by the user is consistent; if not, it 

tries to compute a consistent one. Table 4. 7 gives some details. 

6. AD 
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Methods 
compConsPoint 

getConsPoint 

Projection 

Initial Point 
~=====r----

-----? projectSolution() 

compConsPoint() 
getConsPoint() ~~~~~~~~~~r---D_A_E_P_r_ob-le-m--, 

getlnitiaiPoint() 

Figure 4.5: Class diagram: InitialPoint. 

InitialPoint 

Type Description 
void Decides whether the initial point is 

consistent; if not, it computes a con-
sistent point. 

InitialPoint * Obtains a consistent initial point, 
computed by compConsPoint. 

Table 4.7: Methods of the InitialPoint class. 
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The AD class is a key class in HIDAETS. It computes Taylor coefficients, Jaco

bians, and Taylor series solution. This part includes three classes: AD, ADOL

C, and FADBAD++. AD class defines interfaces for automatic differentiation 

packages. It uses interfaces provided by other classes as shown on the right 

side of Figure 4.6. Currently HIDAETS integrates FAD BAD++ and ADOL-C. 

Their class diagrams are shown in Figure 4.6. Tables 4.8 and 4.9 list the meth

ods in these classes with brief descriptions. Tables 4.10, 4.11, 4.12, 4.13, 4.14, 

4.15, 4.16 show the methods in class AD. 

From Figure 4.6, the user can use his/her own AD packages by inheriting the 

AD class and implementing it. 

AD 
Methods Type Description 

compJacobian void Virtual function to compute the Jacobian 
matrix for DAE system. 

getJacobian void Virtual function to obtain the computed 
Jacobian matrix. 

compConstraints void Virtual function to compute constraints 
based on stage. 

getConstraints double Virtual function to obtain the specified con-
straint value. 

compCoefficients void Virtual function to compute the Taylor co-
efficients for DAE system. 

get Coefficients double Virtual function to obtain the specified 
Taylor coefficient. 

compTSSolution void Virtual function to compute Taylor series 
solution at current time. 

getTSSolution void Virtual function to obtain Taylor series so-
lution at current time. 

getNormX double Virtual function to obtain the norm of XJ<o· 

Table 4.8: Methods of the AD class. 

7. ErrorEst 

The ErrorEst class estimates the error for the current step. It uses getCoeffi

cients from AD class to obtain needed Taylor coefficients. Figure 4. 7 and Table 
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AD DAEProblem 

compJacobian() 
getJacobian() 
compConstraints() 
getConstraints() 
compCoeffiCients() 
getCoefficients() 
comp TSSolution() 
getTSSolution() 
getNormX() 

-------------7' compDAE() 

ADOL-C 

ADOL-C() 
compJacobian() 
getJacobian() 
compConstraints() 
getConstraints() 
compCoefficients() 
getCoefficients() 
comp TSSolution() 
getTSSolution() 
getNormX() 

---------------
----

-------------------------------~ 

FADBAD++() 
compJacobian() 
getJacobian() 
compConstraints() 
getConstraints() 
compCoefficients() 
getCoefficients() 
comp TSSolution() 
getTSSolution() 
getNormX() 

Figure 4.6: Class diagram: AD. 

·~ 

.. ~ 

... 

Offsets 

getCVector() 
getDVector() 

lnitiaiPoint 

getConsPoint() 

Projection 

project Solution() 

Stepsize 

Parameters 

getOrder() 
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ADOL-C and FADBAD++ 
Methods I Type I Description 

ADOL-C /FAD BAD++ Constructor to generate the compu-
tational graph for Taylor coefficients 
and Jacobians. 

compJacobian void 
getJacobian void 

compConstraints void 
get Constraints double Inherits from AD class and provide 

compCoefficients void an implementation. 
get Coefficients double 

compTSSolution void 
getTSSolution void 

getNormX double 

Table 4.9: Methods of classes ADOL-C and FADBAD++. 

compJ acobian( stage ) 

Parameters Type I Description I 
stage int I stage number. 

Table 4.10: Description of the compJacobian method. 

getJacobian( stage, m, n, Jac ) 

Parameters Type I Description 

stage int Stage number. 
m int & Number of rows in Jacobian. 
n int & Number of columns in Jacobian. 

Jac double** Pointer to a Jacobian. 

Table 4.11: Description of the getJacobian method. 

compConstraints( stage ) 
Parameters Type I Description 

stage int I Stage number. 

Table 4.12: Description of the compConstraints method. 
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getConstraints( stage, c ) 
Parameters Type I Description 

stage int Stage number. 
c double* Pointer to values of the constraints. 

Table 4.13: Description of the getConstraints method. 

compCoefficients( p ) 
Parameters Type Description 

p int Taylor series order. 

Table 4.14: Description of the compCoefficients method. 

getCoefficients( j, k ) 

Parameters Type Description 

I j int I index of variable. 

I k int I order of Taylor coefficients. 

Table 4.15: Description of the getCoefficients method. 

I compTSSolution( p, h ) 

I Parameters I Type I Description 

I p I int I Taylor series order. 

I h I double I stepsize. 

Table 4.16: Description of the compTSSolution method. 
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4.17 show its class diagram and documentation. 

ErrorEst AD 

1===========+--------:::;~========1 
compErrorEstimate() getCoefficients() 

Figure 4. 7: Class diagram: Error Est. 

Error Est 

Methods Type Description 

compError Estimate double Estimates error for current TS solution. 

Table 4.17: Method of the ErrorEst class. 

8. Stepsize 

The Stepsize class forms the tolerance and select stepsize for next integration 

step. It uses compErrorEstimate from class ErrorEst, getNormXfrom class AD, 

and obtains needed parameters from Parameters class. See Figure 4.8 and Table 

4.18. 

Stepsize 

Methods Type Description 

compStepsize double Computes stepsize for next step. 
compFinalStep double Computes final stepsize. 
compTolerance double Computes tolerance for the DAE system. 

Table 4.18: Methods of the Stepsize class. 

9. Projection 

The Projection class tries to compute a consistent initial point or Taylor series 

solution. This part includes four classes: Projection, OptimizationPackage, 

and IPOPT. Projection uses interfaces from classes AD, Offsets, Parameters as 

shown on the right side of Figure 4.9. It also aggregates an OptimizationPackage 

class, which defines virtual interfaces for optimization package. IPOPT is class 
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compStepsize() 
compFinaiStep() 
compTolerance() 

AD 

_ getNormX() 

------------;? 
...... 

...... ............ 

compErrorEstimate() 

Parameters ................. ~ 

1=========1 
getHmin() 
getRTol() 
getATol() 

Figure 4.8: Class diagram: Stepsize. 
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to implement these functions. Their class diagrams are shown in Figure 4.9. 

Tables 4.19, 4.20, and 4.21 describe these classes. 

From Figure 4.9, the user can use his/her own optimization package by inher

iting the OptimizationPackage class and implementing it. 

Projection 

Methods Type Description 

projectSolution bool Projects an initial point or TS solution. If it 
obtains a consistent one, returns true. If it 
fails, returns false. 

Table 4.19: Method of the Projection class. 

10. DAESolver 

The DAESolver class aggregates all the classes above to provide an integration 

interface for the user. Figure 4.10 illustrates its class diagram. See also Table 

4.22. 
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Projection 

projectSolution() 
1'-· ...... 

0 ', 
............ 

Optimization Package 

compOptSolution() 

6 

IPOPT 

compOptSolution() 

...... ...... 
... ... 

...... ...... ...... 
...... 

~ 

......... 
............ ~ 

AD 

getJacobian() 
getConstaints() 
getTSSolution() 

Offsets 

Parameters 

getDTol() 

Figure 4.9: Class diagram: Projection. 

OptimizationPackage 

Methods Type Description 
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compOptSolution void Virtual method to compute a solution for an I 
optimization problem. 

Table 4.20: Method of the OptimizationPackage class. 
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IPOPT 
Methods Description 

compOptSolution Inherits from OptimizationPackage class and 
provides an implementation. 

Table 4.21: Method of the IPOPT class. 

Parameters 

DAEProblem 

DAESolver 

Offsets 

AD 

Projection 

Stepsize 

Figure 4.10: Class diagram: DAESolver. 

DAESolver 

Methods Type Description 

integrate void Integrates DAE problem depending on Ind. 

Table 4.22: Method of the DAESolver class. 
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4.3 Installation and usage 

This section describes how to install and use HIDAETS on operating systems (Linux, 

Mac OS X, and Unix) with GNU g++. We have used version after 3.2. 

HIDAETS is developed on Sun Solaris 9 environment with C/C++ mixed with 

packages in FORTRAN, which are BLAS, LAPACK, and IPOPT. The source code of 

HIDAETS includes 4845 lines. We provide ten DAE and ODE examples. HIDAETS 

has been successfully tested on Mac OS X, Linux, and Solaris. 

4.3.1 Installation 

Essentially, we have to do the following steps to install HIDAETS: 

1. Download HIDAETS; 

2. Download third party components; 

3. Compile third party components and HIDAETS. 

Content of the package 

HIDAETS is distributed as a gzipped tar file HIDAETS.tar.gz, which can be 

downloaded from www. cas .mcmaster. ca/"'hidaets. Online documentation is also 

available at this Web site. To e>.."tract the files, type 

gunzip < HIDAETS.tar.gz I tar xvf -

The directory structure of HIDAETS is shown in Figure 4.11. A top-level makefile 

in the HIDAETS directory is provided to perform the entire installation procedure. 

There are also separate makefiles inside NUMLIB, SRC, and EXAMPLES directories. 

The following third party software components are required for building the HI

DAETS package. The user needs to download the source code for those components 

as described below. 

1. ADOL-C. The user may download adolc_l.8.7.tar.gz freely from anonymous ftp 

atftp://ftp.math.tu-dresden.de/pub/ADOLC/ADOLC_1.8andunpackitinto 
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the NUMLIB directory. Then, a directory named ADOLC18 is created in the 

NUMLIB directory. For more details, refer to http: I /www. math. tu -dresden. 

de/wir/project/adolc/. 

2. FADBAD++. The user may download it from http://www.imm.dtu.dk/ 

nag/proj....km/fadbad/ and unpack it into the NUMLIB directory. Then, a 

directory named FADBAD++ is created in the NUMLIB directory. For more 

details, refer to http: I /www. imm.dtu.dk/nag/proj...km/fadbad/. 

3. IPOPT. The user may download it from the COIN-OR web page at http: 

I /www. coin-or. org. After that, the user needs to unpack it into the NUMLIB 

directory. Then, a directory named COIN is created in the NUMLIB directory. 

IPOPT needs more third party components as described in its documentation. 

For more details, refer to http://www. coin-or. org/Ipopt/index.html. 

4. LAP. The user may download it from http: I /www. magiclogic. com/ 

assignment.html and unpack all files into the NUMLIB/LAP directory. 

Alternatively, the user may have these third party components in other direc

tories. Then he/she needs to specify the path by changing relative variables in 

Makcfilc.inc in the HIDAETS directory. llclow is the Makefile.inc with IPOPT at 

/usr/local/COIN/Ipopt. 

# 

# HIDAETS make include file 
# April 25, 2005 
# 

PREFIX = $(PWD) 

ADOLC = $(PREFIX)/NUMLIB/ADOLC18 
FADBAD = $(PREFIX)/NUMLIB/FADBAD++ 
IPOPT = /usr/local/COIN/Ipopt 
LAP = $(PREFIX)/NUMLIB/LAP 

AD = $(ADOLC)/SRC 
IPOPTH = $(IPOPT)/include 
IPOPTL = $(IPOPT)/lib 
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CC = gee 

cxx = g++ 

Installing HIDAETS in systems with g++ 

Once the user has all the necessary third party components in place, the user should 

run the top.:..lcvcl makcfilc by typing 

make all 

We provide other options for installation and cleaning. Table 4.23 lists all of them. 

Argument Description 
all Installs source code, third party components, and examples 
install Installs source code and third party components 
installsrc Installs source code 
clean Clean all object files 
cleansrc Clean all object files in SRC 
cleannumlib Clean all object files in NUMLIB 

Table 4.23: Options for installation. 

After installation, the user may either test HIDAETS by the examples in the 

EXAMPLES directory, or solve his/her own problems. 

4.3.2 Usage 

Basic usage 

The user must provide system equations, dimension of the DAE system, to, tend, and 

x1cs· The user may set (optionally) order, Ind, tolerances, and output parameters. 

Below we illustrate how to use HIDAETS on the single pendulum example. 

1. Set system equations. The user has to provide the system equations in a 

template function. Below is the definition for the single pendulum problem in 

pendulum. h. 

template <typename T> 
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void Pendulum( int n, T *f, T *Y, T t t, void *param ) 
{ 

} 

double g = 1.0; 
double L = 1.0; 

f[O] = diff(Y[0],2) + Y[O]•Y[2]; 

f[1] = diff(Y[1],2) + Y[1]*Y[2]- g; 

f[2] = Y[O]•Y[O] + Y[1]*Y[1] - L•L; 
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2. Set dimension of DAE system, t 0, and tend· The user needs to give dimen

sion of DAE problem, t 0 , and tend at the beginning of the implementation file. 

Below is the main function for the single pendulum problem in pendulum.cc. 

1 int main() 

2 { 

3 int n = 3; 
4 double tO = 0, tend = 100.0; 

5 

6 DAESolver *ptrDAESolver =new DAESolver( n, Pendulum, Pendulum, Pendulum); 

7 

8 InitPoint x( n, ptrDAESolver->getDVector() ); 
9 setinitialValues( x ); 

10 
11 ptrDAESolver->integrate( tO, tend, x ); 

12 
13 delete ptrDAESolver; 

14 

15 return 0; 
16 } 

Line 3 sets the dimension, and line 4 sets t 0 and tend· Line 6 declares an object of 

DAESolver4• Lines 8 to 9 set initial point. Line 11 integrates the DAE problem. 

For basic usage, the user usually does not need to change anything between line 

6 and line 16. 
4 In line 6, the user needs to give tl•e Pendulum function three times to the constructor of DAE

Solvcr. since FADBAD++ and the Sigma class require different types. 
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3. Set an initial point. The user can set an initial point in a function in the 

implementation file. Below is the function for the single pendulum problem in 

the pendulum.cc. 

void setinitialValues( int n, InitPoint &x ) 
{ 

} 

//initial values 

x(O, 0) = 1; x(O, 1) = 0; 

x(1, 0) = 0; x(1, 1) = 1; 

Alteratively, the user can set it directly in the main function by 

x(O, 0) = 1; 
x(O, 1) = 0; 

x(1, 0) = 0; 

x(1, 1) = 1; 

instead of line 9 in the above main function and the setlnitialValues function. 

4. Set order, Ind, tolerances, output parameters (optional). The default 

values of these variables are 

order - 20 Ind - till end 

atol - 10-13 outputlnd - initpoint 

rtol - 10-13 filename - "result" 

dtol = 0.5 · atol digits = 16 

Here, outputlnd is the output control indicator, filename is the file name to 

output the integration information, and digits is the number of output digits. 

The integration information at t is stored in the form 

column 1 2 3 n+1 n+2 

Xn h 

That is in column 1, we store the integration timet; from column 2 ton+ 1, 

we store the solution at t; in column n + 2, we store the stepsize taken at t. 
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We could call the corresponding member functions of the Parameters class to set 

these parameters. Below is an example of how we set order, absolute tolerance, 

and relative tolerance in pendulum.cc. 

1 int main() 
2 { 

3 

4 int n = 3; 

5 double tO = 0, tend = 100.0; 

6 

7 Parameters *parameters= new Parameters(); 
8 parameters->setOrder( 30 ); 

9 parameters->setATol( le-10 ); 
10 parameters->setRTol( 1e-11 ); 

11 

12 DAESolver *ptrDAESolver = new DAESolver( n, Pendulum, Pendulum, 
13 Pendulum, parameters); 

14 

15 InitPoint x( n, ptrDAESolver->getDVector() ); 

16 setinitialValues( x ); 

17 

18 ptrDAESolver->integrate( tO, tend, x ); 

19 

20 delete ptrDAESolver; 
21 delete par.ameters; 

22 
23 return 0; 

24 } 

Lines 7 to 10 declare a new object of Parameters and set corresponding values. 

Lines 12 to 13 create an object of DAESolver and pass the object of Parameters 

to it. Line 21 deallocates the Parameters object. 

Advanced usage 

1. Change problem parameters. The user can change the problem parameters 

in the system equations, and he/she may integrate the changed problem. To do 

so, the user needs to change the definition of system equations and some lines in 

the main function. Below is an example of using the single pendulum problem. 
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1 template <typename T> 

2 void Pendulum( int n, T *f, T *Y, T &: t, void *param ) 

3 { 

4 double *d = (double*) param; 

5 double g = d[O]; 

6 double L = d[1]; 

7 

8 f [0] = diff(Y[O] ,2) + Y[O]*Y[2]; 

9 f [1] = diff(Y[1] ,2) + Y[1]*Y[2] - g; 
10 f[2] = Y[O]*Y[O] + Y[1]*Y[1] - L*L; 

11 } 

Lines 4 to 6 obtain the user defined parameters. The user must ensure that the 

problem parameters are set and retrieved correctly. 

1 int main() 
2 { 

3 

4 int n = 3; 
5 double tO = 0, tend = 100.0; 

6 

7 Parameters *ptrParameters =new Parameters(); 

8 DAESolver *PtrDAESolver = new DAESolver( n, Pendulum, Pendulum, 
9 Pendulum, ptrParameters ); 

10 
11 InitPoint x( n, ptrDAESolver->getDVector() ); 

12 setinitialValues( x ); 

13 
14 double param[2]; 

15 param[O] = 1; param[1] = 1; 
16 ptrDAESolver->integrate( tO, tend, x, param ); 

17 

18 param[O] = 9.8; param[1] = 10; 
19 ptrParameters->setind( tillend ); 

20 ptrDAESolver->integrate( tO, tend, x, param ); 

21 
22 delete ptrDAESolver; 
23 delete ptrParameters; 

24 
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25 return 0; 
26 } 
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Lines 14 to 15 define the problem parameters and set values. Line 16 integrates 

the problem with specified parameters. Line 18 changes the problem· parame

ters, and Line 19 sets Ind to tell the solver that the problem parameters have 

been changed. Line 20 integrates the problem with new parameters. 

2. Set method classes. For a more advanced usage, the user can implement 

his/her own classes, following the description in section 4.2. After that, the 

user needs to recompile the relevant source code, create objects of classes in the 

main function, and set as parameters in the constructor function of DAESolver 

when creating a new DAESolver class. Below is the main function for a new 

AD class ADOL-C. 

1 int main() 

2 { 

3 

4 int n = 3; 
5 double tO = 0, tend = 100.0; 

6 

7 LAPSolver_1 lapSolver; 
8 Offsets offsets( n ); 

9 offsets.compSignatureMatrix( Pendulum); 

10 offsets.compOffsets( lapSolver ); 

11 
12 Parameters *Parameters= new Parameters(); 
13 AD *adPackage =new ADOL_C( n, parameters->getOrder(), Pendulum, offsets); 

14 OptPackage *opt_package =new OptPackage_Ipopt(); 
15 Projection *projection = new Projection( offsets, adPackage, 
16 parameters, opt_package ); 

17 ErrorEst *ptrErrorEst =new ErrorEst( n, &offsets); 

18 StepSize *ptrStepSize =new StepSize( ); 

19 

20 DAESolver *ptrDAESolver = new DAESolver( &offsets, parameters, 
21 adPackage, projection, 
22 ptrErrorEst, ptrStepSize ); 

23 
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24 InitPoint x( n, ptrDAESolver->getDVector() ) ; 

25 setinitialValues( n, x ); 
26 

27 ptrDAESolver->integrate( tO, tend, x ); 

28 

29 delete ptrDAESolver; 

30 

31 delete ptrStepSize; 

32 delete ptrErrorEst; 

33 delete opt_package; 

34 delete projection; 
35 delete adPackage; 

36 delete parameters; 
37 

38 return 0; 

39 } 

Lines 7 to 10 create new objects of class LAPSolver and Offsets to compute 

the signature matrix and offsets. Lines 12 to 18 declare new objects of class 

Parameters, AD, OptPackage, Projection, ErrorEst, and Stepsize, where line 13 

creates an object of class ADOL_C. Lines 20 to 22 pass these objects to object 

of DAESolver. Lines 29 to 36 deallocate these objects. 

Screen output 

Below is the screen output of HIDAETS for the single pendulum problem with out

putlnd = initpoint. The user can set the output with reference to subsection 4.1. 

SIGNATURE MATRIX & OFFSETS: 

0 1 2 lc_i 

1------------------
Ol 2 

11 2* o I o 
21 0* o I 2 

1------------------
d_j I 2 2 o 
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INITIAL POINT 

x(O,O) = 1.0000000000000000e+OO 

x(0,1) = O.OOOOOOOOOOOOOOOOe+OO 

x(0,2) = -1.0000000000000000e+OO 

x(1,0) 

x(1,1) 

x(1 ,2) 

x(2,0) 

O.OOOOOOOOOOOOOOOOe+OO 

1.0000000000000000e+OO 

1.0000000000000000e+OO 

1.0000000000000000e+OO 

INTEGRATION PROCESS 

Integrated at 

1.0000e+02 

Local Error 

1.5004e-11 

SOLUTION AT t = 100.000000 

x(O,O) = -4.5766268833405888e-01 

x(0,1) 

x(0,2) 

1.4820029313357552e+OO 

1.6784219355066259e+OO 

x(1,0) = 8.8912589868201786e-01 

x(1,1) 7.6283622676985696e-01 

x(1,2) = -2.2607604897991043e+OO 

x(2,0) = 3.6673776960412945e+OO 

STATS INFO 

CPU time (sec) ........... 1.750 

CPU time/step ............ 0.007 

Steps ........•........... 246 
accepted .................. 246 (100.0%) 

rejected ..................•. O (0.0%) 
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Numerical Results 

We have tested HIDAETS on more than ten DAE and ODE problems including single 

pendulum [AP98], double pendula [Pry98], car axis problem [M103], two-link robotic 

arm [Pry98], transistor amplifier [M103], modified1 car axis problem [M103], chemical 

Akzo Nobel problem [MI03], modified2 chemical Akzo Nobel problem [M103], and 

Van der Pol problem [MI03]. In this chapter, we give numerical results for the first 

five high-index DAE problems in detail. 

5.1 Format of the problem descriptions 

For each problem, we provide 

1. general information, 

2. mathematical description, and 

3. numerical results. 

In 3., we present the following information. 

1. Reference solution at the end of the integration interval. The values 

of the components of a reference solution at the end of the integration interval 

1We modify the car axis problem in (.MI03] to a DAE consisting 4 differential and 2 algebraic 
equations. 

2We modify the chemical Akzo Nobel problem in (MI03] to a DAE consisting 5 differential and 
1 algebraic equation. 
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are listed. If possible, we compare a solution generated by HIDAETS with that 

presented in the literature, to assess the accuracy of our solution. 

2. Behavior of the numerical solution. Plots of (some of) the solution com

ponents over the integration interval or part of it are presented. 

3. Run characteristics. The experiments are done on Sun Ultra 5/10, Ultra 

SPARC-Ili 360MHZ, 512MB memory, Solaris 9. We use gee 3.2 with optimiza

tion flag -02. The following characteristics are reported: 

• tol 

We set absolute error tolerance equal to relative error tolerance. 

• steps 

Total number of steps taken by the solver. 

• CPU time (sec) 

The sum of user and system time in seconds taken by HIDAETS. 

• CPU time per step 

Average CPU time per step. 

4. Work-precision diagram. We define significant correct digits (sen) by 

SCD := -log10 (1l relative error at the end of integration interval lloo)· 

For HIDAETS, we plot CPU time against seD. 

5. Error versus tolerance. For each problem, we estimate the relative error 

of the solution components, and therefore sen, and plot SCD against its input 

tolerance. 

6. Stepsize. We plot the stepsize from t0 to tend to illustrate the stepsize behavior. 

7. CPU time versus order. We compute the CPU time with different orders, 

different tolerances, and for each tolerance, we plot CPU time against order. 

With the CPU time versus order diagram, we could decide which order may be 

optimal for the tested DAE problem. 
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5.2 Single pendulum 

5.2.1 General information 

The problem is a nonstiff DAE of index 3, consisting of 2 differential and 1 algebraic 

equations. 

5.2.2 Mathematical description of the problem 

The problem is of the form 

0 - x" + x>., 
0 = y'' + y>..- g, 

0 = x2 + lf- L2. 

Here L is the length of the pendulum, g is gravity, both of which are constants; 

we take L = 1, g = 1. x, y, and>.. are the dependent variables. 

We integrate this problem from t0 = 0 to tend = 100 with initial conditions 

5.2.3 Numerical results 

Xo = 1, X~= 0; 

Yo= 0, y~ = 1. 

For this problem, we use order = 20 except for the CPU time versus order diagram. 

Since IPOPT can reach the desired tolerance dtol = w-14 as its best, we perform all 

tests with tol ~ w- 14 . 

Table 5.1 presents the reference solution at the end of the integration interval. 

The reference solution is computed with atol = rtol = w-16 and dtol = w-14 for 

IPOPT on the described setting before. 

X -4.5766268835131380 · 10 .1 

y 8.8912589867298431 . w-1 

>.. 3.6673776960190421 

Table 5.1: Reference solution for the pendulum problem. 
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Figure 5.1: Plots of x, y, and A versus time for the pendulum problem. 
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Figure 5.1 shows the behavior of x, y, >.over the integration interval. 

Table 5.2 presents the run characteristics. We use atol = rtol = 10-(2m+l), m = 

2, ... , 6 and dtol = 0.5 · atol for IPOPT. The columns with ADOL-C and FADBAD 

contain timing results produced with ADOL-C and FADBAD++, respectively. In the 

run characteristics table, HIDAETS takes the same number of steps with ADOL-C 

and FADBAD++. 

tol steps CPU time (sec) CPU time per step 
ADOL-C FAD BAD ADOL-C FAD BAD 

10 ·:> 123 0.73 0.69 0.006 0.006 
10-7 155 1.10 1.13 0.007 0.007 
10-9 196 1.32 1.33 0.007 0.007 
10-u 246 1.51 1.50 0.006 0.006 
10-13 310 1.76 1.89 0.006 0.006 

Table 5.2: Run characteristics for the pendulum problem. 

Figure 5.2 shows the work-precision diagrams. We use atol = 10-m, m -

5, ... , 14, rtol = atol, and 

{

0.5 · atol, 
dtol = 

10-14, 

m = 5, ... ,13, 
{5.1) 

m=14. 

Figure 5.3 illustrates error against different tolerances which are the same as the 

tolerances in the work precision diagram. 

Figure 5.4 exhibits stepsize behavior over the integration interval. One of the 

plots is with tol = 10-7, the other is with tol = 10-13 . 

Figure 5.5 displays the CPU time against order with different tolerances. We use 

FADBAD++ as the AD package and the tolerances are the same as the ones used 

in the run characteristics table. We integrate the problem to tend = 300. From the 

figure, we can conclude that for the single pendulum problem, order ~ 30 is optimal 

for different tolerances. 
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5.3 Double pendula 

5.3.1 General information 

The problem is a nonstiff DAE of index 5, consisting of 4 differential and 2 algebraic 

equations. 

5.3.2 Mathematical description of the problem 

The problem is of the form 

0 = x" + x.\, 

0 = y" + y.\ - g, 

0 = x2 + y2- L2, 

0 = U
11 

+UK, 

0 = V
11 + VK- g, 

0 = u2 + v2
- (L + c.A) 2

. 

Here we take L = 1, g = 1, and c = 0.1; x, y, ..\, u, v, and K are the dependent 

variables. 

We integrate this problem from t 0 = 0 to tend = 100 with initial conditions 

Xo = 1, X~= 0; 

Yo= 0, y~ = 1; 

5.3.3 Numerical results 

u0 = 1, u~ = 0; 

Vo = 0, v~ = 1. 
(5.2) 

For this problem, we use order = 20 except for the CPU time versus order diagram. 

The solution of double pendula problem shows chaotic behavior [Pry98]. Figure 

5.6 demonstrates this behavior. We integrate the problem with two slightly perturbed 

initial points which are shown in Table 5.3 and using atol = rtol = 2 · dtol = 10-10 . 

The column with InitPoint-1 in Table 5.3 is the projected initial point corresponding 

to (5.2), while the column with InitPoint-2 is the projected initial point with changed 

v0 from 0 to 0.001 in (5.2). Since the consistent initial values for x, y, ..\ are same in 

InitPoint-1 and InitPoint-2, we just give the initial values of u, v, and K, where we 

also include these values corresponding to stage 0. 

From Figure 5.6, we can find that the two solutions of u, v, and K are very close 

till about t = 30, and clearly diverging from there. This is strong evidence of chaotic 
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InitPoint-1 InitPoint-2 
uo 1.1000000000 1.0999994500 
u' 0 3.oooooooooo. 10-1 2.9899985100. 10-1 

u~ -6.0909090909. 10-1 -6.1008969446. 10-1 

vo 0.0000000000 1.0999994500. 10-3 

v~ 1. 0000000000 1.0002989999 
v" 0 1.oooooooooo. 10-1 9.9938991030. 10-1 

~0 5.5371900826 . 10-1 5.5462727227. 10-1 

Table 5.3: Initial values of u, v, and~ for the double pendula problem. 

behavior. Hence, we do not discuss reference solution, work-precision diagram, and 

error versus tolerance diagram for the double pendula problem. 

Figure 5.7 shows the behavior of x, y, >., u, v, and~ over the integration interval 

with atol = rtol = 10-13 , dtol = 0.5 . atol. 

Table 5.4 presents the run characteristics. We use atol = rtol = w-<2m+1), m = 
2, ... , 6 and dtol = 0.5 · atol. In this table, HIDAETS takes the same number of steps 

with ADOL-C and FADBAD++. 

tol steps CPU time (sec) CPU time per step 
ADOL-C FAD BAD ADOL-C FAD BAD 

10 -t> 166 2.10 2.71 0.013 0.016 
w-7 197 2.68 3.26 0.014 0.017 
10-9 250 3.04 4.06 0.012 0.016 
w-11 315 3.97 4.91 0.013 0.016 
10-13 396 5.00 6.55 0.013 0.017 

Table 5.4: Run characteristics for the double pendula problem. 

Figure 5.8 exhibits stepsize behavior over the integration interval. One of the 

plots is with tol = w-7 , the other is with tol = w-13. 

Figure 5.9 displays the CPU time against order with different tolerances. From 

the figure, we can conclude that for the double pendulum problem, order ~ 30 is 

optimal for different tolcranc<,'S. 
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5.4 Car axis 

5.4.1 General information 

This problem is a mildly stiff DAE of index 3, consisting of 8 differential and 2 

algebraic equations. 

5.4.2 Mathematical description of the problem 

The problem is of the form 

p' 

Kq' 

0 

= 
= 
= 

q, 

f(t,p,>..), 

cjJ(t,p), 

with initial conditions p(O) = po, q(O) = Qo, p'(O) = Qo, q'(O) = q~, >..(0) = >..o, and 

N(o) = >..0. 
The matrix K reads E

2 AJ 14 , where / 4 is the 4 x 4 identity matrix. The function 

f : JR9 ~ 1R4 is given by 

Xz 
(lo -lz)z; 

f(t,p, >..) = 
(lo - lz) ~: 

([ -[ )Xr- Xb 
0 r lr 

(l -l )Yr- Yb 
0 r lr 

+>..1xb + 2>..2(xz- Xr) 

2M 
+AIYb + 2)..2(Yt - Yr) - E 2 

- 2>..2(Xt- Xr) 

) 2M 
- 2)..2(Yl- Yr - E 2· 

Here, (xz,yz,Xr.Yr)T := p, and lz and lr are given by 

Jx; + yj and J(xr- Xb)2 + (Yr- YbF· 

Furthermore, the functions Xb(t) and Yb(t) are defined by 

xb(t) = Jt2 - y~(t), 
Yb(t) = rsin (wt). 
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The function <I> : JR5 --+ .JR2 reads 

The constants are listed below. 

Consistent initial values are 

Po= 

0 

1/2 

1 
Qo = 

-1/2 

0 

-1/2 

1/2 0 

q~ = ;:c2 f(O,Po, Ao), Ao =A~= (0, O)r. 

The index of the variables p, q, and A is 1, 2, and 3, respectively. 

5.4.3 Numerical results 

89 

For this problem, we use order = 15 except for the CPU time versus order diagram. 

We use FADBAD++ as the AD package. 

Table 5.5 presents the reference solution at the end of the integration interval. 

The column with HIDAETS is the reference solution computed by HIDAETS with 

atol = rtol = 10-16 and dtol = 10-14 on the described setting above. The column 

with PSIDE is the reference solution from [LS98], which is computed on Cray C90, 

using PSIDE with Cray's double precision and atol = rtol = 10-16 . The column with 

GAMD is from [MI03], which is computed by GAMD with quadruple precision on an 

Alpha Server DS20E, with a 667 MHz EV67 processor and atol = rtol = w-24 • The 

underlined digits are the same as the reference solution computed by HIDAETS. 

Figure 5.10 shows the behavior of Xl, Yl, Xr, and Yr over the integration interval. 



Var HIDAETS PSIDE GAMD 

X1 0.4934557842752397. 10-1 0.4934557842755629. 10-1 0.4934557842754028 . 10-1 

X2 0.4969894602300073 0.4969894602303324 0.4969894602301711 

X3 0.1041742524885424. 10 0.1041742524885400. 10 0.1041742524885421 ·10 

X4 0.3739110272653672 0.3739110272652214 0.3739110272653612 

X5 -0.7705836840358462. 10-1 -0.7705836840321485. w- 1 -0.7705836840409723 . 10-1 

X6 0.7446866592147278. 10-2 0. 7 446866596327776 . 10-2 0.7446866587237779. 10-2 

X7 0.1755681575356589. 10-1 0.1755681574942899 . w-1 0.1755681575372322 . w- 1 

xs 0.7703410437798304 0.7703410437794031 0.7703410437792519 

Xg -0.4736886590853484. 10-2 -0.4736886750784630. w-2 -0.4736886590848568. w-2 

xw -0.1104680331259640. w-2 -0.1104680411345730. w-2 -0.1104680331257160. w-2 
.___ ___ ------------------- ----

Table 5.5: Reference solutions for the car axis problem. 
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Figure 5.10: Plots of x1, Yl, Xr, and Yr versus time for the car axis problem. 

tol steps CPU time (sec) CPU time per step 
w-5 86 1.53 0.018 
w-7 115 1.98 0.017 
w-9 157 2.70 0.017 
w-11 214 3.81 0.018 
10-13 289 4.99 0.017 

Table 5.6: Run characteristics for the car axis problem. 
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Table 5.6 presents the run characteristics. We use atol = rtol = w-<2m+I), m = 
2, ... , 6 and dtol = 0.5 · atol. 

Figure 5.11 shows the work-precision diagrams. We use atol = w-m, m = 
5, ... , 14, rtol = atol, and dtol in (5.1). 
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Figure 5.11: Work-precision diagram for the car axis problem. 

Figure 5.12 illustrate error against different tolerances with reference solutions 

from HIDAETS, PSIDE, and GAMD. From this figure, we can conclude that with 

reference solution from PSIDE, we can obtain seven correct digits, and we can obtain 

at least nine correct digits compared to the reference solution from GAMD. 

Figure 5.13 exhibits stepsize behavior over the integration interval. One of the 

plots is with tol = w-7 , the other is with tol = 10-13. The down-spikes near the end 

of the integration interval are because of the final stepsize algorithms in subsection 

3.7.2. 

Figure 5.14 displays the CPU time against order with different tolerances. From 

the figure, we can conclude that for the car axis problem, order ~ 25 is optimal for 

different tolerances. 
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5.5 Two-link robotic arm 

5.5.1 General information 

This problem is a slight simplification of the equations for the prescribed-path control 

of a two-link robotic arm [Pry98]. It is a DAE of index 5, consisting of 3 differential 

and 3 algebraic equations. 

5.5.2 Mathematical description of the problem 

The problem is of the form 

where 

0 = x~- [v + X(a(x3) + 2b(x3)) + a(x3)w], 

0 = x~- [-v + X(l- 3a(x3)- 2b(x3))- a(x3)w + J.l2], 

0 == x~- [-v + X(a(x3)- 9b(x3))- 2x~2c(x3)- d(x3)Y'2 

- (a(x3) + b(x3))w], 

0 = COSXt +cos (Y)- Pt(t), 

0 = sinx1 +sin (Y)- P2(t), 

0 = w - (J.ll - J.l2), 

PI(t) =cos (et- 1) +cos (t- 1), 

P2(t) =sin (1- et) +sin (1- t), 
2 

a(s)---~ 
- 2- cos2 s' 

sins 
c( 8 ) = 2 - cos2 s' 

b coss 
(s) = 2- cos2 s' 

d(s) = cosssins, 
2-cos2 s 

X = 2x3 - x2 , Y = x1 + X3, 

v = 2Y'2c(x3) + x~2d(x3). 

By construction, the solution has x1 = 1 - et, x3 = et - t. Here we integrate the 

problem from to = 0 to tend = 1.3, with initial conditions Xt (0) = 0, x3(0) = 1. 
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5.5.3 Numerical solution of the problem 

For this problem, we use order = 15 except for the CPU time versus order diagram. 

We use FADBAD++ as the AD package. 

Table 5. 7 presents the reference solution at the end of the integration interval. 

The reference solution is computed with atol = rtol = 10-16 and dtol = w-14 on the 

described setting before. 

XI -2.6692966676192422 X2 2. 65 78533275805367 
X3 2.3692966676192442 J1·2 2.2158319076934220 . 10 
w -6.5122431545546700 . 10-1 

/-t1 2.1507094761478751· 10 

Table 5.7: Reference solution for the two-link robotic arm. 

Figure 5.15 illustrates relative errors between solutions of x1 and x3 and their 

true solutions over the integration interval. In this figure, the relative error lines are 

discontinuous. That means the relative errors reach machine precision at the points 

without plotting. This figure is a strong evidence of the reference solution's accuracy. 
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Figure 5.15: Comparison of reference solutions with true solutions x1 and x3 . 

Figure 5.16 shows the behavior of x 17 x3 , w, x2, ~-t2 , I-tt over the integration interval. 

Table 5.8 presents the run characteristics. We use atol = rtol = w-<2m+l), m = 

2, ... , 6 and dtol = 0.5 · atol for IPOPT. 
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tol steps CPU time (sec) CPU time per step 
w-5 5 0.34 0.068 
w-7 6 0.40 0.067 
w-9 8 0.52 0.065 
w-u 11 0.63 0.057 
10-13 15 0.89 0.059 

Table 5.8: Run characteristics for the two-link robotic arm. 

Figure 5.17 shows the work-precision diagram. We use atol = w-m, m = 
5, ... , 14, rtol = atol, and dtol in (5.1). 
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Figure 5.17: Work-precision diagram for the two-link robotic arm. 

Figure 5.18 illustrates error against different tolerances. 

Figure 5.19 exhibits stepsize behavior over the integration interval. One of the 

plots is with tol = w-7 ' the other is with tol = w-13
. 

Figure 5.20 displays the CPU time against order with different tolerances. From 

the figure, we can conclude that for the two-link robotic arm problem, order~ 20 is 

optimal for different tolerances. 
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Figure 5.18: Error versus tolerance for the two-link robotic arm. 
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Figure 5.19: Stepsize versus time with tolerances 10-7 and 10-13 . 
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5.6 Transistor amplifier 

5.6.1 General information 

The problem is a stiff DAE of index 1, consisting of 8 equations. 

5.6.2 Mathematical description of the problem 

The problem is of the form 

dy 
M dt = f(y), y(O) =Yo, y'(O) = y~, 

withy E JR8 , 0::; t::; 0.2. 

The matrix M is of rank 5 and given by 

-C1 c1 0 0 0 0 0 

c1 -C1 0 0 0 0 0 

0 0 -C2 0 0 0 0 

M= 
0 0 0 -Cs Cs 0 0 

0 0 0 Cs -Cs 0 0 

0 0 0 0 0 -C4 0 

0 0 0 0 0 0 -C5 
0 0 0 0 0 0 c5 

and the function f by 

_ u.(t) + .1l!. 
Ro Ro 

-~ + Y2(i
1 
+ i

2
)- (a -1)g(y2- Ys) 

-g(y2 - Ys) + t 
-~ + ft + ag(y2 - Ys) 

-~ + Y5(is +~)-(a- 1)g(y5- Y6) 

-g(y5 - Y6) + fr 
_Qg_ + 1lL + ag(y5 - Y6) Rs Rs 

Here g and Ue are auxiliary functions given by 

0 

0 

0 

0 

0 

0 

c5 
-C5 

g(x) = f3(erf~ - 1) and Ue(t) = 0.1 sin {2007rt). 
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The values of the parameters are: 

ub - 6, ~ = 1000, 

UF 0.026, Rk 9000 for k = 1, ... , 9, 

a - 0.99, ck = k. 10-6 for k = 1, ... '5. 

{3 = 10-6, 

Consistent initial values at t = 0 are 

Yo= 

0 

Ub/(~ + 1} 
Ub/(~ + 1} 

ub 
Ub/(~ + 1) 

Ub/(~ + 1) 
ub 
0 

5.6.3 Numerical results 

I 
Yo= 

51.338775 

51.338775 

-Ub/((~ + 1)(C2 · C3)) 
-24.9757667 

-24.9757667 

-Ub/((~ + 1)(C4 · C1)) 
-10.00564453 

-10.00564453 
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For this problem, we use order = 15 except for the CPU time versus order diagram. 

We use FADBAD++ as the AD package. 

Table 5.9 presents the reference s0lution at the end of the integration interval. 

The column with HIDAETS is the reference solution computed by HIDAETS with 

atol = rtol = 10-15 and dtol = 10-14 on the described setting before. The column 

with PSIDE is the reference solution from [M103], which is computed on Cray C90, 

using PSIDE with Cray's double precision and atol = rtol = 10-14
. The underlined 

digits are the same as the reference solution computed by HIDAETS. 

Figure 5.21 shows the behavior of the solution over the integration interval. 

Table 5.10 presents the run characteristics. We use atol = rtol = 10-(2m+1), 

m = 2, ... , 6 and dtol = 0.5 · atol. 
Figure 5.22 shows the work-precision diagrams. We use atol = 10-m, m = 

5, ... , 14, rtol = atol, and dtol in (5.1). 

Figure 5.23 illustrate error against different tolerances with reference solutions 

from HIDAETS and PSIDE. From the figure, we can conclude that with reference 

solution from PSIDE, we can obtain at least 11 correct digits. 
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Figure 5.21: Plots of YI, Y2, Y3, Y4, Ys, Y6, Y1, and Ys versus time for the transistor 
amplifier problem. 
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Var HIDAETS PSIDE 
YI -0.5562145012259387. 10 -:.! -0.5562145012262709. 10 -:.! 

Y2 0.3006522471902849. 10 0.3006522471903042. 10 

Y3 0.1041742524885424. 10 0.1041742524885400. 10 

Y4 0.2849958788607940 0.2849958788608128 

Y5 0.2704617865005508. 10 0.2704617865010554 . 10 

Y6 0.2761837778388728 . 10 0.2761837778393145 . 10 

Y1 0.4770927631615038. 10 0.4770927631616772. 10 

Ys 0.1236995868081448. 10 0.1236995868091548. 10 

Table 5.9: Reference solutions for the transistor amplifier problem. 

tol steps CPU time (sec) CPU time per step 
10 -a 361 2.43 0.007 
10-7 496 3.27 0.007 
10-9 677 4.42 0.007 
10-11 901 6.17 0.007 
10-13 1244 8.10 0.007 

Table 5.10: Run characteristics for the transistor amplifier problem. 
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Figure 5.22: Work-precision diagram for the transistor amplifier problem. 
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Figure 5.23: Error versus tolerance for the transistor amplifier problem. 

Figure 5.24 exhibits stepsize behavior over the integration interval. One of the 

plots is with tol = w-7 , the other is with tol = w-13 . 
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Figure 5.24: Stepsize versus time with tolerances w-7 and 10-13 . 

Figure 5.25 displays the CPU time against order with different tolerances. From 

the figure, we can conclude that for the transistor amplifier problem, order ~ 25 is 

optimal for different tolerances. 



5. Numerical Results 106 

11 

10 

9 

u 8 QJ 
rll 

~ 
7 

·ri 6 .j.J 

::> 5 p., 
u 

4 

3 

2 
15 20 25 30 35 40 45 50 

order 
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5. 7 Summary of numerical results 

The above numerical results demonstrate that HIDAETS is efficient, accurate, and 

suitable for solving high-index DAE initial value problems. Here we present a brief 

summary of our numerical experience. 

1. HIDAETS works well with a DAE problem whose index is too high for the 

existing solvers. The highest index we have solved is five (the double pendula 

problem and the two-link robotic arm problem). HIDAETS can also solve 

higher-order ODEs directly. 

2. Due to the high order of Taylor series methods, HIDAETS can obtain much 

more accurate results than standard DAE solvers. 

3. On nonstiff and mildly stiff problems, HIDAETS performs (very) well, especially 

at high accuracy. For stiff problems, HIDAETS currently cannot run fast due 

to the explicit nature of Taylor methods. 

4. For all tested problems with range of tolerances from 10-5 to 10-13 , the running 

time of HIDAETS is close to optimal when the order is between 20 and 30. As 

we do not have variable order control at present, we recommend orders between 

20 and 30. 



Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

We have presented a numerical method for solving high-index DAEs. Given a DAE 

described by a computer program, the necessary structural analysis data is obtained 

via operator overloading. After that, we compute an initial consistent point based on 

the user's input. If we can obtain a consistent point, we continue the integration; if 

not, we cannot solve the given DAE problem. 

After obtaining a consistent initial point, we compute TCs by automatic differen

tiation. We also compute an appropriate stepsize subject to the tolerance. With this 

stepsize, we compute a TS solution by summing the series. 

To ensure that this numerical solution is a consistent one, we project it. If we 

cannot obtain a consistent point, we reduce the current stepsize, recompute the TS 

solution, and project it again. We iterate this process, until we obtain a consistent 

point. 

We repeat the above process till t = tend. In this case, our method succeeds in 

solving the given DAE problem. 

We have presented the specification, design, implementation, and usage of HI

DAETS. We have covered most aspects of developing a numerical software package 

on using an object-oriented approach. In addition to the documentation in this thesis, 

we provide Web based documentation through the Doxygen [vH04] documentation 

system. 
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Beside these, we report detailed numerical results for five typical high-index DAE 

problems. Testing results show that HIDAETS is an efficient and accurate solver for 

IVPs in high-index DAEs. 

6.2 Future works 

The numerical results for the car axis problem [MI03] shows that HIDAETS is efficient 

for moderately stiff DAEs, however, because of their explicit nature, Taylor series 

methods are not efficient for integrating very stiff DAEs. For example, HIDAETS is 

very inefficient on the HIRES problem [:VII03] as the stepsize is about w-6 through the 

integration interval. Nedialkov [Ned99] presented a promising approach to generalize 

the Taylor series to stiff ODE problems by Hermite-Obreschkoff (HO) methods. We 

can enable HIDAETS to solve highly stiff DAEs if employing HO methods. Besides 

Taylor series, computing relevant Jacobians efficiently with the HO approach remains 

to be studied. 

The examples in HIDAETS include ten DAEs and ODEs which are mostly from 

literature. More testing and practical engineering problems need to be performed. 

Future work will include study of HO methods, enabling HIDAETS applicable to 

both non-stiff and stiff DAEs, developing an elaborate numerical IVP test set, and 

applying HIDAETS to engineering applications. 
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Appendix A 

Symbols and Acronyms 

Name 

AD 

AWA 

BDF 

DAE 

DAETS 

DOF 

GAM 

HIDAETS 

HVT 

IRK 

IVP 

J 

LP 

ODE 

SA 

SCD 

TC 

TS 

~ 

\7 

I> 

Definition 

Automatic Differentiation 

Anfangswertaufgabe 

Backward Differentiation Formula 

Differential-Algebraic Equation 

DAE by Taylor Series 

Degree of Freedom 

Generalized Adams Methods 

High-Index DAE by Taylor Series 

Highest Value Transversal 

Implicit Runge-Kutta 

Initial Value Problem 

System Jacobian 

Linear Programming 

Ordinary Differential Equation 

Structural Analysis 

Significant Correct Digits 

Taylor Coefficient 

Taylor Series 

Signature Matrix 

Gradient 

Comment 
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Appendix B 

Automatic Differentiation 

Automatic differentiation is a set of techniques based on the chain rule to obtain 

derivatives of a function given as a computer program [Gri93]. By applying the 

chain rule of derivative calculus repeatedly to a sequence of elementary arithmetic 

operations, derivatives of arbitrary order can be computed automatically and accurate 

to working precision. 

The problem is defined by a computer program. The application of AD to this 

computer program results in the automatic generation of a new computer program, 

which computes the derivatives of the output variables with respect to the input 

variables. 

AD methods are widely used for solving problems in which the output variables are 

computed "directly" from the input variables. It provides fast and accurate values of 

derivative objects, such as gradients, Jacobians, and Hessians, which are required by 

modern tools for optimization, nonlinear systems, differential equations, or sensitivity 

analysis. 

Here, we first introduce basic AD algorithms, then discuss its implementation and 

existing AD tools briefly. 
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B.l Basics of AD 

Abstractly, a program for evaluating an m-vector y as a function of n-vector x has 

the form: 

l 
z= {zbz2, ... ,zp}, p~m+n 

l 
Y = (Yb Y2, ... , Ym), 

where the intermediate variables z are related through a series of elementary functions 

which may be unary, 

Zk = f~em(zi), i < k 

consisting of operations such as ( -, pow, sin, ... ), or binary, 

such as ( +, /, ... ). 
AD has two basic approaches, the forward mode and the reverse mode. We illus

trate them in the following two subsections. 

B.l.l Forward mode 

In the forward mode, derivatives are propagated throughout the computation using 

the chain rule. For example, for the elementary step Zk = f~em ( Zi, Zj), the intermedi

ate derivative dzk/dx, can be propagated in the forward mode as: 

dzk a !~em dzi a !~em dzj 
- = ---+ --.-. 
dx azi dx azi dx 

This chain rule-based computation is done for all the intermediate variables z and for 

the output variables y, finally yielding the derivative dyjdx. 

Example B.l. Consider f(x) = (x+x2)2. We want to compute df /dx by the forward 

mode of AD. 



B. Automatic Differentiation 

Let: 

Then, we have 

dz1 = 1 
dx ' 
dz2 dz1 
dx = 2z1 dx = 2x, 

dz3 _ dz1 dz2 _ 
1 2 dx - dx + dx - + x, 

dz4 dz3 
dx = 2z3 dx = 2(x + xx)(1 + 2x). 

B .1.2 Reverse mode 

(from B.1) 

(from B.2) 

(from B.3) 

(from B.4) 
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(B.1) 

(B.2) 

(B.3) 

(B.4) 

The reverse mode computes the derivatives dyjdzk for all intermediate variables in 

reverse order. For example, for the elementary step Zk = f~em(zi, Zj), the derivatives 

are propagated as: 

(B.5) 

Here is the explanation for (B.5). Suppose we have obtained dyjdzk· For Zk 

f~em(zi, Zj), we want to compute dyjdzi· We have 

dy _ _ d_y _az_k = 8f~em dy 
dzi dzk azi azi dzk. 

At the end of the computation, the derivative dyjdx is obtained. The key is that the 

derivative propagation is done in reverse manner, hence, we need dyjdzk to compute 

derivatives dyjdzi, dyjdzi. At the beginning, dyjdy is initialized to 1. 
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Example B.2. For f(x) = (x + x2
) 2 , we process the reverse mode as 

dz4 
-d =1, 

Z4 

dz4 dz4 dz4 - = -- = 2z3 = 2(x+xx), 
dz3 dz3dz4 

(from B.4) 

dz4 dz4 az3 - = -- = 1· 2(x+xx) = 2(x+xx), 
dz2 dz3 az2 

(from B.3) 

dz4 = dz4 az3 + dz4 dz2 = 2(x + xx)(1 + 2x), 
dzl dz3 azl dz2 dzl 

(from B.2, B.3) 

dz4 = dz4 dz1 = 2(x + xx)(1 + 2x). 
x dz1 dx 

(from B.1) 

B.2 AD tools 
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Implementations of AD can be broadly classified into source transformation and oper

ator overloading. Source transformation changes the semantics by explicitly rewriting 

the code, while operator overloading exploits the possibility of some modern program

ming languages to redefine the semantics of elementary operators. 

Table B.1 lists some existing and typical AD software packages. More details and 

packages can be found at http: I /www. autodiff. org. In Table B.1, 0 stands for 

operator overloading, and S stands for source transformation. 
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Name Author(s) Language Mode Method 
ADOL-C Griewank, C/C++ Forward, 0 

Juedes, and Reverse 
Utke [GJU96] 

FAD BAD++ Stauning and C/C++ Forward, 0 
Bendtsen Reverse 
[BS96b] 

ADiMat Vehreschild MAT LAB Forward so 
[BLV03] 

ADIFOR Bischof, Carle, Fortran77 Forward s 
Corliss, 
Griewank, 
and Hovland 
[BCC+92] 

Table B.l: Some existing AD tools. 



Appendix C 

Some UML Legends 

note 

,...._.....__.,: Component 

Class 
attribute 

method() 

Ownership O 

interface 

Dependency -- ...... - -) 

Generalization 
-----[> 

Aggregation 
-----<> 
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Appendix D 

Some Source Code 

D.l The integration process 

void DAESolver .. integrate( double& tO, double& tend, InitPoint & x, 

void *DAEParam ) 
{ 

int p, ind, outputind; 

ind = ptrParam->getind(); 

if ( ind == normalex·i t ) 

return; 

outputind = ptrParam->getOutput(); 

p = ptrParam->getOrder(); 

if ( firstentry == true ) 

initialization( tO, x, DAEParam, ind, outputind ); 

if ( ptrParam->getind() == Jsingular ) 

return; 

if( ind == tillend ) 
{ 

cout«"\n\niNTEGRATION PROCESS"; 

cout<<"\n\n Integrated at Local Error"<<endl; 
} 
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} 

while( t < tend ) 
{ 

} 

compTSSol( t, tend, ind, p ); 

compConsSol( t, p ); 

fout«h«endl; 

if ( ind == onestep 
{ 

} 

tO = t + h; 
ptrAD->getinitialPoint( x ); 
cout«endl«"\n\nSOLUTION WITH STEPSIZE "«h«endl«endl; 
ptrAD->printinitialPoint( 0, ptrParam->getDigits() ); 

cout<<endl<<endl; 

ptrParam->setind( normalexit ); 

break; 

t = t + h; 

tO = t; 
fout<<t<<" "; 
err= ptrErrorEst->estError( ptrAD, p, h); 

if( outputind >= process ) 

PrintProgress( t, err); 
ptrAD->outputSolution( fout ); 

fout.close(); 

ptrStats->statTime(); 

if( outputind >= solution && ( ind == tillend ) ) 
printSolution( ptrParam->getDigits() ); 

if( outputind >= stat && ( ind == tillend ) ) 

printStats () ; 
ptrParam->setind( normalexit ); 

firstentry = true; 
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void DAESolver initialization( double tO, InitPoint t x, void *DAEParam, 

int t ind, int t outputind ) 
{ 

if( outputind >= offsets ) 

ptrOffsets->printOffsets(); 

t = tO; 

ptrStats->resetStats(); 

OpenFile( filename); 

ptrAD->setinitialPoint( x ); 
ptrAD->setintegrationTime( tO); 

if( ind == tillend II ind == onestep I I ind ==Jacobian) 

ptrAD->generateCompGraph( DAEParam ); 

if( !ptrProjection->projectConsinitPoint( ) ) 
{ 

} 

ptrParam->setind( Jsingular ); 

return; 

if( ind == tillend II ind 
{ 

onestep ) 

} 

fout<<t<<" "; 

ptrAD->outputSolution( fout ); 

if( outputind >= initpoint ) 
{ 

} 

cout«"\n\niNITIAL POINT\n\n"; 

ptrAD->printinitialPoint( 0, ptrParam->getDigits() ); 

firstentry false; 
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} 

void DAESolver compTSSol( double t, double tend, int & ind, int p ) 
{ 

} 

ptrAD->compJacobian( 0 ); 

if( ind == Jacobian ) 
{ 

} 

ptrAD->printJacobian( 0 ); 

cout<<endl; 
ptrParam->setind( normalexit ); 

break; 

ptrAD->compTCs( p ); 

tal= ptrStepSize->compTol( ptrAD, ptrParam ); 

h = ptrStepSize->compStepSize( ptrAD, ptrErrorEst, tal, p ); 

h = ptrStepSize->compFinalStep( t, tend, h); 

if( !ptrStepSize->checkStepsize( h, ptrParam->getHmin() ) ) 
{ 

} 

ptrParam->setind( smallstepsize ); 

break; 

ptrAD->compSolution( p, h); 

void DAESolver 
{ 

compConsSol( double t, int p ) 

ptrAD->setintegrationTime( t +h); 

double k = 0; 
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} 

while( !ptrProjection->projectCons!nitPoint() && k < 11 ) 
{ 

} 

ptrStats->statSteps(O); 

h = O.S•h; 

if ( !ptrStepSize->checkStepsize( h, ptrParam->getHmin() ) ) 
{ 

} 

ptrParam->set!nd( smallstepsize ); 

break; 

if( k = 10 ) 

{ 

} 

ptrParam->set!nd( Jsingular ); 

break; 

ptrAD->compSolution( p, h); 
ptrAD->setintegrationTime( t +h); 

ptrStats->statSteps(1); 

D.2 Computing signature matrix and offsets 

void Offsets :: compOffsets( LAPSolver &solver) 
{ 

solver.compHVT( n, SignMatrix, rowsol, colsol ); 

for( int i = 0; i < n; i++ ) 

{ 

} 

c [i] = 0; 

d[i] = 0; 
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} 

vector<int> d_old(n); 

int max; 

bool computed = false; 

while(!computed) 

{ 

} 

d_old = d; 

for ( int j = 0; j < n; j++ ) 
{ 

} 

max= SignMatrix[O][j] + c[O]; 

for ( int i = 1; i < n; i++ 
{ 

} 

if ( SignMatrix[i][j] + c[i] >max) 

max= SignMatrix[i][j] + c[i]; 

d[j] = max; 

computed = true; 

int k = 0; 

while ( k < n && computed ) 

if ( d[k] != d_old[k] ) 

computed = false; 

else 
k++; 

if ( ! computed ) 

for ( int j = 0; j < n; j++ ) 
{ 

inti= colsol[j]; 

c[i] = d[j]- SignMatrix[i][j]; 
} 
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D.3 Computing Jacobians 

void FADBADTS :: compJacobian( int stage 
{ 

} 

for ( int j = 0; j < n; j++ ) 
{ 

} 

int Lj = ptrOffsets->getDerivNoX( j, stage ); 
if ( Lj >= 0 ) 

{ 

} 

for ( int q = 0; q <= Lj; q++) 
for ( int k = 0; k < n; k++ ) 

Fin[j][q].d(k) = 0.0; 

TFin[j][Lj] .d(j) = 1.0; 

for ( int i = 0; i < n; i++ ) 
{ 

} 

int Li = ptrOffsets->getDerivNoF( i, stage); 
if ( Li >= 0 ) 

TFout[i].eval( Li ); 

D.3.2 Printing Jacobian 

void FADBADTS :: printJacobian( int stage, ostream & s) 
{ 

s « endl « endl « "SYSTEM JACOBIAN AT STAGE " 

<< stage<< ":" << endl; 

int p = s.precision(); 
s.precision(4); 

int Li, Lj; 
for ( int i = 0; i < n; i++ ) 

{ 

Li = ptrOffsets->getDerivNoF( i, stage); 
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} 

if ( Li >= 0 ) 
{ 

for ( int j = 0; j < n; j++ ) 
{ 

} 

Lj = ptrOffsets->getDerivNoX( j, stage); 
if( Lj>= 0 ) 

{ 

} 

} 

s << std::setw(9) << TFout[i][Li].d(j)*factor[Li]lfactor[Lj]; 

s<<endl; 

} 

s.precision(p); 

D.4 TCs computation 

D.4.1 Nonlinear case 

void IpoptFunc :: get_F( long n, double •x, double *f) 
{ 

} 

assert( x t& f); 

double pp; 

f[O] = 0; 

for ( int i = 0; i < n; i ++ ) 
{ 

} 

pp = x[i] - xOxO[i]; II xOxO the initial guess in AD class 

pp •= pp; 

f[O] += pp; 

f[O] •= 0.5; 

void IpoptFunc :: get_G( long n, double •x, double *g) 
{ 

assert( x && g); 
for ( int i = 0; i < n; i ++ ) 

{ 
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g[i] x[i] - xOxO[i]; 
} 

} 

void IpoptFunc 
{ 

get_C( long n, double *X, long m, double *cc ) 

assert( x kk cc ); 

get_C_AD( x, m, cc ); 
} 

void IpoptFunc :: get_A( long task, long n, double *X, long *nz, double *A, 

long *Arow, long *Acol ) 
{ 

} 

assert( x kk nz kt A kk Arow kk Acol ); 
assert(ptrAD); 

if ( task == 0 ) 
{ 

*nz = ptrAD -> getNoNonzeros( STAGE); 
} 

else 
{ 

get_A_AD( x, nz, A, Arow, Acol ); 
} 

bool Projection 
{ 

projectSolution( int stage, double *XX ) 

n = pOffsets->noVariables(stage); 

m = pOffsets->noEquations(stage); 

assert(parameters); 

double dtol = parameters->getDTol(); 

piF =new IpoptFunc( stage, n, m, xx, ad); 
assert( piF kk optpackage ); 
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} 

bool temp= optpackage->compOptSolution( xx, n, m, &dtol, piF ); 
delete piF; 

for( int i = 0; i < n; i++ ) 
x[i] = xx(i]; 

return temp; 

D.4.2 Computing TCs 

void FADBADTS :: compTCs( int p) 
{ 

for ( int i = 0; i < n; i++ ) 

Tout [i] . reset 0 ; 

for ( int j = 0; j < n; j++ ) 
{ 

} 

for ( int i = 0; i < ptr0ffsets->getDVector(j)+1; i++ ) 
{ 

Tin[j] [i] .. TFin[j] (i] .x(); 

} 

for ( int i = ptr0ffsets->getDVector(j)+1; 

i <= ptrOffsets->getDVector(j)+p; i++ ) 
{ 

Tin[j] [i] = 0; 

} 

getScaledJacobian( fjac ); 

LU( n, fjac, ipiv ); 

for ( int i = 0; i < n; i++ ) 
{ 

U[i] 1; 

V[i] = 1; 
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} 

} 

for ( int k = 1; k <= p; k++ ) 
{ 

compTerm( k ); 
} 

D.4.3 Computing term 

void FADBADTS :: compTerm( int stage 
{ 

for ( int i = 0; i < n; i++ ) 
{ 

U[i] /= ptrOffsets->getDerivNoF( i, stage); 
V[i] /= ptrOffsets->getDerivNoX( i, stage); 

} 

int Li; 
for ( int i = 0; i < n; i++ ) 

{ 

} 

Li = ptrOffsets->getDerivNoF( i, stage); 
Tout[i].eval(Li); 

Fvec[i] = Tout[i][Li]; 

for ( int i = 0; i < n; i++ ) 
Fvec[i] = Fvec[i]/U[i]•U[indexmaxoffset]; 

LSolve( n, fjac, ipiv, Fvec ); 

for ( int j = 0; j < n; j++ 
Tout [j] . reset 0 ; 

for( int j = 0; j < n; j ++ ) 
{ 

} 

Tin[j][ptrOffsets->getDerivNoX(j,stage)] 
Fvec(j]•V[j]/U[indexmaxoffset]; 
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} 

D.5 Error estimation 
double ErrorEst :: estError( AD *ptrAD, int p, double h) 
{ 

} 

assert( ptrAD ); 

int 1; 

double temp; 

double temppow = pow(h, (double) p); 

for( int j = 0; j < n; j ++ ) 
{ 

} 

1 = p + ptrOffsets->getDVector(j); 
temp= temppow * factor[l]/factor[p]; 

e[j] =temp* ptrAD->getXjk( j, 1 ); 

double temperr = NORM 

return temperr; 

norm1( e, n ) ; 

D.6 Stepsize selection 

D.6.1 Tolerance computation 

double StepSize :: compTol( InitPoint *ptrinitPoint, 
Parameters *ptrParam ) 

{ 

} 

double temp= ptrParam->getRTol()*ptrinitPoint->getNorm1X(); 

temp+= ptrParam->getATol(); 
return temp; 
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D.6.2 Stepsize selection 

double StepSize :: compStepSize( AD *ptrAD, ErrorEst *ptrErr, 
double tol, int p ) 

{ 

} 

double est= ptrErr->estError( ptrAD, p, 1 ); 

assert( est != 0 ); 

double h =pow( tol/est, 1.0/p ); 

assert( h != 0 ); 

return h; 

D.6.3 Final stepsize selection 

double StepSize :: compFinalStep( doublet, double tend, double h) 
{ 

} 

if( 2*fabs(h) < fabs(tend - t) 
{ 

} 

if( tend > t ) 

return h; 

else 

return -h; 

else if( fabs(h) < fabs(tend - t) && 2*fabs(h) > fabs(tend - t) ) 
{ 

} 

else 
{ 

} 

h = ( tend - t ) I 2; 

return h; 

h =(tend- t); 

return h; 

bool StepSize :: compHmin( double h) 
{ 

if ( fabs(h) < ptrParam->getHmin() ) 
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} 

{ 

} 

else 

cerr<<"Stepsize is too small"<<endl; 

return false; 

return true; 
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