
A SOLVER FOR HIGH-INDEX DAES

DESIGN AND IMPLEMENTATION OF A

SOLVER FOR HIGH-INDEX

DIFFERENTIAL-ALGEBRAIC

EQUATIONS

By

WANHE ZHANG, B.ENG.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree of

Master of Science

McMaster University

© Copyright by Wanhe Zhang, May 2005

MASTER OF SCIENCE (2005)

(Computing and Software)

McMaster University

Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES:

Design and Implementation of a Solver for

High-Index Differential-Algebraic Equations

Wanhe Zhang

B.Eng. (Nankai University)

Dr. Ned N edialkov

xii, 134

ii

Abstract

Systems of differential-algebraic equations (DAEs) arise in numerious applications,

and there has been considerable research on solving DAE initial value problems

(IVPs). Existing methods and software for solving DAEs usually handle at most

index-three problems. However, DAE problems of index three and higher do arise,

for example, in actuator dynamics, multi-stage processes, and optimization.

We present the method ofJ. Pryce and N. Nedialkov for solving DAEs, which can

be of high index, fully implicit, and contain derivatives of order higher than one. We

solve such DAEs by expanding their solution in Taylor series (TS). To compute Taylor

coefficients, we employ J. Pryce's structural analysis and automatic differentiation.

Then we compute an approximate TS solution with appropriate stepsize and project

this solution to satisfy the constraints (explicit and hidden) of the problem.

This thesis discusses the algorithms involved in this method, including the al

gorithms for Taylor coefficients computation, consistent point projection, error esti

mation, stepsize control, and the overall integration process. The author has imple

mented a software package named HIDAETS (High-Index DAE by Taylor Series).

In this thesis, we present the specification, design, implementation, and usage of HI

DAETS. Numerical results on several high-index DAEs are reported. These results

demonstrate that HIDAETS is efficient and accurate for solving IVP in DAEs.

iii

Acknowledgements

I would like to express my sincere thanks and deep appreciation to my supervisor, Ned

Nedialkov, for his constant support, encouragement, thoughtful guidance throughout

my research and the thesis write-up. His detailed comments, helpful suggestions, and

careful corrections have improved this thesis significantly. I have learned much from

him in both academic research and non-academic fields.

I am grateful to Andrea Walther and Andreas Griewank for their help with ADOL

C package, to Ole Stauning for helping with his FADBAD++ package, and to An

dreas Wachther for prompt assistance with his IPOPT software. Without their help,

developing HIDAETS would have been far more difficult.

I also thank Dr. Spencer Smith and Dr. Jacques Carette, for reviewing this thesis

and for their valuable suggestions and comments.

Finally, I appreciate the help and suggestions from John Pryce (Royal Military

College of Science, Cranfield University), and faculty in the Department of Computing

and Software, McMaster University.

lV

Contents

1 Introduction

1.1 Motivation .

1. 2 Background

1.3 Contributions

1.4 Thesis structure .

2 Theoretical Background

2.1 Structural analysis

2.2 Taylor series

3 Numerical Algorithms

3.1 Notation

3.1.1 Notation for Taylor coefficients

3.1.2 Notation for derivatives

3.2 The integration process

3.3 Computing signature matrix and offsets .

3.4 Computing Jacobians

3.4.1 Computing ar hI axh
3.4.2 The relation between arlk I ax.Jk and J

3.5 Computing TCs

3.5.1 Computing a consistent point

3.5.2 The linear case

3.6 Error estimation

3. 7 Ste11size control

3. 7.1 Stepsize selection

v

1

1

3

4

5

6

6

9

12

12

13

14

14

18

19

19

22

24

24

25

28

30
30

CONTENTS

3.7.2 Final stepsize selection

4 Numerical Software

4.1 Informal specification .

4.1.1 General system description .

4.1.2 System description .

4.1.3 Other system issues .

4.1.4 Likely changes ..

4.2 Design

4.2.1 High-level design

4.2.2 Low-level design .

4.3 Installation and usage

4.3.1 Installation

4.3.2 Usage .

5 Numerical Results

5.1 Format of the problem descriptions

5.2 Single pendulum

5.2.1 General information

5.2.2 Mathematical description of the problem

5.2.3 Numerical results . .

5.3 Double pendula

5.3.1 General information

5.3.2 Mathematical description of the problem

5.3.3 Numerical results . .

5.4 Car axis .

5.4.1 General information

5.4.2 Mathematical description of the problem

5.4.3 Numerical results ..

5.5 Two-link robotic arm

5.5.1 General information

5.5.2 Mathematical description of the problem

5.5.3 Numerical solution of the problem.

5.6 Transistor amplifier

vi

31

33

33

33

35

40

41

43

43

49

65

65

68

76

76
78
78
78
78
83
83
83
83
88

88
88
89
95

95

95

96
101

CONTENTS

5.6.1 General information

5.6.2 Mathematical description of the problem

5.6.3 Numerical results . . .

5. 7 Summary of numerical results

6 Conclusions and Future Work

6.1 Conclusions .

6.2 Future works

Bibliography

A Symbols and Acronyms

B Automatic Differentiation

B.1 Basics of AD

B.l.1 Forward mode.

B.1.2 Reverse mode

B.2 AD tools

C Some UML Legends

D Some Source Code

D.1

D.2

D.3

The integration process .

Computing signature matrix and offsets .

Computing Jacobians

D.3.1 Computing ofh/Ox.Jk
D.3.2 Printing Jacobian .

D.4 TCs computation

D.4.1 Nonlinear case ..

D.4.2 Computing TCs .

D.4.3 Computing term

D.5 Error estimation

D.6 Stepsize selection

D.6.1 Tolerance computation

D.6.2 Stepsize selection . . .

vii

101

101
102
107

108

108
109

110

114

115

116

116

117

118

120

121
121

125
127

127

127

128

128

130

131

132

132

132

133

CONTENTS viii

D.6.3 Final stepsize selection . 133

List of Figures

3.1 One step of the integration process. . .

3.2 The integration process of HIDAETS ..

4.1 Sketch of system context diagram ..

4.2 Structure of HIDAETS.

4.3 Class diagram: Parameters.

4.4 Class diagram: SignatureMatrix and Offsets.

4.5 Class diagram: InitialPoint.

4.6 Class diagram: AD

4.7 Class diagram: ErrorEst ..

4.8 Class diagram: Stepsize. .

4.9 Class diagram: Projection.

4.10 Class diagram: DAESolver.

4.11 Organization of HIDAETS.

5.1 Plots of x, y, and A versus time for the pendulum problem.

5.2 Work-precision diagram for the pendulum problem. .

5.3 Error versus tolerance for the pendulum problem ...

5.4 Stepsize versus time with tolerances 10-7 and 10-13 .

5.5 CPU time versus order with different tolerances. . . .

5.6 Plots of x, y, A, u, v, and K versus time with the initial points in Table

16

17

34

44

52

54

56

58

61

62
63
64

66

79

81

81

82

82

5.3. 84

5.7 Plots of x, y, A, u, v, and K versus time for the double pendula problem. 86

5.8 Stepsize versus time with tolerances 10-7 and 10-13 . • 87

5.9 CPU time versus order with different tolerances. 87

ix

LIST OF FIGURES x

5.10 Plots of Xt, Yl, Xr, and Yr versus time for the car axis problem. 91

5.11 \Vork-precision diagram for the car axis problem. . . 92

5.12 Error versus tolerance for the car axis problem. . . . 93

5.13 Stepsize versus time with tolerances w-7 and w-13 . . 93

5.14 CPU time versus order with different tolerances. . . . 94

5.15 Comparison of reference solutions with true solutions x1 and x3 . 96

5.16 Plots of X1, x3 , w, x2, p2 , and p 1 versus time for the two-link robotic

arm. 97

5.17 Work-precision diagram for the two-link robotic arm. 98

5.18 Error versus tolerance for the two-link robotic arm. . 99

5.19 Stepsize versus time with tolerances w-7 and 10-13 . . 99

5.20 CPU time versus order with different tolerances. . . . 100

5.21 Plots of YI, y2, y3, y4, y5, Y6, y7, and Ys versus time for the transistor
amplifier problem. 103

5.22 Work-precision diagram for the transistor amplifier problem. 104

5.23 Error versus tolerance for the transistor amplifier problem. 105

5.24 Stepsize versus time with tolerances w-7 and 10-13 • . 105

5.25 CPU time versus order with different tolerances. 106

List of Tables

1.1 Some existing DAE solvers. 3

3.1 Evaluation of the gradient code list for fo = 2x2 + A.0x0 . . 20

3.2 Evaluation of the gradient code list for g0 = 2'Y2 + A.0y0 - G. 21

3.3 Evaluation of the gradient code list for h2 = 2xox2 +xi+ 2YoY2 + y~. 21

3.4 Selection of the final stepsize.

4.1 Packages in HIDAETS

4.2 Methods of the Parameters class.

4.3 Method of the SignatureMatrix class.

4.4 Methods of the Offsets class. . .

4.5 Method of the LAPSolver class. .

4.6 Method of the LAP class.

4. 7 Methods of the InitialPoint class.

4.8 Methods of the AD class.

4.9 Methods of classes ADOL-C and FADBAD++.

4.10 Description of the compJacobian method. .

4.11 Description of the getJacobian method

4.12 Description of the compConstraints method.

4.13 Description ofthe getConstraints method. .

4.14 Description of the compCoeffi.cients method.

4.15 Description of the getCoeffi.cients method. .

4.16 Description of the compTSSolution method.

4.17 Method of the ErrorEst class.

4.18 Methods of the Stepsize class. . . .

XI

31

35
53
53
55
55
55

56

57

59
59
59
59
60
60
60
60
61

61

LIST OF TABLES

4.19 Method of the Projection class.

4.20 Method of the OptimizationPackage class.

4.21 Method of the IPOPT class. . .

4.22 Method of the DAESolver class.

4.23 Options for installation.

5.1 Reference solution for the pendulum problem.

5.2 Run characteristics for the pendulum problem ..

5.3 Initial values of u, v, and "'for the double pendula problem.

5.4 Run characteristics for the double pendula problem.

5.5 Reference solutions for the car axis problem. . .

5.6 Run characteristics for the car axis problem ...

5.7 Reference solution for the two-link robotic arm.

5.8 Run characteristics for the two-link robotic arm.

5.9 Reference solutions for the transistor amplifier problem ..

5.10 Run characteristics for the transistor amplifier problem ..

B.1 Some existing AD tools.

xii

62
63

64

64

68

78

80

85

85

90
91

96
98

104

104

119

Chapter 1

Introduction

We consider a differential-algebraic equation (DAE) initial value problem (IVP) inn

dependent variables Xj = Xj(t), with t a scalar independent variable, of the form

fi(t, the Xj and the derivatives of them) = 0, 1 :::; i :::; n. (1.1)

We assume that /i are suitably smooth. We allow derivatives of order higher than

one and derivatives of Xj to appear nonlinearly in (1.1).

The goal of this thesis is studying, designing, implementing, and documenting a

numerical method [NP03] for solving (1.1) directly by expanding its solution in Taylor

series (TS).

1.1 Motivation

The importance of solving DAE initial value problems numerically has been recog

nized for over 20 years [BCP96]. Interest in DAEs arose because many mathematical

models in mechanical, chemical, or electrical engineering, occur naturally as systems

of differential equations with algebraic constraints.

The development of efficient numerical methods for solving DAEs has been an

active research area and a variety of efficient methods already exist [BCP96]. Several

numerical methods have been proposed, including backward differentiation formula

(BDF) or implicit Runge-Kutta (IRK) methods. There are also several methods de

signed specifically for particular applications such as constrained mechanics or electri

cal circuits. These approaches have proven very useful, and the availability of codes

1

1. Introduction 2

has encouraged a wider consideration of DAE models. However, these methods are

limited to problems of low index or special structure. Informally, the index of a DAE

is the minimum number of differentiations needed to convert it to an ODE [AP98].

An ODE is of index zero. Generally, the higher the index of a DAE, the more difficult

it is to solve.

Initially most of the numerical work on DAEs assumed that a DAE was of index

one [Cam95]. High-index DAEs (index 2: 2) were thought perhaps not important

in applications. This has changed within the past ten years, with the realization

that many of the problems in mechanics are initially formulated as index-two or

higher-index DAEs. However, there were no general code available for even index

two problems before 1995 (CH96]. Even till now, existing methods and software for

solving DAEs are restricted to at most index-three problems. Most of these solvers

first reformulate the problem to first-order, lower-index forms, and then use existing

numerical methods and codes for the reformulated problem to solve the original high

index, high-order problem.

Nedialkov and Pryce [NP03] present a new approach for solving numerically DAEs

in the general form {1.1). The DAEs can be of high index, fully implicit, and contain

derivatives of order higher than one. Their method does not reduce a DAE to a first

order, lower-index form- they solve it directly by expanding its solution in Taylor

series. To compute Taylor coefficients (TCs), they employ the structural analysis (SA)

of Pryce [Pry01] and automatic differentiation (AD). Nedialkov [NP03] implements

the method into a C++ prototype DAE solver named DAETS.

The algorithms behind a high-index DAE solver employing SA and TS methods

need to be studied and presented in detail. These algorithms include Taylor coef

ficients computation. Jacobian computation, error estimation, stepsize control, TS

solution projection, and the whole integration process.

Besides the algorithms, a well-designed, flexible, easy-to-usc, and well-documented

software package is needed. First, the software package must be open to the user.

For example, the user can use his/her own numerical routines for computing TCs, or

employ his/her own algorithm in stepsize control. Second, this new software package

may be used by people without knowledge of the particular DAE algorithms; there

fore, it must be easy-to-use. Last, a well-documented softwarA package is important

for later maintenance and improvement.

1. Introduction 3

1.2 Background

DAE solvers. There are several excellent and widely used software packages for

solving DAEs. There are also many codes designed specifically for simulating con

strained mechanical systems. Table 1.1 lists some standard DAE solvers. In [MI03],

the authors summarize more DAE solvers and report various numerical results.

Name Author(s) Methods DAE index
DASSL Petzold fixed-leading -coefficient :::;1

[BS96a] BDF
GAMD Iavernaro and Generalized Adams :::;3

Mazzia [MI03] Methods (GAMs)
MEBDFI Abdulla and Modified Extended BDF :::;3

Cash [HW96] of Cash
RADUA5 Hairer and Implicit Runge-Kutta :::;3

Wanner method (Radau IIa) of
[HW96] order 5

Table 1.1: Some existing DAE solvers.

All of these solvers are only applicable to at most index-three problems. Most of

them arc restricted to DAEs of special form or derivatives at most the first. This

may be inconvenient, since a high-index, high-order DAE needs to be converted to a

lower-index, first-order DAE.

DAE structural analysis. Pantelides [Pan88] proposes a graph-theoretical algo

rithm to locate subsets of the system equations which need to be differentiated. Pryce

[Pry98, Pry01] compares Pantelides' method with his structural analysis and proves

these two methods are equivalent to each other. However, the algorithms of Panten

lides can only apply to first-order DAEs, which is in the form of f(t, x, x') = 0.

Mattsson and Soderlind [MS93] present a technique for solving high-index DAE

problems by index reduction approach. (Their numerical method is related to Pryce's

structural analysis.)

Campbell-Gear's derivative array equations [CG95] is another approach for high

index DAEs, but more complex than the structural analysis of Pryce. Their approach

requires symbolic software to preprocess the equations, which may be h:::.rd to apply

automatically to program code.

1. Introduction 4

Pryce in [Pry98, PryOl] presents the theory of his structural analysis. From the

results in [Pry98, PryOl], a DAE given in the form {1.1) can be either solved directly

using Taylor series or converted to an ODE which can then be solved.

Taylor series solution of DAEs. Taylor series method for the solution of IVP

for an ODE has been well studied. Successful software packages for solving ODE by

Taylor series are AUTOMFT [CC94), VNODE (NJ02], and COSY [Ber97].

Chang and Corliss [CC94] present how to generate Taylor series for the simple

pendulum {2.2) in an ad hoc way. Then Corliss and Lodwick [CL96] extend it to

validated solution for (2.2) using Lohner's Anfangswertaufgabe (AWA) program.

Pryce [Pry98) presents a Taylor method for solving high-index DAE systems by

expanding the solution as a high-order Taylor series. He has implemented a prototype

in MATLAB ·code that solves the DAE using Taylor coefficients, without converting

to an ODE.

Nedialkov [NP03] has implemented the method into a prototype DAE solver

named DAETS in C++ program. He computes TCs by operator overloading without

parsing and code generation. As in Pryce's structural analysis, the DAE is solved

without reducing to low-order, low-index forms.

1.3 Contributions

The contributions of this thesis include two parts. The first part is the presentation

of algorithms for a general high-index DAE solver based on structural analysis and

Taylor series. Numerical algorithms and methods such as TCs computation, error

estimation, and stepsize control are presented in both pseudo code and C++ code.

The second contribution is the design, documentation, and numerical studies for

HIDAETS. We employ the object-oriented design method and present in detail doc

umentations for specification, design, implementation, and usage of HIDAETS. In

addition, more than ten DAE and ODE and the testing results for five high-index

DAE problems are presented in this thesis.

Numerical results demonstrate that HIDAETS can be accurate, efficient, and

suitable for solving DAEs of an index too high for the existing methods and solvers

to handle.

1. Introduction 5

1.4 Thesis structure

This thesis is organized as follows.

Chapter 2 presents the main steps of Pryce's structural analysis and describes

how the Taylor series method works using a simple example.

Chapter 3 presents numerical algorithms in HIDAETS. We describe algorithms

for signature matrix and offsets computation, computing Jacobians, projecting initial

point, Taylor coefficients computation, error estimation, and stepsize control. We

also present the overall integration process of HIDAETS. All of these algorithms are

demonstrated in pseudo code after each description. Corresponding C++ code is

given ~n Appendix D.

Chapter 4 discusses numerical software issues. First, we present specification and

design documentation. Since we employ object-oriented design, we give both high

level design and low-level design with detailed documentation. We also illustrate how

to install and use HIDAETS at the end of this chapter.

Chapter 5 reports numerical results of HIDAETS. We have tested more than

ten DAE and ODE problems with HIDAETS. In this thesis, we study five high-index

DAEs in detail. We present results such as work precision diagrams, stepsize behavior,

and dependence of the work on the order of the method.

In the last chapter, Chapter 6, we draw conclusions and suggest directions for

future work.

In appendix A, we give the acronyms. Appendix B is the knowledge about au

tomatic differentiation. Appendix C is some UML legends used in this thesis. In

appendix D, we present some source code for the algorithms discussed in Chapter 3.

Chapter 2

Theoretical Background

2.1 Structural analysis

Here we present the main steps of Pryce's structural analysis. More details can be

found in [Pry01, NP03]. We first give some definitions and then illustrate the process

with the single pendulum problem (2.2) step by step.

A transversal T of ann x n matrix (o-ii) is a set of n positions in this matrix with

one element in each row and column. The value ofT is !ITII = 'L,(iJ)ET CTij· A highest

value transversal (HVT) is a transversal T that makes IITII as large as possible.

A consistent point for {1.1) is a set of the xi and derivative of them, at a time t,

that specify a unique solution.

The degrees of freedom (DOF) of a DAE system is the number of independent

initial conditions required.

Given a DAE in the form of (1.1), we perform the following steps.

1. Form the n x n signature matrix :E = (uii), according to

a-·. _ { highest order of derivative to Xj occurs in fi;
tJ - -oo if xi does not occur in k

or
(2.1)

Example 2.1. Throughout this chapter, we give examples based on the single

6

2. Theoretical Background

pendulum [AP98]:

0 = f = x" + x>.,

0 = g = y" + y>. - G,

0 = h = x2 + y2- £2,

7

(2.2)

where G > 0, L > 0 are constants, and the dependent variables are x(t), y(t),
and >.(t).

Its signature matrix L:, labeled by equations and variables, is

X y

~ (-~ -;a
h 0 0

~)·
-oo

2. Find an HVT for L:.

Example 2.2. There are two HVTs for the single pendulum problem: one in

positions (f,>.),(g,y),(h,x), the other in positions (f,x),(g,>.),(h,y). In both

HVTs, IITII = 2.

3. Find n-dimensional integer vectors c and d, with all£; ;:::: 0, satisfying

{

di- ci;:::: rJij for all i,j = 1, ... , n,

di- £; = rJij for all (i,j) E T,
(2.3)

where T is an HVT. We call the smallest c and d (in the sense of a :::; b if

ai :::; bi for each i) the offsets of the problem. We name c equation offsets, and

d variable offsets.

Example 2.3. For the single pendulum problem, the offsets are c = (0, 0, 2)

and d = (2, 2, 0) for both HVTs1:

1The * inside of the signature matrix annotates the positions of HVT.

2. Theoretical Background 8

X y A Ci X y A Ci

~(-~
-X O·r 'C*

-oo or 2* 0 0 and g -00 2 0* 0

h 0* 0 -oo 2 h 0 0* -00 2

dj 2 2 0 dj 2 2 0

4. Form then x n System Jacobian matrix

a (fie!), ... , ~~en))
J= .

a (x~di), ... 'x~d,.))
(2.4)

From Griewank's lemma in [NP03], (2.4) is equivalent to

{

a fi if d. - Ci = (7·.
£l (O"ij) J ~)'

Jij = vxj

0 otherwise.

Example 2.4. For the single pendulum problem, we have

J = [It' .; ~] = [~ ~ :0]·
oh oh 0 2x 2y ox 8y

F. d al c {kj) . fy" f(l·) - 0 h . . - 1 . k -5. m v ues tor xi satls mg i ' - , w ere z, J - , ... , n, i -

0, ... , di; li = 0, ... , <;. If such values are found, and J is nonsingular, a con

sistent point as defined above is found. Then the structural analysis method

succeeds.

Example 2.5. For the single pendulum, we need to solve

f x" + xA

g y" + YA- G
h - x2 + y2 _ £2 =0.

h' 2xx' + 2yy'

h" 2xx" + 2yy" + 2x12 + 2y12

2. Theoretical Background 9

To find values for (x, x', x"; y, y', y"; >.), we need to solve h = 0 for x, y, and then

h' = 0 for x', y'. Then f, g, h" form a linear system of x", y'', and>. as

0 x] [x"] [0] 1y y"+ G

2y 0 >. 2x12 + 2y12

=0,

where the first matrix is just J. Since det J = -2(x2 + y2) = -2£2 =1- 0, we can

solve this linear system.

Thus the method succeeds for the single pendulum problem.

When the method succeeds, there are some properties:

• The DAE has L:j di - L:i Ci DOF, which also equals the value of the HVT.

• The differentiation index vd, see [CG95], of the DAE is less than or equal to the

Taylor index

{
1 if some di = 0,

VT =m~Ci+ O · otherwise.

In many cases, vr = vd.

Example 2.6. The single pendulum problem has 2 DOF, and vd = vr = 3.

2.2 Taylor series

A Taylor series expansion of a coo function f(t) about a point t = t* is given by

f "(t*) J(n) (t*)
J(t) = f(t*) + J'(t*)(t- t*) + -

1
-(t- t*)2 + ... + I (t- t*)n +

2. n.

We assume that for some N 2: 1, each function fi in (1.1) has (N +Ci) continuous

derivatives in a neighborhood of a point (t*,x*) at which J is nonsingular. Thus,

from Theorem 4.2 in [NP03], we can compute TCs for xi(t) up to order (N + dj)·

For ODE initial value problems, Taylor series methods are well known (CC82,

Pry98, Ncd99]. Their implementation is based on AD to evaluate Taylor coefficients

to arbitrary order.

For DAE systems, this method meets some difficulties.

2. Theoretical Background 10

1. The required initial values are not obvious in general.

2. Simultaneous equations must be solved to find Taylor coefficients.

3. It is no longer possible to find first all the first coefficients, then all the second

coefficients, and so on, as done in standard ODE TS methods.

Pryce [Pry98, Pry01] and Nedialkov and Pryce [NP03] have presented a "stag

gered" way to find TCs for a general DAE. Here, we outline how their method works.

We denote the lth TC of a function f of a real variable t at a point t* by

Denote

J(ll(t*)
(f)t = l! .

kc = -m~ e;, and kd = -m~ dj,
• 3

where ci and dj are the offsets defined in (2.3).

(2.5)

(2.6)

The solution scheme for computing TCs is to solve a system of equations on each

stage k = kd, kd + 1, Each system contains

(h)k+c; = 0 for all i such that k + e;, ~ 0, (2.7)

and we solve for

(xj)k+di for all j such that k + dj ~ 0,

where all previously computed (xj)t occurring in (2.7) are to be treated as constants.

Example 2.7. For the pendulum, we have the following recipe2 :

Stage uses equations to obtain

k = -2 0 = ho Xo,Yo

k= -1 0 =hi XI, YI

k=O 0 = fo,go,h2 x2,y2, .Ao

k=1 0 = JI,g11 ha xa, Ya, AI

2This example is from (NP03]. For simplicity, we use xi instead of (x); for the single pendulum
problem. A similar rule applies to other variables in that problem.

2. Theoretical Background 11

At stage k = kd = -2, we find x0 , y0 that satisfy

At stage k = -1, we find X1, y1 that satisfy

taking the previously computed x0 , y0 as constants.

At stage k = 0, we find x2 , y2 , >.0 that satisfy

0 = fo = 1 · 2x2 + xo>.o,

0 = go = 1 · 2y2 + YoAo - G, (2.8)

0 = h2 = 2xox2 + x~ + 2YoY2 + y~,

taking the previous computed x0 , y0 , Xt, Yt as knowns.

In general, at stage k 2 0, we find Xk+2' Yk+2, >.k satisfying fk, gk, hk+2 = 0, subject

to all the already found values.

By summing relevant TCs at current timet* with appropriate stepsize h, we obtain

an approximate TS solution at t* + h.

Thus, the whole algorithm employing TS processes is summarized as follows.

1. At current t = t*, an approximate solution is given, which comprises (xi)1,

where 0 ~ l ~ di.

2. Stages k = kd, ... , 0 convert (xi)l to a consistent initial point.

3. Stages k = 1, 2, ... compute further TCs up to some specified order.

4. Summing relevant TCs with appropriate stepsize h obtains the approximate

(xi)l at point t = t* +h. Go back to 1. and update t = t* +h. The process

repeats.

Chapter 3

Numerical Algorithms

This chapter describes the algorithms in HIDAETS. First we introduce some of the

notation we need later. Then we describe the overall integration process and each

step in detail.

3.1 Notation

The notation here follows closely [NP03].

Let

I={(i,l)li=l, ... ,n; l=O,l, ... }.

Given the n-dimensional equation offsets c and variable offsets d, we define for all

k E Z,

or equivalently,

h = {(i, l) E Ill= k + c;},

Jk = { (j, l) E Ill= k + di},

h = {(i,l) ll = k+ci ~ 0},

Jk = {(j, l) ll = k + dj ~ 0}.

Here h is empty for k < kc, and Jk is empty for k < kd, where kc, kd are defined by

(2.6).

12

3. Numerical Algorithms 13

3 .1.1 Notation for Taylor coefficients

We interpret the (xj)t defined by (2.5) as variables, and (Ji)L as the function for

evaluating the lth TC of k The lth TC for xi(t) at t* is denoted by (xi)i- An

approximation for the lth TC of xi(t) at t* is denoted by (xi)I-
Let

mk = Jhl and nk = IJkl,

where lSI denotes the number of elements in setS.

We denote by XJk the nk-dimensional vector with components {(xi)L I (j, l) E Jk}

ordered in increasing j. That is,

(3.1)

where ir, r = 1, ... , nk, are in increasing order.

Similarly, we denote by fh the mk-dimensional vector with components {(Ji)L
(i, l) E h} ordered in increasing i:

where in r = 1, ... , mk, are in increasing order.

We define J -:;k to be the union of the lr for r :S k. This is the union for r =

kd, ... , k, since lr is empty for r < kd. Then we define XJ~k to be the vector of

{ (xi)L I (j, l) E 1-:;k}. In block-vector notation, the components of XJ9 are arranged

in the order

We define I-:;k to be the union of the Ir for r :S k. This is the union for r =

kc, ... , k, since Ir is empty for r < kc. Then we define f1~k to be the vector of

{ (Ji)t I (i, l) E 1-:;k}. In block-vector notation, the components of f1~k are arranged in

the order

f[~k = (fhc' fhc+I'. •. 'fh)T •

In a similar manner, we define XJ<k and f1<k, respectively. In block-vector notation,

we may write

3. Numerical Algorithms 14

3.1.2 Notation for derivatives

We denote the lth derivative of Xj by x)l) and the lth derivative of fi by JP).
Similar to the notation for Taylor coefficients, we denote

(3.2)

where Jr, r = 1, ... , nk, are in increasing order1
.

Let

hk = (!Xd, ... ,fi~:k>) T'

where in r = 1, ... , mk, are in increasing order.

Denote also

XJs,k (xJkd' XJkd+l' ••• 'XJk) T,

JI<,k = (!Jkc' hkc+l' · · · l fh) T•

We also define XJ<k and h<k' respectively. In block-vector notation, we have

In HIDAETS, all variables are represented in Taylor coefficient format. Most of

the following algorithms handle Taylor coefficients directly except for the integration

process and tolerance computation, which use variables in derivative format.

3.2 The integration process

To help describe the integration process, we denote

• n: number of variables;

• h: stepsize;

• p: order of Taylor series;

• t0 : starting point of the integration interval;

1The only difference between (3.1) and (3.2) is the font of x: bold for Taylor coefficients, and
normal for derivatives.

3. Numerical Algorithms 15

• tend: end point of the integration interval;

• XICs: set of initial values (specified by the user);

• atol: absolute tolerance;

• rtol: relative tolerance.

In subsection 4.1, we give detailed explanations for these variables.

The user provides

• function for evaluating (1.1);

• XICs·

Optionally, the user provides atol, rtol, and p.

By evaluating the function, we compute the signature matrix and generate com

putational graphs for computing TCs. After finding the offsets, we try to compute a

consistent initial point. If HIDAETS fails to cc,mpute one, it cannot solve the problem

with the given initial point XICs· If it succeeds, we continue with the integration.

After obtaining a consistent initial point, we compute Taylor coefficients. We

also form tolerance tol using the solution at t0 , atol, and rtol, and then we compute

stepsize h. With this h, we compute an approximate TS solution at t = t 0 + h by

summing the series.

Now, we have to ensure that this numerical solution satisfies the equation con

straints (obvious and hidden). For this purpose, we find the closest point by projecting

it as illustrated in Figure 3.1. If HIDAETS fails to obtain such a consistent point, we

reduce the stepsize h, recompute a TS solution with the new h, and project it again.

We repeat this process, till we obtain a consistent solution.

We iterate the above process by updating t, till t = tend· If tend is reached,

HIDAETS succeeds in solving the given DAE problem.

The integration process is given in the pseudo code below and in the flow chart

in Figure 3.2. Here, compDAE denotes the function for evaluating the DAE.

lNTEGRATE-DAE(n, to, tend, XIC8 , compDAE)

3. Numerical Algorithms 16

TS solution

.. ·· I·· . . · ..

projected solut~qQ __ ~:.
.. --------

initial_poirit

Figure 3.1: One step of the integration process.

1 Evaluate compDAE

2 Compute signature matrix and offsets

3 if computing a consistent initial point fails

4 then error "solver fails to compute a consistent initial point"

5 else t ~ t0

6 while t < tend
7 do Compute Taylor coefficients at t
8 Select stepsize h

9 if lhl < hmin 1> h too small

10 then error "stepsize is too small"

11 return

12 Compute TS solution with h

13 while projecting TS solution fails

14 do reduce stepsize h

15 if lhl < hmin
16 then error "stepsize is too small"

17 return

18 Compute TS solution with h

19 t ~ t + h

The corresponding C++ code is on page 121.

3. Numerical Algorithms 17

obtain problem definition

output solution

y

reduce h

Figure 3.2: The integration process of HIDAETS.

3. Numerical Algorithms 18

3.3 Computing signature matrix and offsets

Given a DAE in the form of (1.1), we first form then x n signature matrix~= (aij)
following (2.1).

To compute the signature matrix, we need to do some work like parsing. In

HIDAETS, we use a C++ class sigma implemented by Nedialkov. It generates a

~ matrix through operator overloading by executing the function for evaluating the

DAE. The algorithm for computing ~ is presented in [NP03].

After obtaining the signature matrix, we compute the equation offsets c and the

variable offsets d. From Pryce's structural analysis, we need first to find an HVT.

Then we compute the offsets by finding n-dimensional integer vectors c and d that

satisfy (2.3).

Finding HVT can be written as a Linear Programming (LP) problem: compute

s.t. "' .. XiJ. = 1 for each i, ut,J

"' .. XiJ. = 1 for each j, ut,J

Xij E {0, 1} i,j = 1,2, ... ,n.

The HVT is the set of (i,j), where Xij = 1 in the solution of (3.3).

(3.3)

In HIDAETS, we use the LAP [JV87] program to solve (3.3). It returns with an

n-vector column solution o:, such that o:i = j is the position (j, i) in HVT.

Example 3.1. In the single pendulum problem, we have two HVTs as

X y X y

and f (2*
g -00

h 0

-00

Then, for the first HVT, o: = (3, 2, 1f; for the second HVT, o: = (1, 3, 2f.

From [Pry01], finding c and d can be treated as a dual LP problem which has

the same optimal value with (3.3). After obtaining HVT, we first initi~.lize c and

d to 0. Then we set di to the maximum of O"ij + ci, for i = 1, ... , n. We update c

3. Numerical Algorithms 19

following the relation of c and d, that is di- ci = aij, for (i,j) E HVT. To ensure

that all ci 2:: 0, we iterate the above process till d equals dotd, where dotd stores d's

previous value. This method for computing the offsets vectors is due to Pryce [Pry01].

COMPUTE-0FFSETS(n, c, d, 'E)
1 compute HVT of 'E, obtain column solution a

2 c~ 0

3 d~ 0

4 while true

5 do dotd ~ d

6 for j ~ 1 ton

7 do dj ~maxi (aii + ci)

8 if d = dotd

9 then break

10 else for j ~ 1 to n

11 do i ~ ai

12 Ci ~ dj - O"ij

The corresponding C++ code is on page 125.

3.4 Computing Jacobians

Instead of computing the system Jacobian J (2.4) directly, we compute a Jacobian of

Taylor coefficients 8fh I 8x.Jk.

We apply the forward mode of AD to differentiate each component of fh with respect

to XJk. We first set all gradients of each component of XJ<5k corresponding to XJk to

0, and then set the gradients of each component of XJk corresponding to itself to 1.

Then we propagate gradients through the code list2 of fh. Finally, we can evaluate

2The rode list means a sequence of expressions containing elementary arithmetic operations and
standard functions. See also Appendix B.

3. Numerical Algorithms 20

8fhj8xJk with the computation of fh.

The above explanation is based on how FADBAD++ computes Jacobians, while

ADOL-C has a different scheme presented in [GW04]. The method here is not efficient

but convenient to implement; a source code translation approach is given in [NP03],

which is more efficient, but also more difficult to implement.

Example 3.2. For the single pendulum, we want to compute 8fr0 /8XJ0 • At stage

k = 0, we have

fr0 = (fo, go, h2f,

XJo = (x2, Y2, .Ao)T,

XJ~o = (xo,XI,X2,Yo,YI,y2,,\0)T,

and the system equations satisfy {2.8).

First, we initialize 8xJ~0 /8xJ0 to

'Vxo (0,0,0)

'Vx1 (0,0,0)

'Vx2 {1,0,0)

'Vyo (0,0,0)

'Vyl (0,0,0)

'Vy2 (0, 1, 0)

'V..\o (0,0, 1)

Then, we evaluate 8f10 /8xJ0 = ('V f0 , 'Vg0, 'Vh2)T as shown in Tables 3.1, 3.2, and 3.3.

t1 = X2 'Vt1 = 'Vx2 (1,0,0)
t2 = Xo 'Vt2 = 'Vxo (0,0,0)
t3 = .Ao 'Vt3 = 'V..\o {0,0,1)
t4 = 2tl 'Vt2 = 2'Vx2 (2,0,0)
ts = t2t3 'Vts = t2 'Vt3 + t3 'Vt2 (0, 0, x0)
t6 = t4 + ts 'Vt6 = 'Vt4 + 'Vts (2, 0, xo)
fo = t6 'Vfo = 'Vt6 (2, 0, xo)

Table 3.1: Evaluation of the gradient code list for fo = 2x2 + ..\oxo.

3. Numerical Algorithms 21

t1 = Y2 '\lh = '\ly2 (0, 1, 0)
ts =Yo '\lts = '\lyo (0,0,0)
tg = Ao '\lt9 = '\7 Ao (0,0,1)
tw = 2t7 '\ltw = 2'\lt7 (0,2,0)
tn = tstg Vtn = ts '\ltg + tg '\lts (0, 0, Yo)
ti2 = tw + tn '\lti2 = '\ltw + Vtn (0, 2, Yo)
9o = ti2 '\7 9o = '\lti2 (0, 2, Yo)

Table 3.2: Evaluation of the gradient code list for go= 2y2 + AoYo- G.

ti3 = Xo Vti3 = '\lxo (0,0,0)

ti4 =XI '\lti4 = '\7 XI (0,0,0)
ti5 = X2 Vti5 = '\lx2 (1,0,0)
t16 =Yo '\lt16 = '\lyo (0,0,0)

t11 = YI '\lt17 = '\lyi (0,0,0)

tis= Y2 Vtis = '\ly2 (0, 1,0)
ti9 = 2ti3 '\lti9 = 2'\lti3 (0,0,0)
t2o = ti9ti5 '\lt2o = ti9 Vti5 + ti5 '\lti9 (2xo, 0, 0)
t2I = t14t14 '\lt2I = 2ti4 '\lti4 (0,0,0)
t22 = 2ti6 '\lt22 = 2'\lt16 (0,0,0)

t23 = t22ti8 '\lt23 = t22 '\lt1s + tis '\lt22 (0, 2y0 , 0)

t24 = ti7ti7 '\lt24 = 2t17'\lti7 (0,0,0)

t25 = t2o + t2I + t23 + t24 '\lt25 = '\lt2o + '\lt2I + '\lt23 + '\lt24 (2xo, 2yo, 0)

h2 = t25 '\7 h2 = '\7 t25 (2xo, 2yo, 0)

Table 3.3: Evaluation of the gradient code list for h2 = 2xox2 + x~ + 2YoY2 + y~.

3. Numerical Algorithms 22

Thus, we obtain

=~0 = [~::j = [~ ~ :0:] . (3.4)
\lh2 2xo 2yo

In HIDAETS, we use FADBAD++ as our default AD package. It implements

automatic differentiation through operator overloading. It provides data types

F<double> for the forward mode of AD and T <double> for the Taylor series compu

tation. The T <double> type can be built on top of F<double>. Thus, when a Taylor

series computation is performed on F<double> objects, both TCs and their gradients

are produced.

Remark. In this computation, FADBAD++ performs operations with gradients

containing only zeros. If such operations are recognized, for example, through "if''

statements, and avoided, the computation may be more efficient.

COMPUTE-JACOBIAN(k, d)
1 &xJ<k +-- 0

&xJk

2 for j +-- 1 to n

3 do Li +-- k + di

4 if Li 2: 0
8(xj)L

5 then ~a(·) = 1
XJ Lj

6 Evaluate 8f1k/8x.Jk by computing fh with T < F<double> >objects

The corresponding C++ code is on page 127.

3.4.2 The relation between afik/ OXA and J

From COMPUTE-JACOBIAN, we can compute 8fh/8x.Jk for any k. How to form the

system Jacobian from it? Do we really need to compute Jacobian for all k? Nedialkov

and Pryce [NP03] present some useful propositions to answer these questions. Here,

we first quote these propositions, and then draw our algorithms for printing Jacobian

Jk as defined in (3.5).

From Proposition 4.1 in [Pry01], we have

J = 8fio and
OXJ0

(3.5)

3. Numerical Algorithms 23

and J k is the submatrix of J by deleting those rows i where k + Ci < 0 and columns

j where k + di < 00 If k 2:: 0, then Jk = J, since all k + Ci 2:: 0 and k + di 2:: 00
From [NP03], the relation between f)fh/&x.Jk and J is

or

where Ck, Dk are diagonal matrices defined by

ck = diag((k + Ci)! 1 for those i with k + Cj ;:::: o],
Dk = diag((k + dj)! I for those j with k + dj 2:: o] 0

Example 3.3. For the single pendulum, when k = 0,

[
1 0 0]

Co= 0 1 0 ,

0 0 2

(306)

Thus, we just need to compute fJfh/&x.h fork= kd, 0 .. , 0. Then we can compute

the system Jacobian J from fJfJ0 /fJXJ0 , and obtain 8f1J8xJk fork> 0 by scaling J.

Example 3.4. For the single pendulum, from (3.4) and (3.6), we have

J = Co f)flo D()l
OxJo

[
1 0 0] [2
0 1 0 0

0 0 2 2xo
0

1
2yo

xol
~·

0

2
2yo

xol [~ Yo 0
0 0 Hl

In fact, if just obtaining system Jacobian and f)fhjoxJk' we only need to compute

8f10 jfJxJ0. In general, from Pryce's structural analysis, the values of XJ:5oo cannot be

determined without processing stages k ~ 0, so we need to compute f)fh/&x.Jk for

k = kd, 0 .. , 0 to obtain a consistent initial point.

3. Numerical Algorithms

PRINT-JACOBIAN(k, c, d)
1 for i +- 0 to n

2 doLi= k + ci

3 if Li 2:: 0

4

5

6

then for j +- 0 to n

doLi= k + di

if Lj 2:: 0

7 then Print
Li! {)(ji)Li

Li! &(xi)Li

The corresponding "C++ code is on page 127.

24

Note that the Jacobian can be obtained in sparse or dense format. In HIDAETS,

we obtain it in both formats and implement it by function overloading.

3.5 Computing TCs

From Pryce's structural analysis [Pry98, Pry01], for stages k 2:: kd, the f19 functions

of XJ::,k, must satisfy

fh(t*,xj<k'xjk) = 0.

At each stage k = kd, kd + 1, ... , the x*J have already been solved, and the x*J are <k k

the unknowns.

From this structural analysis, stages k ::; 0 form nonlinear systems in general to

comprise the projection on the constraints manifolds, while stages k > 0 form square

linear systems only.

3.5.1 Computing a consistent point

For stages k ::; 0, we solve the system3

minllx~k-XJkll2 subjectto fh(t*,xj<k'XJk)=fh(xJk)=O. (3.7)

Example 3.5. For the simple pendulum, at stage k = -2,

fL 2 = ho and XJ_2 = (x0 , y0)T.

3f~o may be linear in XJk· However, we still solve (3.7) to obtain a consistent point.

3. Numerical Algorithms 25

Given an initial guess xJ-_
2

for XJ_2, we solve

min llxj_
2

- XJ_2 1!2 subject to fL 2 = x~ + Y5 = 0.

In HIDAETS, we employ IPOPT (WB04] to solve (3.7). To use IPOPT, we need to

provide the objective function, the gradients of the objective function, the evaluation

of the constraints, and the Jacobian of the constrains. For simplicity, we replace

llxj._k -xLklb by 0.5llxj_k -xLklb then the gradient becomes xj_k -xLk· We use
AD to compute the constraints and their Jacobians, as illustrated in subsection 3.4.2.

Solving (3.7) from k = kd to k = 0 in order, we obtain a consistent initial point.

In fact, at each integration step, data is available in the form of "guesses" xaJ for
$0

the desired values of xjso· Thus, we use (3.7) to compute a consistent point for both

the first step and each integration step afterwards.

COMPUTE-CONSISTENT-POINT(k, xj.k)

1 Define objective function 0.5llxJ.k - XJk I b
2 Define constraints function fik(t*,xj<k'XJk)

3 Define functions needed by optimization package

4 Compute optimal solution by an optimization package

The corresponding C++ code is on page 128.

3.5.2 The linear case

Let

When fh is linear in XJk, from

we have

From (3.6), we transform (3.8) into

(3.8)

(3.9)

3. Numerical Algorithms

If 8f1j&x.Jk is nonsingular, we can solve (3.8) for zk in the usual sense. Then,

Example 3.6. At stage k = 1,

fh = (JI, g1, h3f and xh = (x3, y3, .\I)T.

We have

=
[100][1 0 xo] [3

0

~] 0 1 0 0 1 Yo o 3

0 0 ~ 2x0 2yo 0 0 0

[3~0
0 x•] 3 i 3yo

Since arh I &xh is nonsingular' we compute Zl by solving the 3 X 3 system

arh f (* a)
!l... Z1 = h XJ< 1 , XJ1 ,.
UXJ1

26

Hence, we need first to solve Zk for the linear case. Generally, we first obtain the

system Jacobian without scaling. Then we scale it following (3.6) to obtain 8fh/ &x.Jk.

We compute fh(xj<k'x~k) with an initial guess x~k for XJk by AD. After that, we
solve (3.8) to obtain zk. Finally, we compute xjk by

However, to solve (3.8), we need to do LU factorization for 8f1j&x.Jk first, whose

running time is O(n3). If we do it for each stage k, it is obviously not efficient. We

want to do LU factorization once for all stages, and then do some scaling to solve xh

for each stage k.

We denote me = maJCi Ci and by II · II the max norm of a vector or a matrix. Then

liCk II = (k +me)! and

1 . [(k+ci)! (k+en)!J
liCk II ck = dmg (k +me)!' 0 0 0

, (k +me)! ,

-1 . [(k +me)! (k +me)!]
liCk II ck = dlag (k + cl)! , 0 0 0

, (k +en)! 0

3. Numerical Algorithms 27

For the pendulum problem,

. [k! k! (k + 2)!]
= dtag (k + 2)! ' (k + 2)! ' (k + 2)!

= diag [(k + 1)
1
(k + 2)' (k + 1)

1
(k + 2) '

1
] '

= d" [(k+2)! (k+2)! (k+2)!]
mg k! ' k! ' (k + 2)!

= diag((k + 1)(k + 2), (k + l)(k + 2), 1].

Similar for Dk/IICkli and IICkll Dj; 1
•

Multiplying both sides of (3.9) by Ck/IICkll, we obtain

Jli~kliDkzk = ~~~kliCkfh(x~<k'xJk).
Let Yk = Dk/IICkli zk, then

(3.10)

To solve (3.10), we do not nEed to do LU factorization for each k. We just need to

do LU factorization of J once, and then use it directly for each stage k.

Finally, we compute xjk by

For the Taylor series, we repeat the above process from 1 to the required order p.

COMPUTE-TS(n, c, d,x,p)

1 J f- System Jacobian at stage 0

2 compute LU factorization of J

3 for i f- 1 to n

4 do Ui f- 1/ci!

5 Vi f- 1/di!

6 for k f- 1 to p

3. Numerical Algorithms

7 do COMPUTE-TERM(n, x, k, u, v)

COMPUTE-TERM(n, x, k, u, v)

1 for i <---- 1 to n

2 do ui <---- ui/(k + q)

3 vi <---- vd(k + di)

4 for i <---- 1 to n

5 do 9i <----compute (fi)k+e;

6 9i <---- gd(ui · (k +me)!)
7 s <---- solution of (3.10) using the LU factors

8 for j <---- 1 to n

9 do (xj)k+di <---- -SjVi(k +me)!

The corresponding C++ code is on page 130.

3.6 Error estimation

If the Xj have infinite Taylor series expansions, for a given h = t - t*,

28

If we approximate xY> by a Taylor series with highest-order term of order p, we can

write

(3.11)

(3.12)

For simplicity, we shall omit tin x]l)(t) and xj1>(t), and use x]l) and x]1>, respectively.
(+1+") In general, from (3.11) and (3.12), we can use lx/ 1 i/(p+ 1)! jhjP+l as the error

estimation for x]i).

3. Numerical Algorithms 29

In HIDAETS, we compute xji) by

and we use lxf+dj)l/(p + di - i)! lhlp+dri as the error estimation for xji) at t.

Since x;l), for all j = 1, ... , nand alll = 0, ... , di, are used to obtain an approxi

mate solution, we must consider all these x;l) when estimating the error.

Hence, an error estimation for x;z> is lx;p+dj)l/{p + di - l)! ihiP+drl, where l =
0, ... , di. Usually, lhl « p. We have

ihiPfp! > ihiP+lj(p+ 1)! > ··· > ihlp+dij(p+dj)!

This implies

Then we can use

as an error estimation for x;l), for alll = 0, ... , di. The error for the whole system is

II ell.
Therefore, we can form error estimate for the current step as

est= llell, where e = ~~~P (ix~p+dl)l, ... , lx~+dn)l) T. (3.13)

Since the variables are represented as Taylor coefficients in HIDAETS, by replacing

derivatives by TCs in (3.13), we have

e = lh~P (l(xl)p+d1 (p + dl)!l, .. ·, l(xn)p+dn (p + dn)!l) T. (3.14)
p.

ESTIMATE-ERROR(n,x, d, h,p)

1 for j +-- 1 to n

2 do ei +-- i(xj)p+di llhiP(p + 1) · · · (p + di)
3 return NORM(e)

The corresponding C++ code is on page 132.

3. Numerical Algorithms 30

3. 7 Stepsize control

3. 7.1 Stepsize selection

Tolerance computation

We use a mixture of relative and absolute error control. The user gives absolute

tolerance atol and relative tolerance rtol. Then

tol = rtolllxJ:.:;o II + atol.

COMPUTE-TOLERANCE(n, x, d, atol, rtol)

1 for j ~ 1 ton

2 do (3i ~ rtol II (x)0
), ... , x]dj)) II

3 tol ~ atol + 11!311
4 return tol

The corresponding C++ code is on page 132.

Selecting stepsize

After obtaining a consistent initial point, we compute the Taylor coefficients at current

integration time. Then we need the error estimate to be ::; tol for this step. From

(3.13) and (3.14), we have

where,

I= ;! II ((xl)p+d1 (p + d1)!,. · ·, (xn)p+dn (p + dn)l) Til·

Since we have already obtained a consistent initial point, we can compute tol. We can

also compute 1 by the Taylor coefficients which are knowns. Then, we use formula

h = (tol/1)1
/P

to compute the stepsize.

COMPCTE-STEPSIZE(n, x, d,p, tol)

3. Numerical Algorithms

1 I <-- ESTIMATE-ERROR(n, x, d, 1.0, p)
2 h <-- (tol/1)1/P

3 return h

The corresponding C++ code is on page 133.

3. 7.2 Final stepsize selection

31

About the final step, one may think of using tend- t as the final stcpsizc. However, it

may be too small. In HIDAETS, after computing the stepsize h, we compare !tend- ti
with lhl. Table 3.4 shows how we deal with different conditions. Here,

Condition Stepsize
2lhl < !tend - ti sign(tend- t)ihl

lhl < !tend - ti :S 2lhl (tend- t)/2
lhl 2: !tend - ti tend- t

Table 3.4: Selection of the final stepsize.

sigH(x) = -
{

1 when x > 0,

-1 when x < 0.

We use lhl to ensure that the integration handles special cases such as h < 0, or

tend < t0 . For instance, we could integrate the single pendulum problem from t0 = 100

to tend = 0. Note that this is the first time we usc lhl, and we use h in COMPUTE

STEPSIZE.

Besides these, we must ensure that the stepsize does not become too small. We

set a threshold hmin in HIDAETS. After computing the final stepsize or reducing

stepsize in the integration process as illustrated in subsection 3.2, we check whether

h 2: hmin. If h < hmin, HIDAETS sets Ind, an indicator defined in subsection 4.1,

appropriately and exits.

CHECK-FINAL-STEPSIZE(t, tend, h)

1 if 2lhl < !tend - ti

3. Numerical Algorithms 32

2 then if tend > t
3 then return lhl
4 else return -lhl
5 else if lhl < !tend - ti
6 then return {tend- t)/2

7 else return tend - t

The corresponding C++ code is on page 133.

Chapter 4

Numerical Software

In this chapter, we follow general software development process to describe HIDAETS

as we did in developing it. First we give an informal specification for HIDAETS, then

discuss design issues, and finally illustrate how to install and use it.

4.1 Informal specification

The requirement specification is organized as follows. Section 4.1.1 provides the

overall description of the system to make the requirements in section 4.1.2 easier to

understand. Section 4.1.2 contains all detailed requirements. Section 4.1.3 includes

supporting information important to a system's development. Section 4.1.4 lists all

possible changes in the software development life cycle.

4.1.1 General system description

This section gives a general description of the system.

System context

Figure 4.1 shows the sketch of the system context. A circle represents an external

entity outside the system and a rectangle is the system itself. Arrows represent the

data flows between the system and its environment.

33

4. Numerical Software

DAE system

Initial point,
integration interval

If fail, error
message

If succeed.
solution

Figure 4.1: Sketch of system context diagram.

34

This system is independent and self-contained. The main external interaction of

the system is the user interface. The responsibilities of the user and the system are

listed as follows.

• User responsibilities:

1. Prepare a set of input information including system equations, an initial

point, and the integration interval.

2. Assure there is not input data error caused by human oversight like typing

mistakes.

• System responsibilities:

1. Decide whether the problem is solvable. If not, output relevant error mes~

sage.

2. If the problem solvable, compute a numerical solution at the end point of

the integration interval.

User characteristics

The typical user would be from an Engineering area who may have no knowledge

about the algorithms and the programming languages of the software system. The

user must have the necessary prerequisite knowledge and skills to use the system.

The knowledge and skills include defining the DAE problem, providing the system

input following the instructions, and running script files.

System constraints

The system will employ Pryce's structural analysis and Taylor series methods. To

compute Taylor coefficients, we use automatic differentiation.

4. Numerical Software 35

In numerical methods for ODEs/DAEs, we normally want a solution at an end

point. In this work, we do not provide a continuous numerical solution.

The software system needs several numerical packages, such as AD, optimization,

and linear assignment problem. Table 4.1 lists these packages.

Name Description
ADOL-C AD package in C/C++
FAD BAD++ AD package in C/C++
IPOPT optimization package in Fortran with C interface
LAP linear assignment problem solver in C/C++
LAPACK subroutines for solving linear systems in Fortran

Table 4.1: Packages in HIDAETS

For these external packages, the user needs to download and install them following

their instructions.

As a numerical software package, considering efficient and usability, we usually

choose C/C++ or Fortran to implement it. Since ADOL-C, FADBAD++, and LAP

only have C/C++ interfaces, it is very difficult to call C/C++ function from Fortran.

Therefore, we implement the system in C/C++ language.

We want to use a free compiler which is easy to manage and close to ANSI C++,

thus we choose g++ 3.2.

The system is implemented and tested in a Unix environment and is expected to

be portable to other Unixes, Linux, and MacOS X.

4.1.2 System description

This section describes the system requirements in detail.

Functional requirements

• Problem description

A DAE initial value problem includes the following items.

1. System of equations

The problem is a DAE initial value problem in the form of (1.1).

4. Numerical Software 36

The number of equations must match the number of dependent variables

in the DAE system. The functions are assume to be real-valued.

This system is represented in a computer program using a finite number

of constants, variables, elementary operations (+, -, *, and /), differ

entiation operators, and smooth functions (sin, cos, exp, log, etc.). The

representation excludes nonsmooth functions, such as, branches, abs, and

mm.

2. Set of initial values

The initial values for the DAE system. Generally, this is a subset of XJ<;,o·

The values are in the floating point format.

3. Integration interval

[to, tend]· The values are in the floating point format. to is the starting

point of the integration interval, and tend is the end point of the integration

interval. Here, tend can be less than t0 , such as integrating the problem

from to= 0 to tend= -10.

• Goals statement

Basic. We want to solve numerically the DAE initial value problem described

above. If the system fails to solve the problem, it outputs the relative error

message. If it succeeds, it computes the solution at tend, and outputs relative

information as described in the output requirement.

Besides these, the system could take the user's optional input as specified below.

Advanced. Since the system needs some external packages, we also allow the

"expert" user, familiar with the particular algorithms and the C++ program

ming language to substitute a package with another one providing the same

functionality. The exchangeable packages are specified in section 4.1.4.

• Optional input

1. Tolerances

4. Numerical Software 37

Absolute and relative error tolerances, which indicate how accurately the

solution is to be computed. The values are in the floating point format.

Default values are 10-13 .

2. Order

This is Taylor series order. The values are in the integer format. Default

value is 20.

3. Indicator

On initial entry, it must be set to tillend, onestep, or jacobian. Its default

value is tillend. The user can re-enter the integration with Ind = tillend,

onestep, or Jacobian. Ind = Jsingular, conspoint, and smallstepsize indi

cate errors as shown below.

Ind DAE solver

tillend integrates from current t to tend

onestep takes a step and exits

jacobian computes E, c, d, J and exits

normal exit normal exit

Jsingular J is singular

conspoint J is nonsingular, fails to obtain a consistent point

smallstepsize stepsize is too small

4. Output parameters

The integration system output includes several levels, as listed below:

outpulnd DAE solver

solution outputs the solution at tend

stat solution + statistics information

process stat + integration process

offsets process + signature matrix and offsets

initpoint offsets + consistent initial point

scheme initpoint + solution scheme

• Printed output

Based on the system input, the output system has several levels.

4. Numerical Software 38

1. Returns

The system returns success or fail. If success, output information based

on the output parameters. If fail, output the failure reason.

2. Solution at tend

Solution values and derivative values of the variables in the system. In

practice, we output XJ5oo at tend· These values are in the floating point

format.

3. Statistics information

It includes

(a) number of steps

(b) number of rejected steps

(c) user CPU time

4. Signature matrix, degrees of freedom, and structural index

This prints the system signature matrix, offsets, degree of freedom, and

structural index.

5. Integration process

This prints the system integration process: current integration time and

the estimated local error.

6. Consistent initial point

This prints the consistent initial point generated by the system. In prac

tice, we output XJ5oo at to. These values ate in the floating point format.

7. Solution scheme

This part illustrates how to obtain a consistent initial point. It shows at

each stage, which functions are used and for which variables are solved.

Non-functional requirement

• Accuracy of the input data

The input data is given directly by the user of the system, assuming no human

error, there are no inp'..:t data error or measurement error. In other word, the

input data of the system are assumed to be accurate.

4. Numerical Software 39

• Tolerance of the solution

It is always hard to find a true solution for the DAE problem we solve. We

compare the solution with the reference solution generated by the system with

small tolerances (for example, 10-16), which is supposed correct. We can also

compare our reference solution with other reference solutions presented in the

literature or generated by other existing solver to assess the correctness of our

reference solution.

• Solution validation strategies

We compute the number of signature digits at the end point of the integration

interval for different tolerances. If the number of significant digits increases

with the tolerance's decreasing, the solution is assumed reliable.

• Look and feel requirements

The user's input interface is to define the problem by implementing relative

C++ functions almost in mathematical form. The output interface should be

straightforward enough to provide the information.

• Usability requirements

The system should be easy to learn and use, and it should take a considerable

amount of time for a user with the necessary background specified in subsection

4.1.1 to use the system to solve a problem.

• Performance requirements

The system is facing to solve high-index DAE problems. It can solve the prob

lems whose index is too high for existing solvers to handle. The system is also

expected to be competitive to existing solvers when the problems can be solved

by both and high accuracy (global error:::; 10-10) is demanded.

• Maintainability requirements

This system should be developed in a way that the efforts spent on maintaining

the system (including document and code) or upgrading the system would be

minimal. The release frequency of the system sh01 dd be less than once within

4. Numerical Software 40

one year. The time and effort for each upgrade should be less than 1/5 of the

time and effort for developing the original system.

• Portability requirements

The system should be easily ported to Mac OS, Linux, and Unix environment

with g++ 3.2 or later. It depends on the g++ compiler and some Unix system

functions (like time()), which are also available on Mac OS and Linux. Thus the

system takes same time and effort to be installed on these operating systems.

4.1.3 Other system issues

Open issues

Due to roundoff and truncation error, our computed solutions are not the mathe

matically correct ones. If an interval computation can be applied, we will be able to

assess the accuracy of the computed solution.

Waiting room

Due to the explicit nature of the Taylor series methods, the system is not efficient for

stiff DAE problems. New algorithms and implementation needs to be developed for

stiff problems.

The user can change algorithms in one part without influencing other parts. These

parts include

1. Computing signature matrix and offsets. The algorithms for computing signa

ture matrix from the evaluation of the DAE system and generating offsets from

the signature matrix.

2. Projecting a consistent solution. The algorithms for computing a consistent

point from an approximate one.

3. Computing TCs. The algorithms for computing Taylor coefficients to some

specified order by automatic differentiation.

4. Computing Jacobians. The algorithms for computing the related Jacobia11s

from the evaluation of the DAE system by automatic differentiation.

4. Numerical Software 41

5. Error estimation. The algorithms for estimating the local error per step.

6. Stepsize control. The algorithms for predicting an appropriate stepsize.

4.1.4 Likely changes

Numerical packages

The user can substitute any one of the packages in the system by his/her own same

functional packages without influencing others. These packages include

1. AD packages for computing TCs and Jacobians. If the package is a non-C++

based AD package, the interfaces for computing TCs and Jacobians must be

possible to be called by C++. If the package is a non-overloading based AD

package, it must take the function (in the computer program) used to generate

the computational graph in the form of (1.1).

2. Optimization packages for projecting solutions. The projection problem is for

k :::; 0, we solve the system

to compute xjk by standard least-square methods.

3. Linear assignment problem solver for computing an HVT.

4. Linear algebra packages for solving linear system.

Printed output

The system output may have the following changes:

1. The order of output items. We define the levels for the output system for current

version. It may need to change the order of the levels and contents in each level.

2. More output information. In the future, the system may need to output more

information.

4. Numerical Software 42

(a) Feedback to user's input. There may be human errors from the user, the

output system should response with relevant indicating information.

(b) Plots of dependent variables over the integration interval.

(c) Plots of the stepsize behavior. The user can investigate the stepsize be

havior, therefore, the stepsize control algorithms.

(d) Dynamic simulation of the problem. This will be useful in the real ap

plication. We can show the user dynamic simulation of the problem by

animation or other graph representation method.

4. Numerical Software 43

4.2 Design

In this section, we follow an object-oriented approach. First we decompose the system

into components. Then, for each component, we display class diagrams and give

detailed interfaces.

4.2.1 High-level design

This subsection describes the structure of HIDAETS. It consists of the following

components: DAEProblem, IntegrationParameters, SignatureMatrix, Offsets, Con

sistentinitialPoint, AD, ErrorEstimation, StepsizeSelection, and Projection. Figure

4.2 depicts the solver structure. We describe each part in turn.

In each interface description, we use the following form

Component Description

where the column with Component is the name of the component using this interface,

and the column with Description is the description how the component uses this

interface.

1. DAEProblem

This component obtains the definition of a DAE problem, which includes system

equations, initial point xrcs, to, and tend·

Interface: computeDAE, getlnitialPoint

(a) computeDAE

This interface provides the system equations of the DAE problem. It is

used by:

Component Description

SignatureMatrix It computes the signature matrix.

AD It uses system equations to generate compu-

tational graphs for co::-~1puting Taylor coeffi-

cients and Jacobians.

c. DAE
,...
I
I
I
I

c. Signature
M*rix

I
I
I
I
I
I
I
I
I

c. Offsets

g.lnitial
Point

"' \
\

\
\

I

Stepsize
Selection

c.Stepsize . ,
, I ',, I '
/t ', 1 \

" I ' I \ /1 ', I\
" I ', I \

,' I ', I \

" I ' I \ / I ,, I '
'·" I ' I \ OIY 1 0', I \

I ',, I \
c.Consistent.J g.Coeffs. '''{. \

Point 0 c. Jacobian c. TS ~ ~ '',,, \

proj~ct If.. Solution \ 0 '',, \
Solution I ~ \ c.Error ',, \

g.= get
c.= compute
TS =Taylor Series
coeffs. = coefficients

Integration
Parameters

I 11 I '''\ I I I I ,,

11 \ I I \ Estimate '',, \
I I I JL ', \

I I I \ ',,_~,~ / I 1 I ~
I I I ~------.....1.-'-'t---:-; . I

I

I
I
I
I
I

I
I

I
I

g.Parameters

1'
I
I
I
I
I
I
I
I
I

------------------------------------1

Figure 4.2: Structure of HIDAETS.

l:::l

ll::o.

z
= s
~
[
00
0
~

~
(D

ll::o.
ll::o.

4. Numerical Software

(b) getinitialPoint

This interface obtains the initial point from the user. It is used by:

Component

ConsistentinitialPoint

2. IntegrationParameters

Description

It first checks whether the initial point

is consistent; If not, it tries to find a

consistent one.

45

This component obtains integration parameters from the user. They include

absolute tolerance (atol), relative tolerance (rtol), tolerance for optimization

package (dtol1), order (Ord), indicator (Ind), and output control information

(outputind). More details are given in subsection 4.1.

Interface: getParameters

This interface provides the integration parameters. It is used by:

Component Description

AD It sets the order of Taylor series to Ord.

StepsizeSelection It uses atol, rtol, and Ord when selecting a stepsize

for next step.

Projection It uses dtol when projecting an initial point or

approximate TS solution.

3. SignatureMatrix

This component obtains the signature matrix from the definition of the DAE

system.

Interface: computeSignatureM atrix

This interface computes the system signature matrix. It is used by:

Component

Offsets

Description

It computes offsets based on the generated signature

matrix.

1 In H~DAETS, we integrate IPOPT as our nonlinear syst~m solver. When an error estimate
[WB04] becomes less than dtol, IPOPT succeeds and returns with solution.

4. Numerical Software 46

4. Offsets

This component obtains offsets c and d from the signature matrix of the DAE

system.

Interface: computeOffsets

This interface computes equation offsets and variable offsets. It is used by:

Component

Projection

Description

It uses offsets when projecting an initial point or TS

solution.

5. ConsistentinitialPoint

This component computes a consistent point based on the structural analysis.

It checks whether the initial point given by the user is consistent; if not, it tries

to find a consistent one.

Interface: computeConsistentPoint

This interface tries to find a consistent point. It is used by:

Component

AD

6. AD

Description

It uses the consistent initial point to compute Taylor

coefficients and Jacobians.

This component computes and provides Taylor coefficients, Taylor series solu

tion, and J acobians. It uses interfaces:

(a) computeDAE from DAEProblem;

(b) computeConsistentPoint from ConsistentinitialPoint;

(c) computeStepsize from StepsizeSelection;

(d) projectSolution from Projection;

(e) getParameters from InteuationParameters.

4. Numerical Software

Interface: getCoefficients, computeTSSolution, computeJacobian

(a) getCoefficients

This interface provides the Taylor coefficients. It is used by:

Component

Error Estimation

(b) computeJacobian

Description

It estimates error for the approximate TS so

lution.

This interface computes Jacobians. It is used by:

Qomponent

Projection

(c) computeTSSolution

Description

It uses Jacobian when projecting an initial point

or approximate solution.

47

This interface computes Taylor series solution based on Taylor coefficients

with a given stepsize and order. It is used by:

Component

Projection

7. Error Estimate

Description

It uses TS solution when projecting a Taylor series

solution.

This component estimates the error of an approximate TS solution.

Interface: computeError Estimate

This interface estimates error from the Taylor coefficients. It is used by:

Component Description

StepsizeSelection It decides next stepsize based on the estimated

error.

4. Numerical Software 48

8. StepsizeSelection

This component selects stepsize for the next integration step. It computes next

stepsize based on the estimated error and the tolerances.

Interface: computeStepsize

This interface computes next stepsize. It used by:

Component Description

AD It uses stepsize when computing Taylor series solution.

9. Projection

This component projects the initial point provided by the user or the approxi

mate solution computed by the AD component. It uses the interfaces:

(a) computeTSSolution from AD component;

(b) computeJacobian from AD component;

(c) computcOffsets from Offsets component;

(d) getParameters from IntegrationParameters component.

After it obtains corresponding data, it uses an optimization package (IPOPT)

to project an initial point or solution.

Interface: projectSolution

This interface projects an initial point or the computed TS solution.

Component Description

AD It computes Taylor coefficients and Jacobians

using the projected consistent solution.

ConsistentinitialPoint It projects the initial point provided by the

user to a consistent one.

4. Numerical Software 49

4.2.2 Low-level design

This subsection describes the class diagrams in HIDAETS. We have the following

classes: DAEProblem, Parameters2 , SignatureMatrix, Offsets, InitialPoint, AD, Er

rorEst, Stepsize, Projection, and DAESolver.' For each class, we present the corre

sponding class diagram and a description.

1. DAEProblem

An AD package based on operator overloading usually requests the parameters

of compDAE in its own defined type, and the Sigma class also demands the

variables of the evaluation function in Sigma type. We could employ templates

to implement it as follows:

template < typename T >
class DAEProblem
{

}

public:

virtual void compDAE(T *f, T *X, T &t) = 0;

II ...

private:

II ...

template < typename T >
class DAEProblem_1 : public DAEProblem < T >
{

}

public:

void compDAE(T *f, T *X, T &t);

II ...

private:

I I ...

The advantage is that the user can declare his/her own variables to set problem

parameters. For example, the user can define the single pendulum problem as

2 Usually, text ;;hat is related to programs is typed in typewriter font. We use normal font, as it
is clear from the context.

4. Numerical Software

template < typename T >
class Pendulum : public DAEProblem < T >
{

}

private:
double g, L;
II ...

public:

void setParam(double *param)
{

g = param[O];
L = param[1];

}

void compDAE(T *f, T *X, T &t)
{

}

II

f(O] = diff(Y[0],2) + Y[O]*Y(2];
f(1] = diff(Y[1],2) + Y[1]*Y[2] - g;
f(2] = Y[O]*Y(O] + Y(1]*Y(1] - L*L;

50

Then, in the main function, the user could change g, Land integrate the new

problem without changing the definition of it.

However, the interfaces become quite complicated. First, to implement the

class Pendulum, the user needs to know about class inheritance, templates,

and overloading. Second, in the main function, we have to create more than

one Pendulum objects with different types. That means when we change some

values in the DAE problem, we have to do the same thing on all the Pendulum

objects, which also complicates usage. For example, to use FADBAD++ and

set problem parameters, we would have the following code in the main function.

int main()
{

II ...

4. Numerical Software 51

DAEProblem <Sigma> *ptrPendl =new Pendulum <Sigma>();
DAEProblem < F<double> > *ptrPend2 =new Pendulum< F<double> >();
DAEProblem < T< F<double> > > *ptrPend3 =new Pendulum< T< F<double> > >();

}

double param[2];

param[O] = 9.8; param[l] = 10;

ptrPendl->setParam(param) ;
ptrPend2->setParam(param);
ptrPend3->setParam(param) ;

II ...

The above main function seems complicated. To simplify it, in HIDAETS we

define a DAE problem by a template function. The user needs only to provide

such function as shown in subsection 4.3.2. To enable the user to change problem

parameters, we add one parameter, a void pointer to the problem parameters,

in the template function. For the single pendulum problem, we define it as

below.

template < typename T >
void Pendulum(T *f, T *x, T &t, void *DAEParam)
{

}

double *d = (double *) DAEParam;

g = d[O];
L = d[l];

f[O] = diff(Y[O] ,2) + Y[O]*Y[2];
f[l] = diff(Y[1),2) + Y[l)*Y[2] - g;

f[2] = Y[O]*Y[O] + Y[l)*Y[l] - L*L;

Because there are many relations between DAEProblem and other classes, we

need a class diagram consisting of necessary methods to represent this compo

nent and illustrate associated relations. Then, we could present the class dia

grams by UML easily and demonstrate the relations among components clearly.

4. Numerical Software 52

2. Parameters

This class provides functions for setting and obtaining parameters such as atol,

rtol, Ord, Ind, and outputlnd. For more details, refer to subsection 4.1; see also

Figure 4.3 and Table 4.2.

Remark. All methods in Parameters are inline functions.

3. SignatureMatrix

Parameters

setAbsTol()
getAbsTol()
setReiTol()
getReiTol()
setDTol{)
getDTol()
setOrder()
getOrder()
setlnd()
getlnd()
setOutput()
getOutput()

Figure 4.3: Class diagram: Parameters.

The SignatureMatrix class obtains the signature matrix from system equations.

It uses compDAFJ method to obtain system equations as illustrated in Figure

4.4. Table 4.3 demonstrates its document in detail.

4. Offsets

Figure 4.4 shows the Offsets class diagram. The Offsets class computes problem

offsets based on the computed signature matrix. There are four classes in this

part: Offsets, LAPSolver, LAP. Offsets class inherits from the SignatureMatrix

class, and has an LAPSolver class. LAP denotes class that implements interfaces

defined in the LAPSolver class; see Tables 4.4, 4.5, and 4.6.

3This compDAE refers to the function describing the DAE, not a method of non-existing class.

4. Numerical Software 53

Parameters
Methods Type Description

setAbsTol void Sets absolute tolerance.
getAbsTol double Obtains absolute tolerance.
setRelTol void Sets relative tolerance.
getRelTol double Obtains relative tolerance.
setDTol void Sets tolerance for the optimization

packages.
getDTol double Obtains tolerance for the optimization

packages.
set Order void Sets order value.
get Order unsigned integer Obtains order value.

setlnd void Sets Ind value.
getlnd unsigned integer Obtains· Ind value.

setOutput void Sets output information value.
getOutput unsigned integer Obtains output information value.

Table 4.2: Methods of the Parameters class.

SignatureMatrix

I Methods Type Description

I compSignatureMatrix void Computes the signature
system equations.

matrix from ··1

Table 4.3: Method of the SignatureMatrix class.

4. Numerical Software 54

SignatureMatrix DAEProblem

----------;..
compSignatureMatrix() compDAE()

~

Offsets

compOffsets() LAPSovler
,...,

getCVector()
getDVector() compHVT()
getCi()

~ getDj()

LAP

compHVTO

Figure 4.4: Class diagram: SignatureMatrix and Offsets.

4. Numerical Software 55

From Figure 4.4, the user can use his/her own linear assignment problem solver

by inheriting the LAPSolver class and implementing it.

Methods

compOffsets

getCVector
getDVector

getCi
getDj

Methods

compHVT

Methods

compHVT

5. InitialPoint

Offsets
Type Description

void Computes the equation offsets and variable offsets
from the HVT of signature matrix.

int * Obtains equation offsets.
int * Obtains variable offsets.
int Returns equation offset for a given index.
int Returns variable offset for a given index.

Table 4.4: Methods of the Offsets class.

Type

void

LAP Solver

I Description

I
Virtual function to compute the HVT from the sig
nature matrix of DAE system.

Table 4.5: Method of the LAPSolver class.

LAP

Description

Inherits from LAPSolver class and provides an im
plementation.

Table 4.6: Method of the LAP class.

Figure 4.5 illustrates the class diagram of InitialPoint. It uses interfaces ge

tlnitialPoint from DAEProblem and projectSolution from Projection. It first

decides whether the initial point provided by the user is consistent; if not, it

tries to compute a consistent one. Table 4. 7 gives some details.

6. AD

4. Numerical Software

Methods
compConsPoint

getConsPoint

Projection

Initial Point
~=====r----

-----? projectSolution()

compConsPoint()
getConsPoint() ~~~~~~~~~~r---D_A_E_P_r_ob-le-m--,

getlnitiaiPoint()

Figure 4.5: Class diagram: InitialPoint.

InitialPoint

Type Description
void Decides whether the initial point is

consistent; if not, it computes a con-
sistent point.

InitialPoint * Obtains a consistent initial point,
computed by compConsPoint.

Table 4.7: Methods of the InitialPoint class.

56

4. Numerical Software 57

The AD class is a key class in HIDAETS. It computes Taylor coefficients, Jaco

bians, and Taylor series solution. This part includes three classes: AD, ADOL

C, and FADBAD++. AD class defines interfaces for automatic differentiation

packages. It uses interfaces provided by other classes as shown on the right

side of Figure 4.6. Currently HIDAETS integrates FAD BAD++ and ADOL-C.

Their class diagrams are shown in Figure 4.6. Tables 4.8 and 4.9 list the meth

ods in these classes with brief descriptions. Tables 4.10, 4.11, 4.12, 4.13, 4.14,

4.15, 4.16 show the methods in class AD.

From Figure 4.6, the user can use his/her own AD packages by inheriting the

AD class and implementing it.

AD
Methods Type Description

compJacobian void Virtual function to compute the Jacobian
matrix for DAE system.

getJacobian void Virtual function to obtain the computed
Jacobian matrix.

compConstraints void Virtual function to compute constraints
based on stage.

getConstraints double Virtual function to obtain the specified con-
straint value.

compCoefficients void Virtual function to compute the Taylor co-
efficients for DAE system.

get Coefficients double Virtual function to obtain the specified
Taylor coefficient.

compTSSolution void Virtual function to compute Taylor series
solution at current time.

getTSSolution void Virtual function to obtain Taylor series so-
lution at current time.

getNormX double Virtual function to obtain the norm of XJ<o·

Table 4.8: Methods of the AD class.

7. ErrorEst

The ErrorEst class estimates the error for the current step. It uses getCoeffi

cients from AD class to obtain needed Taylor coefficients. Figure 4. 7 and Table

4. Numerical Software

AD DAEProblem

compJacobian()
getJacobian()
compConstraints()
getConstraints()
compCoeffiCients()
getCoefficients()
comp TSSolution()
getTSSolution()
getNormX()

-------------7' compDAE()

ADOL-C

ADOL-C()
compJacobian()
getJacobian()
compConstraints()
getConstraints()
compCoefficients()
getCoefficients()
comp TSSolution()
getTSSolution()
getNormX()

-------------------------------~

FADBAD++()
compJacobian()
getJacobian()
compConstraints()
getConstraints()
compCoefficients()
getCoefficients()
comp TSSolution()
getTSSolution()
getNormX()

Figure 4.6: Class diagram: AD.

·~

.. ~

...

Offsets

getCVector()
getDVector()

lnitiaiPoint

getConsPoint()

Projection

project Solution()

Stepsize

Parameters

getOrder()

58

4. Numerical Software 59

ADOL-C and FADBAD++
Methods I Type I Description

ADOL-C /FAD BAD++ Constructor to generate the compu-
tational graph for Taylor coefficients
and Jacobians.

compJacobian void
getJacobian void

compConstraints void
get Constraints double Inherits from AD class and provide

compCoefficients void an implementation.
get Coefficients double

compTSSolution void
getTSSolution void

getNormX double

Table 4.9: Methods of classes ADOL-C and FADBAD++.

compJ acobian(stage)

Parameters Type I Description I
stage int I stage number.

Table 4.10: Description of the compJacobian method.

getJacobian(stage, m, n, Jac)

Parameters Type I Description

stage int Stage number.
m int & Number of rows in Jacobian.
n int & Number of columns in Jacobian.

Jac double** Pointer to a Jacobian.

Table 4.11: Description of the getJacobian method.

compConstraints(stage)
Parameters Type I Description

stage int I Stage number.

Table 4.12: Description of the compConstraints method.

4. Numerical Software 60

getConstraints(stage, c)
Parameters Type I Description

stage int Stage number.
c double* Pointer to values of the constraints.

Table 4.13: Description of the getConstraints method.

compCoefficients(p)
Parameters Type Description

p int Taylor series order.

Table 4.14: Description of the compCoefficients method.

getCoefficients(j, k)

Parameters Type Description

I j int I index of variable.

I k int I order of Taylor coefficients.

Table 4.15: Description of the getCoefficients method.

I compTSSolution(p, h)

I Parameters I Type I Description

I p I int I Taylor series order.

I h I double I stepsize.

Table 4.16: Description of the compTSSolution method.

4. Numerical Software 61

4.17 show its class diagram and documentation.

ErrorEst AD

1===========+--------:::;~========1
compErrorEstimate() getCoefficients()

Figure 4. 7: Class diagram: Error Est.

Error Est

Methods Type Description

compError Estimate double Estimates error for current TS solution.

Table 4.17: Method of the ErrorEst class.

8. Stepsize

The Stepsize class forms the tolerance and select stepsize for next integration

step. It uses compErrorEstimate from class ErrorEst, getNormXfrom class AD,

and obtains needed parameters from Parameters class. See Figure 4.8 and Table

4.18.

Stepsize

Methods Type Description

compStepsize double Computes stepsize for next step.
compFinalStep double Computes final stepsize.
compTolerance double Computes tolerance for the DAE system.

Table 4.18: Methods of the Stepsize class.

9. Projection

The Projection class tries to compute a consistent initial point or Taylor series

solution. This part includes four classes: Projection, OptimizationPackage,

and IPOPT. Projection uses interfaces from classes AD, Offsets, Parameters as

shown on the right side of Figure 4.9. It also aggregates an OptimizationPackage

class, which defines virtual interfaces for optimization package. IPOPT is class

4. Numerical Software

compStepsize()
compFinaiStep()
compTolerance()

AD

_ getNormX()

------------;?
......

......

compErrorEstimate()

Parameters ~

1=========1
getHmin()
getRTol()
getATol()

Figure 4.8: Class diagram: Stepsize.

62

to implement these functions. Their class diagrams are shown in Figure 4.9.

Tables 4.19, 4.20, and 4.21 describe these classes.

From Figure 4.9, the user can use his/her own optimization package by inher

iting the OptimizationPackage class and implementing it.

Projection

Methods Type Description

projectSolution bool Projects an initial point or TS solution. If it
obtains a consistent one, returns true. If it
fails, returns false.

Table 4.19: Method of the Projection class.

10. DAESolver

The DAESolver class aggregates all the classes above to provide an integration

interface for the user. Figure 4.10 illustrates its class diagram. See also Table

4.22.

4. Numerical Software

Projection

projectSolution()
1'-·

0 ',
............

Optimization Package

compOptSolution()

6

IPOPT

compOptSolution()

......
... ...

......
......

~

.........
............ ~

AD

getJacobian()
getConstaints()
getTSSolution()

Offsets

Parameters

getDTol()

Figure 4.9: Class diagram: Projection.

OptimizationPackage

Methods Type Description

63

compOptSolution void Virtual method to compute a solution for an I
optimization problem.

Table 4.20: Method of the OptimizationPackage class.

4. Numerical Software

IPOPT
Methods Description

compOptSolution Inherits from OptimizationPackage class and
provides an implementation.

Table 4.21: Method of the IPOPT class.

Parameters

DAEProblem

DAESolver

Offsets

AD

Projection

Stepsize

Figure 4.10: Class diagram: DAESolver.

DAESolver

Methods Type Description

integrate void Integrates DAE problem depending on Ind.

Table 4.22: Method of the DAESolver class.

64

4. Numerical Software 65

4.3 Installation and usage

This section describes how to install and use HIDAETS on operating systems (Linux,

Mac OS X, and Unix) with GNU g++. We have used version after 3.2.

HIDAETS is developed on Sun Solaris 9 environment with C/C++ mixed with

packages in FORTRAN, which are BLAS, LAPACK, and IPOPT. The source code of

HIDAETS includes 4845 lines. We provide ten DAE and ODE examples. HIDAETS

has been successfully tested on Mac OS X, Linux, and Solaris.

4.3.1 Installation

Essentially, we have to do the following steps to install HIDAETS:

1. Download HIDAETS;

2. Download third party components;

3. Compile third party components and HIDAETS.

Content of the package

HIDAETS is distributed as a gzipped tar file HIDAETS.tar.gz, which can be

downloaded from www. cas .mcmaster. ca/"'hidaets. Online documentation is also

available at this Web site. To e>.."tract the files, type

gunzip < HIDAETS.tar.gz I tar xvf -

The directory structure of HIDAETS is shown in Figure 4.11. A top-level makefile

in the HIDAETS directory is provided to perform the entire installation procedure.

There are also separate makefiles inside NUMLIB, SRC, and EXAMPLES directories.

The following third party software components are required for building the HI

DAETS package. The user needs to download the source code for those components

as described below.

1. ADOL-C. The user may download adolc_l.8.7.tar.gz freely from anonymous ftp

atftp://ftp.math.tu-dresden.de/pub/ADOLC/ADOLC_1.8andunpackitinto

Installation
document

DOC

Document for
source code

HIDAETS routines &
auxiliary routines

AD package

DAE&ODE
examples

AD package

Figure 4.il: Organization of HIDAETS.

Optimization
package

NUMLIB

Linear assignment
problem solver

~

:z
= ~
'"I ...
(')
I» -00
0
:;:;?

~

Ol
Ol

4. Numerical Software 67

the NUMLIB directory. Then, a directory named ADOLC18 is created in the

NUMLIB directory. For more details, refer to http: I /www. math. tu -dresden.

de/wir/project/adolc/.

2. FADBAD++. The user may download it from http://www.imm.dtu.dk/

nag/proj....km/fadbad/ and unpack it into the NUMLIB directory. Then, a

directory named FADBAD++ is created in the NUMLIB directory. For more

details, refer to http: I /www. imm.dtu.dk/nag/proj...km/fadbad/.

3. IPOPT. The user may download it from the COIN-OR web page at http:

I /www. coin-or. org. After that, the user needs to unpack it into the NUMLIB

directory. Then, a directory named COIN is created in the NUMLIB directory.

IPOPT needs more third party components as described in its documentation.

For more details, refer to http://www. coin-or. org/Ipopt/index.html.

4. LAP. The user may download it from http: I /www. magiclogic. com/

assignment.html and unpack all files into the NUMLIB/LAP directory.

Alternatively, the user may have these third party components in other direc

tories. Then he/she needs to specify the path by changing relative variables in

Makcfilc.inc in the HIDAETS directory. llclow is the Makefile.inc with IPOPT at

/usr/local/COIN/Ipopt.

HIDAETS make include file
April 25, 2005

PREFIX = $(PWD)

ADOLC = $(PREFIX)/NUMLIB/ADOLC18
FADBAD = $(PREFIX)/NUMLIB/FADBAD++
IPOPT = /usr/local/COIN/Ipopt
LAP = $(PREFIX)/NUMLIB/LAP

AD = $(ADOLC)/SRC
IPOPTH = $(IPOPT)/include
IPOPTL = $(IPOPT)/lib

4. Numerical Software 68

CC = gee

cxx = g++

Installing HIDAETS in systems with g++

Once the user has all the necessary third party components in place, the user should

run the top.:..lcvcl makcfilc by typing

make all

We provide other options for installation and cleaning. Table 4.23 lists all of them.

Argument Description
all Installs source code, third party components, and examples
install Installs source code and third party components
installsrc Installs source code
clean Clean all object files
cleansrc Clean all object files in SRC
cleannumlib Clean all object files in NUMLIB

Table 4.23: Options for installation.

After installation, the user may either test HIDAETS by the examples in the

EXAMPLES directory, or solve his/her own problems.

4.3.2 Usage

Basic usage

The user must provide system equations, dimension of the DAE system, to, tend, and

x1cs· The user may set (optionally) order, Ind, tolerances, and output parameters.

Below we illustrate how to use HIDAETS on the single pendulum example.

1. Set system equations. The user has to provide the system equations in a

template function. Below is the definition for the single pendulum problem in

pendulum. h.

template <typename T>

4. Numerical Software

void Pendulum(int n, T *f, T *Y, T t t, void *param)
{

}

double g = 1.0;
double L = 1.0;

f[O] = diff(Y[0],2) + Y[O]•Y[2];

f[1] = diff(Y[1],2) + Y[1]*Y[2]- g;

f[2] = Y[O]•Y[O] + Y[1]*Y[1] - L•L;

69

2. Set dimension of DAE system, t 0, and tend· The user needs to give dimen

sion of DAE problem, t 0 , and tend at the beginning of the implementation file.

Below is the main function for the single pendulum problem in pendulum.cc.

1 int main()

2 {

3 int n = 3;
4 double tO = 0, tend = 100.0;

5

6 DAESolver *ptrDAESolver =new DAESolver(n, Pendulum, Pendulum, Pendulum);

7

8 InitPoint x(n, ptrDAESolver->getDVector());
9 setinitialValues(x);

10
11 ptrDAESolver->integrate(tO, tend, x);

12
13 delete ptrDAESolver;

14

15 return 0;
16 }

Line 3 sets the dimension, and line 4 sets t 0 and tend· Line 6 declares an object of

DAESolver4• Lines 8 to 9 set initial point. Line 11 integrates the DAE problem.

For basic usage, the user usually does not need to change anything between line

6 and line 16.
4 In line 6, the user needs to give tl•e Pendulum function three times to the constructor of DAE

Solvcr. since FADBAD++ and the Sigma class require different types.

4. Numerical Software 70

3. Set an initial point. The user can set an initial point in a function in the

implementation file. Below is the function for the single pendulum problem in

the pendulum.cc.

void setinitialValues(int n, InitPoint &x)
{

}

//initial values

x(O, 0) = 1; x(O, 1) = 0;

x(1, 0) = 0; x(1, 1) = 1;

Alteratively, the user can set it directly in the main function by

x(O, 0) = 1;
x(O, 1) = 0;

x(1, 0) = 0;

x(1, 1) = 1;

instead of line 9 in the above main function and the setlnitialValues function.

4. Set order, Ind, tolerances, output parameters (optional). The default

values of these variables are

order - 20 Ind - till end

atol - 10-13 outputlnd - initpoint

rtol - 10-13 filename - "result"

dtol = 0.5 · atol digits = 16

Here, outputlnd is the output control indicator, filename is the file name to

output the integration information, and digits is the number of output digits.

The integration information at t is stored in the form

column 1 2 3 n+1 n+2

Xn h

That is in column 1, we store the integration timet; from column 2 ton+ 1,

we store the solution at t; in column n + 2, we store the stepsize taken at t.

4. Numerical Software 71

We could call the corresponding member functions of the Parameters class to set

these parameters. Below is an example of how we set order, absolute tolerance,

and relative tolerance in pendulum.cc.

1 int main()
2 {

3

4 int n = 3;

5 double tO = 0, tend = 100.0;

6

7 Parameters *parameters= new Parameters();
8 parameters->setOrder(30);

9 parameters->setATol(le-10);
10 parameters->setRTol(1e-11);

11

12 DAESolver *ptrDAESolver = new DAESolver(n, Pendulum, Pendulum,
13 Pendulum, parameters);

14

15 InitPoint x(n, ptrDAESolver->getDVector());

16 setinitialValues(x);

17

18 ptrDAESolver->integrate(tO, tend, x);

19

20 delete ptrDAESolver;
21 delete par.ameters;

22
23 return 0;

24 }

Lines 7 to 10 declare a new object of Parameters and set corresponding values.

Lines 12 to 13 create an object of DAESolver and pass the object of Parameters

to it. Line 21 deallocates the Parameters object.

Advanced usage

1. Change problem parameters. The user can change the problem parameters

in the system equations, and he/she may integrate the changed problem. To do

so, the user needs to change the definition of system equations and some lines in

the main function. Below is an example of using the single pendulum problem.

4. Numerical Software 72

1 template <typename T>

2 void Pendulum(int n, T *f, T *Y, T &: t, void *param)

3 {

4 double *d = (double*) param;

5 double g = d[O];

6 double L = d[1];

7

8 f [0] = diff(Y[O] ,2) + Y[O]*Y[2];

9 f [1] = diff(Y[1] ,2) + Y[1]*Y[2] - g;
10 f[2] = Y[O]*Y[O] + Y[1]*Y[1] - L*L;

11 }

Lines 4 to 6 obtain the user defined parameters. The user must ensure that the

problem parameters are set and retrieved correctly.

1 int main()
2 {

3

4 int n = 3;
5 double tO = 0, tend = 100.0;

6

7 Parameters *ptrParameters =new Parameters();

8 DAESolver *PtrDAESolver = new DAESolver(n, Pendulum, Pendulum,
9 Pendulum, ptrParameters);

10
11 InitPoint x(n, ptrDAESolver->getDVector());

12 setinitialValues(x);

13
14 double param[2];

15 param[O] = 1; param[1] = 1;
16 ptrDAESolver->integrate(tO, tend, x, param);

17

18 param[O] = 9.8; param[1] = 10;
19 ptrParameters->setind(tillend);

20 ptrDAESolver->integrate(tO, tend, x, param);

21
22 delete ptrDAESolver;
23 delete ptrParameters;

24

4. Numerical Software

25 return 0;
26 }

73

Lines 14 to 15 define the problem parameters and set values. Line 16 integrates

the problem with specified parameters. Line 18 changes the problem· parame

ters, and Line 19 sets Ind to tell the solver that the problem parameters have

been changed. Line 20 integrates the problem with new parameters.

2. Set method classes. For a more advanced usage, the user can implement

his/her own classes, following the description in section 4.2. After that, the

user needs to recompile the relevant source code, create objects of classes in the

main function, and set as parameters in the constructor function of DAESolver

when creating a new DAESolver class. Below is the main function for a new

AD class ADOL-C.

1 int main()

2 {

3

4 int n = 3;
5 double tO = 0, tend = 100.0;

6

7 LAPSolver_1 lapSolver;
8 Offsets offsets(n);

9 offsets.compSignatureMatrix(Pendulum);

10 offsets.compOffsets(lapSolver);

11
12 Parameters *Parameters= new Parameters();
13 AD *adPackage =new ADOL_C(n, parameters->getOrder(), Pendulum, offsets);

14 OptPackage *opt_package =new OptPackage_Ipopt();
15 Projection *projection = new Projection(offsets, adPackage,
16 parameters, opt_package);

17 ErrorEst *ptrErrorEst =new ErrorEst(n, &offsets);

18 StepSize *ptrStepSize =new StepSize();

19

20 DAESolver *ptrDAESolver = new DAESolver(&offsets, parameters,
21 adPackage, projection,
22 ptrErrorEst, ptrStepSize);

23

4. Numerical Software 74

24 InitPoint x(n, ptrDAESolver->getDVector()) ;

25 setinitialValues(n, x);
26

27 ptrDAESolver->integrate(tO, tend, x);

28

29 delete ptrDAESolver;

30

31 delete ptrStepSize;

32 delete ptrErrorEst;

33 delete opt_package;

34 delete projection;
35 delete adPackage;

36 delete parameters;
37

38 return 0;

39 }

Lines 7 to 10 create new objects of class LAPSolver and Offsets to compute

the signature matrix and offsets. Lines 12 to 18 declare new objects of class

Parameters, AD, OptPackage, Projection, ErrorEst, and Stepsize, where line 13

creates an object of class ADOL_C. Lines 20 to 22 pass these objects to object

of DAESolver. Lines 29 to 36 deallocate these objects.

Screen output

Below is the screen output of HIDAETS for the single pendulum problem with out

putlnd = initpoint. The user can set the output with reference to subsection 4.1.

SIGNATURE MATRIX & OFFSETS:

0 1 2 lc_i

1------------------
Ol 2

11 2* o I o
21 0* o I 2

1------------------
d_j I 2 2 o

4. Numerical Software

INITIAL POINT

x(O,O) = 1.0000000000000000e+OO

x(0,1) = O.OOOOOOOOOOOOOOOOe+OO

x(0,2) = -1.0000000000000000e+OO

x(1,0)

x(1,1)

x(1 ,2)

x(2,0)

O.OOOOOOOOOOOOOOOOe+OO

1.0000000000000000e+OO

1.0000000000000000e+OO

1.0000000000000000e+OO

INTEGRATION PROCESS

Integrated at

1.0000e+02

Local Error

1.5004e-11

SOLUTION AT t = 100.000000

x(O,O) = -4.5766268833405888e-01

x(0,1)

x(0,2)

1.4820029313357552e+OO

1.6784219355066259e+OO

x(1,0) = 8.8912589868201786e-01

x(1,1) 7.6283622676985696e-01

x(1,2) = -2.2607604897991043e+OO

x(2,0) = 3.6673776960412945e+OO

STATS INFO

CPU time (sec) 1.750

CPU time/step 0.007

Steps•........... 246
accepted 246 (100.0%)

rejected•. O (0.0%)

75

Chapter 5

Numerical Results

We have tested HIDAETS on more than ten DAE and ODE problems including single

pendulum [AP98], double pendula [Pry98], car axis problem [M103], two-link robotic

arm [Pry98], transistor amplifier [M103], modified1 car axis problem [M103], chemical

Akzo Nobel problem [MI03], modified2 chemical Akzo Nobel problem [M103], and

Van der Pol problem [MI03]. In this chapter, we give numerical results for the first

five high-index DAE problems in detail.

5.1 Format of the problem descriptions

For each problem, we provide

1. general information,

2. mathematical description, and

3. numerical results.

In 3., we present the following information.

1. Reference solution at the end of the integration interval. The values

of the components of a reference solution at the end of the integration interval

1We modify the car axis problem in (.MI03] to a DAE consisting 4 differential and 2 algebraic
equations.

2We modify the chemical Akzo Nobel problem in (MI03] to a DAE consisting 5 differential and
1 algebraic equation.

76

5. Numerical Results 77

are listed. If possible, we compare a solution generated by HIDAETS with that

presented in the literature, to assess the accuracy of our solution.

2. Behavior of the numerical solution. Plots of (some of) the solution com

ponents over the integration interval or part of it are presented.

3. Run characteristics. The experiments are done on Sun Ultra 5/10, Ultra

SPARC-Ili 360MHZ, 512MB memory, Solaris 9. We use gee 3.2 with optimiza

tion flag -02. The following characteristics are reported:

• tol

We set absolute error tolerance equal to relative error tolerance.

• steps

Total number of steps taken by the solver.

• CPU time (sec)

The sum of user and system time in seconds taken by HIDAETS.

• CPU time per step

Average CPU time per step.

4. Work-precision diagram. We define significant correct digits (sen) by

SCD := -log10 (1l relative error at the end of integration interval lloo)·

For HIDAETS, we plot CPU time against seD.

5. Error versus tolerance. For each problem, we estimate the relative error

of the solution components, and therefore sen, and plot SCD against its input

tolerance.

6. Stepsize. We plot the stepsize from t0 to tend to illustrate the stepsize behavior.

7. CPU time versus order. We compute the CPU time with different orders,

different tolerances, and for each tolerance, we plot CPU time against order.

With the CPU time versus order diagram, we could decide which order may be

optimal for the tested DAE problem.

5. Numerical Results 78

5.2 Single pendulum

5.2.1 General information

The problem is a nonstiff DAE of index 3, consisting of 2 differential and 1 algebraic

equations.

5.2.2 Mathematical description of the problem

The problem is of the form

0 - x" + x>.,
0 = y'' + y>..- g,

0 = x2 + lf- L2.

Here L is the length of the pendulum, g is gravity, both of which are constants;

we take L = 1, g = 1. x, y, and>.. are the dependent variables.

We integrate this problem from t0 = 0 to tend = 100 with initial conditions

5.2.3 Numerical results

Xo = 1, X~= 0;

Yo= 0, y~ = 1.

For this problem, we use order = 20 except for the CPU time versus order diagram.

Since IPOPT can reach the desired tolerance dtol = w-14 as its best, we perform all

tests with tol ~ w- 14 .

Table 5.1 presents the reference solution at the end of the integration interval.

The reference solution is computed with atol = rtol = w-16 and dtol = w-14 for

IPOPT on the described setting before.

X -4.5766268835131380 · 10 .1

y 8.8912589867298431 . w-1

>.. 3.6673776960190421

Table 5.1: Reference solution for the pendulum problem.

5. Numerical Results
79

1

0.8

0.6 0.8

0.4 0.6

0.2 0.4
>< 0 >. 0.2

-0.2

-0.4 0

-0.6 -0.2

-0.8 -0.4
-1

-0.6 0 20 40 60 80 100 0 20 40 60 80 100
t

t

4

3.5

2.5

2 ...
1.5

1

0.5

0

-0.5
0 20 40 60 80 100

t

Figure 5.1: Plots of x, y, and A versus time for the pendulum problem.

5. Numerical Results 80

Figure 5.1 shows the behavior of x, y, >.over the integration interval.

Table 5.2 presents the run characteristics. We use atol = rtol = 10-(2m+l), m =

2, ... , 6 and dtol = 0.5 · atol for IPOPT. The columns with ADOL-C and FADBAD

contain timing results produced with ADOL-C and FADBAD++, respectively. In the

run characteristics table, HIDAETS takes the same number of steps with ADOL-C

and FADBAD++.

tol steps CPU time (sec) CPU time per step
ADOL-C FAD BAD ADOL-C FAD BAD

10 ·:> 123 0.73 0.69 0.006 0.006
10-7 155 1.10 1.13 0.007 0.007
10-9 196 1.32 1.33 0.007 0.007
10-u 246 1.51 1.50 0.006 0.006
10-13 310 1.76 1.89 0.006 0.006

Table 5.2: Run characteristics for the pendulum problem.

Figure 5.2 shows the work-precision diagrams. We use atol = 10-m, m -

5, ... , 14, rtol = atol, and

{

0.5 · atol,
dtol =

10-14,

m = 5, ... ,13,
{5.1)

m=14.

Figure 5.3 illustrates error against different tolerances which are the same as the

tolerances in the work precision diagram.

Figure 5.4 exhibits stepsize behavior over the integration interval. One of the

plots is with tol = 10-7, the other is with tol = 10-13 .

Figure 5.5 displays the CPU time against order with different tolerances. We use

FADBAD++ as the AD package and the tolerances are the same as the ones used

in the run characteristics table. We integrate the problem to tend = 300. From the

figure, we can conclude that for the single pendulum problem, order ~ 30 is optimal

for different tolerances.

5. Numerical Results 81

2.2

2

1.8
u
q)

1.6 IJl

ID e
·ri

1.4
.jJ

p 1.2
p.,
u

0.8

0.6
2 3 4 5 6 7 8 9 10 11 12

SCD

Figure 5.2: Work-precision diagram for the pendulum problem.

12
ADOL- C ---e--

11

10

9

8
0
u
Cll

6

3

6 7 8 9 10 11 12 13 14

-log10 (tol)

Figure 5.3: Error versus tolerance for the pendulum problem.

5. Numerical Results

0.9 r-~~--~-r--~~~--T--r~

0.85

0.8

~ o. 75
.....
~ 0.7

" ~ 0.65

0.6

0.55

0.5 L-~~--~~--~~~--~~~
0 10 20 30 40 50 60 70 80 90 100

t

82

tol=l0- 13

" -~ 0.35 ..
! 0.3 ..

0.25

0.2L-~~--~~--~~~--~~~

0 10 20 30 40 50 60 70 80 90 100

t

Figure 5.4: Stepsize versus time with tolerances w-7 and w-13 •

7

~ 6
{ll

~ 5
·rl
-1-l

15: 4
{)

2 L---~--~~--~--~----~--~--~~~
15 20 25 30 35

order
40 45 50 55

Figure 5-5: CPU time versus order with different tolerances.

5. Numerical Results 83

5.3 Double pendula

5.3.1 General information

The problem is a nonstiff DAE of index 5, consisting of 4 differential and 2 algebraic

equations.

5.3.2 Mathematical description of the problem

The problem is of the form

0 = x" + x.\,

0 = y" + y.\ - g,

0 = x2 + y2- L2,

0 = U
11

+UK,

0 = V
11 + VK- g,

0 = u2 + v2
- (L + c.A) 2

.

Here we take L = 1, g = 1, and c = 0.1; x, y, ..\, u, v, and K are the dependent

variables.

We integrate this problem from t 0 = 0 to tend = 100 with initial conditions

Xo = 1, X~= 0;

Yo= 0, y~ = 1;

5.3.3 Numerical results

u0 = 1, u~ = 0;

Vo = 0, v~ = 1.
(5.2)

For this problem, we use order = 20 except for the CPU time versus order diagram.

The solution of double pendula problem shows chaotic behavior [Pry98]. Figure

5.6 demonstrates this behavior. We integrate the problem with two slightly perturbed

initial points which are shown in Table 5.3 and using atol = rtol = 2 · dtol = 10-10 .

The column with InitPoint-1 in Table 5.3 is the projected initial point corresponding

to (5.2), while the column with InitPoint-2 is the projected initial point with changed

v0 from 0 to 0.001 in (5.2). Since the consistent initial values for x, y, ..\ are same in

InitPoint-1 and InitPoint-2, we just give the initial values of u, v, and K, where we

also include these values corresponding to stage 0.

From Figure 5.6, we can find that the two solutions of u, v, and K are very close

till about t = 30, and clearly diverging from there. This is strong evidence of chaotic

5. Numerical Results

0.8

0.6

0.4

0.2

>< 0

-0.2

-0.4

-0.6

-0.8

-1

1

0.8

0.6

0.4

), 0.2

0

-0.2

-0.4

-0.6

4

3.S

3

2.5

2 ..,
1.5

1

0.5

0

-o.s

lVI lVI tv fV tv

\1\i 11\ 11\ w w IAJ
0 s 10 1S 20 2S 30 3S 40 4S so

v
0

0

t

v v v
5 10 15 20 25 30 3S 40 4S so

t

5 10 1S 20 2S 30 35 40 4S so
t

84

o.s

" 0

-o.s

-1

-1.sL-~~~~~--~~--~~--~_J

0 s 10 1S 20 2S 30 3S 40 45 so
t

l.S

1 ~~ o.s

/ v/ \ I I 1 : > 0

v /I I I I II I -o.s VV v~ v v -1

-1.5
0 s 10 15 20 25 30 35 40 4S so

t

a~~~~~--~~--~~--~--~~

7

6

5

4

"' 3
2

1

0

-1

s 10 1S 20 2S 30 35 40 4S so
t

Figure 5.6: Plots of x, y, >., u, v, and "' versus time with the initial points in Table
5.3.

5. Numerical Results 85

InitPoint-1 InitPoint-2
uo 1.1000000000 1.0999994500
u' 0 3.oooooooooo. 10-1 2.9899985100. 10-1

u~ -6.0909090909. 10-1 -6.1008969446. 10-1

vo 0.0000000000 1.0999994500. 10-3

v~ 1. 0000000000 1.0002989999
v" 0 1.oooooooooo. 10-1 9.9938991030. 10-1

~0 5.5371900826 . 10-1 5.5462727227. 10-1

Table 5.3: Initial values of u, v, and~ for the double pendula problem.

behavior. Hence, we do not discuss reference solution, work-precision diagram, and

error versus tolerance diagram for the double pendula problem.

Figure 5.7 shows the behavior of x, y, >., u, v, and~ over the integration interval

with atol = rtol = 10-13 , dtol = 0.5 . atol.

Table 5.4 presents the run characteristics. We use atol = rtol = w-<2m+1), m =
2, ... , 6 and dtol = 0.5 · atol. In this table, HIDAETS takes the same number of steps

with ADOL-C and FADBAD++.

tol steps CPU time (sec) CPU time per step
ADOL-C FAD BAD ADOL-C FAD BAD

10 -t> 166 2.10 2.71 0.013 0.016
w-7 197 2.68 3.26 0.014 0.017
10-9 250 3.04 4.06 0.012 0.016
w-11 315 3.97 4.91 0.013 0.016
10-13 396 5.00 6.55 0.013 0.017

Table 5.4: Run characteristics for the double pendula problem.

Figure 5.8 exhibits stepsize behavior over the integration interval. One of the

plots is with tol = w-7 , the other is with tol = w-13.

Figure 5.9 displays the CPU time against order with different tolerances. From

the figure, we can conclude that for the double pendulum problem, order ~ 30 is

optimal for different tolcranc<,'S.

5. Numerical Results 86

1.5

0.8

0.6 IV
0.4

0.5
0.2

\ >< 0 " 0

-0.2

-0.4 -0.5

-0.6
-1 ~ \ -0.8

-1 -1.5
0 20 40 60 80 100 0 20 40 60 80 100

t t

1 1.5

0.8
1

0.6

0.4
0.5

>. 0.2 > 0

0
-0.5

-0.2

-0.4
-1

v
-0.6 -1.5

0 20 40 60 80 100 0 20 40 60 80 100

t t

4 9

3.5 8

7

6
2.5 5

2 4 ... "' 1.5 3

1 2

1
0.5

0
0 -1

-0.5 -2
0 20 40 60 80 100 0 20 40 60 80 100

t t

Figure 5.7: Plots of x, y,)., u, v, and K versus time for the double pendula problem.

5. Numerical Results

0.75 r--r~--~~--r-~~--~~~

0.7

0.65

~ 0.6
[0. 55 .,
~ 0.5

0.45

0.4

.,

0.38 r--r~r-~~--~-r~r-~~~

0.36

0.34
0.32

-~ 0.3
~ 0.28
:! 0.26 ..

0.18 L_~~--~~--~~~~~~~

87

0.35 L_~~--~~--~~~--~~~
0 10 20 30 40 50 60 70 80 90 100

t

0 10 20 30 40 50 60 70 .80 90 100

t

Figure 5.8: Stepsize versus time with tolerances w-7 and w-13 .

11

10

9

{)
8 G.l

m
G.l 7
s
·ri 6 ~

p 5 11.
u

4

3

'\.,

~.~~~v---
2 L---~--~--~----~--~---L--~--~

15 20 25 30 35 40 45 50 55

order

Figure 5.9: CPU time versus order with different tolerances.

5. Numerical Results 88

5.4 Car axis

5.4.1 General information

This problem is a mildly stiff DAE of index 3, consisting of 8 differential and 2

algebraic equations.

5.4.2 Mathematical description of the problem

The problem is of the form

p'

Kq'

0

=
=
=

q,

f(t,p,>..),

cjJ(t,p),

with initial conditions p(O) = po, q(O) = Qo, p'(O) = Qo, q'(O) = q~, >..(0) = >..o, and

N(o) = >..0.
The matrix K reads E

2 AJ 14 , where / 4 is the 4 x 4 identity matrix. The function

f : JR9 ~ 1R4 is given by

Xz
(lo -lz)z;

f(t,p, >..) =
(lo - lz) ~:

([-[)Xr- Xb
0 r lr

(l -l)Yr- Yb
0 r lr

+>..1xb + 2>..2(xz- Xr)

2M
+AIYb + 2)..2(Yt - Yr) - E 2

- 2>..2(Xt- Xr)

) 2M
- 2)..2(Yl- Yr - E 2·

Here, (xz,yz,Xr.Yr)T := p, and lz and lr are given by

Jx; + yj and J(xr- Xb)2 + (Yr- YbF·

Furthermore, the functions Xb(t) and Yb(t) are defined by

xb(t) = Jt2 - y~(t),
Yb(t) = rsin (wt).

5. Numerical Results

The function <I> : JR5 --+ .JR2 reads

The constants are listed below.

Consistent initial values are

Po=

0

1/2

1
Qo =

-1/2

0

-1/2

1/2 0

q~ = ;:c2 f(O,Po, Ao), Ao =A~= (0, O)r.

The index of the variables p, q, and A is 1, 2, and 3, respectively.

5.4.3 Numerical results

89

For this problem, we use order = 15 except for the CPU time versus order diagram.

We use FADBAD++ as the AD package.

Table 5.5 presents the reference solution at the end of the integration interval.

The column with HIDAETS is the reference solution computed by HIDAETS with

atol = rtol = 10-16 and dtol = 10-14 on the described setting above. The column

with PSIDE is the reference solution from [LS98], which is computed on Cray C90,

using PSIDE with Cray's double precision and atol = rtol = 10-16 . The column with

GAMD is from [MI03], which is computed by GAMD with quadruple precision on an

Alpha Server DS20E, with a 667 MHz EV67 processor and atol = rtol = w-24 • The

underlined digits are the same as the reference solution computed by HIDAETS.

Figure 5.10 shows the behavior of Xl, Yl, Xr, and Yr over the integration interval.

Var HIDAETS PSIDE GAMD

X1 0.4934557842752397. 10-1 0.4934557842755629. 10-1 0.4934557842754028 . 10-1

X2 0.4969894602300073 0.4969894602303324 0.4969894602301711

X3 0.1041742524885424. 10 0.1041742524885400. 10 0.1041742524885421 ·10

X4 0.3739110272653672 0.3739110272652214 0.3739110272653612

X5 -0.7705836840358462. 10-1 -0.7705836840321485. w- 1 -0.7705836840409723 . 10-1

X6 0.7446866592147278. 10-2 0. 7 446866596327776 . 10-2 0.7446866587237779. 10-2

X7 0.1755681575356589. 10-1 0.1755681574942899 . w-1 0.1755681575372322 . w- 1

xs 0.7703410437798304 0.7703410437794031 0.7703410437792519

Xg -0.4736886590853484. 10-2 -0.4736886750784630. w-2 -0.4736886590848568. w-2

xw -0.1104680331259640. w-2 -0.1104680411345730. w-2 -0.1104680331257160. w-2
.___ ___ ------------------- ----

Table 5.5: Reference solutions for the car axis problem.

I
I

I

I

I

Coil

2!
=
~ ...
(")
~ -
~
f/l

= -~ f/l

co
0

5. Numerical Results 91

0.05 0.5

0.04
(\ (\ 0.4995

0.03

0.02 0.499

0.01 0.4985
x'"' 0 ;;::

-0.01 0.498

-0.02 0. 4975
-0.03 v v v 0.497
-0.04

-0.05 0.4965
0 0.5 1.5 2 2.5 0 0.5 1.5 2 2.5 3

t t

1.06

1.04 0.6

1.02 0.55

>; 0.5 " X

0.98 0.45

0.96 0.4

0.5 1.5 2 2.5 3

t

Figure 5.10: Plots of x1, Yl, Xr, and Yr versus time for the car axis problem.

tol steps CPU time (sec) CPU time per step
w-5 86 1.53 0.018
w-7 115 1.98 0.017
w-9 157 2.70 0.017
w-11 214 3.81 0.018
10-13 289 4.99 0.017

Table 5.6: Run characteristics for the car axis problem.

5. Numerical Results 92

Table 5.6 presents the run characteristics. We use atol = rtol = w-<2m+I), m =
2, ... , 6 and dtol = 0.5 · atol.

Figure 5.11 shows the work-precision diagrams. We use atol = w-m, m =
5, ... , 14, rtol = atol, and dtol in (5.1).

6

5.5

5

() 4.5
QJ
fJl 4
QJ
E
·ri

3.5
.j.)

3
p
p. 2.5 u

2

1.5

1
2 3 4 5 6 7 8 9 10 11 12

SCD

Figure 5.11: Work-precision diagram for the car axis problem.

Figure 5.12 illustrate error against different tolerances with reference solutions

from HIDAETS, PSIDE, and GAMD. From this figure, we can conclude that with

reference solution from PSIDE, we can obtain seven correct digits, and we can obtain

at least nine correct digits compared to the reference solution from GAMD.

Figure 5.13 exhibits stepsize behavior over the integration interval. One of the

plots is with tol = w-7 , the other is with tol = 10-13. The down-spikes near the end

of the integration interval are because of the final stepsize algorithms in subsection

3.7.2.

Figure 5.14 displays the CPU time against order with different tolerances. From

the figure, we can conclude that for the car axis problem, order ~ 25 is optimal for

different tolerances.

5. Numerical Results 93

12

11

10

9

8
0
() 7
U)

6

5

4

3

2
5

HIDAETS --e

PSIDE
GAMD

6 7 8

__ .. •·
.. ····

·······•··-········•·········-·•···········

~-~ __ -H--·------*·-------··---------M---------*---------

9 10 11 12 13 14

-log10 (toll

Figure 5.12: Error versus tolerance for the car axis problem.

0.034 .---~-~-~--~-~-...,

0.032

0.03

0.028

" -~ 0.026
~ 0.024

:l 0.022

"' 0.02

0.018

0.016
0. 014 L_ _ _._ _ _._ _ __.. __ ~ _ _._ _ _J

0 0.5 1.5

t

2 2.5

" N
"' "' " u

"'

tol•l0- 13

0.013

0.012

0.011

0.01

0.009

0.008

0.007

0.006
0 0.5 1 1.5 2

t

Figure 5.13: Stepsize versus time with tolerances 10-7 and w-13 .

2.5 3

5. Numerical Results

u
(!)
Ul

(!)
e

·ri
.j..)

:;J
p.
u

10

9

8

7

6

5

4

3

2

\
\\

\\

~-:~~;~2==;;~~~;:~~~2~~~~~~::~~:
............. ·--- ---·-------1 ~--~~--~----~--~~--~----~--~

10 15 20 25 30 35 40 45

order

Figure 5.14: CPU time versus order with different tolerances.

94

5. Numerical Results 95

5.5 Two-link robotic arm

5.5.1 General information

This problem is a slight simplification of the equations for the prescribed-path control

of a two-link robotic arm [Pry98]. It is a DAE of index 5, consisting of 3 differential

and 3 algebraic equations.

5.5.2 Mathematical description of the problem

The problem is of the form

where

0 = x~- [v + X(a(x3) + 2b(x3)) + a(x3)w],

0 = x~- [-v + X(l- 3a(x3)- 2b(x3))- a(x3)w + J.l2],

0 == x~- [-v + X(a(x3)- 9b(x3))- 2x~2c(x3)- d(x3)Y'2

- (a(x3) + b(x3))w],

0 = COSXt +cos (Y)- Pt(t),

0 = sinx1 +sin (Y)- P2(t),

0 = w - (J.ll - J.l2),

PI(t) =cos (et- 1) +cos (t- 1),

P2(t) =sin (1- et) +sin (1- t),
2

a(s)---~
- 2- cos2 s'

sins
c(8) = 2 - cos2 s'

b coss
(s) = 2- cos2 s'

d(s) = cosssins,
2-cos2 s

X = 2x3 - x2 , Y = x1 + X3,

v = 2Y'2c(x3) + x~2d(x3).

By construction, the solution has x1 = 1 - et, x3 = et - t. Here we integrate the

problem from to = 0 to tend = 1.3, with initial conditions Xt (0) = 0, x3(0) = 1.

5. Numerical Results 96

5.5.3 Numerical solution of the problem

For this problem, we use order = 15 except for the CPU time versus order diagram.

We use FADBAD++ as the AD package.

Table 5. 7 presents the reference solution at the end of the integration interval.

The reference solution is computed with atol = rtol = 10-16 and dtol = w-14 on the

described setting before.

XI -2.6692966676192422 X2 2. 65 78533275805367
X3 2.3692966676192442 J1·2 2.2158319076934220 . 10
w -6.5122431545546700 . 10-1

/-t1 2.1507094761478751· 10

Table 5.7: Reference solution for the two-link robotic arm.

Figure 5.15 illustrates relative errors between solutions of x1 and x3 and their

true solutions over the integration interval. In this figure, the relative error lines are

discontinuous. That means the relative errors reach machine precision at the points

without plotting. This figure is a strong evidence of the reference solution's accuracy.

16.4

I 0
xl--

16.2 x3

16

15.8

0 15.6 I u
(I) 15.4 \J

15.2

15

14.8

14.6
0 0.2 0.4 0.6 0.8 1 1.2 1.4

t

Figure 5.15: Comparison of reference solutions with true solutions x1 and x3 .

Figure 5.16 shows the behavior of x 17 x3 , w, x2, ~-t2 , I-tt over the integration interval.

Table 5.8 presents the run characteristics. We use atol = rtol = w-<2m+l), m =

2, ... , 6 and dtol = 0.5 · atol for IPOPT.

5. Numerical Results

-0.5

-1

~.-l -1.5

-2

-2.5

-3 L---~~~~--~--~--~--~

-1

-2

-3

0 -4

-5

-6

-7

0 0.2 0.4 0.6 0.8

t

1.2 1.4

-8 L---~--~--~--~----~--~--~

20

15

:£: 10

5

0

0 0.2 0.4 0.6 0.8

t

1.2 1.4

-5 L---~--~--~--~----~--~---
0 0.2 0.4 0.6 0.8

t

1.2 1.4

2.4

2.2

2

1.8
.r

1.6

1.4

1.2

1
0

3

2.5

2

1.5
><"'

1

0.5

0

-0.5
0

20

15

:£ 10

5

0

0.2 0.4 0.6 0.8

t

0.2 0.4 0.6 0.8

t

0.2 0.4 0.6 0.8

t

97

1.2 1.4

1.2 1.4

1 1.2 1.4

Figure 5.16: Plots of X1, x3 , w, x2 , J.L2 , and J.Ll versus time for the two-link robotic
arm.

5. Numerical Results 98

tol steps CPU time (sec) CPU time per step
w-5 5 0.34 0.068
w-7 6 0.40 0.067
w-9 8 0.52 0.065
w-u 11 0.63 0.057
10-13 15 0.89 0.059

Table 5.8: Run characteristics for the two-link robotic arm.

Figure 5.17 shows the work-precision diagram. We use atol = w-m, m =
5, ... , 14, rtol = atol, and dtol in (5.1).

1.2

1.1

1
u 0.9 Q)
m
Q) 0.8
e

·rl 0.7 +I

p 0.6 Ill
u

o.s
0.4

0.3
6 7 8 9 10 11 12 13 14

SCD

Figure 5.17: Work-precision diagram for the two-link robotic arm.

Figure 5.18 illustrates error against different tolerances.

Figure 5.19 exhibits stepsize behavior over the integration interval. One of the

plots is with tol = w-7 ' the other is with tol = w-13
.

Figure 5.20 displays the CPU time against order with different tolerances. From

the figure, we can conclude that for the two-link robotic arm problem, order~ 20 is

optimal for different tolerances.

5. Numerical Results

0.26

0.25

0.24
..-< 0.23 .,
"' .. 0.22
'"' .,

0.21

0.2

14

13

12

11

e 10
Cl)

9

8

7

6

!

/
7

5 6

/ ········-·····

/
)/

/v
/

/

r···
7 8 9 10 11 12 13 14

-log10 (tol)

Figure 5.18: Error versus tolerance for the two-link robotic arm.

tol•10-7 tol=10-13

0.12

0.11

0.1 .. 0.09 ..
..-<

~ 0.08 ..
'"' 0.07 .,

0.06

0.05

0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1

t t

Figure 5.19: Stepsize versus time with tolerances 10-7 and 10-13 .

99

1.2 1.4

5. Numerical Results

u
GJ
Ill

GJ

= ·rl
~

p
p.
u

2.2

2

1.8

1.6

1.4

1.2 \
1

0.8

0.6

0.4 ~=~;:::,
0.2 L-----~--~----~----~----~----_J

10 15 20 25

order

30 35 40

Figure 5.20: CPU time versus order with different tolerances.

100

5. Numerical Results

5.6 Transistor amplifier

5.6.1 General information

The problem is a stiff DAE of index 1, consisting of 8 equations.

5.6.2 Mathematical description of the problem

The problem is of the form

dy
M dt = f(y), y(O) =Yo, y'(O) = y~,

withy E JR8 , 0::; t::; 0.2.

The matrix M is of rank 5 and given by

-C1 c1 0 0 0 0 0

c1 -C1 0 0 0 0 0

0 0 -C2 0 0 0 0

M=
0 0 0 -Cs Cs 0 0

0 0 0 Cs -Cs 0 0

0 0 0 0 0 -C4 0

0 0 0 0 0 0 -C5
0 0 0 0 0 0 c5

and the function f by

_ u.(t) + .1l!.
Ro Ro

-~ + Y2(i
1
+ i

2
)- (a -1)g(y2- Ys)

-g(y2 - Ys) + t
-~ + ft + ag(y2 - Ys)

-~ + Y5(is +~)-(a- 1)g(y5- Y6)

-g(y5 - Y6) + fr
Qg + 1lL + ag(y5 - Y6) Rs Rs

Here g and Ue are auxiliary functions given by

0

0

0

0

0

0

c5
-C5

g(x) = f3(erf~ - 1) and Ue(t) = 0.1 sin {2007rt).

101

5. Numerical Results

The values of the parameters are:

ub - 6, ~ = 1000,

UF 0.026, Rk 9000 for k = 1, ... , 9,

a - 0.99, ck = k. 10-6 for k = 1, ... '5.

{3 = 10-6,

Consistent initial values at t = 0 are

Yo=

0

Ub/(~ + 1}
Ub/(~ + 1}

ub
Ub/(~ + 1)

Ub/(~ + 1)
ub
0

5.6.3 Numerical results

I
Yo=

51.338775

51.338775

-Ub/((~ + 1)(C2 · C3))
-24.9757667

-24.9757667

-Ub/((~ + 1)(C4 · C1))
-10.00564453

-10.00564453

102

For this problem, we use order = 15 except for the CPU time versus order diagram.

We use FADBAD++ as the AD package.

Table 5.9 presents the reference s0lution at the end of the integration interval.

The column with HIDAETS is the reference solution computed by HIDAETS with

atol = rtol = 10-15 and dtol = 10-14 on the described setting before. The column

with PSIDE is the reference solution from [M103], which is computed on Cray C90,

using PSIDE with Cray's double precision and atol = rtol = 10-14
. The underlined

digits are the same as the reference solution computed by HIDAETS.

Figure 5.21 shows the behavior of the solution over the integration interval.

Table 5.10 presents the run characteristics. We use atol = rtol = 10-(2m+1),

m = 2, ... , 6 and dtol = 0.5 · atol.
Figure 5.22 shows the work-precision diagrams. We use atol = 10-m, m =

5, ... , 14, rtol = atol, and dtol in (5.1).

Figure 5.23 illustrate error against different tolerances with reference solutions

from HIDAETS and PSIDE. From the figure, we can conclude that with reference

solution from PSIDE, we can obtain at least 11 correct digits.

5. Numerical Results 103

0.1 3.4

o.oa 3.2
0.06

o. 04

0.02 2.8

,;: 0 ,;: 2.6

-0.02 2.4
-0.04

2.2
-0.06

-0.08 2

-0.1 1.8
0 0.05 0.1 O.l.S 0.2 0 o.os 0.1 0.15 0.2

t t

3.08 3.2

3.06 3.1

3.04
3

2.9
3.02 2.8

.;::
3 2.7 :::

2.6 2.98

2.96 2.5

2.4
2.94

2.3
2.92 2.2

2.9 -- -~---- ._ ____ ----- 2.1
0 0.05 0.1 0.15 0.2 0 o.os 0.1 0.15 0.2

t t

7

6 f-
2.95

5

2.9 4
,;: >:

2.85 3

2

2.8

2.75 0
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

t t

6 2

5.5

5 of-
4.5 -1

::: :::
4 -2

3.5 -3

-4

2.5 -5
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

t t

Figure 5.21: Plots of YI, Y2, Y3, Y4, Ys, Y6, Y1, and Ys versus time for the transistor
amplifier problem.

5. Numerical Results 104

Var HIDAETS PSIDE
YI -0.5562145012259387. 10 -:.! -0.5562145012262709. 10 -:.!

Y2 0.3006522471902849. 10 0.3006522471903042. 10

Y3 0.1041742524885424. 10 0.1041742524885400. 10

Y4 0.2849958788607940 0.2849958788608128

Y5 0.2704617865005508. 10 0.2704617865010554 . 10

Y6 0.2761837778388728 . 10 0.2761837778393145 . 10

Y1 0.4770927631615038. 10 0.4770927631616772. 10

Ys 0.1236995868081448. 10 0.1236995868091548. 10

Table 5.9: Reference solutions for the transistor amplifier problem.

tol steps CPU time (sec) CPU time per step
10 -a 361 2.43 0.007
10-7 496 3.27 0.007
10-9 677 4.42 0.007
10-11 901 6.17 0.007
10-13 1244 8.10 0.007

Table 5.10: Run characteristics for the transistor amplifier problem.

10

9 !-···········-·················

~ 8~-- +···············+----i----··+·-----+-··-·-t-·············+·····Ht
Ill
~ 7~·-··+··············+·+················+··············+-···- +·············+,-~---/~t-···-··,

~--.....-

~ : ···············+!···-············+ '·········+·················+······-~/1 !
u 7 -- ··-·r·r

4 1-············+··············+·-············-;-,-;/-·········+ ················'···-·······························+··-···············+········-·······-~

_l-/~

2'------'--...L-----1--'--.._____,_ _ _.______,_ _ _,

3 4 5 6 7 8 9 10 11 12

SCD

Figure 5.22: Work-precision diagram for the transistor amplifier problem.

5. Numerical Results 105

13
HIDAETS ---e---

12 PSI DE

11

10

9
Q
u
Cl)

8

7

6

5

4

6 7 8 9 10 11 12 13 14

-log10 (tol)

Figure 5.23: Error versus tolerance for the transistor amplifier problem.

Figure 5.24 exhibits stepsize behavior over the integration interval. One of the

plots is with tol = w-7 , the other is with tol = w-13 .

tol=10- 7 tol=10- 13

0.0016 0.0005

0.0014 0.00045

0.0012
0.0004

0.00035 .,
0.001 " 0.0003

~ 0.0008 ~ 0.00025

" " .,
0.0006

., 0.0002
0.00015

0.0004
0.0001

0.0002 5e-05

0 0
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

t t

Figure 5.24: Stepsize versus time with tolerances w-7 and 10-13 .

Figure 5.25 displays the CPU time against order with different tolerances. From

the figure, we can conclude that for the transistor amplifier problem, order ~ 25 is

optimal for different tolerances.

5. Numerical Results 106

11

10

9

u 8 QJ
rll

~
7

·ri 6 .j.J

::> 5 p.,
u

4

3

2
15 20 25 30 35 40 45 50

order

Figure 5.25: CPU time versus order with different tolerances.

5. Numerical Results 107

5. 7 Summary of numerical results

The above numerical results demonstrate that HIDAETS is efficient, accurate, and

suitable for solving high-index DAE initial value problems. Here we present a brief

summary of our numerical experience.

1. HIDAETS works well with a DAE problem whose index is too high for the

existing solvers. The highest index we have solved is five (the double pendula

problem and the two-link robotic arm problem). HIDAETS can also solve

higher-order ODEs directly.

2. Due to the high order of Taylor series methods, HIDAETS can obtain much

more accurate results than standard DAE solvers.

3. On nonstiff and mildly stiff problems, HIDAETS performs (very) well, especially

at high accuracy. For stiff problems, HIDAETS currently cannot run fast due

to the explicit nature of Taylor methods.

4. For all tested problems with range of tolerances from 10-5 to 10-13 , the running

time of HIDAETS is close to optimal when the order is between 20 and 30. As

we do not have variable order control at present, we recommend orders between

20 and 30.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have presented a numerical method for solving high-index DAEs. Given a DAE

described by a computer program, the necessary structural analysis data is obtained

via operator overloading. After that, we compute an initial consistent point based on

the user's input. If we can obtain a consistent point, we continue the integration; if

not, we cannot solve the given DAE problem.

After obtaining a consistent initial point, we compute TCs by automatic differen

tiation. We also compute an appropriate stepsize subject to the tolerance. With this

stepsize, we compute a TS solution by summing the series.

To ensure that this numerical solution is a consistent one, we project it. If we

cannot obtain a consistent point, we reduce the current stepsize, recompute the TS

solution, and project it again. We iterate this process, until we obtain a consistent

point.

We repeat the above process till t = tend. In this case, our method succeeds in

solving the given DAE problem.

We have presented the specification, design, implementation, and usage of HI

DAETS. We have covered most aspects of developing a numerical software package

on using an object-oriented approach. In addition to the documentation in this thesis,

we provide Web based documentation through the Doxygen [vH04] documentation

system.

108

6. Conclusions and Future Work 109

Beside these, we report detailed numerical results for five typical high-index DAE

problems. Testing results show that HIDAETS is an efficient and accurate solver for

IVPs in high-index DAEs.

6.2 Future works

The numerical results for the car axis problem [MI03] shows that HIDAETS is efficient

for moderately stiff DAEs, however, because of their explicit nature, Taylor series

methods are not efficient for integrating very stiff DAEs. For example, HIDAETS is

very inefficient on the HIRES problem [:VII03] as the stepsize is about w-6 through the

integration interval. Nedialkov [Ned99] presented a promising approach to generalize

the Taylor series to stiff ODE problems by Hermite-Obreschkoff (HO) methods. We

can enable HIDAETS to solve highly stiff DAEs if employing HO methods. Besides

Taylor series, computing relevant Jacobians efficiently with the HO approach remains

to be studied.

The examples in HIDAETS include ten DAEs and ODEs which are mostly from

literature. More testing and practical engineering problems need to be performed.

Future work will include study of HO methods, enabling HIDAETS applicable to

both non-stiff and stiff DAEs, developing an elaborate numerical IVP test set, and

applying HIDAETS to engineering applications.

Bibliography

(AP98] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differ

ential Equations and Differential-Algebraic Equations. Soc for Industrial

& Applied Math, July 1998.

[BCC+92] C. H. Bischof, A. Carle, G. F. Corliss, A. Griewank, and P. Hovland.

ADIFOR: Generating derivative codes from Fortran programs. Scientific

Programming, 1(1):11-29, 1992.

[BCP96] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of

Initial- Value Problems in Differential-Algebraic Equations. Soc for Indus

trial & Applied Math, January 1996.

[Ber97] M. Berz. COSY INFINITY version 8 reference manual. Technical Report

MSUCL-1088, national Superconducting Cyclotron Lab., Michigan State

University, East Lansing, Mich., 1997.

[BLV03] C. Bischof, B. Lang, and A. Vehreschild. Automatic Differentiation for

MATLAB Programs. Proc. Appl. Math. Mech., 2(1):50-53, 2003.

[BS96a] C. Bendtsen and 0. Stauning. FADBAD, a flexible C++ package for

automatic differentiation. Technical report, Department of Mathematical

Modelling, Technical University of Denmark, Lyngby, Denmark, August

1996.

[BS96b] C. Bendtsen and 0. Stauning. FADBAD, a flexible C++ package for auto

matic differentiation. Technical Report IMM REP 1996 17, Department

of Mathematical Modelling, Technical University of Denmark, Lyngby,

Denmark, Aug 1996.

110

BIBLIOGRAPHY 111

[Cam95] S. L. Campbell. High-index differential algebraic equations. Mech. Struct.

& Mach., 23(2):199-222, 1995.

[CC82] G. Corliss andY. F. Chang. Solving ordinary differential equations using

Taylor series. ACM Transactions on Mathematical Software, 8(2):114-144,

1982.

[CC94] Y. F. Chang and G. F. Corliss. ATOMFT: Solving ODEs and DAEs using

Taylor series. Computers and Mathematics with Application, 28:209-233,

1994.

[CG95) S. L. Campbell and C. W. Gear. The index of general nonlinear DAEs.

Numerische Mathematik, 72:173-196, 1995.

[CH96) S. L. Campbell and R. Hollenbeck. Automatic differentiation and im

plicit differential equations. In M. Ber~, C. Bischof, G. Corliss, and

A. Griewank, editors, Computational Differentiation: Techniques, Appli

cations, and Tools, pages 215-227. SIAM, Philadelphia, PA, 1996.

[CL96) G. F. Corliss and W. Lodwick. Role of constraints in the validated so

lution of DAEs. Technical report, Marquette University Department of

Mathematics, Statistics, and Computer Science, Milwaukee, Wise., March

1996.

[GJU96) A. Griewank, D. Juedes, and J. Utke. ADOL-C: A package for the auto

matic differentiation of algorithms written in C/C++. ACM Transactions

on Mathematical Software, 22(2):131-167, June 1996.

[Gri93) A. Griewank. Complexity in Nonlinear Optimization, chapter Some

Bounds on the Complexity of Gradients, Jacobians, and Hessians, pages

128-161. World Scientific, 1993.

[GW04) A. Griewank and A. Walther. On the efficient generation of Taylor expan

sions for DAE solutions by automatic differentiation. Technical report,

Technische Universitat Dresden, Department of Mathematics, Institute of

Scientific Computing, 2004.

BIBLIOGRAPHY 112

[HW96] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff

and Differential-Algebraic Problems. Springer-Verlag, 1996.

[JV87J

[LS98]

[MI03]

[MS93]

R. Jonker and A. Volgenant. A shortest augmenting path algorithm for

dense and sparse linear assignment problems. Computing, 38:325-340,

1987.

W. M. Lioen and J. B. Swart. Test set for initial value problem solvers.

Technical report, Modeling, Analysis and Simulation (MAS), CWI, Ams

terdam, Netherlands, December 1998.

F. Mazzia and F. lavernaro. Test set for initial value problem solvers.

Technical report, Department of Mathematics, University of Bari, Italy,

August 2003.

S. E. Mattsson and G. Soderlind. Index reduction in differential-algebraic

equations using dummy derivatives. SIAM. J. Sci. Comput., 14:677-692,

1993.

[Ned99] N. S. Nedialkov. Computing Rigorous Bounds on the Solution of an Initial

Values Problems for an Ordinary Differential Equation. PhD thesis, De

partment of Computer Science, University of Toronto, Toronto, Canada,

M5S 3G4, February 1999.

[NJ02] N. S. Nedialkov and K. R. Jackson. The design and implementation of a

validated object-oriented solver for IVPs for ODEs. Technical Report 6,

Software Quality Research Laboratory, Department of Computing and

Software, McMaster University, Hamilton, Canada, L8S 417, 2002.

[NP03] N. S. Nedialkov and J. D. Pryce. Solving differential-algebraic equations

by Taylor series(!): computing Taylor coefficients. BIT, pages 001-038,

2003.

[Pan88] C. C. Pantelides. The consistent initialization of differential-algebraic sys

tems. SIAM. J. Sci. Stat. Comput, 9:213-231, 1988.

[Pry98] J. D. Pryce. Solving high-index DAEs by Taylor series. Numerical Algo

rithms, 19:195-211, 1998.

BIBLIOGRAPJfY 113

[PryOl] J. D. Pryce. A simple structural analysis method for DAEs. BIT,

41(2):364-394, 2001.

[vH04] D. van Heesch. User Manual for Doxygen 1.4.3, 2004.

[WB04] A. Wachter and L. T. Biegler. On the implementation of a primal-dual

interior point filter line search algorithm for large-scale nonlinear program

ming. Technical report, IBM T. J. Watson Research Center, Yorktown,

USA, March 2004.

Appendix A

Symbols and Acronyms

Name

AD

AWA

BDF

DAE

DAETS

DOF

GAM

HIDAETS

HVT

IRK

IVP

J

LP

ODE

SA

SCD

TC

TS

~

\7

I>

Definition

Automatic Differentiation

Anfangswertaufgabe

Backward Differentiation Formula

Differential-Algebraic Equation

DAE by Taylor Series

Degree of Freedom

Generalized Adams Methods

High-Index DAE by Taylor Series

Highest Value Transversal

Implicit Runge-Kutta

Initial Value Problem

System Jacobian

Linear Programming

Ordinary Differential Equation

Structural Analysis

Significant Correct Digits

Taylor Coefficient

Taylor Series

Signature Matrix

Gradient

Comment

114

Appendix B

Automatic Differentiation

Automatic differentiation is a set of techniques based on the chain rule to obtain

derivatives of a function given as a computer program [Gri93]. By applying the

chain rule of derivative calculus repeatedly to a sequence of elementary arithmetic

operations, derivatives of arbitrary order can be computed automatically and accurate

to working precision.

The problem is defined by a computer program. The application of AD to this

computer program results in the automatic generation of a new computer program,

which computes the derivatives of the output variables with respect to the input

variables.

AD methods are widely used for solving problems in which the output variables are

computed "directly" from the input variables. It provides fast and accurate values of

derivative objects, such as gradients, Jacobians, and Hessians, which are required by

modern tools for optimization, nonlinear systems, differential equations, or sensitivity

analysis.

Here, we first introduce basic AD algorithms, then discuss its implementation and

existing AD tools briefly.

115

B. Automatic Differentiation 116

B.l Basics of AD

Abstractly, a program for evaluating an m-vector y as a function of n-vector x has

the form:

l
z= {zbz2, ... ,zp}, p~m+n

l
Y = (Yb Y2, ... , Ym),

where the intermediate variables z are related through a series of elementary functions

which may be unary,

Zk = f~em(zi), i < k

consisting of operations such as (-, pow, sin, ...), or binary,

such as (+, /, ...).
AD has two basic approaches, the forward mode and the reverse mode. We illus

trate them in the following two subsections.

B.l.l Forward mode

In the forward mode, derivatives are propagated throughout the computation using

the chain rule. For example, for the elementary step Zk = f~em (Zi, Zj), the intermedi

ate derivative dzk/dx, can be propagated in the forward mode as:

dzk a !~em dzi a !~em dzj
- = ---+ --.-.
dx azi dx azi dx

This chain rule-based computation is done for all the intermediate variables z and for

the output variables y, finally yielding the derivative dyjdx.

Example B.l. Consider f(x) = (x+x2)2. We want to compute df /dx by the forward

mode of AD.

B. Automatic Differentiation

Let:

Then, we have

dz1 = 1
dx '
dz2 dz1
dx = 2z1 dx = 2x,

dz3 _ dz1 dz2 _
1 2 dx - dx + dx - + x,

dz4 dz3
dx = 2z3 dx = 2(x + xx)(1 + 2x).

B .1.2 Reverse mode

(from B.1)

(from B.2)

(from B.3)

(from B.4)

117

(B.1)

(B.2)

(B.3)

(B.4)

The reverse mode computes the derivatives dyjdzk for all intermediate variables in

reverse order. For example, for the elementary step Zk = f~em(zi, Zj), the derivatives

are propagated as:

(B.5)

Here is the explanation for (B.5). Suppose we have obtained dyjdzk· For Zk

f~em(zi, Zj), we want to compute dyjdzi· We have

dy _ _ d_y _az_k = 8f~em dy
dzi dzk azi azi dzk.

At the end of the computation, the derivative dyjdx is obtained. The key is that the

derivative propagation is done in reverse manner, hence, we need dyjdzk to compute

derivatives dyjdzi, dyjdzi. At the beginning, dyjdy is initialized to 1.

B. Automatic Differentiation

Example B.2. For f(x) = (x + x2
) 2 , we process the reverse mode as

dz4
-d =1,

Z4

dz4 dz4 dz4 - = -- = 2z3 = 2(x+xx),
dz3 dz3dz4

(from B.4)

dz4 dz4 az3 - = -- = 1· 2(x+xx) = 2(x+xx),
dz2 dz3 az2

(from B.3)

dz4 = dz4 az3 + dz4 dz2 = 2(x + xx)(1 + 2x),
dzl dz3 azl dz2 dzl

(from B.2, B.3)

dz4 = dz4 dz1 = 2(x + xx)(1 + 2x).
x dz1 dx

(from B.1)

B.2 AD tools

118

Implementations of AD can be broadly classified into source transformation and oper

ator overloading. Source transformation changes the semantics by explicitly rewriting

the code, while operator overloading exploits the possibility of some modern program

ming languages to redefine the semantics of elementary operators.

Table B.1 lists some existing and typical AD software packages. More details and

packages can be found at http: I /www. autodiff. org. In Table B.1, 0 stands for

operator overloading, and S stands for source transformation.

B. Automatic Differentiation 119

Name Author(s) Language Mode Method
ADOL-C Griewank, C/C++ Forward, 0

Juedes, and Reverse
Utke [GJU96]

FAD BAD++ Stauning and C/C++ Forward, 0
Bendtsen Reverse
[BS96b]

ADiMat Vehreschild MAT LAB Forward so
[BLV03]

ADIFOR Bischof, Carle, Fortran77 Forward s
Corliss,
Griewank,
and Hovland
[BCC+92]

Table B.l: Some existing AD tools.

Appendix C

Some UML Legends

note

,...._.....__.,: Component

Class
attribute

method()

Ownership O

interface

Dependency -- - -)

Generalization
-----[>

Aggregation
-----<>

120

Appendix D

Some Source Code

D.l The integration process

void DAESolver .. integrate(double& tO, double& tend, InitPoint & x,

void *DAEParam)
{

int p, ind, outputind;

ind = ptrParam->getind();

if (ind == normalex·i t)

return;

outputind = ptrParam->getOutput();

p = ptrParam->getOrder();

if (firstentry == true)

initialization(tO, x, DAEParam, ind, outputind);

if (ptrParam->getind() == Jsingular)

return;

if(ind == tillend)
{

cout«"\n\niNTEGRATION PROCESS";

cout<<"\n\n Integrated at Local Error"<<endl;
}

121

D. Some Source Code

}

while(t < tend)
{

}

compTSSol(t, tend, ind, p);

compConsSol(t, p);

fout«h«endl;

if (ind == onestep
{

}

tO = t + h;
ptrAD->getinitialPoint(x);
cout«endl«"\n\nSOLUTION WITH STEPSIZE "«h«endl«endl;
ptrAD->printinitialPoint(0, ptrParam->getDigits());

cout<<endl<<endl;

ptrParam->setind(normalexit);

break;

t = t + h;

tO = t;
fout<<t<<" ";
err= ptrErrorEst->estError(ptrAD, p, h);

if(outputind >= process)

PrintProgress(t, err);
ptrAD->outputSolution(fout);

fout.close();

ptrStats->statTime();

if(outputind >= solution && (ind == tillend))
printSolution(ptrParam->getDigits());

if(outputind >= stat && (ind == tillend))

printStats () ;
ptrParam->setind(normalexit);

firstentry = true;

122

D. Some Source Code

void DAESolver initialization(double tO, InitPoint t x, void *DAEParam,

int t ind, int t outputind)
{

if(outputind >= offsets)

ptrOffsets->printOffsets();

t = tO;

ptrStats->resetStats();

OpenFile(filename);

ptrAD->setinitialPoint(x);
ptrAD->setintegrationTime(tO);

if(ind == tillend II ind == onestep I I ind ==Jacobian)

ptrAD->generateCompGraph(DAEParam);

if(!ptrProjection->projectConsinitPoint())
{

}

ptrParam->setind(Jsingular);

return;

if(ind == tillend II ind
{

onestep)

}

fout<<t<<" ";

ptrAD->outputSolution(fout);

if(outputind >= initpoint)
{

}

cout«"\n\niNITIAL POINT\n\n";

ptrAD->printinitialPoint(0, ptrParam->getDigits());

firstentry false;

123

D. Some Source Code

}

void DAESolver compTSSol(double t, double tend, int & ind, int p)
{

}

ptrAD->compJacobian(0);

if(ind == Jacobian)
{

}

ptrAD->printJacobian(0);

cout<<endl;
ptrParam->setind(normalexit);

break;

ptrAD->compTCs(p);

tal= ptrStepSize->compTol(ptrAD, ptrParam);

h = ptrStepSize->compStepSize(ptrAD, ptrErrorEst, tal, p);

h = ptrStepSize->compFinalStep(t, tend, h);

if(!ptrStepSize->checkStepsize(h, ptrParam->getHmin()))
{

}

ptrParam->setind(smallstepsize);

break;

ptrAD->compSolution(p, h);

void DAESolver
{

compConsSol(double t, int p)

ptrAD->setintegrationTime(t +h);

double k = 0;

124

D. Some Source Code

}

while(!ptrProjection->projectCons!nitPoint() && k < 11)
{

}

ptrStats->statSteps(O);

h = O.S•h;

if (!ptrStepSize->checkStepsize(h, ptrParam->getHmin()))
{

}

ptrParam->set!nd(smallstepsize);

break;

if(k = 10)

{

}

ptrParam->set!nd(Jsingular);

break;

ptrAD->compSolution(p, h);
ptrAD->setintegrationTime(t +h);

ptrStats->statSteps(1);

D.2 Computing signature matrix and offsets

void Offsets :: compOffsets(LAPSolver &solver)
{

solver.compHVT(n, SignMatrix, rowsol, colsol);

for(int i = 0; i < n; i++)

{

}

c [i] = 0;

d[i] = 0;

125

D. Some Source Code

}

vector<int> d_old(n);

int max;

bool computed = false;

while(!computed)

{

}

d_old = d;

for (int j = 0; j < n; j++)
{

}

max= SignMatrix[O][j] + c[O];

for (int i = 1; i < n; i++
{

}

if (SignMatrix[i][j] + c[i] >max)

max= SignMatrix[i][j] + c[i];

d[j] = max;

computed = true;

int k = 0;

while (k < n && computed)

if (d[k] != d_old[k])

computed = false;

else
k++;

if (! computed)

for (int j = 0; j < n; j++)
{

inti= colsol[j];

c[i] = d[j]- SignMatrix[i][j];
}

126

D. Some Source Code

D.3 Computing Jacobians

void FADBADTS :: compJacobian(int stage
{

}

for (int j = 0; j < n; j++)
{

}

int Lj = ptrOffsets->getDerivNoX(j, stage);
if (Lj >= 0)

{

}

for (int q = 0; q <= Lj; q++)
for (int k = 0; k < n; k++)

Fin[j][q].d(k) = 0.0;

TFin[j][Lj] .d(j) = 1.0;

for (int i = 0; i < n; i++)
{

}

int Li = ptrOffsets->getDerivNoF(i, stage);
if (Li >= 0)

TFout[i].eval(Li);

D.3.2 Printing Jacobian

void FADBADTS :: printJacobian(int stage, ostream & s)
{

s « endl « endl « "SYSTEM JACOBIAN AT STAGE "

<< stage<< ":" << endl;

int p = s.precision();
s.precision(4);

int Li, Lj;
for (int i = 0; i < n; i++)

{

Li = ptrOffsets->getDerivNoF(i, stage);

127

D. Some Source Code

}

if (Li >= 0)
{

for (int j = 0; j < n; j++)
{

}

Lj = ptrOffsets->getDerivNoX(j, stage);
if(Lj>= 0)

{

}

}

s << std::setw(9) << TFout[i][Li].d(j)*factor[Li]lfactor[Lj];

s<<endl;

}

s.precision(p);

D.4 TCs computation

D.4.1 Nonlinear case

void IpoptFunc :: get_F(long n, double •x, double *f)
{

}

assert(x t& f);

double pp;

f[O] = 0;

for (int i = 0; i < n; i ++)
{

}

pp = x[i] - xOxO[i]; II xOxO the initial guess in AD class

pp •= pp;

f[O] += pp;

f[O] •= 0.5;

void IpoptFunc :: get_G(long n, double •x, double *g)
{

assert(x && g);
for (int i = 0; i < n; i ++)

{

128

D. Some Source Code

g[i] x[i] - xOxO[i];
}

}

void IpoptFunc
{

get_C(long n, double *X, long m, double *cc)

assert(x kk cc);

get_C_AD(x, m, cc);
}

void IpoptFunc :: get_A(long task, long n, double *X, long *nz, double *A,

long *Arow, long *Acol)
{

}

assert(x kk nz kt A kk Arow kk Acol);
assert(ptrAD);

if (task == 0)
{

*nz = ptrAD -> getNoNonzeros(STAGE);
}

else
{

get_A_AD(x, nz, A, Arow, Acol);
}

bool Projection
{

projectSolution(int stage, double *XX)

n = pOffsets->noVariables(stage);

m = pOffsets->noEquations(stage);

assert(parameters);

double dtol = parameters->getDTol();

piF =new IpoptFunc(stage, n, m, xx, ad);
assert(piF kk optpackage);

129

D. Some Source Code

}

bool temp= optpackage->compOptSolution(xx, n, m, &dtol, piF);
delete piF;

for(int i = 0; i < n; i++)
x[i] = xx(i];

return temp;

D.4.2 Computing TCs

void FADBADTS :: compTCs(int p)
{

for (int i = 0; i < n; i++)

Tout [i] . reset 0 ;

for (int j = 0; j < n; j++)
{

}

for (int i = 0; i < ptr0ffsets->getDVector(j)+1; i++)
{

Tin[j] [i] .. TFin[j] (i] .x();

}

for (int i = ptr0ffsets->getDVector(j)+1;

i <= ptrOffsets->getDVector(j)+p; i++)
{

Tin[j] [i] = 0;

}

getScaledJacobian(fjac);

LU(n, fjac, ipiv);

for (int i = 0; i < n; i++)
{

U[i] 1;

V[i] = 1;

130

D. Some Source Code

}

}

for (int k = 1; k <= p; k++)
{

compTerm(k);
}

D.4.3 Computing term

void FADBADTS :: compTerm(int stage
{

for (int i = 0; i < n; i++)
{

U[i] /= ptrOffsets->getDerivNoF(i, stage);
V[i] /= ptrOffsets->getDerivNoX(i, stage);

}

int Li;
for (int i = 0; i < n; i++)

{

}

Li = ptrOffsets->getDerivNoF(i, stage);
Tout[i].eval(Li);

Fvec[i] = Tout[i][Li];

for (int i = 0; i < n; i++)
Fvec[i] = Fvec[i]/U[i]•U[indexmaxoffset];

LSolve(n, fjac, ipiv, Fvec);

for (int j = 0; j < n; j++
Tout [j] . reset 0 ;

for(int j = 0; j < n; j ++)
{

}

Tin[j][ptrOffsets->getDerivNoX(j,stage)]
Fvec(j]•V[j]/U[indexmaxoffset];

131

D. Some Source Code

}

D.5 Error estimation
double ErrorEst :: estError(AD *ptrAD, int p, double h)
{

}

assert(ptrAD);

int 1;

double temp;

double temppow = pow(h, (double) p);

for(int j = 0; j < n; j ++)
{

}

1 = p + ptrOffsets->getDVector(j);
temp= temppow * factor[l]/factor[p];

e[j] =temp* ptrAD->getXjk(j, 1);

double temperr = NORM

return temperr;

norm1(e, n) ;

D.6 Stepsize selection

D.6.1 Tolerance computation

double StepSize :: compTol(InitPoint *ptrinitPoint,
Parameters *ptrParam)

{

}

double temp= ptrParam->getRTol()*ptrinitPoint->getNorm1X();

temp+= ptrParam->getATol();
return temp;

132

D. Some Source Code

D.6.2 Stepsize selection

double StepSize :: compStepSize(AD *ptrAD, ErrorEst *ptrErr,
double tol, int p)

{

}

double est= ptrErr->estError(ptrAD, p, 1);

assert(est != 0);

double h =pow(tol/est, 1.0/p);

assert(h != 0);

return h;

D.6.3 Final stepsize selection

double StepSize :: compFinalStep(doublet, double tend, double h)
{

}

if(2*fabs(h) < fabs(tend - t)
{

}

if(tend > t)

return h;

else

return -h;

else if(fabs(h) < fabs(tend - t) && 2*fabs(h) > fabs(tend - t))
{

}

else
{

}

h = (tend - t) I 2;

return h;

h =(tend- t);

return h;

bool StepSize :: compHmin(double h)
{

if (fabs(h) < ptrParam->getHmin())

133

D. Some Source Code

}

{

}

else

cerr<<"Stepsize is too small"<<endl;

return false;

return true;

134

