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Abstract 

Price and inventory decisions are key levers of profit for firms. A manager needs 

to understand the impacts of pricing, ordering and stocking decisions not only on 

today's operations but also on future demand. In this dissertation we investigate 

these intertwining decisions by incorporating inter-temporal effects of pricing dec~ions 

through reference prices. We introduce three significant extensions to reference 

price models to provide more meaningful insight into pricing, inventory and ordering 

decisions. 

We first present a threshold reference model. The threshold model incorpo­

rates zones of insensitivity around expected price that moderate the reference impacts 

on demand. This provides a rigourous model that is flexible enough to handle dif­

ferent pricing strategies such as single everyday low pricing (EDLP), high-low pricing 

(HiLo) and other general price cycles. We develop two solution approaches and 

provide computational results. 

We next introduce a reference model with stochastic demand. There is con­

siderable previous research supporting the consideration of variability in pricing and 

inventory decisions and this is especially true in the context of inter-temporal demand 

interactions based on pricing decisions. We find that the introduction of stochas­

tic elements can actually increase or decrease the length of the price cycle for some 

consumers in a reference model depending on the parameters of the model. This 

extends the stochastic demand model and bridges to reference models for improved 

managerial insight. 
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The final model presented is the dynamic lot sizing model. When prices and 

production decisions or order quantities are determined simultaneously the interac­

tions need to be considered to optimize profits. The reference model incorporates 

the inter-temporal price effects to provide a clearer picture of the optimal decision. 

The inclusion of reference effects does change the optimal decision. 
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Chapter 1 

Introduction 

1.1 Motivation 

The coordination of marketing and operations activities can be a significant challenge 

for firms. The choice of price, order size and inventory level are three key levers for 

profitability. Operations research has contributed significant insight for managers 

for making decisions on all three of these factors for firms. This includes planning 

over time, including stochastic demand and the dynamic lot sizing problem. A lack 

of consideration of costs or impacts of operations decisions in marketing or marketing 

decisions in operations can lead to decisions that may be optimal in one element of 

the supply chain but is less than optimal for the whole firm. This is more complicated 

when there are inter-temporal effects of decisions such as future demand impacts due 

to current pricing decision as well as inventory carrying costs or shortage costs, if 

inventories are insufficient. There is significant empirical evidence in the marketing 

literature that prices in the current period can affect demand in future periods. The 

consideration of inter-temporal demand effects of price within the context of pricing 

and inventory/ ordering decisions has not received any significant attention in the 

literature. 

1 
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Researchers have explicitly recognized the increasing complexity of managerial 

decisions in the supply chain (Melnyk et al. [2009], Melnyk et al. [2010]). Supply 

chain researchers have begun attempting to incorporate marketing concepts into op­

erations models to allow for a more holistic modeling approach with richer insights on 

supply chain performance (Malhotra and Sharma [2002], Tang [2010]). It is, however, 

worth noting that the bulk of the pricing research has been largely focused on single 

period pricing decisions and that any multiple period models have not considered 

inter-temporal demand effects. Understanding the impact of inter-temporal demand 

impacts of pricing decisions and the interaction with inventory and ordering decisions 

could provide significant insight to managers. 

Yano and Gilbert [2005] provide a recent review of joint pricing and inventory 

decisions. The research on multi-period problems has, for the most part, been focused 

on multi-period inventory effects given random demand rather than the inter-temporal 

impacts of pricing decisions. This gap in the research provides an opportunity to 

provide additional insight into this complex managerial problem. 

One of the best approaches to incorporating inter-temporal effects of pricing 

decisions on demand is to incorporate reference pricing. Reference price is a concept 

that represents the price a consumer (or any purchaser) uses to compare observed 

prices in the market. The reference price is used to determine whether the observed 

price is a "good deal" or not. Reference price models have been widely studied in 

the marketing literature. However, it is only very recently that operations researchers 

have begun to incorporate reference price approaches into their models. The reference 

approach offers the potential for rich managerial insight. It is also worth noting that 

although it has not happened to date, Gimpl-Heersink et al. [2008] suggest that the 

incorporation of reference prices into simultaneously solved pricing and inventory 

models will yield valuable insight. 

It is reasonable that a pricing action in this period would be expected to af­

fect demand in this period and in the subsequent periods and reference price models 

use the mechanism of an expected price to incorporate that. Forecasting and inven-
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tory planning in a supply chain require a good understanding of current and future 

demand and the impacts of marketing and other activities on that demand. Refer­

ence price models can provide that inter-temporal linkage to improve inventory and 

marketing/pricing planning. Effective analysis of the linkages between marketing ac­

tivities, including pricing actions, inventory and other supply chain factors can lead 

to a more refined and accurate insight into decision making. The more completely 

the linkages between marketing, demand and the other components of the supply 

chain are incorporated into analytical models, ·the richer the managerial insight will 

become. 

While we frequently see price cycles in real retail settings, the results of the 

application of reference price models in operations contexts have not been flexible 

enough to evaluate if and when price cycles might be optimal. Previous work has 

evaluated the impact of price promotion (in this context referring to a weekly special 

or sale) without considering whether: a) cycles are optimal and b) which prices 

were optimal (Fader and Lodish [1990], Oliveira-Castro et al. [2005], Bridges et al. 

[2006], Srinivasan et al. [2008]). The work of Kopalle et al. [1996] found that for loss 

seeking consumers (those for whom response to lower than expected price is greater 

than for a higher than expected price) a price cycle is always optimal. They also 

show that for loss averse consumers (those for whom the response to a higher than 

expected price is greater than the response to a lower than expected price) a two or 

three period cycle is never better than a one period cycle. We show later that a 

one period cycle is always optimal for loss averse con.Sumers. We then introduce a 

threshold model, which is based on empirical work done in marketing and provides 

a theoretically sound framework within which price cycles can exist and be modeled. 

It is also a more robust model as it does not require cyclical pricing but will allow 

it under specific conditions. It allows for price to cycle for the empirically validated 

loss-averse consumer as well. 

The reference threshold models are evaluated in a monopolistic setting. It is 

worth noting that reference price models are most relevant for frequently purchased 
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items. Greenleaf [1995] used peanut butter for his empirical analysis and the deter­

mination of optimal prices. There is research that suggests for frequently purchased 

items such as groceries, the first decision a consumer makes is the store and then will 

make within store decisions on specific items or brands (Rajiv et al. [2002], Gijsbrechts 

et al. [2008], Sands et al. [2009]). It is, therefore, reasonable to model the demand 

process in a monopolistic context. These can be extended into a oligopolistic con­

text but these initial robust threshold models provide interesting and relevant insight 

into price paths for loss averse consumers. The threshold model has some appeal 

as it is sufficiently robust to offer either cyclical or every day low pricing (EDLP) 

strategies depending on the parameters of the demand function. Previously, refer­

ence price models (and most other models of demand) have imposed either cyclical 

or EDLP strategies depending on loss aversion or loss seeking behaviour on the part 

of consumers. 

We then evaluate the impact of reference prices (for both loss averse and loss 

seeking customers) on optimal pricing decisions with stochastic demand. Previous 

work with reference prices has only considered deterministic demand models. There is 

a rich body of literature which considers inventory decisions when demand is random 

(e.g. see Petruzzi and Dada [1999] and Porteous [2002]). This includes analysis which 

considers price as exogenous and when price is a decision variable. It is reasonable 

to consider the impact of stochastic demand on pricing and inventory decisions in a 

reference price context. We highlight that while Gimpl-Heersink et al. [2008] suggest 

that simultaneous models of price and inventory decisions do not generally provide 

significant incremental benefits as compared to sequential models, the incorporation 

of reference prices would still require simultaneous solutions to determine accurate 

results. We develop both loss averse and loss seeking reference price models and 

explore the results analytically and computationally to determine the interaction 

between stochastic demand and inter-temporal reference effects. 

The application of reference models has, to date, been limited to determining 

optimal price paths and the associated individual period demands. We also pro-
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pose evaluating approaches to analyzing reference price models and the associated 

optimal pricing paths in the context of setup or ordering costs and inter-temporal 

holding costs for inventory. When prices and production or ordering quantities are 

determined simultaneously, the interactions need to be considered to optimize profits. 

Early work (Wagner and Whitin [1958]) provided dynamic lots sizing approaches for 

exogenous prices. Subsequently Thomas [1970] developed the problem with price as 

a decision variable. The ordering patterns and pricing decisions that come out of 

optimal solutions will clearly be impacted if there are inter-temporal effects of pricing 

decisions. It is worth exploring what the impact will be on optimal decisions given 

reference prices. This will provide valuable insight for managers. This goes well 

beyond any of the applications in the operations literature to date. 

1.2 Contribution 

The work in this dissertation represents a significant contribution in the area of pricing 

strategies as it is the first work, to our knowledge, to comprehensively build multi­

period models with inter-temporal reference effects. We show that the consideration 

of inter-temporal effects is important as the relationship between past prices and 

current demand does affect the optimal decisions. 

Chapter 3 provides the first comprehensive analysis of the reference price 

model. It builds on the work of Kopalle et al. [1996] and presents a proof that 

the optimal price strategy for the loss averse model is a single price. This is also 

the first model to explicitly incorporate non-negativity conditions within the demand 

model. This chapter also has an analytical solution for the two period loss seeking 

reference model. We know that a multi-period cycle will always be better than a 

single price strategy. While we would still have to solve the model using the dy­

namic programming recursion, this two period analytical result does provide some 

insight into the model and serves as the foundation for a later result in the model 

with stochastic demand. 
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The development of the threshold reference model in Chapter 4 is the first time 

that the threshold model has been brought into an optimization context to determine 

pricing strategy for frequently purchased items. It builds on the empirical foundation 

of the marketing literature and bridges to the pricing analysis from operations. This 

is the first multi-period model optimization model that has the flexibility to have 

optimal strategies that include both single price strategies and price cycles. It is 

theoretically sound and we provide computational results that include both single 

and multi-price strategies depending on the specific parameters of the model. We 

also present a number of propositions that reduce the search space for the dynamic 

programming model to increase the efficiency with which it can be solved. Given the 

advances in nonlinear integer programming approaches, we show that this model can 

be formulated and effectively solved as a mixed integer programming model. This 

approach has never been used before in the reference pricing literature, either with 

our without thresholds. 

The work in Chapter 5 is the first to incorporate stochastic demand into ref­

erence price models. We develop two models, the first with loss averse consumers 

and the second with loss seeking consumers. We introduce a recursion to maximize 

expected profit in order to determine the optimal long term pricing strategy. We 

show that for a loss averse customer, incorporating reference pricing into a stochastic 

demand context yields the same optimal pricing decision as without reference pricing. 

In the loss seeking case, the incorporation of stochastic demand is likely to change the 

optimal pricing decision but the specific nature of the change on the optimal pricing 

decision depends on the specific parameters of demand and the distribution of the 

stochastic element of demand. We present computational results for both loss averse 

and loss seeking consumers. 

Petruzzi and Dada [1999] highlight the problem of inventory in excess of the 

optimal stocking quantity. They highlight that previous research has used the as­

sumption of costly disposal to simplify the pricing choice to the price which yields a 

stocking factor equal to starting inventory within the expected profit function. This 
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clearly has implications in a reference pricing context. We introduce an approach to 

determining the optimal price in a period where starting inventory is greater than the 

optimal stocking factor. We first introduce a result to determine the optimal price 

without reference prices that does not require the assumption of costly disposal and 

then extend that result to the reference context. 

We investigate the dynamic lot sizing problem in a reference pricing model. 

This has not been done previously. We provide a general solution approach and some 

basic results that narrow the search space for optimal solutions. We show that the 

risk averse model without setup and holding costs provides an upper bound on cycle 

length and develop lower bounds for price in each pricing period. We then provide an 

algorithm for solving the dynamic lot sizing problem and provide some computational 

results. The managerial insight for loss averse consumers is that optimal price cycles 

will likely be shorter and price increases smaller than had been previously thought 

without reference prices. 

1.3 Overview 

This thesis is broken into seven chapters. This first chapter provides an introduction 

and· overview of the problems and the research conducted. We set the broad context 

for the research and the motivation and contribution of the work. Chapter 2 reviews 

the relevant literature. The first sections provide an overview of the literature on 

reference prices generally. The early research on reference prices focused primarily 

on individual consumers and is published largely in the marketing literature. We 

then discuss the emerging published research in the area of firm level models. This 

translates the existence of reference prices into models that allow for the develop­

ment of strategic optimal pricing decisions to optimize profits given different types 

of consumers. The final portion of the reference price section introduces the liter­

ature relative to the concept of a threshold on reference prices. The threshold has 

been found in marketing literature but never, to our knowledge, been incorporated 
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into firm level pricing models to provide insight into the optimal price path for firms 

facing this type of demand. 

We also provide .an overview of the literature relative to : 

1. the incorporation of stochastic demand into price determination models, and 

2. ordering decision with setup/order and holding costs. 

A stochastic element for demand changes the problem to maximizing expected 

demand based on expected shortage and overage costs. It has been shown (see for 

example Petruzzi and Dada [1999]) that the optimal price with uncertain demand 

is lower than in the certain demand case. We outline this literature to set the 

foundation for the incorporation of uncertainty into reference price models. 

The joint inventory and pricing decision given setup/order costs and holding 

costs is a difficult one that has received attention in the literature. The inter-temporal 

effects of reference prices add a new element to these problems. Once again, we set 

the foundation for this work in the final section of the literature review. 

Chapter 3 introduces the basic reference model that will serve as the foundation 

for all of the subsequent work. The model presented is similar to that in some of the 

seminal work in this area (Greenleaf [1995], Kopalle et al. [1996]). We do present the 

model in more detail than previously published and explicitly acknowledge elements 

such as non-negativity constraints. We offer a proof of the optimality of a single price 

strategy (EDLP) in the loss averse reference model. We also present some analytical 

results for the price in a two period cycle for the loss seeking case. 

The threshold model is in:troduced first in Chapter 4. A threshold implies a 

zone above or below the expected (reference) price within which there is no reference 

effect. The specific size of the threshold as well as the nature of demand response 

outside of that threshold, allow the model the flexibility to have optimal price paths 

that either cycle or have a single price. The model is built on a solid empiricall. foun­

dation from a rich marketing literature (see for example Kalwani and Yim [1992], 

Moon and Voss [2009] and Krider and Han [2004]). We offer some basic results 
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attributable to threshold models. We also offer a number of propositions that reduce 

the search space for optimal price paths in the dynamic programming formulation 

and some computational results based on that formulation. We then offer an ap­

proximation of reference price formation that allows us to formulate a mixed integer 

nonlinear programming model to determine optimal price paths. This performs very 

well providing accurate results efficiently. 

The stochastic demand model follows the threshold model. In Chapter 5, 

we outline the basic stochastic demand model in the absence of reference prices and 

then extend it to both the loss averse and loss seeking reference demand cases. We 

present some computational results to demonstrate the impact of different demand 

parameters and distributions for the stochastic portion of demand. A loss averse 

additive reference demand model behaves the same as the regular demand does with 

the incorporation of stochasticity. The loss seeking case, however, will either have 

larger or smaller price spreads given stochasticity. The specific response depends on 

the parameters and the distribution of the stochastic element of demand. 

The final contribution is the analysis of the reference model with setup j ordering 

costs and holding costs. This combines the optimal pricing decision with inventory 

decisions over time. We show how the problem can be solved in the context of stable 

demand and generally and present computational results in Chapter 6. 

The thesis concludes with a summary and overview of the results as well as a 

discussion of potential extensions to the research. 



Chapter 2 

Literature review 

2.1 Introduction 

We provide a review of the relevant literature with respect to the specific areas of 

interest in reference price models as well as the foundation for the application of these 

models to different problems. The first section of this review provides an overview 

of the evolution of modelling in the marketing/ operations interface to set the broad 

context within which we conduct our analysis. We then provide a discussion of 

previous reference price research, with a focus on price determination models. We 

then present a discussion on the research into thresholds on reference prices. This is 

largely grounded in the marketing literature and serves as the empirical foundation 

for the robust threshold reference pricing model that represents the first contribution 

of this research - a reference pricing model with the flexibility to either cycle or be 

constant depending on the parameters of the model. We then present a review of 

relevant literature in the area of joint pricing and inventory with stochastic demand 

and pricing and production models with setup and holding costs. Models in these 

areas will set the foundation for our contributions in Chapters 5 and 6. 

10 
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2.2 The Marketing-Operations Interface 

There has been an evolution in the study of business problems. As early as 1977, 

authors such as Shapiro [1977] highlighted the often conflicting objectives between the 

marketing and operations functions within a firm. He suggests greater integration 

in decision making in order to leverage the relative strengths of the different compo­

nents of the firm. This strategic impetus could as easily have been given to some 

researchers to bridge the gap and provide managers with analytical insight for the 

firm that includes elements of both operations and marketing strategy. Subsequent 

research (Pauwels [2004]) has also found that effectiveness in one area (in this case 

marketing) depends not only on marketing related factors but also on broader com­

pany characteristics. There is, therefore, an ongoing need for research that brings 

together elements of marketing and operations strategy and tactics. 

11 

Tang [2010] provides a review of marketing operations models and their evo­

lution. He highlights that the integration between marketing and operations has 

moved from coexistence to increased collaboration and coordination. This is largely 

based on an increased understanding of the value proposition for consumers. The 

supply chain has become an integral part of the customer value proposition (Lilien 

et al. [2010], and Melnyk et al. [2009]). The work of academic researchers is parallel-

. ing the evolution of supply chain managers in practice, who seek to maximize profit 

across the whole enterprise rather than in individual departments and account for the 

fact that the activities of disparate departments can affect customer satisfaction and 

profit. Walters and Rainbird [2004] argue that supply chain models need to incor­

porate demand factors to effectively provide operations insight. They acknowledge 

that efficiency and cost reduction can be important but cannot be considered in the 

absence of an understanding of the consumer impacts. 

Tang [2010] proposes a framework within which to consider marketing-operations 

interface research and provides a comprehensive review in several areas. Fundamen­

tally the marketing function involves creating value for and extracting value from 

customers. This considers the customer wants and needs and frames an offer at a 
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Figure 2.1: Marketing/Operations Interface 

Operations Techniques 
in Ma.rketin 

Pure Marketing Pure Op era.tions 

specific price that they believe will best meet the needs of the customer. Operations 

is responsible for getting the product or service to the customer. He provides an 

overview of the different types of research that have been undertaken that link those 

marketing and operations functions explicitly. 

In the context of the pricing research in this dissertation, it is worth a dis­

cussion of the integration of pricing and operations specifically. We would suggest 

there are three ways that marketing and operations research interact. Our proposed 

framework is presented in Figure 2.1. The framework builds from completely separate 

research streams of pure marketing and pure operations. There are joint marketing 

and operations models like the ones presented later in this dissertation (represented 

as the tip of the triangle in Figure 2.1). There are also studies that do not completely 

integrate marketing and operations into the models but rather either apply operations 

techniques to marketing problems or apply marketing insight into operations models 

(represented as the extremes of the triangle base in Figure 2.1). 

Thomas [1970] extended the operations research approach of Wagner and 

Whitin [1958] which considered production decisions with price as exogenous, to in­

clude price as a decision variable. This work was published in 1970 and preceded 

much of the more recent discussion of marketing-operations interface. This is clearly 

a transition from purely marketing work to joint models to purely operations research 
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and is well covered in previous reviews such as Tang [2010]. 

There is also a body of research that has applied optimization and other oper­

ations techniques to marketing problems. This research takes the behavioural result~ 

from marketing to develop decision insight for managers. The marketing results of­

ten provides perspective on consumers response when firms take a specific approach 

and then the operations tools can provide insight into which approach might be best 

suited to the company. 
' 

An example of purely marketing research would be the work of Tellis [1988a]. 

They look at consumer response in the face of loyalty programs and advertising expo­

sure. It is an important insight but gives no perspective on the level of advertising to 

choose. They find advertising works more to keep existing customers (prevent switch­

ing) than to promote switching from other brands. Similarly, Bridges et al. [2006] 

looks at previous use and promotion level to evaluate consumer response. Gaur and 

Fisher [2005] estimate a demand curve based on an experimental exposure to different 

prices in a store context. There is a rich literature in pure marketing with respect 

to consumer behaviour or response and the work cited here is merely an introduction 

for context. 

We now consider the next step in the continuum, the case where operations 

or optimization tools are applied in a marketing context. The work of Prinzie and 

Van den Poel [2006] applies Markov chain analysis in an effort to better anticipate 

the next financial service a particular customer is most likely to want. This takes 

an operations framework and applies it to a customer relationship management prob­

lem. Voina [2004] optimizes marketing mix using the theory of controlled stochastic 

processes and develops a solution algorithm. Similarly, Green and Krieger [1985] 

optimize the producer and consumer welfare in order to make product line choices. 

They also propose heuristics for solving the problem. Baltas [2004] exploits stochastic 

interdependencies to develop a model for multiple brand choice. 

Esteban-Bravo et al. [2005] evaluate optimal promotion duration in the mag­

azine industry. They explicitly model expected response based on duration and 



14 Ph.D. Thesis- Michael von Massow 

develop a model to provide insight for publishers to maximize return on promotional 

investment. Nguyen and Shi (2006] are able to incorporate both market share and 

market size dynamics into an optimization model for advertising strategy. They 

develop an empirical demand model to provide the parameters of the model. 

In the pricing area, Turui and Dahana (2006] uses a Markov chain Monte Carlo 

method to evaluate producer price sensitivity and the existence of price thresholds. 

Greenleaf (1995] and Kopalle et al. (1996] both use optimization tools in reference 

price models to develop optimal pricing decisions. 

We now consider some of the literature that brings marketing and operations 

considerations in an operations context. While this analysis is often the most complex, 

it provides more meaningful managerial insight as it helps provide strategic insight 

into decisions. This work is often built on the foundation of empirical marketing 

research to provide insight into consumer response. There are several different types 

of approaches and factors considered. Taaffe et al. [2008] examine a newsvendor 

problem with consideration of target market and marketing effort. It is a market 

allocation and marketing effort problem optimizing both ordering (operations) and 

marketing efforts. Bottani and Montanari (2010] explicitly model the interaction 

between supply chain parameters such as logistics costs and times and demand using 

simulation to assess optimal supply chain structure. Aydin and Porteus (2008] evalu­

ate joint pricing and inventory decisions for multiple products with stochastic demand 

in a newsvendor model. They show that they can find unique optimal solutions de­

spite some issues with the objective function. Petruzzi and Dada (1999] evaluate 

the joint pricing and stocking decision and summarize the previous work in this area. 

They consolidate the work relative to additive and multiplicative components of sto­

chastic demand. They do spend some time talking about the multi-period model 

and that due to its complexity it has received very little attention in the literature. 

There is an increasing understanding that building models that reflect both 

operations and marketing decisions and provide insight into optimal decisions can 

contribute to the literature and to managers. There is a building body of literature 
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that considers pricing and inventory decisions, with both deterministic and stochastic 

demand. There has been little research in pricing and inventory in multi-period 

models and this is a gap we begin to address in Chapters 5 and 6. 

2.3 Reference Prices 
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The concept of reference price has been widely studied in the literature (Winer [1986], 

Biswas and Sherrell [1993], Biswas et al. [1999], Shirai [2003], Shirai [2004], Alvarez 

and Casielles [2006], Chandrashekaran and Grewal [2006], Danziger and Segev [2006], 

Hu [2007], Campo and Yague [2007], Natter et al. [2007], Walk and Spann [2008]). 

Mazumdar et al. [2005] provide a recent comprehensive review of reference price re­

search and particularly highlight the value of understanding how prices would cycle 

in the face of loss-averse customers and recommend that models that consider inter­

temporal effects of pricing and promotional decisions continue to be developed. Ide­

ally these models will explicitly incorporate the profit maximization problem. They 

suggest that this is a limitation of the marketing research approaches that have fo­

cused on individual consumers rather than at the firm level and highlight this as a 

significant opportunity for further research. 

Kalyanaram and Winer [1995] propose three empirical generalizations from 

previous reference price research. The first is that reference prices are real. There 

is clear empirical evidence that consumers have an expected price and that the rela­

tionship between expected price and the observed price has an impact on purchase 

behaviour. The second generalization is that historical price plays a role in establish­

ing the consumers' reference price. This is reflected in the commonly implemented 

reference formation specifications. Their final generalization is that consumers tend 

to be loss averse; that they respond more significantly to a higher than expected price 

than a lower than expected one. 

The predominant formulation for reference demand models (Rajendran and 

Tellis [1994], Mazumdar and Papatla [2000], Erdem et al. [2001], Mazumdar et al. 
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[2005], Moon et al. [2006]) is the linear formulation. We use thiS formulation to 

introduce the basic model Demand is then: 

Dt =a- bpt + ,B(rt- Pt), a, b, ,B > 0, t = 1, 2, ... , T. 

where Dt is demand in period t; 

a is the intercept; 

b is a parameter on retail price representing the direct price effect; 

Pt is the retail price in period t; 

,B is a parameter on the difference between observed price and the reference price; 

and 

Tt is the reference price in period t. 

Demand in period t, Dt, is a function of price, Pt and customer reference 

price, Tt. The parameter ,B models the impact of the transactional utility. That 

is, it models the impact on demand of observing a higher or lower than expected 

price at the time of purchase. A constant ,B means that consumers respond similarly 

when price is higher or lower than expected. Demand is decreasing in price and 

increasing in reference price. We assume that the demand parameters (a, b,,B) are not 

time dependent. Reference models apply best to frequently purchased items such as 

groceries. Pricing periods at grocery stores with printed flyers are usually pricing 

weekly. It is reasonable to assume that the demand parameters for many grocery 

items such as milk or peanut butter would be stable from week to week. 

We generally expect that the direct price impacts are greater than the reference 

impacts but this need not be the case. The results summarized in Kalyanaram and 

Winer [1995] suggest that consumers are loss averse so we need to specify that: 

Winer [1986] uses the most simple of historical price relationship for reference 

price, Tt = Pt-l· He cites abundant early reference price research which found 
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empirically that a lagged single price was a good indicator for reference price and 

performed as well as other more sophisticated measures. The bulk of reference price 

studies have used an adaptive expectations model based on the seminal work in 

Nerlove [1958]. This uses an exponential smoothing approach to reflect both historic 

prices and the most recent pricing experience. 

rt = art-1 + (1- a)Pt-1 : 0 ~a~ 1, t = 2, 3, ... , oo. 
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r 1 is assumed to be known. In practice, an estimate of the starting reference price 

would be available from a variety of potential sources. Market research may indicate 

a "willingness to pay" value for new products. For an existing product with a change 

in demand parameters or cost, consumers would have experience with the historical 

price. In our models, the value of the starting reference price is not critical as we 

allow for a period of adjustment before we determine the steady state price. 

The parameter, a , reflects the degree to which the previous reference price 

is "remembered" in forming a new reference price based on the most recent price. 

Mazumdar et al. [2005] find strong support in the literature for this exponential 

smoothing specification. They find that the a parameter is generally between 0.2 and 

0.35. 

2.3.1 Reference Prices in Firm Level Pricing Models 

There has been considerably less work with reference price models at the firm level to 

determine pricing strategy. Popescu and Wu [2007] suggest that "with few exceptions, 

the dynamic pricing literature is oblivious of such behavioural aspects underlying 

demand. 11 Most studies have assumed that demand is exogenous and independent 

of past pricing decisions. It would seem that, despite an obvious increase in the 

complexity of the models, there is an opportunity for more realistic and robust insight 

from models that build in this dynamic demand interaction. It is only very recently 

that researchers have begun to incorporate reference price approaches into pricing 
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models of the supply chain in order to gain insight into optimal pricing strategies 

(Greenleaf [1995], Kopalle et al. [1996], Miao-Shen and Chuan-Biau [1999], Fibich 

et al. [2003], Anderson et al. [2005], Fibich et al. [2007], Natter et al. [2007], Popescu 

and Wu [2007], Urban [2008]). 

The initial work by Greenleaf [1995] was an attempt to get firm level pricing 

insight using a reference price model. He empirically estimates demand for peanut 

butter and looks recursively at multi-period promotion strategies and finds that it is 

optimal to have a cyclical approach with a phase during which the retailer promotes 

and a subsequent phase during which the retailer does not promote. Greenleaf's data 

suggests that consumers are loss seeking which is at odds with the earlier findings that 

consumers tend to be loss averse and so respond more to loss than to gain. He suggests 

this may be due to problems with aggregation and consumer heterogeneity. Finally, 

Greenleaf also evaluates the potential for response to a distributor deal announced in 

advance. The impact of a lower cost increases deal frequency during the time that 

the retailer has lower cost inventory. In the end, different factors probably contribute 

to the irregularity in retailer promotions. 

Kopalle et al. [1996] also attempt to model the impact of promotions on profits. 

In the case where the impact of gains exceeds that of losses, a cyclical promotional 

strategy is optimal which is consistent with the results of Greenleaf [1995]. The 

authors prove and also show numerically that the optimal pricing strategy for loss­

seeking consumers (those for whom the impact of a lower than expected price is larger 

than that of a higher than expected price) cycles. While it is appealing to have found 

a model that seems to support the HiLo pricing that we see in practice, it is built on 

the assumption that consumers are loss-seeking which has little empirical support. 

Regardless, we are left wanting for a model that provides a framework for assessing 

pricing strategies, both cyclical and monotonic which is consistent with loss-averse 

behaviour for consumers. 

Fibich et al. [2003] use a continuous time model. They argue that specifying 

a continuous time profit function and solving for optimality conditions provides very 
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elegant explicit solutions that are easier to use than the computationally difficult 

dynamic approaches that have been used in the past. Once again, however, we are 

left without an explanation of how and when a cyclical pricing strategy might be 

optimal. 
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The work of Natter et al. [2007] is particularly interesting. They apply a 

pricing model which includes reference prices to a European home renovation/do-it­

yourself retailer. They develop pricing strategies for the company using the specified 

model and implement them with dramatic improvements in profitability. They do not 

report specific model parameters so it is not clear whether consumers are loss averse 

or loss seeking. They also do not comment on the optimal price paths - whether there 

is cyclicality or single prices. The models include cross price effects separately from 

direct demand effects in an effort to maintain computational tractability. It seems to 

provide good results if somewhat theoretically suspect. It is also worth noting that 

the demand function includes both reference impacts and discounts which seems to 

double count. While they do not explicitly address this, they do empirically estimate 

the demand function and find a good fit with good profit results. It might be argued 

that the discounts reflect an external reference price effect while the other reference 

effects reflect an internal reference price. 

It is also worth highlighting the results of Gimpl-Heersink et al. [2008]. They 

evaluate the value of frameworks in which we make joint inventory and pricing de­

cisions. They find that the complexity of the analysis in a simultaneous decision 

does not often yield significant incremental profits relative to a sequential decision 

approach. They note, however, that when we incorporate reference prices the benefits 

that accrue to simultaneous decision analysis is substantial. The incorporation of ref­

erence prices increases the impetus to making these decisions jointly which reinforces 

the approach taken in this research. 
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2.3.2 Thresholds on Reference Price 

The concept of a threshold on reference impacts has been found in a number of 

studies. Kalwani and Yim [1992] explored reference price formation and found strong 

evidence of a band of insensitivity around price expectations as well as strong evidence 

of loss-averse consumers. 

There are a number of other papers that have similar findings (Lichtenstein 

et al. [1988], Gupta and Cooper [1992], Kalyanaram and Little [1994], Janiszewski and 

Lichtenstein [1999], Krider and Han [2004], Lewis [2004], Campo and Yague [2007], 

Fibich et al. [2007], Pauwels et al. [2007], Thomas and Menon [2007], Moon and Voss 

[2009], Marshall and Na [2000]). All of these studies find a range around the reference 

price within which there is no reference effect. 

Turui and Dahana [2006] suggest that we need to consider thresholds on refer­

ence price to accurately reflect the response to higher or lower than expected prices. 

They empirically estimate models with thresholds and find that the reference effects 

are more pronounced and loss aversions stronger. There are also studies which 

suggest that the threshold may differ under different circumstances. Pauwels et al. 

[2007] find explicit evidence of thresholds and that the size of the thresholds may 

differ between brands and categories. Notably, they find that thresholds may be 

asymmetric around reference price and that there may be differences in elasticities 

for gains and losses (asymmetric gain and loss effects). Janiszewski and Jr. [2004] 

find empirical evidence of different reference thresholds by product. They show that 

for complements that might form a bundle, the product with the smaller threshold is 

better to discount to increase the profitability of the bundle. The work of Moon and 

Voss [2009] finds empirical support for a price range model in explaining the purchase 

behaviour of consumers of toilet tissue. They find differences between brands which 

are reflected in the ranges. The authors also find that there is difference in promo­

tional sensitivity (the size of the threshold) depending on how susceptible consumers 

are to external reference prices. Janiszewski and Lichtenstein [1999] finds that the 

perception of price in the context of reference price depends on the end points in the 
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range which may also reflect a range around reference price that is· "reasonable." 

Research by Berkowitz and Walton [1980] found contextual factors contribut­

ing to reference price effects. They evaluated the perception of price based on differ­

ent parameters. They found that store reputation has an impact on price perception. 

One interesting finding was that discounts at discount stores were less attractive than 

others. This may suggest that thresholds are bigger for some stores than for others. 
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Biswas and Sherrell [1993] found that consumers who considered themselves 

to be well informed about a product were more confident in their price expectations. 

They suggest that, depending on the product or brand, there are varying degrees of 

confidence around an expected price. One might interpret this as suggesting that 

consumers with a lower knowledge of a product may have an expected price range 

(or threshold) rather than a specific expected price point. Both Shirai [2004] and 

Thomas and Menon [2007] found evidence of uncertainty relative to reference prices 

which could contribute to thresholds around reference price. Thomas and Menon 

[2007] found that the confidence with respect to reference price increased the internal 

reference price and increased the sensitivity to price changes. 

Reference price formation was evaluated by Niedrich et al. [2001] who found 

evidence to support within category comparisons of price in the formation of reference 

price. The work finds that the high and low prices within a category play a role in 

reference price formation. This might establish a type of range for reference price 

which may be analogous to a threshold. 

Briesch et al. [1997] evaluated a number of different reference price approaches. 

While this is one of very few empirical studies that have found loss seeking behaviour, 

there are some interesting results. Their specification included a loyalty parameter 

based on previous purchases of a brand. They found that previous purchase was 

a significant factor in determining whether a brand was purchased in a subsequent 

period. The work of Lewis [2004] also considered loyalty and he found that loyalty 

programs work, that is they increase the amount of a specific brand that consumers 

will purchase during a year. This suggests that loyal consumers are less susceptible 
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to price changes within a certain range. Within a reference context, then, this would 

suggest that brands with higher market share would have a threshold on loss if price is 

higher than expected. Lattin and Bucklin [1989] also found evidence of a loyalty effect 

in a reference price model. Tellis (1988a] finds that advertising increases preference 

for current brands (perhaps increasing a threshold) while price and promotion seems 

to have more impact on quantity purchased. 

While the work of Chen et al. (1998] was not related to reference price, they 

did find that price promotions needed to be larger for high priced products than for 

lower priced products. They hypothesize that the investment required for a higher 

priced product is such that a bigger discount is required to incent someone to buy 

more or buy at all. This could perhaps be interpreted as higher price products having 

a higher threshold before which no reference impact will occur. Kim and Kramer 

[2006] find that there is uncertainty with respect to the value of discounts (i.e. 30% 

off) and the size of a deal which might also contribute to moderating the effects of 

smaller discounts. 

There appears to be strong empirical support for the concept of a threshold 

around reference price. We address the optimal pricing decisions based on this 

empirical foundation in Chapter 4. 

2.4 Models with Stochastic Demand and lnven-

tory Considerations 

There is a wealth of research which considers decisions facing firms with respect 

to inventory when they face stochastic demand. Porteous [2002] provides a good 

overview of the problem in both a static and multi-period case. The introduction 

of the pricing decision for firms facing uncertainty came from the work of Whitin 

(1955] and subsequently Mills [1959]. The work of Zabel (Zabel [1970), Zabel [1972]) 

looks at joint pricing and inventory decisions for firms facing uncertainty. Zabel 
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[1970] considers the monopolist single period case and follows that with Zabel [1972] 

and the monopolist multi-period case. He characterizes the optimal solutions in 

finite horizons. This work laid a broad foundation for a significant body of future 

work. Thowsen [1975] also considers the multi-period problem and he develops 

sufficient conditions, relative to the specific distributions of the stochastic component 

of demand, for optimal solutions to exist. 

An integration of much of the previous work is introduced by Petruzzi and 

Dada (1999]. They consider the single period problem (newsvendor) and integrate 

both additive and multiplicative demand to generalize results. They discuss the 

characteristics of the optimal solutions for both additive and multiplicative demand 

and outline approaches to the determination of both optimal stocking factors and 

prices. They subsequently provide a framework which incorporates either or both 

demand specifications. It is of particular interest to this research that the authors 

discuss the multi-period problem generally and the characteristics of the optimal 

solution under certain conditions. 

The work of Gallego and van Ryzin (Gallego and van Ryzin [1994], Gallego 

and van Ryzin [1997]) considers the problem of pricing a fixed inventory over a finite 

horizon when the firm faces stochastic demand. They consider both the case of 

one product and the one for multiple products. They find asymptotically optimal 

solutions using characteristics of the deterministic problem. They also consider 

different characteristics within the problem including such things as time varying 

demand, holding costs and the possibility to reorder among others. Chung et al. 

[2009]look at a newsvendor problem and allow for an in-season price change. The 

opportunity to adjust prl.ce decreases the uncertainty and increases expected profit. 

They also show that the initial inventory level is higher. Aydin and Porteus (2008] 

also consider multiple products and allow for price based substitution but not stockout 

based substitution. While they acknowledge that the objective is not joint quasi­

concave in price, they find that their model as specified can provide a unique optimal 

solution based on first order conditions. 
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Chan et al. [2006) evaluates the joint production and pricing problem for a firm 

facing stochastic demand and with a discrete portfolio of price choices. They have no 

backlogging ( unmet demand is lost) and assume limited production capacity. They 

assess different policies (delayed pricing and/or delayed production) and evaluate the 

better approach. They also consider the special case where a single price is chosen 

for the entire period and discuss solution approaches. 

Federgruen and Heching [1999) uses a Markov process model to determine the 

optimal pricing decision for an infinite or finite horizon problem. Each single period 

problem is solved optimally with no connection between periods unless inventory is 

carried forward. They find that a base stock list price policy is optimal if inventory is 

below the base stock. If inventory is above the base stock they propose discounting 

to a level that the expected profit is maximized given the stocking level represented 

by the inventory. The opportunity to promote is included in the model presented 

by Zhang et al. [2008). They consider a single product finite horizon problem. 

Promotion is used at specific thresholds to increase demand in production periods 

to maximize profit. They also characterize an optimal pricing policy (with some 

assumptions on the nature of demand). They include setup and holding costs. 

Wilhelm and Xu [2002) evaluate pricing and production but add the oppor­

tunity to introduce product upgrades. In order to keep the problem tractable they 

make a substantial number of simplifying assumptions. They evaluate the decisions 

in a dynamic programming model to develop the decision support tool as to when 

to upgrade based on previous uncertain outcomes. They limit the production and 

price choices to specific discrete levels and probabilistic demand levels. This is sim­

ilar to the work of Damodaran and Wilhelm (2004) who consider a broader range of 

options such as product design (similar to the upgrades above), pricing, production 

quantity and marketing activities. They introduce a branch and price algorithm for 

solving the problem and find it performs quite well and better than most commercial 

software. 

There has not been much work relative to the pricing and inventory decisions in 
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a competitive context. Pan et al. [2009] considers the pricing decision of a dominant 

retailer (one with market power to set prices, such as Walmart). They evaluate a two 

period case in which they .assume the product will have a declining price. They argue 

this is the case for many technology products that have a relatively short lifecycle and 

are subsequently replaced by new technology. They characterize a unique optimal 

price. 

Urban [2008] does consider reference price effects in a single period newsvendor 

model. This study is limited in that it does not consider the long term effects of 

a low price on reference price. It does, however, provide a first evaluation of the 

stocking requirements for a reference model. 

There is clear interest in the literature in exploring the approaches to making 

joint pricing and inventory decisions for firms facing stochastic demand. There has 

not been any significant exploration of the problem with respect to reference prices. 

2.5 Models with Set-up and Holding Costs 

There has, to date, been no research on the dynamic lot sizing problem with reference 

prices. The basic dynamic lot sizing problem was introduced by Wagner and Whitin 

[1958]. They introduce the dynamic lot sizing problem with known price and, there­

fore, demand. The problem generalizes the economic order quantity by allowing the 

demand for product to vary over time. Setup/ordering costs and holding costs are 

given and then optimal order quantities over time are determined over time. Wagner 

and Whitin [1958] present a dynamic programing algorithm for solving the problem. 

The work of Williams [1975] develops a dominance relation that includes setup cost 

and reduces the solution space for the problem. 

There has been substantial work undertaken to develop heuristics that can 

solve the problem efficiently. The Silver Meal heuristic (Silver and Meal [1973]) is 

a well known one which performs reasonably well in many cases but can result in 

arbitrarily large errors in some cases. Axsater [2006] also outlines a simple heuristic 
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which often performs well (and is easier than the Silver Meal) but can also result in 

very large errors. If the planning horizon is relatively short, it is easy to get optimal 

solutions using the Wagner Whithin algorithm and even for longer horizon problems 

the optimal solution may not be computationally impractical. Often, though, the 

heuristics provide easily computed and relatively good solutions. 

Thomas [1970] builds on the basic results of Wagner and Whitin [1958] to 

develop a model in which price is also a choice variable. Thomas [1970] presents four 

key lemmas for the dynamic lot sizing problem with price as an endogenous variable. 

They are worth noting in this context because at least three of them will continue to 

hold for the reference pricing problem. The four key results are: 

1. An optimal program exists in which each period has either production or a 

starting inventory equal to zero but not both: ltXt = 0. Where It is the 

starting inventory in period t and Xt is a binary variable that equals one if there 

is production in period t and zero otherwise. 

2. Analogous to the first Lemma, an optimal program exists in which the starting 

inventory is either zero (in which case production occurs) or is exactly equal to 

L::~=l Dt(pt) for some k, t < k ~ T. This means that production covers either 

all or none of a subsequent period's demand. 

3. An optimal program exists such that if demand in period tis met by production 

in period t*, t* < t, then all demand in the intervening periods is also met by 

production in period t*. 

4. In the optimal program where for some period It = 0 for some period t, it is 

optimal to consider periods 1 through t - 1 alone. 

Thomas [1970] also provides results for lower and upper bounds for the problem 

to simplify the computations. This work set the foundation for a body of subsequent 

dynamic lot sizing research. This is not intended to be a comprehensive review of the 

dynamic lot sizing literature. Rather we present some of the extension of Thomas 
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[1970] in order to establish the general context of our extension with the inclusion of 

reference prices. 

This continues to be a problem that garners research attention. Geunes et al. 

[2006] evaluates the joint retail pricing and manufacturing quantity decision in an un­

capacitated context and present a polynomial time solution approach. Geunes et al. 

[2009] builds on this work in a production capacity context and provide another poly­

nomial time solution approach. Capacity constraints, either constant or time varying, 

are incorporated in Deng and Yano [2006]. It is worth noting that they find that 

optimal prices may actually increase with capacity. Special cases of the capacitated 

production problem are also evaluated in Chan et al. [2006]. Their problem evaluates 

the planning process with stochastic demand and a discrete price vector. Incorpo­

rating stochastic demand gives the opportunity to take two approaches. Firms can 

make the pricing and production decisions at the beginning of the planning horizon 

or adjust the decisions later in the horizon as past demand is known and inventories 

may change. 

The work of Bhattacharjee and Ramesh [2000] introduces another special case 

of the dynamic lot sizing problem with price as a choice variable. They consider the 

case where the product has a fixed life (such as a perishable grocery product). This 

shortens the feasible time horizon for any production/order cycle. They present effi­

cient search heuristics for solving the problem within reasonable parameters viably. 

Zhang et al. [2008] include the opportunity to promote products in production 

periods. They consider a single product finite horizon problem. Promotion is used 

at specific thresholds to increase demand in production periods to maximize profit. 

They also characterize an optimal pricing policy (with some assumptions on the 

nature of demand). They include setup and holding costs. 

Merzifonluoglu and Geunes [2006] consider the case where there is delivery 

flexibility and no capacity limitation. While price is not directly a decision variable 

in this case, they have the secondary decision of delivery timing and the associated 

profitability affects. The problem NP-hard and they evaluate a number of heuristics 
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for solving it. They also present an optimal solution approach given certain specific 

cost functions. 

The problem becomes more complex in a supply chain context as is seen in 

Zhao and Wang [2002]. In this paper, the authors consider a decentralized two stage 

supply chain in which both a manufacturer and retailer make optimal pricing and 

production/ ordering decisions. They develop a manufacturer's pricing schedule that 

induces the retailer to behave in a way consistent with a centralized supply chain 

which optimizes supply chain returns. 

In Martel and Gascon [1998], a model is proposed with price changes and price 

dependent holding cost. This is essentially closer to Wagner and Whitin [1958] in 

that price changes are given but there are price changes that can· affect the produc­

tion/ ordering decisions. They propose a number of heuristics to solve special cases 

of the problem such as a single price change in the planning horizon and either a 

permanent price increase or decrease. They note that intuitive solutions yield near 

optimal decisions. This includes decisions such as stocking up when price is low or a 

price increase is imminent or holding off ordering when a price decrease is expected. 

Once again, there is clear interest in the literature in expanding the scope and 

sophistication of problems in the dynamic lot sizing model with endogenous pricing 

decision. This problem, while broadly studied, has not to date, incorporated reference 

prices. 



Chapter 3 

The Basic Reference Model 

3.1 Introduction 

This chapter lays the foundation for the extensions presented in subsequent chapters. 

We begin with the specification of a simple loss averse reference demand model. This 

is similar to that specified in both Greenleaf [1995] and Kopalle et al. [1996]. We 

generally assume that consumers are loss averse based on the overwhelming empirical 

evidence in the literature (Kalyanaram and Winer [1995], Mazumdar et al. [2005]). 

In the interest of completeness we also present results for loss seeking consumers 

(see for example: Briesch et al. [1997]). The reference price model incorporates 

consumer expectations of purchase price as well as a direct price effect. This results 

in inter-temporal price effects because the expected price is a function of past prices. 

Determinations of optimal price paths, then, must consider the impact of the current 

period pricing decision on future profits. A myopic single period decision making 

framework (see for example is only meaningful if the firm is no longer planning to 

participate in the market for the product in question. Our objective is to characterize 

optimal pricing decisions for current periods with consideration of the implications of 

those decisions in the long term. We explore the long term stable cycles in order to 

29 
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understand the optimal decisions for current periods. 

This chapter first outlines the structure of the reference model, for both loss 

averse and loss seeking consumers, and presents some basic results that arise from the 

model. These results will serve as the benchmark against which the model extensions 

will be evaluated in subsequent chapters. 

3.2 The Reference Model 

The basic demand model is: 

{ 

a - bpt + f3aCrt - Pt); .if rt > Pt 
Dt - t = 1, 2, ... oo 

a- bpt + f1L(rt- Pt); if rt S Pt 

a + f3art . a a + f3 Lrt 
c s PtS b+f3a; Ifrtsb;elsecsptS b+f3L 

We reiterate that we use the linear model as it is the predominant one in the literature. 

The upper bound on Pt simply ensures that demand is not negative. It is worth noting 

here that prior studies (for example Greenleaf [1995], Kopalle et al. [2009] and Fibich 

et al. [2007]) did not include such conditions. If these are not handled explicitly 

in a solution procedure, unrealistic prices which lead to negative demand can result. 

It is reasonable to assume that consumers have a realistic expectation of what a 

product will cost. Consumers are exposed to prices for similar products or previous 

models of the same product. It is, therefore, reasonable to assume that that the initial 

reference price is bound by r 1 s ~' where i is the price at which the non-reference 

portion of demand, a- bpt, vanishes. In this case, rt =art-!+ (1- a)Pt-l S i since 

( aUf2) ~ i as rt ~ ~, so we need only have one constraint on price and that is 

that Pt s a-::12 which simplifies the constraints above. This simplified upper bound 

narrows the feasible range (and reduces the search space). There is some intuition 

for this. Since initial reference price, r1, is below i, any price above a::12 will yield 

a negative demand due to the reference loss. We note that the demand function is 
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identical whether consumers are loss averse or loss seeking. When consumers are loss 

averse we use f3a < f3L, and when they are loss seeking we use f3a 2: f3L· 
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The constraint that price not be less than cost merits a discussion. It is a 

common constraint in defining the parameters of demand. The proof of that in the 

single period case is trivial. We must consider, however, the case where prices cycle 

(as it has been shown in the loss seeking case (Kopalle et al. (1996])). The benefit of 

this constraint in this context is that it reduces the search space for optimal multi­

period problems because we do not need in consider prices lower than cost for any 

period. We offer a Proposition in section 3.4 which suggests that in a two or a three 

period cycle a price lower than cost is never optimal and then submit a conjecture 

that this is true regardless of cycle length. We show in section 3.3 that in the loss 

averse case a single price is optimal and the c ~ Pt constraint is valid again. 

A brief discussion on a demand function aggregated across consumers is also 

warranted. 

Based on this demand function we specify a profit function: 

T 

1rt(rt, Pt) = l:(Pt- c)Dt(rt,Pt) 
t=l 

where 

c is a unit cost that is assumed to be constant, 

Dt is the demand as specified above, 

< < a+f3Lrt 
c - Pt - b+f3 L ' 

r1 ~~.and 

T is the planning horizon. 

We are interested in the optimal pricing strategy over time and formulate a 

forward recursion: 

(3.2.1) 

where 
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t = 2, 3, .. , T; 

Tt = art-1 + (1- a)Pt-1, t = 2, ... , T, and r1 is given; 

!I= 0; 

Jt is a vector of discrete prices which goes from c to a-::;:t in increment 8; 

Pt is the discrete price in period t from vector Jt; 

1r t is the profit function as specified above; and 

(} is a discount factor, 0 < (} ~ 1. 

The length of the horizon, T, can affect the results as it reflects the time in 

which current pricing decisions can continue to have impact. In order to determine 

the optimum level of pricing in a steady state computationally, we need to specify a 

horizon of sufficient length to allow results to stabilize and cycles to repeat. Concep­

tually, the time horizon can be infinite (T = oo), but from a practical computational 

perspective in the recursion, the time horizon must be finite. We note that the 

vector of discrete prices increases in increments 8. One would normally expect that 

this would be increments of one cent (or the smallest denomination of the relevant 

currency). There is research to suggest that specific price points are more likely to 

entice a consumer purchase. Notably, prices ending in nine are often considered to 

be better choices (Bray and Harris [2006], Jianping and Kanetkar [2006], Baumgart­

ner and Steiner [2007], Nguyen et al. [2007], Schindler [2009]). The vector, Jt, can 

consider any series of prices that a firm wants to consider and need not increase in 

specific increments or in the lowest possible increments. The subsequent discussion is 

valid regardless of the specific structure of the price vector. Our specification allows 

for any vector. 

We use a forward recursion rather than the more commonly used backward 

recurion. In a backward recursion ft(rt) is interpretted as the "cost to go." That 

is it represents the optimal path from the end point to that point in the recurion. 

Similarly in a forward recursion we interpret ft(rt) as the optimal path from the 

start point to that point in the recursion. We choose a forward recursion in the 

interest of computational efficiency. This approach has been used before to improve 
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computational efficiency (see for example Psaraftis [1983]). In our recursion, the 

reference price is the state variable. Reference price is a function of previous prices 

charged. By working with a forward recursion, we need only consider the states which 

result from prices charged since the beginning reference price. Using a backward 

recursion would significantly increase complexity as we would consider some states 

that are not practical because they cannot be reached given the start point - the 

initial reference price. 

The discount factor also merits a mention. It is common to discount flows in 

future periods Our specification allows us to do that. We are most interested in 

developing pricing strategies that reflect the inter-temporal effects. We are interested 

in identifying repeating optimal price cycles that allow us to leverage reference effects 

to optimize average profits over time. In that case, we specify a discount factor 

of 1 because we are looking at a sequence of equally weighted periods to develop a 

repeating price strategy that optimizes average profits over time and achieves higher 

per period average profits then a myopic constant pricing strategy. While many of 

our Propositions are not restricted to the average profit criterion (i.e. 0 < () ~ 1), we 

will not use () in subsequent formulations to avoid confusion and maintain clarity for 

our specific objective. 

We also note here that we are using an aggrregated linear demand curve. The 

aggregation of the demand of individual consumers is a topic that has received sig­

nificant discussion relative to the empirical estimation of demand and generalizable 

theoretical results (see for example Nicholson [1975], Henderson and Quandt [1980] 

and Philips [1982]). Specifically, Philips [1982] highlights several specific conditions 

required for theoretically sound aggregation of consumers. The first is theoretical 

plausibility. We do not intend to revisit the extensive discussion relative to aggre­

gation and theoretical plausibility generally and refer the interested reader to the 

previously cited microeconomic texts. We do, however, highlight that the reference 

effects is based on utility theory and is validated empirically. It is, therefore, rea­

sonable to assume that this element of consumer utility is plausible and available for 
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aggregation just as price response as a reflection of utility is. The second issue cited 

is identification. Identification relates to reflecting what the specific demand curve 

reflects. This is a common challenge when estimating the demand for infrequently 

purchased items such as, for example, cars. In a given year it is not reasonable to 

assume that all consumers will by a new car so aggregation of all consumers into a 

market demand function is somewhat more tenuous than, for example, the weekly 

demand for a frequently purchased staple item at a grocery store. As is the case 

in other applied studies with demand aggregated across multiple consumers we are 

making some general assumptions but our specification is well within the parameters 

of previous research. Identification also requires a degree of homogeneity across con­

sumers. This is a somewhat more difficult assumption but again we are well within 

the context of previous work in this regard. We are considering low cost frequently 

purchased items such as groceries. The demand for these products is usually limited 

to the store as consumers make the store choice first but the cost of switching stores 

is high so demand is formed by the price of the item in the store. There is work 

(Berkowi-tz and Walton [1980]) that suggests there are differences between stores in 

pricing expectations and responses but that there is some homogeneity among con­

sumers at a particular store. This also adds support to our approach. Finally we 

note that .Mazumdar et al. [2005] found a relatively narrow band of memory parame­

ter (a) so again the assumption of homogeity seems reasonable. The third condition 

identified is ceterus paribus - that other factors will not change during the time period 

under consideration. We evaluate short time periods (such as a week at a grocery 

store) in which it is reasonable to assume factors such as preferences, incomes and 

other prices are stable. While there is an ongoing debate about aggregated con­

sumer demand and the required assumptions, we are aware of the concerns and our 

specification is well within the parameters of accepted specifications and provide the 

opportunity to gain some insight into firm level pricing strategies. 

We use the linear demand specification to explore some results in reference 

models. Our computations use linear models, as do the individual specifications in 
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which we derived closed form solutions to illustrate behaviour. We note that this 

is consistent with a broad range of economic and operations analysis generally (for 

example Petruzzi and Dada [1999]) and for reference models specifically (for example 

Greenleaf (1995] and Kopalle et al. [2009]). Our work expands the insight gained 

from reference models and the linear specification is validated in previous literature. 

We acknowledge that there is value in exploring other downward sloping demand 

specifications as well as undertaking further empirical work in this area; 

This recursion allows for the inter-temporal price effects and models the pric­

ing decision facing a firm. Before we begin outlining some key results, we define a 

function, 9t(Pt), the non-reference component of the profit function. We use an addi­

tive reference effect regardless of the form of the demand function. For example, the 

function 9t(Pt) for a simple linear specification is: 

9t(Pt) = (Pt- c)(a- bpt) = (a+ cb)Pt- bp~- ca 

The total profit function would be: 

{ 

fh(rt - Pt), if Tt- Pt ~ 0 
1rt(Tt, Pt) = 9t(Pt) + (Pt -c) 

{30 (rt - Pt), if 0 < rt - Pt 

In the sequel we will omit the subscript tin g, unless it becomes ambiguous. 

3.3 The Loss A verse Case 

The preponderance of empirical work in reference prices suggests that consumers 

are loss averse. That means that they respond more significantly to a higher than 

expected price than they do to a lower than expected price ({3 L > {30 ). We now 

consider the optimal pricing strategy for a firm facing loss averse consumers. Having 

established the function g(p), we have: 
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Proposition 3.3.1 For 0 :::; a :::; 1,/3£ ~ f3a with a very long planning horizon 

T, T ~ oo, and if g is concave, continuous and differentiable, then a single price is 

optimal and the optimal price is p*, the maximizer of g. 

Proof. We first assume that we have a one period cycle and show by contradiction 

that only p* will maximize the profit. Assume that price charged p -:f p*. We consider 

two cases. 

Case 1: p < p*. 

Since price is constant we have p = r. We know by definition that g(p) < g(p*). 

There is a finite loss in profit due to increasing price from p to p* which is equal 

to (p* - c)f3L(r- p*). On the other hand, there is a long term loss in profit is 
T T 
E {g(p*)- gt(fi)} > 0 sincep* = argmaxpg(p). Clearly, E g(p"')- gt(P);?: I(P"'- c)f3L(r- p"')l, 
t=l t=l 
i.e. the short term loss in profit of moving to p"' is less than the long term loss in 

profit of staying at p. Thus a single price strategy will never stabilize below p*. 

Case 2: When p > p"'. 

In this case decreasing the price top"' generates a gain equal to (p*- c)f30 (r­

p"') > 0 and since g(p*) > g(p) we conclude that a single price strategy will never 

stabilize above p". 

This establishes the first part of the proof: that the optimal single price strat­

egy is to charge p*. 

We now show that for any M-period cycle, M > 1, the profit is not superior 

to that obtained for a 1-period cycle charging p". We do not consider the initial 

adjustment that might be required to achieve the steady state cycle. We consider 

the long term steady state pricing policy and the associated cycle of repeating prices. 

Let the vectors (pcl,Pc2, ... ,PcM) and (rcl' rc2, ... , reM) denote the prices and reference 

prices in an M-period cycle. Note that PcM, the last price in the cycle, will be 

followed by Pel, the first price in the next cycle. We also define x+ = max(x, 0) 
M M 

and x- = rnin(x, 0). Our goal is to show that Mg(p") > E g(pcm)+ E (pm-
m=l m=l 

c) (f3a(rcm- Pcm)+ + f3L(rcm- Pcm)-) forM> 1. 

We first present three results which we will use later in the proof. 
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Result 1: For any cycle of length M, 2: (rem- Pem) = 0, i.e., the sum of 
m=l 

all the gains is equal to the sum of all of the losses. 

This can be shown as follows. Now: 

We note that 

M 

2:rcm = 
m=l 

Therefore, 

M M M 
L (rem - Pem) = L rem - L Pem 
m=l m=l m=l 

(1 -a) (PeM+aPe(M-l)+a2Pe(M-2)+··· + a 00Pe(M-l)) + 

(1- a) (Pel +aPeM+a2Pe(M-1)+··· + a 00PeM) + 

(1 -a) (Pe(M-l)+aPe(M-2)+a2Pe(M-3)+ ... + (1- a)00Pe(M-2)) 

(1- a) (pcM+apeM+a2PeM+··· + a 00PeM) + 
(1- a) (Pel+apel+a2Pel+··· + a 00pcl) + 

Result 2: Assume in an M -period cycle there are K gains and J losses 

such that K + J = M. Let rc1, re2 , •.. ,reM be the increasing order for the M cyclic 

reference prices and Pel,Pe2, ... ,pem, be their corresponding period prices. We can 

show that 

1. there exists at least one price Pcm < r c1 

2. there exists at least one price Pcm > reM 

3. for any m there exist i =f m and j =f m such that Pci < rem < Pei, where 

1 ~i,j,m~ M 
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4. rcl -Pel :5 0, and reM - PcM ~ 0. 

This result is based on the definition of a reference price. We use Pc(i)-1 and 

rc(i)-1 , i = 1, ... , M to denote the price and reference price in the period that imme­

diately precedes the period where Pc(i) and r c(i) occurred, respectively. By definition 

of the reference price we have a:rc(1)_1 = rc(l)- (1- a:)Pc(1)-1 and by the ordering we 

have a:rc(1) < a:rc(1)-1· It follows that a:rc(1) < rc(1)- (1- a:)Pc(1)-b or Pc(1)-1 < rc(1)· 

Thus, establishing part (1) of Result 2. Similar arguments can be used to show part 

(2). Part (3) follows immediately from parts (1) and (2). For part (4), rc(1) :5 Pc(1) 

has to hold, for otherwise the resulting reference price in the subsequent period would 

be smaller that rc(1), contradicting the fact that rc(1) = minl$m$M rem. A similar ar­

gument can be used to show that r c(M) ~ Pc(M). Thus the period corresponding to 

rc(l) and rc(M) correspond to a loss and gain, respectively. 

Result 3: Given k consecutive gains, G1, G2, ... GK and J consecutive losses, 

L11 L2, ... LJ, we have that ra1 ~ ra2 ~ ... ~ raK and rL1 :5 rL2 :5 ... :5 rLJ' 

This result follows easily from the fact that the reference price in period t is a 

convex combination of the reference price and price in period t- 1 and that rt :5 Pt 

and rt ~ Pt for a loss and gain periods, respectively. 
M 

Knowing that M g(p*) ~ E g(pcm) it suffices to establish that 
m=l 

K J 

LPckf3aGk + LPcif3LLi :50 
k=l j=1 

M M 
to show Mg(p*) ~ E g(pcm)+ 2: (Pm-c) (f3a(rcm- Pcm)+ + f3L(rcm- Pcm)-). 

m=1 m=l 
The remainder of the proof involves showing that, for any cycle length and 

configuration, all gains are dominated by all the losses. This means that a single 

price is optimal. We partition the gains and losses into equal pieces and for each 

combination of equal pieces, the size of the profit loss exceeds the profit gain. 

We now begin by considering an arbitrary cycle of length M, with K con­

secutive gains followed by J consecutive losses. We note that before we finish we 

generalize this to any M period cycle so that any cycle is shown to be less profitable 
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than the conStant price strategy. We define all gains, (rem- Pcm)+, Gk, and losses 

(rem- Pcm)-, Lj. 
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We know from Result 3 that the losses will occur in a sequence with ascending 

reference prices such that rL1 :5 r~ :5 ... :5 rLJ, and similarly that the gains will 

occur in order of descending reference prices and specify them such that ra1 2 ra2 2 

... ~ raK. We know from Result 1 that I: Lj +I: Gk = 0. 
r K 

We begin the process of partitioning by matching gains with losses. We do 

this by beginning at the loss with the lowest reference price and the gain with the 

lowest reference point. In this case we have exclusively losses which are sequential 

and gainS which are sequential which meanS we are starting with the last gain and 

the first loss (the bottom of the price cycle). We begin with L1 (the loss with the 

lowest reference price) and Gx (the gain with the lowest reference price). AB L1 is 

a loss, we know that PL1 > rL1 and using a similar logic we get PGK < raK. We 

assume, without loss of generality, that c=O. We recall that f3L 2 (30 . 

For an M = 2 cycleweknowthat IL1I = G1 andcaneasilyseethat IPL1 /hL1I = 

PL1f3LG1 > Pa1f3aG1 since Pa1 < rL1 < PL1 and f3L > f3a· There is, therefore, no 

case where M = 2 is optimal. It is easy to apply that same logic toM> 2. 

When M > 2, we have three mutually exclusive and exhaustive possible out­

comes when we compare L1 to Gk· Case 1 is when IL1I = Gk. We further specify 

Case 2 as IL1I > Gk and Case 3 as IL1I < Gk. In each case we have a specific 

approach to partitioning and showing that the gains exceed the losses. We follow 

through the exercise in each individual case, take the loss or gain we have remaining 

and evaluate which case we have at that point. After each iteration, we have a loss 

and a gain which we compare and then proceed with the appropriate case. 

Case 1) If ILd = Gx we know from above that the lost profit from £ 1 exceeds the 

profit gained from G K. 

AB we have dealt with L1 and Gx we now consider L2 and Gx-l· It is worth 

noting that since IL1I = GK, 
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and 

we get 

then 

This means that PaK_1 < TL-J < PL2 , which is similar to what we had for L1 
and Gx. We now can start this process again by comparing L2 and Gx_1 which are 

the next loss and gain in the sequence. We also see that TL-J < raK_1 so we have 

the same starting condition 8.'3 we did where the first loss under consideration hM a 

lower reference price than the first gain under consideration. We evaluate which of 

the cMes we have now with L2 and GK-1· 

Case 2) If IL1l > Gx we considerS additional gains such that IL1l ~ L_f=oGK-i 

but IL1l > L_f;/ GK-i· We know that S < K due to Result 1. This process takes 

the number of gains required to provide an absolute value greater than the first loss. 

We have IL1I < L_f=1 Gx-i so we partition the gain Gx-s into G'x-s and G~-s such 

that IL1l = L_f;/ Gx-s + G~_8 . This means we have a series of gains and a partial 

gain that is exactly equal to the size of the first loss. This will always be possible 8.'3 

we know from Result 1 that the total of all the gains is equal to the total of all the 

losses. 

We know that since they are gains pai < ra, Vi= (K- S) ... K. That is for 

each gain the price is less than the Msociated reference price (pa, < ra .. ). It follows 

that T£1 < raK < ... < raK-s' Now we can expand 

S-1 

IL1I = 'L:Gx-s+d~-s· 
i=1 

to give us 
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(3.3.2) 

The first terms in the equation above are simply the losses and gains expanded 

as per their definition. The last term is simply the proportion of the specific gain, 

GK-s, required to exactly cover the first loss, £ 1. The prices and associated reference 

prices for the partitions of gain GK-s, G~-s and GH'k-s are the same (raK-s and 

PaK) but we have partitioned the total gain into two elements. Now 

which means that PL1 > PG, Vi = (K- S) ... K. This gives us IPL1 /hL1I > 
II 

Et; PGK_,f3aGK-i + ~~==PGK-sf3aGK-S and so the profit lost due to the loss is 

greater than the profit gained due to the matching gains. If we do not partition 
II 

GK-S (because l£11 = Ef~1 GK-s) the ~~== component disappears but the profit 

impacts are the same. The next step is to compare £2 and dK-S or GK-(s+l)' 

depending on whether partitioning is required or not, and go back to one of the 

appropriate cases. We note before proceeding to the appropriate case, that 

(3.3.4) 

but 

Equations 3.3.4 and 3.3.5 follow directly from the fact that PGK-s < rcK-s 

since Gk-s is a gain so we can easily show that T£2 :::; raK-s and thus we have 

the same beginning condition where the first loss under consideration has a lower 

reference price than the first gain .under consideration. 

Case 3) If IL1I < GK we considerS additional losses such that GK :::; !Ef=l Lilbut 

GK ~ IEf:/ Lil· If GK < IEf=oLil we partition Ls into L~ and L~ such that 

GK = Ef;1
1 Li + L~. We know that since they are losses PL, > rL, Vi= 1 ... S. We 
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also know that Pa K < r L 1 because of the definition of reference price. We can take 

an approach similar to that taken in Case 2 and develop 

L" 
PGK - raK = r£1- PL1 + ··· + L: (rLs- PLs)· (3.3.6) 

By the same logic used in Equation 3.3.3- 3.3.6we find thatpaKf3aGK < ~t/ PL,f3LLi+ 
u . 

!J:;PLsf3aLs. That is, that the profit lost due to the losses is greater than the profit 
. u 

gained due to the gains. If we do not partition Ls, the ?s component disappears, 

as it did above but the profit impacts are the same. Once again, the next step is to 

compare GK-l and L~ or Ls+l· We can again consider the finishing condition with 

respect to reference prices: 

but 

and again it is easily shown that T£8 < raK_1, Thus, we again have the same beginning 

condition where the first loss under consideration has a lower reference price than the 

first gain under consideration. 

This iterative process where Case 1, 2 or 3 is applied sequentially, as apprcr 

priate to the entire M period cycle, results in a definitive proof that there is no cycle 

M > 1 that provides more profit than the single price 

In the case where the K gains and/or J losses are not consecutive we approach 

the problem similarly by considering the sub-cycles of the large price cycle within 

which one or more gains precede one or more losses. The cases (1 through 3) outlined 

above are applied to the sub-cycles, beginning with the highest reference price which 

is formed by a gain but involves a loss. We can show that each sub-cycle, and 

subsequently the entire cycle, results in a net loss of profit. 

There is, therefore, no cycle, M > 1, which is superior to M = 1, when 

f3L ~ f3a· • 
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It is worth noting from the proof that the increase in profit due to a cyclical 

price depends on {3L ~ f3a· We show that the sum of the positive reference gaps and 

the sum of the negative reference gaps are equal. If {3 L > f3a then a single price 

is optimal. Proposition 3.3.1 extends the result of Kopalle et al. [1996] to include 

cycles of all periodicity. Kopalle et al. [1996] showed that a single price is better than 

any cycle of length M = 2 or M = 3. It is worth reiterating that this result does 

not depend on a specific cycle length or structure. We make no assumptions about 

the sequence of price increases or decreases. This proposition has implications for 

managers. Products with long life-cycles (i.e. the planning horizon is long) with loss 

averse consumers and no thresholds on reference price, maximize profits by ignoring 

the reference effect and charging a constant price. 

3.4 The Loss Seeking Case 

While it is generally thought that consumers are loss averse (Kalyanaram and Little 

[1994], Mazumdar et al. [2005]), there is some empirical support for loss seeking 

consumers (see, for example Greenleaf [1995] and Briesch et al. [1997]). In the loss 

seeking case we have f3 L < f3a· Kopalle et al. (1996] offered a proof that for loss 

seeking consumers the optimal price will cycle. That is, if f3 L < f3a then gains 

will exceed losses and a cyclical price will result. While the approach for Proposition 

3.3.1, is different from that of Kopalle et al. [1996], it follows directly from Proposition 

3.3.1 that in the loss seeking case the optimal price will cycle. 

Given that a cyclical price is optimal, it is worth illustrating the shape of the 

demand and profit functions. Recall the deterministic reference demand function 

with symmetric reference effects: 

Dt = a- bpt + f3(rt - Pt) 

If we ignore the inter-temporal effects we would solve the single period prob­

lem. While we generally cannot ignore the inter-temporal effects we can consider for 
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illustration the special case of the end of a product's lifecycle or the final period in a 

seasonal product's selling season. In such a case we have a reference price based on 

historical price exposure but are not concerned about the impact of the current price 

on future demand. We could solve the single period problem easily resulting in an 

optimal price 
* a+ c(b + .8) + ,Br 

p = 2(b+ .8) (3.4.7) 

If we consider the case with asymmetric reference effects we have a demand 

function which is no longer linear, resulting in a profit function that is no longer as 

straight forward. The new demand curve is 

{ 

a- bpt + .Ba(rt- Pt); if Tt > Pt 
Dt= 

a- bPt + .BL(rt- Pt); if Tt ::::; Pt 

Figure 3.1 shows what this demand curve looks like in the loss averse case 

where Tt = 2.2 which causes a kink at Tt = Pt· 

Figure 3.1: Loss Averse Demsand FUnction 

1. 

r, =2.2 

I 

o~ ~5 1~ 1s ao1 as ao as 
p 

That demand function yields profit function 
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1ft = { (Pt- c)(a- bJJt + f3a(rt- Pt)); ~f Tt > Pt 

(Pt- c)( a- bJJt + f3L(rt- Pt)); if Tt ~ Pt 
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which is continuous and concave but is non-differentiable at Pt = Tt. We can illustrate 

the dynamics of this kinked profit function with a simple example. Consider the 

demand function 

{ 

1 - 0.2Pt + 0.1(rt - Pt)i if Tt > Pt 
Dt= . 

1 - 0.2pt + 0.2(rt - Pt)i if Tt ~ Pt 

The single period maximizer of that function depends on the value of rt. In 

the case where Tt = 2.4, and c = 0.5 the resulting profit function is maximized at 

Pt = 2.32, which is less than Tt = 2.4. It is worth noting that this specification 

results in demand that is less than one unit. This is not a cause for concern as a 

linear demand curve is completely scalable and this specification is only made for 

convenience. If we multiply all of the parameters by any common factor we get the 

same optimal price results, price elasticity results but at higher quantities. Consider 

equation 3.4.7. If all of the parameters (a, band f3- cis cost and not a parameter) 

were muliplied by 1, 000 the optimal price would not change. This scalability makes 

the use of this specification valid and allows for clarity without changing results or 

insight. 

If the reference price is different, however, the resulting profit function is kinked 

at a different spot (the kink occurs at the reference price). Figure 3.2 shows the profit 

function when Tt = 2.6, 2.2 and 1.8. We note that the other parameters are held 

constant. When Tt = 2.2, the profit function is maximized at p = r = 2.2. When 

r = 1.8, the profit function is maximized at p = 1.95. In this case, the reference 

price is so low that a loss is offset by an increase in profit from the non-reference 

component of the profit function. 



46 

.. ~ 

Ph.D. Thesis - Michael von Massow 

Figure 3.2: Loss Averse Reference Profit Functions 
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The single period maximizer of the reference price problem is then 

a+c(b+,Bq)+,Bqrt if a+c(b+,Bq)+,Bqrt < r 
2(b+,Bq) 2(b+,Bq) t 

p* = a+c(b+,BL)+,BLrt if a+c(b+,BL)+,BLrt > T 
2(b+,B L) 2(b+,8 L) t 

r if a+c(b+.BLl+.BLrt < r < a+c(b+,Bq)+,Bqrt 
t 2(b+,B Ll t 2(b+,Bq) 

t.D-f-,..,.,...'!"T"'!'-r-l-,rl-r---r-"TT'"I"'T'TT"T"l.-.-1 
1.{) 1.~ 1 :.!,.) I!.S U• 

{3.4.8) 

where the first two elements are the first order conditions for Tt > Pt and Tt < Pt, 

respectively We note that since a+c(b+.8L)+.8Lrt < a+c(b+.Ba)+,Bqrt these three prices 
• 2(b+.B Ll 2(b+,Bq) ' 

are both mutually exclusive and exhaustive. 

If the price cycles, as we expect in the loss seeking case, the price in Equation 

3.4.8 will not necessarily reflect the optimal price in any of the periods. In this case 

we need to solve the dynamic programming problem to find the optimal price path. 

We know that a two period cycle is superior to a single price but we do not know 

that a two period cycle is optimal. In the work of Kopalle et al. [1996], all of the 

loss seeking cycles were of periodicty two but we do not know that this will always 

be the case. We can evaluate a two period cycle analytically. 
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Proposition 3.4.1 Given /30 < b (which implies also in loss averse case that f3 L < b) 

and M = 2, the profit function is concave in prices and the optimal prices are 

* 2(b + f3 0 w1)h1 + f3w1h2 
Pl = 4(b + f3Lwl)(b + f3awl)- f32w~ 

and 

where /3 = /3 L +/30 , h1 =a+ (b+w1(/3L- /30 )c, and h2 =a+ (b-wl(/30 - f3L)c,w1 = 

(1- a)+ (a2 - a 3) + (a4 - a 5) + ... and w2 =(a- a 2) + (a3 - a 4) + (a5 - a6) + ..... 

Proof. Since M = 2, we have two optimal prices and two recurring reference prices. 

We know that: 

r1 - ar2 + (1- a)P2 

- (1- a)p2 +(a- a 2)Pl + (a2 - a 3)p2 + ... 

2 2 3 r2- (1-a)pl+(a-a)p2+(a -a)pl+···· 

We defined 

(3.4.9) 

and 

Note that w1 + w2 = 1. Thus, we can write 

and 

r2 = W1P1 + W2P2 · 
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Note that r1 + r2 = p1 + P2, which means that losses and gains cancel out, as per our 

earlier result. We assume in the two period cycle that p1 > P2· We now optimize a 

repeating two period problem with profit function 

1r(M=2) = (p1-c) [a- bpl + /3L(w1P2 + W2P1- P1)]+(p2-c) [a- bP2 + /3g(WIP1 + W2P2- P2)] 

(3.4.10) 
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We can simplify the period 1 reference effect 

WIP2 + W2PI -PI - WIP2 - (1 - w2)Pi 

- wi(p2- PI)· 

This gives us a profit for period 1 that is 

We can do the same for period 2: 

The two period (repeating) profit function is then 

1r(M=2) =(PI- c) [a- bpi+ fhwi(P2- PI)]+ (P2- c) [a-~+ f3awi(PI- P2)]. 

(3.4.11) 

The Hessian of the objective function is 

[ 

-2(b+f3Lwi) 

(f3a + f3 L)wi 

which is negative definite when b > /30 . We can then find optimal prices using first 

order conditions. 

and 
a+ (b +WI (f3a - f3 L) )c + (f3 L + f3a)WIPI 

P2 = 2(b + f30wl) · 
Using /3, hb and h2 as defined in the proposition, we obtain the desired result. • 

These analytical results for Pi and P2 will always provide a higher level of profit 

than will charging p"', the maximizer of g(p). We reiterate that a two period cycle 

does not guarantee maximum profit but requires considerably less computation time 

then solving for the optimal and offers a higher level of profit than does a constant 

price. Calculating analytical results for M > 2, is more complex. For M = 3, there 

are four different options. 
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1. Two price increases and one price decrease that result in two gains and a loss; 

2. Two price increases and one price decrease that result in one gain and two loses; 

3. One price increase and two price decreases that result in two gains and a loss; 

and 

4. One price increase and two price decreases that result in one gain and two losses. 

We would have to ::ompare the prices from all of the analytical results to the 

M = 2 results to see which is better and then go to M > 3 results and continue. 

In most cases, the dynamic programming approach will be required. The analytical 

results characterize the p1ices for a two period cycle. 

We now also consider the constraint that price must be greater than or equal 

to cost. 

Proposition 3.4.2 Give·r~, a linear demand function with additive reference compo­

nent, no two or three penod price cycle where Pt < c will ever be optimal. 

Proof. Consider first a two period cycle. When M = 2, we have a single reference 

gain and a single reference loss. We defined the profit function in Equation 3.4.11: 

We recall that PI > P2. The case where both PI and P2 are less than zero is 

trivial. Now consider the case of an optimal solution in which PI > c and p2 < c. 

We define: 

7ri = (pi- c) [a- bpi+ f3LwiCP2- PI)], and 

1r2 = (P2- c) [a- bp2 + f3awi(pi - P2)] 

If P2 < c then 1r2 < 0. If we make P2 = c, then 1r2 = 0. We also note that 7ri increases 

because the reference loss is lower (wi(P2- PI)) as P2 is larger. There is no case in 

which 1I"(M=2) is larg~r with P2 < c with any PI > c, than it would be with P2 = c and 

the same PI· We could do the analagous M = 3 scenarios of which there are the four 

options outlined above. • 
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Conjecture 3.4.1 Given a linear demand function with an additive reference com­

ponent, there will be no cycle length in which any Pt < c will be optimal. 

We note in support of this conjecture that we undertook a number of numerical 

experiments using the loss averse specification and varying the parameters and had no 

case in which there was a cycle longer than M = 2. We also note that intuitively we 

would expect that price effects on profitability will be more significant than reference 

effects. This leads us to this conjecture which suggests it is then reasonable to retain 

the Pt ~ c constraint to reduce the search space even in the case of loss seeking 

reference demand. This is an area in which empirical study could add considerable 

insight and support. 

3.5 Summary and Conclusions 

In this chapter we introduced the basic reference model. This model serves as the 

foundation for further analysis relative to the impact of incorporating inter-temporal 

price effects into decision models. These extensions include the consideration of the 

effects of stochastic demand on price cycles (in both the loss seeking and loss averse 

cases), the incorporation of thresholds and consideration of setup/ordering costs and 

holding costs. Our objective is to understand in more detail the pricing strategies 

for managers facing demand with reference effects. 

We evaluated optimal pricing strategies for the basic model for both loss averse 

and loss seeking consumers. These will serve as the benchmarks for comparison when 

we consider other extensions of the basic model. We showed that for loss averse 

consumers the optimal pricing strategy is a single price that is the same as it would 

be in the absence of reference effects. We also know that for loss seeking consumers 

a cyclical price is optimal. 



Chapter 4 

The Thresltold Model 

4.1 Introduction 

We propose a reference model which incorporates thresholds in order to study the 

impact of thresholds on a loss averse reference price model. This is consistent with the 

work of Gupta and Cooper [1992], Kalwani and Yim [1992], Kalyanaram and Winer 

[1995] and others. We are motivated to examine optimal price cycles in the presence 

of thresholds in an effort to understand the conditions under which price will cycle 

and those under which a single price will be optimal. The threshold reference model 

is more robust in that it allows for both single price and cyclical prices strategies to 

be optimal. One of the challenges of the loss averse reference model is that, without 

thresholds, a single price strategy is always optimal. We know that there are retailers 

who choose to cycle priceE and a model which allows for both strategies may provide 

more practical insights. ·we can see examples of price cycles regularly in the retail 

grocery market. We highlight specifically that the cola products {like Coke and 

Pepsi) are well known to go through a regular cyclical promotion cycle. 

51 
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4.2 The Threshold Model 

We now introduce a model with thresholds within which there is no reference effect. 

The empirical work in marketing (Kalwani and Yim [1992], Krider and Han [2004], 

Campo and Yague [2007], Pauwels et al. [2007] and Marshall and Na [2000]) suggests 

that there is a region of insensitivity around the expected price. We specify a threshold 

reference model with absolute thresholds as: 

where 

f3L 2: f3a, 

a-~+ f30 (rt - T- Pt) j if Tt - T- Pt > 0 

Dt = a - bpt ; if p ~ Tt - Pt ~ T 

T ~ 0 is the gain threshold below the reference price within which there is no gain 

effect, and 

p 2: 0 is the loss threshold above the reference price within which there is no loss 

effect. 

We specify a similar threshold model with percentage thresholds as: 

a-~+ /30 ((1- w)rt- Pt), wrt < Tt- Pt 

where 

f3L 2: f3a, 
w is the percentage threshold within which there is no gain effect, 0 ~ w ~ 1, and 

7/J is the percentage threshold within which there is no loss effect, 0 ~ 'if; ~ 1. 

Figure 4.1 shows the shape of the demand curve with reference prices and 

thresholds. Given two kinks in the curve, the resulting demand curve is neither 
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Figure 4.1: Threshold Demand Curve 

r-r r r+p 

Price 

53 

concave nor convex. It is important to note that the curve shown in Figure 4.1 is 

only for a given reference price. If a price lower than that reference price is charged 

in a given period, the resulting reference price for the next period is lower (Figure 

4.2) and the demand curve is different. The reverse is true if a price higher than the 

reference price is charged in the earlier period. 

The resulting demand curve is still downward sloping and consistent with 

economic theory. Tellis [1988b] finds significant evidence of downw~;U"d sloping demand 

curves (negative price elasticities) which is consistent with this form. There are 

examples of "prestige pricing" for some luxury type products or "sweet spot pricing" 

for selected gift items (Gaur and Fisher [2005], McClure and Kumcu [2008]) and other 

factors that are counter intuitive when empirically estimated. This specification may 
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Figure 4.2: Shift in Threshold Demand 
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provide a context within which some of these anomalies can be explained. 

The incorporation of thresholds increases the complexity of the non-negativity 

conditions. In the linear demand case the non-negativity conditions with fixed thresh­

olds are: 

a a+f3aCrt-T) 
1)1frt>b+r,thenc5PtS b+f3a , (4.2.1) 

a a a 
2) If b - p < Tt S b + r, then c S Pt S b' (4.2.2) 

a a+f3L(rt+P) 
3) If Tt S b- p, then c S Pt S b + {3L (4.2.3) 
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We note that in Case 1 in Equation 4.2.1-4.2.3, the reference price is higher 

than ~ plus the gain threshold and so the upper bound includes a gain threshold and 

a gain effect. In Case 2 the reference price is within both the thresholds away from 

~ and so we use the same bounds that we would in the non-reference model. Finally 

in Case 3, the reference price is more than the loss threshold away from ~ and so the 

limit includes a loss threshold and a loss effect. 

The first condition represents the third line segment in Figure 4.1. If it inter­

sects zero demand then the gain parameter influences the non-negativity constraints. 

The point, a- b(rt - r), represents the second kink in the demand curve. If it is 

below zero, then a- b(rt + p) is also below zero as a- b(rt + p) <a- b(rt- r). The 

second condition comes into play if the demand curve intersects zero demand. In this 

case there is no reference impact (as the price is either above or below reference price 

that causes demand to intersect zero is within the threshold). The final condition is 

where it is the first segment that intersects with the x-axis and, therefore, we need to 

be aware of the loss parameter. 

For proportional thresholds the non-negativity conditions would be: 

a a+ f3a((1 - w)rt) 
1) If r > - + w then c < p < --'-'~--:----'---'-

r b ' - t - b + f3a ' 

a a a 
2) If b- 1/J < Tt S b + w, then c S Pt S b 
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3) If r < !!:. - •1• then c < Pt < a+ !h ((l + 1/J)rt) 
t_b <p, - - b+f3L 

While the propositions and associated proofs will be consistent with either 

choice of threshold specification, we choose to focus on the absolute thresholds for 

the remainder of this discussion. It is easily shown that the results hold regard­

less of the specific form of the threshold. We choose absolute thresholds as there 

appears to be some evidence that consumers process price discounts more readily 

than percentage discounts. The literature is not definitive relative to consumer 

preference for percentage or absolute price discounts. Hu and Khan [2006] find 

that consumers prefer absolute price discounts versus percentage discounts for high 

value services. Their findings suggest that the reverse is true for low end ser­

vices although the difference is smaller and not consistent for these services. The 

findings of Chen et al. [1998] were similar. DelVecchio et al. [2007] and Dia­

mond and Campbell [1989] find that percentage discounts do not affect the re­

sultant reference price as much as absolute discounts do. The hypotheses pre­

sented suggest that consumers take the time to process percentage discounts for 

high value items as they require greater expenditure and, therefore, merit greater 

attention. For lower priced items, a percentage discount may appear bigger and 

the size of the expenditure does not merit the effort to translate it to an absolute 

amount. We hypothesize, therefore, that consumers are more likely to have an ab­

solute threshold than a percentage threshold given our application in frequently pur­

chased goods. We reiterate that either approach will work and is consistent with the 

propositions presented. This may be an avenue for eventual empirical investigation. 

The dynamic programming formulation is identical to the one above with the 

demand function replaced as outlined above. We now evaluate some results under 

reference pricing with thresholds. These results examine the impact on profitability 

of gain and loss thresholds individually. We would expect that in most cases both 

would exist and offset each other but it is worth understanding the specifics of the 
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impacts. First we consider the case where there is no gain threshold (r = 0) but 

there is a loss threshold (p). In this case there is only a zone of insensitivity to 

reference price losses. 
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Proposition 4.2.1 For 0 ~ a ~ 1, Jh > f3a, with a very long planning horizon 

T, T --. oo,and a loss threshold only (p > 0, T = 0 or 1/J > O,w = 0 ) and if g is 

concave, continuous and differentiable, a single price is not optimal. 

Proof. We know from Proposition 3.3.1 that if a single price is optimal, that price is 

p* in the absence of thresholds. It is easily shown the same is true with thresholds. 

Recall that we considered a price policy with a single price, p , that is not equal to 

p*. 

Case 1: When p < p*, we have p = f, since the price is constant. There is a 

finite loss in profit due to moving top* which is (p*- c)f3L(f + p- p*)-. We know 

g(p) < g(p*). This short term finite loss of profit is less than the long term loss in 
00 

profit '2::: g(p*)- 9t(fi). Thus a single price strategy will never stabilize below p* even 
t=l 

with the presence of thresholds. 

Case 2: When p > p*, the proof is straight forward. We once again know that 

g(p) < g(p*) and (p* - c)f3a(f- T- p*)+ 2: 0 so we gain by moving top* as we will 

either have a positive reference gain effect or no reference effect and the price effect 

is positive. 

We have now established that no single price other than p* will ever be optimal. 

We now evaluate a cyclical pricing strategy. Consider an M = 2 cycle in which we 

subtract a small increment, &, from p* for one price and add the increment top* for 

the second price. We choose a value such that & ~ 0.5p. We use the notation rc,i and 

rei ; i = 1, 2, .. M or Pc,i and Pci ; i = 1, 2, .. M interchangeably. We specify: 

Pc,l = p* + 8 

and 

Pc,2 = p*- 8. 
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The reference prices are: 

rc,2 =arc!+ (1- a)Pcl 

and 

rc,l = arc2 + (1- a)Pc2· 

Solving for rcl and rc2 in the above system of equations we find 

and 
* (1+a2 -2a)6 

rc,2=P + (1 -a2) • 

We now define Y , the loss effect, such that 

For 0 ~a~ 1, 

then 

Y = { rc,l + p- (p* + 6), if rc,l + p- (p* + 6) < 0 

0 if r c,l + p - (p* + 6) ~ 0 

(1 + a 2 - 2a) 
( 2) ~ 1. 1-a 

r c,l + p - (p* + 6) > p* - 6 + p - p* - 6 

~ -26 +p 

> 0, because 6 ~ 0.5p. 

It is clear, therefore that Y = 0. For the single price strategy to be optimal we need 

to have 

2g(p*) ~ g(p* + 6) + g(p*- 8) + (p* + 8- c)f3LY + (p*- 8- c)f3a(rc,2- p*- 8) 

but Y = 0, so 

2g(p*) ~ g(p* + 8) + g(p* - J) + (p*- J- c)f3a(rc,2- p* - J) 
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2g(p*)- g(p* + 8)- g(p*- 8) ;::: (p*- 8- c)f3a p*+ - p*- 8 ( 
(1 + a 2 

- 2a)6 ) 
(1- a 2) 

2g(p*)- g(p* + 8) - g(p*- 8) ;::: (p*- 8- c)f3a8 ( (
1 t ~ ~2~a) + 1) 

g(p*)- g(p* + 8) + g(p*)- g(p*- 6) > ( * _ 8 _ )(3 ((1 + a
2

- 2a) + 1) 
8 - p c G (1 - a2) 

now we take the limit as 8 ~ 0 and since g is continuous and differentiable 

-g' (p*) + g' (p*) > ( * _ )(3 ((1 + a2
- 2a) 1) p c G (1- a2) + 

0 > ( *- )(3 ((1+a
2
-2a) 1) 

p c G (1- a2) + 
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which is impossible as the right hand side is always positive. Thus with a loss thresh­

old only, the optimal price always cycles. • 

Consider the threshold demand function. We can see that the profit is non­

decreasing in p. If rt-T- Pt > 0, p does not affect profit. ~he parameter p comes into 

play in the next two cases. As p increases the portion of the demand curve in which a 

reference loss occurs is decreased as the second kink in Figure 4.2 shifts to the right. 

Average profit when continuously charging p* sets a lower bound for average profit 

with a loss threshold. If a constant price is charged there are no reference effects. 

It is worth noting that the proof of Proposition 4.2.1 shows that there is always 

a two period cycle that is superior to a constant price. It does not show that a two 

period cycle will be optimal. This means that a price cycle will increase profit above 

the lower bound, which is established by the single price policy at p*. The dynamic 

program needs to be evaluated to determine the optimal number of periods, M, and 

the prices to be charged within this price cycle. 

We now consider the case where there is only a gain threshold and no loss 

threshold. Proposition 4.2.2 establishes that if there is a threshold only on the gain, 

a single price is optimal. 

Proposition 4.2.2 For 0 :::; a :::; 1, (3 L > f3a with a very long planning horizon T, 

T ---+ oo, and a gain threshold only (p = 0, T > 0 or¢ = 0, w > 0 ) and if g is 
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concave, continuous and differentiable, a single price policy is optimal for the average 

per period profit criterion and the single price is p*, the optimizer of g. 

Proof. We begin with the same arbitrary M period cycle we specified in the proof 

for Proposition 3.3.1.. The cycle profit is: 

M 

1rM = L g(pc,m) +X 
m=l 

where 
M 

X= L(pc,m- c)(J3a(rc,m- T- Pc,m)+ + J3L(rc,m- Pc,m)-). 
m=l 

we showed in the proof of Proposition 3.3.1 that: 

M 

L(pc,m- c)(f3a(rc,m- Pm)+ + f3L(rc,m- Pc,m)-) ::=;; 0 
m=l 

for all cycle lengths. .Knowing that T > 0 and 

M M 

I)Pc,m- c)(f3a(rc,m- T- Pc,m)+ + f3L(rc,m- Pc,m)-) :::; L(pc,m- c)(f3a(rc,m- Pc,m)+ 
m=l m=l 

+J3L(rc,m- Pc,m)-), 

we can show using the same logic of the proof of Proposition 3.3.1 that 

M 

L(pc,m- c)(j3a(rc,m- T- Pc,m)+ + J3L(rc,m- Pc,m)-) $ 0 
m=l 

and, therefore 
M 

L g(Pc,m)$Mg(p*). 
m=l 

Thus, in no case where there is a gain threshold only, would a cyclical price be optimal. 

Profit is non-increasing in the gain threshold. As the gain threshold increases, 

profit either stays the same or decreases. If there is only a threshold on gain a single 

price strategy is optimal. Given Propositions 4.2.1 and 4.2.2 it is clear that loss 
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thresholds and gain thresholds offset each other. The optimal price path then, in 

the presence of both gain and loss thresholds, will depend on the relative size of the 

two thresholds, the gain and loss parameters (/30 and f3L)· Given that the total profit 

functions (including reference effects) are neither differentiable nor concave in p, ft(rt) 

is also not concave and cannot provide closed form solutions. • 

For the infinite horizon problem, the lower bound for the average profit is a 

single price strategy with average profit, g(p*). Prices will cycle only if it increases 

average profit (in the undiscounted case) above that lower bound. The key variables 

that affect profit above this lower bound are the length of the cycle, M, and the 

price vector [pcl···PcM] where the subscript c before the period denotes that these are 

sequential prices within a repeating cycle. In this repeating cycle Pc2 follows Pel· At 

the end of the M period cycle the cycle repeats and Pel follows PcM. We note also 

the following key relationships which will impact whether optimal price cycles or is 

constant. 

Key Threshold Results 

The profit is non-increasing in gain threshold. As gain threshold grows, the 

average per period profit will move back to g(p*). 

1. The profit is non-decreasing in loss threshold. As loss threshold grows, average 

per period profit will increase from g(p*). 

• The profit can increase with M decreasing. 

• The profit can increase with specific extreme values of p changing. 

2. The profit is non-increasing in /3 L· 

3. The profit is non-decreasing in /30 . 

4. The profit is non-increasing in a. If reference price responds more significantly 

to recent prices, prices are more likely to cycle as larger reference gains can be 

achieved over smaller price ranges which results in lower losses over the non­

reference component of the profit function, g(p). 



62 Ph.D. Thesis- Michael von Massow 

We use a similar approach to that used in earlier research (Greenleaf [1995], 

Kopalle et al. [1996]) using discrete time periods and prices and continuous refer­

ence prices (rounded to two decimal places) in the dynamic programming framework. 

While technology has significantly reduced the difficulty in changing prices, there are 

still many examples in which firms offer a specific price for a given period. Grocery 

stores with weekly flyers are a good example of this. 

4.3 Reducing Computation Time 

This dynamic programming approach requires significant computational time to exe­

cute to find the optimal price path. We provide the following propositions in order to 

decrease the computational requirements of the algorithm and improve computational 

efficiency. Proposition 3.3.1 is a first reduction in the solution space as it eliminates 

any single price strategy that is not p*. The Propositions below, more significantly 

reduce the solution space. 

Proposition 4.3.1 For 0 :::; a :::; 1, {3L > {30 with a very long planning horizon 

T, T ---+ oo, and a gain threshold (p > 0, r ~ Oor 7./J > 0, w ~ 0) and if g is concave, 

continuous and differentiable, the range [pc,min, Pc,max] (where Pc,min = minM, Pc,m and 

Pc,max = maxM, Pc,m) will always include p*. 

Proof. Consider an optimal solution in which the range (pc,min, Pc,max] does not 

include p*. If Pc,max < p·, each price in theM period price cycle can be increased by 

p*-Pc,max· In the steady state case, this would increase each of the reference prices in 

theM period cycle by the same amount. The gaps between price and reference price 

in each period will be unchanged and, therefore, there would be no change in the 

reference component of the profit function as the reference gaps for price decreases 

and price increases would not change. Due to the concavity of g(p) we know that the 

non-reference component of each period's profit will increase as prices move closer to 

p*. 
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In the case where Pc,min > p*, we similarly subtract Pc,min - p* from each price 

in the M period price cycle. In all cases the solution is improved if the range includes 

p* . • 

For the subsequent propositions it is convenient to define: 

M 
A= L (pc,m- c)f3a(rc,m- 7- Pc,m)+, 

m=l 
M 

B = L (g(p*)- g(pc,m)), and 
m=l 

M 
C = L (pc,m- c)f3L(rc,m + P- Pc,m)-. 

m=l 

Component A is the total profit gained due to reference gains in an M period 

cycle. Component B represents the total revenue lost from the non-reference portion 

of the profit function due to charging a price less than p*. Component C is the total 

profit lost due to reference losses during an M period cycle. We note that for M > 1: 

A+B+C>O (4.3.4) 

or price cycling would not be optimal. That is, the profit gains need to exceed 

the profit losses due to both reference effects and charging a price less than p*. In the 

subsequent propositions we will use the absolute threshold example for illustration 

but the proportional threshold example is analogous. 

Proposition 4.3.2 For 0 ~a~ 1, f3L > f3a, with loss thresholds (p > 0, or '1/J > 0) 

and concave g and with a very long planning horizon T, T ~ oo, forM > 1, no 

price decrease will result in a price greater than r c,m - 7 for absolute thresholds or 

rc,m- wrc,m for proportional thresholds, m = 1, ... , M. 

Proof. If Equation 4.3.4 inequality did not hold, then M = 1 and a single price 

strategy would be optimal. 

Now consider a portion of an optimal price cycle of length M with sequence, 

Pc,i > Pci > Pc,k where 0 < i < j < k ~ M and i,j, k are integers. This sequence has 

two consecutive price decreases and we assume that rc,;- Pc.i < 7. The threshold is 
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not exceeded in that interval. If we eliminate PcJ we have a cycle of length M - 1. 

Component B will decreB.'le by g(p*)- g(PcJ) 2 0. 

Component C may or may not change. Note the reference price after charging 

Pc,k in the original sequence is rc,k = a2rcJ +(a- a2)PcJ + (1- a)Pc,k· If we skip the 

interim price, PcJ the new reference is ar c,j + (1 - a )Pc,k and 

(4.3.5) 

Given the result in Equation 4.3.5, we know that subsequent reference prices will 

also be higher than they would be with a cycle including PcJ. This means that in 
M-1 

all ca.ses the sum of negative reference losses without PcJ, L: ( r c,m - p - Pc,m)- :::; 
m=1 

·M-1 

~ (rc,m- p- Pc,m)-, the sum of the reference losses with PcJ· Therefore, in all 
m=1 
cases the change in Component C 2 0. Given that Component C is, by definition, 

negative, we know that taking out the interim step leaves profit the same or higher. 

Now we consider component A, the one in which the actual pricing took place. 

The step of eliminating the intermediate price would not change if r cJ - 7 - Pc,k :::; 0, 

but would increa.se if rcj- 7- Pck > 0. Thus, eliminating the interim price in which 

the reference threshold WB.'l not exceeded, we have increased profit. • 

Proposition 4.3.3 For 0 :::; a :::; 1, {3 L > {30 , with loss thresholds and concave g and 

with a very long planning horizon T, T-+ oo, forM> l,i/ 

(pc,m-Pc,(m+l))f3a(rc,m-7-pc,(m+l))+(pc,(m+l)-C){3G(a(rc,m-Pc,m)-7) < g(p*)-g(Pc,m) 

for any Pc,m > Pc,(m+1) there will be no price decrease from Pc,m to Pc,(m+1) 1 m­

l, ... ,M. 

Proof. The proof builds on that for Proposition 4.3.2. We relax the assumption that 

rc,j - PcJ < 7 so that the threshold may be exceeded in the interim step which is 

removed. Otherwise our specification of Pc,i > PcJ > Pc,k remains the same. The 

impacts on components B and C are identical. We now consider the impact on 
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Component A. With the interim price the reference gains are ( r c,,j - r - Pc,j) + ( r c,k -

T-:-- Pc,k) if (rc,j - T- Pc,j) > 0, and (rc,k - T- Pc,k) > 0. Otherwise both are by 

definition no lower than zero. 

Proposition 4.3.2 establishes that we will not consider price paths in which 

either of the components is less than zero. Without the interim step, the reference 

gains are rc,j - r- Pc,k· The difference between the two is the gain effect lost by 

eliminating the interim step. We find the difference in the reference gaps between the 

two scenarios (with and without interim step Pc,J): 

(r · - r - p ·) + (r k - r - p k) - (r · - r - p k) c,J c,J c, c, c,J c, 

which then can be simplified: 

rc,k- T- PcJ = (arc,j + (1- a)pc,j- T- Pc,j) 

- a(rc,j- Pc,j)- T 

It is worth noting that a(rc,J - Pc,J) - r may be negative depending on the size 

of r. This is because the threshold must be covered twice for two steps and only 

once when the interim step is removed. Removing the interim step, Pc,k, reduces 

component B by (g(p"')- g(pc,j)). The amount lost from component A is then at 

least CPcJ- Pc,k)f3a(rc,j- T- PcJ) + (Pc,k- c)f3a(a(rc,j- Pc,j)- r) where the second 

term may, in fact, be. negative. If 

for any Pc,k < PcJ then there will be no price decrease from PcJ to Pc,k· • 

Proposition 4.3.4 For 0 :s; a :s; 1, f3L > f3a, with loss thresholds (p > 0, or '1/J > 0) 

and concave g and with a very long planning horizon T, T --+ oo, for M > 1 and 

r c,m, :s; p*, no price increase will result in a price lower than min ( r c,m + p, p*) , m = 

1, ... ,M. 
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Proof. Consider an optimal price path in which a price increase to price Pc,j falls 

below the minimum of rc,j + p and p* in the price path Pc,i < PcJ < Pc,k· Suppose 

that Pc,k>min (rcJ + p,p*). Now if we increase Pc,j to the minimum of rc,J + p and 

p*, we need to evaluate the impact on each of the components A, B and C. M will 

not change as we are not inserting or removing a price but rather just increasing Pc,i. 

We have the following cases: 

• Component A will increase. A higher reference price, r cj, will result because 

Pci is higher. Subsequent reference prices will also be higher. We know that 

r c,t - r - Pc,t > 0 at least once or M = 1 and a constant price would be optimal. 

• Component B will decrease. An increase in Pci will decrease g(p*) - g(PcJ) due 

to convexity and the definition of p*. 

• Component C will stay the same or decrease. We remain within the loss thresh­

old for· the time period where we charge the higher Pc,J. This also results in 

a higher reference price for the subsequent period. H r~,k + p - Pc,k > 0 then 

Component C will decrease. The same is true for subsequent price increases. 

In all cases the increase to at least the minimum of r cJ + p and p* increases 

average profit so the lower price change is not optimal. • 

These propositions help to reduce the number of price paths that need to 

be considered in the dynamic programming formulation by defining the limits on 

potential price decreases with the price paths under consideration. 

4.4 Computational Results 

We implemented the dynamic program in MatLab. The linear demand function uses 

parameters a= 1, b = 0.2. We assume c = 0.5. In the absence of reference effects, the 

optimal price p* = atf: = 2.75. We use these parameters as they are the ones used 

by Kopalle et al. [1996] and this allows us to both validate our computations against 
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theirs but also to compare results of the threshold model more explicitly to previous 

reference price models. We evaluate the impact of changes in gain threshold (r), loss 

threshold (p), gain and loss reference parameters ([30 , f3 L) and memory parameter (a). 

We evaluate gain and loss thresholds from a low of 0.1 to a high of 0.5. This represents 

roughly the range of proportional thresholds found in the empirical literature (Gupta 

and Cooper [1992], Kalwani and Yim [1992]). We evaluate at a= 0.2 and 0.35, the 

range which Mazumdar et al (2000) reported as being found in previous empirical 

work. Finally we evaluate values of 0.25, 0.2 and 0.1 for f3 L and 0.2, 0.1 and 0.05 for 

f3a· 

The dynamic programming formulation is solved with the aid of the proposi­

tions which reduce the search space. We are interested in the infinite horizon prob­

lem. We use an average profit criterion which means () = 1 and we treat every period 

equally and maximize the average profit per period. The pricing decision is made 

in each period with a view to the impact on future periods so we treat each period 

equally. We found that 25 periods are sufficient to provide insight into the steady 

state behaviour of pricing through repeating price cycles. We know that there will be 

at least one and likely several periods at the end of the ·horizon that result in price 

decreases as the future impacts of declining reference prices no longer matter. We 

also know there will be some adjustment at the beginning of the dyn8:ffiic program 

until the price cycles and associated reference prices stabilize. While there is some 

excellent potential management insight in the price paths at the beginning of the 

planning horizon (such as the price strategy which optimizes profits in the face of a 

change in cost or demand) we are most interested in the long term pricing strategy 

that optimizes prices and, therefore, ignore the first 5 periods during a portion of 

which this adjustment takes place. 

As per Proposition 3.3.1 and the findings of Greenleaf [1995] and Kopalle et al. 

[1996], we find that in the absence of thresholds: 

1. for loss averse consumers a single price strategy is optimal and the single 

price is equal to p*. 
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for loss seeking consumers a two period (M=2) cyclical price strategy is 

We now consider the price paths resulting from the implementation of thresh-

old models. Table 4.1 presents the results for one set of parameters. We highlight 

that the prices are presented in chronological order within an M period cycle. The 

remaining detailed results from all of the computations are presented in Appendix A. 

Response to Loss Threshold 

We showed with Proposition 4.2.1 that a loss threshold is required for a price cycle to 

exist. We also know that profit is non-decreasing in loss threshold. We see in Table 

4.1 that profit increases as loss threshold increases. Figure 4.3 shows the results for 

different levels of gain parameter, [30 . The memory parameter for the profits shown 

in Figure 4.3 is a= 0.2. As expected, as [30 increases the profit increases. 

We also note that the increase is not linear. For [30 = 0.05, the profit gains 

over the lower bound is minimal and increases only occur until p = 0.3 at which 

further profit increases do not occur despite continued increases in threshold. The 

losses due to moving away from p"' overwhelm the benefit of the larger threshold and 

the associated gains due to reference effects. This represents meaningful managerial 

insight. The return to loyalty (in the form of a loss threshold) decreases as loyalty 

grows. There are diminishing returns to investment in loyalty. The degree to which 

further increases can be achieved depends on the value of f3 L· Increases in profit due 

to price cycles occur because the gains achieved when the gain threshold is exceeded 

are greater than the losses due to prices different from p"'. We recall that p"' is the 

optimizer of g(p) so that individual prices below p"' result in lower profits. A larger 

loss threshold requires a higher reference price and/or a more significant price decrease 

to achieve a difference sufficient to have positive reference gains. As a result, M must 

decrease and or the price variation must be larger to build a higher reference price. 

By decreasing M, there are fewer steps in the price increases and a higher reference 

price results. The phenomenon of shorter price cycles and wider price variation is 
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Table 4.1: Threshold Results 

f3 L = 0.25, f3a = 0.2, a = 0.2 

p -r M Prices Reference Prices Average Profit 

0.1 0 4 2.62, 2.78, 2.86, 2.94 2.92, 2.68, 2.76, 2.84 1.0410 

0.2 0 3 2.60, 2.88, 3.04 3.00, 2.68, 2.84 1.0602 

0.3 0 3 2.50, 2.92, 3.16 3.10, 2.66, 2.90 1.0752 

0.4 0 3 2.44, 3.00, 3.32 3.24, 2.60, 2.92 1.0837 

0.5 0 3 2.37, 3.07, 3.47 3.37, 2.57, 2.97 1.0862 

0.2 0.1 4 2.46, 2.78, 2.94, 3.10 3.06, 2.58, 2.74, 2.90 1.0493 

0.3 0.1 3 2.48, 2.90, 3.14 3.08, 2.60, 2.84 1.0620 

0.5 0.1 3 2.35, 3.05, 3.45 3.35, 2.55, 2.95 1.0742 

0.2 0.2 5 2.32, 2.68, 2,84, 3.00, 3.16 3.12, 2.48, 2.64, 2.80, 2.96 1.0390 

0.3 0.2 5 2.28, 2. 76, 2.80, 3.03, 3.28 3.22, 2.47, 2.70, 2.78, 2.98 1.0419 

0.5 0.2 3 2.33, 3.03, 3.43 3.33, 2.53, 2.93 1.0623 

0.2 0.3 5 2.28, 2. 76, 2.80, 3.03, 3.28 3.22, 2.47, 2.70, 2.78, 2.98 1.0227 

0.3 0.3 5 2.24, 2.73, 2.81, 3.03, 3.28 3.22, 2.44, 2.67, 2.78, 2.98 1.0349 

0.5 0.3 3 2.31, 3.01, 3.41 3.32, 2.51, 2.91 1.0517 
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Figure 4.3: Profit as Loss Threshold Increases 

0.1 0.2 0.3 0.4 

Loss Threshold 

demonstrated in Figures 4.4 and 4.5. 
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In Figure 4.5, there is a two period price cycle. The loss threshold is 0.5 so 

the high price (3.14) can be charged without incurring a reference loss. In fact, the 

reference gap in periods 2,4, and 6 is exactly 0.5 so no reference losses occur. For the 

quantitative model specified and the parameters used, there was never a case in which 

the loss threshold was exceeded but this need not be the case for all profit functions. 

The gain effect is then achieved every second period which increases profits relative 

to the case in Figure 4.4 where the loss threshold is 0.2. In the case where the loss 

threshold is smaller, two price increases are required to achieve the reference gain 

that maximizes profit. It is worth noting that for the quantitative model specified, 

there is always only a single price decrease. Increases in M are always related to the 

loss threshold and achieving the increase in reference price that optimizes the return 
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Figure 4.4: Price and Reference Price Cycles (M = 3, r = 0.2) 
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to a price decrease. This need not be the case for all profit functions. 

4.4.1 Response to Gain Threshold 

71 

A gain threshold reduces the potential to cycle prices because it removes some of the 

gain that can result from lowering prices. A portion of the reference gap is lost due 

to the threshold. In the case where {30 = 0.05, a gain threshold as low as r = 0.2 

(which represents less than 10% of p*) precluded profitable price promotion cycles. 

It is also worth noting that there were no cases within the quantitative model and 

parameters used, that a value of gain threshold of r = 0.2 or greater led to a two 

price cycle. The impact of an increase in gain threshold is not easily predictable and 

depends on the other parameter values as can be seen in Table 4.2. 
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Figure 4.5: Price and Reference Price Cycle (M = 2, T = 0.5) 

3.2...----------------, 
3.1 +-----1--\---------J'\---------,1'----j 

3+-~-~~-~-~-+-~~~--j 

82.9 g 
"C 2.8 +------P......_-----,A------+'<---A----1-'<---1 
~ ~7 r 

2.6 +--+-----"r-1----~L-----f 
2.5 +---__:_ ____ _:__ ____ __;:_ ___ -i 
2.4 +----r---,-----,.----,-----,,..-----1 

2 3 4 5 6 

Period 

Table 4.2: Impact of Increasing Gain Threshold 

/3 L = 0.2, /30 = 0.1, a= 0.2 

p T M Prices Reference Prices Average Profit 

0.3 0 2 2.60, 2.96 2.90, 2.66 1.0373 

0.3 0.1 3 2.45, 2.87, 3.11 3.05, 2.57, 2.81 

0.3 0.2 3 2.45, 2.87, 3.11 3.05, 2.57, 2.81 

0.3 0.3 3 2.50, 2.83, 3.00 2.96, 2.59, 2. 78 

1.0294 

1.0230 

1.0147 

Given the parameters as specified, in the absence of a gain threshold, a two 

period cycle is optimal. As the gain threshold, T, increases profit decreases. In cases 

with these parameters, M increases to three. For T = 0.1 the optimal solution involves 

an M = 3 price cycle with a wider spread between the maximum and minimum 

price and the intermediate price to preclude charging a price that creates a negative 

reference gap that exceeds the loss threshold. When T = 0.2, the optimal strategy is 

identical to that for T = 0.1. There is no opportunity for further profit increases due 

to a larger positive reference gap. Profit is lower as a portion of the positive reference 
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gap is lost to the gain threshold. When T = 0.3, profit decreases more dramatically 

and the minimum price goes up and maximum price goes down. In this case, the 

available gain after the gain threshold is not sufficient to offset the profit lost due to 

lower minimum price and higher maximum price (further away from p*). It is worth 

noting that for T = 0.1 and T = 0.2 the optimal strategies were identical but profits 

were lower in the case where gain threshold was bigger. This is because more of the 

reference gain is lost in the threshold. A wider price dispersion or a larger M would 

incur greater losses in profits (due to prices further from p*). 

4.4.2 Response to Loss Parameter 

We recall that due to loss aversion, {3 L ~ f3a, must be true in all cases. For this 

model and the parameters evaluated, changes in {3 L do not affect the outcome because 

the loss threshold is never exceeded. This can be seen when comparing Table A4 

with A6 and A5 with A7. The only difference between the tables is the value of the 

loss parameter, {3£, and the price path is identical in all cases with similar parameter 

values. It is worth highlighting that there may be cases in which the loss threshold 

is exceeded depending on the shape of g(p) and the relative sizes of the gain and loss 

thresholds p and T. In such a case, an increase in {3 L may change the optimal price 

path by forcing an interim step that does not exceed the threshold. 

4.4.3 Response to Gain Parameter 

We know that profits are non-decreasing in gain parameter. While loss aversion 

requires that {3 L ~ f3a, the response to changes in the gain parameter can still exist. 

The gain parameter, along with the thresholds, are the factors which most signifi­

cantly drive the ability to increase profits by cycling price. A larger gain parameter 

may allow firms to use a wider price spread (which costs them profits on the g(p) 

component as the prices move away from p*) to get larger reference effects. If the 

price range is not wider, then the profit will be increased because the response to the 
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reference gap is wider. Increased profits do not necessarily mean a reduction in M. 

The size of the loss threshold, p, may require that an interim price increase occurs 

over the wider price range. This can be seen in Table 4.3. The increases in profits 

are substantial given the increases in gain parameter used. 

Table 4.3: Impact of Change in Gain Parameter 

{3L = 0.2, a= 0.2 

f3a P T M Prices Reference Prices Average Profit 

0.1 0.3 

0.2 0.3 

0 2 2.60, 2.96 2.90, 2.66 

0 3 2.50, 2.92, 3.16 3.10, 2.66, 2.90 

0.1 0.5 0.2 3 2.41, 2.83, 3.16 3.03, 2.55, 2.79 

0.2 0.5 0.2 3 2.33, 3.03, 3.43 3.33, 2.53, 2.93 

4.4.4 Response to Memory Parameter 

1.0373 

1.0752 

1.0233 

1.0623 

We know that profit is non-increasing in a as the reference price responds more slowly 

to price increases and price decreases. This moderates the size of the reference gap. 

It appears, however, in this quantitative model, that the changes to the memory 

parameter have a relatively small impact on profit. We used values of a that were 

the two extremes of those found by previous empirical work. Table 4.4 highlights 

some key results. It appears that the impact on profit grows as gain threshold 

grows. This relates to the moderating impact on reference price of a larger memory 

parameter. A gain threshold remains constant (absolutely or relatively) and given a 

smaller reference gap, a more dramatic effect on profits results. 
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Table 4.4: Impact of Change in Memory Parameter 

(3 L = 0.25, f3a = 0.2 

a p ,. M Prices Reference Prices Average Profit 

0.20 0.3 0 3 2.50, 2.92, 3.16 3.10, 2.66, 2.90 

0.35 0.3 0 3 2.44, 2.95, 3.14 3.04, 2.65, 2.85 

0.20 0.5 0.2 3 2.33, 3.03, 3.43 3.33, 2.53, 2.93 

0.35 0.5 0.2 3 2.31, 3.06, 3.41 3.23, 2.64, 2.91 

4.5 A Math Programming Approach 

1.0752 

1.0709 

1.0623 

1.0510 
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The previous work on determining optimal pricing paths (Greenleaf [1995], Kopalle 

et al. [1996]), used the dynamic programming formulation to find optimal results. 

This approach guarantees optimal results but requires significant time to complete 

the computations. Despite the computational improvements offered by Propositions 

4.3.1 through 4.3.4, this has been a barrier to the implementation of this sort of 

optimization in a managerial decision making threshold pricing context. Advances 

in nonlinear integer programming approaches, solvers and computational power have 

made the specification of a nonlinear mixed integer programming threshold pricing 

model possible. Not only do nonlinear models provide the potential for reduced 

computation times, but they also provide a model which can incorporate constraints 

on resources. We have, therefore, explored the potential for developing a nonlinear 

integer programming optimization reference pricing threshold model. 

We review first the basic reference problem without thresholds to provide an 

approximation of the reference price formation. We extend the formulation later 

to include thresholds and to solve the threshold problem. We recall that the basic 

reference problem is : 
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~ ( { f3a(rt-Pt);ifrt>Pt) max 1r = L..)Pt -c) a- bPt + 
t=1 f3L(rt- Pt)i if Tt ~ Pt 

subject to 

where: 

Tt - art-1 + (1- a) Pt-1, and 
a+ f3Lrt 

c ~ Pt ~ b + f3L 't = 2, ... , T. 

Pt is the price charged in period t (and is the decision variable), 

c is a unit cost that is assumed to be constant, 

r1 is given. 

We note that we need a large T, to allow for the adjustment period highlighted 

in Greenleaf [1995] and Kopalle et al. [1996]. For period T, the reference price 

formation will become: 

rr - arr-1 + (1- a)PT-1 (4.5.6) 

- aT-1r1 + (aT-2 + aT-1) P1 + ... +(a- a2) PT-2 + (1- a)PT-1 
T-2 

- aT-1r1 + L(1- a)aiPT-1-i where r1 is given 
i=O 

We note that as T --t oo, rr --t 2::0(1- a)e-(1-a)iPT-1-i. The above expres­

sion for the reference price, together with the piece-wise reference price formulation, 

makes the objective function complex. Thus, we propose an approximation of the 

exponential smoothing reference price formation. We know from Mazumdar et al. 

[2005] that generally 0.2 ~ a ~ 0.35. In that case, the impact of past prices on cur­

rent reference price diminishes very quickly. We propose, therefore, approximating 

the exponential smoothing reference price formation for a = 0.2 using the following 

formula: 

(4.5.7) 
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where w1 = 0.807, w2 = 0.161, and w3 = 0.032. The weights are developed by 

rearranging the terms in Equation 4.5.6 with a = 0.2. This yields 

TT = 0.8Pt-l + 0.16Pt-2 + 0.032Pt-3 + .0064Pt-4 + ... 0.2T-lr1. 

The impact of the weights beyond the first three are very small. We standardize 

the first three weights so that they sum to one by dividing by 0. 992, the sum of 

those first three weights, to get the approximate weights. The reference formations 

(4.5.7) works for all t = 4, ... , T. For the second and third periods the reference price 

formation would be: 

We can then formulate the threshold reference pricing problem as a non-linear 

mixed integer programming problem. We have 

T 

max71" = L [(ptas- c)(a- bPt + (rt- Pt- pYLt + rYGt)(/hYLt + ,BaYGt))] 
t=l 

subject to: 

Tt - WIPt-1 + W2Pt-2 + W3Pt-3 Vt = 4, ... 'T 

r2 - W1P1 + (1- w1)r1 

(r1- Pl- r)YG1 > 0 

((1- w1)r1 + W1P1- P2- r)YG2 > 0 

(w3r1 + w2P1 + W1P2- P3- r)YG3 > 0 

(w3Pt-3 + W2Pt-2 + W1Pt-1- Pt- r)YGt > 0 Vt,4 ... T 

(4.5.8) 

(4.5.9) 
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(r1- PI- r)(1- YG1) < 0 

((1- w1)r1 + W1P1- P2- r)(1- YG2) < 0 

(w3r1 + W2P1 + W1P2- P3- r)(l- YG3) ~ 0 

(w3Pt-3 + W2Pt-2 + W1Pt-1- Pt- r)(1- YGt) < 0 Vt,4 ... T 

(r1- PI+ p)YL1 < 0 

({1- w1)r1 + W1P1- P2 + p){1- YL2) < 0 

(w3r1 + W2P1 + W1P2- P3 + p)(1- YL3) < 0 

( W3Pt-3 + W2Pt-2 + WIPt-1 - Pt + p) (1 - y Lt) ~ 0 Vt,4 ... T 

(ri-PI+P)(1-YLI) > 0 

({1- wi)r1 + W1P1- P2 + p)(1- Y L2) > 0 

(w3r1 + W2P1 +w1P2- P3 + p)(1- YL3) > 0 

(w3Pt-3 + W2Pt-2 + WIPt-1- Pt + p)(1- YLt) > 0 Vt, 4 ... T 

YLt + YG2 ~ 1 Vt, l...T 

YLt, YG2 E {0, 1} Vt, l...T 

a+ (3Lrt 
c ~ Pt ~ b + f3L 't = 1, ... , T 

(4.5.10) 

(4.5.11) 

(4.5.12) 

The majority of the notation has been previously defined. We note that we 

introduce binary variables, YGt and YLt. If there is a gain in period t then YGt is 

1 and otherwise it is 0. Similarly, if there is a loss in period t then Y Lt is 1 and 

otherwise it is 0. It is worth noting that if neither threshold is exceeded, both Y Gt 

and Y Lt can be zero. In this case, there is no reference effect as both (3 L and f3a are 

multiplied by zero in the objective function. They cannot both be one. 
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The first set of constraints (4.5.8) establish the reference price based on the 

prices. The first three incorporate the original reference price and are different. 

The last one lags the last three prices weighted to determine the reference price as 

per the specification. We note that the reference price could easily be built into 

the objective function but we include it as a constraint for clarity in the objective 

function presentation. 

The next group of contraints (4.5.9 and 4.5.10) establishes whether there is a 

gain in each individual period. If there is a gain (i.e., the gain threshold is exceeded, 

YGt is one and T and /30 are active in the objective function). We similarly establish 

the value for Y Lt. using. the next group of contraints (4.5.11 and 4.5.12). 

We require the standard non-negativity constraints as well. This is easily 

implemented in GAMS. We optimize using the BARON solver, which was found to 

perform the best for this problem. This needs to run for at least T = 15 to provide 

effective insight into the price cycle because of the adjustments at the beginning and 

end of the time horizon from the reference effects. The reference price approximation 

works very well and the results are identical to the full enumeration results from 

the dynamic program in considerably less time. The time for the MINLP model 

in BARON was a matter of seconds versus hours or days for the GAMS complete 

ennumeration. We note that, the total search space for the GAMS model (without 

consideration for the propositions that reduce the search space) is Y15 , where Y is 

the number of discrete prices between c and the maximimum price constraint. 

We evaluated smaller problems (T = 6, 7, 8) and BARON quickly found op­

timal solutions. BARON runs for hours to develop proven optimal solutions for 

T = 15 if time is not constrained. If we constrain the time to 1,000 seconds it finds 

the optimal solution (as verified by the complete enumeration). In every case in 

which the GAMS model was evaluated against the dynamic programming model, the 

optimal solution was found within the 1,000 second limit. 

This approach works very well for the linear demand threshold problem that 

we assessed here and provides a practical approach to finding optimal solutions in 
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a managerial context. The reference price approximation does not compromise the 

accuracy of the price estimation for the levels of a that are in the empirically validated 

range. 

4.6 Summary and Conclusions 

We introduce a reference model with thresholds based on empirical evidence in the 

marketing literature. The threshold model provides a more robust framework within 

which an optimal pricing strategy can be studied as it gives the opportunity for 

both single prices and cyclical strategies for loss averse consumers. This provides 

a theoretically sound foundation for both price cycles and single price steady state 

policies. 

We develop two solution approaches to the problem and show that it can be 

effectively implemented to provide optimal price paths for managers. The approach 

using an approximation of reference price formation performs very well and effectively 

and efficiently provides optimal solutions to the problem within reasonable compu­

tation time. This clears a major hurdle for the effective implementation of this 

approach in a management context. We summarize the characteristics of the model 

and extract managerial insight relative to the sensitivity of pricing strategies to the 

specific parameters of the model. 



Chapter 5 

The Model with Stochastic 

Demand and Inventory 

Considerations 

5.1 Introduction 

The incorporation of demand uncertainty into optimal pricing strategy has been 

widely studied. Adding reference prices has the potential to provide additional 

insight into the stochastic demand pricing and inventory decision. Gimpl-Heersink 

et al. [2008] ev8luate frameworks in which joint inventory and pricing decisions are 

made. They find that generally the cost in complexity is not worth the small incre­

mental benefit in terms of profit relative to a sequential decision approach. They do 

highlight, however, that the incorporating reference prices the benefits that accrue to 

simultaneous decision analysis is substantial. This is what we do here. 

Careful consideration must be given to pricing decisions in reference models 

as the inter-temporal effects of those decisions are important. The reference price 

81 
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(expected price) of a consumer is based on past prices and the optimal pricing and 

inventory decisions are based in part on reference price. Urban (2008] considers 

reference price in a s~ochastic context (and finds an effect relative to the non-reference 

model) but only considers a single period. This insight has value in the case of a 

product at the end of a season or at the end of the lifecycle of the product, but will 

provide suboptimal decisions for the current period as it ignores the impact on future 

profitability of a lower price (to take advantage of the reference gains) in the current 

period. 

In this chapter we assess the impact of stochastic demand on pricing strategy in 

the context of a reference price model. To our knowledge there has been no research 

published in which reference models have included stochastic demand over multiple 

periods. Firms regularly face uncertain demand. They must choose production or 

ordering quantities and price which optimizes their expected demand. They face 

shortage costs if they do not have enough stock to meet demand and holding costs 

if they order/produce more stock than they can sell during the period. We do not 

include thresholds in the reference models with stochastic demand. AB there has 

been no work to date on the pricing strategy with multiple periods and reference 

effects, we focus on highlighting the impacts of incorporating stochastic demand into 

a reference model. This allows us to specifically investigate the impact of stochastic 

demand on pricing strategy with reference prices. We acknowledge that it would 

be interesting in the future to investigate the interaction effects in the presence of 

reference price thresholds. 

The inter-temporal price impacts ·add complexity to the problem as we do 

not optimize each period independently. We must determine the stocking factor 

for each potential price level first and then optimize the prices over the planning 

horizon. We are focused primarily on finding steady state pricing strategies but 

also evaluate the pricing strategy in the case where inventory at the beginning of a 

period exceeds the steady state stocking capacity required for that period. We offer 

a decision mechanism for determining the price that maximizes the expected profit 
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as the reference price system returns to steady state. 

The first section of this chapter outlines the basic stochastic demand model 

and its associated results. We introduce the mechanism for decision making when 

price is cycling. We then introduce the reference model with stochastic demand and 

the characteristics of that model. This is followed by some computational results to 

demonstrate the impact of different parameters and different distribution functions 

for the stochastic element of demand. The chapter closes with a summary and 

discussion of the results. 

5.2 The Basic Stochastic Demand Model 

We begin with the basic stochastic demand model (using the linear demand func­

tion). This is analogous to that presented in Petruzzi and Dada [1999] but using 

our notation. It serves as a foundation for the further development and introduces 

our notation explicitly. This model is necessary to lay the foundation for the new 

propositionl3 we present and the addition of reference models subsequently. We ac­

knowledge that the multiplicative demand case exists and merits consideration. As 

the reference model has not been evaluated in this context before, we choose to begin 

with the more tractable additive case to explore the implications of adding reference 

effects and stochastic demand. 

We assume that expected demand in period t is: 

Dt =a- bpt + e 

where e is a random variable defined on range [0, H] with probability distribution 

function ¢( ·) and cumulative distribution function ci>( ·) and mean Jt and variance a2• 

To avoid negative demand we require that 0 > -a. We define a stocking factor, z, 

a deterministic portion of demand, y(pt) =a-~' and a starting stock, q, such that 
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If there is no initial inventory then the starting stock, q, is an order quantity. 

If there is an initial inventory, x, then the order quantity is q- x. In the single period 

problem we do not require the subscript t. Expected profit for the single period 

problem is, then: 

E [7r(z,p)] - lz {p (y(p) + u)- h(z- u)} <P(u)du 

+ lH {p (y(p) + u)- s(u- z)} <P(u)du- c(y(p) + z) 

where u is the realized demand, h is a disposal cost for excess units if z > u and s is 

a shortage cost if z < u. We note that h can be negative if it represents a per unit 

salvage value. In that case, c+h would represent the holding cost for the product for 

one period. The cost of acquisition is cq = c(y(p) + z). Without loss of generality 

we will assume that 0 = 0. This maintains the non-negativity condition on demand: 

If we consider a demand function (Dt) in which 0 =/= 0.. If 0 < 0, we can do a simple 

transformation such that 

Dt = a + G - bpt + f - 0. 

which yields a' = a + 0 and a new random variable i = f - 0 with u 21 = u2
, 

J-L1 = J-L- 0, 0' = 0- 0 = 0 and H' = H- 0. The value of Dt does not change as 

we have done a simple linear transformation of f with a similar transformation of a. 

We could do the same if 0 > 0 so lose no generality when we assume that 0 = 0. 

We can then restate the expected profit function as: 

E [1r(z,p)] = (p-c)(y(p) +J-L)- (c+h) 1z (z -u)<J>(u)du- (p- c+s) 1H (u-z)<f>(u)du 

(5.2.1) 

Taking the first derivatives: 
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8E [7r(z,p)] 
8p 

8E [7r(z,p)] 
8z 

- a-2bp+bc+JL-1H(u-z)¢(u)du 

- -(c+h)+(p+s+h)(1-<P(z)) 

85 

It is easily shown that this profit function is concave in z for a given p. That 

means for a given level of price we can solve for a unique z. This generates well 

known critical fractile result (see for example Porteous (2002]) which optimizes the 

newsvendor problem for a given p. 

1- <P(z*(p)) = c + h 
p+s+h 

The critical fractile result is used when p is fixed. In this case, p is a choice variable 

so we can determine a value of z for each value of p and then search for the optimal 

price given optimal stocking factor, z. This can be complex depending on the spe­

cific characteristics of the expected profit function. In our dynamic programming 

formulation we search across all feasible prices. 

We can also use the fact that the profit function is concave in p for a given z 

to validate the result of Zabel [1972] which finds the optimal value of p for a given 

level of z. We derive: 

a+bc+JL- J:(u-z)¢(u)du 
2b 

• JL- fzH(u-z)ifJ(u)du 
= p + 2b (5.2.2) 

where p* is the optimimizer of (p- c)y(p). Petruzzi and Dada [1999] present a 

theorem for determining the optimal z for a given level of p. We can then find popt 

for each given level of z and optimize the expected profit, E [7r(z,p(z)]. 

We adopt this approach: we determine the optimal value of z, the stocking 

factor, for each possible price level and then determine the optimal price level over 

time. The inter-temporal connection between prices in the reference model, and the 

associated impact on z , and therefore expected profit, preclude the determination of 

prices and then the optimal stocking factor. 
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It is, however, clear that, even in the absence of reference effects, we need to 

consider the implications of the current period's pricing decision in future periods. 

We must, therefore, consider multi-period models in order to get optimal price paths. 

5.3 The Multi-Period Model 

The determination of optimal price paths in a dynamic context is complex. We know 

that, at the start of any period we will have inventory if in the previous period the 

stocking factor, Zt-1 > Ut-1· If Zt-1 ~ ut-1, the ending inventory is zero and we do 

not need to consider the inventory effects. The general result presented most often 

is that when disposal is costly, the optimal quantity for a period is (see Petruzzi and 

Dada [1999]): 

where Xt is the starting inventory in any given period. The optimal price then, under 

this situation, is: 

(5.3.3) 

where p; and Zt is price which maximize expected profit (Equation 5.2.1) and p:t 
is the value of p that optimizes the expected profit when Zt(Xt,Pt) is bound by the 

constraint q; = Xt. The work of Ernst [1970], Thowsen [1975], and Zabel [1972] all 

explore sufficient conditions for unique solutions to this problem. Ernst was first and 

the others built on his results. Under select assumptions, they find that if <I>(·) is 

from the PF2 family of distributions (Polya frequency function of order 2) there is. 

a unique solution. These multiple period sufficient conditions become very complex 

and little recent work has explored this further. 

In the case where we have to make pricing decisions over multiple periods we 

first need to consider the linkages between periods. We take the first step here in the 
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form of inventory. We consider the inter-temporal price effects in the next section 

when we discuss the reference model with stochastic demand. The multi-period 

expected profit function would be: 

T 

E [7rr(zt,Pt)] = L {(Pt- c)(y(Pt) + Jt) (5.3.4) 
t=l 

1Zt 1H 
-(c+h) (zt- u)¢(u)du- (pt- c + s) (u- zt)¢(u)du}. 

0 Zt 

It is clear that this expected profit function does not include an explicit linkage for 

carryover of either shortages or excess inventory. We have to account for this. If 

we have insufficient stock to meet all of the demand we will incur a shortage cost 

regardless of whether we allow backorders or not. The shortages only have relevance 

in the subsequent period ifbackorders are allowed and the demand must be met later. 

On the other hand, if we have excess demand and can carry the inventory forward 

(i.e. the product is not perishable) we may have an opportunity to sell the excess 

inventory in the subsequent period. In any given period the shortages would be 

SHt = (zt+l- Et)- and the excess inventory would be EXt = (Zt+l- ft+l)+. We 

recall that ft is the random portion of demand. The profit function for any single 

period, t, with starting inventory Xt, would then be: 

E [7rt(Xt, Zt,Pt)] = (Pt- c)(y(pt) + Jt) (5.3.5) 

-(c +h) rt (z- u)¢(u)du- (Pt- c + s) 1H (u- .zt)¢(u)du h ~ 
+8 1zt E [7rt+l (xt+l =EXt, Zt+l,Pt+I)] ¢(u)du 

+8 1H E [7rt+l (xt+l = SHt, Zt+l,Pt+I)] ¢(u)du 
Zt 

Equation 5.3.4 includes shortage costs for every period t. If we assume no 

backorders, then we incur the shortages costs in the current period, t, and simply start 

the period t+ 1 fresh. For frequently purchased products like groceries, it is reasonable 

to assume no back orders. Petruzzi and Dada [1999] also note that the case with no 

backorders is the predominant one in the literature. We then do not need to include 
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any inter-temporal effects of shortages. Therefore, we can eliminate the term in 

Equation 5.3.5 that relates to shortages [fz~ E [7rt+I (xt+I = SHt, Zt+I,Pt+I)]¢(u)du]. 

If there are no carryovers (i.e. all ending inventory is lost or salvaged) we can 

eliminate the term that relates to excess inventory in Equation 5.3.5. It is not as 

reasonable to assume that all of the excess inventory is lost in the case of frequently 

purchased products such as groceries. We may have an issue of spoilage (i.e. some of 

the excess inventory is lost) which adds further complexity. The cost of spoilage can 

be reflected in the value of h and could also be reflected in a transfer factor between 

periods. We also note that if EXt< Zt+I in all cases, we can also eliminate the excess 

inventory term from Equation 5.3.5. This leaves us with the more tractable expected 

profit function in Equation 5.3.4. The carrying cost ( c + h), in the case where h 

is negative is assigned to period t and the acquisition cost c is transferred to period 

t + 1. We can show that under the relatively mild assumption that the stochastic 

portion of demand will not be larger than the deterministic one, that Xt ::::; qt. 

Proposition 5.3.1 If H::::; a- bpmax (where piDax is the maximum price that occurs 

in an M period cycle) then Xt < qt Vt. 

Proof. We know that qt = y(pt)+Zt and that Zt E [0, H] (we assume that 0 = 0). We 

also know that Xt < qt-l that is the quantity carried forward in one period cannot be 

larger than the optimal quantity stocked in previous period. Since 0 ::=:; Zt ::=:; y(vnax) 

Vt, it follows that Xt ::=:; y(pmax) ::=:; qt Vt. • 

Therefore, in cases where the condition is met that the range of the random 

variable E is smaller than the smallest deterministic demand (y(pmax)), we can always 

know that the inventory carried forward from the current period will always be smaller 

than the total inventory required for subsequent period. This makes no assumption 

at all on what portion of inventory can be carried forward. In this case we can ignore 

the amount carried over as it will always be smaller than the amount we need, even in 

the case of a price cycle as long as our original condition is met. We can, therefore, 

maximize the profit function as represented in Equation 5.3.4. 
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There is also some question as to whether the assumption of costly disposal is 

reasonable. This is particularly important in the multi-period case. In many cases, 

the retailer can carry stock over to subsequent periods. In fact, one might argue 

that the assumption of costly disposal makes most multi-period analyses moot. It 

essentially says that inventory can be carried from one period to the next but not to 

subsequent periods. This may make sense for some products that expire but there 

are also such inventory policies as first in first out that mean that older stock is used 

first. 

Petruzzi and Dada (1999} provide a general discussion of a multi-period case 

in which the costly disposal assumption is relaxed. In this case, inventory carried 

forward need not be disposed of and need not all be discounted. In the stationary 

demand case, they suggest that q; ~ Xt in all cases. This is true as the order . 

quantity will be the same as long as demand errors are identically and independently 

distributed and none of the demand parameters change (the stationarity assumption). 

Even if demand in period t- 1 = 0, the order quantity would be zero and there would 

be no case in which a suboptimal price would have to be charged to get rid of excess 

inventory (i.e . . q(zt,Pt) ~ Xt in all cases), In this case, the optimal policy is identical 

to the single period one and the solution approaches are the same as before. This 

is true for stationary demand but does not hold if price cycles. If Pt > Pt-l in 

the optimal price path, it is possible that excess inventory will result and that the 

inventory will exceed the optimal quantity required for this period's price. 

Petruzzi and Dada [1999] provide a brief reference to the initial conditions 

in which Xt > qi and suggest that a temporary sales price could be established to 

dispose of the excess inventory. They suggest that this would be preferable to using 

the disposal pricing strategy in 5.3.3. This may or may not be practical depending 

on the length of the planning horizon and the specific retailer conditions. We offer 

a more formal pricing policy but first formalize the assumptions and notation. We 

assume stationary demand and constant h, s , and c for the planning horizon and 

additive and independent and identically distributed demand between periods. We 
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note that the condition where Xt > qi can only happen at the begi~g. of the 

planning horizon but a demand shift or parameter change may lead to this condition 

as well. It is, therefore, not a trivial problem. 

We note that the assumption that any inventory remaining at the end of a 

planning horizon can be carried forward suggests that h is negative (a salvage value 

rather than disposal cost) but that h ~ -c. The product can not be worth more at 

the end of the period than it was at the beginning. In this case, c + h would reflect 

a holding cost for inventory for the period. We also assume that unmet demand is 

lost {i.e. not deferred). If s < Pt .,.- c, there may be some switching to alternatives 

but we do not have backlogs. 

We now present a proposition which provides an optimal price for a period 

in which starting inventory exceeds the optimal stocking quantity in the case where 

there is no costly disposal. 

Proposition 5.3.2 For multi-period stationary linear demand with additive and iid 

error, if Xt > q;, the optimal pricing strategy for a period is: 

* { x * J.L-(c+h)-JH(u-z)¢(u)du} 
Pt =max Ptt,p + 2b 

where Ptt is defined as above in Equation 5.3.3. 

Proof. We know by definition that Ptt is the price that we would charge if we impose 

the binding constraint q; = Xt on the optimization of expe~ted profit. aE[1;:,Pt)) is the 

marginal expected profit with respect to a change in the price. If we choose Ptt when 

aE['1;:,Pt))IPt = Ptt < c + h expected profit wocld be lower than optimal as we could 

plan to store some of the inventory and do better. Charging p* + J.t-(c+h)- fz;b(u-z),P(u)du 

ensures that the target sales will be those units for which the marginal profit lost is 

less than the cost of holding them. We recall that p* is the maximizer of the riskless 

profit function. In this case, charging p* + J.L-(c+h)-f;b(u-z)<f>(u)du minimizes the holding 

cost by only carrying over those units for which the marginal profit would have been 
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less than the cost of carrying them. If aE(1TJ;:·Pt)]lPt = p~t ~ c + h, then we know that 

for all units, the cost of storing the additional inventory for one period exceeds the 

loss in expected profit by charging a price expected to clear that inventory. • 

The incorporation of the potential to choose to charge an intermediate price 

between p:t and p;, if q ( Zt, Pt) ~ Xt, adds complexity to the determination of optimal 

values of p and z. The approach outlined above (from Petruzzi and Dada [1999]) in 

which an optimal z is determined for each level of price and then an optimal price is 

found would work well in this context. One would first determine p; from Equation 

5.3.3. If q; = Xt, (i.e.p~t is chosen) then we would evaluate if aE[1TJ;:,Pt)) lPt = p:t < 
c +h. If aE(1;:,Pt)) lPt = p:t < c + h, then we use p~t and p; as bounds and evaluate 

. d . 11.-(c+h)-JH(u-z) .... (u.)du pnces to eterrrnne p* + ,.. z2b 'I' • 

5.4 The Reference Model with Stochastic Demand 

We now consider the reference model with stochastic demand. The demand function 

is: 

Dt _ { a- bpt + f'a(rt - Pt) + e; if Tt > Pt 

a- bpt + !' L(rt - Pt) + e; if Tt $ Pt 

a+ !'art . a+ f'Lrt 
c $ Pt $ b +!'a ; if a- brt $ 0; else c $ Pt $ b + f'L 

(5.4.6) 

We define stochastic demand YWt, rt) = Dt + Et where Et is the random com­

ponent of demand with mean, J.L· The single period expected profit function is the 

same as Equation 5.2.1 except that the reference effects are included. 

E [7rt(rt, Zt,Pt)] = (Pt-c)(y(pt)+J.L)-(c+h) lz (z-u)¢(u)du-(p-c+s) 1H (u-z)¢(u)du 
. 0 z ( 

5.4.7) 

with YWt) representing the deterministic part of the demand function in Equa­

tion 5.4.6. Taking the first derivative we get: 
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BE [1r(rt, zt, Pt)] 
apt 

_ { a- 2b + j3a(rt - Pt) + J.L-' J:B ( u- zt)¢( u)du; if rt > Pt 

a- 2b + f3 L(rt - Pt) + J.L- fzB ( u- zt)¢( u)du; if rt ~ Pt 

It is easily shown that this profit function is concave in zt for a given Pt and a unique 

z;(Pt) and maximum profit exists. We also note that the change in derivative 

of expected profit with respect to zt is independent of rt. This is also true if we 

incorporate multiple periods into the model. In fact the period specific stocking 

factor, zt, is independent of reference price and, thus, has no inter-temporal ties. 

None of the elements of the first derivative of expected profit with respect to zt, with 

the exception of price, is period specific. We can solve for the optimal Zt for a given 

Pt and once again generate the critical fractile result for each level of Pt· 

The forward recursion for the multi-period problem is: 

where: 

t = 1, 2, 3, .. , T; 

rt = art-1 + (1- a)Pt-1, t = 2, .. , T, and r1 is given; 

Xt = 0; 

fo = 0; 

lt is a vector of discrete prices which goes from c to a::;;t in increment 8; 

Pt is the discrete price in period t from vector lt; 

e is a discount factor and 

E [ 1rt(rt, zt,Pt) J is the expected profit function as specified in Equation 5.4.7. 

(5.4.8) 

We highlight again that the use of a forward recursion instead of a backward 

recursion is in the interest of computational tractability. Given that reference price 

is the state variable and the particular state depends on the previous prices charged, 

it is more manageable to search the prices forward to optimize the average profit per 
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period. We also reiterate that we use (} = 1 for all of our models to develop an 

average expected profit per period to optimize steady state pricing strategies. 

Each potential value of Pt has a unique value of Zt which satisfies 

1 - F(Zt) = c + h 
Pt+s+h 

(5.4.9) 

AB we discussed in the previous section, we assume that there are no backorders 

and that the inventory carried over is less than or equal to the optimal quantity 

stocked (xt ~.q;). 

We also recall that in the case of excess inventory at the start of a planning 

horizon or if demand parameters change, we might have the situation in which Xt > q;. 
We can consider the case at the beginning of a planning horizon in which Xt > q; is 

more complex than in Proposition 5.3.2 because the inter-temporal reference· effects 

will now be a factor and we will have to decide whether to hold some inventory rather 

than discount to clear the inventory out. If we charge a price Pt < p" we will have 

rt+l = ap" + (1- a)Pt· If we charge p" in period t + 1, we will incur a reference 

loss of (p* - c)f3L(rt+l - p*). The reference losses will, however, not stop there but 

continue until rt = p; again. We require an approach to deciding on the price. 

Before presenting the proposition, in the case where qi < x1 we define qi* such that 

qi < qi* < x1 and pi* is the price associated with the optimal path that follows given 

q1 = qi*. We also define q~1 and the associated price, p~1 , as the quantity and price 

that arise when the binding constraint q1 = x1 is imposed. We also reiterate that Pi 

is the price that results if the optimal quantity qi > Xt~ 

Proposition 5.4.1 For multi-period stationary demand with reference effects and 

additive iid error, if x1 > qi, (3 £, (30 <band concave g(p), the optimal pricing strategy 

is chosen such that (c + h)(x1- qi*) =!I (rl) lzt,p1=p; - ft (rl) IPl=Pi* · 

Proof. We can show that for a horizon of any length T, that /I (rt) is concave in 

price using an approach analogous to that in Proposition 3.4.1. Total expected 

profit at any time given x1 is It (r1) lp1=p1 -(c+h)(xl-ql)· We know whenp1 =Pi, 
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(c + h)(xl - qi) > 0 and that It (rl) lzt,p1=p; -It (rl) lv1=vi•= 0. We note that 

( c + h) ( x1 - ql) = 0 if ( c + h) = 0 (that is the cost of carrying the inventory forward 

into the next period is zero) and it is optimal to charge pft. As price decreases, 

(c+h)(xl-ql) the expected carrying cost, decreases but It (ri) lv1=p; -It (r1) lv1=pu 

the loss of expected profit increases. When PI = pft, ( c + h) (XI - q'it) = 0, but 

due to the concavity of lt(rt) we have the largest expected profit loss It (rt) lv1=p; 

-It (rr) lp1 =p~t. That is It (ri) lv1 =p~t::::; It (r1) lv1=vt'* for all pft <pi* <Pi. It is easy 

to see, then, that It (r1) lv1=p1 -(c+h)(xi ~qi) iS maximized when (c+h)(xi-qi*) = 

It (rl) lv1=Pt' -It (ri) lv1=Pi* · • 

It is easy to see that when carrying cost ( c + h) is high we set a price close 

to pft and when carrying cost is low we will set a price close to Pi. The optimal 

pricing path could be calculated for all potential values of pi* and qi*. The level at 

which the marginal cost of carrying the inventory that reduces the expected profit by 

exactly the amount that it costs to carry would be the choice of price in this case. It 

would never be lower than pft or higher than Pi. We highlight the fact that we may 

not actually carry all of the inventory (xi - qi*) for the entire period as demand is 

variable. We simply pick a price and stocking factor that does not force us to plan 

to sell all of it at a price that would reduce our expected profit given shortage and 

holding costs. 

5.4.1 The Loss A verse Case 

We consider first the case where consumers are assumed to be risk averse. We make 

the same assumptions about demand and the stationarity of the demand parameters 

as we did in the previous section. We first show that, for expected demand functions 

for which there is a single optimal value of Zt and Pt, a single price is optimal. Ernst 

[1970] established that a single Zt and Pt were optimal when the distribution for E was 

a member of the P F2 family of distributions. The work of Petruzzi and Dada [1999] 

established less restrictive conditions under which this would still be the case. 
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Proposition 5.4.2 For 0 ::::; a ::::; 1, 0 ::::; (} ::::; 1, f3 L ~ f3a with a very long planning 

horizon T, T --+ oo, and unimodal Zt non-reference component of the repeating single 

period expected profit function, g, then a single price is optimal and the optimal price 

is popt, the optimizer of g. 

Proof. The, proof follows directly from that of Proposition 3.3.1 due to the unimodal­

ity in z of g. • 

We know from Proposition 5.4.2 that for f3L > f3a (the loss averse case) a 

single price is optimal. In that case the optimal z and p are: 

1 - ~(z*) = c + h 
t Pt+s+h 

( ) 
_ a+bc+JL- fz8

(u-z)¢(u)du 
p~ - p Zt - 2b 

* JL J:(u- z)¢(u)du 
- p + 2b- 2b (5.4.10) 

The value of p* is 
• a+bc 

p =--
2b 

which is the maximizer of the non-reference component of the profit function, g(pt)· 

The values of f3 L' f3a and rt disappear because with a single price there are no reference 

effects. In this case, then, the long term price and strategy is identical to the case 

where there are no reference effects. In this case rt = p~ for all t. It is also analogous 

to the non-reference case in that once the steady state has been attained, there will 

never be a case where beginning inventory exceeds q;. We also note that at the end 

of the product lifecycle, when we are no longer concerned about the impact of pricing 

decisions on future demand, the price decreases and we will also never have a case in 

which Xt > q;. We could calculate zt for all possible levels of Pt and use the recursion 

approach to determine the optimal price path. 
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5.4.2 The Loss Seeking Case 

We now consider the loss seeking case. We offer a Proposition which suggests that, 

under the condition of the unimodality of the expected profit function in Zt, the 

optimal price cycles in the loss seeking case with stochastic demand. 

Proposition 5.4.3 For 0 ~ a ~ 1, 0 ~ (} ~ 1, f3L 2:: (30 with a very long planning 

horizon T, T __, oo, and unimodal in Zt non-reference component of the repeating 

single period expected profit function, a single price is not optimal. 

Proof. Given our assumption of unimodality, we have a single optimal Zt and can 

easily show that the non-reference component of demand is concave in price for the 

specific Zt· Now consider the optimal price in the absence of reference effects, popt 

as in Equation 5.4.10. We follow an approach similar to that for Proposition 4.2.1. 

If we specify an M = 2 period cycle in which we subtract a small increment, 6, from 

popt for one price and add the increment to popt for the second price Once again we 

use r c,i and r ci interchangeably. We specify: 

Pc,l = Popt + 0 

and 

Pc,2 = Popt - 0. 

The reference prices are: 

rc,2 = arc1 + (1 - a)Pcl 

and 

rc,l = arc2 + (1- a)Pc2· 

Solving for r cl and r c2 in the above system of equations we find 

_ opt (1 + a 2 
- 2a )6 

rc,I-P - (1-a2 ) 

and 
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For 0:::; a:::; 1, 
(1+a2 -2a) 

1 ....:---=2~< . 
(1- a) -

For the single price strategy to be optimal we need to have 

2g(popt) - g(pCYpt + 8) - g(papt - 8) ( apt ~ ){3 (popt (1 + a 2
- 2a)8 opt ~) > p +u-c L - -p -u 

(1- a 2) 

(popt ~ ){3 (. (1+a
2

-2a)8 • J:) + - u - c G p + (1 - a2) - p + u 

2g(p*) - g(p" + 8) - g(p* - 8) 

g(p") - g(p* + 8) + g(p*) - g(p* - 8) 
8 

~ ( opt_ 8 _ ){3 ((1+a
2
-2a) 1) 

p c a (1- a2) + 
opt ( ( 1 + a 2 

- 2a) ) 
-(p + 8- c)f3L (1- a2) + 1 

now we take the limit as 8 ~ 0 and since g is concave 

0 > ( opt_ ){3 ((1+a
2

-2a) 1) -(opt_ ){3 ((1+a
2
-2a) 1)· 

p c a (1 - a2) + p c L (1 - a2) + 

0 > apt ((1+a2 -2a) ) 
(f3a- f3L)(p -c) (1- a2) + 1 

which is impossible as the right hand side is always positive as f3a :> f3 L· The gain 

effect outweighs the loss effect. Thus for loss seeking consumers with stochastic 

demand, the optimal price always cycles. • 

We highlight again that this does not mean that a two period cycle is optimal 

but that a single price is not optimal. The general results outlined below do not 
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depend on two phase pricing. The problem can be solved with the dynamic pro­

gramming recursion outlined in Chapter 3. We evaluate analytically the special case 

of the loss seeking case in which the optimal approach is a two phase cycle to provide 

some basic analytical results to compare to the M = 2 case without a stochastic 

element. 

We consider the expected profit function with an additive stochastic compo­

nent, Equation 3.4.11 specified a two stage profit function without stochastic elements. 

We can add the stochastic components and the resulting expected profit function is: 

7rM=2 = (pl- c)(a- bpl + J.L + !h(wlP2 + W2P1- PI)) 

-(c +h) 1z\zl- u)¢(u)du- (p1- c + s) lH (u- zi)¢(u)du 
0 ~ 

+(P2- c)(a- bp2 + J.L + !h(wlPl + W2P2- P2) 

-(c +h) 1z
2 

(z2- u)¢(u)du- (p2- c + s) 1H (u- z2)¢(u)du 
0 q 

The first order conditions are: 

We now get 

P1 = 

P2 -

- _a+ J.L- 2(b + f3Lwl)Pl + (b + f3Lwl- f3awl)c + 

(f3L + f3a)W1P2 -lB (u- ZI)ifJ(u)du 
Zl 

= a+ J.L - 2(b + f3aw1)P2 + (b + f3aw1 - f3 Lwl)c + 

(f3L + f3a)w1P1 -1B(u- z2)¢(u)du 
Z2 

a+ J.L + (b + w1(f3L- (3a))c + ((3L + f3a)WIP2- fz~(u- z1)¢(u)du 

2(b + f3Lwl) 

a+ J.L + (b + wl(f3a- (3L))c + (f3L + f3a)W1Pl- fz~(u- z2)¢(u)du 

2(b + f3awl) 
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if we define 

then 

= 

>.1 - 1B (u- z1)4>(u)du 
Zl 

A2 - 1B ( U - Z2)<f>( U )du 
Z2 

h1 + f.l + f3w1P2- >.1 
2(b+ .Lhw1) 

2(b + f3awl)hl + 2(b + f3awl)f.l + f3w1h2 - 2(b + f3awl)>.l - 2(3w1>.2 

4(b + (3Lwl)(b + f3awl) - (32w~ 
* 2(b + f3awl)f.l ( 2(b + f3awl)>.l + 2(3w1..\2 ) 

= Pl + 4(b + (3 Lwl)(b + f3awd- (32w~ - 4(b + (3Lwl)(b + f3awl) - f32w~ 
and similarly 

opt "' 2(b + j3 Lwl)f.l ( 2(b + (3 Lwl)..\2 + 2f3wl,\1 ) 
P2 =p2 + 4(b+,BLwl)(b+f3awt)-(32w~- 4(b+f3Lwl)(b+f3awl)-,B2w~ 
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where /3 = j3L +f3a, h1 = a+(b+wl(f3L -/3a)c, and h2 = a+(b-wl(.Ba- ,BL)c. 

We know by definition that Pi > P2 which means by Equation 5.4.9 that 

z1 > Z2· It is easily shown that >.1 < >.2. This leads us directly to the result. 

Lemma 5.4.1 For M=2, with stationary linear demand with an additive stochastic 

component, the price spread, relative to the case without stochastic demand, between 

Pl and P2 will be: 

a) wider if 

b) narrower if 

c) the same if 
(b- fhw1) >.2 
(b - .Bawl) = >.1 
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Proof. Consider the component contributed by the stochastic element (we note that 

the shift caused by the mean, J.L, is simply a shift of the linear intercept, a). We 

want to compare the stochastic components as they will affect whether the price gap 

widens or narrows. The stochastic component of p1 is 
2(b+.Bawl).>.1 + 2,8w1.>.2 and of 

4(b+,8 L wl)(b+,8awl)-,82w1 
• 2(b+,8Lwl)A2+2,8W1Al UT. kn th " "d if 

P2 1S 4(b+,8Lwl)(b+.Baw1 )-.82w1" vve ow e gap 1S W1 er : 

2(b + f3awl)>..l + 2f3wl>-.2 2(b + f3Lw1)>..2 + 2/3w1>..1 
4(b + f3Lwl)(b + f3awl)- f32w~ < 4(b + f3Lwl)(b + f3awl)- {32w~ 

as the term on the right is subtracted from P2 and the term on the left is subtracted 

from p1 . After some algebraic manipulations this yields 

• 
We assume that the direct price effects (b) will always be larger than the 

reference effects (f3 L' f3a) and since 0 < w1 ~ 1, it follows that the denominator of 

the left side term will never be zero. We can easily see that both the numerator 

and denominator on both sides are greater than one (recall f3a > f3L) so we cannot 

make a definitive statement about a wider or narrower price gap. We can see that, 

although it is possible, it is unlikely that the price gap will be the same as that it 

would be in the absence of stochasticity. 

We can see then, that consideration must be given to stochasticity in reference 

price models. While it would have to be evaluated computationally or by determining 

the different possible combinations mathematically, we would conjecture that regard­

less of cycle length, the total price spread will be wider with a stochastic component 

of demand than without it. At the very least, the M = 2 results suggest the need 

to at least consider . the results will change given stochastic demand and reference 

pricing. 

In the case where M > 1, we also need to give consideration within the price 

cycles to the case where Xt > q;. In an M = 2 cycle where P1 > P2 this can only 
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happen for q1 because q1 < q2. In this case we have an issue similar to the one at 

the start of a planning horizon and need to make a decision on pricing based on the 

marginal impact on profit of clearing inventory versus the marginal cost of holding 

additional inventory for one period. In a given time period if Xt > q;, Proposition 

5.4.1 would hold here as well. A steady state plan would exist with an M stage 

pricing cycle. In a specific time period, t, if Xt > q;, we would determine the optimal 

plan starting at that specific time period that would get us back to the optimal steady 

state price with a maximum expected profit. 

5.5 Computations 

101. 

We implemented the same dynamic program in MatLab as with the threshold model. 

The linear demand function uses parameters a= 1, b = 0.2. We assume c = 0.5, 2.5 

to evaluate both high and low margin products. In the absence of reference effects, 

the optimal price is p• = aibbc = 2.75 for c = 0.5 and p• = 3.75 for c = 2.5. This 

range of costs has a clear impact on z and provides some perspective on the relative 

impacts for low and high margin items. We note that a higher level of c will not 

only increase the numerator for the calculation of z (see Equation 5.4.9) but will also 

likely decrease the shortage cost s. The shortage cost is sometimes reflective of lost 

margin. We evaluate three levels of shortage cost, s (s = 2.25, 1.25, 0.5). We use 

the first two for c = 0.5 and c = 2.5 respectively. This reflects the smaller margins 

(the cost of lost sales) for low and high costs. The value of s = 0.5 represents a lower 

cost of shortage and could reflect replacement of the product for a shortage. For 

disposal costs we evaluate at h = -0.49, -2.48, 0.05. This reflects a small holding 

cost (i.e. a disposal cost that in negative but slightly smaller than -c) and suggests 

that we can use the inventory in the next period if it carries over. The last value, 

h = 0.05, reflects a small disposal cost for the item and allows us to evaluate two 

different types of products. 

For the loss seeking case, in which a price cycle is optimal, we evaluate the 
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impact of changes in gain and loss reference parameters (/30 , f3L) and memory para­

meter (a). We evaluate at a= 0.2 and 0.35, the range which Mazumdar et al (2000) 

reported as being found in the research. Finally we evaluate values of 0.25, 0.2 and 

0.1 for f3 L and 0.2, 0.1 and 0.05 for /30 . 

In order to undertake the computations we need to specify a distribution for the 

stochastic component of demand. We use the uniform and the triangular for these 

computations. The uniform distribution has been used previously (Zabel [1970], 

Gerchak et al. [2002], Zhou [2007], and Urban [2008]) and the triangular distribution 

can be used to approximate a normal distribution (if it is specified as symmetric). 

Both distributions also have a lower bound which allows us to maintain our non­

negative demand constraint. These two seem suitable to evaluate the characteristics 

of the reference price model with a stochastic component on demand. We need to 

derive the key elements required for the expected profit function which we will use in 

the recursion. 

For the uniform distribution in which the lower the lower limit, G = 0, the 

upper limit is H. We recall that the stocking factor is: 

thus 

z 
1- F(z) = 1-­

H 

z* = H [1 - c + h ] . 
p+s+h 

We also determine: 

1z 1z u z3 
(z- u)f(u)du = (z- u)-du =-

o o H 6H 

and 

1H 1H u (H z)2 
z (u-z)f(u)du= z (u-z)Hdu= 2H . 

Similarly for the triangular distribution (G=O, upper limit =Hand mode=I) we can 

show that :for: 

p+s+h -

{ 

HI [1 - c+h ] if 0 < z < I 

z• ~ H- H(H- I) [p+"!"~.] if I< z ~ H 
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and 

l z { 3~1 if 0 < Z < I 
(z- u)f(u)du = -

0 3Jl2-z3-3zHI if I < z < H 
3H(H-I) -

and 

1
H { IJl2-3zHiti

2
H+z

3 if 0 < z <I 
( )f( ) 3HI ·-u-z u = 

z H3-z3-3zJl2+3Hz2 if I < Z < H 
3H(H-I) -

Given these we can now compute the expected profit function and complete 

the recursions. These are presented below. We evaluate three uniform distrib­

utions within the recursions. All have a lower limit G = 0. We consider H = 
0.045, 0.09, 0.225. These were selected as proportions of the optimal quantity in the 

absence of uncertainty. The larger the value of H, the larger the contribution of un­

certainty to total demand. We evaluate nine different triangular distributions. The 

upper and lower limits are the same as for the uniform ones. A symmetric triangular 

distribution (I = 0.0225, 0.045, .1125) approximates a normal distribution. We also 

evaluate a left skewed triangular (I = 0) and a right skewed triangular distribution 

where I= H. We assume a starting inventory x1 = 0. 

5.5.1 Loss A verse Case 

We know in the loss averse case that a single price will be optimal in the steady state. 

This is the price we are interested in and evaluate. The complete set of results is 

available in Appendix B. We highlight again that we are evaluating the steady state 

price and do not consider the adjustment periods at the beginning and the end of the 

time horizon. We also note that because the optimal policy is one in which the price 

does not change (EDLP), we do not need to consider alternate levels of the memory 

parameter, a, of the reference loss or gain parameters, f3L and [30 • 

Table 5.1 provides an overview of some of the results. The results shown 

are for the case where c = 2.5 which reflects a lower margin product. For the high 

margin product, c = 0.5, whether in the holding cost case (h = -0.49) or the disposal 
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cost case (h = 0.05) and for the full margin shortage cost (s = 2.25) or the product 

switching shortage cost (s = 0.5), the optimal price is very close to optimal price p* 

in the absence of a stochastic component. We do not vary shortage cost based on 

price. While one may suggest that shortage cost is a cost of lost margin, it is often 

true that stores will provide a "rain cheque" for low cost (or special) items if they 

are stocked out and thus the lost margin is actually the lost full cost margin. This 

is true for both the uniformly distributed error term and for the error term which 

has any of the nine specified triangular distributions. Recall that in all cases the 

lower limit of both the triangular and uniform distributions is zero. The mean of the 

distribution affects p*, the riskless price. This requires consideration when making 

any comparison but allows us to insure that demand is never negative. 

We see that when there is just a holding cost (i.e. excess inventory can be 

carried into the next period) there is no price discount due to the stochastic element 

regardless of the distribution chosen for the stochastic demand. This means that there 

is no impact on expected profit (i.e. the riskless profit is the same as the expected 

profit with the stochasticity included. When the cost of lost sales is lower and there 

is a positive disposal cost there is some effect on the price for the greater degree of 

variation, particularly for the right skewed and symmetric triangular distribution. In 

this case the expected profit with stochasticity is lower than the riskless profit. This 

not unexpected. If we consider a grocery store context, there are goods (canned 

goods for example) that do not deteriorate from one week to the next. The cost 

of "disposal" is merely the cost of holding that product. If the product is one that 

deteriorates or expires (produce for example), the cost of disposal is actually, at least 

in part, a disposal cost. This might include the cost of sorting the good from the 

bad and actual disposal costs. This can be clearly seen through the value of z 

relative to the parameters of the probability distributions. In the case of the uniform 

distribution with holding cost and high cost of lost sales the value of z is close to the 

upper limit of the distribution. This is what we would expect. The stocking factor 

covers almost all of the potential sales as the cost of extra inventory is low and the 
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cost of lost sales is high. In the case of the left skewed triangular (mode = 0, the 

lower bound), the z values are lower when cost of lost. sales is lower and the disposal 

cost is positive. 

The difference between riskless an:d stochastic profits is affected by two factors. 

105 

As the cost of disposal increases, the stochastic profits decrease relative to the riskless 

profits. The degree to which this happens depends on the both the distribution of 

the stochastic component and the size of the stochastic component relative to the 

certain component of demand. Disposal cost can be negative (h ~-c) which infers 

that there is at least some salvage. As h approaches -c it infers that there are only 

holding costs from one period to the next. In the situation where there are merely 

holding costs, we would expect to price to capture all potential sales as the reduction 

in profit for carrying excess inventory would be small. 

The second factor which affects the size of the reduction of expected profit 

with stochastic effects relative to riskless profits is the size of shortage costs ( s). As 

shortage costs increase, expected profits with stochastic effects decrease creating a 

bigger gap to riskless profits. It appears that the impact of the shortage cost is less 

significant than that for salvage costs with the parameters as specified here. 



1-' 
0 
O':l 

Table 5.1: Loss Averse Reference Model with Stochastic Component (c = 2.5) 
--

Distribution Upper Limit Mode s h z p* 7r* popt 1l"opt % diff in 7r 

. Uniform 0.045 n/a 2.25 -2.48 0.0449 3.81 0.341 3.81 0.341 0 

Uniform 0.225 n/a 0.50 0.05 0.1904 4.03 0.469 3.92 0.395 16 

Triangular 0.045 0.0225 2.25 -2.48 0.0433 3.81 0.341 3.81 0.341 0 

Triangular 0.090 0.0450 0.50 0.05 0.0644 3.86 0.371 3.84 0.339 9 

Triangular 0.225 0.1125 0.50 0.05 0.1626 4.03 0.469 3.97 0.385 18 

Triangular 0.045 0 2.25 -2.48 0.0426 3.79 0.332 3.79 0.331 0 

Triangular 0.090 0 0.50 0.05 0.0534 3.83 0.351 3.79 0.350 0 
1-0 

Triangular 0.225 0 0.50 0.05 0.1337 3.94 0.413 3.86 0.405 2 P" 

!:J 
Triangular 0.045 0.045 2.25 -2.48 0.0449 3.83 0.351 3.83 0.351 0 1-3 

P" 
£g 

Triangular 0.090 0.090 0.50 0.05 0.0825 3.90 0.392 3.88 0.353 10 fij' 
I 

Triangular 0.225 0.225 0.50 0.05 0.2075 4.13 0.528 4.07 0.425 20 ~ .... g. 
~ ...... 
~ 
1:::1 

~ 
~ 
~ 
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5.5.2 Loss Seeking Case 

We evaluated the loss seeking case in a similar fashion. In this case, we found that all 

of the models specified resulted in an M = 2 price cycle. Tables 5.2 and 5.3 provide 

an overview of some of the key results. All of the results are tabulated in Appendix 

B. There are a number of points worth highlighting in the results. 

• The reductions in optimal prices (both p1 and P2) for theM = 2 loss seeking 

case is greater for similar distributions than it was in the loss averse case. The 

price cycles interact with the stochasticity causing the greater price reductions. 

• For this linear specification with the parameters used and the distributions 

chosen the price gap was wider than it would have been in the absence of 

stochasticity for all cases. In the case of holding costs (h = -2.48) the changes 

in the gap were not sufficient to cross the one cent price barrier and so the 

difference was not manifest in actual prices. It is easily seen that the price 

gaps widen in other cases. 

• A decrease in the loss parameter (/3 L) widens the basic price spread between 

p1 and P2 and also widens the spread that occurs due to stochasticity. That 

is, stochasticity has a bigger effect on the price spread when loss parameter is 

lower. 

• We see that the value of z behaves similarly to the loss averse case. 

It is worth noting that the impact on stochastic profit relative to riskless profit 

of salvage value (h) and shortage costs ( s) are the same as in the loss averse case. 

The relative impact, however, is bigger for loss seeking consumers. This is due to the 

moderating impact of the stochasticity on the price gaps under these parameters and 

distributions. We know from Lemma 5.4.1 that the price gap can be bigger, smaller 

or the same with stochasticity than without. In this case the price gap is smaller 

and thus some of the reference gains are lost in addition to the lower prices charged. 
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Table 5.3: Loss Seeking Reference Model with Stochastic Component - ((3 L = 0.075) 

Dist. Up.Lim. Mode s h Zl Z2 Pi p; 7r*l opt 
P1 

opt 
P2 7ropt2 %171" 

Unif. 0.045 n/a 2.25 -2.48. 0.0449 0.0448 4.23 2.57 0.169 4.23 2.57 0.169 0 

Unif. 0.225 n/a 0.50 0.05 0.1027 0.0369 4.37 2.71 0.263 4.18 2.49 0.094 64 

'IIi 0.045 0.0225 2.25 -2.48 0.0318 0.0429 4.23 2.56 0.169 4.23 2.57 0.169 0 

Tri. 0.090 0.0450 0.50 0.05 0.0433 0.0313 4.26 2.60 0.228 4.21 2.54 0.142 38 

'IH. 0.225 0.1125 0.50 0.05 0.1086 0.0790 4.37 2.71 0.418 4.25 2.56 0.192 54 

Tri. 0.045 0 2.25 -2.48 0.0427 0.0420 4.22 2.56 0.150 4.22 2.56 0.149 0 

Tri. 0.090 0 0.50 0.05 0.0238 0.0065 4.24 4.16 0.188 4.18 2.51 0.112 40 
~ 

Tri. 0.225 0 0.50 0.05 0.0587 0.0147 4.31 4.12 0.309 4.16 2.47 0.110 64 ::r 
~ 

Tri. 0.045 0.045 2.25 -2.48 0.0049 0.0449 4.24 2.58 0.189 4.24 2.58 0.189 27 ~ 
('!) 
Cll 

Tri. 0.090 0.090 0.50 0.05 0.0614 0.0355 4.29 2.63 0.268 4.23 2.56 0.163 39 5)" 
I 

Tri. 0.225 0.225 0.50 0.05 0.1546 0.0911 4.43 2.77 0.532 4.29 2.60 0.253 52 ~ ..... g. 
!» 

C = 2.5,(3L = 0.75,(3G = 0.2 ('!) -
~ 
I:' 

~ 
~ 
~ 



Table 5.2: Loss Seeking Reference Model with Stochastic Component ((3 L = 0.1, f3a = 0.2, c = 2.5) 

Dist. Up.Lim. Mode s h Zl Z2 Pi P2 7r* P'r P':r '][apt %t7r 

Unif. 0.045 n/a 2.25 -2.48 0.0449 0.0448 4.26 2.66 0.179 4.26 2.66 0.179 0 

Unif. 0.225 n/a 0.50 0.05 0.1121 0.0085 4.40 2.81 0.440 4.19 2.55 0.084 80 

Tri. 0.045 0.0225 2.25 -2.48 0.0434 0.0430 4.26 2.66 0.179 4.26 2.66 0.179 0 

Tri. 0.090 0.0450 0.50 0.05 0.0436 0.0287 4.29 2.70 0.238 4.25 2.65 0.161 32 

Tri. 0.225 0.1125 0.50 0.05 0.1091 0.0219 4.40 2.81 0.426 4.29 2.69 0.225 47 ~ 
(") 

~ 
Tri. 0.045 0 2.25 -2.48 0.0421 0.0421 4.25 2.65 0.160 4.25 2.65 0.160 0 ! 

~ 
Tri. 0.090 0 0.50 0.05 0.0091 0.0092 4.26 2.68 0.198 4.21 2.61 0.129 35 I 

tJ 
CD 

Tri. 0.225 0 0.50 0.05 0.0219 0.0219 4.34 2.75 0.135 4.20 2.59 0.319 58 0 
'"1 
0 
0 

Tri. 0.045 0.045 2.25 -2.48 0.0449 0.0449 4.27 2.68 0.199 4.27 2.68 0.198 0 c+ 
CD 

00 

Tri. 0.090 0.090 0.50 0.05 0.0620 0.0411 4.32 2.72 0.249 4.27 2.67 0.184 26 §" 
g. 

Tri. 0.225 0.225 0.50 0.05 0.1575 0.1067 4.46 2.87 0.462 4.35 2.73 0.295 36 a. 
ttl 

c = 2.5,/3£ = 0.1,/3a = 0.2 fi s· 
~ 
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5.6 Summary and Conclusion 

In this chapter we develop a reference demand model with a stochastic component 

of demand. We find analytical solutions for the loss averse case (where a single 

price is optimal) and for the special case of loss seeking demand in which M = 2. 

These solutions provide insight into the steady state case. The loss averse case is 

similar to the non-reference demand in the steady state. There will be differences 

in the adjustment periods that could arise due to cost or other parameter changes or 

at the end of a product life cycle or season. In the loss seeking case, we find that 

the stochasticity in both price periods affects the choice of price in each individual 

period. We also find that as shortage costs decrease. This is a significant insight. 

We also find that the introduction of a stochastic component in demand can change 

the size of the price spread between the period prices. We show that.the price spread 

can be wider or narrowed depending on the specific parameters of the model and 

the stochastic component of demand. We do computational experiments to evaluate 

optimal pricing strategies for both loss averse and loss seeking models. We show 

that as disposal cost increases, expected profit decreases relative to riskless profit and 

that increasing shortage costs also decrease expected profits relative to riskless profit 

but to a lesser degree. We showed that the price gap for loss seeking consumers can 

either increase, decrease or stay the same. 

We also introduce a discussion of results for multi-period models in which 

price cycles. In steady state, for the loss averse model, the price does not cycle 

so the ending inventory will never exceed the stocking factor, z for the next period. 

When prices cycle, the period in which a price increases may result in a starting 

inventory that exceeds the stocking factor. Historically researchers have assumed 

expensive disposal (i.e. inventory cannot be cost effectively carried forward). There 

may be cases in which a small holding cost on the expected ending inventory may be 

more cost effective than the reduction in expected profit incurred by lowering price 

such that the inventory is expected to be cleared. In the reference case, the impact 

on future periods also needs to be considered. 
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The incorporation of a stochastic component of demand to reference models 

provides additional insight for both reference research and research into stochastic 

demand. 
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Chapter 6 

The Model with Setup and 

Holding Costs 

6.1 Introduction 

The dynamic lot sizing problem, where production or ordering decisions are made 

based on setup and holding costs, has been well studied in the literature. The 

order or production quantity can, depending on the relative holding and setup costs, 

create inventory that carries over several periods in the planning horizon. The 

incorporation of reference prices will add a second inter-temporal effect that creates 

an issue for consideration in the production/ order planning decision. The inter­

temporal pricing implications clearly interact with the lot sizing problem. In the case 

of loss averse consumers, the implications of increasing prices which leads to reference 

losses in future periods need to be considered. The work of Wagner and Whitin [1958] 

and Thomas [1970]lay a good foundation for addressing this complex computational 

problem. We address the problem with the incorporation of reference price models. 

Our focus is to analyze the problem in the context of steady state pricing and lot 

sizing strategies. That is, we have stationary demand over the planning horizon and 

112 
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we evaluate the optimal repeating strategy. 

This chapter is laid out as follows. We introduce the general lot sizing problem 

and some of the results that facilitate the solution of the problem. We then discuss 

the incorporation of reference prices into the demand function and the modifications 

to the solution approach that the reference price considerations require. We finish 

with some computational experiments to illustrate the behaviour of the model that 

we have used to date. 

6.2 The Dynamic Lot Sizing Problem with Pricing 

The dynamic lot sizing problem with endogenous price is well established (Yano and 

Gilbert [2005], Bhattacharjee and Ramesh [2000]). We present it here to develop the 

complete notation within the context of our problem. 

T 

Max L {et-1(PtDt(pt)- 8tK- ext- hit} (6.2.1) 
t=l 

x,p,6 

subject to 

It-1 + Xt- Dt(pt) -It - 0 t = 1, ... , T 

8t E {0,1} 8t = 1 if Xt > 0, and 0 otherwise 

Xt > 0 t = 1, ... ,T 

It > 0 t= 1, ... ,T 

Xt ::; CP 

We have defined some of the notation before but in the interest of completeness 

we outline it again. The discount factor, 8, provides a present value of future streams. 

In our case, we assume that (:J = 1 so that we determine a repeating steady state 

pricing and ordering strategy. As was the case before, the price in the current 

period, Pt, is an endogenous choice variable. Demand in each period, Dt(Pt), is a 
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function of price. The specific form and parameters of demand can change between 

periods (reflecting, for example, seasonal differences in demand). In our case, we 

assume that demand is consistent between periods for the purposes of determining 

the optimal pricing strategy with dynamic lot sizing and reference price effects. As 

was the case previously, the variable production or ordering cost is represented by c 

and is assumed to be fixed across the planning horizon, although this need not always 

be the case. The production quantity in period t, Xt, incurs variable cost c, and fixed 

cost K. The binary variable, 8t, ensures that the fixed cost is only incurred in periods 

in which there is actual production (the second constraint). The inventory at the end 

of the period, It, is charged holding cost, h, which is also fixed for all periods. The 

first constraint is the inventory balance equation. It ensures that starting inventory, 

lt-b plus production in period t, minus the demand equals to the ending inventory. 

The final constraint is a capacity constraint such that production in any period can 

not exceed the capacity, C P. 

The problem is to determine jointly an optimal price path and an optimal 

production or ordering plan. Bhattacharjee and Ramesh [2000] study the production 

optimization problem with a discrete set of price choices and a finite life for the 

product. The finite life of the product means that the product will only last a given 

number of periods, k, so that the maximum production cycle is k periods. While 

having a maximum cycle length, k, clearly simplifies the problem, the combined 

problem of pricing and production creates a complex problem and even short horizon 

problems can be very difficult to solve. 

where 

The single period expected profit is: 

a- bpt + {30 (rt- Pt)i if Tt > Pt 

a- bpt + !h(rt - Pt); if Tt ~ Pt 
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and the same balance constraints between periods hold as was the case in Equation 

6.2.1. 

The dynamic programming recursion stated in the form used in earlier chapters 

and including the reference price is: 

where 

t = 2, 3, ... , T; 

Tt = art-1 + (1- a)Pt-1, t = 2, ... , T, and r1 is given; 

!1 = 0; 

Jt is a vector of discrete prices which goes from c to a:.:J:t in increment 8; 

Pt is the discrete price period t from vector Jt; 
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1ft is the profit function based on the reference demand function with loss averse 

reference parameters; and 

(} is the discount factor, 0 < (} ~ ·1. 

We highlight again that we use (} = 1 which maximizes the average profit 

and gives insight into the optimal price and production/ order cycle given consistent 

reference price demand. We have omitted capacity to simplify the discussion and have 

not included a maximum production/ order cycle length due to product degradation 

or expiry. 

This establishes the model to be solved for the optimal decision. We now 

introduce a solution approach for this problem. 

6.3 A General Solution Approach 

The results in Wagner and Whitin [1958] and Thomas [1970] provide a good founda­

tion for solving this problem. Wagner and Whitin [1958] proved four key theorems 

with price as exogenous upon which Thomas built to include price as an endogenous 
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decision variable. The four key results presented by Thomas [1970] as Lemmas 1 

through 4 are: 

1. An optimal program exists in which each period has either production or a 

starting inventory equal to zero but not both: !tXt= 0. 

2. Analogous to the first Lemma, an optimal program exists in which the starting 

inventory is either zero (in which case production occurs) or is exactly equal to 

L;=l Dt(pt) for some k, t ~ k ~ T. This means that production covers either 

all or none of a subsequent period's demand. 

3. An optimal program exists such that if demand in period t is met by production 

in period t*, t* < t, then all production in the intermediate periods (t*, ... , t) is 

also met by production in period t*. Stated differently, if the demand in period 

t is met by production, Xt•, the demand in all of the intervening periods is also 

met by this production. 

4. In the optimal program where It = 0, for some period t, it is optimal to consider 

periods 1 through t -1 alone. This means that each individual production cycle 

is independent of each other one. 

These results prove very powerful in developing a dynamic programming al­

gorithm for solving the production problem. Results 1 through 3 would be expected 

to hold regardless of the form of the demand function. Result 4 needs to be con­

sidered carefully. It states that when starting inventory is zero for a period we can 

optimize within the previous periods separately. This is based on the assumption 

that demand in the different periods is independent. In the reference demand case 

this is not true. The reference price links demand in period t to the pricing decisions 

in previous periods. We must optimize prices in periods prior to a production period 

while taking into account the demand impacts post production. This takes away one 

of the key results that would simplify the computational process in Thomas' original 

price setting algorithm. We discuss this in greater detail later. 
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The planning horizon results also require consideration. Lemmas 6 and 7 in 

Thomas [1970] provide lower and upper bounds for price consideration. Let us start 

with Lemma 6. It states that if the optimal last setup time is in the current period, 

no price lower than p; is ever optimal for that subsequent production cycle. We recall 

from the previous numerical analysis (for thresholds and stochastic demand) that 

there were adjustment periods at the beginning and the end of the planning horizon 

depending on the starting reference price. We can reduce the adjustment period at 

the beginning of the planning horizon by beginning with a reference price equal to 

the optimal reference price in the absence of setup/ordering and holding costs. 

Thomas [1970] uses Lemma 6 to set a lower bound on the optimal price within 

a planning horizon. We first revisit and extend this result for the special case of 

stationary demand, to build on it in the reference context. Lemma 6.3.1 builds on 

the result in Thomas but parts b and c provide more detail and further reduce the 

search space. Lemmas 6.3.1 and 6.3.2 do not include reference impacts but extend 

the results of Thomas [1970] and set a foundation for subsequent results specific to 

reference models. 

Lemma 6.3.1 If demand is linear and stationary, and if production occurs in period 

t, 

a) p; will set a lower bound for the price form= t, ... , k -1 where k is the time of 

the next production run. 

b) p; will be the maximizer of g(pt), the profit function without reference effects. 

c) for any period m, t ~ m < k - 1, Pm sets a lower bound for all subsequent prices, 

Pm+b ... ,Pk-l· 

Proof. Consider any production cycle of length M .without reference prices. It is 

straight forward to establish the concavity of this cycle profit function. In that cycle, 

there is, by definition, only a single production run in the first period. We know the 
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profit from that production cycle equals: 

1fM = t,p;(a- bp,)- K- c (t,(a- bp;)) - h(a- bp, + ... (6.3.2) 

+a- bpM)- 2h(a- bp3 + ... +a- bpM))- ... (M -l)h(a- bpM) 

If we differentiate with respect to individual prices we get: 

01rM 
a- 2bpt + cb 

8p1 
-

01rM 
a - 2bp2 + cb + hb 

8p2 
-

01rM 
i-1 

a- 2bpM + cb + hb LJ 
OPM 

-
j=l 

We can then solve for optimal values of each price: 

a+cb 
Pt -

2b 
a+cb+hb 

P2 -
2b 

PM-1 
a + cb + hb 'E!~2 

j 
-

2b 

PM 
a + cb + hb 'E!~1 

j 
-

2b 

It is clear that p1 sets a lower bound for all of the prices in the cycle and that each 

price is incrementally higher through the production cycle. • 

While we still need to solve the problem, we have significantly reduced the 

search space. We can easily see that this extends to the case where demand is not 

stationary. 

Lemma 6.3.2 If gt(Pt), the profit function, is based on downward sloping demand, 

concave, continuous and differentiable for each period and if production occurs in 
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period t, p; will set a lower bound for the price for t = i, ... , k - 1 where k is the time 

of the next production run and P'r = Pi, where P'r is the optimal first price in the 

production cycle and Pi is the maximizer of the the profit function. The maximizer of 

gt(pt) (the non-reference component of the profit function), p;, will set a lower bound 

for each period t and all subsequent prices. 

Proof. Given demand is downward sloping we know: 

oDt 
0 -< 

OPt 

which says that demand is decreasing in price. The profit function for any M period 

cycle is: 

M 'M ) M M 

"M = f,;p;D(p;)-K-c (f,;D(p;) -h(~D(p;)-2h(f,;D(p;))- ... -(M-l)hD(pM) 

(6.3.3) 

AB we did in Lemma 6.3.1, we can easily solve for the optimal price in each period 

by differentiating with respect to Pi:: 

01rM 
-

op1 

01rM 
-

OPt 

We can see easily that p{Jt = Pi. We can also see that the last term relative to Pt is 

negative so it increases the derivative (because it is subtracted). Therefore, pf!t > p; . 

• 
We highlight that this does reduce the search space when determining a cycle. 

It still requires the evaluation in each case as to whether the cycle is the appropriate 

length. This result allows us to reduce the range of prices we evaluate in any given 

cycle length. 
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We would also benefit from an upper limit for prices under consideration. We 

offer first the upper bound set by Thomas [1970] as there was no proof published. The 

proof in Thomas [1970], says that if g(pt), the profit function, is based on downward 

sloping demand, concave, continuous and differentiable for each period, t, and if 

production occurs in period t, no price Pt, where g(p*)- g(Ft) > K, is ever optimal. 

Lemma 6.3.3 If 9t(Pt), the profit function, is based on downward sloping demand, 

concave, continuous and differentiable for each period and if production occurs in 

period i, no price Pt, where (t- i)g(p*) - g(pi+1) - ... - g(Ft) > K, is ever optimal. 

Proof. The proof is straight forward. If the profit contribution lost due to charging 

lower than optimal costs exceeds the setup cost, K, then it would be more profitable 

to produce with cost K in period i. • 

This lemma provides a tightening upper bound as M, the cycle length, grows. 

We now explore the case where we have loss averse reference demand We first 

consider the price sequences between production periods similar to Lemma 6.3.1 but 

with reference effects. The result is similar to the previous one. 

Lemma 6.3.4 If demand is linear and stationary with loss averse reference effects, 

and if production occurs in period t, 

a) p; will set a lower bound for the price form= t, ... , k- 1 where k is the time of 

the next production run. 

b) for any period m, t ~ m < k- 1, Pm sets a lower bound for all subsequent prices, 

Pm+b ... ,Pk-1· 

Proof. The proof is analogous to that for Lemma 6.3.1. We illustrate the approach 

for a two period cycle but it is easy to extend to a cycle of any length M. We also 

consider a risk neutral scenario, i.e. f3 L = (30 but we label the two parameters (31 and 

(32 which are associated with p1 and p2 respectively. In the M = 2 case. the two 

period profit function is 

1r2 = Pl(a- bp1 + f3t(rt- Pt)) + P2(a- b]J2 + f32(r2- P2))- k 

-c(a- bp1 + /31(rl- Pt) +a- bp2 + f32(r2- P2)- h(a- bp2 + (32(r2- P2)). 
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For b > {31, {32 it is straight forward to establish concavity (see Proposition 3.4.1 on 

page 47). We can use the first order conditions to solve for Pi and P2 yielding 

* a+ (b -~- w1f31 - w2f32)c- hf32w1 + w1 ({31 + f32)P2 
PI = 2(b- w1f31) 

and 

where 

and 

It is easy to show that Pi < P2 even when {31 = {32• As {31 = {32 , we did not impose 

either a reference loss or reference gain within the cycle so we did not assume that 

Pi < P2. We have now shown that in an M = 2 case with risk neutral consumers the 

second price in the cycle is higher than the first. We know from Proposition 3.3.1 that 

in the case of loss averse consumers without setup and holding costs, a single price 

is optimal. It is easily shown that the same is true for loss neutral consumers. We 

know from above that for Joss neutral consumers, P2 >Pi· If {32 > {31 (i.e. f3L > {30 ), 

it is still true that P2 > Pi because there is no value in a lower price from a reference 

perspective. This proves ·,;he case forM= 2. The approach for any M is analogous 

and yields similar results. • 

This allows us to Eet a tightening lower bound on price as we evaluate cycle 

length and pricing computationally. We now consider the length of the cycle. Let 

MNR be the optimal cycle length in the absence of reference effects and MR be the 

optimal cycle length with loss averse reference effects. 

Lemma 6.3.5 If demand is linear and stationary, with an additive loss averse ref­

erence component, the optimal cycle length will be less than or equal to the optimal 

cycle length given the same linear demand function and no reference effects. The 

optimal number of periods, MR ~ MNR, in the optimal steady state pricing program 
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Proof. Consider any M period cycle. In the absence of reference effects, the total 

cost of production and inventory is: 

M-1 

TCNR = K +ext+ L hit 
t=1 

We know from Proposition 3.3.1 that in the absence of setup/production and holding 

costs, a single price would be optimal. We also know that the sum of all of the 

reference losses equals the sum of all the reference gains in a price cycle. The total 

cost of production and inventory in the case of reference effects equals: 

M-1 

TCR = K + CXt + L [hii + Uh- f3a)(rt+1- Pt+1)] 
t=1 

It is clear that the optimal cycle length in non-decreasing in K and non-increasing in 

c and h. We know from Lemma 6.3 that prices increase as M increases which means 

that rM increases with M. Since f3L > f3a, 'L~~1 ({3L- {30)(rM- P1) > 0. There 

are net reference losses that accrue due to each additional period. The marginal cost 

of inventory is higher, L::!~1 [hii + ({JL- {30)(rM- PI)] > L::!~1 hi for loss averse 

consumers so with all other parameters being the same, additive reference losses will 

be less than or equal to the cycle length than is the case without loss averse reference 

effects (i.e. MR ~ MNR)· • 

This lemma allows us to set an upper limit on the length of the optimal cycle 

for risk averse consumers. While our focus is on loss averse consumers in this chapter, 

we offer the following corollary as a straight forward follow-up to Lemma 6.3.5. 

Corollary 6.3.1 If gt(Pt), the non-reference component of the profit junction, is 

based on down sloping demand, concave, continuous and differentiable for each pe­

riod t, with additive loss seeking reference effects, the optimal number of periods, 

MR 2: MNR, in the optimal steady state pricing program 
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Proof. The proof follows directly from that for Lemma 6.3.5. We revisit 

M-1 

TC = K + CXt + L hli + ({h- {30 )(rM- PI) 
i=l 

In the case where f3L < f3a, it is clear that cost decreases as rM increases. Adding 

loss seeking reference effects will reduce the cost of cycle of length M, so, therefore, 

MNR sets a lower bound for MR. • 

We have established a maximum cycle and we now require bounds for the loss 

averse case. We first revisit the upper bounds for the problem. In this case we can 

offer a tighter bound than was the case with loss averse reference demand. 

Lemma 6.3.6 If gt(Pt), the profit function, is based on downward sloping demand, 

concave continuous and differentiable for each period, with an additive loss averse 

reference component and if production occurs in period t, no price Pt, where g(p*) -

g(pt) - ({3 L - f3 G) (WI Pi + W2Pt - Pt) > K, is ever optimal. Where 

and 

Proof. This proof follows directly from that of Lemma 6.3.3. In this case we not 

only take into account the difference in the direct profit but the net reference effect of 

charging the higher price. • 

We need to consider the adjustment periods for the beginning and end of the 

planning horizon so we get a stable steady state result in the middle. In order 

to establish an effective starting and finishing adjustment period we use the model 

without setup and holding costs and use the adjustment periods required for those. 

We also know from Lemma 6.3.5 that the maximum MR ~ MNR· We develop a 

simple algorithm to establish the cycle length with no reference effects. First we 

require an additional lemma. 
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Lemma 6.3. 7 If gt{Ft), the profit function, is based on stationary downward sloping 

demand, concave, continuous and differentiable for each period, and if production 

occurs in period t, the optimal cycle length, M = T, occurs at the point where 11"T-l < 

Proof;. The shortest possible cycle occurs at M = 1. We know demand is stationary, 

i.e. that demand parameters do not change. If¥ > 1r1 then the reduction in fixed 

cost per unit outweighs the holding costs for the inventory (at the higher price) and 

increases profits. AB M increases, fixed cost per unit decreases and inventory cost 

increases. Once inventory cost increases exceed fixed cost per unit decreases, there 

is no case in which profit will increase again. • 

We now set the algorithm for the non-reference stationary demand case. This 

is similar to that of Thomas [1970] and sets the context for the reference model 

algorithm. Algorithm 6.3.1 does use tighter bounds than was the case in Thomas 

(which did not require stationary demand) and also has a stopping mechanism when 

the optimal cycle length is determined. 

Algorithm 6.3.1 Initiation: Set M = 2, p1 = p*, calculate original upper bound,. 

1rapt = p* D(p*) - K - cD(p*). 

Step 1 

Solve the M period problem using the restricted decision space as specified in Lemmas 

6.3.1 to 6.3. 7. Record optimal prices for each of theM periods and 1i"M· 

Step 2 

If 7f > 1ropt, 1ropt = 7:f, M = M + 1, record Pb ... ,pm, go back to Step 1 

Else go to Step 3 

Step 3 

M = Mopt, p1, ... , p M are optimal. Production quantities can be computed. 

The entire planning horizon, T, for the reference pricing problem is established 

by adding the adjustment period at the beginning of the enumeration. In the case 

where we are interested in the transition (which is beyond the scope of this chapter) 
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we would need to evaluate that period separately. We will understand the adjustment 

period required at the end and add that to T. We choose to _incorporate 2Mopt in the 

middle of the T periods to ensure that we get a stable and consistent result. The 

reference price algorithm is then: 
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Algorithm 6.3.2 Initiation: Set M = 2. Establish T as outlined above, calculate 

the upper bound, initialize 1ropt = p* D(p*) - K- cD(p*). Set two M period cycles in 

T. 

Step 1 

Solve the M period problem using the restricted decision space as specified in the 

Lemmas 6. 3.1 to 6. 3. 7. 

If there are at least two stable M period cycles, record optimal prices for each of the 

M periods and compute 1r M. Go to Step 2 

Else add another M period cycle to the middle of the horizon, T = T + M. Repeat 

Step 1. 

Step 2 

I1 !I.M.. > 1ropt 1ropt = !I.M.. go to Step 3 
M ' M' 

Else go to Step 4 
Step 3 

If M = Mopt from Lemma 6.3.1, Record Pb ... ,pM, 

Else Record p1, ... ,pM, M = M + 1, reset T as outlined above,go back to Step 1 

Else go to Step 4 
Step 4 
M = Mopt, Pb ... , PM are optimal. Production quantities can be computed. 

We have now established a solution approach for the dynamic lot sizing prolr 

lem with reference prices. 
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6.4 Computations 

We perform some computations using the demand formulation used in earlier chap­

ters. The problem is computationally intensive but we have narrowed the search 

space for the problem with the lemmas outlined in the previous section. As was the 

case in previous chapters, we implement the dynamic programming formulation in 

MatLab with the addition of the inventory balance equations, fixed setup/ordering 

and holding costs. We choose arbitrary levels of the costs based on the parameters 

of demand in order. 

The results of the computations are presented in Table 6.1. The results from 

this model as specified perform as we would expect. We see that, depending on 

the difference between /3 L and /30 , with the given parameters, the reference effects 

tend to overwhelm the production/ordering and holding cost effects. Only when 

the difference between f3 L and f30 was very small did a multiple period strategy with 

pricing actions make sense. We note that the first line of Table 6.1 is a baseline 

evaluation. In the absence of reference effects, ordering/setup and holding costs and 

with stationary demand, we would expect the optimal strategy to be a constant price 

equal top*. 

We can review the individual results in detail to isolate these results. The 

first row in Table 6.1 is the case in which there are no reference effects and no set 

up or holding costs. In this case the lack of a holding cost means that we order 

every cycle. We know that given the lack of reference effects a constant price is 

optimal. It is also worth noting that if ordering cost is positive and holding cost 

is zero then the production/ordering cycle would be infinite. The next four rows 

in the table represent the baseline cycles with different levels of setup and holding 

costs. We know the non-reference models set the upper bound on cycle length for 

loss averse models (Lemma 6.3.5) but they also serve as a benchmark for comparison 

for the reference model computations. We note that cycle length increases as holding 

cost decreases. As expected, price increases over the course of the cycle. The price 

increases are more significant for the higher holding costs. 
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Table 6.1: Computational Results for Dynamic Lot Sizing Problem 

!h f3a K 

0 0 0 

h M 

0 1 

0 0 0.05 0.0250 3 

p 

2.75 

2.75, 2.76, 2.78 

0 0 0.05 0.0125 4 2.75, 2.75, 2.76, 2.77 

0 0 0.10 0.0500 3 2. 75, 2. 78, 2.80 

0 0 0.10 0.0250 4 2.75, 2.76, 2.78, 2.79 

0.10 0.05 0.05 0.0250 1 

0.10 0.05 0.05 0.0125 1 

0.10 0.05 0.10 0.0500 1 

0.10 0.05 0.10 0.0250 1 

0.05 0.25 0.10 0.0250 1 

0.05 0.05 0.10 0.0100 3 

0.06 0.05 0.05 0.0250 3 

2.75 

2.75 

2.75 

2.75 

2.75 

2. 75. 2. 76, 2. 77 

2. 75. 2. 76, 2. 77 

In the loss averse reference model case, we see that the inclusion of loss averse 

reference effects moderate both cycle length and the highest price charged. In the 

first five cases (lines 6-10 in Table 6.1) the reference effects completely dominate 

the setup/ ordering cost effects and a single period cycle is optimal. That means 

production/ ordering occurs in each period. In the final two lines in the table, there 

are three period cycles. We note that in this first one the consumers are assumed to be 

loss neutral (that is j3L = j30 ). This case also uses the largest setup cost considered 

and the smallest holding cost. The resulting three period cycle has smaller price 

increases than was the case with no reference effects and a higher carrying cost. The 

final example shown has slightly loss averse consumers and setup and holding costs 

identical to those in line 2 of the table. This highlights that, in this case the cycle is 

shorter but the price increases are moderated. 
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These results have implications for managers that go beyond the specific para­

meters evaluated in these computations. The consideration of inter-temporal refer­

ence effects will shorten order cycles and moderate the price impacts in the presence 

of order and holding costs. Given the strong empirical evidence for loss averse ref­

erence effects, there is real value in these results and further work would have merit. 

In the absence of consideration of reference effects, order/production cycles may be 

too long and price adjustments may be too high during the cycles resulting in lower 

profits. 

6.5 Summary and Conclusions 

We evaluate the dynamic lot sizing problem with reference prices. The dynamic 

lot sizing problem with endogenous price is already recognized as a difficult problem 

(Thomas [1970], Bhattacharjee and Ramesh [2000]), the incorporation of reference 

prices into the specification increases the complexity of the problem as the impacts 

of pricing decisions extend beyond the current period and this needs to be considered 

in undertaking the computations. 

We outline the basic dynamic lot sizing model, which involves production plan­

ning and pricing and includes setup/ordering and holding costs. We develop steady 

state pricing and production cycles that maximize profit. We introduce a number of 

lemmas which set bounds for the dynamic programming model when finding optimal 

solutions. This involves both upper and lower bounds for pricing as well as a the 

development of an upper bound for the length of the steady state loss averse produc­

tion planning and pricing cycle. We then present an algorithm for determining the 

optimal steady state production planning and pricing model for stationary demand 

in the absence of reference prices. This serves as an input into the algorithm for 

developing the model for inventory and pricing planning with reference prices. We 

undertake some computational experiments to show how the model performs. 



Chapter 7 

Summary and Conclusion 

7.1 Summary and Overview 

In this dissertation we have introduced three significant extensions to the reference 

price models to provide insight into not only optimal pricing decisions, but also in­

ventory stocking and production or ordering decisions. The existence of a reference 

price, or expected price based on previous purchases, has strong empirical support 

and merits consideration when developing pricing strategies for retailers. We estab­

lish models that extend the scope of the reference price models studied to date and 

give richer insight into the pricing strategies. 

We present a comprehensive review of the literature into reference prices from 

the operations and marketing perspectives. We also provide an overview of research 

with demand models that include a stochastic component, focusing on additive error. 

Finally we introduce the research into dynamic lot sizing. Neither of these last two 

include any reference price work but establish the context for the reference models 

presented later. 

Chapter 3 introduces the basic reference model which serves as a starting 

point for the extension in the subsequent chapters. It provides an introduction to 
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the notation and establishes key basic results that are used and extended later in the 

context of the other models. We introduce the loss averse and loss seeking cases. 

We also discuss the inter-temporal pricing effects and the importance of considering 

multiple periods even when a price for a single period is needed. We cannot consider 

any single period in isolation because the demand in future periods is affected by the 

current price. 

The threshold model presented in Chapter 4 is the first significant extension 

to the previous reference price work. The model is based on the empirical work that 

suggests there are "zones of insensitivity" or threshold around reference price within 

which there is no reference response. This is interesting as it provides for a rigourous 

model with the flexibility to yield either single price (EDLP) strategies or cyclical 

pricing strategies depending on the parameters of the model. We specify the model 

and present some results and key findings. We also develop a set of results that 

reduce the search space for the dynamic programming enumeration. We conduct 

substantial computational experiments and provide a discussion of the results. This 

chapter concludes with the introduction of a nonlinear integer programming model 

for optimizing the threshold model. It provides optimal results relatively quickly 

and makes the implementation of threshold analysis more practical. This threshold 

model offers valuable insight and merits extension. 

We next introduce the reference model with an additive stochastic component. 

We analyze both the loss averse and loss seeking cases to determine the impact of 

stochastic demand on the optimal pricing strategy. In the case of the loss averse 

consumer, we find that the steady state pricing strategy is the same as the non­

reference demand as there is a single pricing strategy which precludes reference effects. 

The adjustment process, with stochastic demand merits attention and the loss averse 

case with stochastic demand continues to merit attention. In the loss seeking case, in 

which price cycles, we find that the introduction of a stochastic component can either 

increase or decrease the spread between the prices in the cycle. This is clearly an 

important result. We offer some computational analysis with uniform and triangular 
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distributions. 

The final model is the dynamic lot sizing model which includes setup/ordering 

and holding costs. When prices and production or order quantities are determined 

simultaneously, the interactions need to be considered to optimize profits. The 

incorporation of loss averse reference effects add further sophistication. We analyze 

the problem in detail and offer a series of results which reduce the search space. 

We then present an algorithm for solving the production/order and pricing problems 

simultaneously in the presence of loss averse reference effects. The inclusion of 

reference effects does change the optimal decision. 

7. 2 Further Research 

The extension of reference price models offered here sets the foundation for consider­

able additional research going forward. Reference prices are well established in the 

empirical marketing literature. Despite the complexity inherent in the models there 

is clear value in expanding the application of models that include reference prices into 

a broader range of supply chain and operations models. The reference models have 

potential to yield interesting results and meaningful managerial insight. 

The work of Mazumdar et al. [2005] highlighted the need for more reference 

price research to provide managers with insight into pricing and promotional strate­

gies. The previous models at the aggregate level (see for example Kopalle et al. 

[1996], Fibich et al. [2007] ) have been constrained to either a constant price (loss 

averse consumers) or a cyclical price (loss seeking consumers). This constrains the 

analysis of pricing strategies. The consideration of dynamic lot sizing or threshold 

models allows there to be both cyclical and single price strategies. These more robust 

models can be applied in a variety of contexts to generate insight into both pricing 

and production/ordering strategies. 

This initial analysis was done in a monopolistic context. This can provide 

significant insight, particularly in the context of frequently purchased items such as 
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groceries where switching costs are high· and there are inter store price differences. 

There would clearly be potential additional insight from consideration of a multi-seller 

oligopolistic market. The analysis of the pricing strategy arising from a threshold 

model in a competitive context is a logical extension of the work here. 

This initial work also focused on individual consumer segments as was the case 

in all of previous firm level reference price modelling (see for example Anderson et al. 

[2005], Greenleaf [1995]). The analysis of multiple consumer segments with different 

demand, reference price formation, threshold, gain and loss parameters could also 

provide valuable managerial insight. The existence of price cycles (or an EDLP) 

strategy may be affected by different consumer characteristics. 

There has been some suggestion that the product category and variability 

within the category is one of the factors that contributes to the formation of thresh­

olds. There is also evidence in the literature that different products and retail stores 

have different degrees of sensitivity to pricing actions. The consideration of the 

impact of complements and/or substitutes could also provide additional rigour and 

insight into this pricing analysis. This would take the analysis beyond anything 

published to date. 

The three models in this work were each analyzed independently and show~ 

some promise. It would be interesting to integrate the models to assess the impact 

on pricing strategy. Including a stochastic element of demand into a threshold 

reference model, for example, could yield interesting insight into stocking and pricing 

decisions. It is worth noting that the stochastic model results indicated that the 

size of the price spreads are likely different with a stochastic component to demand. 

This would suggest that there might be interesting insight for pricing strategy and 

stocking decisions in a threshold context. 

The real value in these reference price models is to provide insight to managers 

into optimal pricing strategies. This work has focused on the role of internal reference 

price in affecting pricing strategies. That is, the focus has been on the impact of 

previous purchase experiences on the current purchase decision. External reference 
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price, in which a retailer provides a signal of the regular price or the degree of discount 

can also play a role. It may play a role in moderating the impact of an external 

reference price on the internal reference price due to a promotional or sale price. 

There is some evidence in the marketing literature to this effect. If an external 

reference price might modulate the downward revision of reference price, particularly 

in a threshold model, the pricing strategy might be affected. In fact, it may allow 

for cyclical pricing in a loss averse reference model. There is merit in considering 

this potential in future work. 

The formulation of the threshold model presented here did not include any 

measure of the cost of changing prices. While it may be argued that the cost of price 

change is very small with the current technology, there is also some indication in the 

literature that consumers begin to adapt their purchasing patterns (their demand per 

period) to reflect the predictable promotional schedule. It would be interesting to 

develop a pricing strategy based on a differing time line which may not be optimal 

generally but be better than a single price and preclude the adjustment of consumers. 

This could also include provision for two prices, a regular price and a sale price, and 

a time varying promotional pattern. 

Our focus in this work has been on developing optimal steady state pricing 

strategies. We built explicit "adjustment periods" into the beginning and end of the 

models we analyzed to make allowance for the adjustment to the steady state and 

the price reductions at the end of the planning horizon. It is important for managers 

to understand the steady state pricing strategies. There would also be value in 

understanding the approach to price adjustments in cases such as cost changes, which 

would change the steady state strategy and may merit a period of adjustment rather 

than a one period change to the new price. It is also clear that products come 

to the end of the product lifecycle or selling season and the optimal strategy with 

reference prices merits research attention. There may also be interesting insight into 

the product rollover problem as price changes from one product to the next. Seasonal 

demand or time varying demand parameters would also merit consideration in both 
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steady state and transitional contexts. 

Greenleaf [1995] is the only one, to our knowledge, who has to date estimated 

an aggregate reference demand function. The empirical implementation of, in par­

ticular, the threshold model could provide more specific validation for the approach 

and an explicit insight into optimal pricing strategies. It would be interesting to 

estimate a threshold model with some grocery data. 

It is clear that the foundation laid by the analysis presented here has the 

potential to yield considerable additional research opportunities. 



Appendix A 

Summary o)f Notation 

The following is a comprehensive synthesis of the notation used in this dissertation. 

A.l General Notation 

Dt = demand in period t 

a= intercept in linea.r demand function 

b = slope parameter in linear demand function - the direct price effect 

Pt = retail price in period t 

Tt = is the reference price in period t 

(3 = reference effect parameter. This is the effect of a "good deal" or "bad 

deal 11 represented by the difference between reference price and actual retail price (the 

reference gap). 

(3 L = reference loss parameter in the case where reference effects are asym-

metric 

(30 = reference gain parameter in the case where reference effects are asym-

metric 

a= the memory parameter in reference price formation 

135 



136 Ph.D. Thesis- Michael von Massow 

T = the number of periods in the planning horizon 

1ft = profit in period t 

c = cost which is assumed to be constant over time 

9t (p) = non reference component of the profit function 

p; =the optimizer of g(p) 

f(t) =value of recursion in timet 

e = is a discount factor 

J. = vector of discrete prices 

M = cycle length in a repeating pricing cycle 

Pc,m = price in the mth period in an M period cycle 

Pc,min = the minimum price in an M period cycle 

Pc,max = the maximum price in an M period cycle 

A.2 Threshold Model 

T = absolute gain threshold, T ~ 0 

p = absolute loss threshold, p ~ 0 

.w = percentage gain threshold 

1j; = percentage loss threshold 
M 

A= 2:: (Pc,m- c)f3a(rc,m- T- Pc,m)+' 
m=l 

M 
B = 2:: (g(p*)- g(pc,m)), and 

m=l 
M 

C = 2:: (Pc,m- c)f3L(rc,m + P- Pc,m)-. 
m=l 

A.2.1 Math Programming Model 

Y Gt = binary variable equals 1 if gain occurs in period t 

Y Lt = binary variable equals 1 if loss occurs in period t 

Wi = weight for reference price approximation 

Gt = reference gain in period t 
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Lt = reference loss in period t 

A.3 Stochastic Model 

f. = random component of demand 

¢ = distribution function of f. 

<I> = cumulative distribution function of f. 

0 = lower limit on f. 

H = upper limit on f. 

J.t =mean of f. 

z = stocking factor 

Ut = realized demand in period t 

h = disposal cost 

S Ht = shortage cost in period t 

EXt= excess inventory in period t 

A.4 Inventory Model 

It = opening inventory in period t 

Xt = binary variable equals 1 if production occurs in period t and 0 otherwise. 

C P = capacity 

h = holding cost 

K =fixed production cost 

c = production/ ordering cost 
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Appendix B 

Threshold Computational Results 

Table B.1: Threshold Results (f3L = 0.25, f3a = 0.2 a= 0.35) 

p T M Prices Reference Prices1 Average Profit 

0.1 0 4 2.55, 2. 76, 2.82, 2.89 2.86, 2.66, 2.72, 2.79 1.0410 

0.2 0 3 2.54, 2.88, 3.01 2.94, 2,68, 2.81 1.0583 

0.3 0 3 2.44, 2.95, 3.14 3.04, 2.65, 2.85 1.0709 

0.4 0 2 2.45, 3.08 2.92, 2.61 1.0755 

0.5 0 2 2.45, 3.08 2.92, 2.61 1.0843 

0.2 0.1 4 2.40, 2.81, 2.94, 3.07 3.00, 2.61, 2.74, 2.87 1.0468 

0.3 0.1 3 2.45, 2.95, 3.14 3.04, 2.65, 2.85 1.0580 

0.5 0.1 2 2.42, 3.10 2.93, 2.60 1.0681 

0.2 0.2 5 2.27, 2.75, 2.88, 3.01, 3.14 3.07, 2.55, 2.68, 2.81, 2.94 1.0363 

0.3 0.2 3 2.42, 2.93, 3.12 3.02, 2.63, 2.83 1.0452 

0.5 0.2 3 2.31, 3.06, 3.41 3.23, 2.64, 2.91 1.0510 

0.2 0.3 4 2.41, 2.82, 2.95, 3.08 3.01, 2.62, 2.75, 2.88 1.0277 

0.3 0.3 3 2.37, 2.91, 3.11 3.00, 2.59, 2.80 1.0312 

0.5 0.3 3 2.25, 2.97, 3.33 3.16, 2.57, 2.83 1.0413 
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Table B.2: Threshold Results (f3L = 0.2, f3a = 0.1, a= 0.2) 

p T M Prices Reference Prices Average Profit 

0.1 0 3 2.63,' 2.77, 2.85 2.83, 2.67, 2.75 1.0250 

0.2 0 3 2.54, 2.82, 2.98 2.94, 2.62, 2. 78 1.0329 

0.3 0 2 2.60, 2.96 2.90, 2.66 1.0373 

0.4 0 2 2.57, 3.05 2.97, 2.65 1.0417 

0.5 0 2 2.54, 3.14 3.04, 2.64 1.0439 

0.2 0.1 3 2.53, 2.82, 2.98 2.94, 2.62, 2. 78 1.0264 

0.3 0.1 3 2.45, 2.87, 3.11 3.05, 2.57, 2.81 1.0294 

0.5 0.1 3 2.42, 2.83, 3.14 3.07, 2.55, 2.77 1.0297 

0.2 0.2 5 2.45, 2.73, 2.79, 2.87, 3.05 3.01, 2.53, 2.69, 2.77, 2.85 1.0187 

0.3 0.2 3 2.45, 2.87, 3.11 3.05, 2.57, 2.81 1.0230 

0.5 0.2 3 2.41, 2.83, 3.16 3.03, 2.55, 2. 79 1.0233 

0.2 0.3 5 2.50, 2. 75, 2. 79, 2.91, 3.08 3.05, 2.61, 2. 72, 2. 76, 2.88 1.0146 

0.3 0.3 3 2.50, 2.83, 3.00 2.96, 2.59, 2. 78 1.0147 

0.5 0.3 3 2.50, 2.83, 3.00 2.96, 2.59, 2. 78 1.0147 
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Table B.3: Threshold Results (!h = 0.2, !3a = 0.1, a= 0.35) 

p T M Prices Reference Prices Average Profit 

0.1 0 3 2.64, 2.81, 2.87 2.84, 2.71, 2.78 1.0245 

0.2 0 3 2.51, 2.85, 2.98 2.91, 2.65, 2. 78 1.0313 

0.3 0 2 2.58, 2.99 2.89, 2.69 1.0356 

0.4 0 2 2.53, 3.07 2.93, 2.67 1.0380 

0.5 0 2 2.51, 3.14 2.98, 2.68 1.0405 

0.2 0.1 3 2.55, 2.82, 2.94 2.88, 2.66, 2. 77 1.0225 

0.3 0.1 3 2.43, 2.90, 3.10 3.00, 2.62, 2.80 1.0259 

0.5 0.1 3 2.43, 2.90, 3.10 3.00, 2.62, 2.80 1.0259 

0.2 0.2 5 2.38, 2. 76, 2. 79, 2.87, 3.03 2.96, 2.59, 2. 70, 2. 76, 2.83 1.0175 

0.3 0.2 3 2.42, 2.90, 3.10 3.00, 2.62, 2.80 1.0196 

0.5 0.2 3 2.41, 2.87, 3.11 3.00, 2.62, 2. 78 1.0200 

0.2 0.3 5 2.40, 2. 76, 2. 79, 2.87, 3.03 2.96, 2.59, 2. 70, 2. 76, 2.83 1.0137 

0.3 0.3 5 2.36, 2. 76, 2. 79, 2.86, 3.05 2.97, 2.57, 2.69, 2. 76, 2.82 1.0138 

0.5 0.3 5 2.36, 2. 76, 2. 79, 2.86, 3.05 2.97, 2.57, 2.69, 2.76, 2.82 1.0138 
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Table B.4: Threshold Results (!3L = 0.1, /30 = 0.05, a= 0.2) 

p T M Prices Reference Prices Average Profit 

0.1 0 3 2.63, 2. 77, 2.85 2.83, 2.67, 2.75 1.0179 

0.2 0 3 2.55, 2.81, 2.96 2.93, 2.62, 2. 77 1.0194 

0.3 0 2 2.58, 2.97 2.90, 2.64 1.0216 

0.4 0 2 2.58, 2.97 2.90, 2.64 1.0216 

0.5 0 2 2.58, 2.97 2.90, 2.64 1.0216 

0.2 0.1 3 2.54, 2.80, 2.96 2.92, 2.62, 2.73 1.0160 

0.3 0.1 3 2.54, 2.80, 2.96 2.92, 2.62, 2. 73 1.0160 

0.5 0.1 3 2.54, 2.80, 2.96 2.92, 2.62, 2.73 1.0160 

0.2 0.2 4 2.52, 2. 76, 2. 79, 2.95 2.91, 2.60, 2. 73, 2.78 1.0127 

0.3 0.2 4 2.52, 2. 76, 2. 79, 2.95 2.91, 2.60, 2.73, 2.78 1.0127 

0.5 0.2 4 2.52, 2. 76, 2. 79, 2.95 2.91, 2.60, 2.73, 2.78 1.0127 

0.2 0.3 1 2.75 2.75 1.0125 

0.3 0.3 1 2.75 2.75 1.0125 

0.5 0.3 1 2.75 2.75 1.0125 
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Table B.5: Threshold Results ({3 L = 0.1, f3a = 0.05, a = 0.35) 

p T M Prices Reference Prices Average Profit 

0.1 0 3 2.64, 2.80, 2.86 2.83, 2. 71, 2. 77 1.0174 

0.2 0 2 2.64, 2.91 2.84, 2.71 1.0194 

0.3 0 2 2.59, 2.95 2.86, 2.69 1.0199 

0.4 0 2 2.59, 2.95 2.86, 2.69 1.0199 

0.5 0 2 2.59, 2.95 2.86, 2.69 1.0199 

0.2 0.1 3 2.55, 2.82, 2.94 2.88, 2.66, 2. 77 1.0149 

0.3 0.1 3 2.55, 2.82, 2.94 2.88, 2.66, 2. 77 1.0149 

0.5 0.1 3 2.55, 2.82, 2.94 2.88, 2.66, 2. 77 1.0149 

0.2 0.2 1 2.75 2.75 1.0125 

0.3 0.2 1 2.75 2.75 1.0125 

0.5 0.2 1 2.75 2.75 1.0125 

0.2 0.3 1 2.75 2.75 1.0125 

0.3 0.3 1 2.75 2.75 1.0125 

0.5 0.3 1 2.75 2.75 1.0125 
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Table B.6: Threshold Results ({3 L = 0.2, f3a = 0.05, a = 0.2) 

p T M Prices Reference Prices Average Profit 

0.1 0 3 2.63, 2.77, 2.85 2.83, 2.67, 2.75 1.0179 

0.2 0 3 2.55, 2.81, 2.96 2.93, 2.62, 2. 77 1.0194 

0.3 0 2 2.58, 2.97 2.90, 2.64 1.0216 

0.4 0 2 2.58, 2.97 2.90, 2.64 1.0216 

0.5 0 2 2.58, 2.97 2.90, 2.64 1.0216 

0.2 0.1 3 2.54, 2.80, 2.96 2.92, 2.62, 2. 73 1.0160 

0.3 0.1 3 2.54, 2.80, 2.96 2.92, 2.62, 2. 73 1.0160 

0.5 0.1 3 2.54, 2.80, 2.96 2.92, 2.62, 2. 73 1.0160 

0.2 0.2 4 2.52, 2. 76, 2. 79, 2.95 2.91, 2.60, 2.73, 2.78 1.0127 

0.3 0.2 4 2.52, 2. 76, 2. 79, 2.95 2.91, 2.60, 2. 73, 2. 78 1.0127 

0.5 0.2 4 2.52, 2. 76, 2. 79, 2.95 2.91, 2.60, 2. 73, 2. 78 1.0127 

0.2 0.3 1 2.75 2.75 1.0125 

0.3 0.3 1 2.75 2.75 1.0125 

0.5 0.3 1 2.75 2.75 1.0125 
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Table B.7: Threshold Results (f3L = 0.2, f3a = 0.05,a = 0.35) 

p T M Prices Reference Prices Average Profit 

0.1 0 3 2.64, 2.80, 2.86 2.83, 2. 71, 2. 77 1.0174 

0.2 0 2 2.64, 2.91 2.84, 2.71 1.0194 

0.3 0 2 2.59, 2.95 2.86, 2.69 1.0199 

0.4 0 2 2.59, 2.95 2.86, 2.69 1.0199 

0.5 0 2 2.59, 2.95 2.86, 2.69 1.0199 

0.2 0.1 3 2.55, 2.82, 2.94 2.88, 2.66, 2. 77 1.0149 

0.3 0.1 3 2.55, 2.82, 2.94 2.88, 2.66, 2. 77 1.0149 

0.5 0.1 3 2.55, 2.82, 2.94 2.88, 2.66, 2. 77 1.0149 

0.2 0.2 1 2.75 2.75 1.0125 

0.3 0.2 1 2.75 2.75 1.0125 

0.5 0.2 1 2.75 2.75 1.0125 

0.2 0.3 1 2.75 2.75 1.0125 

0.3 0.3 1 2.75 2.75 1.0125 

0.5 0.3 1 2.75 2.75 1.0125 
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Appendix C 

Stochastic Model Computational 

Results 

Table C.1: Loss Averse Stochastic Results (Uniform Distribution, c = 0.5) 

Upper Limit s h z p* Riskless 7J" popt 7J"opt % diff in 7J" 

0.045 2.25 -0.49 0.045 2.81 1.064 2.81 1.064 0 

0.090 2.25 -0.49 0.090 2.86 1.116 2.86 1.116 0 

0.225 2.25 -0.49 0.225 3.03 1.280 3.03 1.280 0 

0.045 2.25 0.05 0.040 2.81 1.064 2.81 1.053 0 

0.090 2.25 0.05 0.080 2.86 1.116 2.86 1.094 0 

0.225 2.25 0.05 0.202 3.03 1.281 3.03 1.226 1 

0.045 0.50 -0.49 0.045 2.81 1.064 2.81 1.064 0 

0.090 0.50 -0.49 0.090 2.86 1.116 2.86 1.116 0 

0.225 0.50 -0.49 0.224 3.03 1.281 3.03 1.280 0 

0.045 0.50 0.05 0.038 2.81 1.064 2.81 1.060 0 

0.090 0.50 0.05 0.075 2.86 1.116 2.86 1.112 0 

0.225 0.50 0.05 0.190 3.03 1.281 3.03 1.271 1 
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Table C.2: Loss Averse Stochastic Results ('Iriangular Distribution, Symmetric, 

c = 0.5) 

Upper Limit Mode s h z p* Riskless 1r popt 7ropt % diff in 7r 

0.045 0.0225 2.25 -0.49 0.0433 2.81 1.064 2.81 1.064 0 

0.090 0.0450 2.25 -0.49 0.0867 2.86 1.116 2.86 1.116 0 

0.225 0.1125 2.25 -0.49 0.2168 3.03 1.281 3.03 1.281 0 

0.045 0.0225 2.25 0.05 0.0333 2.81 1.064 2.81 1.064 1 

0.090 0.0450 2.25 0.05 0.0669 2.86 1.116 2.86 1.116 1 

0.225 0.1125 2.25 0.05 0.1682 3.03 1.281 3.03 1.281 3 

0.045 0.0225 0.50 -0.49 0.0431 2.81 1.064 2.81 1.281 0 

0.090 0.0450 0.50 -0.49 0.0862 2.86 1.116 2.86 1.064 0 

0.225 0.1125 0.50 -0.49 0.2159 3.03 1.281 3.03 1.116 0 

0.045 0.0225 0.50 0.05 0.0321 2.81 1.064 2.81 1.062 1 

0.090 0.0450 0.50 0.05 0.0644 2.86 1.116 2.86 1.064 1 

0.225 0.1125 0.50 0.05 0.1626 3.03 1.281 3.03 1.116 1 
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Table C.3: Loss Averse Stochastic Results (Triangular Distribution, Left Skewed, 

c = 0.5) 

Upper Limit Mode s h z p* Riskless 7r popt 7ropt % diff in 7l" 

0.045 0 2.25 -0.49 0.0246 2.79 1.047 2.79 1.046 0 

0.090 0 2.25 -0.49 0.0852 2.83 1.081 2.82 1.081 0 

0.225 0 2.25 -0.49 0.2130 2.94 1.188 2.94 1.187 0 

0.045 0 2.25 0.05 0.0284 2.79 1.047 2.79 1.036 1 

0.090 0 2.25 0.05 0.0569 2.83 1.081 2.82 1.061 2 

0.225 0 2.25 0.05 0.1425 2.94 1.188 2.93 1.138 4 

0.045 0 0.50 -0.49 0.0423 2.79 1.047 2.79 1.046 0 

0.090 0 0.50 -0.49 0.0846 2.83 1.081 2.82 1.081 0 

0.225 0 0.50 -0.49 0.2115 2.94 1.188 2.94 1.187 0 

0.045 0 0.50 0.05 0.0267 2.79 1.047 2.78 1.037 1 

0.090 0 0.50 0.05 0.0534 2.83 1.081 2.82 1.063 2 

0.225 0 0.50 0.05 0.1337 2.94 1.188 2.92 1.141 4 
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Table 0.4: Loss Averse Stochastic Results (Triangular Distribution, Right Skewed, 

c = 0.5) 

Upper Limit Mode s h z p* Riskless 1r popt 1fopt % diff in 71" 

0.045 0 2.25 -0.49 0.0246 2.79 1.047 2.79 1.046 0 

0.090 0 2.25 -0.49 0.0852 2.83 1.081 2.82 1.081 0 

0.225 0 2.25 -0.49 0.2130 2.94 1.188 2.94 1.187 0 

0.045 0 2.25 0.05 0.0284 2.79 1.047 2.79 1.036 1 

0.090 0 2.25 0.05 0.0569 2.83 1.081 2.82 1.061 2 

0.225 0 2.25 0.05 0.1425 2.94 1.188 2.93 1.138 4 

0.045 0 0.50 -0.49 0.0423 2.79 1.047 2.79 1.046 0 

0.090 0 0.50 -0.49 0.0846 2.83 1.081 2.82 1.081 0 

0.225 0 0.50 -0.49 0.2115 2.94 1.188 2.94 1.187 0 

0.045 0 0.50 0.05 0.0267 2.79 1.047 2.78 1.037 1 

0.090 0 0.50 0.05 0.0534 2.83 1.081 2.82 1.063 2 

0.225 0 0.50 0.05 0.1337 2.94 1.188 2.92 1.141 4 
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Table 0.5: Loss Averse Stochastic Results (Uniform Distribution, c = 2.5) 

Upper Limit s h z p* Riskless 1T popt 1Topt % diff in 1T 

0.045 2.25 -0.49 0.0446 3.81 0.341 3.81 0.341 0 

0.090 2.25 -0.49 0.0893 3.86 0.371 3.86 0.370 0 

0.225 2.25 -0.49 0.2234 4.03 0.469 4.03 0.467 0 

0.045 2.25 0.05 0.0225 3.81 0.341 3.79 0.327 4 

0.090 2.25 0.05 0.0450 3.86 0.371 3.83 0.342 8 

0.225 2.25 0.05 0.1093 4.03 0.469 3.96 0.394 16 

0.045 0.50 -0.49 0.0445 3.81 0.341 3.81 0.341 0 

0.090 0.50 -0.49 0.0890 3.86 0.371 3.86 0.370 0 

0.225 0.50 -0.49 0.2228 4.03 0.469 4.03 0.467 0 

0.045 0.50 0.05 0.0186 3.81 0.341 3.79 0.327 4 

0.090 0.50 0.05 0.0370 3.86 0.371 3.82 0.343 8 

0.225 0.50 0.05 0.0823 4.03 0.469 3.92 0.395 16 
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Table C.6: Loss Averse Stochastic Results ('friangular Distribution, Symmetric, 

c = 2.5) 

Upper Limit Mode s h z p* Riskless 7r papt 7Tapt % diff in 7r 

0.045 0.0225 2.25 -0.49 0.0422 3.81 0.341 3.81 0.341 0 

0.090 0.0450 2.25 -0.49 0.0845 3.86 0.371 3.86 0.370 0 

0.225 0.1125 2.25 -0.49 0.2116 4.03 0.469 4.03 0.467 0 

0.045 0.0225 2.25 0.05 0.0225 3.81 0.341 3.80 0.322 6 

0.090 0.0450 2.25 0.05 0.0452 3.86 0.371 3.84 0.352 6 

0.225 0.1125 2.25 0.05 0.1145 4.03 0.469 3.99 0.415 12 

0.045 0.0225 0.50 -0.49 0.0417 3.81 0.341 3.81 0.341 0 

0.090 0.0450 0.50 -0.49 0.834 3.86 0.371 3.86 0.370 0 

0.225 0.1125 0.50 -0.49 0.2093 4.03 0.469 . 4.03 0.467 0 

0.045 0.0225 0.50 0.05 0.0205 3.81 0.341 3.79 0.325 5 

0.090 0.0450 0.50 0.05 0.0413 3.86 0.371 3.84 0.339 9 

0.225 0.1125 0.50 0.05 0.1053 4.03 0.469 3.97 0.386 18 
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Table C.7: Loss Averse Stochastic Results (Triangular Distribution, Left Skewed, 

c = 2.5) 

Upper Limit Mode s h z p* Riskless 1r popt 'Tropt % diff in 1r 

0.045 0.0225 2.25 -0.49 0.0410 3.79 0.332 3.79 0.331 0 

0.090 0.0450 2.25 -0.49 0.0821 3.83 0.351 3.82 0.350 0 

0.225 0.1125 2.25 -0.49 0.2057 3.94 0.413 3.94 0.411 1 

0.045 0.0225 2.25 0.05 0.0131 3.79 0.332 3.77 0.323 3 

0.090 0.0450 2.25 0.05 0.0264 3.83 0.351 3.8 0.333 5 

0.225 0.1125 2.25 0.05 0.0670 3.94 0.413 3.87 0.365 12 

0.045 0.0225 0.50 -OA9 0.4030 3.79 0.332 3.79 0.331 0 

0.090 0.0450 0.50 -0.49 0.0806 3.83 0.351 3.82 0.350 0 

0.225 0.1125 0.50 -0.49 0.2022 3.94 0.413 3.94 0.411 1 

0.045 0.0225 0.50 0.05 0.0104 3.79 0.332 3.77 0.331 0 

0.090 0.0450 0.50 0.05 0.0210 3.83 0.351 3.79 0.350 0 

0.225 0.1125 0.50 0.05 0.0539 3.94 0.413 3.86 0.405 2 
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Table C.8: Loss Averse Stochastic Results (Triangular Distribution, Right Skewed, 

c = 2.5) 

Upper Limit Mode s h z p* Riskless 1r popt 1ropt % diff in 7r 

0.045 0.0225 2.25 -0.49 0.448 3.83 0.351 3.82 0.351 0 

0.090 0.0450 2.25 -0.49 0.897 3.90 0.392 3.90 0.391 0 

0.225 0.1125 2.25 -0.49 0.2242 4.13 0.528 4.12 0.527 0 

0.045 0.0225 2.25 0.05 0.319 3.83 0.351 3.82 0.329 6 

0.090 0.0450 2.25 0.05 0.0641 3.90 0.392 3.88 0.347 12 

0.225 0.1125 2.25 0.05 0.1632 4.13 0.528 4.09 0.411 22 

0.045 0.0225 0.50 -0.49 0.0448 3.83 0.351 3.82 0.351 0 

0.090 0.0450 0.50 -0.49 0.0895 3.90 0.392 3.90 0.391 0 

0.225 0.1125 0.50 -0.49 0.2239 4.13 0.528 4.12 0.527 0 

0.045 0.0225 0.50 0.05 0.0290 3.83 0.351 3.81 0.332 6 

0.090 0.0450 0.50 0.05 0.0586 3.90 0.392 3.88 0.353 10 

0.225 0.1125 0.50 0.05 0.1506 4.13 0.528 4.07 0.425 20 
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