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Abstract 

Propositional proof complexity is a field of theoretical computer science which con­

cerns itself with the lengths of formal proofs in various propositional proof systems. 

Frege systems are an important class of propositional proof systems. Extended Frege 

augments them by allowing the introduction of new variables to abbreviate formulas. 

Perhaps the largest open question in propositional proof complexity is whether or not 

Extended Frege is significantly more powerful that Frege. Several proof systems, each 

introducing new rules or syntax to Frege, have been developed in an attempt to shed 

some light on this problem. 

We introduce one such system, which we call H, which allows for the quantification 

of transpositions of propositional variables. We show that H is sound and complete, 

and that H's transposition quantifiers efficiently represent any permutation. 

The most important contribution is showing that a fragment of this proof system, 

H;, is equivalent in power to Extended Frege. This is a complicated and rather 

technical result, and is achieved by showing that H; can efficiently prove translations 

of the first-order logical theory V PLA, a logical theory well suited for reasoning about 

linear algebra and properties of graphs. 
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Chapter 1 

Introduction 

A great deal of effort in modern mathematics and computer science is dedicated to 
the concept of a proof. In [6], Buss differentiates between the idea of a social proof 
and a formal proof. A social proof, he says, is one that incorporates only the amount 
of mathematical rigour needed to convince the professional audience of its validity. 
Social proofs vary greatly in appearance depending on the subject, level of complexity, 
and the age in which they are published. Social proofs are therefore quite difficult 
to characterize. On the other hand, a formal proof is a rigourous mathematical 
object that can be described, analyzed, manipulated, and reasoned about in its own 
right. A formal proof is a series of symbols (i.e. a finite string) that, when read in 
the correct way, demonstrates a given property, typically of a formula or expression. 
In the following work, we consider proof systems for first order expressions about 
Linear Algebra, non-k-colourable graphs, and most importantly, proof systems for 
propositional statements. The study of proofs, and more specifically the minimum 
sizes of proofs in various proof systems is called Proof Complexity. 

Perhaps the largest open question in Propositional Proof Complexity is the sepa­
ration between Frege systems and Extended Frege systems. No family of tautologies 
has ever been exhibited which requires exponential sized Frege proofs, but which has 
polynomial sized Extended Frege proofs. In fact, no one has ever shown a set of 
tautologies which requires superpolynornial sized Frege proofs at all, so it seems we 
are a long way from proving this separation. 

Separations of propositional proof systems have their parallel in Complexity The­
ory as well. For example, the existence of a proof system which could efficiently 
prove all tautologies is equivalent to NP equalling co-NP, and therefore showing the 
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1. Introduction 2 

non-existence of such a proof system would imply that P # N P [3]. 

One avenue of research that has been explored in order to show the separation of 
Frege and Extended Frege is the introduction of various extensions to basic propo­
sitional proof systems, such as allowing for substitution of formulas for variables, 
allowing for quantification of variables, or allowing for permutation of variables. In 
Chapter 2 we introduce several such extensions and show that they are all equivalent 
to Extended Frege. Since Extended Frege corresponds to the complexity class P, that 
means that anything that can be reasoned about in polynomial time can be proved 
by Extended Frege. Proving these equivalences therefore tells us that those ideas 
(quantification, substitution etc.) capture all of polynomial time reasoning. 

It is towards this goal that the major contributions of this thesis can be found. 
We introduce and define a new extension to Extended Frege, in which we allow for 
quantifiers that assert the existence (or universality) of permutations of variables, 
rather than their values. We go on to show that a fragment of this new system 
is equivalent to Extended Frege, giving the perhaps surprising result that a block 
of either existential or universal permutation quantifiers is equivalent in expressive 
power to introducing new variables, renaming variables, substituting formulas, or to 
a single block of classical quantifiers. 

A classical universal quantifier is (semantically) an abbreviation for: 

'v'xa(x) := a(O) A a(l) (1.1) 

whereas a universal permutation quantifier can be thought of as abbreviating: 

('v'ab)a(a, b):= a( a, b) A a(b, a) (1.2) 

There are analogous existential quantifiers as well: 

:Jxa(x) := a(O) V a(l) and (:Jab)a(a, b) :=a( a, b) V a(b, a) (1.3) 

Where if a( a, b) is some formula, then a(b, a) is a with b replacing a and a replacing 
b throughout. 

We present this system, which we call H to highlight its similarity to the system G 
(with classical quantification) presented in [8]. We give the axioms and rules of H, 
and show that they form a sound and complete proof system. The results in this 
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thesis have been submitted to the Journal of Discrete Mathematics for publication 
[9]. 

1.1 Overview 

In the next section we introduce some basic concepts and definitions which, while not 
necessarily directly related to the rest of the material are nevertheless important for 
breadth and understanding. 

Then, in Chapter 2 we introduce PK, a propositional proof that is equivalent to 
Frege, and syntactically more convenient for our purposes. Also, we identify some 
well known extensions to PK, and show that they are equivalent to one another. 

In Chapter 3 we describe G, another PK extension which is of particular relevance. 
G allows for the introduction of existential and universal quantifiers of Boolean vari­
ables. We show that G is equivalent to the extensions mentioned in Chapter 2, and 
we extend the classical proof of completeness to include quantification. 

Chapter 4 introduces a new propositional proof system H. A prototype of this 
system was introduced first by the author and Michael Soltys in [9], building on an 
idea from [13]. We show that H is sound, and complete for both quantified and 
unquantified formulas. We show that Extended PK can simulate Hi, a restricted 
subsystem of H. This is one direction of our main result. 

The remaining chapters contain the other direction of the main result and neces­
sary background material. We show that Hi can simulate Extended Frege by showing 
that it can efficiently prove translations of\;/ PLA. Then, we repeat results from Soltys 
[14] showing that \;/ PLA can prove the soundness of the Haj6s Calculus, and from 
Pitassi and Urquhart [10] to show that the Haj6s Calculus is equivalent to Extended 
PK. This is a difficult, technical result, and leaves open the tantalizing question of a 
direct simulation. 
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1. 2 Preliminaries 

Propositional Formulas 

Propositional formulas are defined inductively. The base case is a propositional vari­
able, which can either be assigned true (1) or false (0). Then, if A and Bare propo­
sitional formulas, so are A 1\ B, A VB, and •A. A 1\ B is true if and only if both A 
and B are true, A V B is true if and only if at least one of A or B is true, and •A is 
true iff A is false. A truth assignment assigns a value to each propositional variable. 
Each truth assignment satisfies a formula iff the formula evaluates to true under the 
assignment. 

Propositional formulas can either be valid, satisfiable, or unsatisfiable depending 
on whether they evaluate to true under all, some, or no truth assignments respec­
tively. Typically we are interested in showing that a formula is valid. It is natural 
to think about what constitutes a formal proof of a formula's validity. Beame and 
Pitassi [1] point out that a propositional formula by itself could be considered a proof 
of its own validity. This 'proof' could be checked by checking each of its truth as­
signments. While possible, this is infeasible because each formula has exponentially 
many truth assignments. Instead we turn to the notion of a propositional proof sys­
tem, as formalized in [3]. The basic idea is that a propositional proof system is a 
polynomial-time computable predicate P such that for each formula F 

FE TAUT{:} ~p.P(F,p) (1.4) 

namely that there is some string p that allows us to quickly verify the validity of F. 

A formula F is a logical consequence of a set of formulas S if every truth assignment 
that satisfies S also satisfies F. We write this S I= F. Note that any formula is a 
logical consequence of an unsatisfiable set of formulas. 

Frege Systems 

A rule of inference is a pair (S, B) where S is a set of formulas and B is a formula. 
The rule is sound if S I= B. S may be empty, in which case the rule is called an 
axiom or axiom scheme. We use the term axiom scheme to highlight the fact that 
any substitution instance of an axiom is valid, so that a single axiom scheme in fact 
corresponds to an infinite family of axioms. 
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A deduction system is a set of logical connectives and a finite set of inference rules. 
A derivation in a deduction system is a finite sequence of rule applications. If B is 
the result of the final rule application, then the derivation can be said to be a proof 
of B. 

If B is any formula proved by a deduction system, then B must be a tautology. 
This can be shown by induction on proof length and the fact that f= is transitive. So 
every deduction system is sound. A deduction system is complete if every tautology 
has a proof in that system. Furthermore, a deduction system is implicationally com­
plete if, by adding any set of non-logical axioms <I>, there exists a valid proof of every 
formula C that is a logical consequence of <I>. An implicationally complete deduction 
system can prove any formula from an unsatisfiable set of non-logical axioms. 

Frege systems were defined in [3] as implicationally complete deduction systems 
over a complete set of connectives. An Extended Frege system is a Frege system in 
which it is also permitted to introduce extension definitions. An extension definition 
is formed by taking a variable that is previously unused, and declaring it to be an 
abbreviation of a formula. Frege systems are all equivalent, in the sense that all Frege 
systems have short proofs of a set of tautologies if and only if the set has short proofs 
in one Frege system. Extended Frege systems are equivalent to one another in the 
same sense. 

We will make use of these facts in order to simplify things later on. It may be 
that a specific formulation of a Frege system is more convenient for a given task, and 
we will switch between them as necessary. 

Simulation and Equivalence 

If A and B are two propositional proof systems, we say that B p-simulates A if there 
is a polytime function f such that if 1f A is a valid A-proof, 1f A, then f ( 1f A) is a valid 
B.-proof of the same formula. If A and B p-simulate one another, they are said to be 
p-equivalent. 

If we can show that for every A-proof, there is a B-proof of the same formula, but 
we cannot give a polynomial time function from one to the other, we say that that B 
weakly p-simulates A. Unless stated otherwise, all the simulations given in this thesis 
are strong p-simulations. 
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Complexity Classes 

There are hundreds of complexity classest, the most well known of which are probably 
P, problems which are solvable in polynomial time, and NP, problems which are 
verifiable in polynomial time. For our purposes, the two most important complexity 
class~s are P /poly, and NC1

. P /poly is the class of decision problems solvable with 
polysize circuits. NC 1 is the class of decision problems solvable by polysize, bounded 
fan-in, Boolean circuits with depth O(log(n)). 

Frege systems, such as PK, correspond to NC1
, while Extended Frege systems, 

correspond to P /poly. It is strongly conjectured that these two complexity classes 
are not equal, but, as previously noted, it is also believed that it is a difficult task to 
show a separation of Frege and Extended Frege. Such a separation would be a huge 
achievement in propositional proof complexity. 

Permutations and Symmetric Groups 

Permutations are a fundamental concept in this thesis, and are also an integral com­
ponent in many areas of modern algebra. For instance, in group theory, the symmetric 
group Sn is the group consisting of all permutations of the first n natural numbers. 
Symmetric groups are very important. For example, all finite groups are isomorphic 
to some subgroup of one of these symmetric groups, so all of finite group theory can 
be described in terms of permutations. 

It is natural to therefore seek some connection between algebra and reasoning 
using permutations. We make important use of this idea by using the system LA as 
a key stepping stone in our proof that H; is p-equivalent to Extended Frege. LA is a 
logical theory introduced in [12] for reasoning about Linear Algebra. We summarize 
it briefly in Chapter 5, and show that it translates into families of propositional 
tautologies. 

tFor an extensive list, see http: I /qwiki. cal tech. edu/wiki/Complexi ty _Zoo 



Chapter 2 

PK 

In 1936 Gerhard Gentzen introduced the propositional sequent calculus, PK. PK is 
known to be equivalent to any Frege system, so any results shown for one will hold 
for the other. We prefer PK primarily because LA also operates over sequents, which 
will simplify our task in Chapter 5. 

Rather than working over formulas PK operates over sequents. A sequent IS 

written as: 

(2.1) 

where r and ~ are sequences of propositional formulas called cedents. We refer to r 
and ~ respectively as the antecedent and the succedent. 

A truth assignment T satisfies a sequent if and only if it satisfies a formula in ~ 
or falsifies one in r. In this way, a sequent can be seen to represent the conjunction 
of all the formulas in r logically implying the disjunction of all the formulas in ~. 
This means we can define a propositional formula A which is equivalent to a given 
sequent: 

(2.2) 

Clearly, any truth assignment that satisfies A must satisfy the associated sequent, 
and vice versa. 

Being able to express a sequent as a propositional formula allows us to apply vari-

7 



2. PK 8 

ous ideas from propositional logic to sequents. A sequent, 5 1 , is a logical consequence 
of another, 5 2 , if every T that satisfies 8 2 also satisfies ,'h. S is valid if for all T, 

T f= 5, and 5 is unsatisfiable if for all T, T ~ 5. 

In particular, we can use this equivalence to define sequents with empty an­
tecedents, because -----* A is equivalent to r -----* ~-

PK Proofs 

The logical axioms of PK are -----* T, F -----*, or any substitution instance of A -----* A. A 
PK proof of a sequent 5 is a finite sequence of sequents: 

(2.3) 

such that 5n = 5, and each 5i is either an axiom or follows from previous sequents 
by one of PK's thirteen rules of inference. There are six rules for introducing and 
reorganizing formulas: 

Weakening 

r---*~ r---*~ 

r, A-----*~ r-----* A,~ 
(2.4) 

Exchange 

r1, A, B, r2-----* ~ r-----* ~1, A, B, ~2 
r1, B, A, r2-----* ~ r-----* ~1, B, A, ~2 

(2.5) 

Contraction 

r1, A, A, r2-----* ~ r-----* ~1, A, A, ~2 

r1, A, r2-----* ~ r-----* ~1, A, ~2 
(2.6) 

There are six rules for introducing logical connectives: 

V-introduction 
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r1,A,r2 ~ ~ rbB,r2 ~ ~ 
f1,AVB,r2~~ 

r ~ ~bA,B,~2 
r ~ ~1,A V B,~2 

/\-introduction 

r1,A,B,r2 ~ ~ 
ri,AAB,r2~~ 

•-introduction 

r ~ ~1,A,~2 r ~ ~I,B,~2 
r ~ ~1, A 1\ B, ~2 

r,A~~ 

r ~-.A,~ 
r~A,~ 

r,-.A ~ ~ 

and finally, a rule for removing formulas, the Cut rule: 

9 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The size of a PK proof is the sum of the sizes of the sequents in the proof. The size of 
a sequent is the sum of the sizes of all the formulas in the antecedent and succedent. 
The size of a formula is the number of symbols (connectives and variables) it contains. 

Where convenient, we may write a(B/x), by which we mean the formula a(x) with all 
instances of the variable x replaced by the formula B. If x is clear from the context, 
we may simply write a(B). In general, we cannot tell exactly what the size of a(B) 
is, but we know that it is bounded by ia(x)IIBI, which we will just write as laiiBI. 

Sample PK Proof 

As an example, we present a PK proof of the tautology A = A where A is some 
formula. We do not have = as a connective, instead A = B abbreviates A ::J B 1\ B ::J 
A. Similarly, A ::J B abbreviates -.A VB. 
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A_.A 
---- • -- right 
___.·A, A 
----V-left 
___.·AvA 

A_.A 
---- --, - right 
___. •A, A 
----exch. 
___.A, ·A 
----V-left 
___.A v ·A 

1\- right 

where on the last line, the brackets have been inserted for readability. 

Soundness and Completeness of PK 

10 

PK is both sound and complete. That is, if 1rsn = S1 , S2 , ... , Sn is a PK proof, then 
Sn is a valid sequent, and likewise if Sis any valid sequent, then a PK proof 1fs exists. 

Lemma 1 (Sequent Soundness Principle) For each PK rule, the lower sequent 
is a logical consequence of the upper sequent(s). 

PROOF: The proof of this lemma, and of the following one, can be found in [4]. We 
show the case for /\-left. The other rules are shown to be sound in the same way. 
Recall, the /\-left rule is: 

r1,A,B,r2 ___. ~ 
rl, A A B, r2 ___. ~ 

(2.11) 

Assume the top sequent is valid and let T be any truth assignment. If T satisfies 
some formula in ~' or if T falsifies SOme formula in rl or r2, then T must satisfy 
the bottom sequent as well. Otherwise, T must falsify at least one of A or B, and 
therefore falsify A 1\ B, and in doing so satisfy the bottom sequent. 0 

Lemma 2 (Inversion Principle) For each P K rule, except weakening, if the bot­
tom sequent is valid then so are all upper sequents. 

PROOF: We can use the same argument as in the previous lemma, only in reverse. It 
is easy to see why we need an exception for the weakening rule, because any formula 
can be weakened out, including one that was crucial for preserving the sequent's 
validity. For example, this is a valid application of the weakening rule: 
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a---?b 

a, b -----? b 

The bottom sequent is valid, the top one is not. 

Theorem 3 PK is sound and complete. 

11 

(2.12) 

D 

PROOF: Soundness follows from Lemma 1, by induction on the number of sequents 
in the proof and the fact that all the logical axioms (A -----? A) are valid. 

To show completeness, we need to show that for any valid sequent S, a PK proof 
exists. We use induction on the number of connectives (V, /\, and •) in S. Any 
valid sequent with no connectives is simply two lists of atoms, and it must have one 
atom, a, which appears in both the antecedent and succedent (because if not, any 
assignment which assigns True to all atoms on the left, and False to all atoms on the 
right will falsify the sequent, contradicting the assumption of validity). We can use a 
series of weakenings and exchanges to obtain the axiom a-----? a. 

For the induction step, we choose a formula containing a connective, and apply the ap­
propriate connective introduction rule in reverse. The Inversion Principle guarantees 
that this new sequent, which has one fewer connective, is valid. D 

It is interesting to note that we do not use the Cut rule in this proof of complete­
ness. This means that the Cut rule is technically unnecessary in any proof, although 
it often proves to be very convenient. For example, we use it often in the proofs of 
equivalence below. Whether or not the Cut rule can provide a significant shortening 
of proofs remains an open question. 

A proof that does not use the Cut rule is said to exhibit the Subformula Property. 
In such a proof, any formula that appears on any line of the proof must appear as a 
subformula of the conclusion. 

2.1 PK Extensions 

In addition to its basic rules PK allows new rules, or extensions, to be introduced 
easily and naturally. Several of these extensions are discussed in [8]. Since PK is 
complete, adding these extensions do not allow any new sequents to be proven, but it 
is theorized that they may significantly shorten the lengths of some PK proofs (e.g. 
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that they may allow for polynomial sized proofs of families of tautologies which require 
exponential sized proofs in basic PK). This remains an open question. However, it 
can be shown that the extensions polynomially simulate one another. 

Renaming PK 

Renaming PK adds a rule which renames all free instances of some variables: 

r(x1, ... , Xn) --+ ~(x1, ... , Xn) 
r(yl, ... ,yn)---? ~(yl,··. ,yn) 

(2.13) 

Renaming PK gets its real power when the renaming rule is used to rename a variable 
to another existing variable. Essentially, this takes two different variables and equates 
them. It is important to note that the Yi are meta-variables, and that they could 
actually represent some or all of X;. 

A related system, Permutation PK, adds the restriction that the renaming be 
bijective. This means that the Yi must be a permutation of the Xi· It is not known 
whether Permutation PK is equivalent to PK, equivalent to Extended PK, or sits 
somewhere between. Determining which of these cases is true is an important open 
question in propositional proof complexity. 

True-False PK 

True-False, or TF PK, adds two new rules which replace variables with either 0 or 1 
throughout the sequent. These new rules are: 

f(x1, ... , Xn) --+ ~(xl, ... 1 Xn) 
r(cl, ... ,en)---? ~(cl, ... ,en) 

(2.14) 

where fori = 1 ... n, c; E {0, 1, xi} 

Substitution PK 

Substitution PK goes further than either Renaming or TF PK by allowing all in­
stances of a variable to be replaced by an arbitrary formula A. It does so with a 
single new rule: 
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f(xl, ... , Xn) ___.,~(XI, ... , Xn) 
r(A1, ... , An) ___.. ~(A1, ... , An) 

(2.15) 

Extended PK 

Extended PK allows new variables to be introduced and declared to be equivalent 
to any formula. We are free to choose any variable that has not occurred up to this 
point in the proof, although these new variables cannot appear in the sequent we are 
attempting to prove. 

This rule is usually used where A is a subformula of some sequent we are working 
with in the proof, and a is used to shorten that sequent. 

2.2 p-Equivalence of PK Extensions 

It is not known that any of the PK extensions significantly shorten PK proofs, but 
we can show that they are all p-equivalent to one another1. Our task is made simpler 
in this case by the fact that each of the PK extensions contain the basic PK rules. 
This means that many of the steps in one proof can be carried out identically in 
the simulating proof system. We need only show that the special rules introduced 
in each extension can be simulated efficiently in the others. Since Frege and PK 
are equivalent systems, that means that Substitution Frege and Substitution PK are 
equivalent, as are Extended Frege and Extended PK etc. For convenience, we use 
them interchangably where it will not cause problems. 

We show the equivalence of the four extensions to PK by showing that Renaming PK 
p-simulates TF PK, that TF PK p-simulates Substitution PK, that Substitution PK 
p-simulates Extended PK, and that Extended PK p-simulates Renaming PK. 

Lemma 4 Renaming PK p-simulates TF PK. 

1 Except for Permutation PK 
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PROOF: This proof is due to Samuel Buss (see [2]). We also use the fact that 
tautologies without variables (that is, containing only connectives, and 0 and 1) have 
short PK proofs (see Lemma 28 in the Appendix). 

Assume first that 1fTF is a TF PK proof of a sequent S(x1, ... , xn)· We must show 
that we can efficiently construct a Renaming PK proof 1fR of the same sequent. We 
know that there are short PK proofs of: 

____. A(1, ... , 1) and ____. A(O, ... , 0) (2.16) 

where A is the formula equivalent to 5(2.2). Define Z to be the following propositional 
formula: 

(2.17) 

which asserts that the variables Xi are not all true and not all false. 

To build 1fR, we first build a proof of the sequent Z ----> A(x). Begin by taking 
each line in 7rrF: 

----> a( x) (2.18) 

and replacing it with: 

z ----> a(x) (2.19) 

We then need to take steps to recreate a valid proof. If a is derived in 1frF by a basic 
rule of PK then we can merely weaken to introduce Z. If, however, a is the result of 
introducing 1 in place of some variable: 

----> a(xl, ... , Xi, ... Xn) 

----> a(xl,· . . , 1, .. . xn) 
(2.20) 

then we have some more work to do. Assume that we have a proof of the top sequent. 
Then, from that, we derive the following n - 1 sequents: 
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Z(xdxi) ---> o:(x1, ... , XI, ... , Xn) 

Z(x;/x2) ---> o:(x1, ... , X2, ... , Xn) 

(2.21) 

where Z(xdxj) denotes Z with all instances of Xi replaced with Xj· Lemma 27 
shows that polynomial sized proofs exist for sequents of the form xi, o:(xi) ---> o:(1). 
Therefore, derive the following n - 1 sequents: 

XI, o:(xb ... , XI, ... , Xn) ---> o:(xl, ... , 1, ... , Xn) 

X2, o:(xb ... , X2, ... , Xn) ---> o:(x1, ... , 1, ... , Xn) 

---> (2.22) 

From these groups of sequents, we can derive z-i ---> o:(1) where z-i is Z but with 
the variable xi removed: 

z-i := (xi V ... Xi-l V Xi+l V ... Xn) 1\ •(XI 1\ .. · Xi-l 1\ Xx+l 1\ · · · Xn) (2.23) 

because fori -I j, Z(xdxi) = z-i (semantically, though not syntactically). We can 
also produce a short proof of Z, ,z-i ---> o:(x1, ... , 1, ... xn) (see [2]). We can then 
use this and z-i---> o:(1) to derive a valid proof of the sequent: 

(2.24) 

The case for 0-introduction is handled similarly. 

After this is complete, we have a valid proof of the sequent: 

(2.25) 
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Lemma 27 shows that short proofs exist for the following two sequents: 

(x1 1\ Xz 1\ ... 1\ Xn), A(1, 1, ... , 1)---+ A(x) (2.26) 

and 

•(x1 V Xz V ... V xn), A(O, 0, ... , 0) ---+ A(x) (2.27) 

Then from these we use 1\ introduction to obtain: 

....,z, A(1, 1, ... , 1), A(O, 0, ... , 0) ---+ A(x) (2.28) 

We use (2.16) to cut out the two variable-free tautologies on the left, and use (2.25) 
to cut Z and get a proof of ---+ A. We can trivially obtain a proof of r ---+ .6. from 
---+A. D 

Lemma 5 TF PK p-simulates Substitution PK. 

PROOF: This can also be found in [2]. Given a Substitution PK proof 1rSub, we can 
build an equivalent TF PK proof as follows. All applications of the basic rules remain 
unchanged in 1rTF, and whenever we substitute a variable x with a formula B, we use 
the following construction. 

---+ a(x) 
--- 1 - replac. 
---+ a(1) 

----weak. 
B---+ a(1) 

------weak. : 7ri 

B---+ a(1), a( B) B, a(1) ---+a( B) 
---------------cut 

B---+ a(B) 

And then separately derive: 

---+ a(x) 
---1- replac. 
---+ a(O) 

----weak. 
·B ---+ a(O) 

------- weak. : 7rz 

·B---+ a(O), a( B) •B, a(O) ---+a( B) 
-----------------cut 

·B ---+ a(B) 
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which we then combine with V-left: 

B---* a(B) ·B---* a(B) 
---------V- left 

B V ·B ---* a( B) 

We can easily derive ---* B V ·B and cut it out. 

B---*B 
---- ---, - right 
---* •B, B 
----exch. 
---* B,•B 
---- V - right 
---* B v ·B 

-------weak. 
---*a( B), B V ·B 
------- exch. 
---* B V •B, a( B) 

to get: 

---* a(B) 
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(2.29) 

This is clearly polynomial in size, provided 1r1 and 1r2 have polynomial sized proofs. 
This is shown in Lemma 27 in the Appendix. 0 

Lemma 6 Substitution PK p-simulates Extended PK. 

PROOF: This is given in [8]. We repeat the proof here. Note that we can assume 
that the extensions occur in the first lines of any Extended PK proof, because of the 
restriction that the variables introduced by the extensions cannot appear beforehand. 
This allows us to 'push' them up without altering the proof. 

Let 1rE be some Extended PK proof of S = r---* ~- Assume that q1 =: \111, ... , qr = 
Wr are all the extension definitions in 1fE and that they are all introduced in the first 
r steps of the proof 

Then consider the sequent: 

(2.30) 
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which is valid, because the soundness of PK's rules means that r ---+ .6. is a logical 
consequence of the r extension definitions. Lemma 4.4.10 in [8] shows that a proof of 
(2.30) exists with size O(m2

) (where m is the size of (2.30)). Therefore, we apply the 
substitution rule to derive: 

:7f 
qr = Wn qr-1 = Wr-1, ... q1 = 'lib f---+ .6. 

'llr = 'lin qr-1 = Wr-1, ... q1 ='lib f---+ .6. 

Next, separately prove the sequent ---+ Wr = Wr and cut out the first equivalence. 
After r such steps, we have a Substitution PK proof of r ---+ .6.. 0 

Lemma 7 Extended PK p-simulates Renaming PK 

PROOF: This is shown by demonstrating that Extended PK can simulate Substitution 
PK (of which Renaming is a special case). The details of the proof are rather technical 
and unenlightening, so we merely outline a high-level argument. The full proof can 
be found in [8]. 

This follows from two ideas. Firstly, if a system can be proven to be sound in 
polynomial time, then Extended PK can simulate it, and secondly, Dowd's proof that 
the soundness of the Substitution rule can be proven in polynomial time [5]. 

We prove the soundness of Substitution PK as follows. Given a well-formed Sub­
stitution PK proof of a sequent S (a proof can be verified to be well-formed efficiently 
by checking that each line follows from the previous lines by a rule), assume that 
some truth assignment exists that falsifies the end sequent. Then we can construct a 
truth assignment that falsifies an axiom (which is a contradiction). 

For any rule with a single top sequent, except Substitution, the Inversion Principle 
guarantees that the truth assignment that falsifies the bottom sequent will falsify the 
top sequent. 

For !\-right, if T ~ r---+ A!\ B, .6. then we know that either T ~A or T ~ B (or 
both), and therefore that T falsifies at least one of the two top sequents. Choose the 
branch that is falsified, and continue. Similarly, if T ~ r, A VB ---+ .6. then T must 
either satisfy A or B or both, and so falsify at least one of the top sequents. In either 
case, we choose the branch that is falsified and continue, without altering T. 

Lastly, for the Substitution rule, if the formula 8 replaced a variable a in the 
original proof, then to construct a falsifying assignment T

1 for the top sequent, we let 
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7
, (X) = { T (X) ~f X =_# a 

T(8) If X= a 

19 

(2.31) 

where T(8) is the truth value of 8 under T. Once we reach the top of the proof, we 
will have a truth assignment that falsifies the conclusion and also falsifies an axiom. 
Such a truth assignment cannot exist and so the conclusion of the proof must be 
valid. 

Since this is a polynomial time process, Extended PK must be able to simulate 
Substitution PK. For a direct simulation see [8]. D 

This notion of an indirect simulation by using one system to certify the correctness 
of a proof in another system is an important one. It is often quite difficult to show 
simulations directly, but by reasoning more abstractly about the capabilities of a 
given proof system, we may be able to provide an indirect simulation. We will use 
this concept later with LA, H, and the Hajos Calculus. 

We are now able to conclude: 

Theorem 8 The four extensions to PK, namely Renaming, Substitution, TF, and 
Extended PK are p-equivalent. 

PROOF: Follows immediately from the previous four lemmas. D 



Chapter 3 

G: PK with variable quantification 

Krajicek [8] defines a different sort of extension to PK in the form of quantifiers. There 
are two quantifiers, each with a left and right introduction rule. This new system, G, 
is generally used to prove sequents which are quantifier-free; the quantifiers are used 
in an attempt to shorten proofs. Whether or not G can actually produce significantly 
smaller proofs remains an open question. 

Syntax and Semantics 

'II introduction 

3 introduction 

a( B), r-+ L\ r-+ L\, a(p) 
'1/xo:(x), r-+ L\ r-+ L\, 'llxa(x) 

a (p) , r -+ L\ 

3xa(x), r-+ L\ 

r -+ L\, a( B) 
r-+ L\, 3xa(x) 

(3.1) 

(3.2) 

where B is any formula, and under the restriction that the atom p does not occur in 
the bottom sequent for '\!-left and 3-right. 

The need for the restriction on the 'II right and 3 left case can be illustrated with 
a pair of counterexamples. 

20 
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p, •p ~ a V •a a V •a ~ p, •p 

3xx, •p ~a V •a a V •a ~ '1/xx, •p 
(3.3) 

In each case, the upper sequent is valid, but a truth assignment exists which does not 
satisfy the lower sequent. 

Sequents with quantifiers behave exactly like quantifier-free sequents, with quantifiers 
being interpreted in the expected manner. Explicitly, ::Jxo: ( x) is true if some value of 
x satisfies o:(x), and '1/xo:(x) is true if all possible values of x satisfy o:(x). This allows 
us to note that each quantifier has a semantically equivalent formula: 

'1/xo:(x) = o:(O) 1\ o:(l) 3xo:(x) = o:(O) V o:(l) 

The true value of quantification becomes apparent when we consider the case in 
which o: contains additional quantifiers. Since the equivalent formulas are more than 
twice as long as the quantified formulas, nested quantification provides an exponential 
decrease in formula (and therefore sequent) length. 

Soundness and Completeness of G 

Lemma 9 G is sound and complete. 

PROOF: The soundness of most of G's rules was shown in Lemma 3. We need only 
show the soundness of the four new rules, which we do in the same way as before. 
Take the 'If-left rule: 

o:(B), r ~ ~ 
'1/xo:(x), r ~ ~ (3.4) 

Assume the top sequent is valid, and let T be any truth assignment. If T falsifies any 
formula in r or satisfies any formula in ~' then T satisfies the bottom sequent also. 
Otherwise, T must, by the validity of the top sequent, falsify o:(B), in which case T 

also falsifies '1/xo:(x) and so satisfies the bottom sequent. Similar arguments show the 
soundness of the other three new rules. 

The completeness of G follows from the completeness of PK, because any cor­
rect PK-proof is a G-proof. A more interesting question is whether G can prove all 
sequents containing quantifiers. D 
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Extended Completeness of G 

By extended completeness, we mean that G is complete for valid sequents containing 
variable quantifiers. If A is a formula, let the number of quantifiers in A be denoted 
by IAIQ, and similarly for sequents. 

Theorem 10 If S is a valid sequent, possibly containing variable quantifiers, then G 
can proveS. 

PROOF: Let S be a valid sequent (possibly with formulas containing quantifiers). We 
show that a proof of S must exist by induction on the maximum number of quantifiers 
in any formula inS. 

We show the cases for connectives and quantifiers occurring on the left. The right­
hand cases proceed analogously. 

The base case is when the sequent is quantifier free. That is, ISIQ = maxnES ladQ = 0 
In this case, the sequent is a classical tautology, and a proof of S exists by the 
completeness of P K. 

Then, for the induction step, let maxnES iaiQ = k + 1. Then, for each ai in S in turn, 
if lai IQ = k + 1 perform the following steps. 

If the outermost connective in ai is not a quantifier, apply the appropriate connective 
introduction rule in reverse. This produces one sequent (for -,-}eft or A-left) which 
will have at most k + 1 quantifiers in each formula. For V - left, we obtain two 
sequents as follows: 

r,tJ _. ~ r,/' _. ~ 

r,tJvl'--~ 

where a= J]V')'. Continue working with both sequents until the outermost connective 
in the current formula is a quantifier. 

Once there is a quantifier as the outermost connective in the current formula, the 
sequent must look like this: 

r, :lxa(x)---- ~ or r, \ixa(x) ---- ~ (3.5) 

For the :3-left case, we proceed as follows: 
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7f 

r, a( a) -----+ .6. 
-----3- left 
r, 3xa(x) -----+ .6. 

Where we choose a to be some variable that does not appear in r, a(x), or .6.. 

Similarly, for the \f-left case: 

7f 

r, a( a), a( •a) -----+ .6. 
-------\1 -left 
r, a( a), \fxa(x) -----+ .6. 
-------- \f- left 
r, \fxa(x), \fxa(x) -----+ .6. 
---------- contr. 

r, \fxa(x) -----+ .6. 

where here we have a free choice of a. 

23 

We repeat this for each other formula in r and .6., removing a quantifier from each 
formula which had k + 1 quantifiers to begin with. After this process, each formula 
has at most k quantifiers, and a proof exists by the induction hypothesis. D 

Gi and Gi 

Krajicek defines a special subset of G based on the number of alternations of quan­
tifiers when each formula is in prenex normal form. A formula is in prenex normal 
form if it is written: 

(3.6) 

where each Qi is either \for 3, and a is quantifier-free. 

Gi is the set of all sequents where all the formulas in both cedents are in prenex 
normal form, and the quantifiers are grouped into at most i blocks starting with an 
existential quantifier (3). Therefore, G0 is basic PK, G 1 allows sequents to contain 
formulas of the form 3x13x2 ... 3xna(x1 , x 2 , ... , Xn), G2 allows: 
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and so on. 

c: is Gi with the added restriction that the proofs be treelike. A treelike proof is 
one in which each sequent appears at most once as the upper sequent in a rule. That 
means that if we wish to reuse a sequent in a treelike proof, we must rederive a 
separate copy of it and, in doing so, increase the size of the proof. 

3.1 G'i and Extended PK are p-equivalent 

We show that G~ can p-simulate the substitution rule, and therefore can p-simulate 
Substitution PK. Then, by Lemma 6 we obtain that G~ p-simulates Extended PK. 

Lemma 11 ~ p-simulates Substitution PK. 

PROOF: This proof can be found in [8]. Given a Substitution PK proof 1rs, we convert 
it to a G~ proof 1fc as follows. Given an instance of the substitution rule: 

we replace it as follows: 

Then, from: 

Then weaken and cut to obtain: 

r(a) --7 ~(a) 

r(e) --7 ~(e) 
(3.7) 
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(3.8) 

And there is a short proof of: 

from which we can cut to obtain: 

as required (and with a polynomial increase in size). 

Observe that we have no alternative but to put the whole sequent into a single formula 
on the right, because of the restriction that the variable which gets captured by the 
quantifier cannot appear in the lower sequent in the V - right rule. D 

To show that Extended PK p-simulates G~, we show a method to efficiently transform 
a G~ proof (1r0 ), into an Extended PK proof (7re). The basic idea is that variables 
are introduced on the left to 'witness' values for quantified variables on the right, in 
this fashion: 

where the qi are the quantified variables on the right of the arrow, and the ¢i are 
Boolean formulas which specify values for qi that make the sequent valid. 

Any formula in a G;' proof can be efficiently converted to a formula in prenex form. 
All V quantifiers in any such formula must be nested inside an odd number of -, 
connectives (by the definition of G~), and so will become 3 quantifiers when the 
formula is in prenex form. 

We can convert a formula to prenex normal form by giving each quantified variable 
a unique name, and then pushing quantifiers 'out' towards the front of the formula 
(using deMorgan's Laws, etc). For example: 

-NxA(x, iJ) becomes 3x-.A(x, iJ) 
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(A(Y) V VxB(i], x)) becomes Vx(A(Y) V B(i], :r:)) 

and vice versa for 3 quantifiers (which are guaranteed to be nested inside an even 
number of -, connectives). Since we can efficiently perform this transformation, we 
can assume that formulas appear in prenex form in the upcoming proof. 

Lemma 12 Extended PK p-simulates G;'. 

PROOF: Let 7rG be a G~ proof of the classical (i.e. quantifier free) sequent r ---7 ~­

We construct an extended PK proof, 7rE, of the same sequent, with only a polynomial 
increase in proof size. 

Note: Since 1rc is a G~ proof, we know that all the formulas are in 'E1, and that 
therefore none of the V introduction rules can appear in 1rc (because the resulting 
formula would be in II2 ) 1 . For the same reason, the -, rule cannot be applied to any 
quantified formulas. Therefore, the only ways that a V symbol could appear in 7rG is 
in an axiom, or through weakening. 

For convenience, we assume that we have two lists of variables Pll p 2 , ... , which we 
use for new free variables (on the left), and q 11 q 2 , ... which we use for new 'witness' 
variables (on the right). Whenever we need to introduce a new one of either type, we 
take the next unused variable in sequence. This technicality helps us when we come 
to the cut rule. Any variables introduced during the following translation between 
7rc and 7rE are meta-variables which stand for one of the Pi or qi. 

First, we show how the axioms are translated. Given an axiom, A ---+ A, if A is 
quantifier-free there is nothing to change, and we use the same axiom in 7rE- For 
axioms with quantifiers, we convert to prenex normal form, which guarantees that 
the axiom must be of the form 3xB(x, a) ---+ 3xB(x, a) where x and a are respectively 
the bound and free variables in B. To replace the axiom, we then construct the 
following sequent in 7rE: 

(3.10) 

We can show how to construct sequents like (3.10) with polynomial size Extended PK 
proofs by induction on the structure of A. The inductive hypothesis is that sequents 

1Technically, the V rule could be applied, but only by quantifying over a variable which doesn't 
appear in the formula. In these cases, we would simply remove that step from the proof altogether. 



3. G: PK with variable quantification 27 

of the form (3.10) have proofs of length O(IAI2
) (specifically, proofs that are bounded 

by cjAj2 for some constant c). 

If A ( x) is simply x then we have: 

p-+p q-+q 

•p,p--+ q q,p--+ q 

( •P V q), P --+ q 

( •p V q) 1\ ( •q V p), p --+ q 

Then for longer formulas, remove the outermost logical connective in A and use to the 
induction hypothesis to show the existence (and length) of 1r1 and 1r2 . For example, 
if A(p, a) is B(p, a) 1\ C(P, a) then: 

: 7rl : 7r2 

P'= if, B(ff, a) --+ B(if, a) P'= q, C(ff, a) --+ C(if, a) 

P'= if, B(ff, a) A C(ff, a) --+ B(if, a) P'= q, B(ff, a) A C(ff, a) --+ C(if, a) 

P'= if, B(ff, a) A C(ff, a) --+ B(if, a) A C(if, a) 

The V, •, and 3 cases proceed similarly. We need only choose c large enough to cover 
the largest of these three cases. 

Secondly, we consider the rules one-by-one. We should note that, in 7rE, the other 
formulas in a sequent (for example, those in r and .6.) may have been altered in 
previous steps so we must write r' and .6.' to acknowledge this. 

Furthermore, when two sequents appear on top of a rule, rand .6. may not have been 
altered in the same ways in both subproofs, so we should write f" and .6." in one of 
them to differentiate. 

Exchange 

The exchange rule needs no alteration, so wherever it is used in 1rc we make the same 
exchange in 1r E. 

Weakening 

If the new formula is quantifier free, there is nothing special to be done in 7rE. Suppose 
the new formula has one or more quantifiers. If we introduce it on the left, then we 
choose new free variables (from the set of Pi): 



3. G: PK with variable quantification 28 

r' ~ /:).' 
(3.11) 

f', A(iJ, a) ~ /:).' 

or, if we introduce a formula on the right, we use new qi variables and perform further 
weakenings to introduce equivalances to give them values. 

============================weak. 
q1 = 0, ... , qn = 0, f' ~ A(q, a),/:).' 

We are free to select any value in the latter case, so we arbitrarily pick 0 for each of 
the n new variables. 

Contraction 

On unquantified formulas, we can simply perform the same contraction in 7rE without 
any trouble. Applying the contraction rule to quantified formulas is slightly more 
difficult, because the formulas to be contracted may have different variable names 
(for formulas on the left), or different witnessing formulas (for formulas on the right). 

Contracting on the left is simple. We can use the treelikeness of 1rc and simply rename 
any or all of the variables in one instance of the formula to be contracted so that they 
are identical. Given: 

r', A(iJ, a), A(q, a) ~ /:),' (3.12) 

We arbitrarily rename q to p throughout the proof up to this point, to obtain: 

r', A(iJ, a), A(iJ, a) ~ /:).' (3.13) 

which we contract normally. 

For contraction on the right, we start from the following top sequent: 

r' ~ A(iJ, a), A(q, a),/:).' (3.14) 

where r' contains the definitions of p and if. One, both, or neither or A(p, a) and 
A( q, a) may be true, and we need to be sure we do not eliminate the wrong one. We 
define a new set of variables r to be (for all i): 
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_ { p; if A (p, a) is true 
ri = qi otherwise (3.15) 

One possible formula for this is ri = (Pi 1\ A(p, a)) V ( qi 1\ ·A(p, a)). We abbreviate 
this as ri = 1/Ji-

Then a simple short proof of: 

(3.16) 

exists, which can be shown in a similar manner to the translations of axioms in (3.10). 

This process for taking two possible sets of witnessing variables, and selecting the 
correct set by introducing a third set of variables will be useful when dealing with 
some of the other rules as well. 

Connective Introduction 

Since our formulas are in 2: 1 , we know that the -, introduction rules will never be 
applied to quantified formulas, so there is no alteration necessary in 1fE. For the 1\ 

and V rules, we convert to prenex normal form at the same time as we introduce the 
connective (as detailed above). This means that at subsequent stages of the proof, we 
can still assume that all formulas in all sequents in 1fG start with a (possibly empty) 
block of quantifiers followed by a quantifier-free formula. All quantified variables in 
1fE are chosen to be unique, so we don't need to rename variables when converting to 
prenex normal form. 

After this, for /\-left and V-right, there is nothing else to do. /\-right and V-left 
could have conflicting r and/ or ~ which need to be resolved in the same way as in 
contraction (by renaming on the left, and by introducing new variables on the right). 

For /\-left, if we have: 

r' --7 ~',A r" --7 ~", B (3.17) 

We unify these two sequents in the same way as in the contraction rule, renaming the 
variables on the left to obtain: 

r"' --7 ~',A r"' --7 ~", B (3.18) 
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We can then weaken and introduce the 1\ connective, giving: 

f 111 -----+ 6.', 6.", A 1\ B (3.19) 

Then, for each of the formulas in 6. which contain quantifiers (in 7rc) we construct a 
new set of variables as in contraction (on the right). This lets us write: 

f 111 
-----+ 6.111

, A 1\ B (3.20) 

V-left works in the same way, again following the procedure from the contraction case. 

Cut 

For cuts, in which the formula to be cut is quantifier-free, in 1fE we will have: 

r', A-----+ t::.' r" -----+ A, t::." (3.21) 

And we can weaken and cut to obtain: 

r', r" -----+ t::.', t::." (3.22) 

which we deal with as in contraction, /\-right, and V-left. Note that some of the 
formulas inside f" may be equivalences for quantified variables in one upper sequent 
that are free variables in the other upper sequent. 

If, in 1fc, A contains a quantifier, then we have: 

r', A(P) -----+ t::.' r" -----+ A( q), t::." (3.23) 

Since whenever we introduce a new variable in this translation, we always choose a 
previously unused p; or q;, and since we never duplicate a formula, we know that 
f', f", 6.' and 6." must not contain p or q. Therefore, in the left sub-proof, we rename 
p to q throughout, and weaken in the witness definition for q (taken from the right 
sub--proof). We then perform any other unification necessary (as in contraction) and 
cut the formula. 

3 introduction 

We do not need to change anything whenever 1fc contains an instance of 3-left, 
because since the lower sequent in 1fc doesn't contain the variable that was quantified. 
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However, for consistency, we choose the next Pi that is unused, and rename the 
variable to be quantified throughout the proof (again, it is the treelikeness of 1r c that 
allows us to do this). 

On the right, we need to make sure that we construct a new extension definition to 
witness the formula that was eliminated by the quantifier. That is: 

7rl 

f'--+ !:::.',A( B) q = B, A( B)--+ A(q) 

q = B, r'--+ A( B),!:::.', A(q) q = B, f', A( B) --+ !:::.', A(q) 

q = B, r'--+ !:::.', A(q) 

where again, 1r1 is constructed in the same way as in (3.10) and in Lemma 27. 

Finally, once this translation is complete we have 1r E, a proof of some sequent f' --+ !:::.'. 
Now, since the sequent proven by 1rc is quantifier free, we know that: 

(3.24) 

and that none of the qi appear in r or !:::. . Therefore, to avoid violating the restriction 
that extension definitions must involve previously unused variables, we can go back 
up to the start of the proof, and introduce the n equivalence axioms --+ % = cPi in the 
same order that they were introduced in the above translation (which is in ascending 
order by i). We then weaken appropriately, and use n applications of the cut rule to 
produce the final sequent r --+ !:::,. as required. 

Since each of the steps described here require only polynomial-sized modifications, 
and we must perform at most one step per line of the proof (plus n polysized steps 
at the end) the whole process needs only a polynomial increase in the size of 7r£. D 

From the previous two lemmas we obtain: 

Theorem 13 Extended PK and Gi are p-equivalent. 

That is, the ability to quantify over Boolean variables gives the same power as 
substituting formulas, or introducing extension variables to abbreviate formulas. 



Chapter 4 

H: PK with permutation 
quantification 

We can construct a new extension to PK which, like G, adds rules which introduce 
quantifiers. However, rather than quantifying over all possible assignments to a vari­
able, our system, which we call H quantifies over all possible transpos-itions of two or 
more variables. 

We will show that it is sufficient to quantify over transpositions of variables and to 
build more extensive permutations out of sequences of transpositions. That is, we 
need only give rules for permuting two variables at a time. 

Syntax and Semantics 

In PK and G, we were not explicit about the domain from which we selected our vari­
ables, but for H we need to be a little more precise. All formulas which appear in H 
proofs will have their variables chosen from the ordered, infinite set { P1 , P2 , P3 , ... } . 

We will sometimes use the symbols a, b, c, ... or a 1 , a2 , a3 , .. . , but it should be un­
derstood that these are meta-variables. That is, each of them refers to a particular 
Pi. 

Our new quantifiers use the same symbols as variable quantifiers, but we enclose them 
in brackets to delimit the two (or more) variables being permuted. If a is a formula, 
then so are (:3ab)a and (\fab)a, where one, both, or neither of a and b may appear in 
a and where a and b may be the same variable. These quantifiers are (semantically) 

32 
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equivalent to these formulas: 

(\fab)a(a, b) =a( a, b) 1\ a(b, a) and (3ab)a(a, b) =a( a, b) V a(b, a) (4.1) 

We introduce the notation a(ab) to represent a transposition of the variables a and b 
within a. It is important to note that occurrences of a or b within other permutation 
quantifiers are also affected. Hence, the formula ((3ac)a)(ab) = (3bc)a(ab) 

Every permutation can be decomposed into a series of transpositions and so trans­
position quantifiers will be sufficient to construct permutation quantifiers. However, 
the formal nature of propositional proof systems requires us to formulate a single, 
unique, and polynomial sized series of transposition quantifiers which will allow us to 
express any permutation. 

Theorem 14 Arbitrary permutations of n variables can be represented by the follow­
ing series of transpositions (reading from left to right): 

n n 

II II (jk)ijk (4.2) 
k=lj=l 

where (ijk) is ann x n matrix over 0,1 indicating which transpositions are taken and 
which are left as the identity. 

PROOF: Take some arbitrary permutation of n variables a 1 ~-----* ah, a2 ~-----* at2 , ••• , an ~-----* 

aln· 

We go through ( 4.2) in blocks of n transpositions at a time, in order. After the ith 

block, we want to ensure that the first i variables have been permuted back to their 
correct places. 

Each number in 1, ... , n appears exactly once in this permutation. In particular, 
some lk must be 1. In the first block of n transpositions, we set ilk = 1, and iij = 0 
for all j =I k. This ensures that the variable that should end up in position 1 is there, 
and that no other transpositions will be taken later to move it again. 

Once we have done this for all n blocks of n transpositions, all n variables will be in 
the correct positions. 0 
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Example: An example may be illustrative. Take n = 6, and let the variables begin 
in the following permutation: az, a4, a3, a5, a6, a 1. We must take the following trans­
positions to permute them back to a1, a2, a3 , a4, a5, a6 . (This is, of course, equivalent 
to starting in order, and then reordering the variables to some permutation). 

We consider all the transpositions in ( 4.2) in order, but only the ones shown below 
are taken. 

To prevent confusion between variable name and variable position, we show which 
ijk should be set to 1, which indicates that the variables currently in the ph and kth 
positions should be exchanged. 

il6 = 1 gives al,a4,a3,a5,a6,a2 

iz6 = 1 gives al,az,a3,a5,a6,a4 

i33 = 1 gives ai,a2,a3,a5,a6,a4 

i46 = 1 gives al,az,a3,a4,a6,a5 

i56 = 1 gives a1,a2,a3,a4,a5,a6 

i66 = 1 gives al,az,a3,a4,a5,a6 

Informally, this procedure works because it provides all n of the possible transpositions 
for each of the n variables, allowing us to pick and choose to construct any arbitrary 
permutation. 

Definition: We define the canonical transposition representation of a permutation 
of k variables to be (4.2). 

In H, we may use the following notation (\fa1a2 ... an), which is an abbreviation for: 

(4.3) 

to express all possible permuatations of n variables (and similarly for :3). 

The semantics of permutation quantifiers are not difficult, but there are two different 
ways of thinking about what it means for a truth assignment r to satisfy a formula 
containing a permutation quantifier. Firstly, we can say that r satisfies a formula 
(:Jab)a (written as r f= (:Jab)a), if and only if r f= a or r f= a(ab). The second 
method is to define r(ab) by setting r(ab)(a) = r(b), r(ab)(b) = r(a), and r(abl(x) = r(x) 
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whenever x tJ. a, b. We then say that T f= (3ab)a if and only if T f= a or T(ab) f= a. The 
cases for universal permutation quantifiers are similar, but require both transpositions 
to be satisfied, rather than just one. We refer to these methods respectively as variable 
permutation and assignment permutation. 

Lemma 15 Variable permutation and ass·ignment permutation give equivalent se­
mantics. 

PROOF: Take (3ab)a(a, b, X1, ... , xn) as an example. Let T(a) = t1 and T(b) = t2 
wheret1,t2 E {0,1}. IfT f= (3ab)a(a,b,xl, ... ,xn),theneithera(tl,t2,T(xl), ... ,T(xn)) 
is true, or a(t2, t1, T(x1), ... , T(xn)) is true. 

Since T(a) = a(t1, t2, T(x1), ... , T(xn)) and T(ab)(a) = a(c2, C1, T(x1), ... , T(xn)), ei­
ther T f= a or T(ab) f= a and we have one direction of the equivalence. The other 
direction (and the V cases) follow from similar arguments. D 

Rules 

We present four unrestricted rules for introducing 3 and V transposition quantifiers 
on the left and on the right. For the existential quantifiers: 

r -7 ~,a 
(4.4) 

(3ab)a, r -7 ~ r -7 ~' (3ab)a 

and for the universal quantifiers: 

a,r -7 ~ 

(Vab)a, r-+ ~ r-+ ~' (Vab)a 
(4.5) 

We also have two restricted introduction rules, in which a and b cannot appear in r 
or~: 

a,r -7 ~ r -7 ~,a 
(4.6) 

(3ab)a, r -7 ~ r-+ ~' (Vab)a 

From these rules, we can derive the permutation rule as follows: 
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---+a( a, b) o:(b, a) ---+ o:(b, a) 
------
---+ (Vab)o:(a, b) (Vab)o:(a, b) ---+ o:(b, a) 

---+ o:(b, a) 

In [9] we defined a different set of rules which included the permutation rule, and where 
the restricted rules were derived rules. However, it turns out that that definition of 
H did not allow us to translate VPLA (see Chapter 5) while preserving treelikeness. 

Soundness and Completeness 

We can easily show that these concepts apply to H as well as to G and to basic PK. 

Theorem 16 H is sound and complete. Furthermore, the inversion principle applies 
to all the rules of H, except for the weakening rule 

PROOF: H is complete because it contains the rules of PK, and PK is complete. We 
show soundness and inversion as before, by taking any truth assignment and showing 
that if it satisfies the upper sequent then it must satisfy the lower (and vice versa, 
except for weakening). For example, consider the :3-left rule. Suppose that: 

r, o:(a, b)---+~ (4.7) 

is valid, but that there is some truth assignment T that falsifies: 

r, :J(ab)o:(a, b) ---+ ~ (4.8) 

Then T F r, and T F :l(ab)o:(a, b) butT ~ ~- Since T F :J(ab)o:(a, b) it must be true 
that either T f= o:(a, b) or T(ab) f= o:(a, b). Furthermore, since a and b do not appear 
in r and ~' we know that T(ab) F r and T(ab) ~ ~' and so either T or T(ab) must 
falsify the top sequent. We can argue similarly about the other new rules. D 
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Extended Completeness of H 

Previously, we showed that if S was any valid sequent which possibly contained 
variable quantifiers, then a G-proof of S exists. We can show a similar result for 
H. 

Theorem 17 H is complete for sequents with permutation quantifiers. That is, if S 
is a valid sequent which possibly contains permutation quantifiers, then an H -proof of 
S exists. 

PROOF: The proof is again by induction on the maximum number of transposition 
quantifiers in any formula in a sequent. 

The base case is a valid sequent without transposition quantifiers. By Theorem 3 
there is a PK proof of this sequent, and this proof can also be constructed in H. 

Assume that any sequent in which each formula has at most k transposition quan­
tifier has an H proof, and then let S be a sequent containing a maximum of k + 1 
quantifiers in any of its formulas. 

For each formula, a in S if a contains k + 1 quantifiers, we do the following: 

If the outermost connective in a is not a permutation quantifier, then apply the V, 
1\, and ..., introduction rules in reverse. Continue this until a permutation quantifier 
is the outermost connective. 

At this point, Sis one of the following: (The cases on the left proceed analogously) 

r---+ (::lab)a(a, b),~ r---+ (Vab)a(a, b),~ 

For the V-right case, we build a partial proof as follows: 

r---+ a,~ r---+ a(ab), L). 
--------,..-,-···-- V- right 

r---+ (Vab)a(ab), ~ 

(4.9) 

We then continue with all the other formulas in r and ~' removing a permutation 
quantifier from any formula with k + 1 quantifiers. At this point, all the uppermost 
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sequents will have k or fewer permutation quantifiers in each formula and then the 
1ri will exist by the induction hypothesis. 

The :3-right case is slightly more complicated: 

7r 

r ---7 a a(ab) ~ 
' ' :3- right 

r ---7 (:=lab )a(ab)' a(ab)) ~ 
====:::::;:=c:=c===:::::;:=c;:;== exch., :3 - right 
r ---7 (:=lab )a(ab)) (:=lab )a(ab) ~ 
----------- contr. 

r ---7 (:=lab )a(ab)) ~ 

D 

Now we would like to explore H's power as compared to that of G. It is quite simple 
to see that Extended PK can p-simulate H;, but a significantly longer process to 
demonstrate that H; can p-simulate Extended PK. 

4.1 Extended PK p-simulates H; 
To show this, we use a similar method as used in the previous chapter to show 
that Extended PK could p-simulate Gi. Given a proof in H;, we build an equivalent 
Extended PK proof in which extension definitions are introduced on the left to witness 
whether or not a transposition is taken on the right, in this fashion: 

(4.10) 

where the di are the variables which appear inside transposition quantifiers on the 
right, and the c/>i are formulas which specify whether the transposed or untransposed 
pair of variables makes the sequent valid (that is, the values which would have satisfied 
the quantified formulas in 1r H). The notation { d1 , d2 } = { c1 , c2 } is used to abbreviate 
d1 = c1 1\ d2 = c2, where = is now the usual abbreviation. 

We refer to new variables on the left as free variables, and new variables on the right 
as 'witness' variables. Every witness variable has a defining formula on the left. 

As we did when simulating G~, we show that we can convert the axioms and weakened 
formulas to a form containing only existential quantifiers in prenex form, and then 
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only work with formulas in prenex form for the rest of the conversion. The process 
is the same; rename the quantified variables, and push out the quantifiers past the 
other connectives (converting -,\j to ::J-, as before). 

Theorem 18 Extended PK p-simulates ~. 

PROOF: Let 1rH be a Hi proof of the classical (i.e. quantifier free) sequent r --+ ~. 
We construct an extended PK proof, Jre, of the same sequent with only a polynomial 
increase in proof size. 

We convert the axioms of 1fH as follows. Any quantifier-free axioms require no alter­
ation. For any quantified axiom, we put the axiom into prenex normal form, so that 
it is of the form: 

(4.11) 

We then construct the following valid sequent: 

(4.12) 

We use structural induction on A to show an efficient construction of ( 4.12). The 
induction is basically identical to induction used to deal with axioms in the simulation 
of Gi by Extended PK, and so is not repeated here. 

We also need to change the way we define the new witnessing variables that are 
introduced during the unification of two sequences of formulas. Take for example 
contraction on the left. In 7rE we will have (as in the translation from 7rG to 7rE in 
the previous chapter): 

f'--+ ~', A(p, q), A(r, s) (4.13) 

where p, q, r, and s are witnessed variables which represent quantified variables from 
1fH. We need to introduce a new pair of variables t and u, such that in the sequent: 

f'--+ ~', A(t, u) (4.14) 
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if one of A(p, q) or A(r, s) was true, then A(t, u) is now equivalent to the true formula. 
To ensure this, we use this extension definition: 

where 

and likewise 

{ t, u} = { 1h, ¢z} 

{ 
p if A(p, q) is true 
r otherwise 

¢z = { q if A(p, ~) is true 
s otherwise 

(4.15) 

(4.16) 

( 4.17) 

Explicitly, (4.16) can bewrittenast= (p!\A(p,q))V(r-J\•A(p,q)), and (4.17) can 
be written u = ( q !\ A(p, q)) V ( s !\ ·A(p, q)). 

For the rest of the translation, we follow the procedure to translate Gi proofs into 
Extended PK. The transposition quantifiers are dealt with slightly differently to the 
ordinary quantifiers (as one would expect). For existential quantifiers on the left there 
is still nothing that needs to be done, and on the right we need to introduce extension 
definitions which witness whether or not a transposition was taken. In 7rH we would 
have had: 

r --7 ~'A( a, b) 

r --7 ~' (3ab)A(a, b) 

which appears in 7rE as: 

r' --7 ~',A(a,b) {c,d} = {a,b},A(a,b) --7 A(c,d) 

{c,d} = {a,b},r' --7 A(a,b),~',A(c,d) {c,d} = {a,b},r',A(a,b) --7 ~',A(c,d) 

{c,d} = {a,b},r' --7 ~',A(c,d) 

where the existence of (and polynomial bound on the size of) 1r1 follows from Lemma 
27. D 
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We currently have no direct simulation of Extended PK by H 1 or H~. However, we 
can show how H~ can indirectly p-simulate Extended PK. The remaining chapters of 
this thesis are devoted to introducing the necessary intermediate systems, and giving 
the step-by-step simulations that connect Hi to Extended PK. 



Chapter 5 

LA and its translations 

LA is a first order logical theory of Linear Algebra. LA has three sorts: indices, field 
elements, and matrices, and operates over sequents. All of the rules of PK are available 
for constructing LA proofs from the axiom schemes described in the appendix, or in 
[12]. LA is quantifier-free1

, but every sequent is implicitly universally quantified (in 
the same way that PK operates only over valid propositional sequents). We describe 
only those elements of LA that are important for our purposes; for a full introduction 
of LA see [12], and see [14] for an introduction of the related theory VPLA. 

V PLA is important to us, because it is powerful enough to prove the soundness 
of the Hajos Calculus, which is p-equivalent to Extended Frege, but on the other 
hand it is weak enough that it can in turn be easily translated into a propositional 
proof system like H;. V PLA therefore forms a crucial link in our proof that H; can 
p-simulate Extended PK. First let us define LA. 

Function Symbols 

There are several function symbols for each type. Those for indices: 

(5.1) 

For field elements: 
1 Except for bounded index quantifiers 

42 
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(5.2) 

And for matrices: 

r, c, e, I: (5.3) 

0 and 1 are constant functions of the indicated type. +, * are binary functions of 
the indicated type. -index is a binary function symbol, while -field and -l are unary 
function symbols. All of these have their conventional meanings. 

cond(a, t, s) is a conditional statement equal to the term t if the formula a is 
true, and to the term s otherwise. e(A, i, j) is the element of the matrix A in the 
ith row and the lh column, or 0 if A has fewer that i rows or fewer than j columns. 
r and c take a matrix, A, as an argument and return index values corresponding to 
the number of rows and columns in A respectively. Finally, I: takes a matrix A and 
returns a term which is the sum of the entries of A. 

There are also several predicate symbols: ::;index, =index, =field, and =matrix· From 
these we can build the atomic formulas of LA: 

i ::;index j 
. . 
Z =index J 
S =field t 

(5.4) 

A =matrix B 

From these base cases, terms and formulas are built inductively using function symbols 
and logical connectives respectively. The logical connectives are introduced using the 
rules from PK, constructing sequents from the axioms of LA. Other function symbols 
may be defined in terms of these symbols to abbreviate formulas and sequents, but 
any such symbols are not part of the language, they are merely meta-symbols. Where 
the type of an expression is obvious, we will omit the subscripts. 

5.1 Translations of LA theorems into propositional 
formulas 

Theorems of LA can be translated into families of short propositional tautologies. 
Let a be some formula of LA, and let a be some assignment to the objects in a. 
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Furthermore, let n be the largest number that cr assigns to any index variable in a. 
We define the size of cr, written lcrl, to be n. Then there is a propositional formula 
which is equivalent to a under cr, and this formula is only polynomially larger (in 
lcrl) than a. This construction follows Soltys and Cook [14] to show that basic LA 
translates to PK. We repeat their proof here, and then extend it to cover translations 
of V PLA into Ht. 
This general idea behind this translation is to evaluate as much as possible within 
each formula explicitly. We translate a formula to 1 or 0 if we can tell that (under cr) 
it will always be true or false. For example, for two matrix variables A and B, the 
formula A = B will always be false if the dimensions of A and B (namely cr(r(A), 
cr( r( B)) etc.) are not equal. If the dimensions are equal, then we translate A = B 
into a particular formula asserting that two cr(r(A)) x cr(c(A)) matrices are equal. 

It is important to remember that at the time of translation we know what cr is, 
and therefore, amoungst other things, what the dimensions of each matrix in a are. 

Note also that, in particular, all formulas of type index can be evaluated to a 
single constant during the translation. This allows us to avoid dealing with LA's 
bounded index quantifiers, which would be impossible in PK. 

Once we can translate LA formulas into propositional formulas, it is natural to pro­
ceed to translate LA proofs into propsitional proofs. PK provides a convenient for­
malism, because both systems work over sequents, and both systems use the same 
set of rules for connective introduction and sequent manipulation. However, for con­
venience, we modify PK to include an exclusive-OR connective, EB with the following 
left- and right- introduction rules: 

r, A, ·B---.. .6. r, ·A, B---.. .6. r---.. (A VB), .6. r---.. (•A V ·B), .6. 
r, A EBB---.. .6. r---.. A EBB, .6. 

(5.5) 

Since any two Frege systems over different (but complete) sets of logical connectives 
are equivalent[3], so are any two PK systems over differing sets of complete connec­
tives, so we are free to make this modification. Also, since we are interested primarily 
in the case that field variables are chosen from Z2 , we will restrict our translations to 
this case. Similar arguments hold over other fields, but much more detail is needed 
to deal with field variables and field operations. 

Lemma 19 Given a formula a of LA and an object assignment cr, we can construct a 
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propositional formula iiall,.. In this way, we build a family of propositional formulas, 
depending on a for- each form·ula of LA. 

PROOF: We must show how to translate the three types of objects that may appear 
in an LA formula, namely indices, field elements, and matrices. 

Indices: Let m and n be two index variables in a. a assigns some natural number 
to each. The only atomic formulas that can appear are of the form m =index n or 
m <index n. Therefore, rather than use propositional variables to represent the indices 
themselves we assign a single propositional variable to each such atomic formula, 
where: 

lim= nil,. = Pm=n = { ~ if o-(m) = a( n) 
otherwise 

(5.6) 

and similarly form :=::; n. This allows us to explicitly evaluate some more complicated 
fomulas involving indices as well. For example, the conditional statement; we translate 
the formula condindex(,B, m, n), where ,B is some atomic formula, to: 

I { 
llmll,. 

jcond(,B,m,n)ll,. = llnll,. 
if II,BII,. is true 
otherwise 

(5.7) 

We evaluate addition, multiplication and other operations on index variables in the 
usual manner to determine the value of each P(J. 

Field Elements: Recall that, for our purposes, a assigns each field variable a value 
from Z 2 . This means that for each field variable a, we can use a single propositional 
variable which is true iff a(a) = 1. We make the obvious choices for Ofield and 1field· 
Therefore, we have II all,. = a, IIOfield 11,. = 0, and ll1field 11,. = 1. A term that is a matrix 
element is translated in the expected way, namely: 

if 1 :=::; m :=::; a(r(A)) and 1 :=::; n :=::; a(c(A)) 
otherwise 

(5.8) 

From these base cases, we inductively construct a formula for each term as follows, 
where s and t are terms which have already been converted to propositional formulas: 
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lls+tlla- = (llslla-EBIItlla-), lls*tlla- = (llslla-AIItlla-), 11-tlla- = lltlla-, and llr1 lla- = lltlla-· 
llcond(,6, s, l)lla- is the same as for index variables. It is simple to show that these 
formulas give the correct values over the field of two elements. Constructed terms 
and matrix summations are a little more complex. If we wish to describe a term 
selected from a constructed matrix, we must modify our object assignment to select 
the correct element: 

II ( ' · '( 1 1 t) )II = { lltlla-' if 1 ~ llmlla- ~ llm
1
lla- and 1 ~ llnlla- ~ lln

1
lla-e /\t) m , n , , m, n a-

0 
th . o erw1se 

(5.9) 

rJ
1 is the modified object assignment. It is identical to rJ, except that rJ

1(i) = llmlla­
and rJ

1(j) = llnlla-· In this way, rJ
1 is used to select the desired element from the A 

term. 

Similarly, we translate :E (matrix summation) terms over A terms by introducing 
one new object assignment for each element of the A term being summed over: 

II:E(Aij(m, n, t))lla- = EB lltlla-vq 
1$pSflmllo-
1SqSflnllo-

(5.10) 

where each of the rJ pq is identical to rJ, except that rJ pq ( i) = p and rJ pq (j) = q. :E 
formulas over non-constructed matrices are translated in the expected fashion: 

lSvSIImllo­
lSqSflnllo-

(5.11) 

where here the Apq are the propositional variables corresponding to the entries of A. 

The only atomic formula over field elements is .s =field t, which we translate to (I lsi Ia- = 
lit II a-). 

Matrices: Variables of type matrix are represented by a number of propositional 
variables. For example, an m x n matrix, A, is represented by the mn propositional 
variables Apq where 1 ~ p ~ m and 1 ~ q ~ n. Constructed matrices are repre­
sented by the terms from which they are constructed, under the appropriate object 
assignment. 
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Equality for matrices is more complicated than for field elements. Given an atomic 
formula: 

A =matrix B ( 5.12) 

if IJr(A)IIrr ::/:IJr(B)Jirr or JJc(A)Jirr ::/:JJc(A)Jirr (that is, if the matrices are of different 
sizes) then JIA = Blla- = 0. If they are of the same size, then they are equal if all 
their elements are equal, and in that case: 

IIA=BIIa-= 1\ (JJe(A, i, j)Jia-pq = IJe(B, i, j)Jia-pJ (5.13) 
l:O::p,q:O:: llr(A) II" 

Connectives: Once we have translations for the atomic formulas of LA we can intro­
duce logical connectives/\, V, and • in the usual way namely IJou\,BIIa- = llalia-AIIfJIIa-, 
I Ia V fJIIa- = I lalla- V llfJIIa-, and ll•alla- = •I lalla-· In this way we build translations of 
entire LA formulas. D 

Theorem 20 Translations of LA into PK are polynomially bounded. That is, for 
each formula a, there is a polynomial Po: such that for any object assignment CJ to a, 
the length of I lalla- is bounded by p(jCJI). Also, a is valid under CJ over the field Z2 iff 
Jlalla- is a tautology. 

PROOF: We prove the two claims separately, starting with the size bound. We first 
prove a polynomial bound on the value of Jlmlla- for each index term m, and then a 
polynomial bound on the size of Jltlla- for each field term t. 

Indices: Index variables appear in the atomic formulas n = m or n ::::; m and therefore 
an index term appears in the translated formula as either True or False. 

However, we also need to prove that the value of any index term m is polynomially 
bounded by Pind(jCJI), because this will bound the size of any matrix term in our 
formula. This is easily shown: if m is some index variable, then the value of m is 
bounded by jCJj (by the definition of jCJj). Then, assume that n,p are two index terms, 
bounded in value by JnjjCJj and jpjjCJj respectively, then n +pis bounded in value by 
in+ pjjCJj. 

Field Elements: Recall that for this translation, the underlying field is assumed to 
be Z2 , so all field variables are either equal to 0 or 1. This makes our translations 
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much simpler, because Ofield and 1field can be translated to the Boolean variables 0 
and 1 respectively. 

Then, if t and u are terms of type field, and are bounded respectively by Pt(IO"I) 
andpu(IO"I), then iit+ullo- = iltllo-EBIIullo- and llt*ullo- = iitllo-AIIullo- are both bounded 
by (Pt + Pu + 1)(10"1). II- tllo- and 11t-1 llo- are similarly bounded by (Pt + 1)(10"1). 

That leaves the more complicated cases. Assume >..ij(m, n, t) is some constructed 
term, and assume that the translations of each entry tij are polynomially bounded 
Pt;1 (10"1). Define Pmax to be the maximum of these polynomials. Then iie(>..ij(m, n, t), k, l) I lo­
is bounded by Pkt(IO"i) if k ::; m and l ::; n, and bounded by 1 otherwise (see (5.8)). 
The translation of a summation term III:(>..ij(m, n, t))lio- is a formula with mn trans­
lated terms, and mn - 1 EB connectives. Each term is bounded by a polynomial less 
than or equal to Pmax, so the whole translation is bounded by (mn*Pmax(IO"I)+mn-1). 

Matrices: Matrix terms are either matrix variables or constructed terms. A matrix 
variable A is translated into polynomially many field variables (O"(r(A))O"(c(A)) many, 
in fact). Each field variable is translated into a single propositional variable. A 
constructed matrix >..ij(m, n, t) is translated into mn terms. Each term gets translated 
as above, and is bounded by a polynomial, so we choose the largest of these to bound 
the translation of the constructed matrix (as for summation above). 

Formulas: Equality of field variables translates to a constant sized formula. For 
matrix variables, A = B translates to: 

1\ (PA)iJ = (Ps)ij 
l<;;i<;;a{r{A)) 
l<;;j<;;a(c{A)) 

(5.14) 

which is bounded by ciO"I 2
, for some constant c. For equality of constructed terms, 

we replace c by the largest polynomial that bounds an element of the constructed 
matrices. From here, we proceed by structural induction to show polynomial bounds 
(in I O" I) for each formula. 

Lastly, we prove the claim that llallo- is a tautology if a is valid under O". Valid atomic 
formulas of type index are trivially translated to a tautology. If m =field n is true 
(under O"), then llmllo- = llnllo- is a tautology, and similarly for equality of matrix 
variables. From here, we prove by structural induction that larger valid formulas are 
translated into tautologies. Note that our task is considerably easier here because it is 
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clear that E9 and 1\ are equivalent to addition and multiplication over Z2 . Translations 
exist for more complicated fields, but need to use a number of propositional variables 
for each field element. For more details, see [14]. 0 

So we have shown that we can construct translations of LA formulas, and use those 
to translate LA sequents into a propositional proof system. PK (with E9) is a natural 
choice because LA is based on the sequent calculus introduced in Chapter 2. Note 
that we only need E9 for translating addition; it will never appear in the original LA 
proof we are translating. 

If a is a valid sequent under some object assignment CT, then we know that llaii<T 
is a tautology, and hence has a PK proof. It is natural to ask how to find this proof. 
Luckily, a's validity implies the existence of an LA proof. PK (with E9) can use this 
LA proof as a template for the proofs of the family { llaii<T }. 

We have shown how LA axioms get translated into propositional formulas, but 
in order to be able to use the LA proof as a template for a PK proof, we also need 
to show that PK can efficiently prove the LA axioms. The full set of LA axioms are 
given in the appendix. Their translations are proven in the following way: 

Equality Axioms: Recall that ------+ x = x translates to ------+ x = x which is an abbre­
viation of ------+ ( •x V x) 1\ ( x V •X), which has a simple PK proof from the PK axiom 
x ------+ x if x is a field element, and or from a set of axioms if x is a matrix variable. 
The other equality axioms are proven similarly. 

Index Axioms: The index axioms translate into either true or false depending on 
CT. Therefore, the translated index axioms can be proven from 0 ------+ or ------+ 1 with a 
constant number of weakenings. 

Field Axioms: We give an example proof for field axiom F18. The axiom is ------+ 0 =f. 
1 1\ a + 0 = a. It translates to: 

------+ •(0 = 1) 1\ (llaii<T E9 0) = llaii<T (5.15) 

where the brackets are inserted for readability. We prove this in PK (with E9) as 
follows. It is easy to obtain a proof of------+ -·(0 = 1): 
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·1 --7 0 --7 

·1 v 0 --7 

·0 v 1, ·1 v 0 --7 

(•0 V 1) A (•1 V 0) --7 

--7 •((•0 V 1) A (•1 V 0)) 

Likewise, we prove --7 (//a//cr EB 0) = //a//cr: 
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0--7 

//a//cr EB 0 --7 //a//cr 

--7 •(//a//cr EB 0), //a//cr 

--7 //a//cr V 0, •//a//cr --7 •//a//cr V •0, •//a//cr 

--7 //a//cr EB 0, •//a//cr 

--7 •(//a//cr EB 0) V //a//cr --7 (//a//cr EB 0) V •//a//cr 

--7 (•(1/al/cr EB 0) V 1/al/cr) A ((1/al/cr EB 0) V •1/al/cr) 

From these two proofs we use A introduction to get the required result. Note that 
1/al/cr is some propositional variable (a is a reasonable choice) so that /Ia /I" --7 1/al/cr 
is a PK axiom. The other axioms for field elements are translated similarly. 

Matrix Axioms: The proofs for matrix axioms are similar, but depend on whether 
the index variables are within the matrix dimensions (in which case we get a family 
of proofs similar to the one above, with one for each entry in the matrix), or whether 
they are outside in which case we have a short proof from the axiom 0 --7. 

Once we have proven the translated axioms, we can use the rules of PK to follow the 
original LA proof. 

5.2 V PLA and its translations 

\;/ PLA augments LA by adding the following rules for introducing bounded universal 
permutation quantification: 
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(P::;; n 1\ Perm(P)) ::J o:, r---> ~ 
(V P::;; n)o:, r---> ~ 

r---> ~' (P :S n 1\ Perm(P)) ::J o: 

r---> ~, (VP::;; n)o: 
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(5.16) 

where in the right introduction rule, P cannot appear free in the lower sequent. 
Similarly, 3PLA adds two rules for introducing bounded existential permutation 
quantification (although the restriction on P applies instead to the left introduction 
rule). Note that (P ::;; n) is an abbreviation of (r(P) ::;; n 1\ c(P) ::;; n) where r(P) 
and c( P) are the rows and columns of P respectively. 

By adding these rules, VPLA (and 3PLA) allows for induction over formulas 
(V P ::;; n )o: (and (3P ::;; n )o:), which LA was unable to express. Happily, it turns out 
that H; is an adequate extension to P K, as we now prove. 

Recall that Hi is H restricted to formulas with i alternations of 3 and V quantifiers, 
and that Ht is treelike H;. We will use IT1 to denote formulas of the form (VP)a 
where o: is quantifier free. (VP) is short for (VPnPlz)(VPnH3) ... (Pn-lnPnn), and 
P;i is a propositional variable. H; is therefore PK, where formulas are allowed to be 
in rrl) and all proofs must be treelike. 

Lemma 21 V P LA formulas under some object assignment cr translate into families 
of IT1 formulas. The size of these formulas is polynomial in icri. 

PROOF: When o: is a formula of LA, we have already shown how to construct the 
family of propositional formulas llo:lla, and shown that this family of formulas has 
size polynomial in o:. Let (V P ::;; n )o: be some formula of V PLA. We can assume that 
o: is quantifier-free (because if it did contain quantifiers we could uniquely rename the 
quantified matrices and push them to the front block of quantifiers). Translate this 
formula to the following propositional family: 

(5.17) 
#i i,j r-j.i,sfj 

or, for 3: 

(5.18) 
#i i,j r-j.i,sfj 
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where the initial block of transposition quantifiers is the 0 ( n 2) block of transposition 
quantifiers used to represent any permutation, llo:ll,. is the propositional formula 
corresponding to the LA formula a, under object assignment CJ, and where the rest of 
the formula asserts that, no matter which transpositions are taken, P remains a valid 
permutation matrix. This is important, because since we quantify over transpositions 
of variables (elements of P), we need some mechanism to ensure that we are left with 
a valid permutation of the identity matrix. 

To see that this formula accomplishes that, note that the first two conjunctions assert 
that P 'begins' as the identity matrix (that is, if no transpositions are taken, P =I). 
Note that any formula asserting that P has n 1's and n 2 - n D's for its entries will 
suffice, and that the only reason we prefer to equate P to the identity matrix (other 
than aesthetic reasons) is that all of the transpositions can be left 'off' and still 
produce a valid permutation matrix. 

Then, the last conjunction is satisfied if and only if at most one entry per row of 
P, and one entry per column of P is 1. Since there are exactly n entries of P which 
are 1, this means any permutation of the elements of P must have exactly one 1 per 
row and per column to satisfy the last conjunction. That is, only transpositions which 
leave P as a valid permutation matrix will satisfy this new formula. Since it plays an 
analogous role to the Perm( P) formula from V PLA, we will denote this propositional 
formula as IIPerm(P)IIa-· 0 

Next, we must show that V PLA proves a formula, then the family of translated 
formulas {I Ia II,.} has short proofs in H;. 

Lemma 22 If'iP LA f--a then {llodl,.} is a family of valid sequents with polynomial 
sized (in ICJI) H; proofs. 

PROOF: We have already seen how formulas of LA translate into tautologies with 
short PK proofs, and those arguments will hold here also. What remains is to show 
that the rules for quantifier introduction can also be dealt with. We show the cases 
for V- left and V- right; the 3 cases would be analogous. 

The base cases need no modification. Axioms of V PLA are substitution instances of 
LA axioms, and therefore are proven in H; in the same way that translations of LA 
axioms were proven in PK. 

Then, for rules of the form: 
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r __. (P:::; n 1\ Perm(P)) :::>a, .6. 
r __. (VP:::; n)jjaJJa, .6. 
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(5.19) 

we assume inductively that a proof of the translated top sequent (jjfjja, __. ll.6.lla, (liP :::; 
nlla 1\ IIPerm(P)IIa) :::> I lalla) exists, and that this proof is bounded by some polyno­
mial p(IO"I). Note that liP:::; nlla always evaluates to 1 or 0 immediately, depending 
on O", so we do not write it in the following proof for the sake of readability. Then, 
we construct a proof of the bottom sequent as follows: 

llflla, __. ll.6.lla, IIPerm(P)IIa :::>I lalla 
----------------\1- right 
llflla __. II.6.IJa, (Vab)(IIPerm(P)IIa :::> I lalla) 

Since the original proof was a valid \1 PLA proof, we know that P did not appear 
free in the bottom sequent, and that therefore the variables in P (a, b, etc.) do not 
appear in r or .6., so H's restriction on \/-right is satisfied and we are able to apply 
the rule. We repeat this step once for each transposition that we need to introduce 
( O(n2

) of them), to obtain the translated sequent: 

(5.20) 

where again (VP) is a shorthand for (\/PnP12)(\/PnP13) ... (VPn-lnPnn)· n is the 
number of variables being permuted, and also the dimension of P under O". Therefore, 
the number of quantifiers introduced at any one step is bounded by a polynomial in 
10"1 (recall that jO"I is the maximum value O" assigns to any variable). Therefore, if q 

is the polynomial that bounds the translation of \1 PLA formulas, then the degree of 
p (from the inductive hypothesis) must be at least two higher than the degree of q. 

It is at this point that the definition of H given in [9] proves to be inadequate. 
The unrestricted introduction rule would have required a second upper sequent, which 
would have been generated by applying the permutation rule to the original upper 
sequent. In a treelike proof, we would need to duplicate 1r1 to do this, causing a 
potentially exponential increase in proof size. 

The \/-left rule proceeds in the same way as above introducing O(n2 ) transposition 
quantifiers. 
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Now we can see the real value of the canonical representation of a permutation 
by transposition quantifiers (from 4.2). Although n transposition quantifiers are 
sufficient to represent a particular permutation, that formulation is able to express 
any permutation. This means that the same translation can be performed (with only 
a polynomial increase in proof size) regardless of the particular P involved. 

After this, we have an H; proof of the bottom sequent. In total, the H; proof is 
bounded in size by a polynomial, because each step in the V PLA proof takes at most 
polynomially many steps in the H; proof. D 

While interesting in its own right, demonstrating that H; can prove translations of 
V PLA does not seem to bring us closer to the desired result, namely that Hi can p­
simulate Extended PK. However, by introducing a third system, the Haj6s Calculus, 
we can show just that. 



Chapter 6 

The Haj6s Calculus 

The next stage in the simulation is to link V PLA to Extended Frege. We do this via 
another seemingly unrelated system, the Hajos Calculus. 

A graph is k-colourable if there exists a way to assign each of its nodes one of k differ­
ent colours such that no two adjacent nodes receive the same colour. For k :2: 3, this 
problem is NP complete (see, for example, [11]). The Haj6s Calculus is a procedure 
for constructing non-k-colourable undirected graphs and was first introduced in [7]. 
It has a single axiom, Kk+b the complete graph with k+ 1 vertices. We are interested 
in the case where k = 3. Here is the graph K 4 , and its associated adjacency matrix: 

l 
0 1 
1 0 

AK4 = 1 1 

1 1 

1 1 l 1 1 
0 1 
1 0 

From this axiom, the Haj6s Calculus uses three rules for constructing larger non-
3-colourable graphs. We will deal only with 'simple' graphs, that have no multiple 
edges, and no edges from a vertex back to itself. The three rules are: 

Addition: Given any graph, G, add any number of nodes and edges. 

Join: Given two graphs G and H, with edges (g1, g2) and (h1, h2), construct a new 
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graph J by taking the union G U H, but with those two edges removed, a new edge 
(g2 , h2 ) added, and the vertices g1 and h1 contracted into a single new vertex j1. For 
example: 

Contraction: Given a graph G, take any two non-adjacent vertices i and j. Remove 
j, and add edges (i, h) for every node h that was adjacent to j (though do not add 
duplicate edges). 

A derivation in the Haj6s Calculus is a sequence of graphs {G1, G2 , ... , Gn} in which 
each Gk is either an axiom (i.e. Gk = K4 ), or else follows from one or two previous 
graphs ( Gi where i < k) by one of the three rules given above. It is natural to ask 
what kinds of graphs can be generated with such a derivation. 

Lemma 23 The Haj6s Calculus is sound. That is, any graph that can be derived 
using the Haj6s Calculus is non-3-colourable. 

PROOF: K 4 is clearly non-3-colourablc. The Addition rule is sound, because any 
graph with a non-3-colourable subgraph is non-3-colourable. 
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For the Join rule, assume that G and H are non-3-colourable, but that a 3-
colouring f : V ____, {Red, Blue, Yellow} of J exists. Then we can produce a 3-
colouring f' of either G or H as follows. Firstly, if the colours of j 1 , 92 , and h2 are all 
different, then we let f' be the same as f, but with f'(91) = f'(hl) = f(jl)· In this 
case, f' 3-colours both G and H. Otherwise, we know that 92 and h2 are different 
colours, and that j 1 is the same colour as one of them. If f(j1) -/= !(92), then let 
f'(9I) = f(jl), and then f' 3-colours G. If f(j1) # j(h2), we let f'(hl) = f(9) and 
then f' 3-colours H. 

For the Contraction rule, assume that G is non-3-colourable, but let f be a 3-
colouring of the resulting graph. Since i and j 1 are non-adjacent in G, we can colour 
G with f' = f except f'(i) = f'(jl) = f(i). 

So, since the rules preserve non-3-colourability, and the axiom K4 is non-3-colourable, 
the Haj6s Calculus produces only non-3-colourable graphs. D 

The Haj6s Calculus is also complete, that is, a derivation exists for any non-3-
colourable graph. This is unnecessary for our purposes, so we do not prove it here. 
For more information see [7]. 

6.1 The Hajos Calculus and Extended PK 

Since graph 3-colourability is NP complete, there must exist graphs for which only 
exponential sized HC deriviations exist, unless NP = coNP. Therefore, it is expected 
that no polynomial bounds exist for the Haj6s Calculus. Pitassi and Urquhart showed 
further that the HC is polynomially bounded if and only if Extended Frege proof 
systems are polynomially bounded. This proof forms a key link in our proof that 
H; is p-equivalent to Extended PK, and so we outline it here. For more thorough 
treatment see [10]. 

The basic idea behind the simulation is that both 3-SAT and 3-COL are NP 
complete problems, and there exists some polytime reduction back and forth between 
them, that is, given a formula <I>, we obtain a graph Gif! such that Gif! is 3-colourable 
if and only if <I> is satisfiable (and vice versa). Since Extended Frege/PK constructs 
formulas, and the Haj6s Calculus builds graphs, we can look for a way to simulate one 
with the other. (Of course, a similar argument could be advanced to show that basic 
Frege/PK p-simulates the Haj6s Calculus, but it turns out that the additional power 
of the renaming rule is instrumental in providing a simple proof of equivalence). In 
their paper, Pitassi and Urquhart use a different kind of Frege system which is based 



6. The Haj6s Calculus 58 

on resolution. Resolution systems operate only on formulas in Conjunctive Normal 
Form, and are used to construct unsatisfiable sets of clauses. On the other hand, the 
systems presented in Chapter 2 were used only to construct valid formulas. However, 
Cook and Reckhow showed the equivalence of all Frege systems, which means that all 
these results apply to the systems presented in Chapter 2, although a direct simulation 
is not likely to be as elegant. 

Converting Graphs to Formulas 

Given a graph, we would like to construct a propositional formula that asserts that 
the graph is 3-colourable. Let G = (E, V) be a graph, and let ~' B; and Y; be 
propositional variables that assert that the node i is red, blue, and yellow respectively. 
Then the following formula asserts that each vertex gets exactly one colour: 

(\ (R; ::::> (B; 1\ Y;) 1\ (Bi ::::> (R.i 1\ Y;) 1\ (Yi ::::> (R; 1\ B;) 1\ (R;y B; v Yi) (6.1) 
iEV 

and this one asserts that no two neighbouring vertices get the same colour: 

(\ (R; v Rj) 1\ (B; v Bj) 1\ (Y; v }j) (6.2) 
i,j (i,j)EE 

and so then (6.1)/\ (6.2) is satisfiable iff the underlying graph is 3-colourable. 

Simulating HC with Extended Frege/PK 

Pitassi and Urquhart[lO] show that a basic Frege system can p-simulate the Join and 
Addition rules. This can be seen by noting first that the formula representation of 
K 4 has a constant number of symbols. Then, for each application of the Addition 
rule, for each added vertex we weaken in a copy of (6.1), and for each added edge we 
weaken in a copy of (6.2). The Join rule is handled in a similar fashion. 

It is believed that Basic Frege/PK systems can not easily simulate the Contrac­
tion rule, but by adding the renaming rule we are able to do so. This is because 
the contraction rule is a kind of renaming. If vertices i and j are the ones that are 
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contracted, we can simulate that with a constant number of applications of the re­
naming rule, where we rename Ri to R1, Bi to Bj, and so forth. Since Renaming PK 
is equivalent to Extended PK (see Theorem 8), we obtain the desired result. 

Converting Formulas to Graphs 

Since for now we are working with a resolution Frege system, we are free to assume 
that all the formulas we need to convert are in CNF. Then we construct a graph as 
follows. For each clause, add the following subgraph: 

F 

T 

lk----------¥' 

where each li is a literal. For each variable x, we make a pair of vertices x and x, 
and make an edge between them. It is these nodes that take the place of the li in the 
above subgraph. Then, if the graph is 3-colourable, at least one of the literals in each 
clause subgraph must have the same colour as the vertex T. Then, any assignment 
that assigns true to every literal with the same colour as T must satisfy the associated 
formula (because it assigns true to at least one literal per clause). 

Simulating Extended Frege/PK with the Hajos Calculus 

Pitassi and Urquhart[lO] show this result for a Renaming Frege system based on 
resolution of clauses. The basic idea is that the shortest possible Renaming Frege 
resolution refutation is the one that refutes p 1\ •p. The corresponding graph for 
this formula contains a K 4 subgraph over the vertices F, N, p and j5, and therefore 
can be efficiently constructed by the Hajos Calculus from an axiom and a constant 
number of applications of the Addition rule. Then, graphs corresponding to larger 
unsatisfiable CNF formulas can be simulated by simulating the individual rules of the 
Renaming system. 

We are now nearly finished with the proof of simulation. We have shown that valid 
\::1 PLA sequents translate into families of H; tautologies with only a polynomial 



6. The Haj6s Calculus 60 

increase in sequent size and proof length. Seperately, we have outlined a proof that 
the Haj6s Calculus is p-equivalent to Extended PK. To complete the chain, we need 
to show that Haj6s Calculus derivations can be represented in \:!FLA. 



Chapter 7 

The Hajos Calculus, \i PLA, and Hi 

In this chapter our aim is to show that Haj6s Calculus deriviations can be expressed 
succintly in V PLA. To do this, we give a way to represent individual graphs in V PLA 
formulas, and then show that chains of graphs can likewise be represented. 

:JPLA and V PLA are well suited to expressing graph theoretic properties. For 
example, a graph is k-colourable if and only if it can be permuted into a graph which 
has a k-co-clique ( k subsets of edges such that all the nodes in a given subset have 
no edges between them). We can express this with the following formula of :JPLA: 

( 

roil 
(3P:;; r(A))(3i, i2 , ... , i, :;; r(A)) PAP'~ l ; * 

(7.1) 

* 
A is the adjacency matrix of the graph in question, where On is the n x n matrix of 
all zeros, and where * can be anything. Therefore, A represents a k-colourable graph 
if and only if (7.1) is a true formula of :JPLA. 

The negation of this formula likewise expresses non-k-colourability. In particular, 
we are interested in the case where k = 3. Let Non-3-Col be the negation of (7.1) 
with k = 3: 
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0;1 * * 
* 0;2 * 
* * 0;3 

]) (7.2) 

7.1 'v' PLA proves the soundness of the Hajos cal­
culus 

Clearly, (7.2) is a formula of 'i/PLA. It is also interesting, because, combined with 
the ability to represent graphs as matrices, it gives us a way to assert (in 'i/PLA) that 
a derivation in the Hajos Calculus is correct. 

Lemma 24 'i/ P LA proves the soundness of the mles of the Haj6s Calculus. 

PROOF: We can show that 'i/ PLA can prove the soundness of the Haj6s Calculus 
(HC) by showing that it can prove the soundness of the HC rules, and that it can 
prove that the axioms of the HC are non-3-colourable graphs. Since the HC has only 
one axiom K 4 , this second part amounts to showing that 'i/PLA f- Non-3-Col(K4 ). 

We can do this by proving a sequent that asserts that none of the 16 valid per­
mutations of K4 is equal to a matrix of the correct form. K4 is: 

(7.3) 

and if K 4 were 3-colourable, one of its permutations would equal this matrix: 

(7.4) 

where * is 0 or 1. So we can prove the 16 sequents of the form: 

~ K~ =/= (7.4) (7.5) 
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where K~ denotes one of the permutations of K 4 . Then, separately prove the sequent: 

f\ K~ =J (7.4) ----+ Non-3-Col(K4) (7.6) 
i=l...l6 

and from here we cut 16 times to obtain the desired sequent. 

We must also show that V PLA can prove the soundness of HC's three rules. Once 
more, these are: 

1) Addition: Add vertices and/ or edges to a graph. 

2) Join: Take two graphs, G and H, with (g1 , g2 ) and (h1 , h2 ) be edges in G and H 
respectively. Construct J by removing those two edges, adding the edge (g2 , h2) and 
contracting the nodes g1 and h1 into a single vertex (ji)· 

3) Contraction: Take any two non-adjacent vertices i and j. Remove j, and add 
edges (i, h) for every node h which was adjacent to j where necessary (that is, do not 
add duplicate edges). 

To show that V PLA proves the soundness of the join rule, assume inductively that 
VPLA f- Non-3-Col(A). Then let A' be the graph obtained from A by adding extra 
vertices and/or edges (i.e. by applying the addition rule). An edge in A implies an 
edge in A', or, in VPLA: 

r(A)::; r(A') A V(i,j::; r(A))[e(i,j, A):::> e(i,j, A')] (7.7) 

So A' contains a partial copy of A (with at least all the edges of A, possibly more) in 
its upper-left corner. We can therefore derive the sequent: 

Non-3-Col(A) ----+ Non-3-Col(A') (7.8) 

in V PLA and cut to obtain the conclusion we want. 

Similarly, assume we have proofs of Non-3-Col(A) and Non-3-Col(B). Let (i 1 , i 2) 

and (j1, j 2 ) be edges in those graphs, respectively, and let C be the graph obtained 
by joining vertex i1 to vertex j 1 , and merging i 2 and j 2 . C can therefore be described 
as follows: 
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(7.9) 

where A[ilj] denotes A with the ith row and lh column removed. The last row and 
column of this matrix corresponds to the new vertex that was created by merging 
i2 and j 2 . D 1 and D 2 are column vectors. D 1 has a 1 in the kth row if and only if 
e(A, i2 , k) = 1, likewise D2 has a 1 in the kth row if and only if e(B,j2 , k) = 1. Q is 
the matrix of all zeros, except for a single 1 in the (i1,j1) position (because the edge 
added between those two vertices is the only new one between the two subgraphs). 

Then, because A and B appear on the diagonal of C, we can derive the sequent 
Non-3-Col(A) 1\ Non-3-Col(B)--+ Non-3-Col(C). 

The contraction case is similar, except here we have replaced two vertices from the 
same graph with one new one. If i and j are the contracted vertices, then this matrix 
represents the resulting graph A': 

A'= [ A[ili][jlj] D ] 
Dt 0 (7.10) 

where A[iiJ][kll] is A with rows i and k, and columns j and l removed. D is again a 
column vector with D[k] = 1 iff e(A, i, k) = 1 V e(A,j, k) = 1. Then in a similar way, 
we can derive Non-3-Col(A) --+ Non-3-Col(A'). D 

Encoding Hajos deriviations in V PLA 

We can then show that V PLA can prove the soundness of the Haj6s Calculus as a 
whole. A useful tool in doing so is the idea of encoding an entire HC deriviation in 
a single matrix. Let A1, A2, A3, ... , An be a HC derivation of some non-3-colourable 
graph An, where each Aj is either K 4, or else follows from one or two A;, i < j. 

Then, pad each of these matrices with rows and columns of all zeros, until all the 
A; are of the same dimensions. Next, embed them along the main diagonal of a new 
matrix, Y. We can then write: 
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A1 0 0 
0 A2 0 0 

Y= 0 0 A3 0 (7.11) 
0 
0 An 

and let HC(Y) be a formula stating that Y is indeed a valid HC derivation. Such a 
formula can be stated as follows: 

v 
v 

Join( A, A11 , A1J 
Contraction( A, Aj1 ))] 

(7.12) 

where Addition, Join, and Contraction are formulas expressing that Ai is formed 
from each of the rules of the Haj6s Calculus. 

For example, one way of formulating Addition(B, A) would be: 

(r(A) ::::; r(B) /\ c(A) ::::; r(B)) /\ 1\ 
i=l. .. r(A),i'fi2 
j=l. .. c(A),j'fh 

e(A, i, j) =:l e(B, i, j) 

Join(C, A, B) is (assuming the vertices are named as above): 

(r(C) = r(A) + r(B)- 1) /\ (c(C) = c(A) + c(B)- 1) /\ 

(7.13) 

l\i=L..r(A),i;ti2 e(C,i,j) = e(A,i,j) (\ (7.14) 
j=l. .. c(A),#i2 

1\ i=L .. r(B),i'f12 e( C, r(A) + i, c(A) + j) = e(B, i, j) 
j=l...c(B),j#}2 

Theorem 25 V P LA proves the soundness of the H aj6s Calculus. 
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PROOF: To prove that the Haj6s Calculus is sound, V PLA must prove that any 
graph produced by a Haj6s Calculus derivation is indeed non-3-colourable. In other 
words, if Y is (7.11) then VPLA can prove the sequent: 

HC(Y) -+ Non-3-Col(An) (7.15) 

We can prove this by induction on k, the number of intermediate matrices en­
coded in Y. If k = 1, (Y = [A1]), then A 1 must encode K 4 , so the base case 
is simple. The inductive step follows from the previous lemma, because if Y = 
[A1A2 ... Ai ... A1 ... An], and we assume that a proof exists for (Vk' < n)HC(Y) -+ 
Non-3-Col(Ak') then the lemma gives us either Non-3-Col(A)ANon-3-Col(A1) -+ 
Non-3-Col(An) or Non-3-Col(Ai) -+ Non-3-Col(An) for some i, j < n depending 
on which rule was used to derive An- D 

Since Haj6s derivations can be shown to be correct in V PLA, we can, by the 
results of Chapter 5, translate (7.11) into a family of H; tautologies with only a 
polynomial increase in size. This completes our proof that Extended PK can be p­
simulated by H;, and together with Theorem 18 allows us to state the main result of 
this thesis: 

Theorem 26 Extended PK and H; are p-equivalent 

PROOF: Theorem 18 shows that Extended PK p-simulates H;. For the other direc­
tion, suppose there is a sequent S with an associated Extended PK proof 7re of S. 
There is a polytime function f such that j(7re) is an H; proof of S. 

This is a several stage process, following from chapters 5, 6, and 7. Firstly, let •S 
be the negation of the formula equivalent to S (namely •(/\ r =::> V .6..)), and construct 
the corresponding graph G~s as given in chapter 6. This graph is non-3-colourable 
if and only if •S is unsatisfiable. Pitassi and Urquhart [10] show that there is a 
polytime function that makes this conversion. 

Then, as shown above, if Y~s encodes a Haj6s Calculus deriviation of G~s then 
there are VPLA proofs of-+ HC(Y~s) and HC(Y~s) -+ Non-3-Col(G~s). From 
these, we obtain a VPLA proof of-+ Non-3-Col(G~s). 

In chapter 5, building on an idea from [13], we have shown that V PLA translates 
into short H; proofs. What this means is that there is a polytime function that 
takes a V PLA sequent and an object assignment a and produces an H; proof of the 
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translated sequent which is polysized in iai. There must therefore be short H; proofs 
of: 

---+ IINon-3-Col(G~s)llo-

This does not give us precisely what we need, because we are looking for an H; 
proof of S. However, Pitassi and Urquhart also give a procedure for transforming 
non-3-colourable graphs into formulas. H; could efficiently prove this procedure is 
correct, and therefore prove the sequent 

IINon-3-Col(G~s)llo----+ S 

from which we cut to obtain the H; proof of S that we want. This multistep 
procedure constitutes the polytime formula that we need to convert Extended PK 
proofs into H; proofs, and completes the main result of this thesis. 0 



Chapter 8 

Conclusion 

Therefore, we arrive at the interesting conclusion that Extended PK (and hence 
Extended Frege) is p-equivalent to H;. We showed one direction, that Extended PK 
can p-simulate H;, directly. The other direction was shown indirectly, by showing 
that H; can efficiently prove translations of true formulas from V PLA, and then 
repeating results from Pitassi[lO] and from Soltys[13] to show that this implies that 
H; can in fact p-simulate Extended Frege. The ramifications of this are powerful. A 
single block of transposition quantifiers possesses the same power as a single block of 
classical quantifiers, and the same power as being able to substitute a formula for a 
variable in a propositional proof. Futhermore, Hi is able to capture all of polynomial 
time reasoning, and is another propositional proof system that corresponds toP /poly 
(decision problems solvable with non-uniform polysize circuits). 

During the course of the proof, several interesting points occurred which lead naturally 
to further work in this field. Firstly, does a direct simulation of Extended PK by H; 
exist? This situation is analgous to the proof of equivalence of Extended PK and 
Substitution PK mentioned in Chapter 2. It was only after Dowd[5] gave an indirect 
proof of the equivalence that Krajicek[8] was able to give a direct proof. Krajicek's 
proof is modelled on Dowd's, and is nearly indecipherable without knowledge of the 
indirect simulation. A direct simulation based on our results may be possible. 

Secondly, H and G appear to be very similar systems. In Chapter 3 we gave a 
proof (from [8]) that Gi and Extended PK are p-equivalent. Similarly, we showed that 
Hi is p-equivalent to Extended PK provided the definition of H given in Chapter 4 is 
used. Treelikeness appears to be unpreservable if H is defined as in [9]. It would be 
interesting to see if the other, unrestricted definition of H could p-simulate Extended 
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PK and maintain treelikeness. 

Thirdly, the link between H and G is open to further exploration. We have shown 
that H; and Gi are p-equivalent. The natural extension to this is to ask whether Hi 
and Gi are equivalent for all i. If so, we would know that H and G were equivalent 
propositional proof systems. 

Overall, H is a small but significant contribution to propositional proof complex­
ity. In addition to being p-equivalent to Extended PK (and so to Substitution PK, 
Renaming PK, and TF PK), it provides a natural propositional representation of the 
first-order logical theory V PLA, and is therefore a good system to use for low-level 
reasoning about graphs or algebraic structures. 



Chapter 9 

Appendix 

First we show that formulas of the form B, a(1) ~ a( B) have short PK proofs. 
Sequents of the form B, a( B) ~ a(1) can be shown to have short proofs in almost 
exactly the same fashion. Some interesting special cases are when B is a single 
variable, or when B is a list of formulas. The former case is simply the base case shown 
below. The induction required to prove the latter case is slightly more complicated, 
but not much so. 

Lemma 27 For formulas B and a there are O(IB!Inl 2
) sized proofs in TF PK of 

B, a(1) ~a( B) and •B, a(O) ~a( B) 

PROOF: The proof is by induction on the number of logical connectives (V, 1\, and•) in 
a. We show the case forB, a(1) ~a( B); the •B, a(O) ~a( B) proceeds analogously. 

Base Case: a has no logical connectives (i.e. a(x) sy;;._t. x, for some x). Then: 

x~x 

1 ~ 1 

B,1 ~ 1 

which has size !B! + 7, which is O(IBII12 !) = O(IBI!a2 1). 

Induction Hypothesis: Let a be any formula with k or fewer connectives and 
assume that B, a(1) ~ a( B) has a TF PK proof of size at most C · IBI!a2 !. The 
actual value of C will become apparent later. 
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Induction Step: Let o: be a formula with k + 1 logical connectives. There are three 
cases, one for each possible outermost connective of o:. 

Case 1) V. Then o: is of the form r V J where there are a total of k logical connectives 
in r and J. Therefore, by the induction hypothesis, they have proofs 1f-y and 1ft> of 
length at most C ·1BIIrl2 and C ·IBIIJI2 respectively. From this: 

: 7ft) 

B, J(1) --7 J(B) 
: 1f-y weak. 

B, r(1) --7 r(B) B, J(1) --7 J(B), r(B) 
-------weak. exch. 
B, r(1) --7 r(B), J(B) B, 8(1) --7 r(B), J(B) _________________ V -left 

B, 1 (1) V J(1) --7 r(B), J(B) . 
----------V- rzght 
B, 1 (1) V J(1) --7 r(B) V J(B) 

Which, for C sufficiently high, has size at most: 

l1r-rl + l1r<>l + 7IBI + 6lriiBI + 6IJIIBI + 4lrl + 5IJI + 3 

< c ·1BIIrl2 + c ·IBIIJI2 + 7IBI(1 + lrl + IJI) + 5(1 + lrl + IJI) 
c ·1BIIrl2 + c ·IBIIJI2 + (7IBI + 5)((1 + lrl + IJI) 

< C ·1BIIo:2 1 

Case 2) /\. Then o: is of the form r 1\ J, and we proceed as above: 

: 1f "Y 

B, r(1) --7 r(B) . 1f 

-------weak. · "Y 

J(1), B, r(l) --7 r(B) B, J(1) --7 J(B) 
------- exch. weak. 
B, 8(1), r(l) --7 r(B) r(1), B, J(1) --7 J(B) 
------- exch. exch. 
B, r(1), J(l) --7 r(B) B, r(1), J(l) --7 J(B) . 
----------------1\- rzght 

B, r(l), J(1) --7 r(B) 1\ J(B) 
----------1\- left 
B, r(1) 1\ 8(1) --7 r(B) 1\ J(B) 

Which has size at most: 
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17TI'I + 17T.sl + 9IBI + 6IBII!I + 5IBII81 + 81fl + 8181 + 3 

< c ·1BIIrl2 + c · IBII812 + 9IBI(1 + lrl + 181) + 8(1 + lrl + 181) 
< c. IBI(1 + lrl + 181) 2 

C·IB11al2 
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Case 3. '· If the outermost connective is •, then either i) a is of the form ''/, or 
ii) a is of the form •(r o 8) where o is either 1\ or V. 

i) If a is ''/, then 1 has only k- 1 logical connectives, and, as above, there is proof 
of it with size at most C · 1BIIrl2

. We then obtain: 

This has size at most: 

: 1T I' 
B, 1(1) ---* r(B) 

------ -, - right 
B---* •r(1), r(B) 
-------,-left 
B, ••r(1) ---* r(B) 
-------•- left 
B, ••r(1), •r(B) ---* 
--------,-right 
B, ••r(1) ---* ••r(B) 

17T~'I + 5IBI + 5lriiBI + 5lrl + 10 
< c ·1BIIrl 2 + 5IBI(1 +Ill)+ 10(2 +Ill) 
< c ·1BIIrl 2 + (5IBI + 10)(2 + lrl) 
< c ·IBI(2 + lrl)2 

C·IBIIal 2 

ii) Let o be V (the case where o is 1\ proceeds similarly). Then a is •(r V 8). Since a 

has k + 1 logical connectives, r and 8 each have fewer than k. Therefore, 'r and -,8 
have k or fewer connectives and by the induction hypothesis, we have 0/1 PK proofs 
of B, •r(1) ---* •r(B) and B, •8(1) ---* •8(B). We denote them by ?T~I' and ?T~.s, and 
observe that they have size at most C ·IBI(Irl + 1? and C ·IBI(I81 + 1)2 respectively. 
Then: 
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: 1f ~/' 
1'(1) --? 1'(1) . 
-----•- rzght 

B, •f'( 1) --? •f'( B) --? '/' ( 1)' ')' ( 1) 
-------,-left 
••')'(1) --? 1'(1) B--? ••f'(1), •f'(B) 

-------weak. ------weak. 
B--? ••f'(1), •f'(B), /' B, ••1'(1) --? 1'(1) 

--------weak. 
B--? ••f'(1), f', •f'(B) B, ••f'( 1) --? 1'(1), •/'( B) 

and separately derive: 

B--? 1'(1), •f'(B) 
------ exch. 
B--? •f'(B), 1'(1) 
--------,-left 
B, ••f'(B) --? 1'(1) 

--------weak. 
f'(B), B, ••f'(B) --? 1'(1) 
-------- exch 
B, I'( B), ••f'(B) --? 1'(1) 

'"Y(B) --? '"Y(B) . 
----- --,-left 
'"Y(B), •f'(B)--? 
----- --, - right 
I'( B) --? ••f'( B) 

B, I'( B) --? ••f'(B) 
--------weak. 
B, I'( B) --? ••f'(B), 1'(1) 

and then cut to obtain the desired sequent: 

cut 

B, I'( B), ••f'(B) --? f'(1)B, I'( B) --? ••f'(B), 1'(1) 
----------------cut 

B, I'( B)--? 1'(1) 

This has size at most: 

11f~l'l + 14IBI + 2111'1 + 231f'IIBI + 34 

Likewise, from B, •6(1) -> --,J(B) we have a proof of B, 6(B) --? 6(1) of size: 

From here, we can obtain a proof of a as follows: 
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: ''/' - dim. : ---,---,15 - elim. 
B, r(B) ---7 1(1) B, 6(B) ---7 15(1) 

-------weak. - exch. 
B, r(B) ---7 1(1), 15(1) B, 6(B) ---7 1(1), 15(1) 
---------------- V -left 

With size at most: 

B, r(B) V 15(B) ---7 1(1), 15(1) . 
---------V- rzght 
B, r(B) V 15(B) ---7 1(1) V 15(1) . 

-------------,- rzght 
B ---7 ---,('y(B) V 15(B)), 1(1) V 15(1) 
---------- exch. 
B ---7 1(1) V 15(1), ---,(1(B) V 15(B)) 

---------------,-left 
B, ---,('y(1) V 15(1)) ---7 ---,('y(B) V 15(B)) 

l1r~-yl + 14IBI + 21111 + 23lriiBI + 34 

+ l1r~"l + 14IBI + 211151 + 23I15IIBI + 34 
+ 10IBI + 7lriiBI + 7I15IIBI + 8lrl + 81151 + 13 
= l1r~-yl + l1r~"l + 38IBI + 30iriiBI + 30I15IIBI + 29lrl + 291151 + 81 
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< c · IBI(Irl + 1)2 + c · IBI(I151 + 1)2 + 38IBI(Irl + 1151 + 2) + 29(111 + 1151 + 2) 
c. IBI(Irl + 1)2 +c. IBI(I151 + 1? + (38IBI + 29)(1rl + 1151 + 2) 

< c · IBI(Irl2 + lrl + 1 + 1151 2 + 1151 + 1 + lrl + 1151 + 2) 
c. IBI(Irl2 + 1151 2 + 2lrl + 21151 + 4) 

< c. IBI(Irl + 1151 + 2) 2 

C·IBIIal 2 

Therefore, there are TF PK proofs of B, a(1) ---7 a( B) and ---,B, a(O) ---7 a( B) of size 
O(IBIIal 2

), where we choose C to be some reasonably high constant (say, 100). 0 

Lemma 28 If S = r ---7 ~ ·is some val-id sequent, and both r and ~ are variable­
free (that is, r and~ contain only 1, 0, V, /\, and---,), then S has a PK proof of size 
O(ISI2

). 

PROOF: From the basic semantics of a sequent, we see that if r ---7 ~is a variable-free 
tautology, then either r is false, or ~ is a tautology, or both. This means that some 
formula in r is false, and/ or some formula in ~ is true. Call this the critical formula. 
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We show how to construct a short proof of the critical formula (call it \ll), and then 
we can use repeated weakenings to introduce the rest of r and .6.. 

We proceed by induction on the number of logical connectives (A, V, and •) in a. 
If a has no connectives, then it must be either a 0 on the left, or a 1 on the right. 
Then we proceed from the appropriate PK axiom: 

o~ or ~1 

and weaken to introduce the other formulas in r and .6.. This takes one step per 
formula in the sequent, and thus the proof is linearly bounded. 

Assume that whenever the critical formula has k or fewer connectives, then, de­
pending on whether a is true or false, an PK proof of either a ~ or ~ a exists, and 
that the proof has size I a 1

2
. 

Next, let a be a variable-free formula with exactly k + 1 connectives. For clarity, 
suppose that a appears on the right (and hence is true). The other case is basically 
identical. Then we must give a short proof of~ a. There are three cases, depending 
on the outermost connective of a. 

If ~ a is ~ \lJ V <I> then either \lJ or <I> is true. Assume that \lJ is true. Since ~ \lJ has 
at most k connectives, we have a proof 1fw with size at most l\l12 l. Then: 

Which has size at most: 

lwl2 + 21w1 + 2I<I>I + 1 

< lwl2 + I<I>I2 + 2I<I>IIwl + 21w1 + 2I<I>I + 1 

(lwl + I<I>I + 1)2 

la12 
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If a is \[! 1\ <I> then both \[! and <I> must be true and have at most k connectives each. 
Then proofs 1fw and 1fq, exist of-+ \[! and -+ <I>. These proofs have size at most IW2

1 

and I<I> 2 1. Then: 

which has size at most: 

: 1fw : 1fq, 

-+W -+<I> 
----1\ - right 

-+ \[! 1\ <I> 

IWI
2 

+ I<I>I
2 

+ IWI + I<I>I + 1 

< (lwl +I <I> I+ )
2 

ia12 

Lastly, if a is -,<]) then <I> must be false. Since it has k connectives, there is a proof 
1r <I> of <I> -+ with size at most I <I> 2 1. Then: 

: 1fq, 

<I>-+ 
--•-right 
-+ -,<]) 

Which has size at most I<I>I 2 + I<I>I + 1 < (I<I>I + 1)2 = ial 2
. 

9.1 LA Axioms 

D 

Here we enumerate the axioms of LA. Recall that LA has three types, which we will 
represent by the following letters: indices { i, j, k, ... }, field elements {a, b, c, ... }, and 
matrices {A, B, C, .. . }. 
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Firstly, the five axioms for equality: 

El --7 X= X 

E2 :r = y --7 y = x 
E3 (X = y (\ y = z) --7 X = z 
E4 X1 = Yl 1 • • ·, Xn = Yn --7 Jx1 · · · Xn = fY1 · · · Yn 

E5 i1 = i2, j1 = J2, i1 ~ i2 --7 )I = J2 

Then the 12 axioms for indices: 

I6 --7 i + 1 # 0 
I7 --7 i * (j + 1) = (i * j) + i 
18 i + 1 = j + 1 --7 i = j 
19 --7 i ~ i + j 
110 --7 i + 0 = i 
Ill -7i~j,j~i 

112 --7 i + (j + 1) = ( i + j) + 1 
113 i ~ j, j ~ i --7 i = j 
114 --7 i * 0 = 0 
115 i ~ j, i + k = j --7 j - i = k 

115a i -j;_--7 j - i = 0 
116 j i= 0--7 rem(i,j) < j 
116a j # 0 --7 i = div( i, j) + rem( i, j) 
117 a --7 cond(a,i,j) = i 
117a -,a --7 cond(a, i, j) = j 

The 10 axioms for field elements: 
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F18 --+0~ 1Aa+O=a 
F19 --+a+ (-a)= 0 
F20 -+1*a=a 
F21 a~ 0--+ a* (a-1

) = 1 
F22 -+a+b=b+a 
F23 -+a*b=b*a 
F24 --+a+ (b +c) = (a+ b)+ c 
F25 --+a* (b *c) = (a* b)* c 
F26 --+a* (b +c) =a* b +a* c 
F27 o:--+ cond(o:, a, b)= a 
F27a •o:--+ cond(o:, a, b) = b 

Finally, the 7 axioms for matrices: 

M28 
M29 
M29a 
M29b 
M30 
M31 
M32 
M33 
M34 

(i = 0 V r(A) < i V j = 0 V c(A) < j)--+ e(A, i,j) = 0 
---t r(>.ij (m, n, t)) = m 
--+ c(>.ij (m, n, t)) = n 
1 :::; i, i :::; m, 1 :::; j, j :::; n --+ e( >.ij (m, n, t) , i, j) = t 
r(A) = 1, c(A) = 1--+ ~(A) = e(A, 1, 1) 
r(A) = 1, 1 < c(A) --+ ~(A) = ~(>.ij (1, c(A) - 1, A)ij)) + A1c(A) 
c(A) = 1 --+ ~(A) = 2:(At) 
1 < r(A), 1 < c(A)--+ ~(A)= e(A, 1, 1) + ~(R(A)) + ~(S'(A)) + ~(M(A)) 
r(A) = 0 v c(A) = 0--+ 2:(A) = 0 
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