
PERMUTATION QUANTIFIERS IN PROPOSITIONAL LOGIC

A PROPOSITIONAL PROOF SYSTEM

WITH PERMUTATION QUANTIFIERS

By

TIM PATERSON, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree of

Master of Science

Department of Computing and Software

McMaster University

© Copyright by Tim Paterson, February 2006

MASTER OF SCIENCE(2005)
(Computing and Software)

McMaster University
Hamilton, Ontario

ii

TITLE: A Propositional Proof System with Permutation Quantifiers

AUTHOR: Tim Paterson, B.Sc.(University of Toronto)

SUPERVISOR: Professor Michael Soltys

NUMBER OF PAGES: v, 80

Abstract

Propositional proof complexity is a field of theoretical computer science which con­

cerns itself with the lengths of formal proofs in various propositional proof systems.

Frege systems are an important class of propositional proof systems. Extended Frege

augments them by allowing the introduction of new variables to abbreviate formulas.

Perhaps the largest open question in propositional proof complexity is whether or not

Extended Frege is significantly more powerful that Frege. Several proof systems, each

introducing new rules or syntax to Frege, have been developed in an attempt to shed

some light on this problem.

We introduce one such system, which we call H, which allows for the quantification

of transpositions of propositional variables. We show that H is sound and complete,

and that H's transposition quantifiers efficiently represent any permutation.

The most important contribution is showing that a fragment of this proof system,

H;, is equivalent in power to Extended Frege. This is a complicated and rather

technical result, and is achieved by showing that H; can efficiently prove translations

of the first-order logical theory V PLA, a logical theory well suited for reasoning about

linear algebra and properties of graphs.

Contents

1 Introduction

1.1 Overview .

1.2 Preliminaries

2 PK

2.1 PK Extensions

2.2 p-Equivalence of PK Extensions

3 G: PK with variable quantification

3.1 G~ and Extended PK are p-equivalent

4 H: PK with permutation quantification

4.1 Extended PK p-simulates Hi

5 LA and its translations

5.1 Translations of LA theorems into propositional formulas

5.2 V PLA and its translations

6 The Haj6s Calculus

6.1 The Hajos Calculus and Extended PK

IV

1

3

4

7

11

13

20

24

32

38

42

43

50

55

57

CONTENTS

7 The Haj6s Calculus, VPLA, and H;
7.1 \;/ PLA proves the soundness of the Haj6s calculus

8 Conclusion

9 Appendix

9.1 LA Axioms

v

61

62

68

70

76

Chapter 1

Introduction

A great deal of effort in modern mathematics and computer science is dedicated to
the concept of a proof. In [6], Buss differentiates between the idea of a social proof
and a formal proof. A social proof, he says, is one that incorporates only the amount
of mathematical rigour needed to convince the professional audience of its validity.
Social proofs vary greatly in appearance depending on the subject, level of complexity,
and the age in which they are published. Social proofs are therefore quite difficult
to characterize. On the other hand, a formal proof is a rigourous mathematical
object that can be described, analyzed, manipulated, and reasoned about in its own
right. A formal proof is a series of symbols (i.e. a finite string) that, when read in
the correct way, demonstrates a given property, typically of a formula or expression.
In the following work, we consider proof systems for first order expressions about
Linear Algebra, non-k-colourable graphs, and most importantly, proof systems for
propositional statements. The study of proofs, and more specifically the minimum
sizes of proofs in various proof systems is called Proof Complexity.

Perhaps the largest open question in Propositional Proof Complexity is the sepa­
ration between Frege systems and Extended Frege systems. No family of tautologies
has ever been exhibited which requires exponential sized Frege proofs, but which has
polynomial sized Extended Frege proofs. In fact, no one has ever shown a set of
tautologies which requires superpolynornial sized Frege proofs at all, so it seems we
are a long way from proving this separation.

Separations of propositional proof systems have their parallel in Complexity The­
ory as well. For example, the existence of a proof system which could efficiently
prove all tautologies is equivalent to NP equalling co-NP, and therefore showing the

1

1. Introduction 2

non-existence of such a proof system would imply that P # N P [3].

One avenue of research that has been explored in order to show the separation of
Frege and Extended Frege is the introduction of various extensions to basic propo­
sitional proof systems, such as allowing for substitution of formulas for variables,
allowing for quantification of variables, or allowing for permutation of variables. In
Chapter 2 we introduce several such extensions and show that they are all equivalent
to Extended Frege. Since Extended Frege corresponds to the complexity class P, that
means that anything that can be reasoned about in polynomial time can be proved
by Extended Frege. Proving these equivalences therefore tells us that those ideas
(quantification, substitution etc.) capture all of polynomial time reasoning.

It is towards this goal that the major contributions of this thesis can be found.
We introduce and define a new extension to Extended Frege, in which we allow for
quantifiers that assert the existence (or universality) of permutations of variables,
rather than their values. We go on to show that a fragment of this new system
is equivalent to Extended Frege, giving the perhaps surprising result that a block
of either existential or universal permutation quantifiers is equivalent in expressive
power to introducing new variables, renaming variables, substituting formulas, or to
a single block of classical quantifiers.

A classical universal quantifier is (semantically) an abbreviation for:

'v'xa(x) := a(O) A a(l) (1.1)

whereas a universal permutation quantifier can be thought of as abbreviating:

('v'ab)a(a, b):= a(a, b) A a(b, a) (1.2)

There are analogous existential quantifiers as well:

:Jxa(x) := a(O) V a(l) and (:Jab)a(a, b) :=a(a, b) V a(b, a) (1.3)

Where if a(a, b) is some formula, then a(b, a) is a with b replacing a and a replacing
b throughout.

We present this system, which we call H to highlight its similarity to the system G
(with classical quantification) presented in [8]. We give the axioms and rules of H,
and show that they form a sound and complete proof system. The results in this

1. Introduction 3

thesis have been submitted to the Journal of Discrete Mathematics for publication
[9].

1.1 Overview

In the next section we introduce some basic concepts and definitions which, while not
necessarily directly related to the rest of the material are nevertheless important for
breadth and understanding.

Then, in Chapter 2 we introduce PK, a propositional proof that is equivalent to
Frege, and syntactically more convenient for our purposes. Also, we identify some
well known extensions to PK, and show that they are equivalent to one another.

In Chapter 3 we describe G, another PK extension which is of particular relevance.
G allows for the introduction of existential and universal quantifiers of Boolean vari­
ables. We show that G is equivalent to the extensions mentioned in Chapter 2, and
we extend the classical proof of completeness to include quantification.

Chapter 4 introduces a new propositional proof system H. A prototype of this
system was introduced first by the author and Michael Soltys in [9], building on an
idea from [13]. We show that H is sound, and complete for both quantified and
unquantified formulas. We show that Extended PK can simulate Hi, a restricted
subsystem of H. This is one direction of our main result.

The remaining chapters contain the other direction of the main result and neces­
sary background material. We show that Hi can simulate Extended Frege by showing
that it can efficiently prove translations of\;/ PLA. Then, we repeat results from Soltys
[14] showing that \;/ PLA can prove the soundness of the Haj6s Calculus, and from
Pitassi and Urquhart [10] to show that the Haj6s Calculus is equivalent to Extended
PK. This is a difficult, technical result, and leaves open the tantalizing question of a
direct simulation.

1. Introduction 4

1. 2 Preliminaries

Propositional Formulas

Propositional formulas are defined inductively. The base case is a propositional vari­
able, which can either be assigned true (1) or false (0). Then, if A and Bare propo­
sitional formulas, so are A 1\ B, A VB, and •A. A 1\ B is true if and only if both A
and B are true, A V B is true if and only if at least one of A or B is true, and •A is
true iff A is false. A truth assignment assigns a value to each propositional variable.
Each truth assignment satisfies a formula iff the formula evaluates to true under the
assignment.

Propositional formulas can either be valid, satisfiable, or unsatisfiable depending
on whether they evaluate to true under all, some, or no truth assignments respec­
tively. Typically we are interested in showing that a formula is valid. It is natural
to think about what constitutes a formal proof of a formula's validity. Beame and
Pitassi [1] point out that a propositional formula by itself could be considered a proof
of its own validity. This 'proof' could be checked by checking each of its truth as­
signments. While possible, this is infeasible because each formula has exponentially
many truth assignments. Instead we turn to the notion of a propositional proof sys­
tem, as formalized in [3]. The basic idea is that a propositional proof system is a
polynomial-time computable predicate P such that for each formula F

FE TAUT{:} ~p.P(F,p) (1.4)

namely that there is some string p that allows us to quickly verify the validity of F.

A formula F is a logical consequence of a set of formulas S if every truth assignment
that satisfies S also satisfies F. We write this S I= F. Note that any formula is a
logical consequence of an unsatisfiable set of formulas.

Frege Systems

A rule of inference is a pair (S, B) where S is a set of formulas and B is a formula.
The rule is sound if S I= B. S may be empty, in which case the rule is called an
axiom or axiom scheme. We use the term axiom scheme to highlight the fact that
any substitution instance of an axiom is valid, so that a single axiom scheme in fact
corresponds to an infinite family of axioms.

1. Introduction 5

A deduction system is a set of logical connectives and a finite set of inference rules.
A derivation in a deduction system is a finite sequence of rule applications. If B is
the result of the final rule application, then the derivation can be said to be a proof
of B.

If B is any formula proved by a deduction system, then B must be a tautology.
This can be shown by induction on proof length and the fact that f= is transitive. So
every deduction system is sound. A deduction system is complete if every tautology
has a proof in that system. Furthermore, a deduction system is implicationally com­
plete if, by adding any set of non-logical axioms <I>, there exists a valid proof of every
formula C that is a logical consequence of <I>. An implicationally complete deduction
system can prove any formula from an unsatisfiable set of non-logical axioms.

Frege systems were defined in [3] as implicationally complete deduction systems
over a complete set of connectives. An Extended Frege system is a Frege system in
which it is also permitted to introduce extension definitions. An extension definition
is formed by taking a variable that is previously unused, and declaring it to be an
abbreviation of a formula. Frege systems are all equivalent, in the sense that all Frege
systems have short proofs of a set of tautologies if and only if the set has short proofs
in one Frege system. Extended Frege systems are equivalent to one another in the
same sense.

We will make use of these facts in order to simplify things later on. It may be
that a specific formulation of a Frege system is more convenient for a given task, and
we will switch between them as necessary.

Simulation and Equivalence

If A and B are two propositional proof systems, we say that B p-simulates A if there
is a polytime function f such that if 1f A is a valid A-proof, 1f A, then f (1f A) is a valid
B.-proof of the same formula. If A and B p-simulate one another, they are said to be
p-equivalent.

If we can show that for every A-proof, there is a B-proof of the same formula, but
we cannot give a polynomial time function from one to the other, we say that that B
weakly p-simulates A. Unless stated otherwise, all the simulations given in this thesis
are strong p-simulations.

1. Introduction 6

Complexity Classes

There are hundreds of complexity classest, the most well known of which are probably
P, problems which are solvable in polynomial time, and NP, problems which are
verifiable in polynomial time. For our purposes, the two most important complexity
class~s are P /poly, and NC1

. P /poly is the class of decision problems solvable with
polysize circuits. NC 1 is the class of decision problems solvable by polysize, bounded
fan-in, Boolean circuits with depth O(log(n)).

Frege systems, such as PK, correspond to NC1
, while Extended Frege systems,

correspond to P /poly. It is strongly conjectured that these two complexity classes
are not equal, but, as previously noted, it is also believed that it is a difficult task to
show a separation of Frege and Extended Frege. Such a separation would be a huge
achievement in propositional proof complexity.

Permutations and Symmetric Groups

Permutations are a fundamental concept in this thesis, and are also an integral com­
ponent in many areas of modern algebra. For instance, in group theory, the symmetric
group Sn is the group consisting of all permutations of the first n natural numbers.
Symmetric groups are very important. For example, all finite groups are isomorphic
to some subgroup of one of these symmetric groups, so all of finite group theory can
be described in terms of permutations.

It is natural to therefore seek some connection between algebra and reasoning
using permutations. We make important use of this idea by using the system LA as
a key stepping stone in our proof that H; is p-equivalent to Extended Frege. LA is a
logical theory introduced in [12] for reasoning about Linear Algebra. We summarize
it briefly in Chapter 5, and show that it translates into families of propositional
tautologies.

tFor an extensive list, see http: I /qwiki. cal tech. edu/wiki/Complexi ty _Zoo

Chapter 2

PK

In 1936 Gerhard Gentzen introduced the propositional sequent calculus, PK. PK is
known to be equivalent to any Frege system, so any results shown for one will hold
for the other. We prefer PK primarily because LA also operates over sequents, which
will simplify our task in Chapter 5.

Rather than working over formulas PK operates over sequents. A sequent IS

written as:

(2.1)

where r and ~ are sequences of propositional formulas called cedents. We refer to r
and ~ respectively as the antecedent and the succedent.

A truth assignment T satisfies a sequent if and only if it satisfies a formula in ~
or falsifies one in r. In this way, a sequent can be seen to represent the conjunction
of all the formulas in r logically implying the disjunction of all the formulas in ~.
This means we can define a propositional formula A which is equivalent to a given
sequent:

(2.2)

Clearly, any truth assignment that satisfies A must satisfy the associated sequent,
and vice versa.

Being able to express a sequent as a propositional formula allows us to apply vari-

7

2. PK 8

ous ideas from propositional logic to sequents. A sequent, 5 1 , is a logical consequence
of another, 5 2 , if every T that satisfies 8 2 also satisfies ,'h. S is valid if for all T,

T f= 5, and 5 is unsatisfiable if for all T, T ~ 5.

In particular, we can use this equivalence to define sequents with empty an­
tecedents, because -----* A is equivalent to r -----* ~-

PK Proofs

The logical axioms of PK are -----* T, F -----*, or any substitution instance of A -----* A. A
PK proof of a sequent 5 is a finite sequence of sequents:

(2.3)

such that 5n = 5, and each 5i is either an axiom or follows from previous sequents
by one of PK's thirteen rules of inference. There are six rules for introducing and
reorganizing formulas:

Weakening

r---*~ r---*~

r, A-----*~ r-----* A,~
(2.4)

Exchange

r1, A, B, r2-----* ~ r-----* ~1, A, B, ~2
r1, B, A, r2-----* ~ r-----* ~1, B, A, ~2

(2.5)

Contraction

r1, A, A, r2-----* ~ r-----* ~1, A, A, ~2

r1, A, r2-----* ~ r-----* ~1, A, ~2
(2.6)

There are six rules for introducing logical connectives:

V-introduction

2. PK

r1,A,r2 ~ ~ rbB,r2 ~ ~
f1,AVB,r2~~

r ~ ~bA,B,~2
r ~ ~1,A V B,~2

/\-introduction

r1,A,B,r2 ~ ~
ri,AAB,r2~~

•-introduction

r ~ ~1,A,~2 r ~ ~I,B,~2
r ~ ~1, A 1\ B, ~2

r,A~~

r ~-.A,~
r~A,~

r,-.A ~ ~

and finally, a rule for removing formulas, the Cut rule:

9

(2.7)

(2.8)

(2.9)

(2.10)

The size of a PK proof is the sum of the sizes of the sequents in the proof. The size of
a sequent is the sum of the sizes of all the formulas in the antecedent and succedent.
The size of a formula is the number of symbols (connectives and variables) it contains.

Where convenient, we may write a(B/x), by which we mean the formula a(x) with all
instances of the variable x replaced by the formula B. If x is clear from the context,
we may simply write a(B). In general, we cannot tell exactly what the size of a(B)
is, but we know that it is bounded by ia(x)IIBI, which we will just write as laiiBI.

Sample PK Proof

As an example, we present a PK proof of the tautology A = A where A is some
formula. We do not have = as a connective, instead A = B abbreviates A ::J B 1\ B ::J
A. Similarly, A ::J B abbreviates -.A VB.

2. PK

A_.A
---- • -- right
___.·A, A
----V-left
___.·AvA

A_.A
---- --, - right
___. •A, A
----exch.
___.A, ·A
----V-left
___.A v ·A

1\- right

where on the last line, the brackets have been inserted for readability.

Soundness and Completeness of PK

10

PK is both sound and complete. That is, if 1rsn = S1 , S2 , ... , Sn is a PK proof, then
Sn is a valid sequent, and likewise if Sis any valid sequent, then a PK proof 1fs exists.

Lemma 1 (Sequent Soundness Principle) For each PK rule, the lower sequent
is a logical consequence of the upper sequent(s).

PROOF: The proof of this lemma, and of the following one, can be found in [4]. We
show the case for /\-left. The other rules are shown to be sound in the same way.
Recall, the /\-left rule is:

r1,A,B,r2 ___. ~
rl, A A B, r2 ___. ~

(2.11)

Assume the top sequent is valid and let T be any truth assignment. If T satisfies
some formula in ~' or if T falsifies SOme formula in rl or r2, then T must satisfy
the bottom sequent as well. Otherwise, T must falsify at least one of A or B, and
therefore falsify A 1\ B, and in doing so satisfy the bottom sequent. 0

Lemma 2 (Inversion Principle) For each P K rule, except weakening, if the bot­
tom sequent is valid then so are all upper sequents.

PROOF: We can use the same argument as in the previous lemma, only in reverse. It
is easy to see why we need an exception for the weakening rule, because any formula
can be weakened out, including one that was crucial for preserving the sequent's
validity. For example, this is a valid application of the weakening rule:

2. PK

a---?b

a, b -----? b

The bottom sequent is valid, the top one is not.

Theorem 3 PK is sound and complete.

11

(2.12)

D

PROOF: Soundness follows from Lemma 1, by induction on the number of sequents
in the proof and the fact that all the logical axioms (A -----? A) are valid.

To show completeness, we need to show that for any valid sequent S, a PK proof
exists. We use induction on the number of connectives (V, /\, and •) in S. Any
valid sequent with no connectives is simply two lists of atoms, and it must have one
atom, a, which appears in both the antecedent and succedent (because if not, any
assignment which assigns True to all atoms on the left, and False to all atoms on the
right will falsify the sequent, contradicting the assumption of validity). We can use a
series of weakenings and exchanges to obtain the axiom a-----? a.

For the induction step, we choose a formula containing a connective, and apply the ap­
propriate connective introduction rule in reverse. The Inversion Principle guarantees
that this new sequent, which has one fewer connective, is valid. D

It is interesting to note that we do not use the Cut rule in this proof of complete­
ness. This means that the Cut rule is technically unnecessary in any proof, although
it often proves to be very convenient. For example, we use it often in the proofs of
equivalence below. Whether or not the Cut rule can provide a significant shortening
of proofs remains an open question.

A proof that does not use the Cut rule is said to exhibit the Subformula Property.
In such a proof, any formula that appears on any line of the proof must appear as a
subformula of the conclusion.

2.1 PK Extensions

In addition to its basic rules PK allows new rules, or extensions, to be introduced
easily and naturally. Several of these extensions are discussed in [8]. Since PK is
complete, adding these extensions do not allow any new sequents to be proven, but it
is theorized that they may significantly shorten the lengths of some PK proofs (e.g.

2. PK 12

that they may allow for polynomial sized proofs of families of tautologies which require
exponential sized proofs in basic PK). This remains an open question. However, it
can be shown that the extensions polynomially simulate one another.

Renaming PK

Renaming PK adds a rule which renames all free instances of some variables:

r(x1, ... , Xn) --+ ~(x1, ... , Xn)
r(yl, ... ,yn)---? ~(yl,··. ,yn)

(2.13)

Renaming PK gets its real power when the renaming rule is used to rename a variable
to another existing variable. Essentially, this takes two different variables and equates
them. It is important to note that the Yi are meta-variables, and that they could
actually represent some or all of X;.

A related system, Permutation PK, adds the restriction that the renaming be
bijective. This means that the Yi must be a permutation of the Xi· It is not known
whether Permutation PK is equivalent to PK, equivalent to Extended PK, or sits
somewhere between. Determining which of these cases is true is an important open
question in propositional proof complexity.

True-False PK

True-False, or TF PK, adds two new rules which replace variables with either 0 or 1
throughout the sequent. These new rules are:

f(x1, ... , Xn) --+ ~(xl, ... 1 Xn)
r(cl, ... ,en)---? ~(cl, ... ,en)

(2.14)

where fori = 1 ... n, c; E {0, 1, xi}

Substitution PK

Substitution PK goes further than either Renaming or TF PK by allowing all in­
stances of a variable to be replaced by an arbitrary formula A. It does so with a
single new rule:

2. PK 13

f(xl, ... , Xn) ___.,~(XI, ... , Xn)
r(A1, ... , An) ___.. ~(A1, ... , An)

(2.15)

Extended PK

Extended PK allows new variables to be introduced and declared to be equivalent
to any formula. We are free to choose any variable that has not occurred up to this
point in the proof, although these new variables cannot appear in the sequent we are
attempting to prove.

This rule is usually used where A is a subformula of some sequent we are working
with in the proof, and a is used to shorten that sequent.

2.2 p-Equivalence of PK Extensions

It is not known that any of the PK extensions significantly shorten PK proofs, but
we can show that they are all p-equivalent to one another1. Our task is made simpler
in this case by the fact that each of the PK extensions contain the basic PK rules.
This means that many of the steps in one proof can be carried out identically in
the simulating proof system. We need only show that the special rules introduced
in each extension can be simulated efficiently in the others. Since Frege and PK
are equivalent systems, that means that Substitution Frege and Substitution PK are
equivalent, as are Extended Frege and Extended PK etc. For convenience, we use
them interchangably where it will not cause problems.

We show the equivalence of the four extensions to PK by showing that Renaming PK
p-simulates TF PK, that TF PK p-simulates Substitution PK, that Substitution PK
p-simulates Extended PK, and that Extended PK p-simulates Renaming PK.

Lemma 4 Renaming PK p-simulates TF PK.

1 Except for Permutation PK

2. PK 14

PROOF: This proof is due to Samuel Buss (see [2]). We also use the fact that
tautologies without variables (that is, containing only connectives, and 0 and 1) have
short PK proofs (see Lemma 28 in the Appendix).

Assume first that 1fTF is a TF PK proof of a sequent S(x1, ... , xn)· We must show
that we can efficiently construct a Renaming PK proof 1fR of the same sequent. We
know that there are short PK proofs of:

____. A(1, ... , 1) and ____. A(O, ... , 0) (2.16)

where A is the formula equivalent to 5(2.2). Define Z to be the following propositional
formula:

(2.17)

which asserts that the variables Xi are not all true and not all false.

To build 1fR, we first build a proof of the sequent Z ----> A(x). Begin by taking
each line in 7rrF:

----> a(x) (2.18)

and replacing it with:

z ----> a(x) (2.19)

We then need to take steps to recreate a valid proof. If a is derived in 1frF by a basic
rule of PK then we can merely weaken to introduce Z. If, however, a is the result of
introducing 1 in place of some variable:

----> a(xl, ... , Xi, ... Xn)

----> a(xl,· . . , 1, .. . xn)
(2.20)

then we have some more work to do. Assume that we have a proof of the top sequent.
Then, from that, we derive the following n - 1 sequents:

2. PK 15

Z(xdxi) ---> o:(x1, ... , XI, ... , Xn)

Z(x;/x2) ---> o:(x1, ... , X2, ... , Xn)

(2.21)

where Z(xdxj) denotes Z with all instances of Xi replaced with Xj· Lemma 27
shows that polynomial sized proofs exist for sequents of the form xi, o:(xi) ---> o:(1).
Therefore, derive the following n - 1 sequents:

XI, o:(xb ... , XI, ... , Xn) ---> o:(xl, ... , 1, ... , Xn)

X2, o:(xb ... , X2, ... , Xn) ---> o:(x1, ... , 1, ... , Xn)

---> (2.22)

From these groups of sequents, we can derive z-i ---> o:(1) where z-i is Z but with
the variable xi removed:

z-i := (xi V ... Xi-l V Xi+l V ... Xn) 1\ •(XI 1\ .. · Xi-l 1\ Xx+l 1\ · · · Xn) (2.23)

because fori -I j, Z(xdxi) = z-i (semantically, though not syntactically). We can
also produce a short proof of Z, ,z-i ---> o:(x1, ... , 1, ... xn) (see [2]). We can then
use this and z-i---> o:(1) to derive a valid proof of the sequent:

(2.24)

The case for 0-introduction is handled similarly.

After this is complete, we have a valid proof of the sequent:

(2.25)

2. PK 16

Lemma 27 shows that short proofs exist for the following two sequents:

(x1 1\ Xz 1\ ... 1\ Xn), A(1, 1, ... , 1)---+ A(x) (2.26)

and

•(x1 V Xz V ... V xn), A(O, 0, ... , 0) ---+ A(x) (2.27)

Then from these we use 1\ introduction to obtain:

....,z, A(1, 1, ... , 1), A(O, 0, ... , 0) ---+ A(x) (2.28)

We use (2.16) to cut out the two variable-free tautologies on the left, and use (2.25)
to cut Z and get a proof of ---+ A. We can trivially obtain a proof of r ---+ .6. from
---+A. D

Lemma 5 TF PK p-simulates Substitution PK.

PROOF: This can also be found in [2]. Given a Substitution PK proof 1rSub, we can
build an equivalent TF PK proof as follows. All applications of the basic rules remain
unchanged in 1rTF, and whenever we substitute a variable x with a formula B, we use
the following construction.

---+ a(x)
--- 1 - replac.
---+ a(1)

----weak.
B---+ a(1)

------weak. : 7ri

B---+ a(1), a(B) B, a(1) ---+a(B)
---------------cut

B---+ a(B)

And then separately derive:

---+ a(x)
---1- replac.
---+ a(O)

----weak.
·B ---+ a(O)

------- weak. : 7rz

·B---+ a(O), a(B) •B, a(O) ---+a(B)
-----------------cut

·B ---+ a(B)

2. PK

which we then combine with V-left:

B---* a(B) ·B---* a(B)
---------V- left

B V ·B ---* a(B)

We can easily derive ---* B V ·B and cut it out.

B---*B
---- ---, - right
---* •B, B
----exch.
---* B,•B
---- V - right
---* B v ·B

-------weak.
---*a(B), B V ·B
------- exch.
---* B V •B, a(B)

to get:

---* a(B)

17

(2.29)

This is clearly polynomial in size, provided 1r1 and 1r2 have polynomial sized proofs.
This is shown in Lemma 27 in the Appendix. 0

Lemma 6 Substitution PK p-simulates Extended PK.

PROOF: This is given in [8]. We repeat the proof here. Note that we can assume
that the extensions occur in the first lines of any Extended PK proof, because of the
restriction that the variables introduced by the extensions cannot appear beforehand.
This allows us to 'push' them up without altering the proof.

Let 1rE be some Extended PK proof of S = r---* ~- Assume that q1 =: \111, ... , qr =
Wr are all the extension definitions in 1fE and that they are all introduced in the first
r steps of the proof

Then consider the sequent:

(2.30)

2. PK 18

which is valid, because the soundness of PK's rules means that r ---+ .6. is a logical
consequence of the r extension definitions. Lemma 4.4.10 in [8] shows that a proof of
(2.30) exists with size O(m2

) (where m is the size of (2.30)). Therefore, we apply the
substitution rule to derive:

:7f
qr = Wn qr-1 = Wr-1, ... q1 = 'lib f---+ .6.

'llr = 'lin qr-1 = Wr-1, ... q1 ='lib f---+ .6.

Next, separately prove the sequent ---+ Wr = Wr and cut out the first equivalence.
After r such steps, we have a Substitution PK proof of r ---+ .6.. 0

Lemma 7 Extended PK p-simulates Renaming PK

PROOF: This is shown by demonstrating that Extended PK can simulate Substitution
PK (of which Renaming is a special case). The details of the proof are rather technical
and unenlightening, so we merely outline a high-level argument. The full proof can
be found in [8].

This follows from two ideas. Firstly, if a system can be proven to be sound in
polynomial time, then Extended PK can simulate it, and secondly, Dowd's proof that
the soundness of the Substitution rule can be proven in polynomial time [5].

We prove the soundness of Substitution PK as follows. Given a well-formed Sub­
stitution PK proof of a sequent S (a proof can be verified to be well-formed efficiently
by checking that each line follows from the previous lines by a rule), assume that
some truth assignment exists that falsifies the end sequent. Then we can construct a
truth assignment that falsifies an axiom (which is a contradiction).

For any rule with a single top sequent, except Substitution, the Inversion Principle
guarantees that the truth assignment that falsifies the bottom sequent will falsify the
top sequent.

For !\-right, if T ~ r---+ A!\ B, .6. then we know that either T ~A or T ~ B (or
both), and therefore that T falsifies at least one of the two top sequents. Choose the
branch that is falsified, and continue. Similarly, if T ~ r, A VB ---+ .6. then T must
either satisfy A or B or both, and so falsify at least one of the top sequents. In either
case, we choose the branch that is falsified and continue, without altering T.

Lastly, for the Substitution rule, if the formula 8 replaced a variable a in the
original proof, then to construct a falsifying assignment T

1 for the top sequent, we let

2. PK

7
, (X) = { T (X) ~f X =_# a

T(8) If X= a

19

(2.31)

where T(8) is the truth value of 8 under T. Once we reach the top of the proof, we
will have a truth assignment that falsifies the conclusion and also falsifies an axiom.
Such a truth assignment cannot exist and so the conclusion of the proof must be
valid.

Since this is a polynomial time process, Extended PK must be able to simulate
Substitution PK. For a direct simulation see [8]. D

This notion of an indirect simulation by using one system to certify the correctness
of a proof in another system is an important one. It is often quite difficult to show
simulations directly, but by reasoning more abstractly about the capabilities of a
given proof system, we may be able to provide an indirect simulation. We will use
this concept later with LA, H, and the Hajos Calculus.

We are now able to conclude:

Theorem 8 The four extensions to PK, namely Renaming, Substitution, TF, and
Extended PK are p-equivalent.

PROOF: Follows immediately from the previous four lemmas. D

Chapter 3

G: PK with variable quantification

Krajicek [8] defines a different sort of extension to PK in the form of quantifiers. There
are two quantifiers, each with a left and right introduction rule. This new system, G,
is generally used to prove sequents which are quantifier-free; the quantifiers are used
in an attempt to shorten proofs. Whether or not G can actually produce significantly
smaller proofs remains an open question.

Syntax and Semantics

'II introduction

3 introduction

a(B), r-+ L\ r-+ L\, a(p)
'1/xo:(x), r-+ L\ r-+ L\, 'llxa(x)

a (p) , r -+ L\

3xa(x), r-+ L\

r -+ L\, a(B)
r-+ L\, 3xa(x)

(3.1)

(3.2)

where B is any formula, and under the restriction that the atom p does not occur in
the bottom sequent for '\!-left and 3-right.

The need for the restriction on the 'II right and 3 left case can be illustrated with
a pair of counterexamples.

20

3. G: PK with variable quantification 21

p, •p ~ a V •a a V •a ~ p, •p

3xx, •p ~a V •a a V •a ~ '1/xx, •p
(3.3)

In each case, the upper sequent is valid, but a truth assignment exists which does not
satisfy the lower sequent.

Sequents with quantifiers behave exactly like quantifier-free sequents, with quantifiers
being interpreted in the expected manner. Explicitly, ::Jxo: (x) is true if some value of
x satisfies o:(x), and '1/xo:(x) is true if all possible values of x satisfy o:(x). This allows
us to note that each quantifier has a semantically equivalent formula:

'1/xo:(x) = o:(O) 1\ o:(l) 3xo:(x) = o:(O) V o:(l)

The true value of quantification becomes apparent when we consider the case in
which o: contains additional quantifiers. Since the equivalent formulas are more than
twice as long as the quantified formulas, nested quantification provides an exponential
decrease in formula (and therefore sequent) length.

Soundness and Completeness of G

Lemma 9 G is sound and complete.

PROOF: The soundness of most of G's rules was shown in Lemma 3. We need only
show the soundness of the four new rules, which we do in the same way as before.
Take the 'If-left rule:

o:(B), r ~ ~
'1/xo:(x), r ~ ~ (3.4)

Assume the top sequent is valid, and let T be any truth assignment. If T falsifies any
formula in r or satisfies any formula in ~' then T satisfies the bottom sequent also.
Otherwise, T must, by the validity of the top sequent, falsify o:(B), in which case T

also falsifies '1/xo:(x) and so satisfies the bottom sequent. Similar arguments show the
soundness of the other three new rules.

The completeness of G follows from the completeness of PK, because any cor­
rect PK-proof is a G-proof. A more interesting question is whether G can prove all
sequents containing quantifiers. D

3. G: PK with variable quantification 22

Extended Completeness of G

By extended completeness, we mean that G is complete for valid sequents containing
variable quantifiers. If A is a formula, let the number of quantifiers in A be denoted
by IAIQ, and similarly for sequents.

Theorem 10 If S is a valid sequent, possibly containing variable quantifiers, then G
can proveS.

PROOF: Let S be a valid sequent (possibly with formulas containing quantifiers). We
show that a proof of S must exist by induction on the maximum number of quantifiers
in any formula inS.

We show the cases for connectives and quantifiers occurring on the left. The right­
hand cases proceed analogously.

The base case is when the sequent is quantifier free. That is, ISIQ = maxnES ladQ = 0
In this case, the sequent is a classical tautology, and a proof of S exists by the
completeness of P K.

Then, for the induction step, let maxnES iaiQ = k + 1. Then, for each ai in S in turn,
if lai IQ = k + 1 perform the following steps.

If the outermost connective in ai is not a quantifier, apply the appropriate connective
introduction rule in reverse. This produces one sequent (for -,-}eft or A-left) which
will have at most k + 1 quantifiers in each formula. For V - left, we obtain two
sequents as follows:

r,tJ _. ~ r,/' _. ~

r,tJvl'--~

where a= J]V')'. Continue working with both sequents until the outermost connective
in the current formula is a quantifier.

Once there is a quantifier as the outermost connective in the current formula, the
sequent must look like this:

r, :lxa(x)---- ~ or r, \ixa(x) ---- ~ (3.5)

For the :3-left case, we proceed as follows:

3. G: PK with variable quantification

7f

r, a(a) -----+ .6.
-----3- left
r, 3xa(x) -----+ .6.

Where we choose a to be some variable that does not appear in r, a(x), or .6..

Similarly, for the \f-left case:

7f

r, a(a), a(•a) -----+ .6.
-------\1 -left
r, a(a), \fxa(x) -----+ .6.
-------- \f- left
r, \fxa(x), \fxa(x) -----+ .6.
---------- contr.

r, \fxa(x) -----+ .6.

where here we have a free choice of a.

23

We repeat this for each other formula in r and .6., removing a quantifier from each
formula which had k + 1 quantifiers to begin with. After this process, each formula
has at most k quantifiers, and a proof exists by the induction hypothesis. D

Gi and Gi

Krajicek defines a special subset of G based on the number of alternations of quan­
tifiers when each formula is in prenex normal form. A formula is in prenex normal
form if it is written:

(3.6)

where each Qi is either \for 3, and a is quantifier-free.

Gi is the set of all sequents where all the formulas in both cedents are in prenex
normal form, and the quantifiers are grouped into at most i blocks starting with an
existential quantifier (3). Therefore, G0 is basic PK, G 1 allows sequents to contain
formulas of the form 3x13x2 ... 3xna(x1 , x 2 , ... , Xn), G2 allows:

3. G: PK with variable quantification 24

and so on.

c: is Gi with the added restriction that the proofs be treelike. A treelike proof is
one in which each sequent appears at most once as the upper sequent in a rule. That
means that if we wish to reuse a sequent in a treelike proof, we must rederive a
separate copy of it and, in doing so, increase the size of the proof.

3.1 G'i and Extended PK are p-equivalent

We show that G~ can p-simulate the substitution rule, and therefore can p-simulate
Substitution PK. Then, by Lemma 6 we obtain that G~ p-simulates Extended PK.

Lemma 11 ~ p-simulates Substitution PK.

PROOF: This proof can be found in [8]. Given a Substitution PK proof 1rs, we convert
it to a G~ proof 1fc as follows. Given an instance of the substitution rule:

we replace it as follows:

Then, from:

Then weaken and cut to obtain:

r(a) --7 ~(a)

r(e) --7 ~(e)
(3.7)

3. G: PK with variable quantification 25

(3.8)

And there is a short proof of:

from which we can cut to obtain:

as required (and with a polynomial increase in size).

Observe that we have no alternative but to put the whole sequent into a single formula
on the right, because of the restriction that the variable which gets captured by the
quantifier cannot appear in the lower sequent in the V - right rule. D

To show that Extended PK p-simulates G~, we show a method to efficiently transform
a G~ proof (1r0), into an Extended PK proof (7re). The basic idea is that variables
are introduced on the left to 'witness' values for quantified variables on the right, in
this fashion:

where the qi are the quantified variables on the right of the arrow, and the ¢i are
Boolean formulas which specify values for qi that make the sequent valid.

Any formula in a G;' proof can be efficiently converted to a formula in prenex form.
All V quantifiers in any such formula must be nested inside an odd number of -,
connectives (by the definition of G~), and so will become 3 quantifiers when the
formula is in prenex form.

We can convert a formula to prenex normal form by giving each quantified variable
a unique name, and then pushing quantifiers 'out' towards the front of the formula
(using deMorgan's Laws, etc). For example:

-NxA(x, iJ) becomes 3x-.A(x, iJ)

3. G: PK with variable quantification 26

(A(Y) V VxB(i], x)) becomes Vx(A(Y) V B(i], :r:))

and vice versa for 3 quantifiers (which are guaranteed to be nested inside an even
number of -, connectives). Since we can efficiently perform this transformation, we
can assume that formulas appear in prenex form in the upcoming proof.

Lemma 12 Extended PK p-simulates G;'.

PROOF: Let 7rG be a G~ proof of the classical (i.e. quantifier free) sequent r ---7 ~­

We construct an extended PK proof, 7rE, of the same sequent, with only a polynomial
increase in proof size.

Note: Since 1rc is a G~ proof, we know that all the formulas are in 'E1, and that
therefore none of the V introduction rules can appear in 1rc (because the resulting
formula would be in II2) 1 . For the same reason, the -, rule cannot be applied to any
quantified formulas. Therefore, the only ways that a V symbol could appear in 7rG is
in an axiom, or through weakening.

For convenience, we assume that we have two lists of variables Pll p 2 , ... , which we
use for new free variables (on the left), and q 11 q 2 , ... which we use for new 'witness'
variables (on the right). Whenever we need to introduce a new one of either type, we
take the next unused variable in sequence. This technicality helps us when we come
to the cut rule. Any variables introduced during the following translation between
7rc and 7rE are meta-variables which stand for one of the Pi or qi.

First, we show how the axioms are translated. Given an axiom, A ---+ A, if A is
quantifier-free there is nothing to change, and we use the same axiom in 7rE- For
axioms with quantifiers, we convert to prenex normal form, which guarantees that
the axiom must be of the form 3xB(x, a) ---+ 3xB(x, a) where x and a are respectively
the bound and free variables in B. To replace the axiom, we then construct the
following sequent in 7rE:

(3.10)

We can show how to construct sequents like (3.10) with polynomial size Extended PK
proofs by induction on the structure of A. The inductive hypothesis is that sequents

1Technically, the V rule could be applied, but only by quantifying over a variable which doesn't
appear in the formula. In these cases, we would simply remove that step from the proof altogether.

3. G: PK with variable quantification 27

of the form (3.10) have proofs of length O(IAI2
) (specifically, proofs that are bounded

by cjAj2 for some constant c).

If A (x) is simply x then we have:

p-+p q-+q

•p,p--+ q q,p--+ q

(•P V q), P --+ q

(•p V q) 1\ (•q V p), p --+ q

Then for longer formulas, remove the outermost logical connective in A and use to the
induction hypothesis to show the existence (and length) of 1r1 and 1r2 . For example,
if A(p, a) is B(p, a) 1\ C(P, a) then:

: 7rl : 7r2

P'= if, B(ff, a) --+ B(if, a) P'= q, C(ff, a) --+ C(if, a)

P'= if, B(ff, a) A C(ff, a) --+ B(if, a) P'= q, B(ff, a) A C(ff, a) --+ C(if, a)

P'= if, B(ff, a) A C(ff, a) --+ B(if, a) A C(if, a)

The V, •, and 3 cases proceed similarly. We need only choose c large enough to cover
the largest of these three cases.

Secondly, we consider the rules one-by-one. We should note that, in 7rE, the other
formulas in a sequent (for example, those in r and .6.) may have been altered in
previous steps so we must write r' and .6.' to acknowledge this.

Furthermore, when two sequents appear on top of a rule, rand .6. may not have been
altered in the same ways in both subproofs, so we should write f" and .6." in one of
them to differentiate.

Exchange

The exchange rule needs no alteration, so wherever it is used in 1rc we make the same
exchange in 1r E.

Weakening

If the new formula is quantifier free, there is nothing special to be done in 7rE. Suppose
the new formula has one or more quantifiers. If we introduce it on the left, then we
choose new free variables (from the set of Pi):

3. G: PK with variable quantification 28

r' ~ /:).'
(3.11)

f', A(iJ, a) ~ /:).'

or, if we introduce a formula on the right, we use new qi variables and perform further
weakenings to introduce equivalances to give them values.

============================weak.
q1 = 0, ... , qn = 0, f' ~ A(q, a),/:).'

We are free to select any value in the latter case, so we arbitrarily pick 0 for each of
the n new variables.

Contraction

On unquantified formulas, we can simply perform the same contraction in 7rE without
any trouble. Applying the contraction rule to quantified formulas is slightly more
difficult, because the formulas to be contracted may have different variable names
(for formulas on the left), or different witnessing formulas (for formulas on the right).

Contracting on the left is simple. We can use the treelikeness of 1rc and simply rename
any or all of the variables in one instance of the formula to be contracted so that they
are identical. Given:

r', A(iJ, a), A(q, a) ~ /:),' (3.12)

We arbitrarily rename q to p throughout the proof up to this point, to obtain:

r', A(iJ, a), A(iJ, a) ~ /:).' (3.13)

which we contract normally.

For contraction on the right, we start from the following top sequent:

r' ~ A(iJ, a), A(q, a),/:).' (3.14)

where r' contains the definitions of p and if. One, both, or neither or A(p, a) and
A(q, a) may be true, and we need to be sure we do not eliminate the wrong one. We
define a new set of variables r to be (for all i):

3. G: PK with variable quantification 29

_ { p; if A (p, a) is true
ri = qi otherwise (3.15)

One possible formula for this is ri = (Pi 1\ A(p, a)) V (qi 1\ ·A(p, a)). We abbreviate
this as ri = 1/Ji-

Then a simple short proof of:

(3.16)

exists, which can be shown in a similar manner to the translations of axioms in (3.10).

This process for taking two possible sets of witnessing variables, and selecting the
correct set by introducing a third set of variables will be useful when dealing with
some of the other rules as well.

Connective Introduction

Since our formulas are in 2: 1 , we know that the -, introduction rules will never be
applied to quantified formulas, so there is no alteration necessary in 1fE. For the 1\

and V rules, we convert to prenex normal form at the same time as we introduce the
connective (as detailed above). This means that at subsequent stages of the proof, we
can still assume that all formulas in all sequents in 1fG start with a (possibly empty)
block of quantifiers followed by a quantifier-free formula. All quantified variables in
1fE are chosen to be unique, so we don't need to rename variables when converting to
prenex normal form.

After this, for /\-left and V-right, there is nothing else to do. /\-right and V-left
could have conflicting r and/ or ~ which need to be resolved in the same way as in
contraction (by renaming on the left, and by introducing new variables on the right).

For /\-left, if we have:

r' --7 ~',A r" --7 ~", B (3.17)

We unify these two sequents in the same way as in the contraction rule, renaming the
variables on the left to obtain:

r"' --7 ~',A r"' --7 ~", B (3.18)

3. G: PK with variable quantification 30

We can then weaken and introduce the 1\ connective, giving:

f 111 -----+ 6.', 6.", A 1\ B (3.19)

Then, for each of the formulas in 6. which contain quantifiers (in 7rc) we construct a
new set of variables as in contraction (on the right). This lets us write:

f 111
-----+ 6.111

, A 1\ B (3.20)

V-left works in the same way, again following the procedure from the contraction case.

Cut

For cuts, in which the formula to be cut is quantifier-free, in 1fE we will have:

r', A-----+ t::.' r" -----+ A, t::." (3.21)

And we can weaken and cut to obtain:

r', r" -----+ t::.', t::." (3.22)

which we deal with as in contraction, /\-right, and V-left. Note that some of the
formulas inside f" may be equivalences for quantified variables in one upper sequent
that are free variables in the other upper sequent.

If, in 1fc, A contains a quantifier, then we have:

r', A(P) -----+ t::.' r" -----+ A(q), t::." (3.23)

Since whenever we introduce a new variable in this translation, we always choose a
previously unused p; or q;, and since we never duplicate a formula, we know that
f', f", 6.' and 6." must not contain p or q. Therefore, in the left sub-proof, we rename
p to q throughout, and weaken in the witness definition for q (taken from the right
sub--proof). We then perform any other unification necessary (as in contraction) and
cut the formula.

3 introduction

We do not need to change anything whenever 1fc contains an instance of 3-left,
because since the lower sequent in 1fc doesn't contain the variable that was quantified.

3. G: PK with variable quantification 31

However, for consistency, we choose the next Pi that is unused, and rename the
variable to be quantified throughout the proof (again, it is the treelikeness of 1r c that
allows us to do this).

On the right, we need to make sure that we construct a new extension definition to
witness the formula that was eliminated by the quantifier. That is:

7rl

f'--+ !:::.',A(B) q = B, A(B)--+ A(q)

q = B, r'--+ A(B),!:::.', A(q) q = B, f', A(B) --+ !:::.', A(q)

q = B, r'--+ !:::.', A(q)

where again, 1r1 is constructed in the same way as in (3.10) and in Lemma 27.

Finally, once this translation is complete we have 1r E, a proof of some sequent f' --+ !:::.'.
Now, since the sequent proven by 1rc is quantifier free, we know that:

(3.24)

and that none of the qi appear in r or !:::. . Therefore, to avoid violating the restriction
that extension definitions must involve previously unused variables, we can go back
up to the start of the proof, and introduce the n equivalence axioms --+ % = cPi in the
same order that they were introduced in the above translation (which is in ascending
order by i). We then weaken appropriately, and use n applications of the cut rule to
produce the final sequent r --+ !:::,. as required.

Since each of the steps described here require only polynomial-sized modifications,
and we must perform at most one step per line of the proof (plus n polysized steps
at the end) the whole process needs only a polynomial increase in the size of 7r£. D

From the previous two lemmas we obtain:

Theorem 13 Extended PK and Gi are p-equivalent.

That is, the ability to quantify over Boolean variables gives the same power as
substituting formulas, or introducing extension variables to abbreviate formulas.

Chapter 4

H: PK with permutation
quantification

We can construct a new extension to PK which, like G, adds rules which introduce
quantifiers. However, rather than quantifying over all possible assignments to a vari­
able, our system, which we call H quantifies over all possible transpos-itions of two or
more variables.

We will show that it is sufficient to quantify over transpositions of variables and to
build more extensive permutations out of sequences of transpositions. That is, we
need only give rules for permuting two variables at a time.

Syntax and Semantics

In PK and G, we were not explicit about the domain from which we selected our vari­
ables, but for H we need to be a little more precise. All formulas which appear in H
proofs will have their variables chosen from the ordered, infinite set { P1 , P2 , P3 , ... } .

We will sometimes use the symbols a, b, c, ... or a 1 , a2 , a3 , .. . , but it should be un­
derstood that these are meta-variables. That is, each of them refers to a particular
Pi.

Our new quantifiers use the same symbols as variable quantifiers, but we enclose them
in brackets to delimit the two (or more) variables being permuted. If a is a formula,
then so are (:3ab)a and (\fab)a, where one, both, or neither of a and b may appear in
a and where a and b may be the same variable. These quantifiers are (semantically)

32

4. H: PK with permutation quantification 33

equivalent to these formulas:

(\fab)a(a, b) =a(a, b) 1\ a(b, a) and (3ab)a(a, b) =a(a, b) V a(b, a) (4.1)

We introduce the notation a(ab) to represent a transposition of the variables a and b
within a. It is important to note that occurrences of a or b within other permutation
quantifiers are also affected. Hence, the formula ((3ac)a)(ab) = (3bc)a(ab)

Every permutation can be decomposed into a series of transpositions and so trans­
position quantifiers will be sufficient to construct permutation quantifiers. However,
the formal nature of propositional proof systems requires us to formulate a single,
unique, and polynomial sized series of transposition quantifiers which will allow us to
express any permutation.

Theorem 14 Arbitrary permutations of n variables can be represented by the follow­
ing series of transpositions (reading from left to right):

n n

II II (jk)ijk (4.2)
k=lj=l

where (ijk) is ann x n matrix over 0,1 indicating which transpositions are taken and
which are left as the identity.

PROOF: Take some arbitrary permutation of n variables a 1 ~-----* ah, a2 ~-----* at2 , ••• , an ~-----*

aln·

We go through (4.2) in blocks of n transpositions at a time, in order. After the ith

block, we want to ensure that the first i variables have been permuted back to their
correct places.

Each number in 1, ... , n appears exactly once in this permutation. In particular,
some lk must be 1. In the first block of n transpositions, we set ilk = 1, and iij = 0
for all j =I k. This ensures that the variable that should end up in position 1 is there,
and that no other transpositions will be taken later to move it again.

Once we have done this for all n blocks of n transpositions, all n variables will be in
the correct positions. 0

4. H: PK with permutation quantification 34

Example: An example may be illustrative. Take n = 6, and let the variables begin
in the following permutation: az, a4, a3, a5, a6, a 1. We must take the following trans­
positions to permute them back to a1, a2, a3 , a4, a5, a6 . (This is, of course, equivalent
to starting in order, and then reordering the variables to some permutation).

We consider all the transpositions in (4.2) in order, but only the ones shown below
are taken.

To prevent confusion between variable name and variable position, we show which
ijk should be set to 1, which indicates that the variables currently in the ph and kth
positions should be exchanged.

il6 = 1 gives al,a4,a3,a5,a6,a2

iz6 = 1 gives al,az,a3,a5,a6,a4

i33 = 1 gives ai,a2,a3,a5,a6,a4

i46 = 1 gives al,az,a3,a4,a6,a5

i56 = 1 gives a1,a2,a3,a4,a5,a6

i66 = 1 gives al,az,a3,a4,a5,a6

Informally, this procedure works because it provides all n of the possible transpositions
for each of the n variables, allowing us to pick and choose to construct any arbitrary
permutation.

Definition: We define the canonical transposition representation of a permutation
of k variables to be (4.2).

In H, we may use the following notation (\fa1a2 ... an), which is an abbreviation for:

(4.3)

to express all possible permuatations of n variables (and similarly for :3).

The semantics of permutation quantifiers are not difficult, but there are two different
ways of thinking about what it means for a truth assignment r to satisfy a formula
containing a permutation quantifier. Firstly, we can say that r satisfies a formula
(:Jab)a (written as r f= (:Jab)a), if and only if r f= a or r f= a(ab). The second
method is to define r(ab) by setting r(ab)(a) = r(b), r(ab)(b) = r(a), and r(abl(x) = r(x)

4. H: PK with permutation quantification 35

whenever x tJ. a, b. We then say that T f= (3ab)a if and only if T f= a or T(ab) f= a. The
cases for universal permutation quantifiers are similar, but require both transpositions
to be satisfied, rather than just one. We refer to these methods respectively as variable
permutation and assignment permutation.

Lemma 15 Variable permutation and ass·ignment permutation give equivalent se­
mantics.

PROOF: Take (3ab)a(a, b, X1, ... , xn) as an example. Let T(a) = t1 and T(b) = t2
wheret1,t2 E {0,1}. IfT f= (3ab)a(a,b,xl, ... ,xn),theneithera(tl,t2,T(xl), ... ,T(xn))
is true, or a(t2, t1, T(x1), ... , T(xn)) is true.

Since T(a) = a(t1, t2, T(x1), ... , T(xn)) and T(ab)(a) = a(c2, C1, T(x1), ... , T(xn)), ei­
ther T f= a or T(ab) f= a and we have one direction of the equivalence. The other
direction (and the V cases) follow from similar arguments. D

Rules

We present four unrestricted rules for introducing 3 and V transposition quantifiers
on the left and on the right. For the existential quantifiers:

r -7 ~,a
(4.4)

(3ab)a, r -7 ~ r -7 ~' (3ab)a

and for the universal quantifiers:

a,r -7 ~

(Vab)a, r-+ ~ r-+ ~' (Vab)a
(4.5)

We also have two restricted introduction rules, in which a and b cannot appear in r
or~:

a,r -7 ~ r -7 ~,a
(4.6)

(3ab)a, r -7 ~ r-+ ~' (Vab)a

From these rules, we can derive the permutation rule as follows:

4. H: PK with permutation quantification 36

---+a(a, b) o:(b, a) ---+ o:(b, a)

---+ (Vab)o:(a, b) (Vab)o:(a, b) ---+ o:(b, a)

---+ o:(b, a)

In [9] we defined a different set of rules which included the permutation rule, and where
the restricted rules were derived rules. However, it turns out that that definition of
H did not allow us to translate VPLA (see Chapter 5) while preserving treelikeness.

Soundness and Completeness

We can easily show that these concepts apply to H as well as to G and to basic PK.

Theorem 16 H is sound and complete. Furthermore, the inversion principle applies
to all the rules of H, except for the weakening rule

PROOF: H is complete because it contains the rules of PK, and PK is complete. We
show soundness and inversion as before, by taking any truth assignment and showing
that if it satisfies the upper sequent then it must satisfy the lower (and vice versa,
except for weakening). For example, consider the :3-left rule. Suppose that:

r, o:(a, b)---+~ (4.7)

is valid, but that there is some truth assignment T that falsifies:

r, :J(ab)o:(a, b) ---+ ~ (4.8)

Then T F r, and T F :l(ab)o:(a, b) butT ~ ~- Since T F :J(ab)o:(a, b) it must be true
that either T f= o:(a, b) or T(ab) f= o:(a, b). Furthermore, since a and b do not appear
in r and ~' we know that T(ab) F r and T(ab) ~ ~' and so either T or T(ab) must
falsify the top sequent. We can argue similarly about the other new rules. D

4. H: PK with permutation quantification 37

Extended Completeness of H

Previously, we showed that if S was any valid sequent which possibly contained
variable quantifiers, then a G-proof of S exists. We can show a similar result for
H.

Theorem 17 H is complete for sequents with permutation quantifiers. That is, if S
is a valid sequent which possibly contains permutation quantifiers, then an H -proof of
S exists.

PROOF: The proof is again by induction on the maximum number of transposition
quantifiers in any formula in a sequent.

The base case is a valid sequent without transposition quantifiers. By Theorem 3
there is a PK proof of this sequent, and this proof can also be constructed in H.

Assume that any sequent in which each formula has at most k transposition quan­
tifier has an H proof, and then let S be a sequent containing a maximum of k + 1
quantifiers in any of its formulas.

For each formula, a in S if a contains k + 1 quantifiers, we do the following:

If the outermost connective in a is not a permutation quantifier, then apply the V,
1\, and ..., introduction rules in reverse. Continue this until a permutation quantifier
is the outermost connective.

At this point, Sis one of the following: (The cases on the left proceed analogously)

r---+ (::lab)a(a, b),~ r---+ (Vab)a(a, b),~

For the V-right case, we build a partial proof as follows:

r---+ a,~ r---+ a(ab), L).
--------,..-,-···-- V- right

r---+ (Vab)a(ab), ~

(4.9)

We then continue with all the other formulas in r and ~' removing a permutation
quantifier from any formula with k + 1 quantifiers. At this point, all the uppermost

4. H: PK with permutation quantification 38

sequents will have k or fewer permutation quantifiers in each formula and then the
1ri will exist by the induction hypothesis.

The :3-right case is slightly more complicated:

7r

r ---7 a a(ab) ~
' ' :3- right

r ---7 (:=lab)a(ab)' a(ab)) ~
====:::::;:=c:=c===:::::;:=c;:;== exch., :3 - right
r ---7 (:=lab)a(ab)) (:=lab)a(ab) ~
----------- contr.

r ---7 (:=lab)a(ab)) ~

D

Now we would like to explore H's power as compared to that of G. It is quite simple
to see that Extended PK can p-simulate H;, but a significantly longer process to
demonstrate that H; can p-simulate Extended PK.

4.1 Extended PK p-simulates H;
To show this, we use a similar method as used in the previous chapter to show
that Extended PK could p-simulate Gi. Given a proof in H;, we build an equivalent
Extended PK proof in which extension definitions are introduced on the left to witness
whether or not a transposition is taken on the right, in this fashion:

(4.10)

where the di are the variables which appear inside transposition quantifiers on the
right, and the c/>i are formulas which specify whether the transposed or untransposed
pair of variables makes the sequent valid (that is, the values which would have satisfied
the quantified formulas in 1r H). The notation { d1 , d2 } = { c1 , c2 } is used to abbreviate
d1 = c1 1\ d2 = c2, where = is now the usual abbreviation.

We refer to new variables on the left as free variables, and new variables on the right
as 'witness' variables. Every witness variable has a defining formula on the left.

As we did when simulating G~, we show that we can convert the axioms and weakened
formulas to a form containing only existential quantifiers in prenex form, and then

4. H: PK with permutation quantification 39

only work with formulas in prenex form for the rest of the conversion. The process
is the same; rename the quantified variables, and push out the quantifiers past the
other connectives (converting -,\j to ::J-, as before).

Theorem 18 Extended PK p-simulates ~.

PROOF: Let 1rH be a Hi proof of the classical (i.e. quantifier free) sequent r --+ ~.
We construct an extended PK proof, Jre, of the same sequent with only a polynomial
increase in proof size.

We convert the axioms of 1fH as follows. Any quantifier-free axioms require no alter­
ation. For any quantified axiom, we put the axiom into prenex normal form, so that
it is of the form:

(4.11)

We then construct the following valid sequent:

(4.12)

We use structural induction on A to show an efficient construction of (4.12). The
induction is basically identical to induction used to deal with axioms in the simulation
of Gi by Extended PK, and so is not repeated here.

We also need to change the way we define the new witnessing variables that are
introduced during the unification of two sequences of formulas. Take for example
contraction on the left. In 7rE we will have (as in the translation from 7rG to 7rE in
the previous chapter):

f'--+ ~', A(p, q), A(r, s) (4.13)

where p, q, r, and s are witnessed variables which represent quantified variables from
1fH. We need to introduce a new pair of variables t and u, such that in the sequent:

f'--+ ~', A(t, u) (4.14)

4. H: PK with permutation quantification 40

if one of A(p, q) or A(r, s) was true, then A(t, u) is now equivalent to the true formula.
To ensure this, we use this extension definition:

where

and likewise

{ t, u} = { 1h, ¢z}

{
p if A(p, q) is true
r otherwise

¢z = { q if A(p, ~) is true
s otherwise

(4.15)

(4.16)

(4.17)

Explicitly, (4.16) can bewrittenast= (p!\A(p,q))V(r-J\•A(p,q)), and (4.17) can
be written u = (q !\ A(p, q)) V (s !\ ·A(p, q)).

For the rest of the translation, we follow the procedure to translate Gi proofs into
Extended PK. The transposition quantifiers are dealt with slightly differently to the
ordinary quantifiers (as one would expect). For existential quantifiers on the left there
is still nothing that needs to be done, and on the right we need to introduce extension
definitions which witness whether or not a transposition was taken. In 7rH we would
have had:

r --7 ~'A(a, b)

r --7 ~' (3ab)A(a, b)

which appears in 7rE as:

r' --7 ~',A(a,b) {c,d} = {a,b},A(a,b) --7 A(c,d)

{c,d} = {a,b},r' --7 A(a,b),~',A(c,d) {c,d} = {a,b},r',A(a,b) --7 ~',A(c,d)

{c,d} = {a,b},r' --7 ~',A(c,d)

where the existence of (and polynomial bound on the size of) 1r1 follows from Lemma
27. D

4. H: PK with permutation quantification 41

We currently have no direct simulation of Extended PK by H 1 or H~. However, we
can show how H~ can indirectly p-simulate Extended PK. The remaining chapters of
this thesis are devoted to introducing the necessary intermediate systems, and giving
the step-by-step simulations that connect Hi to Extended PK.

Chapter 5

LA and its translations

LA is a first order logical theory of Linear Algebra. LA has three sorts: indices, field
elements, and matrices, and operates over sequents. All of the rules of PK are available
for constructing LA proofs from the axiom schemes described in the appendix, or in
[12]. LA is quantifier-free1

, but every sequent is implicitly universally quantified (in
the same way that PK operates only over valid propositional sequents). We describe
only those elements of LA that are important for our purposes; for a full introduction
of LA see [12], and see [14] for an introduction of the related theory VPLA.

V PLA is important to us, because it is powerful enough to prove the soundness
of the Hajos Calculus, which is p-equivalent to Extended Frege, but on the other
hand it is weak enough that it can in turn be easily translated into a propositional
proof system like H;. V PLA therefore forms a crucial link in our proof that H; can
p-simulate Extended PK. First let us define LA.

Function Symbols

There are several function symbols for each type. Those for indices:

(5.1)

For field elements:
1 Except for bounded index quantifiers

42

5. LA and its translations 43

(5.2)

And for matrices:

r, c, e, I: (5.3)

0 and 1 are constant functions of the indicated type. +, * are binary functions of
the indicated type. -index is a binary function symbol, while -field and -l are unary
function symbols. All of these have their conventional meanings.

cond(a, t, s) is a conditional statement equal to the term t if the formula a is
true, and to the term s otherwise. e(A, i, j) is the element of the matrix A in the
ith row and the lh column, or 0 if A has fewer that i rows or fewer than j columns.
r and c take a matrix, A, as an argument and return index values corresponding to
the number of rows and columns in A respectively. Finally, I: takes a matrix A and
returns a term which is the sum of the entries of A.

There are also several predicate symbols: ::;index, =index, =field, and =matrix· From
these we can build the atomic formulas of LA:

i ::;index j
. .
Z =index J
S =field t

(5.4)

A =matrix B

From these base cases, terms and formulas are built inductively using function symbols
and logical connectives respectively. The logical connectives are introduced using the
rules from PK, constructing sequents from the axioms of LA. Other function symbols
may be defined in terms of these symbols to abbreviate formulas and sequents, but
any such symbols are not part of the language, they are merely meta-symbols. Where
the type of an expression is obvious, we will omit the subscripts.

5.1 Translations of LA theorems into propositional
formulas

Theorems of LA can be translated into families of short propositional tautologies.
Let a be some formula of LA, and let a be some assignment to the objects in a.

5. LA and its translations 44

Furthermore, let n be the largest number that cr assigns to any index variable in a.
We define the size of cr, written lcrl, to be n. Then there is a propositional formula
which is equivalent to a under cr, and this formula is only polynomially larger (in
lcrl) than a. This construction follows Soltys and Cook [14] to show that basic LA
translates to PK. We repeat their proof here, and then extend it to cover translations
of V PLA into Ht.
This general idea behind this translation is to evaluate as much as possible within
each formula explicitly. We translate a formula to 1 or 0 if we can tell that (under cr)
it will always be true or false. For example, for two matrix variables A and B, the
formula A = B will always be false if the dimensions of A and B (namely cr(r(A),
cr(r(B)) etc.) are not equal. If the dimensions are equal, then we translate A = B
into a particular formula asserting that two cr(r(A)) x cr(c(A)) matrices are equal.

It is important to remember that at the time of translation we know what cr is,
and therefore, amoungst other things, what the dimensions of each matrix in a are.

Note also that, in particular, all formulas of type index can be evaluated to a
single constant during the translation. This allows us to avoid dealing with LA's
bounded index quantifiers, which would be impossible in PK.

Once we can translate LA formulas into propositional formulas, it is natural to pro­
ceed to translate LA proofs into propsitional proofs. PK provides a convenient for­
malism, because both systems work over sequents, and both systems use the same
set of rules for connective introduction and sequent manipulation. However, for con­
venience, we modify PK to include an exclusive-OR connective, EB with the following
left- and right- introduction rules:

r, A, ·B---.. .6. r, ·A, B---.. .6. r---.. (A VB), .6. r---.. (•A V ·B), .6.
r, A EBB---.. .6. r---.. A EBB, .6.

(5.5)

Since any two Frege systems over different (but complete) sets of logical connectives
are equivalent[3], so are any two PK systems over differing sets of complete connec­
tives, so we are free to make this modification. Also, since we are interested primarily
in the case that field variables are chosen from Z2 , we will restrict our translations to
this case. Similar arguments hold over other fields, but much more detail is needed
to deal with field variables and field operations.

Lemma 19 Given a formula a of LA and an object assignment cr, we can construct a

5. LA and its translations 45

propositional formula iiall,.. In this way, we build a family of propositional formulas,
depending on a for- each form·ula of LA.

PROOF: We must show how to translate the three types of objects that may appear
in an LA formula, namely indices, field elements, and matrices.

Indices: Let m and n be two index variables in a. a assigns some natural number
to each. The only atomic formulas that can appear are of the form m =index n or
m <index n. Therefore, rather than use propositional variables to represent the indices
themselves we assign a single propositional variable to each such atomic formula,
where:

lim= nil,. = Pm=n = { ~ if o-(m) = a(n)
otherwise

(5.6)

and similarly form :=::; n. This allows us to explicitly evaluate some more complicated
fomulas involving indices as well. For example, the conditional statement; we translate
the formula condindex(,B, m, n), where ,B is some atomic formula, to:

I {
llmll,.

jcond(,B,m,n)ll,. = llnll,.
if II,BII,. is true
otherwise

(5.7)

We evaluate addition, multiplication and other operations on index variables in the
usual manner to determine the value of each P(J.

Field Elements: Recall that, for our purposes, a assigns each field variable a value
from Z 2 . This means that for each field variable a, we can use a single propositional
variable which is true iff a(a) = 1. We make the obvious choices for Ofield and 1field·
Therefore, we have II all,. = a, IIOfield 11,. = 0, and ll1field 11,. = 1. A term that is a matrix
element is translated in the expected way, namely:

if 1 :=::; m :=::; a(r(A)) and 1 :=::; n :=::; a(c(A))
otherwise

(5.8)

From these base cases, we inductively construct a formula for each term as follows,
where s and t are terms which have already been converted to propositional formulas:

5. LA and its translations 46

lls+tlla- = (llslla-EBIItlla-), lls*tlla- = (llslla-AIItlla-), 11-tlla- = lltlla-, and llr1 lla- = lltlla-·
llcond(,6, s, l)lla- is the same as for index variables. It is simple to show that these
formulas give the correct values over the field of two elements. Constructed terms
and matrix summations are a little more complex. If we wish to describe a term
selected from a constructed matrix, we must modify our object assignment to select
the correct element:

II (' · '(1 1 t))II = { lltlla-' if 1 ~ llmlla- ~ llm
1
lla- and 1 ~ llnlla- ~ lln

1
lla-e /\t) m , n , , m, n a-

0
th . o erw1se

(5.9)

rJ
1 is the modified object assignment. It is identical to rJ, except that rJ

1(i) = llmlla­
and rJ

1(j) = llnlla-· In this way, rJ
1 is used to select the desired element from the A

term.

Similarly, we translate :E (matrix summation) terms over A terms by introducing
one new object assignment for each element of the A term being summed over:

II:E(Aij(m, n, t))lla- = EB lltlla-vq
1$pSflmllo-
1SqSflnllo-

(5.10)

where each of the rJ pq is identical to rJ, except that rJ pq (i) = p and rJ pq (j) = q. :E
formulas over non-constructed matrices are translated in the expected fashion:

lSvSIImllo­
lSqSflnllo-

(5.11)

where here the Apq are the propositional variables corresponding to the entries of A.

The only atomic formula over field elements is .s =field t, which we translate to (I lsi Ia- =
lit II a-).

Matrices: Variables of type matrix are represented by a number of propositional
variables. For example, an m x n matrix, A, is represented by the mn propositional
variables Apq where 1 ~ p ~ m and 1 ~ q ~ n. Constructed matrices are repre­
sented by the terms from which they are constructed, under the appropriate object
assignment.

5. LA and its translations 47

Equality for matrices is more complicated than for field elements. Given an atomic
formula:

A =matrix B (5.12)

if IJr(A)IIrr ::/:IJr(B)Jirr or JJc(A)Jirr ::/:JJc(A)Jirr (that is, if the matrices are of different
sizes) then JIA = Blla- = 0. If they are of the same size, then they are equal if all
their elements are equal, and in that case:

IIA=BIIa-= 1\ (JJe(A, i, j)Jia-pq = IJe(B, i, j)Jia-pJ (5.13)
l:O::p,q:O:: llr(A) II"

Connectives: Once we have translations for the atomic formulas of LA we can intro­
duce logical connectives/\, V, and • in the usual way namely IJou\,BIIa- = llalia-AIIfJIIa-,
I Ia V fJIIa- = I lalla- V llfJIIa-, and ll•alla- = •I lalla-· In this way we build translations of
entire LA formulas. D

Theorem 20 Translations of LA into PK are polynomially bounded. That is, for
each formula a, there is a polynomial Po: such that for any object assignment CJ to a,
the length of I lalla- is bounded by p(jCJI). Also, a is valid under CJ over the field Z2 iff
Jlalla- is a tautology.

PROOF: We prove the two claims separately, starting with the size bound. We first
prove a polynomial bound on the value of Jlmlla- for each index term m, and then a
polynomial bound on the size of Jltlla- for each field term t.

Indices: Index variables appear in the atomic formulas n = m or n ::::; m and therefore
an index term appears in the translated formula as either True or False.

However, we also need to prove that the value of any index term m is polynomially
bounded by Pind(jCJI), because this will bound the size of any matrix term in our
formula. This is easily shown: if m is some index variable, then the value of m is
bounded by jCJj (by the definition of jCJj). Then, assume that n,p are two index terms,
bounded in value by JnjjCJj and jpjjCJj respectively, then n +pis bounded in value by
in+ pjjCJj.

Field Elements: Recall that for this translation, the underlying field is assumed to
be Z2 , so all field variables are either equal to 0 or 1. This makes our translations

5. LA and its translations 48

much simpler, because Ofield and 1field can be translated to the Boolean variables 0
and 1 respectively.

Then, if t and u are terms of type field, and are bounded respectively by Pt(IO"I)
andpu(IO"I), then iit+ullo- = iltllo-EBIIullo- and llt*ullo- = iitllo-AIIullo- are both bounded
by (Pt + Pu + 1)(10"1). II- tllo- and 11t-1 llo- are similarly bounded by (Pt + 1)(10"1).

That leaves the more complicated cases. Assume >..ij(m, n, t) is some constructed
term, and assume that the translations of each entry tij are polynomially bounded
Pt;1 (10"1). Define Pmax to be the maximum of these polynomials. Then iie(>..ij(m, n, t), k, l) I lo­
is bounded by Pkt(IO"i) if k ::; m and l ::; n, and bounded by 1 otherwise (see (5.8)).
The translation of a summation term III:(>..ij(m, n, t))lio- is a formula with mn trans­
lated terms, and mn - 1 EB connectives. Each term is bounded by a polynomial less
than or equal to Pmax, so the whole translation is bounded by (mn*Pmax(IO"I)+mn-1).

Matrices: Matrix terms are either matrix variables or constructed terms. A matrix
variable A is translated into polynomially many field variables (O"(r(A))O"(c(A)) many,
in fact). Each field variable is translated into a single propositional variable. A
constructed matrix >..ij(m, n, t) is translated into mn terms. Each term gets translated
as above, and is bounded by a polynomial, so we choose the largest of these to bound
the translation of the constructed matrix (as for summation above).

Formulas: Equality of field variables translates to a constant sized formula. For
matrix variables, A = B translates to:

1\ (PA)iJ = (Ps)ij
l<;;i<;;a{r{A))
l<;;j<;;a(c{A))

(5.14)

which is bounded by ciO"I 2
, for some constant c. For equality of constructed terms,

we replace c by the largest polynomial that bounds an element of the constructed
matrices. From here, we proceed by structural induction to show polynomial bounds
(in I O" I) for each formula.

Lastly, we prove the claim that llallo- is a tautology if a is valid under O". Valid atomic
formulas of type index are trivially translated to a tautology. If m =field n is true
(under O"), then llmllo- = llnllo- is a tautology, and similarly for equality of matrix
variables. From here, we prove by structural induction that larger valid formulas are
translated into tautologies. Note that our task is considerably easier here because it is

5. LA and its translations 49

clear that E9 and 1\ are equivalent to addition and multiplication over Z2 . Translations
exist for more complicated fields, but need to use a number of propositional variables
for each field element. For more details, see [14]. 0

So we have shown that we can construct translations of LA formulas, and use those
to translate LA sequents into a propositional proof system. PK (with E9) is a natural
choice because LA is based on the sequent calculus introduced in Chapter 2. Note
that we only need E9 for translating addition; it will never appear in the original LA
proof we are translating.

If a is a valid sequent under some object assignment CT, then we know that llaii<T
is a tautology, and hence has a PK proof. It is natural to ask how to find this proof.
Luckily, a's validity implies the existence of an LA proof. PK (with E9) can use this
LA proof as a template for the proofs of the family { llaii<T }.

We have shown how LA axioms get translated into propositional formulas, but
in order to be able to use the LA proof as a template for a PK proof, we also need
to show that PK can efficiently prove the LA axioms. The full set of LA axioms are
given in the appendix. Their translations are proven in the following way:

Equality Axioms: Recall that ------+ x = x translates to ------+ x = x which is an abbre­
viation of ------+ (•x V x) 1\ (x V •X), which has a simple PK proof from the PK axiom
x ------+ x if x is a field element, and or from a set of axioms if x is a matrix variable.
The other equality axioms are proven similarly.

Index Axioms: The index axioms translate into either true or false depending on
CT. Therefore, the translated index axioms can be proven from 0 ------+ or ------+ 1 with a
constant number of weakenings.

Field Axioms: We give an example proof for field axiom F18. The axiom is ------+ 0 =f.
1 1\ a + 0 = a. It translates to:

------+ •(0 = 1) 1\ (llaii<T E9 0) = llaii<T (5.15)

where the brackets are inserted for readability. We prove this in PK (with E9) as
follows. It is easy to obtain a proof of------+ -·(0 = 1):

5. LA and its translations

--71

·1 --7 0 --7

·1 v 0 --7

·0 v 1, ·1 v 0 --7

(•0 V 1) A (•1 V 0) --7

--7 •((•0 V 1) A (•1 V 0))

Likewise, we prove --7 (//a//cr EB 0) = //a//cr:

50

0--7

//a//cr EB 0 --7 //a//cr

--7 •(//a//cr EB 0), //a//cr

--7 //a//cr V 0, •//a//cr --7 •//a//cr V •0, •//a//cr

--7 //a//cr EB 0, •//a//cr

--7 •(//a//cr EB 0) V //a//cr --7 (//a//cr EB 0) V •//a//cr

--7 (•(1/al/cr EB 0) V 1/al/cr) A ((1/al/cr EB 0) V •1/al/cr)

From these two proofs we use A introduction to get the required result. Note that
1/al/cr is some propositional variable (a is a reasonable choice) so that /Ia /I" --7 1/al/cr
is a PK axiom. The other axioms for field elements are translated similarly.

Matrix Axioms: The proofs for matrix axioms are similar, but depend on whether
the index variables are within the matrix dimensions (in which case we get a family
of proofs similar to the one above, with one for each entry in the matrix), or whether
they are outside in which case we have a short proof from the axiom 0 --7.

Once we have proven the translated axioms, we can use the rules of PK to follow the
original LA proof.

5.2 V PLA and its translations

\;/ PLA augments LA by adding the following rules for introducing bounded universal
permutation quantification:

5. LA and its translations

(P::;; n 1\ Perm(P)) ::J o:, r---> ~
(V P::;; n)o:, r---> ~

r---> ~' (P :S n 1\ Perm(P)) ::J o:

r---> ~, (VP::;; n)o:

51

(5.16)

where in the right introduction rule, P cannot appear free in the lower sequent.
Similarly, 3PLA adds two rules for introducing bounded existential permutation
quantification (although the restriction on P applies instead to the left introduction
rule). Note that (P ::;; n) is an abbreviation of (r(P) ::;; n 1\ c(P) ::;; n) where r(P)
and c(P) are the rows and columns of P respectively.

By adding these rules, VPLA (and 3PLA) allows for induction over formulas
(V P ::;; n)o: (and (3P ::;; n)o:), which LA was unable to express. Happily, it turns out
that H; is an adequate extension to P K, as we now prove.

Recall that Hi is H restricted to formulas with i alternations of 3 and V quantifiers,
and that Ht is treelike H;. We will use IT1 to denote formulas of the form (VP)a
where o: is quantifier free. (VP) is short for (VPnPlz)(VPnH3) ... (Pn-lnPnn), and
P;i is a propositional variable. H; is therefore PK, where formulas are allowed to be
in rrl) and all proofs must be treelike.

Lemma 21 V P LA formulas under some object assignment cr translate into families
of IT1 formulas. The size of these formulas is polynomial in icri.

PROOF: When o: is a formula of LA, we have already shown how to construct the
family of propositional formulas llo:lla, and shown that this family of formulas has
size polynomial in o:. Let (V P ::;; n)o: be some formula of V PLA. We can assume that
o: is quantifier-free (because if it did contain quantifiers we could uniquely rename the
quantified matrices and push them to the front block of quantifiers). Translate this
formula to the following propositional family:

(5.17)
#i i,j r-j.i,sfj

or, for 3:

(5.18)
#i i,j r-j.i,sfj

5. LA and its translations 52

where the initial block of transposition quantifiers is the 0 (n 2) block of transposition
quantifiers used to represent any permutation, llo:ll,. is the propositional formula
corresponding to the LA formula a, under object assignment CJ, and where the rest of
the formula asserts that, no matter which transpositions are taken, P remains a valid
permutation matrix. This is important, because since we quantify over transpositions
of variables (elements of P), we need some mechanism to ensure that we are left with
a valid permutation of the identity matrix.

To see that this formula accomplishes that, note that the first two conjunctions assert
that P 'begins' as the identity matrix (that is, if no transpositions are taken, P =I).
Note that any formula asserting that P has n 1's and n 2 - n D's for its entries will
suffice, and that the only reason we prefer to equate P to the identity matrix (other
than aesthetic reasons) is that all of the transpositions can be left 'off' and still
produce a valid permutation matrix.

Then, the last conjunction is satisfied if and only if at most one entry per row of
P, and one entry per column of P is 1. Since there are exactly n entries of P which
are 1, this means any permutation of the elements of P must have exactly one 1 per
row and per column to satisfy the last conjunction. That is, only transpositions which
leave P as a valid permutation matrix will satisfy this new formula. Since it plays an
analogous role to the Perm(P) formula from V PLA, we will denote this propositional
formula as IIPerm(P)IIa-· 0

Next, we must show that V PLA proves a formula, then the family of translated
formulas {I Ia II,.} has short proofs in H;.

Lemma 22 If'iP LA f--a then {llodl,.} is a family of valid sequents with polynomial
sized (in ICJI) H; proofs.

PROOF: We have already seen how formulas of LA translate into tautologies with
short PK proofs, and those arguments will hold here also. What remains is to show
that the rules for quantifier introduction can also be dealt with. We show the cases
for V- left and V- right; the 3 cases would be analogous.

The base cases need no modification. Axioms of V PLA are substitution instances of
LA axioms, and therefore are proven in H; in the same way that translations of LA
axioms were proven in PK.

Then, for rules of the form:

5. LA and its translations

r __. (P:::; n 1\ Perm(P)) :::>a, .6.
r __. (VP:::; n)jjaJJa, .6.

53

(5.19)

we assume inductively that a proof of the translated top sequent (jjfjja, __. ll.6.lla, (liP :::;
nlla 1\ IIPerm(P)IIa) :::> I lalla) exists, and that this proof is bounded by some polyno­
mial p(IO"I). Note that liP:::; nlla always evaluates to 1 or 0 immediately, depending
on O", so we do not write it in the following proof for the sake of readability. Then,
we construct a proof of the bottom sequent as follows:

llflla, __. ll.6.lla, IIPerm(P)IIa :::>I lalla
----------------\1- right
llflla __. II.6.IJa, (Vab)(IIPerm(P)IIa :::> I lalla)

Since the original proof was a valid \1 PLA proof, we know that P did not appear
free in the bottom sequent, and that therefore the variables in P (a, b, etc.) do not
appear in r or .6., so H's restriction on \/-right is satisfied and we are able to apply
the rule. We repeat this step once for each transposition that we need to introduce
(O(n2

) of them), to obtain the translated sequent:

(5.20)

where again (VP) is a shorthand for (\/PnP12)(\/PnP13) ... (VPn-lnPnn)· n is the
number of variables being permuted, and also the dimension of P under O". Therefore,
the number of quantifiers introduced at any one step is bounded by a polynomial in
10"1 (recall that jO"I is the maximum value O" assigns to any variable). Therefore, if q

is the polynomial that bounds the translation of \1 PLA formulas, then the degree of
p (from the inductive hypothesis) must be at least two higher than the degree of q.

It is at this point that the definition of H given in [9] proves to be inadequate.
The unrestricted introduction rule would have required a second upper sequent, which
would have been generated by applying the permutation rule to the original upper
sequent. In a treelike proof, we would need to duplicate 1r1 to do this, causing a
potentially exponential increase in proof size.

The \/-left rule proceeds in the same way as above introducing O(n2) transposition
quantifiers.

5. LA and its translations 54

Now we can see the real value of the canonical representation of a permutation
by transposition quantifiers (from 4.2). Although n transposition quantifiers are
sufficient to represent a particular permutation, that formulation is able to express
any permutation. This means that the same translation can be performed (with only
a polynomial increase in proof size) regardless of the particular P involved.

After this, we have an H; proof of the bottom sequent. In total, the H; proof is
bounded in size by a polynomial, because each step in the V PLA proof takes at most
polynomially many steps in the H; proof. D

While interesting in its own right, demonstrating that H; can prove translations of
V PLA does not seem to bring us closer to the desired result, namely that Hi can p­
simulate Extended PK. However, by introducing a third system, the Haj6s Calculus,
we can show just that.

Chapter 6

The Haj6s Calculus

The next stage in the simulation is to link V PLA to Extended Frege. We do this via
another seemingly unrelated system, the Hajos Calculus.

A graph is k-colourable if there exists a way to assign each of its nodes one of k differ­
ent colours such that no two adjacent nodes receive the same colour. For k :2: 3, this
problem is NP complete (see, for example, [11]). The Haj6s Calculus is a procedure
for constructing non-k-colourable undirected graphs and was first introduced in [7].
It has a single axiom, Kk+b the complete graph with k+ 1 vertices. We are interested
in the case where k = 3. Here is the graph K 4 , and its associated adjacency matrix:

l
0 1
1 0

AK4 = 1 1

1 1

1 1 l 1 1
0 1
1 0

From this axiom, the Haj6s Calculus uses three rules for constructing larger non-
3-colourable graphs. We will deal only with 'simple' graphs, that have no multiple
edges, and no edges from a vertex back to itself. The three rules are:

Addition: Given any graph, G, add any number of nodes and edges.

Join: Given two graphs G and H, with edges (g1, g2) and (h1, h2), construct a new

55

6. The Hajos Calculus 56

graph J by taking the union G U H, but with those two edges removed, a new edge
(g2 , h2) added, and the vertices g1 and h1 contracted into a single new vertex j1. For
example:

Contraction: Given a graph G, take any two non-adjacent vertices i and j. Remove
j, and add edges (i, h) for every node h that was adjacent to j (though do not add
duplicate edges).

A derivation in the Haj6s Calculus is a sequence of graphs {G1, G2 , ... , Gn} in which
each Gk is either an axiom (i.e. Gk = K4), or else follows from one or two previous
graphs (Gi where i < k) by one of the three rules given above. It is natural to ask
what kinds of graphs can be generated with such a derivation.

Lemma 23 The Haj6s Calculus is sound. That is, any graph that can be derived
using the Haj6s Calculus is non-3-colourable.

PROOF: K 4 is clearly non-3-colourablc. The Addition rule is sound, because any
graph with a non-3-colourable subgraph is non-3-colourable.

6. The Haj6s Calculus 57

For the Join rule, assume that G and H are non-3-colourable, but that a 3-
colouring f : V ____, {Red, Blue, Yellow} of J exists. Then we can produce a 3-
colouring f' of either G or H as follows. Firstly, if the colours of j 1 , 92 , and h2 are all
different, then we let f' be the same as f, but with f'(91) = f'(hl) = f(jl)· In this
case, f' 3-colours both G and H. Otherwise, we know that 92 and h2 are different
colours, and that j 1 is the same colour as one of them. If f(j1) -/= !(92), then let
f'(9I) = f(jl), and then f' 3-colours G. If f(j1) # j(h2), we let f'(hl) = f(9) and
then f' 3-colours H.

For the Contraction rule, assume that G is non-3-colourable, but let f be a 3-
colouring of the resulting graph. Since i and j 1 are non-adjacent in G, we can colour
G with f' = f except f'(i) = f'(jl) = f(i).

So, since the rules preserve non-3-colourability, and the axiom K4 is non-3-colourable,
the Haj6s Calculus produces only non-3-colourable graphs. D

The Haj6s Calculus is also complete, that is, a derivation exists for any non-3-
colourable graph. This is unnecessary for our purposes, so we do not prove it here.
For more information see [7].

6.1 The Hajos Calculus and Extended PK

Since graph 3-colourability is NP complete, there must exist graphs for which only
exponential sized HC deriviations exist, unless NP = coNP. Therefore, it is expected
that no polynomial bounds exist for the Haj6s Calculus. Pitassi and Urquhart showed
further that the HC is polynomially bounded if and only if Extended Frege proof
systems are polynomially bounded. This proof forms a key link in our proof that
H; is p-equivalent to Extended PK, and so we outline it here. For more thorough
treatment see [10].

The basic idea behind the simulation is that both 3-SAT and 3-COL are NP
complete problems, and there exists some polytime reduction back and forth between
them, that is, given a formula <I>, we obtain a graph Gif! such that Gif! is 3-colourable
if and only if <I> is satisfiable (and vice versa). Since Extended Frege/PK constructs
formulas, and the Haj6s Calculus builds graphs, we can look for a way to simulate one
with the other. (Of course, a similar argument could be advanced to show that basic
Frege/PK p-simulates the Haj6s Calculus, but it turns out that the additional power
of the renaming rule is instrumental in providing a simple proof of equivalence). In
their paper, Pitassi and Urquhart use a different kind of Frege system which is based

6. The Haj6s Calculus 58

on resolution. Resolution systems operate only on formulas in Conjunctive Normal
Form, and are used to construct unsatisfiable sets of clauses. On the other hand, the
systems presented in Chapter 2 were used only to construct valid formulas. However,
Cook and Reckhow showed the equivalence of all Frege systems, which means that all
these results apply to the systems presented in Chapter 2, although a direct simulation
is not likely to be as elegant.

Converting Graphs to Formulas

Given a graph, we would like to construct a propositional formula that asserts that
the graph is 3-colourable. Let G = (E, V) be a graph, and let ~' B; and Y; be
propositional variables that assert that the node i is red, blue, and yellow respectively.
Then the following formula asserts that each vertex gets exactly one colour:

(\ (R; ::::> (B; 1\ Y;) 1\ (Bi ::::> (R.i 1\ Y;) 1\ (Yi ::::> (R; 1\ B;) 1\ (R;y B; v Yi) (6.1)
iEV

and this one asserts that no two neighbouring vertices get the same colour:

(\ (R; v Rj) 1\ (B; v Bj) 1\ (Y; v }j) (6.2)
i,j (i,j)EE

and so then (6.1)/\ (6.2) is satisfiable iff the underlying graph is 3-colourable.

Simulating HC with Extended Frege/PK

Pitassi and Urquhart[lO] show that a basic Frege system can p-simulate the Join and
Addition rules. This can be seen by noting first that the formula representation of
K 4 has a constant number of symbols. Then, for each application of the Addition
rule, for each added vertex we weaken in a copy of (6.1), and for each added edge we
weaken in a copy of (6.2). The Join rule is handled in a similar fashion.

It is believed that Basic Frege/PK systems can not easily simulate the Contrac­
tion rule, but by adding the renaming rule we are able to do so. This is because
the contraction rule is a kind of renaming. If vertices i and j are the ones that are

6. The Hajos Calculus 59

contracted, we can simulate that with a constant number of applications of the re­
naming rule, where we rename Ri to R1, Bi to Bj, and so forth. Since Renaming PK
is equivalent to Extended PK (see Theorem 8), we obtain the desired result.

Converting Formulas to Graphs

Since for now we are working with a resolution Frege system, we are free to assume
that all the formulas we need to convert are in CNF. Then we construct a graph as
follows. For each clause, add the following subgraph:

F

T

lk----------¥'

where each li is a literal. For each variable x, we make a pair of vertices x and x,
and make an edge between them. It is these nodes that take the place of the li in the
above subgraph. Then, if the graph is 3-colourable, at least one of the literals in each
clause subgraph must have the same colour as the vertex T. Then, any assignment
that assigns true to every literal with the same colour as T must satisfy the associated
formula (because it assigns true to at least one literal per clause).

Simulating Extended Frege/PK with the Hajos Calculus

Pitassi and Urquhart[lO] show this result for a Renaming Frege system based on
resolution of clauses. The basic idea is that the shortest possible Renaming Frege
resolution refutation is the one that refutes p 1\ •p. The corresponding graph for
this formula contains a K 4 subgraph over the vertices F, N, p and j5, and therefore
can be efficiently constructed by the Hajos Calculus from an axiom and a constant
number of applications of the Addition rule. Then, graphs corresponding to larger
unsatisfiable CNF formulas can be simulated by simulating the individual rules of the
Renaming system.

We are now nearly finished with the proof of simulation. We have shown that valid
\::1 PLA sequents translate into families of H; tautologies with only a polynomial

6. The Haj6s Calculus 60

increase in sequent size and proof length. Seperately, we have outlined a proof that
the Haj6s Calculus is p-equivalent to Extended PK. To complete the chain, we need
to show that Haj6s Calculus derivations can be represented in \:!FLA.

Chapter 7

The Hajos Calculus, \i PLA, and Hi

In this chapter our aim is to show that Haj6s Calculus deriviations can be expressed
succintly in V PLA. To do this, we give a way to represent individual graphs in V PLA
formulas, and then show that chains of graphs can likewise be represented.

:JPLA and V PLA are well suited to expressing graph theoretic properties. For
example, a graph is k-colourable if and only if it can be permuted into a graph which
has a k-co-clique (k subsets of edges such that all the nodes in a given subset have
no edges between them). We can express this with the following formula of :JPLA:

(

roil
(3P:;; r(A))(3i, i2 , ... , i, :;; r(A)) PAP'~ l ; *

(7.1)

*
A is the adjacency matrix of the graph in question, where On is the n x n matrix of
all zeros, and where * can be anything. Therefore, A represents a k-colourable graph
if and only if (7.1) is a true formula of :JPLA.

The negation of this formula likewise expresses non-k-colourability. In particular,
we are interested in the case where k = 3. Let Non-3-Col be the negation of (7.1)
with k = 3:

61

7. The Hajos Calculus, 'i/PLA, and H; 62

0;1 * *
* 0;2 *
* * 0;3

]) (7.2)

7.1 'v' PLA proves the soundness of the Hajos cal­
culus

Clearly, (7.2) is a formula of 'i/PLA. It is also interesting, because, combined with
the ability to represent graphs as matrices, it gives us a way to assert (in 'i/PLA) that
a derivation in the Hajos Calculus is correct.

Lemma 24 'i/ P LA proves the soundness of the mles of the Haj6s Calculus.

PROOF: We can show that 'i/ PLA can prove the soundness of the Haj6s Calculus
(HC) by showing that it can prove the soundness of the HC rules, and that it can
prove that the axioms of the HC are non-3-colourable graphs. Since the HC has only
one axiom K 4 , this second part amounts to showing that 'i/PLA f- Non-3-Col(K4).

We can do this by proving a sequent that asserts that none of the 16 valid per­
mutations of K4 is equal to a matrix of the correct form. K4 is:

(7.3)

and if K 4 were 3-colourable, one of its permutations would equal this matrix:

(7.4)

where * is 0 or 1. So we can prove the 16 sequents of the form:

~ K~ =/= (7.4) (7.5)

7. The Hajos Calculus, VPLA, and H; 63

where K~ denotes one of the permutations of K 4 . Then, separately prove the sequent:

f\ K~ =J (7.4) ----+ Non-3-Col(K4) (7.6)
i=l...l6

and from here we cut 16 times to obtain the desired sequent.

We must also show that V PLA can prove the soundness of HC's three rules. Once
more, these are:

1) Addition: Add vertices and/ or edges to a graph.

2) Join: Take two graphs, G and H, with (g1 , g2) and (h1 , h2) be edges in G and H
respectively. Construct J by removing those two edges, adding the edge (g2 , h2) and
contracting the nodes g1 and h1 into a single vertex (ji)·

3) Contraction: Take any two non-adjacent vertices i and j. Remove j, and add
edges (i, h) for every node h which was adjacent to j where necessary (that is, do not
add duplicate edges).

To show that V PLA proves the soundness of the join rule, assume inductively that
VPLA f- Non-3-Col(A). Then let A' be the graph obtained from A by adding extra
vertices and/or edges (i.e. by applying the addition rule). An edge in A implies an
edge in A', or, in VPLA:

r(A)::; r(A') A V(i,j::; r(A))[e(i,j, A):::> e(i,j, A')] (7.7)

So A' contains a partial copy of A (with at least all the edges of A, possibly more) in
its upper-left corner. We can therefore derive the sequent:

Non-3-Col(A) ----+ Non-3-Col(A') (7.8)

in V PLA and cut to obtain the conclusion we want.

Similarly, assume we have proofs of Non-3-Col(A) and Non-3-Col(B). Let (i 1 , i 2)

and (j1, j 2) be edges in those graphs, respectively, and let C be the graph obtained
by joining vertex i1 to vertex j 1 , and merging i 2 and j 2 . C can therefore be described
as follows:

7. The Hajos Calculus, VPLA, and H; 64

(7.9)

where A[ilj] denotes A with the ith row and lh column removed. The last row and
column of this matrix corresponds to the new vertex that was created by merging
i2 and j 2 . D 1 and D 2 are column vectors. D 1 has a 1 in the kth row if and only if
e(A, i2 , k) = 1, likewise D2 has a 1 in the kth row if and only if e(B,j2 , k) = 1. Q is
the matrix of all zeros, except for a single 1 in the (i1,j1) position (because the edge
added between those two vertices is the only new one between the two subgraphs).

Then, because A and B appear on the diagonal of C, we can derive the sequent
Non-3-Col(A) 1\ Non-3-Col(B)--+ Non-3-Col(C).

The contraction case is similar, except here we have replaced two vertices from the
same graph with one new one. If i and j are the contracted vertices, then this matrix
represents the resulting graph A':

A'= [A[ili][jlj] D]
Dt 0 (7.10)

where A[iiJ][kll] is A with rows i and k, and columns j and l removed. D is again a
column vector with D[k] = 1 iff e(A, i, k) = 1 V e(A,j, k) = 1. Then in a similar way,
we can derive Non-3-Col(A) --+ Non-3-Col(A'). D

Encoding Hajos deriviations in V PLA

We can then show that V PLA can prove the soundness of the Haj6s Calculus as a
whole. A useful tool in doing so is the idea of encoding an entire HC deriviation in
a single matrix. Let A1, A2, A3, ... , An be a HC derivation of some non-3-colourable
graph An, where each Aj is either K 4, or else follows from one or two A;, i < j.

Then, pad each of these matrices with rows and columns of all zeros, until all the
A; are of the same dimensions. Next, embed them along the main diagonal of a new
matrix, Y. We can then write:

7. The Hajos Calculus, VPLA, and H; 65

A1 0 0
0 A2 0 0

Y= 0 0 A3 0 (7.11)
0
0 An

and let HC(Y) be a formula stating that Y is indeed a valid HC derivation. Such a
formula can be stated as follows:

v
v

Join(A, A11 , A1J
Contraction(A, Aj1))]

(7.12)

where Addition, Join, and Contraction are formulas expressing that Ai is formed
from each of the rules of the Haj6s Calculus.

For example, one way of formulating Addition(B, A) would be:

(r(A) ::::; r(B) /\ c(A) ::::; r(B)) /\ 1\
i=l. .. r(A),i'fi2
j=l. .. c(A),j'fh

e(A, i, j) =:l e(B, i, j)

Join(C, A, B) is (assuming the vertices are named as above):

(r(C) = r(A) + r(B)- 1) /\ (c(C) = c(A) + c(B)- 1) /\

(7.13)

l\i=L..r(A),i;ti2 e(C,i,j) = e(A,i,j) (\ (7.14)
j=l. .. c(A),#i2

1\ i=L .. r(B),i'f12 e(C, r(A) + i, c(A) + j) = e(B, i, j)
j=l...c(B),j#}2

Theorem 25 V P LA proves the soundness of the H aj6s Calculus.

7. The Haj6s Calculus, VPLA, and H; 66

PROOF: To prove that the Haj6s Calculus is sound, V PLA must prove that any
graph produced by a Haj6s Calculus derivation is indeed non-3-colourable. In other
words, if Y is (7.11) then VPLA can prove the sequent:

HC(Y) -+ Non-3-Col(An) (7.15)

We can prove this by induction on k, the number of intermediate matrices en­
coded in Y. If k = 1, (Y = [A1]), then A 1 must encode K 4 , so the base case
is simple. The inductive step follows from the previous lemma, because if Y =
[A1A2 ... Ai ... A1 ... An], and we assume that a proof exists for (Vk' < n)HC(Y) -+
Non-3-Col(Ak') then the lemma gives us either Non-3-Col(A)ANon-3-Col(A1) -+
Non-3-Col(An) or Non-3-Col(Ai) -+ Non-3-Col(An) for some i, j < n depending
on which rule was used to derive An- D

Since Haj6s derivations can be shown to be correct in V PLA, we can, by the
results of Chapter 5, translate (7.11) into a family of H; tautologies with only a
polynomial increase in size. This completes our proof that Extended PK can be p­
simulated by H;, and together with Theorem 18 allows us to state the main result of
this thesis:

Theorem 26 Extended PK and H; are p-equivalent

PROOF: Theorem 18 shows that Extended PK p-simulates H;. For the other direc­
tion, suppose there is a sequent S with an associated Extended PK proof 7re of S.
There is a polytime function f such that j(7re) is an H; proof of S.

This is a several stage process, following from chapters 5, 6, and 7. Firstly, let •S
be the negation of the formula equivalent to S (namely •(/\ r =::> V .6..)), and construct
the corresponding graph G~s as given in chapter 6. This graph is non-3-colourable
if and only if •S is unsatisfiable. Pitassi and Urquhart [10] show that there is a
polytime function that makes this conversion.

Then, as shown above, if Y~s encodes a Haj6s Calculus deriviation of G~s then
there are VPLA proofs of-+ HC(Y~s) and HC(Y~s) -+ Non-3-Col(G~s). From
these, we obtain a VPLA proof of-+ Non-3-Col(G~s).

In chapter 5, building on an idea from [13], we have shown that V PLA translates
into short H; proofs. What this means is that there is a polytime function that
takes a V PLA sequent and an object assignment a and produces an H; proof of the

7. The Hajos Calculus, \I PLA, and H; 67

translated sequent which is polysized in iai. There must therefore be short H; proofs
of:

---+ IINon-3-Col(G~s)llo-

This does not give us precisely what we need, because we are looking for an H;
proof of S. However, Pitassi and Urquhart also give a procedure for transforming
non-3-colourable graphs into formulas. H; could efficiently prove this procedure is
correct, and therefore prove the sequent

IINon-3-Col(G~s)llo----+ S

from which we cut to obtain the H; proof of S that we want. This multistep
procedure constitutes the polytime formula that we need to convert Extended PK
proofs into H; proofs, and completes the main result of this thesis. 0

Chapter 8

Conclusion

Therefore, we arrive at the interesting conclusion that Extended PK (and hence
Extended Frege) is p-equivalent to H;. We showed one direction, that Extended PK
can p-simulate H;, directly. The other direction was shown indirectly, by showing
that H; can efficiently prove translations of true formulas from V PLA, and then
repeating results from Pitassi[lO] and from Soltys[13] to show that this implies that
H; can in fact p-simulate Extended Frege. The ramifications of this are powerful. A
single block of transposition quantifiers possesses the same power as a single block of
classical quantifiers, and the same power as being able to substitute a formula for a
variable in a propositional proof. Futhermore, Hi is able to capture all of polynomial
time reasoning, and is another propositional proof system that corresponds toP /poly
(decision problems solvable with non-uniform polysize circuits).

During the course of the proof, several interesting points occurred which lead naturally
to further work in this field. Firstly, does a direct simulation of Extended PK by H;
exist? This situation is analgous to the proof of equivalence of Extended PK and
Substitution PK mentioned in Chapter 2. It was only after Dowd[5] gave an indirect
proof of the equivalence that Krajicek[8] was able to give a direct proof. Krajicek's
proof is modelled on Dowd's, and is nearly indecipherable without knowledge of the
indirect simulation. A direct simulation based on our results may be possible.

Secondly, H and G appear to be very similar systems. In Chapter 3 we gave a
proof (from [8]) that Gi and Extended PK are p-equivalent. Similarly, we showed that
Hi is p-equivalent to Extended PK provided the definition of H given in Chapter 4 is
used. Treelikeness appears to be unpreservable if H is defined as in [9]. It would be
interesting to see if the other, unrestricted definition of H could p-simulate Extended

68

8. Conclusion 69

PK and maintain treelikeness.

Thirdly, the link between H and G is open to further exploration. We have shown
that H; and Gi are p-equivalent. The natural extension to this is to ask whether Hi
and Gi are equivalent for all i. If so, we would know that H and G were equivalent
propositional proof systems.

Overall, H is a small but significant contribution to propositional proof complex­
ity. In addition to being p-equivalent to Extended PK (and so to Substitution PK,
Renaming PK, and TF PK), it provides a natural propositional representation of the
first-order logical theory V PLA, and is therefore a good system to use for low-level
reasoning about graphs or algebraic structures.

Chapter 9

Appendix

First we show that formulas of the form B, a(1) ~ a(B) have short PK proofs.
Sequents of the form B, a(B) ~ a(1) can be shown to have short proofs in almost
exactly the same fashion. Some interesting special cases are when B is a single
variable, or when B is a list of formulas. The former case is simply the base case shown
below. The induction required to prove the latter case is slightly more complicated,
but not much so.

Lemma 27 For formulas B and a there are O(IB!Inl 2
) sized proofs in TF PK of

B, a(1) ~a(B) and •B, a(O) ~a(B)

PROOF: The proof is by induction on the number of logical connectives (V, 1\, and•) in
a. We show the case forB, a(1) ~a(B); the •B, a(O) ~a(B) proceeds analogously.

Base Case: a has no logical connectives (i.e. a(x) sy;;._t. x, for some x). Then:

x~x

1 ~ 1

B,1 ~ 1

which has size !B! + 7, which is O(IBII12 !) = O(IBI!a2 1).

Induction Hypothesis: Let a be any formula with k or fewer connectives and
assume that B, a(1) ~ a(B) has a TF PK proof of size at most C · IBI!a2 !. The
actual value of C will become apparent later.

70

9. Appendix 71

Induction Step: Let o: be a formula with k + 1 logical connectives. There are three
cases, one for each possible outermost connective of o:.

Case 1) V. Then o: is of the form r V J where there are a total of k logical connectives
in r and J. Therefore, by the induction hypothesis, they have proofs 1f-y and 1ft> of
length at most C ·1BIIrl2 and C ·IBIIJI2 respectively. From this:

: 7ft)

B, J(1) --7 J(B)
: 1f-y weak.

B, r(1) --7 r(B) B, J(1) --7 J(B), r(B)
-------weak. exch.
B, r(1) --7 r(B), J(B) B, 8(1) --7 r(B), J(B) _________________ V -left

B, 1 (1) V J(1) --7 r(B), J(B) .
----------V- rzght
B, 1 (1) V J(1) --7 r(B) V J(B)

Which, for C sufficiently high, has size at most:

l1r-rl + l1r<>l + 7IBI + 6lriiBI + 6IJIIBI + 4lrl + 5IJI + 3

< c ·1BIIrl2 + c ·IBIIJI2 + 7IBI(1 + lrl + IJI) + 5(1 + lrl + IJI)
c ·1BIIrl2 + c ·IBIIJI2 + (7IBI + 5)((1 + lrl + IJI)

< C ·1BIIo:2 1

Case 2) /\. Then o: is of the form r 1\ J, and we proceed as above:

: 1f "Y

B, r(1) --7 r(B) . 1f

-------weak. · "Y

J(1), B, r(l) --7 r(B) B, J(1) --7 J(B)
------- exch. weak.
B, 8(1), r(l) --7 r(B) r(1), B, J(1) --7 J(B)
------- exch. exch.
B, r(1), J(l) --7 r(B) B, r(1), J(l) --7 J(B) .
----------------1\- rzght

B, r(l), J(1) --7 r(B) 1\ J(B)
----------1\- left
B, r(1) 1\ 8(1) --7 r(B) 1\ J(B)

Which has size at most:

9. Appendix

17TI'I + 17T.sl + 9IBI + 6IBII!I + 5IBII81 + 81fl + 8181 + 3

< c ·1BIIrl2 + c · IBII812 + 9IBI(1 + lrl + 181) + 8(1 + lrl + 181)
< c. IBI(1 + lrl + 181) 2

C·IB11al2

72

Case 3. '· If the outermost connective is •, then either i) a is of the form ''/, or
ii) a is of the form •(r o 8) where o is either 1\ or V.

i) If a is ''/, then 1 has only k- 1 logical connectives, and, as above, there is proof
of it with size at most C · 1BIIrl2

. We then obtain:

This has size at most:

: 1T I'
B, 1(1) ---* r(B)

------ -, - right
B---* •r(1), r(B)
-------,-left
B, ••r(1) ---* r(B)
-------•- left
B, ••r(1), •r(B) ---*
--------,-right
B, ••r(1) ---* ••r(B)

17T~'I + 5IBI + 5lriiBI + 5lrl + 10
< c ·1BIIrl 2 + 5IBI(1 +Ill)+ 10(2 +Ill)
< c ·1BIIrl 2 + (5IBI + 10)(2 + lrl)
< c ·IBI(2 + lrl)2

C·IBIIal 2

ii) Let o be V (the case where o is 1\ proceeds similarly). Then a is •(r V 8). Since a

has k + 1 logical connectives, r and 8 each have fewer than k. Therefore, 'r and -,8
have k or fewer connectives and by the induction hypothesis, we have 0/1 PK proofs
of B, •r(1) ---* •r(B) and B, •8(1) ---* •8(B). We denote them by ?T~I' and ?T~.s, and
observe that they have size at most C ·IBI(Irl + 1? and C ·IBI(I81 + 1)2 respectively.
Then:

9. Appendix

: 1f ~/'
1'(1) --? 1'(1) .
-----•- rzght

B, •f'(1) --? •f'(B) --? '/' (1)' ')' (1)
-------,-left
••')'(1) --? 1'(1) B--? ••f'(1), •f'(B)

-------weak. ------weak.
B--? ••f'(1), •f'(B), /' B, ••1'(1) --? 1'(1)

--------weak.
B--? ••f'(1), f', •f'(B) B, ••f'(1) --? 1'(1), •/'(B)

and separately derive:

B--? 1'(1), •f'(B)
------ exch.
B--? •f'(B), 1'(1)
--------,-left
B, ••f'(B) --? 1'(1)

--------weak.
f'(B), B, ••f'(B) --? 1'(1)
-------- exch
B, I'(B), ••f'(B) --? 1'(1)

'"Y(B) --? '"Y(B) .
----- --,-left
'"Y(B), •f'(B)--?
----- --, - right
I'(B) --? ••f'(B)

B, I'(B) --? ••f'(B)
--------weak.
B, I'(B) --? ••f'(B), 1'(1)

and then cut to obtain the desired sequent:

cut

B, I'(B), ••f'(B) --? f'(1)B, I'(B) --? ••f'(B), 1'(1)
----------------cut

B, I'(B)--? 1'(1)

This has size at most:

11f~l'l + 14IBI + 2111'1 + 231f'IIBI + 34

Likewise, from B, •6(1) -> --,J(B) we have a proof of B, 6(B) --? 6(1) of size:

From here, we can obtain a proof of a as follows:

73

9. Appendix

: ''/' - dim. : ---,---,15 - elim.
B, r(B) ---7 1(1) B, 6(B) ---7 15(1)

-------weak. - exch.
B, r(B) ---7 1(1), 15(1) B, 6(B) ---7 1(1), 15(1)
---------------- V -left

With size at most:

B, r(B) V 15(B) ---7 1(1), 15(1) .
---------V- rzght
B, r(B) V 15(B) ---7 1(1) V 15(1) .

-------------,- rzght
B ---7 ---,('y(B) V 15(B)), 1(1) V 15(1)
---------- exch.
B ---7 1(1) V 15(1), ---,(1(B) V 15(B))

---------------,-left
B, ---,('y(1) V 15(1)) ---7 ---,('y(B) V 15(B))

l1r~-yl + 14IBI + 21111 + 23lriiBI + 34

+ l1r~"l + 14IBI + 211151 + 23I15IIBI + 34
+ 10IBI + 7lriiBI + 7I15IIBI + 8lrl + 81151 + 13
= l1r~-yl + l1r~"l + 38IBI + 30iriiBI + 30I15IIBI + 29lrl + 291151 + 81

74

< c · IBI(Irl + 1)2 + c · IBI(I151 + 1)2 + 38IBI(Irl + 1151 + 2) + 29(111 + 1151 + 2)
c. IBI(Irl + 1)2 +c. IBI(I151 + 1? + (38IBI + 29)(1rl + 1151 + 2)

< c · IBI(Irl2 + lrl + 1 + 1151 2 + 1151 + 1 + lrl + 1151 + 2)
c. IBI(Irl2 + 1151 2 + 2lrl + 21151 + 4)

< c. IBI(Irl + 1151 + 2) 2

C·IBIIal 2

Therefore, there are TF PK proofs of B, a(1) ---7 a(B) and ---,B, a(O) ---7 a(B) of size
O(IBIIal 2

), where we choose C to be some reasonably high constant (say, 100). 0

Lemma 28 If S = r ---7 ~ ·is some val-id sequent, and both r and ~ are variable­
free (that is, r and~ contain only 1, 0, V, /\, and---,), then S has a PK proof of size
O(ISI2

).

PROOF: From the basic semantics of a sequent, we see that if r ---7 ~is a variable-free
tautology, then either r is false, or ~ is a tautology, or both. This means that some
formula in r is false, and/ or some formula in ~ is true. Call this the critical formula.

9. Appendix 75

We show how to construct a short proof of the critical formula (call it \ll), and then
we can use repeated weakenings to introduce the rest of r and .6..

We proceed by induction on the number of logical connectives (A, V, and •) in a.
If a has no connectives, then it must be either a 0 on the left, or a 1 on the right.
Then we proceed from the appropriate PK axiom:

o~ or ~1

and weaken to introduce the other formulas in r and .6.. This takes one step per
formula in the sequent, and thus the proof is linearly bounded.

Assume that whenever the critical formula has k or fewer connectives, then, de­
pending on whether a is true or false, an PK proof of either a ~ or ~ a exists, and
that the proof has size I a 1

2
.

Next, let a be a variable-free formula with exactly k + 1 connectives. For clarity,
suppose that a appears on the right (and hence is true). The other case is basically
identical. Then we must give a short proof of~ a. There are three cases, depending
on the outermost connective of a.

If ~ a is ~ \lJ V <I> then either \lJ or <I> is true. Assume that \lJ is true. Since ~ \lJ has
at most k connectives, we have a proof 1fw with size at most l\l12 l. Then:

Which has size at most:

lwl2 + 21w1 + 2I<I>I + 1

< lwl2 + I<I>I2 + 2I<I>IIwl + 21w1 + 2I<I>I + 1

(lwl + I<I>I + 1)2

la12

9. Appendix 76

If a is \[! 1\ <I> then both \[! and <I> must be true and have at most k connectives each.
Then proofs 1fw and 1fq, exist of-+ \[! and -+ <I>. These proofs have size at most IW2

1

and I<I> 2 1. Then:

which has size at most:

: 1fw : 1fq,

-+W -+<I>
----1\ - right

-+ \[! 1\ <I>

IWI
2

+ I<I>I
2

+ IWI + I<I>I + 1

< (lwl +I <I> I+)
2

ia12

Lastly, if a is -,<]) then <I> must be false. Since it has k connectives, there is a proof
1r <I> of <I> -+ with size at most I <I> 2 1. Then:

: 1fq,

<I>-+
--•-right
-+ -,<])

Which has size at most I<I>I 2 + I<I>I + 1 < (I<I>I + 1)2 = ial 2
.

9.1 LA Axioms

D

Here we enumerate the axioms of LA. Recall that LA has three types, which we will
represent by the following letters: indices { i, j, k, ... }, field elements {a, b, c, ... }, and
matrices {A, B, C, .. . }.

9. Appendix

Firstly, the five axioms for equality:

El --7 X= X

E2 :r = y --7 y = x
E3 (X = y (\ y = z) --7 X = z
E4 X1 = Yl 1 • • ·, Xn = Yn --7 Jx1 · · · Xn = fY1 · · · Yn

E5 i1 = i2, j1 = J2, i1 ~ i2 --7)I = J2

Then the 12 axioms for indices:

I6 --7 i + 1 # 0
I7 --7 i * (j + 1) = (i * j) + i
18 i + 1 = j + 1 --7 i = j
19 --7 i ~ i + j
110 --7 i + 0 = i
Ill -7i~j,j~i

112 --7 i + (j + 1) = (i + j) + 1
113 i ~ j, j ~ i --7 i = j
114 --7 i * 0 = 0
115 i ~ j, i + k = j --7 j - i = k

115a i -j;_--7 j - i = 0
116 j i= 0--7 rem(i,j) < j
116a j # 0 --7 i = div(i, j) + rem(i, j)
117 a --7 cond(a,i,j) = i
117a -,a --7 cond(a, i, j) = j

The 10 axioms for field elements:

77

9. Appendix 78

F18 --+0~ 1Aa+O=a
F19 --+a+ (-a)= 0
F20 -+1*a=a
F21 a~ 0--+ a* (a-1

) = 1
F22 -+a+b=b+a
F23 -+a*b=b*a
F24 --+a+ (b +c) = (a+ b)+ c
F25 --+a* (b *c) = (a* b)* c
F26 --+a* (b +c) =a* b +a* c
F27 o:--+ cond(o:, a, b)= a
F27a •o:--+ cond(o:, a, b) = b

Finally, the 7 axioms for matrices:

M28
M29
M29a
M29b
M30
M31
M32
M33
M34

(i = 0 V r(A) < i V j = 0 V c(A) < j)--+ e(A, i,j) = 0
---t r(>.ij (m, n, t)) = m
--+ c(>.ij (m, n, t)) = n
1 :::; i, i :::; m, 1 :::; j, j :::; n --+ e(>.ij (m, n, t) , i, j) = t
r(A) = 1, c(A) = 1--+ ~(A) = e(A, 1, 1)
r(A) = 1, 1 < c(A) --+ ~(A) = ~(>.ij (1, c(A) - 1, A)ij)) + A1c(A)
c(A) = 1 --+ ~(A) = 2:(At)
1 < r(A), 1 < c(A)--+ ~(A)= e(A, 1, 1) + ~(R(A)) + ~(S'(A)) + ~(M(A))
r(A) = 0 v c(A) = 0--+ 2:(A) = 0

Bibliography

[1] P. Beame and T. Pitassi, "Propositional Proof Complexity: Past, Present,and
Future," Theoretical Computer Science Enter-ing the 2Pt Century, pp. 42-70,
2001.

[2] S. R. Buss, "Some remarks on the lengths of propositional proofs," Ar-chive for
Mathematical Logic, vol. 34, pp. 377-394, 1995.

[3] S. Cook and R. Reckhow, "On the Lengths of Proofs in the Propositional Calcu­
lus," in The Sixth Annual ACM symposium on the Theory of Computing, pp. 135-
148, 1974.

[4] S. A. Cook, "CSC 438F /2404F Computability and Logic (course notes)." Offered
at the University of Toronto, Department of Computer Science, 2003.

[5] M. Dowd, Propositional Representation of Ar-ithmetic Pmofs. PhD thesis, Uni­
versity of Toronto, 1979.

[6] S. B. (ed.), Handbook of Pmof Theory. Elsevier, 1998.

[7] G. Haj6s, "Uber eine Konstruktion nicht n-fiirbbarer Graphen," Wiss. Zeitschr.
Martin Luther Univ. Halle- Wittenberg, vol. 10, pp. 116-117, 1961.

[8] J. Krajicek, Bounded Ar-ithmetic, Propositional Logic, and Complexity Theory.
Cambridge University Press, 1995.

[9] T. Paterson and M. Soltys, "A propositional proof system with quantification
over permutations of variables." Submitted for publication in the Journal of
Discrete Applied Mathematics, 2005.

[10] T. Pitassi and A. Urquhart, "The complexity of the Haj6s Calculus," SIAM
Journal on Discrete Mathematics, val. 8 (3), pp. 464-483, 1995.

79

BIBLIOGRAPHY 80

[11] M. Sipser, Introduction to the Theory of Computation, Second Edition. Thomson
Course Technology, 2006.

[12] M. Soltys, The Complexity of Derivations of Matrix Identities. PhD thesis, Uni­
versity of Toronto, 2001.

[13] M. Soltys, "LA, permutations, and the Hajos calculus," in The 31st International
Colloquium on Automata Languages and Programming, pp. 1176-1187, 2004.

[14] M. Soltys and S. Cook, "The Proof Complexity of Linear Algebra," Annals of
Pure and Applied Logic, vol. 130, pp. 277-323, 2004.

