
IMPLEMENTATION OF PMC

IMPLEMENTATION

OF

PATTERN MATCHING CALCULUS

USING TYPE-INDEXED EXPRESSIONS

By
XIAOHENG JI, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University
@Copyright by Xiaoheng Ji, September 2005

MASTER OF SCIENCE (2005)
(Department of Computing and Software)

McMaster University
Hamilton, Ontario

TITLE: Implementation of Pattern Matching Calculus Using Type-indexed Expressions
AUTHOR: Xiaoheng Ji, B.Sc. (Wuhan University, China)
SUPERVISOR: Dr. Wolfram Kahl
NUMBER OF PAGES: viii, 109

ii

Abstract

The pattern matching calculus introduced by Kahl provides a fine-grained mechanism of
modelling non-strict pattern matching in modern functional programming languages. By
changing the rule of interpretting the empty expression that results from matching failures,
the pattern matching calculus can be transformed into another calculus that abstracts a
"more successful" evaluation. Kahl also showed that the two calculi have both a confluent
reduction system and a same normalising strategy, which constitute the operational seman
tics of the pattern matching calculi.

As a new technique based on Haskell's language extensions of type-saft cast, arbitrary-rank
polymorphism and generalised algebraic data types, type-indexed expressions introduced by
Kahl demonstrate a uniform way of defining all expressions as type-indexed to guarantee
type safety.

.
In this thesis, we implemented the type-indexed syntax ap.d operational semantics of the
pattern matching calculi using type-indexed expressions. Our type-indexed syntax mirrors
the definition of the pattern matching calculi. We implemented the operational semantics of
the two calculi perfectly and provided reduction and normalisation examples that show that
the pattern matching calculus can be a useful basis of modelling non-strict pattern matching.

We formalised and implemented the bimonadic semantics of the pattern matching calculi
using categorical concepts and type-indexed expressions respectively. The bimonadic se
mantics employs two monads to reflect two kinds of computational effects, which correspond
to the two major syntactic categories of the pattern matching calculi, i.e. expressons and
matchings. Thus, the resulting implementation provides the detotational model of non-strict
pattern matching with more accuracy.

Finally, from a practical programming viewpoint, our implementation is a good demonstra
tion of how to program in the pure type-indexed setting by taking fully advantage of Haskell's
language extensions of type-safe cast, arbitrary-rank polymorphism and generalised algebraic
data types.

iii

Acknowledgements

My deep gratitude and appreciation first and foremost go to my supervisor, Dr. Wolfram Kahl, for
introducing me to the functional programming language Haskell, and for his thoughtful guidance
and many productive discussions through out this thesis research, and for all invaluable support
needed to finish this thesis, especially during the final few weeks of the genesis of this thesis. This
thesis benefits greatly from his incredible enthusiasm in teaching and research as well as his deep
insights, instructive suggestions, and patient revisions.

I would like to express my sincere thanks to Dr. Christopher Anand for his time to be the chair
of my thesis defense committee. I am indebted to Dr. Jacques Carette for his time to be on
my thesis defense committee and his programming languages graduate course, which enriched my
understanding of programming languages. I sincerely thank Dr. Hitoshi Furusawa for discussions
on my thesis research.

Finally, I am infinitely grateful to my wife Wei and my family for their love, support and patience
during the genesis of this thesis.

IV

Table of Contents

Abstract

Acknowledgements

Chapter 1 Introduction

1.1 Motivation

1.2 Background: The Pattern Matching Calculi

1.2.1 Abstract Syntax

1.2.2 Operational Semantics

,'

1. 3 Background: The Functional Programming Language Haskell .

1.4 Background: Type-Indexed Expressions .

1.4.1 Variables

1.4.2 Type-indexed A-expressions

1.4.3 Type-Indexed Maps ..

1.4.4 Expression Evaluation

1.5 Contributions of the Thesis

1.6 Structure of the Thesis ...

Chapter 2 Type-Indexed Implementation of PMC

2.1 Patterns and Expressions .

2.1.1 Variables ...

2.1.2 Constructors

2.1.3 Patterns . .

2.1.4 Expressions

2.2 Matchings

2.3 PMC Auxiliary Function Library

2.4 Examples

v

lll

lV

1

1

2

3

5

6

7

7

7

8

10

11

12

13

13

14

15

16

16

17

17

19

2.4.1 Example 1 .

2.4.2 Example 2 .

2.4.3 Example 3 .

2.4.4 Example 4.

2.4.5 Example 5 .

2.5 Summary

Chapter 3 Operational Semantics of PMC

3.1 Substitutions . .

3.2 Reduction Rules .

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

PMC Expressions Reduction Rules

First-order PMC Matchings Reduction Rules

Second-order PMC Matchings Rules or Rule Schemas

Fixed-point Reduction Rules

Unioning All Reduction Rules

Type-Lost Problem of Implementing Rules Using Rewriting

3.3 Reduction Examples

3.3.1 One-Step Reduction Example .

3.3.2 Many-Step Reduction Example

3.3.3 'fransformation Rule for Interpretting Operators .

3.3.4 Difference Reduction Sequences of the Two Calculi

3.4 Normalisation

3.4.1 Leftmost-Outermost Strategy

3.4.2 Normalising Strategy

3.5 Normalisation Examples ..

3.5.1 Reduction to SHNF .

3.5.2 Normalisation Examples of PMC Fixed-point Expressions .

3.6 Summary

Chapter 4 Bimonadic Semantics of PMC

4.1 Introduction

4.2 Categorical Notation

4.3 Formalisation of the Bimonadic Semantics of PMC .

4.4 Monads

VI

19

21

24

26

26

27

28

28

30

30

31

32

34

34

35

38

38

39

40
41

44

44
45

47
47
48

49

50

50

51

53

57

4.4.1 Matching Monad .

4.4.2 Expression Monad for PMC0

4.4.3 Expression Monad for Resurrection of Matching Failure .

4.5 Implementation of Type Semantics

4.6 Variable Semantics

4.6.1 Variable Assignments .

4.6.2 Operator Semantics ..

4. 7 Constructor Semantics

4. 7.1 Constructor Assignments .

4. 7.2 Semantics of Pattern Constructors

4.8 Implementation of Bimonadic Semantics .

4.8.1 Semantic Function for Patterns . .

4.8.2 Semantic Function for Expressions

4.8.3 Semantic Function for Matchings

57

58

58

59

61

61

62

63

63

65

67

68

69

70

4.9 Evaluation Examples 71

4.9.1 Four Simple Evaluation Examples 71

4.9.2 Evaluation Example of Variable Scope 73

4.9.3 Different Evaluation Results of the Two Calculi 74

4.10 Summary . 75

Chapter 5 Conclusions and Future Work 76

5.1 Summary of the Thesis . 76

5.2 Related Work . . 77

5.3 Accomplishments 77

5.4 Future Work . . . 78

Appendix A Syntax of PMC 79

A.1 Variable . . . 79

A.2 Constructors. 82

A.3 Patterns . . . 83

A.3.1 The Definition of Patterns 83

A.3.2 HasVar and HasConstructorApp classes and instances. 84

A.4 Type-Indexed Syntax of Pattern Matching Calculi 84

A.4.1 Type-Indexed Implementation of Syntax of Pattern Matching Calculi 85

vii

A.4.2 HasVar instance

Appendix B Text Representations of PMC Terms

B.1 Text Representation of PMC Terms

B.2 Examples of Text Representations of PMC Terms

Appendix C Tool Modules from Kahl's work

C.1 Type-Indexed Maps

C.2 Q-Combinators

C.3 Transformations and Transformation Combinators .

C.4 Transformation Transformers

C.5 Prelude Extensions

C.5.1 Material Related to Show

C.5.2 Lists . .

C.5.3 Monads

C.5.4 Other Datatypes

Appendix D a-conversion

D .1 a-conversion

D.1.1 a-conversion .

D.1.2 Variable Suffixes

D.1.3 Renaming Variables.

D.2 a-conversion Examples

D.2.1 Closure

viii

86

87

87

89

91

91

94

95

96

98

98

99

99

99

100

100

100

101

102

103

106

Chapter 1

Introduction

"Computer languages that have a syntax for discriminating among data with different struc
tures are said to perform pattern matching" [1]. Term rewriting languages employ pattern
matching as a fundamental way of evaluating a program to a result. Functions in functional
programming languages can also be defined and evaluated using pattern matching. Issues
such as the order of matching against patterns and the mechanisms of attaching a compu
tational condition to supplement the structural pattern are important topics in the field of
pattern matching.

Haskell is a modern, purely functional programming languag('i, where functions can be defined
using pattern matching. In the Haskell 98 language repo.rt [9], for semantics of pattern
matching, the only internalisation are case expressions. Pattern matching is translated into
case expressions to interpret. In Kahl's seminal paper [11], he argued that case expressions
mix too many different aspects of rewriting into a single syntactic construct, and proposed
pattern matching calculi (PMC) as a more attractive alternative. Moreover, he presented
operational semantics of PMC to demonstrate how to execute a program in PMC setting.
Kahl also provided a mechanised confluence proof performed in Isabelle 2003 [12] and a
normalisation strategy for PMC.

The Glasgow Haskell Compiler (GHC) is an industrial strength Haskell compiler. GHC pro
vides a language extension of generalised algebraic data types (GADTs). GADTs, which are
discussed in [20], are a modest generalisation of conventional data types. GADTs provides
the mechanism of defining well typed programs in syntactical level. Based on Haskell's lan
guage extensions of type-safe cast, arbitrary-rank polymorphism, and GADTs, type-indexed
expressions are introduced by Kahl in [14], which demonstrates a uniform way of defining
all expressions as type-indexed to capture more program abstraction. The mechanism for
using type-indexed expressions to model PMC data structures can offer both convenience
in programming and clarity in code. With PMC syntax completely based on type-indexed
expressions, we can model PMC's data structures with surprising accuracy by mirroring the
original definition in [11]. Moreover, type-indexed expressions can express function proper
ties through the families of index types and thus capture more program errors at compile
time.

1.1 Motivation

The motivation of our research in this thesis is that, by taking full advantage of the power
of type-indexed expressions, we can provide a more robust and efficient implementation of

1

MSc Thesis- Xiaoheng Ji McMaster University- Computer Science

PMC, which itself is a new calculus providing the two fine-grained interpretations of the
empty expression that results from matching failures.

The rest of this chapter is organized as follows. We first introduce the background that
our work is based on, which includes Section 1.2 pattern matching calculus and Section 1.4
type-indexed expressions. We then outline contributions of the thesis in Section 1.5. Finally,
we give the structure of the thesis in Section 1.6.

1.2 Background: The Pattern Matching Calculi

The operational semantics of functional programming languages studies how to execute pro
grams. It is usually explained by translating a function into a set of term rewriting rules in
a certain kind of term rewriting system or a single expression in an appropriate A-calculus.

Modern functional programming languages support function definitions based on pattern
matching. In Haskell 98 report [9], the meaning of pattern matching in function definitions
is specified in terms of case expressions. ·

In this section, the pattern matching calculi will be introduced. Most material of this section
has been adapted slightly from [11 J.
In Haskell, we can use pattern matching to define a function that determine whether a list
is empty or not as follows:

isEmtpyList (x: xs) = False
isEmtpyList ys = True

This function will be translated into case expressions to define its operational semantics:

isEmptyList zs = case zs of
(x: xs) ~ False
ys ~True

However, seen as an internalisation of pattern matching, case expressions is not completely
analogous to the internalisation of function abstraction in A-calculus. Case expressions mix
too many different aspects of rewriting into a single syntactic construct, not only including an
addition application to an argument, but including such complicate mechanisms as Boolean
guards and pattern guards.

Kahl presented a new calculus named pattern matching calculus (PMC) that cleanly inter
nalises pattern matching via a modest abstraction in his seminal PMC paper [11].

Now we can use this new calculus to define the above function as follows:

isEmptyList = ~ (x : xs) I=? False I ys I=? True~

The new straightforward internalisation of pattern matching has advantages for expressivity:
it saves additional variable names like zs when using case expressions.

PMC itself can be implemented in functional programming languages. Therefore, it also has

2

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

advantages for reasoning about programs. Compared with priority rewriting systems, where
unconditional equations have to be added to define priority systems, PMC allows direct
transliteration of such priortised definitions without additional cost, and even its syntactical
expressivity is so powerful that it is sufficient to express both Boolean guards and pattern
guards.

Avoiding complicated unconditional priority equations and with powerful expressivity, PMC
can be seen as a simple and uniform internalisation of pattern matching.

When treating matching against non-covered alternatives as a run-time error, this kind of
PMC is called PMC0 , which mirrors exactly the definition of pattern matching in Haskell. By
changing the single rule concerned with results of matching failure to "failure as exception",
we have PMC-s-, which is a promising foundation for further exploration of the "failure as
exception" approach proposed by Erwig and Peyton Jones [5]. The two kinds of calculi are
both confluent and equipped with the same normalising strategy.

1.2.1 Abstract Syntax

PMC has two major syntactic categories, namely expressions and matchings. These are de
fined by mutual recursion. Expressions can be seen as expressions of functional programming
languages and matchings can be seen as a generalisation of case alternatives, or groups of
case alternatives. Matchings that directly correspond to (groups of) case alternatives expose
patterns to be matched against arguments; we say such matchings are waiting for argument
supply, for example:

(x: xs) I=} Falselys I=} True

Complete case expressions correspond to expressions formed from matchings that already
have an argument supplied to their outermost patterns; matchings that have arguemnts
supplied to all their open patterns are called saturated, for example:

[5] t> (x : xs) I=} False 1[5] t> ys I=} True

A pattern is an expression built only from variables and constructors. Patterns form a
separate syntactic category that will be used to construct pattern matchings.

We use the following base sets:

• Var is the set of variables, and

• Constr is the set of constructors.

In our later implementations, all literals, like numbers and characters, are assumed to be
elements of Constr and are used only in zero-ary constructions.

As known in functional programming languages, constructors will be used to build both
patterns and expressions.

3

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

The following summarises the abstract syntax of PMC:

Pat ::= Var variable
I Constr(Pat, ... , Pat) constructor pattern

Expr ::= Var
I Constr(Expr, ... , Expr)
I Expr Expr
I ~ Match ~
10
I EFix

Match ::= 1 Exprr
l-7
I Pat t=? Match
I Expr 1> Match
I Match I Match

variable
constructor application
function application
matching abstraction
empty expression
fixed-point combinator

expression matching
failure
pattern matching
argument supply
alternative

Patterns are built from variables and constructor applications.

Expressions correspond to expressions of functional programming languages. Besides vari
ables, constructor application and function application, we also have the following special
kinds of expressions:

• Matching abstraction ~ m ~ is built from a matching m. It can be read "match m" ..

If the matching m is unsaturated, i.e., "waiting for arguments", then ~ m ~ abstracts
m into a function.

If m is a saturated matching, then it can either succeed or fail; if it succeeds, then
~ m ~reduces to the value "returned" by m; otherwise matching failure happens, ~ m ~
is considered ill-defined.

• 0 is called the empty expression, which results from matching failures. It could also
be called the "ill-defined expression" as the matching abstraction built from a failed
saturated matching.

Two interpretations of 0 will be considered:

- It can be a "manifestly undefined" expression equivalent to non-termination -
following the common view that divergence is semantically equivalent to run-time
errors.

- It can be a special "error" value propagating matching failure considered as an
"exception" through the syntactic category of expressions.

As known in functional programming languages, the result of matching constructor applica
tions of the same constructor, but with different arities, will produce a matching failure.

Matchings are the syntactic category that embodies the pattern analysis aspects:

4

McMaster University- Computer Science MSc Thesis - Xiaoheng J i

• For an expression e : Expr, the expression matching 1 Exprt always succeeds and returns
e. It can be read "return e".

• ~ is the matching that always fails.

• The pattern matching p f::} m waits for supply of one argument more than m; this
pattern matching can be understood as succeeding on instances of the (linear) pattern
p : Pat and then continuing to behave as the resulting instance of the matching m :
Match. It roughly corresponds to a single case alternative in languages with case
expressions.

• argument supply a!> m is the matching-level incarnation of function application, with
the argument on the left and the matching it is supplied to on the right. It saturates
the first argument m is waiting for.

The inclusion of argument supply into PMC makes it feasible for the design of the
reduction system to implement separation of the concerp.s of on the one hand traversing
the boundary between expressions and matchings and on the other hand matching
patterns against the right arguments.

• the alternative m11 'n1l}. is understood sequentially: it behaves like m1 until this fails,
and only then it behaves like 'n1l}..

Note that there are no matching variables; variables can only occur as patterns or as expres
sions.

The parentheses in matchings of the shape a t> (p f::} m) can be ommited since there is only
one way to parse at> p f::} m in PMC.

1.2.2 Operational Semantics

Kahl presented a set of reduction rules for PMC in [11]. These will be presented in Section
3.2 together with their implementation. The reduction rules can be united to constitute a
confluent rewriting system. The intuitive explanation and detailed proof of this confluence
result can be found in [11] and [12], respectively.

PMC is equipped with a normalising strategy of the reduction rules, which reduces expres
sions and matchings to strong head normal form (SHNF). The definition of SHNF introduced
in [21] has been translated into the PMC setting by Kahl in [11]. This deterministic strategy
for reduction to SHNF induces a deterministic normalising strategy for PMC and will be
presented in Section 3.4 together with an implementation.

The operational semantics of PMC consists of the set of confluent reduction rules and the
normalisation strategy.

The pattern matching calculus PMC0 mirros exactly the definition of pattern matching of
current functional programming languages and can form a more appropriate basis than term

5

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

rewriting by providing a confluent and normalising reduction system. By changing a single
reduction rule concerned with results of matching failure to "failure as exception", we will
have PMC..s-, which results in "more successful" evaluation. PMC-s- can be turned into a basis
for programming language implementations.

1.3 Background: The Functional Programming Lan
guage Haskell

Haskell is a generel purpose, non-strict, purely functinal programming language. Haskell is a
general purpose language that means it can be used to develop almost all kinds of programs,
from web browers to compilers. Hasekll is non-strict that means Haskell is a language with
lazy evaluation. Lazy evaluation means that an expression is evaluated only when its value
is needed. Haskell is purely functional that means function evaluations have no side effects
in Haskell. A function is said to produce a side-effect if it modifies some state other than its
return value. Haskell doesn't allow side-effects, which leads to less bugs.

As an experimental language for research goals, Haskll has evolved with many extensions,
which include syntactic sugar, type system innovations, control extensions and etc. Syntactic
sugar facilitates the construction of some complex syntactic structures. Type system inno
vations make Haskell more powerful in expressiveness. Control extensions provide a more
fine-grained control capacity in organising control structures of programs.

There are three main Haskell compilers and interpreters, namely Hugs, the Glasgow Haskell
Compiler (GHC) and nhc98. Hugs is evclusively a Haskell interpreter, meaning that you can
test and debug programs in an interactive environment. GHC is both an interpreter and a
compiler which will produce stand-alone programs. NHC is exclusively a compiler. GHC
implements all the Haskell 98 language report and extensions, which is a definition of the
Haskell language and its standard libraries.

Compared with many other programming languages, Haskell has many advantages: Haskell
is strongly typed and doesn't allow "side effects", which makes Haskell program easier to
write and maintain. Haskell is non-strict that frees the programmer from many concerns
about evaluation order. If a value of a argument is not necessary for evaluating the result of
a function, the argument will never be evaluted. Another advantage of the non-strict feature
of Haskell is that its data constructors are also non-strict and therefore can be used to define
infinite data structures. Finally, Haskell is close to its semantics so that it is amenable to
formal techniques.

One of the disadvantages of Haskell is that it is difficult to analyze its intensional behavior,
such as the time a program takes to run and the execution order of program statements.

6

McMaster University - Computer Science MSc Thesis- Xiaoheng Ji

1.4 Background: Type-Indexed Expressions

Most functional programming languages such as Haskell and ML allow to define functions
using pattern matching. In general, these languages also support the concept of algebraic
data types, which allows pattern matching over user-definable types. Over the decades,
there have been many efforts on languages extensions to increase the expressiveness of the
languages. GHC is extended with generalized algebraic data types (GADTs) [6] in its 6.4
version, which support some extensions of algebraic data types. Based on GADTs as well
as some extensions like type-safe cast and arbitrary-rank polymorphism in Haskell, Kahl
introduced the technique of type-indexed expressions to produce a type-safe data type of
typed expressions in [14]. Type-indexed expressions demonstrate how to use GADTs as
well as other Haskell language extensions of type-safe cast and arbitrary-rank polymorphism
to structure their programs in a way that makes them type-safty. Our implementations
of PMC syntax, operational semantics and bimonadic semantics are completely based on
type-indexed expressions to guarantee type safety.

In this section, we first introduce definitions of type-indexed variables and >.-expressions
and then introduce type-index maps as an environment of interpreting variable assignments.
Finally, by using special cases of type-indexed maps to act as an environment, we introduct
two simple evaluation examples.

Because this section is a brief introduction to type-indexed expressions, we do not cover all
aspects of type-indexed expression for simplicity. For example, this section does not include
the subsitution module, which encapsulates type-indexed maps and maps values of type
indexed variables to values of type-indexed expressions, and the rule module, which defines
matching and rule applications. In addition, some underlying utility libraries are also not
included in this section. For a detailed information about type-indexed expressions, readers
can refer to Kahl's paper (14].

1.4.1 Variables

A type-indexed type is defined for variables.

newtype Var a = V String

An auxiliary function is defined to facilitate variable construction.

mkVar s = if a// (>.c--+ isA/phaNum c V c E 11
'_

11
) s then V s

else error$ 11mkVar: illegal variable name ' ' 11 * s * 11
' '

11

1.4.2 Type-indexed A-expressions

The type of type-indexed >.-expressions is defined using a GADT as follows.

data Expr :: *--+ *Where

7

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

Const :: ShowSPrec a- a- Expr a
Apply:: Typeable a=? Expr (a- b)- Expr a- Expr b
Var :: Var a- Expr a
Lambda:: (Typeable a, Typeable b)=? Var a- Expr b- Expr (a- b)

GHC's Typeable class reifies types to some extent by associating comparable type represen
tations to types. Here the constraint Typeable a make Haskell's type inference system able
to type expressions.

Due to that constrainted constructors are not supported, we cannot directly use Const ::
Show a =? a - Expr a. Currently, we use explicit argument of the class dictionary as a
substitute. The type of showsPrec maximum the flexibility.

The following two auxilliary functions are defined to facilitate construction of expressions.
The construction function constant is used to construct value of type Expr a when type a
has an instance of class Show.

constant:: Show a=? a- Expr a
constant = Const showsPrec

,·

The construction function named is used when the corresponding type has not an instance
of class Show. This function also provide non-standard Show instances without having to
declare newtype.

named :: String - a - Expr a
named s = Const (..\ __ - (s*))

1.4.3 Type-Indexed Maps

This subsection presents the central parts of Kahl's implementation of type-indexed maps,
which can be used to implement ,8-reduction without subsitutions. A type-indexed map from
typed variables to correspondingly typed values acts as environment to interpret variable
assignments of PMC.

A type-indexed map m :: TIMap k r represents type-indexed families m = (ma)a::* of maps
ma :: Map (k a) (r a) where both the source and target types may depend on the index.

This is made possible by the type-safe casts from Data. Typeable and the arbitrary-rank
polymorphism supported by GHC with -fglasgow-exts.

Part code of the module T/Map including the implementation of type-indexed maps is pre
sented in this subsection.

The definition oftype-indexed map need Data. Map module, which is intended to be imported
qualified, to avoid name clashes with Prelude functions.

import qualified Data.Map as Map

We define a type-indexed map as a list of Maps, where each Map is the component map for
a specific type.

8

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

For these type-specific maps, we need a newtype so that gcast can be applied to them directly:

newtype TSMap k r a= TSMap (Map.Map (k a) (r a))

A type-indexed map is then implemented essentially as a list of existentially quantified type
specific maps- we use GADT notation to define this in a single definition as a specialised
list type (the Typeable instance has to be done manually again).

data TIMap :: (*---+ *)---+ (*---+*)---+*where
Empty:: TIMap k r
Cons:: (Typeable a, Ord (k a)):::} TSMap k r a---+ T!Map k r---+ TIMap k r

tcT/Map = mkTyCon 11 TIMap. TIMap 11

instance (Typeable I k, Typeable I r) :::} Typeable (T/Map k r) where
typeOf (- :: TIMap k r) = mkTyConApp tcTIMap

[typeOfl (j_ :: k ())
, typeOfl (j_ :: r ())

l
The constructors are not exported. The exported interface will guarantee the invariant that
no two elements of such a list have the same type, and that no list element is an empty
type-specific map.

A more efficient implementation could be implemented via a Map TypeRep (ETSMap k r)
-this would need an Ord instance for TypeRep (currently not provided in Data. Typeable),
and a wrapper type ETSMap for the existentially quantified version of TSMap.

For lookup, we use gcast on each list element to test whether it has the right type for the
argument; if it has, then, according to the T/Map k invariant, it is the only list element of
that type, and Map.lookup produces the result.

lookup:: (Typeable a, Ord (k a)) :::} k a---+ TIMap k r---+ Maybe (r a)
lookup v Empty = Nothing
lookup v (Cons tsm tim) = case gcast tsm of

Nothing ---+ lookup v tim
Just (TSMap m)---+ case Map.lookup v m of

Nothing ---+ lookup v tim
j---tj

The functions insert and delete can be implemented in the same pattern.

Additionally, an empty T/Map value is implemented to be used as an initial environment
value in evaluating closed expressions.

empty:: T/Map k r
empty = Empty

Some other functions has also been implemented in [14]. For simplicity, we will not intro
duced them here.

9

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

1.4.4 Expression Evaluation

In this subsection, two evaluation examples are introduced to demonstrate evaluations of
type-indexed expressions.

The module T/Map is imported to build a type-indexed map that acts as environment to
implement ,8-reduction rule without subsitutions, i.e., it is used to interpret variable assign
ments.

import qualified T/Map as VA

Since type-indexed maps require type constructor applications for key and value types, we
have to use an explicit Identity type constructor for the value type.

type VarAssign =VA. T/Map Var Identity

All the type-safe casts are now hidden behind the VA interface; we only have to import
Data. Typeable to be able to state the type signature explicitly:,

eva/:: Typeable a==? VarAssign ~ Expr a~ a
eva/ va (Var v) = case VA. lookup v va of

Just r ~ runldentity r
Nothing ~ error$ 11 eval: free variable 11 -1-1- show v

eva/ va (Const _c) = c
eva/ va (Apply fa)= eva/ va f (eva/ va a)
eva/ va (Lambda v e)= Ar ~eva/ (VA.insert v (Identity r) va) e

An empty variable assignment is needed in evaluating closed expressions.

eva/':: Typeable a==? Expr a~ a
eva/' = eva/ VA.empty

We define two expressions as follows:

el :: Expr /nt
el =Apply (Lambda vl $Apply (named 11 8 11 succ) (Var vl)) (constant (4 :: lnt))

where vl = vVar 1

e2 :: Expr /nt
e2 =Apply

(Apply (Lambda x (Lambda y (Apply (Apply (named 11 add 11 (+)) (Var x)) (Vary))))
(constant (4 :: lnt))) (constant (5 :: lnt))
where x :: Var lnt

x = mkVar' 11 X 11

y :: Var lnt
y = mkVar' 11 Y11

We then apply evaluation function eva/' on them.

*ExprTest> e1
(\ v1 : : Int -> S v1) 4

10

McMaster University- Computer Science

*ExprTest> eval' e1
5

*ExprTest> e2
(\ x :: Int -> \ y :: Int -> add x y) 4 5
*ExprTest> eval' e2
9

1.5 Contributions of the Thesis

MSc Thesis - Xiaoheng Ji

The thesis has three principal contributions. The first is that we implemented type-indexed
syntax and operational semantics of the pattern matching ,calculi. The second is that we
formalised and implemented bimonadic semantics of the pattern matching calculi. The last
is that by implementing PMC completely based on type-indexed expressions, our implemen
tation demonstrates how to use the new technique, which is based on GHC's new languages
extensions, to guarantee type safety.

As new calculi modellinig non-strict pattern matching, PMCs introduced by Kahl refine
traditional pattern matching by dividing PMC terms into two major syntactic categories,
namely expressions and matchings, to provide two kinds of interpretations for the empty
expression that results from matching failures when such an empty expression is matched
against a constructor pattern. Our implementation of PMC's syntax and operational seman
tics as well as sophisticated evaluation examples show that PMC can be a useful basis for
implementations of modern functional programming language.

In the thesis, we also formalise and implement the bimonadic semantics of PMC. Compared
with traditional denotational semantics, our implementation take advantage of a bimonadic
approach to structure denotational semantics, which achieves a high level of modularity and
extensibility.

GHC's Typeable class uses comparable type representations as type encodings to reify types
so that type-safe cast operations are definable. Based on the feature, GHC is extended with
generalized algebraic data types (GADTs). Type-indexed expressions take full advantage
of the GHC's new features. In this thesis, by using type-indexed expressions, we explore a
new design space of programming, where the type-indexed syntax of PMC not only describe
PMC construction forms of syntactical structures but also express type dependency relations
of these construction forms. The obvious advantage of such an implementation is that the
Haskell type system gives the validity of structures of our PMC expressions and matchings
for free. However, some limitations have also been discovered that, as a tradeoff, for example,
the type-lost problem in the Haskell type system have been exposed in syntactical level in the
pure type-indexed setting. We discovered and described the type-lost problem in attempting
to implement the PMC reduction rules using rewriting techniques.

11

MSc Thesis- Xiaoheng Ji McMaster University - Computer Science

1.6 Structure of the Thesis

This thesis consists of five chapters. The rest of this thesis is organized as follows.

Chapter 2 gives a complete type-indexed PMC definition as well as some examples of PMC
matchings and expressions. The definition is a basis for later implementation of the opera
tional semantics and the bimonadic semantics of PMC.

Chapter 3 implements the operational semantics of PMC, based on Kahl's paper [11, 13) and
also provides some reduction and normalisation examples.

Chapter 4 formalises and implements the bimonadic semantics of PMC. Some evaluation
examples are also provided.

Finally, In Chapter 5, we summarise our work in the thesis, describe related work, list
accomplishements of this thesis, and discuss possible future work.

The appendices are provided in the end of the thesis.

Appendix A includes a complete code of definition of PMC synt.ax, which corresponds to the
definition in Chapter 2.

Appendix B includes a complete code of text representations of PMC terms, which provide
a mechanism to simply display PMC.

Appendix C includes some auxiliary tool modules from Kahl's work. We include them for
completeness.

Appendix D includes a complete runnable code of implementing a-conversion in the PMC
context.

The bibliography includes all references used in this work.

12

Chapter 2

Type-Indexed Implementation of Pattern
Matching Calculi

This chapter includes our type-indexed implementation of the pattern matching calculi,
which were introduced by Kahl in (11, 13].

The abstract syntax of the pattern matching calculi has been included in 1.2.1. The chapter
will focus on the type-indexed implementation of the pattern matching calculi. We first
implement variables and constructors in the type-indexed setting in the first two sections
2.1.1 and 2.1.2. Variables and constructors are two syntactic units of building patterns and
expressions. We then implement the separate syntactic category patterns in section 2.1.3.
In the subsequent section 2, we implement the two major syntactic categories expressions
and matchings. Finally, we define some auxiliary functions to facilitate constructions and
operations of PMC terms in section 2.3 and employ these functions to implement some
examples of building sophisticated PMC terms in section 2.4. These example PMC terms are
later used in reduction examples of the section 3.3, normalising examples of the section 3.5
and bimonadic semantics evaluation examples of the section 4.9.

All the code included in this chapter as well as in the subsequent chapters is excerpted from
the implementation code, the rest of which has been included in whole in the appendices.
Most of the code is written in the language of GHC-6.4 except some functions that are
mutually recursively defined, which need at least current beta version 6.5 of GHC.

2.1 Patterns and Expressions

In order to be able to match patterns' constructor functions with expressions' constructor
functions, we have to define the data type of expressions regarding constructor functions in
the same way as we define the data type of patterns.

Although patterns form a separate syntactic category that will be used to construct pattern
matchings, one might consider patterns as a subset of expressions.

Variables and constructors are two base sets, which are used to build both patterns and
expressions.

According to abstract syntax of PMC, the syntax of patterns can be defined naturally and
directly as follows:

data Pat::*--+ * =
VarPat :: Typeable a:::::> Var a--+ Pat a

13

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

ConstrPat :: Typeable a:::} Constr a- Pat a
PatApp/y ::(Typeable a, Typeable b):::} Pat (b- a)- Pat b- Pat a

However, such a definition can on the one hand obscure the distinction between full and
partial constructor application and on the other hand produce ill-defined patterns. An
partial constructor application can be as follows:

ii/DefPatl ::Pat ([lnt]- [lnt])
11/DefPatl = (ConstrPat (Constr (:))) 'PatApply' (ConstrPat (Constr 5))

The corresponding partial constructor application in Haskell is:

ii/DefPatl' = (:) 5

However, the partial constructor application is already of type Pat a so that it can directly
used in Match a to build the following pattern matching, which is obviously ill-defined in
Haskell:

ii/DefMatchl =case(:) 5 of
(:) ys- Just ys
_-Nothing

Another source of defining ill-defined pattern is that this definition of patterns syntactically
allows to build the following pattern:

ii/DefPat2 ::Pat ([tnt]- [tnt])
ii/DefPat2 = (VarPat (V "x" :: Var (tnt- [tnt]- [tnt])))

'PatApply' (VarPat (V "y" :: Var lnt))

Obviously, such a pattern is also ill-defined.

In this section, by defining a special encoding of constructor types, we provide a more
dedicate definition of constructor applications to enforce full application of constructors to
all arguments. Thus, we use the Haskell type system to guarantee type safety for free and
avoid the above-mentioned problems. In the subsequent subsections, we first define the two
base sets of variables and constructors in 2.1.1 and 2.1.2 and then use the definitions of
variables and constructors to define patterns and expressions respectively in 2.1.3 and 2.1.4.

2.1.1 Variables

Variables is one of two syntactic units of building patterns and expressions and can only
occur as patterns or as expressions. Note that there are no matching variables.

In the type-indexed implementation of PMC, all syntactic elements are defined as type
indexed forms. Variables are defined as follows.

newtype Var a = V String

In the definition of variables, String is variable name's type and every type-indexed variable
has of type Var a, which is a variable type with type a as index type.

14

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

Since the module Variable, which is excerpted in whole in the appendix A.l, exports Var
as an abstract type, the constructor V is hidden and not exported. The following partial
function mkVar' is provided to as the only interface to build a variable from a variable name
of type String.

mkVar' ::fora// a o String-+ Var a
mkVar' =either error id o mkVar

The function mkVar is used to facilitate defining the function mkVar'; it return a variable if
the argument is a valid variable name or return an error message otherwise.

mkVar ::fora// a o String-+ Either String (Var a)
mkVar s = if isVarName s V isOperator s then Right (V s)

else Left$ 11 mkVar: illegal variable name or operator name ' ' 11 * s * 11
' '

11

Note that primitive operators are considered as variables in the implementation. For every
primitive operator, a corresponding reduction rule has to be ,added in order to interpret it in
the operational semantics and a correspondence between it~ variable in the implementation
and real function in the source language has to be added into a semantic dictionary of type
T/Map in the bimonadic semantics.

2 .1. 2 Constructors

In this subsection, we provide an abstract datatype for constructors that are type-indexed
in a disciplined way, enabling syntactic distinction between full and partial constructor ap
plication.

We use the Haskell type system to enforce full application of constructors to all arguments
by defining a special encoding of constructor types.

Constants expecting no arguments have a CResult type:

data CResult a = CResult String

Constructors expecting arguments have a CArg type:

For adding an additional first expected argument of type a, the constructor type is wrapped
in CArg c

data CArg a c = CArg c

The following class relates constructor type encodings with the encoded types:

class CType c t I c -+ t where

instance CType (CResult a) a

instance CType c b ==> CType (CArg a c) (a-+ b)

15

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

2.1.3 Patterns

The abstract syntax of patterns is summarised as follows.

Pat ::= Var variable
I Constr(Pat, ... , Pat) constructor pattern

data Pat :: * ---t *where
VarPat :: Typeable a::::} Var a---t Pat a
ConstrPat :: ConstrApp Pat (CResult a) ---t Pat a

Variables should be type-indexed. Therefore, we use Var a instead of Var.

We parameterise the type of fully applied constructor applications with the syntactic category
s so that we can use this both for patterns and expressions.

data ConstrApp :: (* ---t *) ---t * ---t *Where
Constr :: c ---t ConstrApp s c
ConstrApply :: Typeable a::::} ConstrApp s (CArg a c) ---t sa---t ConstrApp s c

2.1.4 Expressions

The abstract syntax of expressions is summarised as follows.

Expr::= Var
I Constr(Expr, ... , Expr)
I Expr Expr
I ~ Match ~
10
I EFix

variable
constructor application
function application
matching abstraction
empty expression
fixed-point combinator

The application of the technique of type-indexed expressions in the definition of expressions
can offer both convenience in programming and clarity in code. By using the technique of
type-indexed expressions, we can translate directly the abstract syntax of expressions into
the type-indexed setting. The type-indexed definition of expressions exactly mirrors the
orignial definition of the type-indexed calculus in [11].

data Expr :: * ---t *where
EVar :: Typeable a ::::} Var a ---t Expr a
ConstrExpr :: Typeable a::::} ConstrApp Expr (CResult a) ---t Expr a
Apply :: (Typeable a, Typeable (a ---t b), Typeable b) ::::}

Expr (a ---t b) ---t Expr a ---t Expr b
MExpr :: Typeable a ::::} Match a ---t Expr a
Empty:: Typeable a::::} Expr a

16

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

EFix :: Typeable a =? Expr ((a -+ a) -+ a)

2.2 Matchings

The abstract syntax of matchings is summarised as follows.

Match::= 1 Expr f
l-7
I Pat F? Match
I Expr 1> Match
I Match I Match

expression matching
failure
pattern matching
argument supply
alternative

By using the technique of type-indexed expressions, we can translate directly the abstract
syntax of matchings into the type-indexed setting. The type.:. indexed definition of matchings
exactly mirrors the orignial definition of the type-indexed calculus in [11].

data Match :: * -+ *Where
Return:: Typeable a=? Expr a-+ Match a
Fail :: Typeable a =? Match a
PMatch ::(Typeable a, Typeable b)=? Pat a-+ Match b-+ Match (a-+ b)
Supply:: (Typeable a, Typeable b) =? Expr a-+ Match (a-+ b) -+ Match b
MAlt :: Typeable a =? Match a -+ Match a -+ Match a

2.3 PMC Auxiliary Function Library

In the section, we define some auxiliary functions in the module PMCLib to facilitate construc
tion and operations of PMC terms. In the subsequent chapters, the functions are frequently
exploited to build PMC terms.

The following functions are defined to build constructors having different arguments.

type CO r = CResult r
type Cl a r = CArg a (CResult r)
type C2 a b r = CArg a (CArg b (CResult r))
type C3 abc r = CArg a (CArg b (CArg c (CResult r)))

mkCO = CResult
mkCl = CArg o CResult
mkC2 = CArg o CArg o CResult
mkC3 = CArg o CArg o CArg o CResult

type CADs r = ConstrApp s (CO r)

17

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

type CAl sa r = ConstrApp s (Cl a r)
type CA2 5 a b r = ConstrApp 5 (C2 a b r)
type CA3 s a b c r = Con5trApp s (C3 a b c r)

mkCAO = Con5tr o mkCO
mkCAl = Constr o mkCl
mkCA2 = Con5tr o mkC2
mkCA3 = Con5tr o mkC3

The following two functions are defined to build pattern variables and expression variables.

mkPVar :: Typeable a=> String-+ Pat a
mkPVar s = VarPat $ mkVar' s

mkEVar :: Typeable a=> String-+ Expr a
mkEVar 5 = EVar $ mkVar' 5

The following two functions are defined to build pattern constants and expression constants.

mkPat :: Typeable a=> String-+ Pat a
mkPat 5 = cPatO $ CRe5ult 5

mkExpr :: Typeable a=> String-+ Expr a
mkExpr s = cExprO $ CResult 5

The following functions are defined to build expressions from values built from the data
constructors CArg and CResult.

cExprO :: (Typeable a) => CRe5ult a -+ Expr a
cExprO c = ConstrExpr (Con5tr c)

cExprl ::(Typeable a, Typeable c)=> CArg a (CResult c)-+ Expr a-+ Expr c
cExprl c a = ConstrExpr (Con5tr c 'Con5trApply' a)

cExpr2 ::(Typeable al, Typeable a2, Typeable c)=>
CArgal (CArg a2 (CResult c)) -+ Expr al -+ Expr a2-+ Expr c

cExpr2 c al a2 = Con5trExpr (Con5tr c 'Con5trApply' al 'Con5trApply' a2)

cExpr3 :: (Typeable al , Typeable a2, Typeable a3, Typeable c) =>
CArg al (CArg a2 (CArg a3 (CRe5ult c))) -+
Expr a 1 -+ Expr a2 -+ Expr a3 -+ Expr c

cExpr3 c al a2 a3 = Con5trExpr $
Con5tr c 'ConstrApply' al 'Con5trApply' a2 'Con5trApply' a3

The following functions are defined to build patterns from values built from the data con
structors CArg and CRe5ult.

cPatO ::(Typeable a)=> CRe5ult a-+ Pat a
cPa tO c = ConstrPat (Con5tr c)

cPatl ::(Typeable a, Typeable c)=> CArg a (CRe5ult c)-+ Pat a-+ Pat c
cPatl c a = Con5trPat (Constr c 'ConstrApply' a)

cPat2 :: (Typeable al, Typeable a2, Typeable c) =>

18

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

CArgal (CArg a2 (CResult c)) -t Pat al -t Pat a2 -t Pat c
cPat2 c al a2 = ConstrPat (Constr c 'ConstrApply' al 'ConstrApply' a2)

cPat3 ::(Typeable al, Typeable a2, Typeable a3, Typeable c)=?
CArgal (CArg a2 (CArg a3 (CResult c))) -t Pat al -t Pat a2 -t Pat a3 -t Pat c

cPat3 cal a2 a3 = ConstrPat $
Constr c 'ConstrApply' al 'ConstrApply' a2 'ConstrApply' a3

2.4 Examples

In the section, we use the auxiliary functions in section 2.3 to build examples of type
indexed PMC terms, which are later used in the section 3.3 reduction examples, the section
3.5 normalising examples and the section 4.9 bimonadic semantics evaluation example.

It is obvious that any A.-calculus terms can be translated ·into PMC terms: variables and
function application are translated directly, and A.-abstraction is translated into a matching
abstraction over a pattern matching that has a single-variable pattern and a result matching
that immediately returns the body:

A.v.e := ~vt>1ef~

In the following subsections, we first give examples in the untyped A.-calculus or case expres
sions and then use abstract syntax of PMC to describe examples. Finally, we demonstrate
how to build corresponding examples in the type-indexed implementation.

All the code in the section is included in the module PMCExmaple.

2.4.1 Example 1

This example demonstrates the building of a PMC expression from the following A.-calculus
term in Haskell:

examplel = (A.((x: xs): ((y: ys): zss)) -t (xs: (ys: zss))) [[1, 2, 3], [2, 3, 4], [3, 4, 5], [6]]

which can be translated into the following PMC expression:

~ [[1, 2, 3], [2, 3, 4], [3, 4, 5], [6]) !> (x: xs: (y: ys: zss)) I=} 1xs: (ys: zss)f ~

The PMC expression will be used in 3.3 to demonstrate PMC reduction.

We first build the expression [[1, 2, 3], [2, 3, 4], [3, 4, 5], [6]].

The building of the subexpressions [1, 2, 3], [2, 3, 4], [3, 4, 5] and [6] need a constructor ":"
of type C2 lnt [lnt] [lnt].

cons:: Typeable a::} C2 a [a] [a]

19

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

cons = mkC2 11
:

11

We define two functions to facilitate building a list of two elements, respectively for patterns
and expressions.

consP ::Typeable a=} Pat a~ Pat [a]~ Pat [a]
consP = cPat2 cons

consE :: Typeable a =} Expr a ~ Expr [a] ~ Expr [a]
consE = cExpr2 cons

We can use the function foldr to further define a function to facilitate building a list of
arbitrary many elements.

mkEList :: Typeable a =} [Expr a] ~ Expr [a]
mkEList = foldr consE nilE

Here we need define a empty list expression.

nilE:: Typeable a=} Expr [a]
nilE = mkExpr 11

[]
11

,·

We can use the function mkExpr to build 1, 2, 3, 4, 5, 6 and [].

el,e2,e3,e4,e5,e6::Expr lnt
el = mkExpr 11 1 11

e2 = mkExpr 11 2 11

e3 = mkExpr 11 3 11

e4 = mkExpr 11 4 11

e5 = mkExpr 11 5 11

e6 = mkExpr 11 6 11

Now we can build subexpressions [1,2,3], [2,3,4], [3,4,5] and [6].

e123, e234, e345, e6nil :: Expr [lnt]
e123 = mkEList [el, e2, e3]
e234 = mkEList [e2, e3, e4]
e345 = mkEList [e3, e4, e5]
e6nil = mkEList [e6]

Thus, we can build the expression [[1,2,3], [2,3,4], [3,4,5], [6]] now.

e :: Expr [[lnt]]
e = mkEList [e123, e234, e345, e6nil]

We then build the pattern (x: xs: (y: ys: zss)).

px, py ::Pat lnt
px = mkPVar 11 X 11

py = mkPVar 11 Y11

pxs, pxxs, pys, pyys ::Pat [lnt]

20

McMaster University- Computer Science

pxs = mkPVar 11 xs 11

pxxs = consP px pxs
pys = mkPVar 11 ys 11

pyys = consP py pys

pzss, pyszss, pyyszss :: Pat [[I nt]]
pzss = mkPVar 11 zss 11

pyszss = consP pys pzss
pyyszss = consP pyys pzss

p ::Pat [[lnt]]
p = consP pxxs pyyszss

We also need build the matching 1 xs : (ys : zss) f.
exs, eys :: Expr [lnt]

exs = mkEVar 11 XS 11

eys = mkEVar 11 YS 11

ezss, eyszss, exsyszss :: Expr [[I nt]]
ezss = mkEVar 11 zss 11

eyszss = cons£ eys ezss
exsyszss = cons£ exs eyszss

m ::Match [[lnt]]
m = f?eturn exsyszss

Finally, we can build the matching

MSc Thesis - Xiaoheng Ji

,'

[[1,2,3], [2,3,4], [3,4,5], [6]]1> (x: xs: (y: ys: zss)) F? 1xs: (ys: zss)f

and then the expression

~ [[1, 2, 3], [2, 3, 4], [3, 4, 5], [6]] 1> (x: xs: (y: ys: zss)) F? 1xs: (ys: zss) f ~

epm :: Match [[lnt]]
epm = Supply e $ PMatch p m

epmE :: Expr [[lnt]]
epmE = MExpr epm

Using the text representation functions of PMC in the appendix B.l, we can show it in GHCi,
GHC's interactive environment.

*PMCExample> epmE
{[[1,2,3], [2,3,4], [3,4,5] ,[6]] >> (x:xs:(y:ys:zss)) => lxs:(ys:zss) I}

2.4.2 Example 2

We first compare the following two case expressions in Haskell:

21

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

and

example2a = (>..argl arg2--+ case argl of

(x: xs) --+case arg2 of

[]--+ 1
_--+error "error: matching failure!"

ys --+ case arg2 of

(v:vs)--+2
_--+ error "error: matching failure! 11

)

example2b = (>..argl arg2--+ case (argl, arg2) of

(x: xs, []) --+ 1
(ys, v : vs) --+ 2
_--+ error 11 error: matching failure! 11

)

When supplied with the arguments [2,3] [3,4], example2a return 1 but example2b return
2, which is because that case expressions do not have backtracking mechanism. When the
second argument [3,4] mismatches against [], example2a cannot backtrack to match the first
argument against the next pattern. example2b uses the method of paralleling all arguments
to avoid the necessity of backtracking and is a "more successful" pattern matching.

Naturally, the pattern matching of PMC corresponds to the second "more successful" pattern
matching. Therefore, we choose to translate the following case expression, which is based on
the above second example example2b, into the PMC terms:

example2 = (>..argl arg2--+ case (argl, arg2) of

(x: xs, []) --+ 1
(ys, v : vs) --+ 2
_--+error "error: matching failure! 11

)1_(3:[])

The corresponding PMC term is as following:

~ ((X : xs) R 0 R 11 r) I (ys R (v : vs) R 12 r) & j_ (3 : [])

It is easy to see that compared with case expressions, the PMC pattern matching saves
variable names argl and arg2 and always leads to the "more successful" pattern matching.

Actually, the PMC expression was first introduced in [11] to demonstrate the different reduc
tion sequences of the two calculi PMC-s- and PMC0 . We will use the type-indexed reduction
system to implement the two reduction sequences in 3.3.

We first build the patterns (x : xs), [], ys and (v : vs).

xP ::fora// a o Typeable a=? Pat a
xP = mkPVar "x"
xsP, xxsP, ysP :: fora// a o Typeable a =? Pat [a]

22

McMaster University - Computer Science

xsP = mkPVar 11 xs 11

xxsP = consP xP xsP
ysP = mkPVar 11 ys 11

vP ::Pat lnt
vP = mkPVar 11 V 11

niiP, vsP, vvsP ::Pat [lnt]
niiP = mkPat 11

[]
11

vsP = mkPVar 11 Vs 11

vvsP = consP vP vsP

We then build the matching ~ 1 ~ and ~ 2 ~.

rl, r2 :: Match lnt
r1 = Return $ mkExpr 11 111

r2 =Return$ mkExpr 11 2 11

MSc Thesis - Xiaoheng Ji

Thus, we can build the matching ((x: xs) I=*[] I=* 11f)l(ysp (v: vs) I=* 12f) now.

I, r ::Match ([lnt] -t [lnt] -t lnt)
I = PMatch xxsP $ PMatch niiP rl
r = PMatch ysP $ PMatch vvsP r2

pmpm ::Match ([lnt] -t [lnt] -t lnt)
pmpm = MAlt I r

We also need the expressions ..l and 3 : [].

emptylntList :: Expr [lnt]
emptylntList = Empty

threeNiiE :: Expr [lnt]
threeNiiE = mkEList [e3]

Finally, we build the PMC expression

~ ((X : XS) P [] P 11 r)I (ys P (V : VS) P 12 r) ~ j_ (3 : [])

pmc' :: Expr lnt
pmc' = (MExpr pmpm) 'Apply' emptylntList 'Apply' threeNiiE

We build the following PMC expression, which will be used in 3.3.

~ (j_ I> (X : XS) P [] P 11 r) I(j_ I> ys P (V : VS) P 12 r) ~ (3 : [])

We first build the PMC matching ~ (..l 1> (x : xs) I=* [) I=* 11 r) l(..l 1> ys I=* (v : vs) I=* 12 r) ~
pmpm' ::Match ([lnt] -t lnt)
pmpm' =MAlt (Supply emptylntList I) (Supply emptylntList r)

We then build the PMC expression.

23

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

pmc :: Expr lnt
pmc = MExpr $ Supply threeNiiE pmpm'

Finally, using the text representation functions of PMC in the appendix B.l, we can show
then in GHCi, GHC's interactive environment.

*RedExample> pmc'
{(x:xs) => [] => 111 I I ys => (v:vs) => 121} empty [3]

*RedExample> pmc
{[3] >> (empty>> (x:xs) => [] => 111 I I empty>> ys => (v:vs) => 121)}

2.4.3 Example 3

The five expression examples in the subsection demonstrate ho:w to build PMC expressions.
The examples will also be evaluated in 4.9 to demonstrate the bimonadic semantics of PMC.

Before giving the examples in the subsection, we define a constructor "(,)".

pair :: fora// a b o (Typeable a, Typeable b) =? C2 a b (a, b)
pair = mkC2 11

(,)
11

We define two functions to facilitate building a pair, respectively for patterns and expressions.

pairP ::(Typeable a, Typeable b)=? Pat a-+ Pat b-+ Pat (a, b)
pairP = cPat2 pair

pairE ::(Typeable a, Typeable b) =? Expr a-+ Expr b-+ Expr (a, b)
pairE = cExpr2 pair

The first expression example defines ..\-calculus term in Haskell:

exl' = (..\(y: []) -+ y) (5]

which can be translated into the PMC expression~ [5] 'f> y: []I=} 1Yf ~·

exl :: Expr lnt
exl = MExpr $Supply listl $ PMatch consyNil $Return (mkEVar 11 Y11

)

headE :: Expr ([lnt]-+ lnt)
headE = MExpr (PMatch consyNil $Return (mkEVar 11 Y11

))

listl :: Expr [lnt]
listl = consE (mkExpr 11 5 11

:: Expr lnt) (mkExpr 11
[]

11
:: Expr [lnt])

consyNil ::Pat [lnt]
consyNil = consP (mkPVar 11 Y11

) niiP

we can show it in GHCi.

*EvalExample> ex1
{[5] >> (y: 0) => lyl}

24

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

The second expression example defines >.-calculus term in Haskell:

ex2' = (>.(y: zs) --t zs) [5]

which can be translated into the PMC expression ~ [5] t> y : zs F=} 1 zs f ~.
ex2 :: Expr [lnt]
ex2 = MExpr $Supply listl $ PMatch consyzs $Return (mkEVar 11 Zs 11

)

consyzs ::Pat [lnt]
consyzs = consP (mkPVar 11 Y11

) (mkPVar 11 Zs 11
)

we can show it in GHCi.

*EvalExample> ex2
{[5] >> (y:zs) => lzsl}

The third expression example defines >.-calculus term in Haskell:

ex3' = (>.(x: (y: [])) --t y) ((*) [5] [42])

which can be translated into the PMC expression~ (++) [5j [42] t> (x: (y: [])) F=} 1Yf ~·
ex3 :: Expr lnt
ex3 = MExpr $Supply concList1List2 $ PMatch consxyNil $Return (mkEVar 11 Y11

)

concList1List2 :: Expr [lnt]
concList1List2 =Apply concListl $

consE (mkExpr 11 42 11
:: Expr lnt) (mkExpr 11

[]
11

:: Expr [lnt])

concListl :: Expr ([lnt]--t [lnt])
concListl =Apply (mkEVar 11 ++ 11

:: Expr ([lnt]--t [lnt]--t [lnt])) listl

consxyNil = consP (mkPVar 11 X 11
) consyNil

we can show it in GHCi.

*EvalExample> ex3
++ [5] [42] >> (x:(y: 0)) => lyl

The last expression example defines >.-calculus term in Haskell:

ex4' = (>.(x: (y: zs)) --t y) ((*) [5] (42])
which can be translated into the PMC expression~(++) [5] [42] t> (x: (y: zs)) F=} 1Yf ~·

ex4 :: Expr lnt
ex4 = MExpr $Supply concList1List2 $ PMatch consxyzs $Return (mkEVar 11 Y11

)

consxyzs :: Pat [lnt]
consxyzs = consP (mkPVar 11 X 11

) consyzs

we can show it in GHCi.

*EvalExample> ex4
++ [5] [42] >> (x:(y:zs)) => lyl

25

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

2.4.4 Example 4

The example in this subsection is a .A-calculus fixed-point function in Haskell:

returnOne' = .Ax ---+ 1

which can be translated into a PMC expression ~X[> 11 r ~-
The example function expression has a fixed-point 1 and will be used as an example of
evaluating a fixed-point function in 3.5.

returnOne :: Expr (lnt---+ lnt)
returnOne = MExpr $ PMatch (mkPVar "x" ::Pat lnt) $Return (mkExpr "1" :: Expr lnt)

It is shown in GHCi as follows.

*EvalExample> returnOne
{x => 111}

2.4.5 Example 5

The following example define a case expression:

scopeGHC = case (5, 42) of
(x,y)---+

case 22 of
y---+x+y

which can be translated into a PMC expression ~ (x, y) !=} y !=} 1(+) x yf ~ (5, 42) 22.

We build the expression in type-indexed PMC as follows.

scope:: Expr lnt
scope = (M Expr (pairxy 'PMatch' (y 'PMatch' (Return plusxy))))

'Apply' pair542 'Apply' e22
where pairxy :: Pat (lnt, lnt)

pairxy = (pairP (mkPVar "x" ::Pat lnt) y)
y ::Pat lnt
y = mkPVar "y"
plusxy :: Expr lnt
plusxy = (mkEVar "+" :: Expr (lnt---+ lnt---+ lnt))

'Apply' (mkEVar "x" :: Expr lnt)
'Apply' (mkEVar "y" :: Expr lnt)

pair542 :: Expr (lnt, lnt)
pair542 = (pairE (mkExpr "5" :: Expr lnt) (mkExpr "42" :: Expr lnt))
e22 :: Expr lnt
e22 = mkExpr "22"

We can show it in GHCi.

26

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

*NormaliseExample> scope
{(x,y) => y => I+ x yl} (5,42) 22

2.5 Summary

In this chapter, we use the technique of type-indexed expressions to implement type-indexed
syntax of PMC. By taking advantage of the technique, the type-indexed syntax of PMC
mirrors the original theoretic definition in [11], which also makes it easy to show that the
type-indexed PMC holds all the properties of the theoretic definition. The examples in
the last section of this chapter show that the type-indexed implementation has the same
expressive power as the theoretic definition.

Our experiences show that using type-indexed expressions in our implementation has led
to not only more robust but also more efficient programs. , On the one hand, the obvious
advantage of using the technique is that the Haskell type system gives the validity of syn
tactic structures of the type-indexed PMC for free. On the other hand, the type-indexed
implementation models the syntax of PMC with more accuracy and directness.

27

Chapter 3

Operational Semantics of PMC

This chapter includes our type-indexed implementation of operational semantics of PMC,
which is introduced by Kahl in [11, 13].

The operational semantics of PMC has been briefly introduced in the subsection 1.2.2. The
chapter provides a type-indexed implementation of the operational semantics of PMC. We
first implement substitutions using TMap, which has been introduced in the subsection 1.4.3,
in the section 3.1. Thus, in the section 3.2 we can use substitutions to implement type
indexed reduction rules in the section 3.2. We give reduction examples in the section 3.3,
where reduction sequences are also provided to demonstrate the difference of the two calculi
PMC0 and PMC7 . We then implement normalisation in the section 3.4, which includes a
leftmost-outermost strategy in the subsection 3.4.1 and a deterministic normalising strategy
in the subsection 3.4.2. Finally, we give normalisation examples.

3.1 Substitutions

The module Subst includes a type-indexed implementation of substitution.

The module also imports a-conversion in the appendix D.1 to implement variable scoping.

The module imports T/Map, which is introduced in 1.4.3, as substitutions to help implement
the reduction rule (t>v) in the section 3.2, which corresponds to a-conversion in typed ..\
calculus.

import T/Map as Su

The module also imports AlphaConversion in the appendix D to implement variable scoping.

import AlphaConversion

A value of type Subst is a type-indexed mapping from a value of type Var a to a value of
type Expr a.

type Subst = Su. T/Map Var Expr

We define the type constructor SubstFct for convenience.

type SubstFct s = Subst-+ (fora// a o Typeable a=:;. Q (sa))

Here the type constructor Q is defined in the appendix C.2:

type Q a = a -> Maybe a

28

McMaster University - Computer Science MSc Thesis - Xiaoheng Ji

A substitution function of type SubstFct s takes a substitution and a value of s a If the
substitution process succeeds, it will return a value of type Maybe (s a), like Just v, where
vis of types a. Otherwise, it will return Nothing.

We define substitution of a single variable with an expression or pattern as special case of
general substitution:

substitute :: (Ord (Var a), Typeable a) =}

Var a----+ Expr a----+ (fora// b o Typeable b =} Q (Match b))
substitute v e = substM (Su .singleton v e)

We define the substitution function substE for PMC expressions.

substE :: SubstFct Expr
substE su (EVar v) = Su.lookup v su
substE su (ConstrExpr ca) = fmap ConstrExpr (substECA su ca)

where

substECA :: SubstFct (ConstrApp Expr)
substECA su (Constr c) = Nothing
substECA su (ConstrApply ca e) =

qjoin ConstrApply (substECA su) (substE su) ca e
substE su (Apply el e2) = qjoin Apply (substE su) (substE su) el e2
substE su (MExpr m) = fmap MExpr $ substM sum
substE su Empty = Just Empty
substE su EFix = Just EFix

We define the substitution function substM for PMC matchings.

substM :: SubstFct Match
substM su (Return e) = fmap Return $ substE su e
substM su Fail = Just Fail
substM su (PMatch p m) =let (p', m',su') = alphaP p m su

in fmap (PMatch p') $ substM su' m'
substM su (Supply em)= qjoin Supply (substE su) (substM su) em
substM su (MAlt ml m2) = qcomb MAlt (substM su) ml m2

Here, the function alphaP is an a-conversion function. When the bound variables of the
argument patterns occur in the range of the subsititutions, the function alphaP exploits a
strategy to rename variable names to avoid name clashes.

The detailed implementation and examples of a-conversion in the type-indexed setting are
included in the appendix D.l.

29

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

3.2 Reduction Rules

This module Rule provides an implementation of all PMC Reduction Rules. The explanation
of the reduction rules has been directly taken from (11]. The rewriting system PMC consists
of:

• nine first-order term rewriting rules,

• two rule-schemata (0 1> c) and (d 1> c) - parameterised by the constructors and the
arities- that involve the binding constructor 1=?, but not any bound variables,

• the second-order rule (1>v) involving substitution, and

• the second-order rule schema (c 1> c) for pattern matching that re-binds variables.

We define two type synonyms for convenience.

type TrafoE = Trafo Expr
type TrafoM = Trafo Match

A reduction rule of type TrafoE is a relation between two PMC expressions and correspond
ingly, a reduction rule of type TrafoM is a relation between two PMC matchings.

The type constructor Trafo in the above definitions is defined in the appendix C.3:

type Trafo s = forall a. (Typeable a) => Q (s a)

The definition of Q has been introduced in the section 3.1.

3.2.1 PMC Expressions Reduction Rules

All standard reduction rules of rewriting expressions here are first order.

A matching abstraction where all alternatives fail represents an ill-defined case - this is the
motivation for the introduction of the empty expression into our language:

----t 0
E

redMExprFail :: TrafoE
redMExprFail (MExpr Fail) = Just Empty
redMExprFail _ = Nothing

Matching abstractions built from expression matchings are equivalent to the contained ex
pression:

----t
E

e (~ H ~)

30

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

redMExprReturn :: TrafoE
redMExprReturn (MExpr (Return e))= Just e
redMExprReturn _ = Nothing

Application of a matching abstraction reduces to argument supply inside the abstraction:

redApplyMExpr (Apply (MExpr m) a) =Just$ MExpr (Supply am)
redApplyMExpr _=Nothing

No matter which of our two interpretations of the empty expression we choose, it absorbs
arguments when used as function in an application:

0 e ------> 0
E

redApplyEmpty :: TrafoE
redApplyEmpty (Apply Empty e)= Just Empty
redApplyEmpty _ = Nothing

3.2.2 First-order PMC Matchings Reduction Rules

The following are first-order standard reduction rules of rewriting matchings.

(0@)

Failure is the (left) unit for I ; this enables discarding of failed alternatives and transfer of
control to the next alternative:

----t
M

m

redMAitFail :: TrafoM
redMAitFail (MAlt Fail m) = Just m
redMAitFail _ = Nothing

Expression matchings are left-zeros for I :

1eflm ----t 1 ef
M

redMA/tReturn :: TrafoM
redMA/tReturn (MAlt (Return e) m) = Just $ Return e
redMA/tReturn _ = Nothing

(1fl)

Argument supply to an expression matching reduces to function application inside the ex
pression matching:

----t
M

1 e a f

31

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

redSupplyReturn :: TrafoM
redSupplyReturn (Supply a (Return e)) = Just $ Return (Apply e a)
redSupplyReturn _ = Nothing

The matching failure absorbs argument supply:

redSupplyFail :: TrafoM
redSupplyFail (Supply e Fail) = Just Fail
redSupplyFail _ = Nothing

Argument supply distributes into alternatives:

redSupplyMAit :: TrafoM

(t>~)

redSupplyMAit (Supply e (MAlt ml m2)) =Just$ MAlt (Supply e ml) (Supply e m2)
redSupplyMAit _ = Nothing

3.2.3 Second-order PMC Matchings Rules or Rule Schemas

Everything matches a variable pattern; this matching gives rise to substitution:

at> vI=} m ~ m[v\a]
M

redSupplyPMatchVarPat :: TrafoM
redSupplyPMatch VarPat (Supply a (PMatch (VarPat v) m)) = Just $

qtry (substitute v a) m
redSupplyPMatch VarPat _ = Nothing

Matching constructors match, and the proviso in the following rule can always be ensured
via a-conversion (for this rule to make sense, linearity of patterns is important):

~

M

if FV(c(e1, ... , en)) n FV(c(p1, ... ,pn)) = {}

Matching of different constructors fails:

redConstrSupplyPMatch :: TrafoM

32

(ct>c)

if c =1- d or k =1- n (dt>c)

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

redConstrSupplyPMatch (Supply (ConstrExpr e) (PMatch (ConstrPat p) m)) = do
f +--- matchConstrApp' p e
return$ f m

redConstrSupplyPMatch _ = Nothing

The following functions take a constructor pattern and match its first level against a con
structor expression - success means equal types and therefore equal number of arguments,
and equal constructor.

In case of success, the wrapping function for the rearrangement needed for the matching rule
(c 1> c) is returned.

matchConstrApp' ::(Typeable a, Typeable b, Eq a, Typeable c)=>
ConstrApp Pat a- ConstrApp Expr b- Maybe (Match c- Match c)

matchConstrApp' p e =caste~ matchConstrApp p

matchConstrApp :: (Typeable a, Eq a, Typeable c) =>
ConstrApp Pat a - ConstrApp Expr a - Maybe (Match c - Match c)

matchConstrApp (Constr c) (Constr c') =if c _ c' theri Just id else Nothing
matchConstrApp (ConstrApply cap p) (ConstrApply cae e) = do

e' +---caste
wrap +--- matchConstrApp' cap cae
return (wrap o (e ''Supply') o (p' PMatch'))

matchConstrApp (ConstrApply c p) (Constr c') =

error "error: Cannot happen in this kind of type-indexed expressions"

For the case where an empty expression is matched against a constructor pattern, we consider
two different right-hand sides:

• With the first rule, corresponding to interpreting the empty expression as equivalent
to non-termination, constructor pattern matchings are strict in the supplied argument:

---+ 10f
M

The calculus including this rule will be denoted PMC0 .

redSupplyEmptyEMPTY :: TrafoM

(01>c-0)

redSupplyEmptyEMPTY (Supply Empty (PMatch p m)) =Just$ Return Empty
redSupplyEmptyEMPTY _ = Nothing

• With the second rule, corresponding to interpreting the empty expression as propagat
ing the exception of matching failure, that failure is "resurrected":

(01>c-<7)

The calculus including this rule will be denoted PMC.;.; in this calculus, it is not
possible to give 0 the same semantics as expressions without normal form.

33

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

redSupplyEmptyFAIL :: TrafoM
redSupplyEmptyFAIL (Supply Empty (PMatch p m)) =Just$ Fail
redSupplyEmptyFAIL _ = Nothing

For statements that hold in both PM (0 and PM C.;., we let (0 t> c) stand for (0 t> c --t 0) in
PMC0 and for (0 t> c --t ~) in PMC.;..

3.2.4 Fixed-point Reduction Rules

The fixed-point combinator reduces via the fixed-point equation:

fix e ~ e (fix e)
E

We implement the fixed-point reduction rule as follows:

redApplyEFix :: TrafoE
redApp/yEFix e@(App/y EFix f)= Just$ Apply f e
redApplyEFix _ = Nothing

3.2.5 Unioning All Reduction Rules

(fix@)

All the PMC reduction rules constitute the rewriting system PMC, which is intended as a
basis for the operational semantics of functional programs.

All expressions reduction rules are united to constitute a resulting expression reduction rule
redExpr for both (0 t> c --t 0) and (0 t> c --t ~).

redExpr :: TrafoE
redExpr = redMExprFail 'aft' redMExprReturn 'aft'

redApplyMExpr 'aft' redApplyEmpty 'aft'
redApp/yEFix

All matchings reduction rules except (0 t> c --t 0) and (0 t> c --t ~) are united to constitute
a matching reduction rule redMatch.

redMatch :: TrafoM
red Match = redMA!tFail 'aft' redMA/tReturn 'aft'

redSupp/yReturn 'aft' redSupplyFail 'aft'
redSupplyMA/t 'aft' redSupplyPMatchVarPat 'aft'
redConstrSupp/yPMatch

The above matching reduction rule redMatch and the matching reduction rule
redSupplyEmptyEMPTY representing (0 t> c --t 0) can be united to constitute a resulting
matching reduction rule for PMC0 .

redMatchEMPTY :: TrafoM

34

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

redMatchEMPTY = redMatch 'aft' redSupplyEmptyEMPTY

The above matching reduction rule redMatch and the matching reduction rule
redSupplyEmptyFAIL representing (0 1> c ~ '7) can be united to constitute a resulting match
ing reduction rule for PMC<?.

redMatchFAIL :: TrafoM
redMatchFAIL = red Match 'aft' redSupplyEmptyFAIL

3.2.6 Type-Lost Problem of Implementing Rules Using Rewriting

In the definitions of reduction rules in [11], each rule r is considered to consist of two patterns
(either two expression patterns, or two matching patterns), the left-hand side of r and the
right-hand side of r.

In essence, each reduction rule is a rewriting rule. The requction rules of PMC constitute
a rewriting system. Therefore, naturally, we tried to impl~ment the reduction rules using
rewriting technique.

Let us directly translate the rewriting process in [2] into our PMC setting: we first match
an expression (or a matching) argument with the left-hand side of expression (or matching)
reduction rules to get a substitution and then apply this substitution as the environment to
substitute the variables in the right-hand side of expression (or matching) reduction rules to
get a new expression (or matching). The resulting expression (or matching) is the result of
applying the expression (or matching) reduction rule to the initial expression (or matching).

In order to implement a substitution, which is a mapping from expression variables to ex
pressions or from matching variables to matchings, we have to add a definition of matching
variables into the definition of matchings.

MVar ::Typeable a=? Var a~ Match a

We need define some type synonyms for convenience.

type Q a = a ~ Maybe a

type Trafo s = fora/1 a o (Typeable a)=? Q (sa)

type TrafoE = Trafo Expr
type TrafoM = Trafo Match

type Subst s = Su. T/Map Var s

type SubstE = Subst Expr
type SubstM = Subst Match

The expression substitution function substE takes two substitutions as an environment and
transforms a expression argument into a new expression.

substE :: (SubstE, SubstM) ~ TrafoE
substE (suE, suM) (EVar v) = Su.lookup v suE

35

MSc Thesis - Xiaoheng Ji

substE su (MExpr m) =

case (substM su m) of
Just m I ---+ Just$ MExpr m I
_---+Nothing

McMaster University- Computer Science

The matching substitution function substM takes two substitutions as an environment and
transforms a matching argument into a new matching.

substM :: (SubstE, SubstM)---+ TrafoM
substM (suE, suM) (MVar v) = Su.lookup v suM
substM su (Supply e m) =

case (substE su e) of
Just e' ---+ case (substM su m) of

Just ml---+ Just$ Supply el ml
_---+Nothing

_---+Nothing

We proposed the following type definition for reduction rules: ·

type Rules a= (s a,s a)

We took the following rule for example:

-t ~al>m~
E

We can define the rule (~ ~@) as follows.

ruleApplyMExpr ::fora// b a o (Typeable a, Typeable (a---+ b), Typeable b)
=? Rule Expr b

ruleApplyMExpr =(Apply (MExpr m) e, MExpr $Supply em)
where m ::Match (a---+ b)

m = MVar (V "m 11
)

e :: Expr a
e = EVar (V 11 e 11

)

Then we need a matching function for expressions to match the left-hand side of reduction
rules against the initial expression to produce new substitutions.

match£:: (Typeable a, Ord (Var a))=?
(SubstE, SubstM) ---+ Expr a ---+ Expr a ---+ Maybe (SubstE, SubstM)

match£ su (Apply el e2) (Apply ell e2 1
) =do

el" +-- gcast ell
SU

1
+-- match£ su el el"

e2" +-- gcast e2 1

match£ sui e2 e2"
match£ su (MExpr ml) (MExpr m2) = matchM su ml m2
match£ (substE, substM) (EVar v) e =Just (Su.singleton v e, substM)

36

McMaster University - Computer Science MSc Thesis- Xiaoheng Ji

Similarly, we need a matching function for matchings to match the left-hand side of reduction
rules against the initial matching to produce new substitutions.

matchM ::(Typeable a, Ord (Var a))=>
(SubstE, SubstM)--? Match a--? Match a--? Maybe (SubstE, SubstM)
matchM (substE,substM) (MVar v) (m:: Match al) =Just (substE,Su.singleton v m)

Application of a expression reduction rule means matching the left-hand side of reduction
rules against the expression argument to get a substitution and then applying the substitution
to the right-hand side of reduction rules to get the resulting expression.

applyERule :: Typeable a=> Rule Expr a--? Expr a--? Maybe (Expr a)
applyERule (lhs, rhs) e =do

(suE, suM) ~ matchE (Su.empty, Su.empty) lhs e
return (qtry (substE (suE, suM)) rhs)

In the function applyERule, the following backtracking funct,ion qtry is used.

qtry :: Q a --? a --? a
qtry f x =maybe x id (f x)

Now we can test the rewriting system now. We have a PMC expression ~ x I=? 1 x f ~ 5, which
can obviously be transformed by the expression reduction rule (~ ~@). We should be able
to expect a resulting expression ~ 5 1> x I=? 1 x f ~.
However, when we apply the rule application function applyERule to the expression reduction
rule (~ ~@) and the expression ~ x I=? 1 x f ~ 5 in G H C v6. 5, we met the following type-lost
problem:

*TypeProblem> applyERule ruleApplyMExpr testRule

<interactive>:1:11:
Ambiguous type variable 'a' in the constraint:

'Typeable a' arising from use of 'ruleApplyMExpr' at
<interactive>:1:11-19

Probable fix: add a type signature that fixes these type variable(s)

The type-lost problem happened because current GHC cannot keep the information about
relations of types of two values correctly during function evaluation so that type information
is lost during the function is evaluated.

Let me explain more here. In the definition of the function ruleApplyMExpr in GHC, although
e and min the left-hand side Apply (MExpr m) e and the right-hand side MExpr$Supply em
of the reduction rule ruleApplyMExpr should have the same type, respectively, when evalu
ation the function applyERule on the arguments ruleApplyMExpr and testRule, the Haskell
type system can only express that the left-hand side Apply (MExpr m) e and the right
hand side MExpr $ Supply e m of the reduction rule ruleApplyMExpr have the same type but
cannot express that within Apply (MExpr m) e and MExpr $Supply e m, the two e's is of

37

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

type Expr a and the two m's is of type Match (a - b). On the contrary, the Haskell type
system think that e and min the left-hand side Apply (MExpr m) e are of type Expr al and
Match (al - b) respectively and e and m in the right-hand side MExpr $ Supply e m are
of type Expr a2 and Match (a2 - b) respectively. Thus, the substitutions failed to work
because of type inequality.

Although we can restrict the types of the reduction rule explicitly to concrete types to go
through with the type-lost problem, the new rewriting system will not be able to work on the
rules of polymorphic types, which is not what we expected. Therefore, we have to implement
reduction rules in a transformation style in the previous subsections.

Once this type-lost problem is solved in Haskell, we will be able to implement reduction rule
using rewriting technique.

3.3 Reduction Examples

This module RedExample includes reduction examples, which demonstrate the type-indexed
confluent reduction system of PMC.

3.3.1 One-Step Reduction Example

This subsection introduces a simple one-step reduction example. We first define a PMC
matching 1 t> vI* 1 v r as egl.

egl ::Match lnt
egl =Supply (mkExpr "1" :: Expr lnt) $

PMatch (mkPVar "v" ::Pat lnt) $
Return$ (mkEVar "v" :: Expr lnt)

It is shown in GHCi as follows.

*RedExample> eg1
1 >> v => lvl

Using a LaTeX generation mechanism provided by W. Kahl, the application of the reduction
system to egl gives rise to the following reduction sequence:

lt>v1*1vf

o) 11 r
(t>v)

38

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

3.3.2 Many-Step Reduction Example

We take the PMC matching

[[1, 2, 3], [2, 3, 4], [3, 4, 5], [5]]1> x : xs : (y : ys : zss) I=* 1 xs : (ys : zss H

for example, which is defined as a PMC matching epm in 2.4.1.

We show it in GHCi.

*NormExample> epm
[[1,2,3], [2,3,4], [3,4,5], [5]] >> x:xs:(y:ys:zss) => lxs:(ys:zss)l

Using a LaTeX generation mechanism provided by W. Kahl, the application of the reduction
system to epm gives rise to the following reduction sequence:

[[1, 2, 3], [2, 3, 4], [3, 4, 5], [5]jl> X : XS : (y : ys : ZSS) !=* 1 XS : (ys : ZSS) r

o) ([1, 2, 3]1> (x: xs) I=* [[2, 3, 4], [3, 4, 5], [5]]1> (y: ys: zss) I=* 1xs: (ys: zss)r)
(ct>c)

0 l (11> X !=* [2, 3]1> XS !=* [[2, 3, 4], [3, 4, 5], [5]jl> (y : ys : ZSS) !=* 1 XS : (ys : ZSS) f)
(cl>c)

o) ([2, 3]1> xs I=* [[2, 3, 4], [3, 4, 5], [5]]1> (y: ys: zss) I=* 1xs: (ys: zss)r)
(l>v)

0) ([[2, 3, 4], [3, 4, 5], [5]]1> (y : ys : zss) I=* 1 [2, 3] : (ys : zss) n
(l>v)

o) ([2, 3, 4]1> (y : ys) I=* [[3, 4, 5], [5]]1> zss I=* 1[2, 3] : (ys : zss) f)
(cl>c)

0) (2 I> y I=* [3, 4]1> ys I=* [[3, 4, 5], [5]]!> zss I=* 1[2, 3] : (ys : zss) n
(ct>c)

o) ([3, 4]1> ys I=* [[3, 4, 5], [5]]1> zss I=* 1 [2, 3] : (ys: zss) f)
(l>v)

0) ([[3, 4, 5]' [5]]1> zss I=* 1 [2, 3] : ([3, 4] : zss) f)
(l>v)

o) 1 [[2, 3], [3, 4], [3, 4, 5], [5JJ r
(l>v)

The many-step reduction is shown in GHCi as follows.

*RedExample> (repeat' redMatch) epm
Just I [[2, 3] , [3, 4] , [3, 4, 5] , [5]] I

39

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

3.3.3 Transformation Rule for Interpretting Operators

We take the operator + for example to demonstrate how to build a transformation rule to
interpret operators in our implementation.

The function intP/us returns a PMC variable denoting operator +.
intP/us :: Var (tnt---+ lnt---+ tnt)
intP/us = mkVar' 11 + 11

The function isExprlnt is to determine whether a PMC expression is of type Expr Int.

isExprlnt :: Typeable a* Expr a---+ Boo/
isExprlnt e = typeOf e = typeOf (1_ :: Expr /nt)

The function getlnt is to get tnt value from a PMC expression of type Expr Int.

getlnt :: Expr lnt---+ Maybe lnt
getlnt (ConstrExpr (Constr (CResu/t s))) = case reads s of ·

(k, 11 11
) : _ ---+ Just k -

_---+ Nothing
getlnt _ = Nothing

Thus, using the above functions, we implement the following rule to interpret operator +.
redP/us :: TrafoE
redP!us (Apply (Apply (EVar f) el) e2) =

case gcast f of
Nothing ---+ Nothing
Just fl ---+ if fl = intP!us 1\ isExprlnt el 1\ isExprlnt e2

then do
el I +-- gcast el
al +-- getlnt elI
e2 I +-- gcast e2
a2 +-- getlnt e2 1

return$ mkExpr $ show $ al + a2
else Nothing

redP/us _ = Nothing

redExprWithP!us :: TrafoE
redExprWithP!us = redExpr 'aft' red Plus

The following example applies the above reduction rules. At first, we define a PMC expression
denoting 1 + 3

oneP!usThree :: Expr tnt
oneP!usThree = (mkEVar 11 + 11

:: Expr (tnt---+ tnt---+ lnt))
'Apply' (mkExpr 11 111

:: Expr lnt)
'Apply' (mkExpr 11 3 11

:: Expr lnt)

40

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

Then, we apply reduction rule redExprWithPius to this expression.

resultOnePiusThree :: Maybe (Expr lnt)
resultOnePiusThree = redExprWithPius onePiusThree

Thus, we get the reduced result 4.

*RedExample> resultOnePlusThree
Just 4

3.3.4 Difference Reduction Sequences of the Two Calculi

Here we take the following pattern matching example directly from 5.2 of the PMC paper
and implement them in our typed PMC settings to demonstrate different reduction sequences
of the two calculi PMC0 and PMC..;..

If we replace ..l with the empty expression 0. then we obtain different behaviour according
to which interpretation we choose for 0.

In the section 2.4.2, we have defined the corresponding PMC term pmc', which is shown in
G H Ci as follows.

*RedExample> pmc'
{(x:xs) => [] => 111 I I ys => (v:vs) => 121} empty [3]

Although the module PMCTrafo of "transformation transformer", which are used in the nor
malising strategy, is already included in the appendix C.4, we present some transformation
transformers here to help implement the reduction sequences in this subsection, for com
pleteness. Every transformation transformer take a "primitive" reduction rule, which is a
transformation, and return another new transformation.

The transformation transformer inApplyL applies a reduction rule as its first argument to the
expression fin the expression (Apply fa) as its second argument.

inApplyL :: TrafoE -t TrafoE
inApplyL t (Apply fa) = fmap (flip Apply a)$ t f
inApplyL t _ = Nothing

The transformation transformer inMExpr applies a reduction rule as its first argument to the
matching min the expression (MExpr m) as its second argument.

inMExpr :: TrafoM -t TrafoE
inMExpr t (MExpr m) = fmap MExpr $ t m

41

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

inMExpr t _ = Nothing

The transformation transformer inSupplyR applies a reduction rule as its first argument to
the matching min the matching (Supply am) as its second argument.

inSupplyR :: TrafoM -t TrafoM
inSupplyR t (Supply a m) = fmap (Supply a) $ t m
inSupplyR t _ = Nothing

The transformation transformer inMAitL applies a reduction rule as its first argument to the
matching ml in the matching (MAlt ml m2) as its second argument.

inMAitL :: TrafoM -t TrafoM
inMAitL t (MAlt ml m2) = fmap (flip MAlt m2) $ t ml
inMAitL t _ = Nothing

Now We can first execute the same reduction sequence for the two calculi PMC0 and PMC.,.
to get to pmc, which is also defined in the section 2.4.2 and shown in GHCi as follows.

*RedExample> pmc
{[3] >> (empty>> (x:xs) => [] => 111 I I empty>> ys => (v:vs) => 121)}

We can implement the reduction sequence as follows.

stepi, stepii, stepiii :: TrafoE
stepi = inApplyL redApplyMExpr
stepii = redApplyMExpr
stepiii = inMExpr (inSupplyR redSupplyMA/t)

Using a LaTeX generation mechanism provided by W. Kahl, the application of the reduction
system to pmc' gives rise to the following reduction sequence:

~ (((x : xs) I=} [] I=} 11 f) I(ys I=} (v : vs) I=} 12 f)) ~ j_ (3 : [])

o) ~ ((0 t> (x : xs) I=} [] I=} 11 f) I(0 t> ys I=} (v : vs) I=} 12 f)) ~ (3 : [])
(f@ .)

o) ~ (3 : []) t> ((0 t> (x : xs) I=} [] I=} 11 f) I (0 t> ys I=} (v : vs) I=} 12 f)) ~
(f@ J)

Now we get to the expression pmc.

We implement the reduction sequence in PMC0 as follows:

stepl , step2, step3, step4, stepS :: TrafoE
stepl = inMExpr (inSupplyR (inMA!tL redSupplyEmptyEMPTY))
step2 = inMExpr (inSupplyR redMAitReturn)
step3 = inMExpr (redSupplyReturn)
step4 = redMExprReturn
stepS = redApplyEmpty

42

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

Using a LaTeX generation mechanism provided by W. Kahl, the application of the reduction
system to pmc gives rise to the following reduction sequence:

~ (3 : []) 1> ((0 1> (x : xs) I* [] I* 11 f) I (0 1> ys I* (v : vs) I* 12 f)) ~

0) ~ (3 : []) I> (1 0 n (0 I> ys I* (v : vs) I* 12 f)) ~
(0t>c~0)

o) ~ (3 : [])I> 1 0 r ~
<lrll

0) ~ 1 0 (3 : [])r ~
(t>l rl

0) 0 (3 : [])
(~ 1r})

-----+ 0
(0@)

In PMC0 , empty expression propagates.

In PMC.;., however, this exception can be caught: matching the empty expression against
list construction produces a failure, and the other alternative succeeds.

We implement the reduction sequence in PMC.;. as follows:

stepl ', step2', step3', step4', stepS', step6', stepl' :: TrqfoE
stepl' = inMExpr (inSupplyR (inMA/tL redSupplyEmptyFAIL))
step2' = inMExpr (inSupp/yR redMA/tFail)
step3' = inMExpr (inSupplyR redSupp/yPMatchVarPat)
step4' = inMExpr redConstrSupplyPMatch
stepS'= inMExpr redSupp/yPMatchVarPat
step6' = inMExpr redSupplyPMatch VarPat
stepl' = redMExprReturn

Using a LaTeX generation mechanism provided by W. Kahl, the application of the reduction
system to pmc gives rise to the following reduction sequence:

~ (3 : []) I> ((0 I> (X : xs) I* [] I* 11 rH (0 I> ys I* (v : vs) I* 12 f)) ~

o > ~ (3 : []) 1> (<71 (0 1> ys I* (v : vs) I* 12 f)) ~
(0t>c~-?)

0) ~ (3 : []) I> 0 I> ys I* (v : vs) I* 12 r ~
(-?1)

o) ~ (3 : []) I> (v : vs) ~=* 12 r ~
(t>v)

o) ~ 3 I> v ~=* n I> vs ~=* 12 r ~
(cl>c)

o) ~ D I> vs ~=* 12 r ~
(1>11)

o) ~12r~
(l>v)

0) 2
<Wll

43

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

From the above two reduction sequences in the two calculi PMC0 and PMC<?, we can draw
a conclusion that PMC0 turns out to be a formalisation of the operational pattern matching
semantics of current functional programming languages and PMC<? has a "more successful"
evaluation and can be turned into a basis for programming languages implementation.

3.4 Normalisation

The goal of this section is to provide a type-indexed implementation of the normalising
strategy of PMC, which is introduced in [11]. The explanation of the normalising strategy
has been directly taken from [11]. We first provide a leftmost-outermost strategy based
on the transformation rules. We then implement a deterministic normalising strategy for
reduction to SHNF.

The module PMCTrafo of "transformation transformer" in the appendix C.4 includes the
transformation transformers over all the syntactic structures of PMC expressions and match
ings. Every transformation transformer take a "primitive" red~ction rule, which is a trans
formation, and return another new transformation. These transformation transformers are
implementation basis for the leftmost-outermost strategy in 3.4.1 and the normalising strat
egy in 3.4.2. Some of the transformation transformers has already been in 3.3.4.

3.4.1 Leftmost-Outermost Strategy

Now we can implement a leftmost-outermost strategy easily, as a byproduct.

The following performs a single tE or tM transformation at the leftmost-outermost point
where this is possible.

leftmostOutermostE :: TrafoE----+ TrafoM----+ TrafoE
leftmostOutermostE tE tM = tE

'aft' inConstrExpr (leftmostOutermostE tE tM)
'aft' inApp/yL (leftmostOutermostE tE tM)
'aft' inApplyR (leftmostOutermostE tE tM)
'aft' inMExpr (leftmostOutermostM tE tM)
'aft' inEFix (leftmostOutermostE tE tM)

leftmostOutermostM :: TrafoE----+ TrafoM----+ TrafoM
leftmostOutermostM tE tM = tM

'aft' inSupplyL (leftmostOutermostE tE tM)
'aft' inSupplyR (leftmostOutermostM tE tM)
'aft' inPMatch (leftmostOutermostM tE tM)
'alt' inReturn (JeftmostOutermostE tE tM)
'aft' inMA/tL (leftmostOutermostM tE tM)
'aft' inMA/tR (JeftmostOutermostM tE tM)

44

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

The leftmost-outermost strategy is deterministic but obviously not normalising. For example,
in a PMC matching a!> v F=> m, if a is non-terminating, then even when m is a constant, the
leftmost-outermost strategy applied to at> v F=> m is non-terminating.

3.4.2 Normalising Strategy

This module Normalise implements a SHNF strategy and uses the leftmost-outermost strat
egy to implement a normalisation strategy on top of the SHNF strategy.

PMC is equipped with a normalising strategy of the reduction rules in 3.2, which reduces
expressions and matchings to strong head normal form (SHNF).

The definition of SHNFs is translated from [21] into the PMC setting for completeness.

The use of metavariables is made explicit. For example, e and m in the rule (1 r I) are
metavariables:

1eflm --+
M

1ef

Each reduction rule r in 3.2 is considered to consist of two patterns (either two expression
patterns, or two matching patterns), the left-hand side ofr and the right-hand side of r.

A rule partially matches a matching or expression t if its left-hand side partially matches t.

A non-variable matching pattern or expression pattern p partially matches a matching,
respectively an expression, t, if firstly the top-level syntactic constructions of p and t are the
same, and secondly, letting p1, ... , Pk be the immediate constituents of p and t1, ... , tk the
immediate constituents oft, if for each i : N with 1 ~ i ~ k for which Pi is not a variable,
Pi partially matches ti, or there exists a rule that partially matches ti.

A term is in strong head normal form (SHNF) if no rule partially matches this term.

It is easy to see that a rule that matches an expression, respectively a matching, t, also
partially matches t.

Now we give a reduction strategy that reduces expressions and matchings to strong head
normal form (SHNF) as follows.

With the set of rules defined in 3.2, this definition of SHNFs directly induces the following
facts:

• Variable expressions, constructor applications, the empty expression 0, failure -7,
expression matchings 1 e f, and pattern matchings p F=> m are already in SHNF.

• All rules that have an application f a at their top level have a variable for a, and none
of these rules has a variable for f, so f a is in SHNF if f is in SHNF and f a is not a
red ex.

45

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

• A matching abstraction ~ m ~ is in SHNF if m is in SHNF unless ~ m ~ is a redex for
one of the rules (~ ~ ~) or (~ H ~).

• An alternative m1 1 'T11f2 is in SHNF if m1 is in SHNF unless m1 1 'T11f2 is a redex for one of
the rules (~I) or (1 f I), since all alternative rules have a variable for 'T11f2.

• No rules for argument supply at> m have a variable for m, and all rules for argument
supply at> m that have non-variable a have a constructor pattern matching for m.
Therefore, if a t> m is not a redex, it is in SHNF if m is in SHNF and, whenever m is
of the shape c(p1 , ... , Pn) f::} m', a is in SHNF, too.

Due to the homogenous nature of its rule set, PMC therefore has a deterministic strategy
for reduction of applications, matching abstractions, alternatives, and argument supply to
SHNF:

• For an application f a, iff is not in SHNF, proceed into f, otherwise reduce f a if it
is a redex.

• For a matching abstraction ~ m ~' if m is not in SHNF, proceed into m, otherwise
reduce ~ m ~ if it is a redex.

• For an alternative m1 1 'T17f2, if m1 is not in SHNF, proceed into m1 , otherwise reduce
m1l 'T11f2 if it is a redex.

• If an argument supply at> m is a redex, reduce it (this is essential for the case where
m is of shape md 'T1?f2, which is not necessarily in SHNF, and (t>l) has to be applied).
Otherwise, if m is not in SHNF, proceed into m.

If m is of the shape c(p1 , ... , Pn) f::} m', and a is not in SHNF, proceed into a.

Applications, matching abstractions, and alternatives, are redexes only if the selected con
stituent is in SHNF.

This deterministic strategy for reduction to SHNF induces a deterministic normalising strat
egy for PMC.

Directly translating the strategy from the PMC paper [11] yields the following transforma
tions that fail on strong head normal forms, and perform a single reduction step towards the
SHNF otherwise. For both expressions and matchings, a redex is obviously not a SHNF, so
this is tried first. For non-redexes, only a few cases need to be covered:

shnfStepE :: TrafoE ~ TrafoM ~ TrafoE
shnfStepE redE redM = redE

'aft' inAppfyL (shnfStepE redE redM)
'aft' inMExpr (shnfStepM redE redM)

shnfStepM :: TrafoE ~ TrafoM ~ TrafoM

46

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

shnfStepM redE redM = redM
'aft' inMAftL (shnfStepM redE redM)
'aft' (inSuppfyR guardPMatch 'seq'' inSuppfyL (shnfStepE redE redM))
'aft' inSuppfyR (notGuardPMatch 'seq'' shnfStepM redE redM)

Using the leftmost-outermost strategy, we can easily implement a normalisation strategy on
top of the SHNF strategy:

nfStepE :: TrafoE---+ TrafoM---+ TrafoE
nfStepE redE redM = shnfStepE redE redM 'aft'

feftmostOutermostE (shnfStepE redE redM) (shnfStepM redE redM)

nfStepM :: TrafoE ---+ TrafoM ---+ TrafoM
nfStepM redE redM = shnfStepM redE redM 'aft'

feftmostOutermostM (shnfStepE redE redM) (shnfStepM redE redM)

3.5 Normalisation Examples

The module NormafiseExampfe includes normalisation examples.

3.5.1 Reduction to SHNF

We first let defaultly the deterministic strategy for reduction to SHNF to take the confluent
reduction systems Rule.redExpr and Rule.redMatch in 3.2.5 as arguments.

shnfStepEO :: TrafoE
shnfStepEO = shnfStepE Rule.redExpr Rule.redMatch

shnfStepMO :: TrafoM
shnfStepMO = shnfStepM Rule.redExpr Rule.redMatch

We still take epm- [[1,2,3], [2,3,4], [3,4,5), [5)) 1> x: xs: (y: ys: zss) I=} 1xs: (ys: zss)f
for example. We repeat applying the deterministic strategy shnfStepMO to epm and the
resulting matching is ~ [[2, 3), [3, 4], [3, 4, 5), [5)) ~· It is shown in GHCi as follows.

*NormaliseExample> (repeat' shnfStepMO) epm
Just I [[2, 3] , [3, 4] , [3, 4, 5] , [5]] I

We also repeat applying the deterministic strategy shnfStepEO to epmE -

[[1, 2, 3], [2, 3, 4), [3, 4, 5], [5)) 1> x : xs : (y : ys : zss) I* 1 xs : (ys : zss)f

and the resulting matching is

[[2, 3), [3, 4), [3, 4, 5), [5])

47

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

It is shown in GHCi as follows.

*NormaliseExample> (repeat' shnfStepEO) epm'
Just [[2,3], [3,4], [3,4,5], [5]]

We implement a normalisation strategy on top of the SHNF strategy using the leftmost
outermost strategy.

nfStepEO :: TrafoE
nfStepEO = nfStepE (leftmostOutermostE Rule.redExpr Rule.redMatch)

(leftmostOutermostM Rule.redExpr Rule.redMatch)

nfStepMO :: TrafoM
nfStepMO = nfStepM (leftmostOutermostE Rule.redExpr Rule.redMatch)

(leftmostOutermostM Rule.redExpr Rule.redMatch)

We also repeat applying the strategy nfStepEO to epmE -

[[1, 2, 3], [2, 3, 4], [3, 4, 5], [5]] t> x : xs : (y : ys : zss) I=> 1 xs : (ys : zss)f

and the resulting matching is

[[2, 3], [3, 4], [3, 4, 5], [5]] .

It is shown in GHCi as follows.

*NormaliseExample> (triply (triply (triply nfStepEO))) epmE
Just [[2,3], [3,4], [3,4,5], [5]]

The leftmost-outermost strategy is deterministic but obviously not normalising. For example,

3.5.2 Normalisation Examples of PMC Fixed-point Expressions

A fixed point is a value for which a function returns the same value. For example, the fixed
point of

return1 = -\x.1

is the value 1. return1 only has that one fixed point, but functions can have more than one
fixed point, e.g. the identity function has all values as fixed points.

In Haskell, "fix" is the fixed-point operator. fix is defined in Haskell as below:

fix :: (a - a) - a
fix f = f $ fix f

The above-mentioned funtion returnl can be defined in Haskell.

returnl :: tnt - lnt
returnl = -\x - 1

When we apply fix to returnl, GHCi produce 1 as the fixed point of returnl.

48

McMaster University- Computer Science

*NormExample> fix return1
1

Now we define fix returnl in the type-indexed PMC.

fixReturnOne :: Expr Jnt
fixReturnOne = Apply EFix returnOne

MSc Thesis - Xiaoheng Ji

Note that the PMC expression returnOne is defined in 2.4.4. GHCi can show it as follows.

*NormaliseExample> returnOne
{x => 111}

When we apply the deterministic strategy for reduction to SHNF to the PMC expression
fixReturnOne, the normalisation produces the result 1.

*NormaliseExample> (repeat' shnfStepEO) fixReturnOne
Just 1

3.6 Summary

The type-indexed implementation of the reduction rules and the normalising strategy of
PMC0 constitute the operational semantics of type-indexed PMC0 . From its confluent re
duction rules and normalising strategy as well as the reduction and normalising sequence
of its examples, we can conclude that PMC0 is a concise and elegant formalisation of the
operational pattern matching semantics of modern functional programming languages.

By changing the single rule concerned with results of matching failure to "failure as ex
ception", we have PMC;., which is still confluent and normalising, but results in "more
successful" evaluation.

49

Chapter 4

Bimonadic Semantics of PMC

This chapter includes the formalisation and implementation of the bimonadic semantics of
PMC based on Kahl's proposal. We formalise the bimonadic semantics of PMC in the abstract
categorical setting. The bimonadic semantics employs two monads to abstract two kinds of
computations, which corrrespond to the two syntactic categories of PMC, i.e., expressions and
matchings. In the type-indexed implementation, there are three semantic functions eva/P,
eva/E and eva/M that capture the meanings of the three kinds of PMC's syntactic terms, i.e.,
patterns, expressions and matchings. We also implement type semantics, variable semantics
and constructor semantics to interpret the meanings of types, variables and operators, and
constructors. '

In this chapter, we first introduce categorical notation in the section 4.2 and then use them
to formalise the bimonadic semantics of PMC in the section 4.3. In the implementation
part, we first implement the type semantics in the bimonadic semantics in the section 4.5.
We also implement the variable semantics and constructor semantics in the sections 4.6
and 4. 7 respectively. Variables and constructors are two syntactic units of building patterns
and expressions of PMC. We then implement the bimonadic semantics of PMC including
the three semantic functions for the three syntactic categories patterns, expressions, and
matchings respectively in the section 4.8. Finally, we implement examples to demonstrate
the different semantics of the two calculi PMC0 and PMC.o;..

4.1 Introduction

In the denotational approach, the effect of executing a program is studied. The effect means
an association between initial states and final states. The idea is to define a semantic function
for each syntactic category. The function maps each syntactic construct to a mathematical
object and describes the effect of executing that construct.

It has long been recognized, however, traditional denotational semantics lacks modularity
and reusability [18], which makes difficult applying traditional denotational semantics to the
design of realistic programming languages [22]. Moggi [17] took the notion of monad from
category theory to structure various notions of computational effect. Liang and Hudak [15]
introduced modular monadic semantics to take advantage of a monadic approach to structure
denotational semantics, which achieves a high level of modularity and extensibility.

In modular monadic semantics, monads and monad transformers are used to separate values
from computations. Modular monadic semantics maps terms in source languages into com
putations in meta languages, compared with that traditional denotational semantics maps

50

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

terms in source languages into values in meta languages.

Kahl proposed the bimonadic semantics of PMC in an abstract categorical setting, which
allows to use existing categorical concepts to formalise the bimonadic semantics and guide
the implementation elaborating the idea. The formalisation and implementation of the
bimonadic semantics of PMC is the main task of this thesis.

In PMC syntactical domain, PMC terms are divided into two major syntactic categories:
expressions and matchings. Correspondingly, in the monadic semantics, Kahl proposed
two monads to represent two kinds of computations, one for expressions and the other for
matchings respectively. The resulting bimonadic semantics allows us to have an axiomatized
formulation of well-known programming languages features such as environments.

Since the bimonadic semantics of PMC is defined in an abstract categorical setting, it is
necessary to summarise relevant categorical notation in the section 4.2, which will be used
in the section 4.3 to formalise the bimonadic semantics of PMC.

4. 2 Categorical Notation

Considering the correspondence between cartesian closed categories and typed >.-calculi, we
will define the bimonadic semantics in a cartesian closed categories setting. Relevant cate
gorical notation is introduced in this section.

We adopt categorical notations from Barr and Wells' book [3) into our setting.

Over binary products ax b, we define two projections fsta,b : ax b- a and snda,b : ax b- b.
We abuse the notation of pairing () to define morphism pairing (!, g) : c - a x b for
morphisms f : c - a and g : c - b.

For every two objects a and bin a cartesian closed category, there are an exponential object
(for "functions from a to b") written [a- b], an "function application" morphism eval[a-+b] :

[a - b] x a - b, and a currying operation >. that maps every morphism f : c x a - b to
the unique morphism >.j: c- [a- b] such that (>.j x ida) eval[a--b] =f.
We define IIi :I • a(i) for the indexed (but not necessarily ordered) product over the finite
index set I, with component a(i) for index i; the projection to the sub-product indexed by
elements of a subset .:J ~ I is

projj>-J : (IIi : I • a(i)) - (IIi : .:J • a(i))

(we assume singleton products to be identified with their components: (IIi : .:J • a(i)) =
a(.:J)).

We will write both the object mapping and the morphism mapping of a functor as an
application of the functor name (Haskell uses the Functor class member function fmap for
the morphism mapping), so that for a functor H and a morphism f : a - b we have

Hj:Ha-Hb

51

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

A monad is a triple (M, returnM,joinM) consisting of a endofunctor M together with two
natural transformations, which, for readability, we just present as polymorphic morphisms:

return~ : a ---+ M a

join~ : M (M a) ---+ M a

satisfying the following additional laws:

join~; return~= id(M (M a))
return~; join~= id(M a)
.. M .. M .. M .. M
JOina ; JOina = JOinM ai JOina

Every monad M gives rise to a so-called Kleisli category; it has returnM morphisms as
identities, and for two of its arrows f : a ---+ M b and g : b ---+ M c, their composition is
defined as follows:

f 8M g: a---+ M c
f 8M g = J; M g; join~

A monad with zero has a natural transformation (assume term a a ---+]. is the unique
morphism into the terminal object):

zero!;! :]. ---+ M a

with
M zero~; join~= termM lli zero~

M ... M- M zeroM a' JOina - zeroa

In addition, an additive monad has a natural transformation

plus~: M ax M a---+ M a

with (assuming a strict choice of direct products, i.e., with]. x A= A etc.):

(zero~ x f); plus~= f
(! x zero~); plus~ = f
(idM a x plus~); plus~= (plus~ x idM a); plus~

As Moggi explains in [16], we need strong monads for being able to deal with expression
with more than one free variable; a strong monad M has a natural transformation:

strengthl~b: ax M b---+ M (ax b) ,

called tensorial strength satisfying

rM a = strengthlf1a; M ra

strengthl~xb,ci M, assoca,b,c = assoca,b,M ci (id a x strengthlrc); strengthl~bxc
return~b = (ida x returnr); strengthl~b
strengthl~M bi M strengthl~bi join~xb = (ida x join{;f); strengthl~b

52

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

We define the "swapped version" as

strengthR~b ::Max b--+ M (ax b)
strengthR~b = swapM a,b; strengthLt:a; M (swapb,a)

This allows us to define:
0M: (M ax M b)--+ M (ax b)

via (swapa,b is the isomorphism from a x b to b x a)

0M = strengthR~M b; M (strengthl~b); join~xb

Notice that we chose to "execute the first component first" -this is in general different from
proceeding the other way round.

We shall use the folding of this over ordered tuples:

0: (M a1 X .. ·X M an)--+ M (a1 X .. ·X a~)

0 = (· · · ((((Ma1 X Ma2); 0M) X Ma3); 0M)' '·X MaJ; 0M

4.3 Formalisation of the Bimonadic Semantics of PMC

Before we get to the formalisation of the bimonadic semantics of PMC, we introduce the idea
of type semantics.

When we attempted to implement the bimonadic semantics of PMC, we found that given that
any pattern matching (or a function) has a type a --+ f3 we can easily evaluate this pattern
matching (or this function) to some value of type M (a --+ /3) using matching semantic
function. From this, we can extract a function of type a --+ f3 in a monadic computation.
However, for the purpose of dealing properly with pattern matching failure, the result of
function application should be type M f3 instead of just type /3. Therefore, in order to
continuing evaluation, we have to convert this value of type M (a --+ /3) to another value of
type a --+ M f3 so that we can directly supply an argument of type a to this pattern matching
(or apply this function to an argument of type a) to get a result of type M {3. Thus, we
introduce an explicit type semantics to solve this problem. Our basic type semantics rules
are as follows:

[a --+ f3]M=[a]M --+ M [f3]M
[T]M=T

[C a1 ... an]M=C [al]M ... [an]M
if T is a primitive type
if C is a polynomial type constructor

The second case is of course an instance of the third.

The idea of the explicit type semantics is the foundation of the formalisation of the bimonadic
semantics of PMC in this section. However, In the bimonadic semantics of PMC, the type

53

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

semantics depends on both E and M. Therefore, we have [a]e,M instead of [a]M· For brevity,
we will use the abbreviation [a] for [a]e,M, where the monads are clear from the context.

Now we start from the term category T for typed patterns. Then we consider a functorial
semantics in a cartesian closed category C via the functor denoted by superscripting with C.

Assume two monads inC, (E,joinE, returnE) for expressions, with an additional natural trans
formation

empty~ :]. --+ E a

and the additive monad (M,joinM, returnM, zeroM, plusM) for matchings.

The factoring of zero~ and return~ through the direct sum of]. and a has to be a mono
this makes sure that their ranges are disjoint.

In particular, we will need distribution of addition over function application:

(plus~__,M b] x ida); strengthR~__,M b],a 8M eval[a-->M b] =

((fsta,b X ida); strengthR~__,M b],a 8M eval[a-->M]

, (snda,b X ida); strengthR~__,M b],a 8M eval[a-->~b]
); plus~

The two transformations transfer and eject are introduced.

• transfer a : M a --+ E a, with

zero~; transfer a = empty~ (return M; transfer)

and

return~; transfer a = return~ (returnM; transfer)

• ejecta : E a --+ M a, with

return~; ejecta = return~

The condition

emptyE. eiect = zeroM a' J a a (eject0)

is necessary only for the semantics of PMC~.

We consider interpretation of types and data constructors in a cartesian closed category C.
For each type a, let ac denote the object of C that serves as interpretation of a.

While in strict languages, in the rewriting semantics only values can be substituted for vari
ables, and analogously only values need to be bound to variables by the valuations in the

54

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

denotational semantics, we are here targetting non-strict languages, where the operational
semantics can substitute arbitrary expressions for variables, and therefore, analogously, the
type of the denotational variable semantics has to coincide with that of the expression se
mantics. The object associated with a variable is therefore the images under the expression
monad E of the object that interprets the variable's type.

For thP. sake of conciseness and readability, we abbrebriate this object corresponding to the
type of a variable v by

vE := E [type(v)]c

and also introduce similar notation for each sets V of variables:

VE := Ilv: FV(e) • E [type(v)]c .

In the non-strict setting, data constructors always produce values, but accept arbitrary
expressions as arguments. Therefore, for each constructor c : a 1 x · · · x an -t (3, the
constructor morphism that serves as interpretation of c goes from a product of expression
semantics to an expression semantics: '

cc : E [a1]c x · · · x E [an]c -t [(3]c

In addition, for each constructor c : a 1 x · · · x an -t (3, we also assume existence of an arrow

cc : [f3f -t M (E [ai]c x · · · x E [anf)

such that cc; cc = return~ [al)Cx···xE (an]c·

Since we want the reduction rules to be translated into semantic equations, both sides of
a rule always have to be interpreted in a compatible way; since the reduction rules do
not preserve all free variables, have to externally impose a start object for the semantic
morphisms.

Therefore, given a variable set V, we will define the semantics of an expression e of type a
with FV(()e) ~ Vas a morphism from the product corresponding to the variable set V to
the object corresponding to a:

[e]~: vE-t E [a]c

For each matching m of type a, we will define its semantics as a morphism in the Kleisli
category for M from the variables to the result type:

[m]~ : vE-t M [af

One might consider to use M (E [a]c) as the target type here, but we will see that we gain
additional flexibility by the chosen setup.

Finally, to each pattern p of type a, we associate a morphism in the Kleisli category of M
from the object used for expression semantics of type a to the object corresponding to the
set of free variables of the pattern:

[Pt: E [a]c -t M (FV(p)E)

We formalise the bimonadic semantics of PMC in the figure 4.1.

55

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

Pattern semantics: If I- p : a, then [p]P : E ac - M (FV(p)E)
p

• [v]P = return~e

The target type is isomorphic to M (II v : FV (p) • E [type(v)]c); for the sake of
conciseness we consider these two types as identified.

Expression semantics: If I- e: a, then [e]~: VE-E [a]c
E

• [v]~ = proj~>-{v}

• [c(e1, ... , en)]~ = ([el]~, ... , [en]~); cc; return!c

• If I- f : a - f3 and I- a : a, then [! a]~ =
E E

• [~ m ~]~ = [m]~; transfer

• [0]~ = emptyE

Matching semantics: If I- m :a, then [m]~ : VE- M ac
M

• [1 ef]~ = [e]~; eject

• [~]~ = zeroM

• If I- p : a and I- m : /3, then [p F? m]~ =
p M

• if I- a : a and I- m : a - f3, then
E M

Figure 4.1: Bimonadic Semantics of PMC

56

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

4.4 Monads

In this section, we will implement the monads in the bimonadic semantics of PMC. We have
two sets of monads to respectively work for PMC0 and PMC7 . In every set of monads, the
monads Ei and M are the computation concepts corresponding to expressions respectively
matchings, and wrap values. El and M work for PMC0 and E2 and M work for PMC7 . We
first define the matching monad M and its relevant categorial functions. We then define the
expression monad El and its relevant categorial functions for PMC0 . Finally, We define the
expression monad E2 and relevant categorial functions for PMC7 . The categorical functions
has been introduce in the abstract categorical setting in the section 4.3.

The matching monad is shared by thw two calculi:

newtype M a= M{ unM :: Maybe a} deriving (Typeablel)

Matching failure Fail is translated into M Nothing.

The following expression monad El is for PMC0 .

newtype El a = El { unEl :: Identity a} deriving (Typeablel)

Empty expression Empty is translated into E (error "Empty").

The following expression monad E2 is for PMC7 .

newtype E2 a = E2{ unE2 :: Maybe a} deriving (Typeablel)

Empty expression Empty is translated into E Nothing.

The following Typeablel instance of Identity allows El to derive its Typeablel instance.

tcldentity = mkTyCon "Control.Monad. Identity"
instance Typeablel Identity where

typeOfl (_::Identity a) = mkTyConApp tcldentity []

4.4.1 Matching Monad

In this subsection, we will implement the matching monad M for both the two calculi PMC0

and PMC-;..

The monad M is in Monad, MonadPiu5 and Functor classes.

instance Monad M where
return m = M $ return m
fail 5 = M $ fail 5
(M m) ~ k = M (m ~ unM o k)

instance MonadPiu5 M where
mzero = M Nothing
(M ml) 'mplu5' (M m2) = M (ml 'mplu5' m2)

instance Functor M where
fmap f (M m) = M (fmap f m)

57

MSc Thesis - Xiaoheng Ji

We define the Transfer and Eject classes.

class Transfer m e where
transfer:: m a-+ e a

class Eject e m where
eject :: e a -+ m a

4.4.2 Expression Monad for PMC0

McMaster University- Computer Science

The expression monad El for PMC0 has Monad and Functor instances.

instance Monad El where
return e = El $ return e
fail s = El $ fail s
(El m) ~ k = El (m ~ unEl o k)

instance Functor El where
fmap f e = e ~ Aa -+ return $ f a

We first create an instance Transfer Maybe Identity and then based on this, create an instance
Transfer M El.

instance Transfer Maybe Identity where
transfer= maybe (faii 11 Transfer 11

) return

instance Transfer M El where
transfer (M m) = El (transfer m)

We first create an instance Eject Identity Maybe and then based on this, create an instance
Eject El M.

instance Eject Identity Maybe where

eject i = return $ runldentity i

instance Eject El M where
eject (El e)= M (eject e)

4.4.3 Expression Monad for Resurrection of Matching Failure

We now turn to PMC..;..

The expression monad E2 for PMC..;. has Monad and Functor instances.

instance Monad E2 where
return e = E2 $ return e
fail s = E2 $ fail s
(E2 m) ~ k = E2 (m ~ unE2 o k)

instance Functor E2 where

58

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

fmap f (E2 e)= E2 (fmap f e)

We first create an instance Transfer Maybe Maybe and then based on this, create an instance
Transfer M E2.

instance Transfer Maybe Maybe where
transfer= id

instance Transfer M E2 where
transfer (M m) = E2 (transfer m)

We first create an instance Eject Maybe Maybe and then based on this, create an instance
Eject E2 M.

instance Eject Maybe Maybe where
eject= id

instance Eject E2 M where
eject (E2 e)= M (eject e)

4.5 Implementation of Type Semantics

As said in the section 4.3, the idea of the explicit type semantics is the foundation of the
formalisation of the bimonadic semantics of PMC in this section. Now, before implementing
the bimonadic semantics of PMC, We implement the type semantics in this section as the
foundation of the implementation of the bimonadic semantics of PMC.

We implement this type semantics through a type constructor SemType, which is used as
the type-level mapping from type indices to their semantics.

Preliminary experiments using a type class instead showed that in that case, the compiler
will not derive the premises of the instance for function types since it does no make use of
closedness information of type classes.

GADTs are by definition closed, and therefore provide more guidance to the compiler, so we
use these for the time being, even though that limits the type constructors we can use.

data Sem Type :: (* ---+ *) ---+ (* ---+ *) ---+ (* ---+ *) where
SemTypeFct ::(Typeable a, Typeable b)::;..

(Sem Type£ e m a ---+ Sem TypeM e m b) ---+ Sem Type e m (a ---+ b)
Sem Type Triv :: () ---+ Sem Type e m ()
Sem Type Boo/ :: Boo/ ---+ Sem Type e m Boo/
Sem Typelnt :: lnt---+ Sem Type e m lnt
SemTypeChar ::Char---+ SemType em Char
SemType/nteger ::Integer---+ SemType em Integer
SemTypeF/oat ::Float---+ SemType em Float
SemTypeDouble ::Double---+ SemType em Double
SemTypePair :: (SemTypeE em a, SemTypeE em b)---+ SemType em (a, b)

59

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

SemTypeEither ::Either (SemTypeE em a) (SemTypeE em b) -t

Sem Type e m (Either a b)
Sem Type Maybe :: Maybe (Sem TypeE e m a) -t Sem Type e m (Maybe a)
SemTypeList :: ListRepr e (SemType em a) -t SemType em [a]

We will need at least one inverse constructor - the following pattern matching is complete
due to the GADT constraints.

unSem Type List :: Sem Type e m [a] -t ListRepr e (Sem Type e m a)
unSemTypeList (SemTypeList xs) = xs

We need a Typeablel instance for SemType em.

tcSemType = mkTyCon "VarSem.SemType"
instance (Typeablel e, Typeablel m) :::::> Typeab/el (SemType em) where

typeOfl (_ :: Sem Type e m a) = mk TyConApp tcSem Type
[typeOfl (j_ :: e a)
, typeOfl (j_ :: m a)

l
Recursive datatypes are based on a bifunctor, which, for lists, is the following:

type ListBiFunctor a b = Maybe (a, b)

Just for illustration, here is how lists are defined from this bifunctor via explicit recursion:

data List a = List (ListBiFunctor a (List a))

One could also use a second-order type constructor for recursive datatypes:

data RecType f = RecType (f (RecType f))

If ListBiFunctor was a newtype, we could partially apply it for the definition using RecType:

data List' a = List' (RecType (ListBiFunctor a))

Since the RecType overhead makes List' harder to use than List, we use a construction that
is modelled on that for List, adding a "wrapper" monad around all type constructors:

data ListRepr w a = ListRepr (ListBiFunctor (w a) (w (ListRepr w a)))

We need a Typeablel instance, which has to be done manually because of the higher-order
kind of ListRepr:

tcListRepr = mkTyCon "VarSem.ListRepr"
instance (Typeablel w) :::::> Typeab/el (ListRepr w) where

typeOfl (_ :: ListRepr w a) = mk TyConApp tcListRepr
[typeOfl (j_ :: w a)

l
We implement the show instance for Sem Type e m a as follows.

60

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

instance (Functor e, ShowF e):::} Show (SemType em a) where
showsPrec = showSem Type

showSemType ::(Functor e, ShowF e):::} ShowSPrec (SemType em a)
showSem Type _ (Sem Type Triv _) = (11

()
11 *)

showSem Type _ (Sem Type Boo/ x) = shows x
showSemType _ (SemType/nt x) =shows x
showS em Type _ (Sem TypeChar x) = shows x
showSemType _ (SemTypelnteger x) =shows x
showSem Type _ (Sem TypeF/oat x) = shows x
showSem Type _ (Sem TypeDouble x) = shows x
showSemType _ (SemTypePair (x,y)) =

(' (' :) o showsPrecF showSem Type 0 x o

(', ':) o showsPrecF showSemType 0 yo (') ':)
showSem Type _ (Sem TypeList (ListRepr Nothing)) = shows 11

[]
11

showSemType _ (SemTypeList (ListRepr (Just (ea, eas)j.)) =

(' (' :) o showsPrecF showSem Type 0 ea o

(
11

:
11 *) o showsPrecF showSem Type 0 (fmap Sem Type List eas) o (') ':)

We frequently need Sem Types inside the semantic monads:

type SemTypeE em a= e (SemType em a)
type SemTypeM em a= m (SemType em a)

newtype SemE e m a = SemE { unSemE :: Sem TypeE e m a}
newtype SemM e m a = SemM{ unSemM :: Sem TypeM e m a}

4.6 Variable Semantics

In the section, by defining type-indexed mappings to construct dictionaries, we implement
variable assignment and operator semantics.

4.6.1 Variable Assignments

We use a separate type VarAssign to handle variable semantics. It maps a variable of type
Var a to a type semantics value of type Sem Type e m a, where e and m are two monad
arguments and can be instantiated as El and M for PMC0 , or instantiated as E2 and M
for PMC7 . Thus, the corresponding variable assignments respectively work for PMC0 and
PMC-s-.

type VarAssign em= VA. T/Map Var (SemE em)

We also define insertion and lookup functions for convenience.

61

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

valnsert ::(Typeable a, Monad e, MonadP/us m, Transfer me, Eject em)==?
Var a --+ SemE e m a --+ VarAssign e m --+ VarAssign e m

valnsert v a = VA.insert v a

vaLookup :: (Typeable a, Monad e, Monad Plus m, Transfer m e, Eject e m) ==?

Var a --+ VarAssign e m --+ Maybe (SemE e m a)
vaLookup v va = VA.Iookup v va

4.6.2 Operator Semantics

Due to that we consider operators and primitive functions as variables, we also use VarAssign
to implement operator semantics, which is used to interpret operators from operator names
to its meaning in the semantic domain.

We introduce a dictionary including the two operators + and * as follows: .
vaO ::(Functor e, Monad e, MonadPius m, Transfer me, Eject em)==?

VarAssign e m
vaO
= valnsert (mkVar' "+" :: Var (tnt--+ lnt--+ lnt))

(wrap/ntBinary (+))
o va/nsert (mkVar' "++" :: Var ([tnt]--+ [tnt]--+ [tnt]))

(wraplntListBinary cone)
$ VA.empty

The function wrap/ntBinary is built to facilitate building binary operator or function over lnt
in the semantic domain. Therefore, it can be used to build the operator + in the semantic
domain.

wrap/ntBinary ::(Eject em, Monad e, Monad m) ==?

(tnt--+ lnt--+ lnt) --+ SemE e m (tnt--+ lnt--+ lnt)
wraplntBinary f = SemE $ return $

Sem TypeFct $.Ax --+ do -- in Monad m
return$

Sem TypeFct $..\y --+ do -- in Monad m
Sem Type/nt a +-- eject x
Sem Type/nt b +-- eject y
return $ Sem Typelnt $ f a b

The function wraplntListBinary is built to facilitate building binary operator or function over
[lnt J in the semantic domain. Therefore, it can be used to build the operator * in the
semantic domain.

wraplntListBinary ::(Eject em, Monad e, Functor e, Monad m) ==?

(Sem TypeE e m [lnt] --+ Sem TypeE e m [lnt] --+ Sem TypeE e m [lnt]) --+

62

McMaster University- Computer Science

SemE em ([lnt] ~ [lnt] ~ [!nt])
wrap/ntListBinary cone = SemE $ return $

Sem TypeFct $,\x ~ do -- in Monad m
return$

Sem TypeFct $,\y ~ do -- in Monad m
eject $ cone x y

We need a function cone of type

MSc Thesis- Xiaoheng Ji

Sem TypeE e m [lnt] ~ Sem TypeE e m [lnt] ~ Sem TypeE e m [lnt] as an argument of the
function wrap/ntListBinary.

cone:: (Functor e, Monad e) =}
Sem TypeE e m [lnt] ~ Sem TypeE e m [lnt] ~ Sem TypeE e m [lnt]

cone ass bss = do -- in Monad e
SemTypeList (ListRepr maybeValue) +--ass
case maybeVa/ue of

Nothing ~ bss
Just (a, as) ~ let

cs = cone (fmap Sem Type List as) bss
in return$ SemTypeList (ListRepr (Just (a, fmap unSemTypeList cs)))

4. 7 Constructor Semantics

In this section, we implement a constructor semantics for constants and constructors.

4. 7.1 Constructor Assignments

We define a type Constructor to be the type constructor of the source of a type-indexed
mapping, which acts as constructor assignments.

data Constructor::*~ *where
Constructor:: (Show c, Ord c, Typeable c, CType c a)=} c ~ Constructor a

The CType class has been introduced in the section 2.1.2.

Since the type Constructor a is intended to be the type of the source of a type-indexed
mapping, it must have the Ord instance.

instance Eq (Constructor a) where
Constructor x = Constructor y = case cast x of

Nothing ~ False
Just x' ~ x' = y

instance Ord (Constructor a) where

63

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

compare (Constructor x) (Constructor y) = case cast x of
Nothing -t error "this should not be possible"
Just x' -t compare x' y

Constructor x ::::;; Constructor y = case cast x of
Nothing -t error "this should not be possible"
Just x' -t x' ::::;; y

Now we define the type of the type-indexed mapping, a separate newtype ConstrAssign e m,
to acts as constructor assignments.

type ConstrAssign e m = CA. TIMap Constructor (Sem Type e m)

The following two functions is used to facilitate the operations of insertion and lookup.

calnsert :: (Show c, Ord c, Typeable c, CType c a, Typeable a,
Monad e, Monad m, Transfer me, Eject em) =?
c -t Sem Type e m a -t ConstrAssign e m -t ConstrAssiin e m

calnsert c s = CA.insert (Constructor c) s

caLookup ::(Show c, Ord c, Typeable c, CType c a, Typeable a,
Monad e, Monad m, Transfer me, Eject em)=?
c -t ConstrAssign e m -t Maybe (Sem Type e m a)

caLookup c ca = CA.Iookup (Constructor c) ca

We introduce a dictionary as follows:

caO :: (Functor e, Monad e, Monad m, Transfer me, Eject em) =?
ConstrAssign e m

caO
= calnsert (CResult "[]" :: CResult [lnt]) (SemTypeList (ListRepr Nothing))
o calnsert (CArg (CArg (CResult " : "))) wraplntList
o calnsert (CArg (CArg (CResult " (,) "))) wraplntPair
o calnsert (CResult "1") (SemType/nt (1 :: lnt))
o calnsert (CResu/t "2") (SemType/nt (2 :: lnt))
o calnsert (CResu/t "5") (SemType/nt (5 :: /nt))
o ca/nsert (CResu/t "22") (SemTypelnt (22 :: lnt))
o ca/nsert (CResult "42") (SemTypelnt (42 :: lnt))
$ CA.empty

where wrap/ntList is a list constructor in the semantic domain

wraplntList ::(Functor e, Monad e, Monad m, Eject em) =?
Sem Type e m (lnt -t [lnt] -t [lnt])

wrap/ntList =
SemTypeFct $>.(a:: SemTypeE em lnt) -t

return $
SemTypeFct $>.(as:: SemTypeE em [!nt]) -t do

64

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

return$ SemTypeList $ ListRepr $Just (a, fmap unSemTypeList as)

and wraplntPair is a pair constructor in the semantic domain.

wraplntPair ::(Monad e, Monad m, Eject em)=::}
SemType em (tnt~ lnt ~(tnt, lnt))

wraplntPair =

SemTypeFct $>.(a:: SemTypeE em lnt) ~do
return$

SemTypeFct $ >.(b :: SemTypeE em lnt) ~do
return $ Sem TypePair (a, b)

4. 7.2 Semantics of Pattern Constructors

Since Controi.Monad.ldentity.ldentity has no Typeable and Ord instances, and also since we
do not need the monad aspects, we define our own identity type constructor:

newtype I a= I{ unl ::a} deriving (Eq, Ord, Typeable)

instance Functor I where
fmap f (I a)= I (fa)

instance Monad I where
return a= I a
ia ~ f = f (unl ia)

We also define the ConstrUnCurry class as follows.

class (Monad e, Monad m, Typeablel e, Typeablel m
, Typeable c, Typeable r, Typeable as) =::}
ConstrUnCurry em c r as Ice m ~ r, c em~ as

where
constrResultType :: c ~ r
constrArg Types :: c ~ as

The following instances impose a restriction on the argument types of ConstrUnCurry: c is
the type that a constructor has in typed PMC, r is the result type of constructor application
of the constructor in the semantic domain, as is the type of a decomposed structure of a
constructor application in the semantic domain.

instance (Monad e, Monad m, Typeablel e, Typeablel m, Typeable a) =::}
ConstrUnCurry e m (CResult a) (Sem TypeE e m a) ()

where
constrResult Type _ = ..l
constrArg Types _ = ..l

instance (ConstrUnCurry em c r as, Typeable a) =::}
ConstrUnCurry em (CArg a c) r (e (SemType em a), as) where

65

MSc Thesis - Xiaoheng Ji

constrResu/t Type _ = .l
constrArgTypes _ = .l

McMaster University- Computer Science

A value of the type ConstrMatchFct e m c wraps a function, which is used to decompose
the result of a constructor application into the structure of the constructor application. The
resulting structure is used to implement matching of constructor applications of patterns.

data ConstrMatchFct :: (* - *) - (* - *) - * - *where
ConstrMatchFct ::(Transfer me, Eject em,

ConstrUnCurry em c r as)=? (r- mas)- ConstrMatchFct em c

a function and the function, from the result of constructor application, decompose the struc
ture of the constructor application to facilitate the implementation of matching expressions
against patterns.

Now we can define a type-indexed mapping to implement the semantics of matching of
constructor applicatons of patterns. ·

type PatConstrMap e m = PCM. T/Map I (ConstrMatchFct e m)

The type-indexed mapping maps a constructor to its decomposition function. Thus, given
an expression constructor application, we first get its constructor and then find its decom
position function from this type-indexed mapping. Finally, we can use this decomposition
function to decompose the value of the comstructor application into the structure of its cor
responding constructor. By using the decomposed structure, we can match it against the
corresponding pattern.

A insertion function is defined for convenience.

pcm/nsert ::(Show c, Ord c, Typeable c,
Transfer me, Eject em, ConstrUnCurry em c r as)=?
c - (r - m as) - PatConstrMap e m - PatConstrMap e m

pcmlnsert c f = PCM .insert (I c) (ConstrMatchFct f)

We introduce a dictionary as follows:

pcmO ::(Functor e, Monad e, Eject em, Monad m, Typeablel e, Typeablel m,
Eject e m, Transfer m e) =? PatConstrMap e m

pcmO
= pcm/nsert (CResult 11

[]
11

:: CResult [tnt]) unwrapNi/
o pcmlnsert pair unwrapPair
o pcmlnsert cons unwrapCons
$ PCM.empty

where unwrapNil decomposes the structure of a null list

unwrapNil ::(Eject em, Monad m) =? SemTypeE em [tnt]- m ()
unwrapNil x = do

66

McMaster University- Computer Science

(Sem Type List (ListRepr Nothing)) +-- eject x
return ()

and unwrapPair decomposes the structure of a pair

unwrapPair ::(Eject em, Monad m) *

MSc Thesis- Xiaoheng Ji

SemTypeE em (Jnt, lnt) ---t m (SemTypeE em lnt, (SemTypeE em lnt, ()))
unwrapPair x = do

(SemTypePair (ex, ey)) +--eject x
return (ex, (ey, ()))

and unwrapCons decomposes the structure of a list

unwrapCons ::(Eject em, Monad m, Functor e)*
SemTypeE em [lnt] ---t m (SemTypeE em lnt, (SemTypeE em [lnt], ()))

unwrapCons x = do
(SemTypeList (ListRepr (Just (x,xs)))) +--eject x
return (x, (fmap SemTypeList xs, ()))

Finally, the above two type-indexed mapping constrAssig~ e m and PatConstrMap e m
constitute the semantics of constructors.

type ConstrSem e m = (ConstrAssign e m, PatConstrMap e m)

4.8 Implementation of Bimonadic Semantics

In this section, by using the monads in the section 4.4, the variable semantics in the section
4.6, and the constructor semantics in the section 4. 7, we implement the formalised bimonadic
semantics in the section 4.3. Our implementation exactly corresponds to the bimonadic
semantics of PMC in the figure 4.1.

We definition the two evaluation function evaiEl and evaiE2 for PMC0 and PMC-s. respec
tively. Note that we instantiate the monad variables e and m with El and M respectively in
evaiEl and instantiate the monad variables e and m with E2 and M respectively in evaiE2.
Considering the different instance functions will be used when the corresponding monads
are different in the evaluation functions, the two different function types are sufficient to
produce two functions of different evaluation processes, which actually are what we expect.

evaiEl :: (Typeable a) * ConstrSem El M ---t VarAssign El M ---+ Expr a ---t
El (SemType El M a)

evaiEl = evaiE

eva1E2 ::(Typeable a)* ConstrSem E2 M ---t VarAssign E2 M ---t Expr a---t
E2 (SemType E2 M a)

eva1E2 = evaiE

67

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

4.8.1 Semantic Function for Patterns

The semantic function for patterns maps every syntactical construct of patterns to the monad
object in the semantic domain.

We define a newtype UpdVA for convenience.

type UpdVA e m = (VarAssign e m) -+ m (VarAssign e m)

We use the monad variables in the function type so that we can instantiate them with
different monads later to gain reusability.

evaiP :: (Typeable a, Typeablel e, Typeablel m,
Monad e, MonadPius m, Transfer me, Eject em)==>
PatConstrMap e m -+ Pat a -+ Sem TypeE e m a -+ UpdVA e m

When evaluating a value with structure Varpat v, the function adds it and its corresponding
argument value into the variable assignments for later use.

evaiP pcm (VarPat v) st va = return $ valnsert v (SemE si) va

For a value with structure ConstrPat ca, evaiP call evaiPCA and provide evaiPCA with a
function argument to record the decomposed structure level by level to match supplied
expression argument again this pattern.

evaiP pcm (ConstrPat ca) st va = evaiPCA pcm ca (.X() -+ return) st va

evaiPCA :: (Typeable r, Typeable c, Ord c, ConstrUnCurry em c r as,
Monad e, MonadPius m, Transfer me, Eject em)==>
PatConstrMap e m -+ ConstrApp Pat c -+ (as -+ UpdVA e m) -+ (r -+ UpdVA e m)

When the patterns have structure Constr c, the function looks it up in the semantics of
pattern constructors to get the decomposition function of constructor application of this
constructor. Then, the function applies this decomposition function to the expression argu
ment to get the decomposed structure of the expression argument. Finally, the function uses
the functions cont and cont' to match the expression argument against the pattern level by
level, by keeping all the cont functions hold.

evaiPCA pcm (Constr c) cont st va =case PCM.Iookup (I c) pcm of
Nothing -+ fail 11 evalPCA: unknown constructor 11

Just (ConstrMatchFct emf) -+ case cast st of
Nothing-+ fai1 11 evalPCA: cast error 11

Just r-+ do
as- emf r
case cast as of

Nothing -+ fail 11 evalPCA: back-cast error 11

Just as' -+ cont as' va
evaiPCA pcm (ConstrApply ca p) cont st va = evaiPCA pcm ca cont' st va

where

68

McMaster University- Computer Science

cont' (a, as) va =do
va' +--- cont as va
evaiP pcm p a va'

4.8.2 Semantic Function for Expressions

MSc Thesis - Xiaoheng Ji

The semantic function for expressions maps every syntactical construct of expressions to the
monad object in the semantic domain.

evaiE :: (Typeable a, Typeablel e, Typeablel m, Monad e,
Functor e, MonadPius m, Transfer me, Eject em)=>
ConstrSem e m ---+ VarAssign e m ---+ Expr a ---+ Sem TypeE e m a

The semantic function looks up the expression variable directly in the variable assignments
to get the corresponding monad object in the semantic domain.

eva IE cs va (EVar v) = case vaLookup v va of
Just (SemE a) ---+a
Nothing---+ error$ "evalE: "*show v * " is a free variable"

We define an auxiliary function evaiECA to evaluate expression constructor applications.

eva IE cs va (ConstrExpr ca) = evaiECA cs va ca

When evaluating a expression with structure Apply fa, the function first evaluates f to get a
function f' of type Sem TypeE e m a ---+ Sem TypeM e m b and then evaluate a to a value a' of
type Sem TypeE e m a. The function applies f' to a' to get a value of type Sem TypeM e m b.
Finally, the function applies transfer to the value to get the expected result.

evaiE cs va (Apply fa) =do
Sem TypeFct f' +--- eva IE cs va f
let a'= evaiE cs va a
transfer (f' a')

For a expression with structure MExpr m, the function first calls evaiM to evaluate m and
then apply transfer to the evaluation value to get the expected result.

eva IE cs va (MExpr m) = transfer $ evaiM cs va m

The expression Empty is directly interpreted as fail "Empty".

evaiE cs va Empty = fail "Empty"

The function evaiECA is used to evaluate expression constructor applications.

evaiECA ::(Show c, Ord c, Typeable c, Typeable a, CType c a, Typeablel e, Typeablel m,
Monad e, Monad m, Transfer me, Eject em, Functor e, MonadPius m) =>
ConstrSem e m ---+ VarAssign e m ---+ ConstrApp Expr c ---+ Sem TypeE e m a

For a value with structure Constructor c, evaiECA looks up it directly in the constructor
assignments.

69

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

evaiECA (ca, pcm) va (Constr c) = case caLookup c ca of
Just a ----+ return a
Nothing----+ error$ 11 evalECA: 11 *show c * 11 is not in ConstrAssign 11

For a value with structure ConstrApply c e, the evaluation is similar with values with struc
ture Apply fa. However, here we need extra gcast operations.

evaiECA (ca,pcm) va (ConstrApply c e)= do --in Monad e
SemTypeFct f +- evaiECA (ca,pcm) va c
let a = eva IE (ca, pcm) va e
case gcast a of

Nothing----+ error 11 evalECA: cast failed 11

Just a' ----+ case gcast (SemM (f a')) of
Nothing ----+ error 11 evalECA: back cast failed 11

Just (SemM r) ----+ transfer r

4.8.3 Semantic Function for Matchings .-

The semantic function for matchings maps every syntactical construct of matchings to the
monad object in the semantic domain.

evaiM :: (Typeable a, Typeablel e, Typeablel m, Monad e, Functor e, MonadPius m,
Transfer me, Eject em)=?
ConstrSem e m ----+ VarAssign e m ----+ Match a ----+ Sem TypeM e m a

For a matching with structure Return e, the function first calls evaiE to evaluate e and then
apply eject to the result.

evaiM cs va (Return e) = eject$ eva IE cs va e

The matching Fail is directly interpreted as fail 11 Fail 11
•

evaiM cs va Fail = fail 11 Fail 11

When evaluating a matching with structure PMatch p m, the function introduces a >.
abstraction to provide it with a expression argument. Then the function calls evaiP to
evaluate p and take the resulting variable assignments as an argument to evaluate m. Finally,
the function wraps the result as a function into Sem TypeFct and return it.

evaiM cs@(ca, pcm) va (PMatch p m) = return$ Sem TypeFct $
>.a ----+ do va' +- evaiP pcm p a va

eva 1M cs va' m

When evaluating a matching with structure Supply e m, the function first evaluates m to get
a function f of type SemTypeE em a----+ SemTypeM em band then evaluate e to a value a
of type Sem Type£ e m a. Finally, the function applies f to a to get the result.

evaiM cs va (Supply em) =do
Sem TypeFct f +- evaiM cs va m
let a = evaiE cs va e

70

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

fa
When evaluating a matching with structure MAlt ml m2, because m is an additive monad,
the function evaluates ml and m2 as alternatives but ml is prior.

eva/M cs va (MAlt ml m2) = (eva/M cs va ml) 'mplus' (eva/M cs va -m2)

4.9 Evaluation Examples

4.9.1 Four Simple Evaluation Examples

The four expression example that is evaluated in this subsection is defined in 2.4.3.

The first expression is the PMC expression ~ [5] t> y: []I=} 1Yf ~· we can show it in GHCi.

*EvalExample> ex1
{[5] >> (y: []) => lyl}

When we apply eva/El and eva/E2 to it respectively, we get the expected result as follows.

~ [5J [> Y = n I=} 1 Y r ~

------+ El 5
eva lEI

We can show it in GHCi.

*EvalExample> evalE1 (caO,pcmO) vaO ex1
E1 5

~ [5] t>y: []I=} 1yf ~

------+ E2 5
eva1E2

We can show it in GHCi

*EvalExample> evalE2 (caO,pcmO) vaO ex1
E2 5

The second expression is the PMC expression~ [5]t>y: zs I=} 1zsf ~· we can show it in GHCi.

*EvalExample> ex2
{[5] >> (y:zs) => lzsl}

71

MSc Thesis- Xiaoheng Ji McMaster University- Computer Science

When we apply eva/El and eva/E2 to it respectively, we get the expected result as follows.

~ [5J I> Y : zs F* 1 zs r ~
----+ El "[]"

evaiEl

We can show it in GHCi.

*EvalExample> evalE1 (caO,pcmO) vaO ex2
E1 II[] II

~ [5J I> Y : zs F* 1 zs r ~
----+ E2 "[]"

evaiE2

We can show it in GHCi.

*EvalExample> evalE2 (caO,pcmO) vaO ex2
E2 II[] II

The third expression is the PMC expression ~ (++) [5] [42] 1> (x: (y: [])) F? 1Yr ~· we can
show it in GHCi.

*EvalExample> ex3
++ [5] [42] >> (x: (y: [])) => lyl

When we apply eva/El and eva/£2 to it respectively, we get the expected result as follows.

~ (++) [5] [42] 1> (x: (y: [])) F? 1Yr ~
----+ El 42

evaiEl

We can show it in GHCi.

*EvalExample> evalE1 (caO,pcmO) vaO ex3
E1 42

~(++) [5] [42]~>(x: (y: []))F?1yr~

----+ E2 42
evaiE2

We can show it in GHCi.

*EvalExample> evalE2 (caO,pcmO) vaO ex3
E2 42

72

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

The last expression is the PMC expression ~ (++) (5] (42] 1> (x: (y: zs)) F=> 1yt ~· we can
show it in GHCi.

*EvalExample> ex4
++ [5] [42] >> (x:(y:zs)) => lyl

When we apply eva/El and eva/E2 to it respectively, we get the expected result as follows.

~ (++) (5] [42] 1> (x: (y: zs)) F=> 1yt &

---+ E142
evaiEl

We can show it in GHCi.

*EvalExample> evalE1 (caO,pcmO) vaO ex3
E1 42

~ (++) [5] [42] 1> (x: (y: zs)) F=> 1yt &

---+ E2 42
eva1E2

We can show it in GHCi.

*EvalExample> evalE2 (caO,pcmO) vaO ex4
E2 42

4.9.2 Evaluation Example of Variable Scope

We will evaluate the following PMC expression

~(x,y)F=>yF=>1(+) xyf& (5,42) 22,

which we implement as scope in the type-indexed PMC in 2.4.5.

We can show it in GHCi.

*EvalExample> scope
{(x,y) => y => I+ x yl} (5,42) 22

When we apply eva/El and eva/E2 to scope, we get the expected result as follows.

~ (x,y) F=> yF=> 1(+) x yt & (5,42) 22

---+ E127
evaiEl

We can show it in GHCi.

73

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

*EvalExample> evalE1 (caO,pcmO) vaO scope
E1 27

~(x,y)l=*yl=*1(+) xyf~ (5,42) 22

-----t E2 27
eva1E2

We can show it in GHCi

*EvalExample> evalE2 (caO,pcmO) vaO scope
E2 27

4.9.3 Different Evaluation Results of the Two Calculi

Here we take the following pattern matching example directly from 5.2 of the PMC paper and
evaluate it using eva/El and eva/E2 respectively to demonstrate different evaluation results
of the two calculi PMC0 and PMC~.

~ (3 : []) t> ((0 t> (x : xs) I=* [] I=* 11 f) I(0 t> ys I=* (v : vs) I=* 12 f)) ~

In the section 2.4.2, we have defined the corresponding PMC term pmc, which is shown in
GHCi as follows.

*EvalExample> pmc
{[3] >> (empty>> (x:xs) => [] => 111 I I empty>> ys => (v:vs) => 121)}

As demonstrated in the section 3.3.4, when we apply eva/El and eva/E2 to pmc, we get the
expected result as follows.

~ (3 : []) t> ((0 t> (x : xs) I=* [) I=* 11 f) I (0 t> ys I=* (v : vs) I=* 12 f)) ~

-----tEl 0
eva lEI

We can show it in GHCi.

*EvalExample> evalE1 (caO,pcmO) vaO pmc
E1 *** Exception: Empty

~ (3 : []) t> ((0 t> (x : xs) I=* [] I=* 11 f) I(0 t> ys I=* (v : vs) I=* 12 f)) ~

-----t E2 2
evaiE2

We can show it in GHCi

74

McMaster University- Computer Science

*EvalExample> evalE2 (caO,pcmO) vaO pmc
E2 2

MSc Thesis - Xiaoheng Ji

From the above two evaluation results in the two calculi PMC0 and PMC-7, we can draw a
conclusion that evaiEl exactly abstracts the meaning of pattern matching of current func
tional programming languages and evaiE2 has a "more successful" evaluation and can be
turned into a basis for programming languages implementation.

4.10 Summary

Precisely and unambiguously, the bimonadic semantics of PMC defines the semantics of every
syntatical structure of PMC. Thus, it can provide a basis for automatically generating com
pilers or interpreters. Besides, the bimonadic semantics of PMC implements the two calculus
PMC0 and PMCv under the same framework, which produces flexibility and reusability.
Thus, the bimonadic semantics is also useful to investigate other pattern matching model by
providing the different monads for PMC's expressions and matchings.

75

Chapter 5

Conclusions and Future Work

5.1 Summary of the Thesis

In this thesis research, we formalised the bimonadic semantics of the pattern matching calculi
(PMC) using categorical concepts and implemented the synatx, operational semantics, and
bimonadic semantics of PMC using type-indexed expressions.

The pattern matching calculi are new calculi modelling non-stri,ct pattern matching in mod
ern functional programming languages, and cleanly internalise P.attern matching via a modest
abstraction that divides PMC terms into two major syntactic categories, namely expressions
and matchings. By providing two different rules to interpret the empty expression that re
sults from matching failures, Kahl presented two kinds of calculi, PMC0 and PMC-7, both of
which have a confluent reduction system and a same normalising strategy. Our type-indexed
implementation of syntax and operational semantics of the two calculi shows that PMC0 is
a simple and elegant formalisation of the operational pattern matching semantics of current
functional programming languages. PMC7 has a "more successful" evaluation result and
can be a useful basis for implementations of modern functional programming language.

As a new technique based on Haskell's language extensions of type-safe cast, arbitrary-rank
polymorphism, and GADTs, type-indexed expressions demonstrate a uniform way of defining
all expressions as type-indexed to capture more program abstraction. In the implementation,
the technique of using type-indexed expressions to model PMC data structures can offer both
convenience in programming and clarity in code. The type-indexed syntax of PMC mirrors
the original theoretic definition of PMC in [11, 13] and the implementation of the operational
semantics of the two calculi corresponds perfectly to the original design in (11, 13]. Evaluation
examples of the operational semantics show that PMC can be a useful basis of modelling
non-strict pattern matching.

Based on Kahl's proposal, we formalised and implemented the bimonadic semantics of PMC
in an abstract categorical setting. The bimonadic semantics employs two monads to reflect
two kinds of computational effects, which correspond to our two major syntactic categories,
i.e. PMC expressons and matchings. Thus, our bimonadic semantics models the meaning of
PMC with more accuracy. The resulting bimonadic semantics allows us to have an axioma
tized formulation of well-known programming languages features such as environments.

Finally, from a practical programming viewpoint, our implementation is a good demonstra
tion of how to program in the pure type-indexed setting by taking full advantage of Haskell's

76

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

language extensions of type-safe cast, arbitrary-rank polymorphism and GADTs.

5.2 Related Work

In Peyton Jones' book [19], the chapter 4 by Peyton Jones and Wadler introduces a built-in
value FAIL representing a pattern matching failure. However, compared with Kahl's PMC
that we implemented in this thesis, they did not discover the relation ~FAIL~ = ERROR
between FAIL and ERROR, where ERROR corresponds to an empty expression that results
from matching failures.

Wadler's chapter 5 in the same book has been one of the standard references for compilation
of pattern matching, studying expressions containing alternative and FAIL.

Harrison and Keiburtz provided an abstract semantics and a logical characterization of
pattern-matching in Haskell and the reduction order that• it entails in [7], based on tra
ditional syntactical structure of pattern matching.

Harrison, Sheard and Hook introduced a calculational semantics for Haskell that exposes
the interaction of its strict features with its default laziness in (8]. Their implementation
considered "case branches p -t e" as separate syntactical units, which is a PMC matching
pI=} e in our PMC implementation.

Mosses recognized that traditional denotational semantics lacks modularity and reusability
in [18], Watt argued that the drawback makes difficult applying traditional denotational
semantics to the design of realistic programming languages in [22]. In [17], Moggi took the
notion of monad from category theory to structure various notions of computational effect.
Based on the concept of monad in Haskell, Liang and Hudak in [15] introduced modular
monadic semantics to take advantage of a monadic approach to structure denotational se
mantics, which achieves a high level of modularity and extensibility. Their work is based on
only one monad and does not deal with applications of two monads in denotational semantics.

There is no work on type-indexed forms in the GADT setting yet, excepting Kahl's type
indexed expressions in [14], although there has been some work on type-indexed functions
and type-indexed data types. Type-indexed functions were introduced more than a decade
ago. The recent work on type-indexed functions includes Oliveira and Gibbons' paper (4],
where they presented a design pattern TypeCase that allows the definition of closed type
indexed functions. Hinze, Jeuring and Loh defined a type-indexed data type in [10], which
is constructed in a generic way from an argument data type.

5.3 Accomplishments

With respect to the purposes of the thesis, the following goals have been accomplished:

77

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

• The bimonadic semantics of PMC has been formalised using categorical concepts based
on Kahl's proposal.

• The syntax, operational semantics, and bimonadic semantics have been implemented
using type-indexed expressions based on Kahl's PMC paper (11, 13] and Kahl's work
in type-indexed expressions in (14].

• Some sophisticated PMC evaluation examples have been provided to demonstrate the
power of our semantics models.

• The technique of type-indexed expressions, based on Haskell's language extensions of
type-safe cast, arbitrary-rank polymorphism and GADTs, has been taken full advan
tage of during the whole implementation process. Our implementation experiences
demonstrate how to use this technique and show the advantages of the technique.

In addition, a type-lost problem in the Haskell type system];las been discovered and de-
~rib~. .

5.4 Future Work

The primary direction of future work will be a further investigation of how PMC-7 can
be turned into a basis for programming language implementations. One of our important
aims is to make the pattern matching calculi be a useful basis for an interactive program
transformation and reasoning system for Haskell.

The next step in the short term can be the development of an automatic translation tool
from Haskell code segments to an evaluable PMC terms. Thus, by interactively reasoning
about the resulting evaluable PMC terms, we can analyse the properties of original Haskell
code segments. Such an result would be inspiring.

The nature of functional languages makes it easier to reason about its extensional behavior,
for example, the value returned by a program. However, its intensional behavior, such as the

· execution order of statements and the time complexity of a program, , is difficult to investi
gate. In future work, based on our fine-grained PMC syntactic structure and compositional
reduction system, the interactive program transformation and reasoning system can be used
to measure complexity of Haskell code segments.

78

Appendix A

Syntax of PMC

The appendix includes modules that define syntax of PMC.

A.l Variable

Variables is one of two syntactic units of building patterns and expressions and can only
occur as patterns or as expressions. Note that there are no matching variables.

In the type-indexed implementation of PMC, all syntactic& elements are defined as type
indexed forms. Variables is defined as follows.

The module defines variables and some auxiliary functions.

module Variable
(Var (), mkVar, mkVar'
, varName
, relevantSuffix, renameAvoidingSuffixes
, eqVar
, HasVar (..), var', isVar
, Free/n, freelnV
, HasVarType
)
where

import Data. Typeable
import Pre/Exts
import Data.Char
import Control. Monad (guard)
import qualified Data.Set as Set

In the definition of variables, String is variable name's type and every type-indexed variable
has of type Var a, which is a variable type with type a as index type.

newtype Var a = V String
deriving (Eq, Ord, Typeable)

In the definition of variables, String is variable name's type and every type-indexed variable
has of type Var a, which is a variable type with type a as index type.

Since the module Variable exports Var as an abstract type, the constructor V is hidden and
not exported. The following partial function mkVar' is provided to as the only interface to

79

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

build a variable from a variable name of type String.

mkVar' :: fora// a o String -t Var a
mkVar' = either error id o mkVar

The function mkVar is used to facilitate defining the function mkVar'; it return a variable if
the argument is a valid variable name or return an error message otherwise.

mkVar :: fora// a o String -t Either String (Var a)
mkVar s =if isVarName s V isOperator s then Right (V s)

else Left$ "mkVar: illegal variable name or operator name ' '" -tt- s -tt- "' '"

Note that primitive operators are considered as variables in the implementation. For every
primitive operator, a corresponding reduction rule has to be added in order to interpret it in
the operational semantics and a correspondence between its variable in the implementation
and real function in the source language has to be added into a semantic dictionary of type
T/Map in the bimonadic semantics.

Variable names are directly showed.

i nsta nee Show (Var a) where
show (V s) = s
showsPrec _ (V s) = (s-tt-)

eqVar is a type-indexed equality function of comparing two variables.

eqVar :: EQI Var
eqVar = eqCast (-)

instance Eql Var where
eql = eqVar

Var has an instance of Functor class.

instance Functor Var where
fmap f (V s) = V s

The function varName returns variable names from variables.

varName :: Var a-t String
varName (V s) = s

The function isVarName tells whether a string is a valid variable name or not.

isVarName :: String -t Boo/
isVarName =all (.Ac-t isA/phaNum c V c E "' ")

The function isOperator tells whether a string is a valid variable name or not. In the imple
mentation, operators are considered as variables to implement.

isOperator ::String -t Boo/
isOperator s = s E ["+" "-" "*" "/" "==" "/=" "<=" "++" "fix'"] ' ' ' ' ' ' ' '

80

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

When renaming variables, we avoid existing variables in a context by first collecting their
relevant suffixes, where relevance depends on the renaming tactic, which here is adding
primes.

relevantSuffix :: Var a~ Var b ~Maybe String
relevantSuffix (V vl) (V v2) = do
suffix~ dropPrefix vl v2
guard (all('\''-) suffix)
return suffix

renameAvoidingSuffixes :: Var a~ Set.Set String~ Var a
renameAvoidingSuffixes (V v) ss = V $ v * head (filter ok $ iterate (' \ ' ' :) 11

'
11

)

where ok suff =-, (Set.member suff ss)

The following code defines class HasVar and some auxiliary functions.

class HasVar s where
var :: (Typeable a) :::} Var a ~ s a
hasVar :: (Typeable a) :::} sa~ Boo/
getVar ::(Typeable a):::} sa~ Maybe (Var a)
freeln :: Freeln s

isVar :: (HasVar s, Typeable a) :::} sa~ Boo/
isVar = maybe False (const True) o getVar

instance HasVar Var where
var = id
hasVar = hasVarV
getVar = Just
freeln = freelnV

type HasVarType s = fora// a o Typeable a:::} sa~ Boo/

hasVarV :: HasVarType Var
hasVarV = const True

var' :: (HasVar s, Typeable a) :::} String~ sa
var' s = var (mkVar' s)

type Free/n s = fora// a b o (Typeable a, Typeable b) :::} Var a ~ s b ~ Boo/

freelnV :: Freeln Var
free/n V v v' = case gcast v' of

Nothing ~ False
Just v" ~ v = v"

81

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

A.2 Constructors

We try to provide an abstract datatype for constructors that are type-indexed· in a disciplined
way, enabling syntactic distinction between full and partial constructor application.

module Constructor
(CResult (..), CArg (..)
, CType
) where

import Data. Typeable
import qualified T/Map as ECM
import qualified T/Map as PCM
import Controi.Monad.ldentity

We use the Haskell type system to enforce full application of constructors to all arguments
by defining a special encoding of constructor types.

Constants expecting no arguments have a CResult type:

data CResult a = CResult String
deriving Typeable

Constructors expecting arguments have a CArg type:

For adding an additional first expected argument of type a, the constructor type is wrapped
in CArg c

data CArg a c = CArg c
deriving Typeable

The following class relates constructor type encodings with the encoded types:

class CType c t I c ~ t where

instance CType (CResult a) a

instance CType c b :::::> CType (CArg a c) (a~ b)

The Show, Ord, and Typeable constraints are necessary since GHC cannot use closed type
classes (CType is closed since not exported).

We need some standard instances:

instance Eq (CResult a) where
CResult x - CResult y = x = y

instance Eq c :::::> Eq (CArg a c) where
CArg x = CArg y = x - y

instance Ord (CResult a) where
compare (CResult x) (CResult y) = compare x y
CResult x ~ CResult y = x ~ y

82

McMaster University- Computer Science

instance Ord c::} Ord (CArg a c) where
compare (CArg x) (CArg y) = compare x y
CArg x ~ CArg y = x ~ y

instance Show (CResult a) where
showsPrec _ (CResult s) = (s*)

instance Show c::} Show (CArg a c) where
showsPrec p (CArg c) = showsPrec p c

MSc Thesis - Xiaoheng Ji

Since we could not express the functional dependency t--+ c in class CType, we need to cast
before being able to compare two Constant arguments- this is the reason for the Typeable
constraint in Constant.

A.3 Patterns

module Pattern where

import Variable
import Constructor
import Data. Typeable

--import TypeCombinators
import PreiExts

A.3.1 The Definition of Patterns

The following defintion mirros exactly the abstract syntax of patterns.

data Pat :: * --+ *Where
VarPat :: Typeable a::} Var a--+ Pat a
ConstrPat :: ConstrApp Pat (CResult a)--+ Pat a

Variables should be type-indexed. Therefore, we use Var a instead of Var.

We parameterise the type of fully applied constructor applications with the syntactic category
s so that we can use this both for patterns and expressions.

data ConstrApp :: (* --+ *) --+ * --+ *where
Constr :: c --+ ConstrApp s c

ConstrApply ::Typeable a::} ConstrApp s (CArg a c)--+ sa--+ ConstrApp s c

infix! 9 'ConstrApply'

tcConstrApp = mkTyCon 11 ConstrApp 11

instance (Typeab/el s) ::} Typeablel (ConstrApp s) where
typeOfl (x :: ConstrApp s c)= mkTyConApp tcConstrApp

[typeOfl (.1_ :: s c)]

83

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

A.3.2 HasVar and HasConstructorApp classes and instances

class HasConstructorApp s where
constrApp ::(Typeable a)::::} ConstrApp s (CResu/t a)-sa
getConstrApp ::(Typeable a)::::} sa- Maybe (ConstrApp s (CResult a))

instance HasConstructorApp Pat where
constrApp = ConstrPat
getConstrApp (ConstrPat ca) = Just ca
getConstrApp _ = Nothing

instance HasVar Pat where
var = VarPat
hasVar = hasVarP
getVar (VarPat v) =Just v
getVar _=Nothing
freeln = free/nP

hasVarP :: HasVarType Pat
hasVarP (VarPat v) = True
hasVarP (ConstrPat ca) = hasVarCA ca

hasVarCA :: HasVar s::::} HasVarType (ConstrApp s)
hasVarCA (Constr c)= False
hasVarCA (ConstrApp/y cas) = hasVarCA ca V hasVar s

free/nP :: Freeln Pat
free/nP v (VarPat v') = free/nV v v'
free/nP v (ConstrPat ca) = freelnCA free/nP v ca

free/nCA :: Freeln s- Free/n (ConstrApp s)
freelnCA free/n v (Constr c) = False
freelnCA free/n v (ConstrApp/y ca s) = free InCA freeln v ca V free/n v s

A.4 Type-Indexed Syntax of Pattern Matching Calculi

module PMC where

import Variable
import Constructor
import Data. Typeable
import PretExts
import Pattern

84

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

A.4.1 Type-Indexed Implementation of Syntax of Pattern Match
ing Calculi

The mechanism for using type-indexed expressions to model PMC data structures can offer
both convenience in programming and clarity in code. By using type-indexed expressions,
we can model PMC data structures with surprising accuracy. The following definitions of
expressions and matchings exactly mirror the original definitions in (11].

data Expr :: * ---+ *Where
EVar :: Typeable a=? Var a---+ Expr a
ConstrExpr :: Typeable a =? ConstrApp Expr (CResult a) ---+ Expr a
Apply ::(Typeable a, Typeable (a---+ b), Typeable b)=?

Expr (a ---+ b) ---+ Expr a ---+ Expr b
MExpr :: Typeable a=? Match a---+ Expr a
Empty :: Typeable a =? Expr a
EFix ::Typeable a=? Expr ((a---+ a)---+ a)

In order to be able to match patterns' constructor functions with expressions' constructor
functions, we have to define Expr' data type regarding constructor functions in the same way
as we define Pat's data type.

tcExpr = mkTyCon "PMC.Expr"

instance Typeablel Expr where
typeOfl (x :: Expr a)= mkTyConApp tcExpr []

instance Ord a=? Ord (Expr a) where

instance Eq a=? Eq (Expr a) where

For convenience, we declare the infix form of the application constructors as high-priority
infix operators:

infixl 9 'Apply'
infixr 3 'PMatch'
infixr 3 'Supply'
infixr 2 'MAlt'

data Match :: * ---+ *where
Return:: Typeable a=? Expr a---+ Match a
Fail :: Typeable a=? Match a
PMatch ::(Typeable a, Typeable b)=? Pat a---+ Match b---+ Match (a---+ b)
Supply :: (Typeable a, Typeable b) =? Expr a ---+ Match (a ---+ b) ---+ Match b
MAlt :: Typeable a =? Match a ---+ Match a ---+ Match a

tcMatch = mkTyCon "PMC.Match"

instance Typeablel Match where
typeOfl (x ::Match a)= mkTyConApp tcMatch []

85

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

Note that CResult and CArg only serve to ensure that constructor applications apply con
structors to the correct number of arguments. They will never show up in expression types.

A.4.2 HasVar instance

instance HasVar Expr where

var = EVar
has Var = has VarE
getVar (EVar v) =Just v
getVar _ = Nothing
freeln = freelnE

hasVarE :: HasVarType Expr
hasVarE (EVar v) = True
hasVarE (ConstrExpr ca) = hasVarCA ca
hasVarE Empty= False
hasVarE EFix = False
hasVarE (MExpr m) = hasVarM m
hasVarE (Apply fa)= hasVarE f V hasVarE a

hasVarM :: HasVarType Match
hasVarM (Return e) = hasVarE e
hasVarM Fail = False
hasVarM (Supply a m) = hasVarE a V hasVarM m
hasVarM (MAlt ml m2) = hasVarM ml V hasVarM m2
hasVarM (PMatch p m) = hasVarP p V hasVarM m

86

.·

Appendix B

Text Representations of PMC Terms

The appendix includes modules that define Text Representations of PMC Terms.

B.l Text Representation of PMC Terms

module PMCText where

import Pattern
import PMC
import Variable
import PreiExts
import Data. Typeable

The Show instances for expressions and patterns are built with functions that for typing
reasons have to be defined separately:

instance Typeable a :::} Show (Pat a) where
showsPrec = showsPrecPat

instance Typeable a:::} Show (Expr a) where
showsPrec = showsPrecExpr

The showsPrec functions for expressions and patterns call showsPrecConstrApp with them
selves at explicitly polymorphic type as arguments, so this is a somewhat unusual instance of
polymorphic recursion.

showsPrecPat :: fora// a o Typeable a :::} ShowSPrec (Pat a)
showsPrecPat p (VarPat v) = showsPrec p v
showsPrecPat p (ConstrPat c)= showsPrecConstrApp showsPrecPat p c

showsPrecExpr :: fora// a o Typeable a :::} ShowSPrec (Expr a)
showsPrecExpr p (EVar v) = showsPrec p v
showsPrecExpr p (ConstrExpr c) = showsPrecConstrApp showsPrecExpr p c
showsPrecExpr p (Apply fa)= parenShows (p > 10) $

showsPrecExpr 10 f o (' ' :) o showsPrecExpr 11 a
showsPrecExpr p (MExpr a) = encloseShows ' {' '}' $ shows a
showsPrecExpr p Empty =("empty"*)
showsPrecExpr p EFix =("fix"*)

Using these (or directly their showsPrec names, we can also define Show instances for the

87

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

relevant constructor application types:

instance (Typeable a,Show a)=} Show (ConstrApp Expr a) where
showsPrec = showsPrecConstrApp showsPrecExpr

instance (Typeable a, Show a)=} Show (ConstrApp Pat a) where
showsPrec = showsPrecConstrApp showsPrecPat

The Show instance for matchings is not affected by all this.

instance Typeable a=} Show (Match a) where
showsPrec p (Return e) = enc/oseShows ' I ' ' I ' $ shows e
showsPrec p Fail= (11 fail 11 *)
showsPrec p (PMatch pat m) = parenShows (p > 3) $

showsPrec 4 pat o (11 => 11 *) o showsPrec 3m
showsPrec p (Supply em) = parenShows (p > 3) $

showsPrec 4 eo (11 >> 11 *) o showsPrec 3m
showsPrec p (MAlt ml m2) = parenShows (p > 2) $

showsPrec 2 ml o (11 II 11 *) o showsPrec 2m2

For constructor applications ConstrApp, we pass in a polymorphic showsPrec function for
the arguments; the function itself uses polymorphic recursion, i.e., the recursive call is at
a different type from the occurrence in the left-hand side - this is only possible with an
explicit type signature.

Meanwhile, we deal in particular with list and pair show. Empty list is shown as "[]" and
singleton list [a] as "[a]". Many-element list [a'l,a'2, ... ,a·n] is shown exactly in default
Haskell style as well. We also deal with pair show in similar way. As for other constructors,
we show them as normal functions, that is, first constructor functiona name, then the first
parameter and so on.

A normal pattern constructor function application is like
ConstrApply (... (ConstrApply (Constr (CArg (... (CArg (CResult c)) ...)) varPat'1) ...)$varPat'n$
As stated before, the polymorphic showsPrec can be used to show varPat 'i.

However, (CArg (... (CArg (CResult c)) ...)) can only be shown using show instance in
Constructor module, considering that we cannot use a recursive function to show it.

Considering that both list and pair constructors are binary function, we can write
showsPrecConstrApp as follows to show list and pair as we expect.

The following showsPrecConstrApp shows all constructors as prefix notation, excepting ":"
and "(,)"".

showsPrecConstrApp ::(Show c, Typeable c, HasVar s) =?-

(fora// a o Typeable a =?- ShowSPrec (s a)) - lnt - ConstrApp s c - ShowS
showsPrecConstrApp showsPrecS p (Constr c) = showsPrec p c
showsPrecConstrApp showsPrecS p (ConstrApply c s) =case hasVarCA c V hasVar s of
False-

case c of

88

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

B.2

ConstrApply (Constr c2) s2 -+

case showsPrec p c2 11 11 of
II: II-+

case showsPrecS p s 11 11 of
11

[]
11 ---+ bracketShows (p > -1) $ showsPrecS 0 s2

_ -+ bracketShows (p > -1) $
showsPrecS 0 s2 o (' , ' :) o showsPrecS (-1) s

11
(,)

11 ---+ parenShows True $ showsPrecS 1 s2 o (' , ' :) o showsPrecS 1 s
infixOp -+ parenShows (p > 1) $

showsPrecS 2 s2 o (' ':) o (infixOp-+t-) o (' ':) o showsPrecS 2 s
_ -+ parenShows (p > 1) $

showsPrecConstrApp showsPrecS 1 c o (' ' :) o showsPrecS 0 s
True-+

case c of
ConstrApply (Constr c2) s2-+

case showsPrec p c2 11 11 of
11

:
11

-+ parenShows (p > 1) $ showsPrecS 1 s2 o (' : ' :) o showsPrecS 2 s
11

(,)
11

-+ parenShows True $ showsPrecS 2 s2 o (' , ' :) o showsPrecS 2 s
infixOp@(':' : _) -+ parenShows (p > 1) $

showsPrecS 2 s2 o (' ':) o (infixOp-+t-) o (' ':) o showsPrecS 2 s
prefixConstr -+ parenShows (p > 1) $

showsPrecConstrApp showsPrecS 1 c o (' ':) o showsPrecS 2 s
_ -+ parenShows (p > 1) $

showsPrecConstrApp showsPrecS 1 c o (' ' :) o showsPrecS 2 s

Examples of Text Representations of PMC Terms

module PMCTextExample where

import Pattern
import PMC
import PMCLib
import Variable
import Constructor
import Data. Typeable
import PMCText

Some Show examples:

cons:: CArg lnt (CArg [lnt] (CResult [lnt]))
cons = mkC2 11

:
11

89

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

cons2 :: CArg [!nt] (CArg [[lnt]] (CResult [[/nt]]))
cons2 = mkC2 11

: "

/ist23 = cExpr2 cons (mkExpr "2" :: Expr lnt) list3
list3 = cExpr2 cons (mkExpr "3" :: Expr lnt) (mkExpr 11

[]
11

:: Expr [lnt]}
x = mkEVar 11 X 11

:: Expr [lnt]
ys = mkEVar "ys" :: Expr [[lnt]]

list23xys = cExpr2 cons2 list23 $
cExpr2 cons2 x ys

listx23ys = cExpr2 cons2 x $
cExpr2 cons2 list23 ys

list23x23ys = cExpr2 cons2 list23 $
cExpr2 cons2 x $
cExpr2 cons2 list23 ys

*PMCTextExample> list23xys
[2,3]: (x:ys)

*PMCTextExample> listx23ys
x: ([2,3] :ys)

*PMCTextExample> list23x23ys
[2,3] :(x:([2,3]:ys))

90

Appendix C

Tool Modules from Kahl's work

The appendix includes modules from Kahl's work [14].

C.l Type-Indexed Maps

This module provides an implementation of type-indexed maps, that is, values m :: T/Map k r
representing type-indexed families m = (ma)a::* of maps ma::Map (k a) (r a) where both the
source and the target type may depend on the index.

This is made possible by the type-safe casts from Data. Typeable and the arbitrary-rank
polymorphism supported by GHC with -fglasgow-exts.

This module is intended for qualified import, and exports an interface that is an appropriately
adapted sub-interface of the interface of Data.Map, the new finite-map module shipping with
GHC-6.4.

module TIMap
(TIMap ()
, lookup
, null, size, member
, fold, foldWithKey
, empty, insert, singleton, delete
)
where

import Prelude hiding (lookup, filter, foldr, fold/, null, map)
import qualified Data.Map as Map
import Data. Typeable
import Data.Maybe (isJust)

We define a type-indexed map as a list of Maps, where each Map is the component map for
a specific type.

For these type-specific maps, we need a newtype so that gcast can be applied to them directly:

newtype TSMap k r a= TSMap (Map.Map (k a) (r a))

Since k, r:: * -t *are higher-kind type variables, GHC currently does not derive any Typeable
instances for this, but it is straight-forward to produce the basic instance ourselves:

instance (Typeablel k, Typeablel r, Typeable a)=? Typeable (TSMap k r a) where
typeOf (- :: TSMap k r a)= mkTyConApp (mkTyCon "TIMap. TSMap")

91

MSc Thesis - Xiaoheng Ji

[type0f1 (..l :: k a)
, type0f1 (..l :: r a)
, typeOf (..l ::a)

J

McMaster University- Computer Science

A type-indexd map is then implemented essentially as a list of existentially quantified type
specific maps - we use GADT notation to define this in a single definition as a specialised
list type (the Typeable instance has to be done manually again).

data T!Map :: (*---+ *)---+ (*---+*)---+*Where
Empty:: TIMap k r
Cons:: (Typeable a, Ord (k a))=? TSMap k r a---+ T!Map k r---+ T!Map k r

instance (Typeable1 k, Typeable1 r) =? Typeable (TIMap k r) where
typeOf (- :: T!Map k r) = mkTyConApp (mkTyCon 11 TIMap. TIMap 11

)

[type0f1 (..l :: k ())
, type0f1 (..l :: r ())

J

The constructors are not exported. The exported interface will guarantee the invariant that
no two elements of such a list have the same type, and that no list element is an empty
type-specific map.

A more efficient implementation could be implemented via a Map TypeRep (ETSMap k r)
-this would need an Ord instance for TypeRep (currently not provided in Data. Typeable),
and a wrapper type ETSMap for the existentially quantified version of TSMap.

For lookup, we use gcast on each list element to test whether it has the right type for the
argument; if it has, then, according to the TIMap k invariant, it is the only list element of
that type, and Map.lookup produces the result.

lookup:: (Typeable a, Ord (k a))=? k a---+ T!Map k r---+ Maybe (r a)
lookup v Empty = Nothing
lookup v (Cons tsm tim) = case gcast tsm of

Nothing ---+ lookup v tim
Just (TSMap m)---+ case Map.lookup v m of

Nothing ---+ lookup v tim
j-tj

Essentially the same pattern is used for implementing insert and delete:

insert:: (Typeable a, Ord (k a))=? k a---+ r a---+ TIMap k r---+ TIMap k r
insert v x Empty= Cons (TSMap $ Map.singleton v x) Empty
insert v x (Cons tsm tim) = case gcast tsm of

Just (TSMap m)---+ Cons (TSMap$ Map.insert v x m) tim
Nothing ---+ Cons tsm (insert v x tim)

delete:: (Typeable a, Ord (k a))=? k a---+ T/Map k r---+ T!Map k r

92

McMaster University- Computer Science

delete v Empty = Empty
delete v (Cons tsm tim) = case gcast tsm of

Just (TSMap m) -7

let m I = Map.delete v m
in if Map. nul/ m I

then tim
else Cons (TSMap m I) tim

Nothing -7 Cons tsm (delete v tim)

MSc Thesis- Xiaoheng Ji

union :: (Typeable a, Ord (k a)) => TIMap k r -> TIMap k r -> TIMap k r
union = Map.union

For the folding functions, the plymorphic argument function can rely on being invoked only
at instances a where k a has an Ord instance and a has a Typeable instance. If we were to
omit this last constraint, many natural applications, as for example TISet.isSubsetOf, would
become impossible. ·

fold:: (fora// a o (Typeable a, Ord (k a))=?
r a -7 b -7 b) -7 b -7 T/Map k r -7 b

fold f = foldWithKey (const f)

foldWithKey ::(fora// a o (Typeable a, Ord (k a))=?
k a -7 r a -7 b -7 b) -7 b -7 T/Map k r -7 b

foldWithKey f e = h
where

h Empty= e
h (Cons (TSMap tsm) tim)= Map.foldWithKey f (h tim) tsm

The remaining items from the Map interface that we choose to implement right now can be
implemented directly or via the functions already shown without further complications.

empty :: T/Map k r
empty = Empty

singleton :: (Typeable a, Ord (k a)) =? k a -7 r a -7 T/Map k r
singleton v x = insert v x empty

null:: T/Map k r -7 Boo/
null Empty = True
null _ = False

size :: T/Map k r -7 lnt
size Empty = 0
size (Cons (TSMap tsm) tim)= Map.size tsm +size tim

member:: (Typeable a, Ord (k a))=? k a -7 T/Map k r -7 Boo/
member v tsm = isJust (lookup v tsm)

93

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

C.2 Q-Combinators

The q-combinators, adapted from John Harrison's HOL-Light, serve for saving unneccessary
updates and thereby maximising sharing: If an argument function of type a ---t Maybe a
returns Nothing, this is taken to mean "no change".

module QCombinators where

import Controi.Monad (mplus)

type Q a = a ---t Maybe a

qtry :: Q a ---t a ---t a
qtry f x =maybe x id (f x)

qalt ::Qa---t Qa---t Q a
qalt tl t2 e = tl e 'mplus' t2 e

qseq :: Q a ---t Q a ---t Q a
qseq f g x = case f x of

Nothing ---t g x
Just x' ---t case g x' of

Nothing ---t Just x'
J ---tj

qjoin :: (a---t b ---t c) ---t Qa---t Q b ---ta---t b ---t Maybe c
qjoin f gx gy x y =

case gx x of
Just x' ---t Just $ f x' $ qtry gy y
Nothing ---t fmap (f x) (gy y)

qjoin' ::((a, b) ---t c) ---t Qa---t Q b ---t (a, b) ---t Maybe c
qjoin' f gx gy (x,y) = qjoin (curry f) gx gy x y

qcomb ::(a---ta---t b) ---t Qa---t a---ta---t Maybe b
qcomb con fn = qjoin con fn fn

qjoin3 :: (a - b ---t c ---t d) ---t Q a ---t Q b ---t Q c ---t a ---t b ---t c ---t Maybe d
qjoin3 f gx gy gz x y z =

case gx x of
Just x' ---t Just$ uncurry (f x') $ qtry (qjoin' id gy gz) (y, z)
Nothing ---t qjoin (f x) gy gz y z

qpupdl :: Qa---t Q (a, b)
qpupdl f (x,y) = fmap (>.x ---t (x,y)) $ f x

qpupd2 :: Q b ---t Q (a, b)
qpupd2 f (x,y) = fmap (>.y ---t (x,y)) $ f y

94

McMaster University- Computer Science

qmaybe ::Qa-t Q (Maybe a)
qmaybe f Nothing = Nothing
qmaybe f (Just x) = fmap Just$ f x

qmap :: Q a -t Q [a]
qmap f [] = Nothing
qmap f (x: xs) =case f x of

Just x' -t Just (x': qtry (qmap f) xs)
Nothing -t fmap (x:) (qmap f xs)

With general monads:

type QM m a= a-t m (Maybe a)

mqtry :: Monad m ::::} QM m a -t a -t m a
mqtry f x = do mx +-- f x

return $ maybe x id mx

mqjoin ::(Functor m, Monad m) ::::}

MSc Thesis- Xiaoheng Ji

(a-t b -t c) -t QM ma-t QM m b ---ta---t b ---t m (Maybe c)
mqjoin f gx gy x y =

do mx +-- gx x
case mx of

Just x' -t do y' +-- mqtry gy y
return$ Just$ f x' y'

Nothing ---t fmap (fmap (f x)) (gy y)

mqcomb ::(Functor m, Monad m) ::::}
(a---t a---t b) -t QM ma---t a---ta-t m (Maybe b)

mqcomb con fn = mqjoin con fn fn

C.3 Transformations and Transformation Combinators

module Trafo where

import PMC
import QCombinators

import Data. Typeable
import Pre/Exts

type Trafo s = fora// a o (Typeable a) ::::} Q (s a)

mkTrafo : : Typeable a => Q (s a) -> Trafo s
mkTrafo f a = gcast a >>= f >>= gcast

seq', aft:: Trafo s -t Trafo s -t Trafo s

95

MSc Thesis - Xiaoheng Ji

seq'= qseq

aft= qa/t

twice:: Trafo s --t Trafo s
twice t = t =>>= t
triply:: Trafo s --t Trafo s
triply t = t =>>= t =>>= t
repeat':: Trafo s --t Trafo s
repeat' t = t'
where

t' x = case t x of
Nothing --t Nothing
j@(Just x') --t case t' x' of

Nothing --t j
j'--tj'

McMaster University - Computer Science

C.4 Transformation Transformers

The module PMCTrafo includes the transformation rules over all the syntactic structures of
PMC expressions and matchings. The transformation rules are implementation basis for the
leftmost-outermost strategy in 3.4.1 and the normalising strategy in 3.4.2.

We first define the following type synonym for convenience. The type constructor Trafo in
the definitions is defined in appendix C.3; it has the kind * --t *·

type TrafoE = Trafo Expr
type TrafoM = Trafo Match

type TrafoCA s = Trafo (ConstrApp s)

"Transformation transformers" apply transformations inside determined constructor argu
ments, i.e., every transformation transformer take a "primitive" reduction rule, which is a
transformation, and return another new transformation.

• The syntactic definition of Expr gives rise to the following transformation transformers.

- The following transformer transforms a PMC expression with the syntactic struc-
ture ConstrExpr c.

inConstrExpr :: TrafoE --t TrafoE
inConstrExpr t (ConstrExpr ca) = fmap ConstrExpr $ inCA t ca
inConstrExpr t _ = Nothing

inCA:: fora// co TrafoE --t ConstrApp Expr c --t Maybe (ConstrApp Expr c)
inCA t (Constr c) = Just (Constr c)

96

McMaster University- Computer Science MSc Thesis- Xiaoheng Ji

inCA t (ConstrApply ca e) = do
el +-- t e
cal+-- inCA t ca
return $ ConstrApply ca I e I

- The two following transformers transform a PMC expression with the syntactic
structure Apply f a in two different ways.

inApplyL :: TrafoE--+ TrafoE
inApplyL t (Apply fa)= fmap (flip Apply a)$ t f
inApplyL t _ = Nothing

inApplyR :: TrafoE--+ TrafoE
inApplyR t (Apply f a) = fmap (Apply f) $ t a
inApplyR t _ = Nothing

- The following transformer transforms a PMC expression with the syntactic struc-
ture MExpr m.

inMExpr :: TrafoM --+ TrafoE
.·

inMExpr t (MExpr m) = fmap MExpr $ t m
inMExpr t _ = Nothing

- The following transformer transforms a PMC expression with the syntactic struc-
ture Apply EFix f.

inEFix :: TrafoE --+ TrafoE
inEFix t e@(Apply EFix f) = t $Apply f e
inEFix t _ = Nothing

• The syntactic definition of Match gives rise to the following transformation transform
ers.

- The following transformer transforms a PMC matching with the syntactic struc-
ture PMatch p m.

inPMatch :: TrafoM --+ TrafoM
inPMatch t (PMatch p m) = fmap (PMatch p) $ t m
inPMatch t _ = Nothing

- The two following transformers transform a PMC matching with the syntactic
structure Supply a m in two different ways.

inSupplyL :: TrafoE--+ TrafoM
inSupplyL t (Supply am) = fmap (flip Supply m) $ t a
inSupplyL t _ = Nothing

inSupplyR :: TrafoM --+ TrafoM
inSupplyR t (Supply a m) = fmap (Supply a) $ t m
inSupplyR t _ = Nothing

97

MSc Thesis - Xiaoheng Ji McMaster University - Computer Science

- The two following transformers transform a PMC matching with the syntactic
structure MAlt ml m2 in two different ways.

inMAitL :: TrafoM ~ TrafoM
inMA/tL t (MAlt ml m2) = fmap (flip MAlt m2) $ t ml
inMAitL t _ = Nothing

inMAitR :: TrafoM ~ TrafoM
inMAitR t (MAlt ml m2) = fmap (MAlt ml) $ t m2
inMAitR t _ = Nothing

- The following transformer transforms a PMC matching with the syntactic struc-
ture Return e.

inReturn :: TrafoE ~ TrafoM
in Return t (Return e) = fmap Return $ t e
inReturn t _ = Nothing

The three following transformations are to determine whether a PMC matching has some
structure or not. These transformations succeed (without changing anything) for their se
lected constructors, and fail otherwise. Ihe result will decide which transformations have to
be applied next.

guardSupply :: TrafoM
guard Supply m@(Supply __) = Just m
guardSupply _ = Nothing

guardPMatch :: TrafoM
guardPMatch m@(PMatch __) = Just m
guardPMatch _ = Nothing

notGuardPMatch :: TrafoM
notGuardPMatch (PMatch __) = Nothing
notGuardPMatch m = Just m

C.5 Prelude Extensions

module PreiExts where

import Data. Typeable

C.5.1 Material Related to Show

type PrecShowS = lnt ~ ShowS
type ShowSPrec a = lnt ~ a ~ ShowS

98

McMaster University- Computer Science

class Showl f where
showsl :: Show a ::;. f a ~ ShowS

class ShowF f where
showsPrecF :: ShowSPrec a~ ShowSPrec (fa)

encloseShows :: Char ~ Char ~ ShowS ~ ShowS
encloseShows open close shows = (open:) o shows o (close:)
parenShows :: Boo/ ~ ShowS ~ ShowS
parenShows False shows = shows
parenShows True shows = encloseShows ' (' ') ' shows

bracketShows :: Boo/ ~ ShowS ~ ShowS
bracketShows False shows = shows
bracketShows True shows = encloseShows ' [' '] ' shows

C.5.2 Lists

dropPrefix :: Eq a::;. [a]~ [a]~ Maybe [a]
dropPrefix [J ys = Just ys

MSc Thesis - Xiaoheng Ji

dropPrefix (x: xs) (y: ys) =if x = y then dropPrefix xs ys else Nothing
dropPrefix __ = Nothing

C.5.3 Monads

(=>>=)::Monad m::;. (a~ m b)~ (b ~ m c)~ (a~ m c)
f =>>= g =AX~ f X ';;p= g

C.5.4 Other Datatypes

class Functor f ::;. Container f where
elems ::fa~ [a]

type EQl f = fora/1 abo (Typeable a, Typeable b) ==> fa---+ f b ~ Boot

class Eql (f ::*~*)where
eql :: EQl f

eqCast :: (fora/1 a o sa~ sa~ Boot)~ EQl s
eqCast eq x x' =case gcast x of

Nothing ~ False
Just x· ~ eq x· x'

99

Appendix D

• a-conversion

D.l .
a-conversion

This module is used to implement variable scoping in the section 3.1.

module AlphaConversion where

import Pattern
import PMC
import Variable
import Constructor
import T/Map as Su -- used here as substitutions
import QCombinators
import Data.Set as Set
import Data. Typeable

D .1.1 a-conversion

type Substitution= Su. T/Map Var Expr

a-conversion to avoid range variables of a substitution inside a binder, at the same time
eliminating the bound variables from the domain of the substitution:

type Alpha s = fora// a b o (Typeable a, Typeable b) =}

sa-t Match b -t Substitution -t (sa, Match b, Substitution)

alphaV ::Alpha Var
alphaV v m su =let

su' = Su.delete v su
ranSuffixes = Su.fold (-\e -t Set.union (varSuffixesE v e)) Set.empty su'
mSuffixes = varSuffixesM v m

in if Set.member 1111 ranSuffixes
then let v' = renameAvoidingSuffixes v $Set. union ranSuffixes mSuffixes

in (v', qtry (renameVarM v v') m,su')
else (v, m, su')

alphaP :: Alpha Pat
alphaP (VarPat v) m su =let (v',m',su') = alphaV v m su

in (VarPat v', m', su')

100

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

alphaP (ConstrPat ca) m su = let (ca ', m ', su ') = alphaCA ca m su
in (ConstrPat ca ', m ', su ')

alphaCA ::Alpha (ConstrApp Pat)
alphaCA ca@(Constr c) m su = (ca, m, su)
alphaCA (ConstrApply cap) m su =let

(ca ', m ', su ') = alphaCA ca m su
(p', m", su") = alphaP p m' su'

in (ConstrApply ca' p', m", su")

D.1.2 Variable Suffixes

For variable renaming, we collect all suffixes of variables (free and bound) occurring in an
expression that have the bound variable name as prefix:

type GetVarSuffixes s = fora// a b o Var a --+ s b --+ Set.Set String

varSuffixesV :: GetVarSuffixes Var
varSuffixesV v v' =case relevantSuffix v v' of

Nothing--+ Set.empty
Just s --+ Set.singleton s

varSuffixesE :: GetVarSuffixes Expr
varSuffixesE v (EVar v') = varSuffixesV v v'
varSuffixesE v (ConstrExpr c) = varSuffixesConstrApp varSuffixesE v c
varSuffixesE v Empty = Set.empty
varSuffixesE v EFix = Set.empty
varSuffixesE v (Apply f a) = Set. union (varSuffixesE v f) (varSuffixesE v a)
varSuffixesE v (MExpr m) = varSuffixesM v m

varSuffixesM :: GetVarSuffixes Match
varSuffixesM v (Return e) = varSuffixesE v e
varSuffixesM v Fail = Set.empty
varSuffixesM v (Supply a m) = Set. union (varSuffixesE v a) (varSuffixesM v m)
varSuffixesM v (MAlt ml m2) = Set.union (varSuffixesM v ml) (varSuffixesM v m2)
varSuffixesM v (PMatch p m) = Set.union (varSuffixesP v p) (varSuffixesM v m)

varSuffixesP :: GetVarSuffixes Pat
varSuffixesP v (VarPat v') = varSuffixesV v v'
varSuffixesP v (ConstrPat c) = varSuffixesConstrApp varSuffixesP v c

varSuffixesConstrApp :: GetVarSuffixes s--+ GetVarSuffixes (ConstrApp s)
varSuffixesConstrApp varSuffixes v (Constr c)= Set. empty
varSuffixesConstrApp varSuffixes v (ConstrApply ca s) =

Set. union (varSuffixesConstrApp varSuffixes v ca) (varSuffixes v s)

101

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

D.1.3 Renaming Variables

type Renames= fora// abo (Typeable a, Typeable b) =* Var a-+ Var a-+ Q (s b)

Renaming assumes that the new variable is not captured by any binders. This had to be
defined separately since calling substitution in Alpha would have produced mutually recursive
functions with different contexts.

renameVarV ::Rename Var
rename VarV u v w = case gcast u of

Nothing -+ noChange
Just u I -+ if u I ¢. w then no Change

else case gcast v of
Nothing -+ noChange
Just V

1

-+ changed V
1 w

where noChange = Just w
changed vi w = Just V

1

renameVarM ::Rename Match
renameVarM v V

1 Fail =Just Fail
renameVarM v V

1 (Return e)= fmap Return$ renameVarE v V
1 e

renameVarM v V
1 (MAlt ml m2) = qcomb MAlt (renameVarM v vi) ml m2

renameVarM v V
1 (Supply em)= qjoin Supply (renameVarE v vi)

(renameVarM v V
1

) em
renameVarM v V

1 (PMatch p m) =if v 'freelnP' p then Just (PMatch p m)
else fmap (PMatch p) $ renameVarM v V

1

m

renameVarE ::Rename Expr
renameVarE v V

1 (EVar w) = fmap EVar $ renameVarV v vi w
renameVarE v V

1 (Apply el e2) = qjoin Apply (renameVarE v vi)
(renameVarE v vi) el e2

renameVarE v V
1 (MExpr m) = fmap MExpr $ renameVarM v vim

renameVarE v V
1 Empty =Just Empty

renameVarE v V
1 EFix =Just EFix

renameVarE v V
1

(ConstrExpr ca) = fmap ConstrExpr $
renameVarCA renameVarE v V

1 ca

renameVarCA :: Renames-+ Rename (ConstrApp s)
rename VarCA rename v V

1

(Constr c) = Just (Constr c)
renameVarCA rename v V

1 (ConstrApply ca e)
= qjoin ConstrApply (renameVarCA rename v vi) (rename v vi) ca e

102

McMaster University- Computer Science

D.2 a-conversion Examples

module AlphaConversionExample where

import Pattern
import PMC
import PMCLib
import Variable
import Constructor
import T/Map as Su -- used here as substitutions
import QCombinators
import Data.Set as Set
import Data. Typeable
import AlphaConversion

alphaV Examples

v·m ·sui = alphaV (mkVar' "x" :: Var lnt)

MSc Thesis- Xiaoheng Ji

(PMatch (mkPVar "x" ::Pat lnt) (Return (mkEVar "x") ::Match lnt))
(Su.insert

)

(mkVar' "z" :: Var lnt)
(cExprl (mkCl "+5" :: CArg lnt (CResult lnt))

(mkEVar "x" :: Expr lnt)
)
Su.empty

v·m ·su2 = alphaV (mkVar' "x" :: Var tnt)
(PMatch (mkPVar "y" ::Pat tnt) (Return (mkEVar "x") ::Match tnt))
(Su.insert

)

(mkVar' "x" :: Var tnt)
(cExprl (mkCl "+5" :: CArg lnt (CResutt tnt))

(mkEVar "x" :: Expr tnt)
)
Su.empty

v·m·su3 = atphaV (mkVar' "x" :: Var tnt)
(PMatch (mkPVar "y" ::Pat tnt) (Return (mkEVar "x") ::Match tnt))
(Su.insert

(mkVar' "z" :: Var tnt)
(cExprl (mkCl "+5" :: CArg tnt (CResutt tnt))

(mkEVar "x" :: Expr lnt)
)

103

MSc Thesis - Xiaoheng Ji McMaster University- Computer Science

Su.empty
)

*NormExample> case v_m_su1 of (v,m,su) -> v
x'
*NormExample> case v_m_su1 of (v ,m, su) -> m
X => lxl

*NormExample> case v_m_su2 of (v,m,su) -> v
X

*NormExample> case v_m_su2 of (v,m,su) -> m
y => lxl

*NormExample> case v_m_su3 of (v,m,su) -> v
x'
*NormExample> case v_m_su3 of (v,m,su) -> m
y => lx' I

varSuffixesV Examples

*NormExample> varSuffixesV (mkVar' "abc": :Var Int)
(mkVar' "abc": :Var Int)

{1111}

*NormExample> varSuffixesV (mkVar' 11 abc 11 ::Var Int)
(mkVar' 11 abc'' ' 11

: :Var Int)
{II 1 1 1 II}

*NormExample> varSuffixesV (mkVar' 11 abc": :Var Int)
(mkVar' 11 abc123": :Var Int)

{}

varSuffixesE Examples

setl = varSuffixesE (mkVar' 11 abc 11
:: Var /nt) (mkEVar "abc''' 11

:: Expr /nt)
set2 = varSuffixesE (mkVar' "abc 11

:: Var /nt) (mkEVar 11 abc123" :: Expr lnt)
set3 = varSuffixesE (mkVar' 11 abc" :: Var lnt)

(cExprl (CArg (CResu/t 11 f 11
) :: CArg lnt (CResult lnt))

(mkEVar "abc''' 11
:: Expr lnt)

)
set4 = varSuffixesE (mkVar' 11 abc" :: Var /nt)

(cExpr2 (CArg (CArg (CResult 11 f")) :: CArg lnt (CArg lnt (CResult lnt)))

104

McMaster University - Computer Science

)

(mkEVar "abc'''" :: Expr lnt)
(mkEVar "abc'":: Expr lnt)

*NormExample> set1
{"'' '"}

*NormExample> set2
{}
*NormExample> set3
{"'''"}
*NormExample> set4
{"'II' II''' II}

renameVarM Examples

renVMl =Supply (mkExpr "22" :: Expr lnt) $
PMatch (mkPVar "y" ::Pat lnt) $
Return$ (mkEVar "+" :: Expr (lnt-+ lnt-+ lnt))

'Apply' (mkEVar "x" :: Expr lnt)
'Apply' (mkEVar "y" :: Expr lnt)

renVM2 =Supply (mkExpr "22" :: Expr lnt) $
PMatch (mkPVar "z" ::Pat lnt) $
Return$ (mkEVar "+" :: Expr (lnt-+ lnt-+ lnt))

'Apply' (mkEVar "x" :: Expr lnt)
'Apply' (mkEVar "y" :: Expr /nt)

MSc Thesis- Xiaoheng Ji

testRenVMl = renameVarM (mkVar' "x" :: Var lnt) (mkVar' "a" :: Var lnt) renVMl
testRenVM2 = renameVarM (mkVar' "y" :: Var lnt) (mkVar' "a" :: Var lnt) renVMl
testRenVM3 = renameVarM (mkVar' "x" :: Var lnt) (mkVar' "a":: Var lnt) renVM2
testRenVM4 = renameVarM (mkVar' "y" :: Var lnt) (mkVar' "a":: Var lnt) renVM2
testRenVM5 = renameVarM (mkVar' "z" :: Var lnt) (mkVar' "a" :: Var lnt) renVM2

*NormExample> renVM1
22 >> y => I+ X yl
*NormExample> renVM2
22 >> z => I+ X yl

*NormExample> testRenVM1
Just (22 >> y => I+ a yl)
*NormExample> testRenVM2
Just (22 >> y => I+ x yl)
*NormExample> testRenVM3
Just (22 >> z => I+ a yl)

105

MSc Thesis - Xiaoheng Ji

*NormExample> testRenVM4
Just (22 >> z => I+ x al)
*NormExample> testRenVM5
Just (22 >> z => I+ x yl)

D.2.1 Closure

test x y z =case (x, y) of
(5,42)~fz

_ ~ error 11 should not happen 11

where f y = case y of a ~ x + a

pair0f21nt :: Expr (lnt, lnt)

McMaster University- Computer Science

pair0f21nt = cExpr2 (mkC2 11
(,)

11
) (mkExpr 11 5 11

:: Expr lnt)
(mkExpr 11 42 11

:: Expr lnt)

pairxy :: Pat (lnt, lnt) .
pairxy = cPat2 (mkC2 11

(,)
11

) (mkPVar 11 X 11 ::Pat lnt) (mkPVar "y" ::Pat lnt)

exprlnt :: Expr lnt
exprlnt = mkExpr "22"
paty ::Pat lnt
paty = mkPVar 11 Y"

scopeM ::Match lnt
scopeM =Return$ (mkEVar "+ 11

'Apply' (mkEVar "x" :: Expr lnt)
'Apply' (mkEVar "y" :: Expr lnt)
)

scope Test:: Match lnt
scope Test = Supply pair0f21nt $ PMatch pairxy $

Supply exprlnt $ PMatch paty scopeM

scopeTest2 ::Match lnt
scope Test2 = Supply exprlnt $ PMatch paty scopeM

scopeM2 :: Match lnt
scopeM2 =Return$ (mkEVar "+ 11

'Apply' (mkEVar "z 11
:: Expr lnt)

'Apply' (mkEVar "z2" :: Expr lnt)
)

scopeTest4 :: Match lnt
scope Test4 = Supply expr/nt $ PMatch paty scopeM2

When we use normalization without a-conversion, we get the following wrong results.

*Eval> test 5 42 22

106

McMaster University- Computer Science

27

*Eval> scopeTest
(5,42) >> (x,y) => 22 >> y => I+ x yl

*Norm> normM scopeTest
Just I+ 5 421

MSc Thesis- Xiaoheng Ji

The examples show that our operatinal semantics have to deal with variable scoping by using
such mechanisms as renaming. When we use normalization with a-conversion, we get the
following correct results.

*Norm> normM scopeTest4
Just I+ z z21

*Norm> scopeTest4
22 >> y => I+ z z21

*Norm> scopeTest2
22 >> y => I+ X yl

*Norm> normM scopeTest2
Just I+ x 221

*Norm> scopeTest
(5,42) >> (x,y) => 22 >> y => I+ x yl

*Norm> normM scopeTest
Just I+ 5 221

107

.·

Bibliography

[1] http: I lwww .nation master .com I encyclopedia j.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[3] Michael Barr and Charles Wells. Category Theory for Computing Science. 1999. 3rd
edition.

[4] Bruno C. d. S. Oliveira and Jeremy Gibbons. Typecase: A design pattern for type
indexed functions. In Haskell Workshop 2005, September 2005.

[5] M. Erwig and S. Peyton Jones. Pattern guards and transformational patterns. In Haskell
Workshop 2000, volume 41 of ENTCS, pages 12.1-12.27, 2001.

[6] Glasgow Haskell Compiler home page. http:/ /www.haskell.org.

[7] William L. Harrison and Richard B. Kieburtz. Pattern-driven reduction in Haskell.
In 2nd International Workshop on Reduction Strategies in Rewriting and Programming
(WRS 2002), 2002.

[8] William L. Harrison, Tim Sheard, and James Hook. Fine control of demand in Haskell.
In Sixthe International Conference on the Mathematics of Program Construction, July
2002.

(9] The Haskell 98 language report, December 2002. available from
http:/ jwww.haskell.org/ onlinereport/.

(10] Ralf Hinze, Johan Jeuring, and Andres Loh. Type-indexed data types. Science of
Computer Programming, 51(1-2):117-151, May 2004.

[11 J Wolfram Kahl. Basic pattern matching calculi: Syntax, reduction, confluence, and
normalisation. SQRL Report 16, Software Quality Research Laboratory, McMaster
Univ., October 2003. available from
http:/ jwww.cas.mcmaster.ca/sqrl/sqrLreports.html.

108

McMaster University- Computer Science MSc Thesis - Xiaoheng Ji

[12] Wolfram Kahl. Confluence proof of the pattern matching calculi in Isabelle, October
2003. available from
http:/ jwww.cas.mcmaster.ca/ kahi/PMC/Confluence/PMC/.

[13] Wolfram Kahl. Basic pattern matching calculi: A fresh view on matching failure. In Pro
ceedings of The Seventh International Symposium on Functional and Logic Programming
(FLOPS 2004), volume 2998 of LNCS, pages 276-290. Springer-Verlag GmbH, 2004.

[14] Wolfram Kahl. Type-indexed expressions in Haskell. Manuscript, April 2005.

[15] Sheng Liang and Paul Hudak. Modular denotational semantics for compiler construc
tion. In ESOP'96, Proc. 6th European Symposium on Programming, Linkoping, volume
1058 of LNCS, pages 219-234. Springer-Verlag, 1996.

[16] Engenio Moggi. Notions of computation and monads. Information and Computation,
93:55-92, 1991.

[17] Eugenio Moggi. An abstract view of programming languages. Technical Report ECS
LFCS-90-113, Computer Science Dept., University of Edinburgh, 1990.

[18] Peter D. Mosses. Theory and practice of action semantics. In 21st Int. Symp. on
Mathematical Foundations of Computer Science, volume 1113 of LNCS, pages 37-61.
Springer-Verlag, September 1996.

[19] Simon Peyton Jones. The implementation of functional programming languages. Pren
tice Hall, 1987. available from
http:/ /research.microsoft.com/Users/simonpj/papers/slpj-book-1987 /.

[20] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly types: type
inference for generalised algebraic data types. available from
http:/ /research.microsoft.com/Users/simonpjjpapers/gadt/, July 2004.

[21] Rinus Plasmeijer and Marko van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, 1993.

[22] David A. Watt. Why don't programming language designers use formal methods? In
Seminario Integrado de Software e Hardware - SEMISH'96, pages 1-6, 1996.

109

