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Abstract 

Concurrent Computing has certain interesting links with Algebraic Topology. 

There are various geometric models for concurrent computing. We examine one 

geometric approach to modeling concurrency, via the notion of a locally partially 

ordered space. We examine a notion analogous to that of homotopy, called di­

homotopy, that is compatible with a local partial order. In the category of locally 

partially ordered spaces and di-maps we examine the isomorphisms, which are called 

di-homeomorphisms. We classify all di-homeomorphic embeddings of the unit square 

into the Euclidean plane. 
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Introduction 

Concurrent programming is a form of computer programming in which a complex 

programming task is broken up into a series of independent sequential programs that 

run relatively independently of each other, but need to co-operate towards a common 

goal. A simple example of this is a database server being accessed by two different 

users simultaneously. From the perspective of the database server, each user is a 

separate process, but their actions need to be managed in a way that maintains the 

integrity of the database. For example, they cannot both be allowed to write to the 

same record at the same time. 

Concurrency has nothing to do with the number of processors available, in fact, 

most often, the number of processes exceeds the number of processors available. For 

example, the database server may be running on a single computer, but it may be 

accessed by any number of users simultaneously, each user running as a separate 

process. Concurrency Theory deals with the study of concurrent programming and 

the various problems that concurrent programming faces. Concurrency Theory is 

concerned with the interaction of multiple processes with respect to the resources 

that they share. 

There are many mathematical models for concurrent systems, see [6], however a 

geometric model for concurrency called a Progress Graph first seems to have appeared 

in [5], where it is attributed to Dijkstra. Progress Graphs are formalized and used in 

[3] to prove the existence of deadlocks in certain types of concurrent systems. Progress 

Graphs are the geometric model that we shall be concerned with when modeling 

concurrency and which provide some of the motivation for dihomotopy theory. 
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The aim of dihomotopy theory is to set the general background for a homotopy 

theory of concurrency. Such a theory is suggested by Gunawardena in [7], where he 

gives a conceptually simple and homotopy flavored proof of an old result in Database 

Theory. One aspect of dihomotopy theory concerns itself with the category of locally­

partially-ordered spaces and dimaps between them. We outline some of the basic 

constructions in dihomotopy from this perspective. We then examine the notion of a 

dihomeomorphism, and classify the possible dihomeomorphisms of the square. 

Dijkstra introduced the concept of a "semaphore" in [4]. An "n-semaphore" is 

a resource that can be used by at most n processes simultaneously. An example of 

a 1-semaphore is a record in a database that only one process should be allowed to 

write to at a given time. 

We shall use Dijkstra's notation to indicate the status of a semaphore, P to indicate 

that the semaphore is locked, and V to indicate that it has been unlocked. So for 

example, given a semaphore "a" we will indicate that it is locked by writing "Pa" 

and we will indicate that it is unlocked by writing "Va." 

We are concerned with the way that processes interact with each other through the 

resources that they share, i.e. the semaphores. Thus from our point of view a process 

is characterized by its actions of locking or unlocking of the various semaphores. 

Dijkstra's notation allows us to write down the actions of a single process which locks 

and unlocks semaphores a, b and c, as a string of the form PaPb VaPc Vb V c. For our 

purposes, we shall consider that a particular process accesses a particular semaphore 

at most once. 

We follow [3] and define a Progress Graph to be a Cartesian graph in which the 

progress of n independent processes is measured against an independent time axis. 

The time axis of a particular process is labelled with the various actions of the process 

in the order in which they occur. The time between two successive actions of a process 

is considered to be greater than zero. Each point of a progress graph represents a state 

of the concurrent system, i.e. it represents the progress of each of the n concurrent 

processes. Within a progress graph there are regions whose states are impossible. 
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These regions are called Forbidden Regions. Given two states PI and p2 , a transition 

from PI to p2 is represented by a vector based at PI directed towards p2 • An execution 

trace is an ordered set of states that defines a particular execution sequence of the 

system of concurrent processes. 

Consider n concurrent processes TI, ... , Tn. Each process is considered to start at 

time 0 and end at time 1. Let the string of P's and V's associated to process 1i be 

represented by a sequence of numbers in the interval (0, 1) on the i'th co-ordinate axis. 

An execution trace is modeled by a continuous path in the unit n-cube In. Such a 

continuous path cannot pass through the point( ... , Pa, ... , Pa), if a is a !-semaphore. 

Thus the locking of k-semaphores by k processes determines a k-dimensional forbidden 

region in r. In a digraph this is modeled by deleting an open k-dimensional cube 

from the interior of In. This has to be done for each semaphore. So the resulting 

forbidden region is a union of cubes of various dimensions. 

T1 

Va 

Pa 

Pa Va 

Figure 1: Progress Graph 

Figure 1 shows us the progress graph of a system of two processes T1 and T2 , 

which share a single !-semaphore denoted as a. Process TI first locks semaphore a 

and then unlocks it. Thus we can represent its actions by the string Pa Va. Process 
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T2 performs the same actions on semaphore a, thus its actions are also represented by 

the string Pa Va. The axis labelled Tl indicates the actions of process T1 as well as 

the times at which they were performed. Similarly the axis labelled T2 indicates the 

actions of process T2 as well as the times at which they were performed. The shaded 

block is called the forbidden region. It represents impossible states of the system, 

namely, states in which processes T1 and T2 have both locked semaphore a. Such a 

state is clearly impossible as a is a 1-semaphore. The curved line which avoids the 

forbidden region indicates an execution trace. 

A question that one can ask at this point is why a continuous geometric model 

is being applied to something discrete, namely a collection of processes running on a 

computer. There do exist discrete geometric models for concurrent processes. Tran­

sition Systems are an example of such a model. 

In the Transition System model the execution of a set of n processes can be 

modeled as a directed graph in which each vertex represents a state of the system 

and each directed edge represents an action of a process. 

Definition 0.1. (Transition System) A Transition System is a quadruple (S, i, L, 

Tran) where S is a set of states with a distinguished initial state i, L is a set of labels 

and Tran C S x L x S is a relation called the transition relation. 

In a concurrent system of processes modeled by a Transition System, the set of 

states is taken to represent all the possible states of the concurrent systems. Each 

label in the set L is taken to represent a possible action that some process can perform 

to take the system from one state to another. The relation Trans encodes how the 

various process actions take the system from one state to another, and we may think 

of it as a directed graph. 

Consider an element (si, Lk, si) E Trans, this tells us that when the system is in 

state si the process action Lk takes the system to state si. We would thus represent 

the element (si, Lk, si) by a directed edge labelled Lk with si being the vertex at the 

tail and Sj being the vertex at the head. By thinking of every element of Trans in 

this way, we build up a directed graph. 



A Pa 8 

Figure 2: Single Process Transition System 

To begin with, let us model a one process system, with only two possible states and 

a single possible transition between the two states. For example consider a one process 

system in which all our process does is lock a semaphore "a" by performing the action 

Pa. Thus the two states of the system would be, A in which the semaphore is unlocked 

and Bin which the semaphore is locked. Thus the set of states isS= {A, B}. Thus 

the set of labels is L = {Pa}. The set of transitions is Trans= {(A, Pa, B)}. This 

transition system would be represented by a directed graph with one edge labelled 

Pa, from vertex A to vertex B. Thus the directed edge Pa can be thought of as process 

performing action Pa to take the system from state A to state B. 

A 8 

TI:Pa 

81 TJ:Va A2 

TJ:Pa T2:Va 

AI T2:Pa 82 

Figure 3: Two processes sharing a 1-semaphore 

Consider a system with two concurrent processes T1 and T2 . Let T1 perform the 

actions PaVa and let T2 perform the same actions, PaVa. Here "a" is a 1-semaphore; 
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which means that only one process can lock it at a time. Thus the system has two 

possible states, one in which semaphore "a" is locked, and one in which it is unlocked. 

We shall denote these two states by A and B respectively. Thus in our Transition 

System the set of states S = {A, B}. Our set of labels is L = {T1:Pa, T1:Va, T2:Pa, 

T2:Va}. Here T1:Pa indicates the action of process T1 performing Pa. The set of 

transitions is Trans= {(A, T1:Pa, B), (B, T1:Va, A), (A, T2:Pa, B), (B, T1:Va, A)}. 

In order to aid the reader in understanding this example better, we "open up" the 

directed graph of this example, by splitting vertex A into vertices A1 and A2 . The 

vertex A1 represents the unlocked state of semaphore "a" before the processes have 

performed any actions, and the vertex A2 represents the unlocked state of semaphore 

"a" after the processes have performed their last action. We also split vertex B into 

vertices B1 and B2 . The vertex B1 represents the state in which semaphore "a" is 

locked by process T1 and the vertex B2 represents the state in which semaphore "a" is 

locked by process T2 • In Figure 3 we have drawn both the actual Transition System, 

and the "opened up" one below it. 

B f= T2:Pb D 

e = TI:Pa h = TI:Pa 

A 
g = T2:Pb 

c 

Figure 4: Two processes locking different semaphores 

Consider again a system of two concurrent processes T1 and T2 . Let T1 perform 

the action Pa and T2 perform the action Pb on semaphores "a" and "b" respectively. 

This system would be modeled by a directed graph with four vertices and four edges. 

Let vertex A be the state of the system in which semaphores a and b are free. Let 

vertex B be the state of the system in which semaphore "a" is locked by process 
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T1 and semaphore "b" is free. Let vertex C be the state of the system in which 

semaphore "b" is locked by process T2 and semaphore "a" is free. Let D be the state 

of the system in which semaphores "a" and "b" are locked by processes T1 and T2 

respectively. In the directed graph representing this system, each edge represents a 

transition between states. However, in this example we are going to label each edge 

by the action that caused the transition. Thus different edges will be labelled the 

same, as there may be different transitions that are caused by the same action. Refer 

to Figure 4. 

An execution trace is a directed path in the directed graph of a transition system, 

that agrees with the direction of each edge, and which starts at the initial state. It 

represents a possible sequence of actions by a process or processes. If we are dealing 

with a concurrent system of processes, concurrency is captured by the possibility of 

interleaving the actions of the various processes. Note that the underlying "direction" 

in the directed graph captures the causal order in which the various states occur. 

If one is given more complicated processes, the basic idea of constructing the 

directed graph that represents the system remains the same. In a directed graph 

representing a particular system, there is a distinguished initial state, which is the 

state that the system is in before any of the processes have performed any actions. 

If one were to follow a directed path along a series of directed edges from the initial 

state to some other state of the system, then the sequence of edges that were followed 

would represent an interleaving of the various actions of the various processes that 

the edges represented. Such a directed path would represent one possible execution 

trace that our concurrent system could follow in order to get from the initial state to 

the resultant state. 

Given two execution traces, we say that they "commute" with each other if it is 

possible for both of them to be followed simultaneously on the same system without 

interfering with each other. Consider figure 4. The execution trace corresponding to 

the path along edge "e" and then "f' , and the execution trace along edge "g" and 

then "h," do not interfere with each other as they are locking different semaphores. 
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So in a sense they can be run "simultaneously." And so we say that they commute. 

On the other hand if the action of process T1 is Pa Va, and the action of process 

T2 is Pa Va. We get a three state system, and hence a three vertex graph. Vertex 

A is the state of the system in which semaphore a is free. Vertex B is the state of 

the system in which semaphore a is locked by process T1. Vertex C is the state of 

the system in which semaphore a is locked by process T2. Edge e from A to B is the 

action of locking semaphore a by process T1. Edge f from A to C is the action of 

locking semaphore a by process T2 • Edge g from B to A is the action of unlocking 

semaphore a by process T1. Edge h from C to A is the action of unlocking semaphore 

a by process T2 . It is clear that the execution traces specified by the paths eg and fh 

cannot be performed simultaneously, as they both involve locking semaphore a. Thus 

these execution traces do not commute. 

The notion of commutativity discussed above leads us to consider filling in the 

"hole" between commuting execution traces of n different processes by an n-cell, and 

letting the homotopy between the commuting execution traces speak for the fact that 

they commute. This points toward the notion of a digraph, which is an old geometric 

model for concurrency that was invented by Dijkstra. 

Finally we note that the type of directed topology discussed in this paper may be 

relevant to a program for the quantization of gravity being pursued Sorkin [11]. This 

is noted in the conclusion of [12]. 
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Chapter 1 

Po-Spaces and Local Po-Spaces 

We impose a partial order on a topological space, which gives us a preferred global 

direction in our space. However, as this is too rigid a constraint, and because we 

need our preferred direction to be more local than global, we are led on to define a 

local partial order on a topological space. We then start to define the basic tools 

of a directed homotopy theory, maps between locally partially ordered spaces that 

are compatible with the local partial order, paths that travel only in the "forward" 

direction at each point and homotopies through such paths. 

Topological spaces with partial orders on them are not new to Computer Science. 

Most notably Dana Scott [10], applied such sets to certain aspects of the Lambda 

Calculus, and invented what is now called Domain Theory. 

Definition 1.1. [1] Po-Space A po-space is a pair (X, :S) formed by a topological 

space X together with a partial order ::; such that ::; is closed as a subset of X x X 

with the product topology. 

The only link that our partial order has with the topology of X is that it is a 

closed subset of X x X. However, this is a strong enough constraint to force X to 

be a Hausdorff space, a fact that is noted in [2]. If X is a partially ordered space 

then the partial order relation R C X x X is a closed subset in the product topology. 

Define a homeomorphism h: X x X---+ X x X by setting h(x, y) = (y, x). So h-1(R) 
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is closed, and so h- 1 (R) n R is closed as it is the intersection of two closed sets. But 

.6. = h -l ( R) n R. So the diagonal .6. is closed. So the space is Hausdorff. 

Example 1.1. Consider Euclidean space IRn with the product partial order given by, 

(xi, ... , Xn) :S (Yll ... , Yn) {:::? X1 :S Y1, ... , Xn :S Yn· To see that this is a partial order 

one checks reflexivity, anti-commutativity and transitivity. This is easy to do as it 

entails proving those properties for the Euclidean total order for each variable. Our 

partial order relation must be a closed set of the product space IRn x IRn. This is true 

because the Euclidean total order as a relation, is a closed subset R of lR x JR. The 

relation that we define on IRn, as a subset of IRn x IRn is precisely the set Rn. Thus 

it is a closed subset of IRn x IRn. This proves that Euclidean space with the product 

partial order is a po-space. 

Example 1. 2. Consider I x I, with the partial order specified by (a, b) ::; ( c, d) {:::? 

a ::; c and b = d. 

Example 1.3. Consider a tree f. Identify each edge off with I, and assign it the 

order corresponding to I. Do this arbitrarily. For example, consider the edge E with 

vertices a and b. We can identify it with I and assign it an order in two dijjeTent 

ways, so that a :SE b or so that b :SE a, either is valid. When considering a tree, we 

get many possible combinations based on our choices for the individual edges. When 

considering such a tree with oTdeTed edges, for an edge E, we shall denote its vertices 

as aE and bE where aE :SE bE. Now define a relation :Sv on the vertices of r, so 

that given any two vertices (not necessarily on the same edge) c, d E r we define 

c ::; d {:::? :3 edges E1 , ... ,En such that c is a vertex of E1 and d is a vertex of En 

and c :SE1 bE1 :SE2 bE2 :SE3 •.. :SE(n-l) bE<n-l) = aEn :SEn d. Now define a Telation 

::; on r so that for any points x, y E r, with X on edge E and y on edge F, we 

have x ::; y {:::? :3 vertices bE, ap E r such that x :SE bE :Sv ap :SF y. The relation 

::; is a partial order on r. We get that ::; is reflexive as it is a total order when 

restricted to an edge. For transitivity consider x, y, z E r, on edges E, F and H 

respectively such that x ::; y andy ::; z. Thus there exist vertices c, de and f such that 
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x ~E c ~v d ~F y andy ~F e ~v f ~H z. Thus e and d are vertices of the same 

edge F, and we have d ~F y ~F e and so d ~F e, which implies d ~v e. So we have 

x ~E c ~v d ~v e ~v f ~Hz which implies x ~ z. If antisymmetry were not true, it 

would imply that there were cyclic paths in r' this is impossible as r is a tree, so we 

must have antisymmetry. Now consider the cell complex r x r. If E 1 , ... ,En are the 

edges of r, then each cell in r X r is of the form Ei X Ej where i and j take values 

from 1 to n. On the unit interval I, the total order is a closed subset of I x I, and 

so the partial order intersects Ei x Ei in a closed subset of Ei x Ei fori = 1, ... , n. If 

i =!= j then either we have x ~ y or x '£ y for all x E Ei and y E Ej. This tells us that 

the partial order contains Ei x Ej as a subset, or is completely disjoint from Ei x Ej. 

In either case, the partial order intersects Ei x Ej in a closed subset of Ei x Ej. As 

the partial order intersects each cell of r x r in a closed subset of that cell, it implies 

that the partial order is a closed subset of r X r. Thus the tree r is a po-space. 

We would like to model an entire concurrent system by a geometric object that has 

a preferred time direction at each point. However, to put a partial order on our object 

would be too strong a constraint, as it would not allow loops in the execution traces 

of our system. Thus, if we had some way of designating a preferred time direction in 

a more local way, that would tell us the "right direction" at a point, rather than in 

the space as a whole, we could conceivably have a path with loops in it, as long as 

it travels in the "right direction" at each point that it passes through. With this in 

mind, we define a local partial order on a topological space X. 

Definition 1.2. [1) Local Partial Order Let X be a topological space. A collection 

U of po-spaces (U, ~u) that are open subsets of X and which cover X is called a local 

partial order on X if for all x E X there exists a non-empty open neighborhood of x, 

1¥, such that the restriction of the partial orders ~u to vV coincide for all U E U. 

A local partial order on a topological space X is an additional structure on that 

space, and there are many ways that one can put such a structure on a space. This 

is analogous to what happens when one puts a smooth structure on a manifold, there 
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are many possible smooth structures that one can put on it, however we define two 

smooth structures to be equivalent if their union is a smooth structure. We do the 

same for a local partial order. 

Definition 1.3. [1] Local Po-Space Two local partial orders on a space are called 

equivalent if their union is a local partial order on X. A local po-space consists of a 

topological space X with an equivalence class of local partial orders on it. 

A Local Po-Space may also be specified by a topological space with a "maximal 

local partial order" on it, which we define to be the union of all local partial orders 

that are equivalent. 

Example 1.4. As an example of a local po-space consider the unit circle 8 1 . Let N 

and S be the north and south poles respectively. Let U = 8 1 \ { N} and V = 8 1 \ { S}. 

U and V form an open cover of 51
. Let Ou and Ov be local co-ordinates in U and V 

respectively. The co-ordinates are chosen so that they represent the angle from the X 

axis. We now give U and V total orders, by ordering points within them according to 

their co-ordinates. Thus U and V are each totally ordered charts, which implies that 

they are each partially ordered charts. Also note that the respective partial orders are 

closed subsets of U x U and V x V respectively. Denote the order on U by S:.u and 

the order on v by S:.v 0 For x, y E u n V, we have X S:.u y {:}X S:.v y. Thus we have 

given 8 1 the structure of a local po-space. 

So far we have just defined local po-spaces. However, we would like to turn this 

into a category. What we need is an appropriate class of maps between local po-spaces 

that are compatible with the local partial order. To this end, we define the notion of 

a climap. 

Definition 1.4. [1] Dimap Let X and Y be two local po-spaces. A continuous func­

tion f : X --+ Y is called a dimap if for all x E X there exists an open neighborhood 

(V, S:. \/) off ( x) in Y and a neighborhood of x, ( U, S:.u) in X, such that f ( U) C V and 

for all x1, x2 E U, x1 -::;u x2 =* f(xi) S:.v f(x2)· 
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In this paper, if the domain of a climap is lR or some subset of it, then unless 

otherwise stated, the local partial ordering is taken to be the total ordering of R 

If the domain of a climap is ffi.n or a product of subsets of IR, then the local partial 

ordering is taken to be the product partial order of ffi.n. Refer to Example 1.1. 

One of the first steps in classical homotopy theory is the notion of a path in a 

topological space. In our local po-spaces we want our paths to be compatible with 

the local partial order, i.e. we want our paths to point in the forward time direction. 

Thus we define a dipath. 

Definition 1.5. [1] Dipath Let X be a local po-space. Let a, b E X. A dipath on X 

from a to b is a dimap f: I--+ X such that f(O) =a and f(1) =b. 

Our dipaths are intended to symbolize execution traces in a concurrent system, 

just like the execution traces in a progress graph. We would like to distinguish 

execution traces based on their history, and whether or not they "commute." Thus 

we define a dihomotopy between two dipaths, to be a homotopy between two dipaths, 

through a continuous family of dipaths. 

Definition 1.6. [2] Dihomotopy Let f and g be two dipaths on X from a to b. 

A dihomotopy between f and g is a continuous map, H : I xI --+ X, such that 

Ht: I--+ X is a di-pathfrom a to b Vt E I, and H0 = f, H1 =g. 

The above definition, which is the one that we shall use, is equivalent to the 

following definition which appeared in [1]. 

Definition 1.7. [1] Dihomotopy Let f and g be two dipaths on X from a to b. 

A dihomotopy between f and g is a dimap H : I x I --+ X such that for all x E 

I, H(x, 0) = f(x) and H(x, 1) = g(x) and for all t E I, H(O, t) =a and H(1, t) =b. 

Here, we consider I x I with the partial order of Example 1.2 

In the category of local po-spaces, isomorphisms turn out to be a very specific 

type of homeomorphism. If h : X --+ Y is to be an isomorphism of local po-spaces, 

then on every partially ordered neighborhood (U, S.u) in X, for x1, x2 E U, we must 
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have xi ~u x2 <=} h(xi) ~h(U) h(x2), where h(xi), h(x2) E h(U) the homeomorphic 

image of U in Y, and ~h(U) is a partial order on h(U). Thus h and its inverse h-I 

need to be dimaps. 

Definition 1.8. [2] Di-homeomorphism If X and Yare local po-spaces, then h : 

X ---+ Y is called a di-homeomorphism if h is a homeomorphism and h : X ---+ Y and 

h-I : Y---+ X are dimaps. 

Example 1.5. Consider I with the Euclidean order. Consider a Eint(I). 

Define h : I ---+ I to be, 

h(x) ~ { 
Define h-I : I ---+ I to be, 

.l..x 2a 

~ + (x- a) 2(I~a) a~ x ~ 1 

{ 

2ax 

h-I(x) = 

a+(x-~)2(1-a) 

Consider XI, x2 E I such that XI ~ x2. 

If XI, x2 ~a then 2Iaxi ~ 2~x2 as a is positive. And so h(xi) ~ h(x2). 

If a~ xi, X2 then (xi- a) ~ (x2- a). And so ~+(xi- a) ~ ~ + (x2 - a). And 

so ~+(xi -a) 2(I~a) ~ ~ + (x2- a) 2 (I~a). So we have h(xi) ~ h(x2). 

If XI ~ a~ x2 then h(xi) ~ h(a) and h(a) ~ h(x2) therefore h(xi) ~ h(x2). 

Thus h is a dimap. 

If xi, x2 ~ 1/2 then 2axi ~ 2ax2. So h-I(xi) ~ h-I(x2). 

If1/2 ~ x1,x2 thenxi-1/2 ~ x2-1j2. So (xi-1/2)2(1-a) ~ (x2-1/2)2(1-a). 

And so a+ (xi- 1/2)2(1- a)~ a+ (x2 - 1/2)2(1- a). Thus h-I(xi) ~ h-I(x2). 

If xi ~ 1/2 ~ x2 then h-I(xi) ~ h-I(1/2) and h-I(1/2) ~ h-I(x2). So we have 

h- 1(xi) ~ h-I(x2). 

Thus h-1 is also a dimap, and we conclude that h : I ---+ I is a dihomeomorphism. 
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Note also that h(a) = 1/2. Thus for any point a Eint(I), there is a dihomeo­

morphism h : I -+ I that takes a to 1/2. From now on, we shall denote the di­

homeomorphism defined above, that takes a to 1/2 on the interval I by ha : I -+ I. 

Example 1.6. Consider the unit cube In with the Euclidean product partial order. 

Consider (a1, ... ,an) Eint(T"). Define g: In -+In to be g(x1, ... , Xn) = (ha1 , ••• , haJ· 

Where the ha; are as defined in Example 1.5. Similarly define g-1 : In -+ I"' to be 

g- 1(x 1, ... ,xn) = (h-;;/, ... ,h-;;,;). Clearly g is a homeomorphism andg-1 is its inverse, 

they are also dimaps because they are dimaps componentwise. 

Thus g: In-+ In is a dihomeomorphism, and g(a1, ... ,an) = (1/2, ... , 1/2). 

Thus for every (a1 , ... ,an) Eint(In), there is a dihomeomorphism g: In -+In that 

takes (a1, ... ,an) to (1/2, ... , 1/2). 

Example 1. 7. Consider the unit cube In with the Euclidean product partial order. 

Let C = [a1, b1] X ... X [an, bn]· Define hi : [ai, bi] -+ I by hi(x) = (b;~a;) (x - ai)· 

Now define h: C-+ I by h(x1, ... ,xn) = (h1(x1), ... ,hn(xn)). The inverse of hi, 

h:j1 :I-+ [ai, bi], is given by h:j1(x) = (bi- ai)(x) + ai. And so h-1 :I-+ C is given 

by h-1(x1, ... , Xn) = (h11(xi), ... , h;; 1(xn)). 

Both h and h-1 are dimaps and so h: C-+ In is a dihomeomorphism. 

In the definition of a dihomeomorphism, f : X -+ Y between local po-spaces, the 

requirement that the inverse map g : Y -+ X be a climap is necessary. In other words, 

if f : X -+ Y is a homeomorphism and a climap, it need not be a dihomeomorphism. 

Example 1.8. Consider the unit square I 2 with the Euclidean product partial order. 

Consider the region R in the Euclidean plane, enclosed by the lines y = x, y = x-

1, y = 0, y = 1, together with its boundary. Let R inherit the product partial order of 

the Euclidean plane. Thus R is a local po-space(in fact a po-space). 

Define f : / 2 -+ R by f(x, y) = (x + y, YL and define g : R -+ X by g(x, y) = 

(x- y,y). 

Clearly f and g are continuous. Also, g o f(x, y) = g(x + y, y) = (x + y -

y, y) = ( x, y). Thus, g is the inverse of f. Thus f is a homeomorphism, and R is 

homeomorphic to I 2
. 
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Consider (x1, yi) :::; (x2, y2) in 12 . Thus we have x1 :::; x2 and y1 :::; Y2· This implies 

that x1 +Y1 :::; x2 +Y2· And so (x1 +Yb Yl):::; (x2 +y2, Y2)· Thus j(x1, Yl):::; j(x2, Y2)· 

Thus f : 12 
---t R is a dimap between po-spaces. 

However, consider (~, i) :::; (1, 1) in R. g(~, i) = (~, i)- And g(1, 1) = (0, 1). 

However(~, i) i (0, 1). Thus g(~, i) i g(1, 1). Thus g: R ---t 12 is not a dimap. 

Thus f : 12 
---t R is a homeomorphism and a dimap, but it is not a dihomeomor­

phism. 

Theorem 1.1. Let X be a local po-space, and let p: X ---t X be a covering projection. 

Then there exists a unique local po-structure on X such that p : X ---t X is a local 

dihomeomorphism. 

Proof. Consider an arbitrary x E X. It is contained in an evenly covered neigh­

borhood Wx. Let Vx be a partially ordered neighborhood of x. Let Ux = Wx n Vx, 

thus Ux is an evenly covered partially ordered neighborhood of x. Thus {Ux}xEX is 

an open cover of X, as x was an arbitrary point. Let {"Vr.a}aEA be the connected 

components of p-1(Ux)· The collection {Vx,a}aEA,xEX forms an open cover of X as 

the map p is surjective. Consider an arbitrary Vx,a in this cover and define a relation 

on it by setting a ::;x,a: b ¢:? p(a) ::;ux p(b) for all a, b E Vx,a· The map p restricts to 

a homeomorphism p: Vx,a ---t Ux, and so the map p X p: "Vr,a X Vx,a ---t Ux X Ux is a 

local homeomorphism. The relation in Ux x Ux the relation in Yx,a: x Vx,a: are images 

of each other. Thus the relation is a closed subset of Ux x Ux. Thus Vx,a is a partially 

ordered space. 

Now consider Vx,a and Vy,/3· If X = y then Vx,a: n Vx./3 = 0. When X =I y this 

intersection may be non-empty. If Vx,a n Vx,/3 =f. 0 then let V = Vx,a n Vx,/3· V is an 

open set. For a, b E V, we have a ::;x,a b ¢:? p(a) ::;Ux p(b) and a ::;y,/3 b ¢:? p(a) ::;Uy 
p(b). Now p(a),p(b) E Ux n Uy, and X is a local po-space, so the partial orders of Ux 

and Uy agree on their intersection, i.e. p(a) ::;ux p(b) ¢:? p(a) ::;Uy p(b). So we have 

a ::;x,a: b ¢:? a ::;y,/3 b. Thus {Vx,a:, ::;x,a:} forms a local partial order on X, turning it 

into a local po-space. 

This automatically turns p into a dimap. 
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Consider the restriction p : Vx,a ----+ Ux and let s : Ux ----+ Vx,a be the corresponding 

section. Both p and s are homeomorphisms. For any a, b E Vx,m a ::;x,a b =} p( a) ::;ux 

p(b) and p(a) :=;Ux p(b) =}a :=;x,a b, i.e. p(a) :=;Ux p(b) =}so p(a) :=;x,a so p(b). Thus p 

and s are dimaps, and so p is a local dihomeomorphism. 

Now let { V1 , ::; v,J be a local partial order on X, such that p : X ----+ X is a 

local dihomeomorphism. For all x E X there is a neighborhood W:r such that p is 

a dihomeomorphism on W:r. In other words, if Pis the image of Wx under p, then 

for a, b E W:r we have a ::;w, b <=? p(a) ::;P p(b). Now consider W:r and Vy,a such 

that Wx n Vy,a =f. 0. Consider a, b E W:r n Vy,a· We have a ::;wx b <=? p(a) ::;P p(b) 

where P is the image of W:r under p. And a ::;y,a b <=? p(a) ::;uy p(b). Now X 

is a local po-space, so the partial orders on P and Uy restrict to the same partial 

order on their intersection. Thus p(a) ::;P p(b) <=? p(a) ::;uy p(b). This implies that 

a ::;W:r b <=? a :=;y,a b. Thus the union of {V1 , :=;v .. J and {Vx,m ::;x,a} is still a local 

partial order on X, and so they are equivalent. 0 
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Chapter 2 

The Fundamental Category 

Given two concurrent systems, we would like ways of characterizing the differences 

between them. In classical homotopy theory, one of the ways to differentiate between 

two topological spaces is to find homotopy invariants by constructing functors from 

the category of topological spaces and continuous maps to the category of groups 

and group homomorphisms. One of the homotopy invariants found in this way is the 

fundamental group. 

Thus, we would like to follow the example of classical homotopy theory and define 

a functor from the category of local po-spaces to a more algebraic category. However, 

if we would like to create something like the fundamental group we hit a problem. 

Given a dipath in a local po-space, its inverse need not be a dipath. In fact, unless 

the path is the constant path this is not the case. 

However all is not lost, for there is another construction, called the fundamental 

groupoid of a topological space X. It is a category whose objects are the points of the 

topological space, with the morphisms between any pair of points being the homotopy 

classes of paths between those two points. The composition law is defined as follows, 

given points x, y and z, and morphisms [!] from x toy, and [g] from y to z, where 

[f] and [g] the homotopy classes of paths f and g from x toy andy to z respectively, 

define [g] o [!] to be the homotopy class of the path obtained by concatenating the 

paths f and g. Clearly this is a morphism from x to z. 
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Following this example we define the fundamental category of a local po-space 

to be the category whose objects are the points in the space, with the morphisms 

between any pair of points being the dihomotopy classes of dipaths between those 

two points. We define the composition law in a similar manner. 

Note that the fundamental category is not a groupoid, as the morphisms in the 

fundamental category are almost never isomorphisms, unless they are identity mor­

phisms. 

Given points x, y and z in a local po-space X, let f: I-+ X be a dipath from x to 

y and let g: I-+ X be a dipath from y to z. Define a dipath called the composition 

(go f) :I-+ X from x to z to be, 

( ) ( ) { 
! ( 2t) o ~ t ~ 112 

g 0 f t = 
g(2t- 1) 1/2 ~ t ~ 1 

Note that the re-parametrizations off and g are monotonically increasing. As f 

and g are dipaths, their monotonically increasing re-parametrizations must also be 

dipaths. Also, fi[o,I/2] is a dipath and 9![1/2,1] is a dipath. So we have neighborhoods 

V and vV of the point a= (go !)(1/2) = !(1) = g(O) such that for 0 = f- 1(V) and 

U = g-1(W), if x1,x2 E O,x1 ~o x2::::? f(xi) ~v j(x2) and if x1,x2 E U,x 1 ~u 

x2::::? g(xl) ~w g(x2)· So let K = v n vV and let L = (go n-1(K). So for XI, X2 E K 

if x1 ~K 1/2 ~L x2 then !(xi) ~K !(1) and g(O) ~K g(x2). So by transitivity we 

have f(x 1 ) ~K g(x2), which is the same as saying that (go !)(xi) ~K (go f)(x2). So 

the path (g o f) ( x) is indeed a dipath. 

Now let [!], [g] and [(go!)] denote the dihomotopy classes of the dipaths f, g and 

(go!). Define the composition [g] o [!] to be the dihomotopy class of the composition 

of the dipaths, [(go!)]. 

Proposition 2.1. [1] The composition of their dihomotopy classes [g] o [!] as defined 

above, is associative with identities. 

Proof. Let X be a local po-space. Let x, y, z and w be points in X. Let J, g and h 

be dipaths from x toy, y to z and z tow respectively. 
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We claim that ([h] o [g]) o [f] = [h] o ([g] o [f]). 

Consider the homotopy H : I x I ----> X, given by, 

{ 

f( l!st) 
H(t, s) = g(4(t- 118

)) 

h(2~s (t- 21s)) 

0 < t < l+s 
- - 4 

l+s < t < 2+s 
4 - 4 

2+s < t < 1 
4 -

We need only check that the above homotopy is a dihimotopy. 

The functions f(
1
!

8
t),g(4(t- 215

)) and h( 2~5 (t- 215
)) are dipaths for every 

fixed s, as f, g and hare dipaths and each of their re-parametrizations are monotonic 

for every fixed s. The homotopy H(t, s) is a dipath for every fixed s as it is just a 

concatenation of dipaths for a fixed s, and so by the argument for the concatenation 

operation above it must be a dipath for every fixed s. 

D 

Definition 2.1. [1] Given a local po-space X, we define the Fundamental Category 

1ri (X) to be the category whose objects are the points of the space X and whose 

morphisms are the dihomotopy classes of dipaths between any pair of points. 

Theorem 2.2. [2] The isomorphism class of the fundamental category is a 

di-homeomorphism invariant. 

Proof. Let X andY be local po-spaces with fundamental categories 1ri (X) and 1ri (Y) 

respectively. Let h: X----> Y be a di-homeomorphism. 

The function h gives a bijective correspondence between the sets X and Y. Thus, 

the induced functor h* : 1ri (X) ----> 1ri (Y) is a bijection on the objects of the categories. 

All this is simply because h is a homeomorphism and hence bijective. 

Now consider objects a, b E 1r!(X) and their images h*(a), h*(b) E 1r!(Y). Let 

[f] be a dihomotopy class of a dipath f : I ----> X from a to b. As h is a climap the 

composition h of : f----> Y is a dipath in Y from h*(a) to h*(b). And so there is a 

dihomotopy class [ h o f] E 1r! (Y) from h* (a) to h* (b). 

Similarly, given objects c, d E 1ri (Y) and their pre-images h- 1 *(c), h- 1 *(d) E 

1ri (X). If [g] is the dihomotopy class of a dipath g : I ----> Y from c to d. Then 
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as h-1 is a climap, the composition h-1 o g : I -+ X is a dipath in X from h-\(c) 

to h-1*(d). And so there is a dihomotopy class [h-1 o g] E 1r!(X) from h-1*(c) to 

h-1 *(d). 

Now consider [!], [g] E 1r! (X) be two dihomotopy of dipaths f and g from a to b 

in X. We have corresponding dihomotopy classes [h of], [hog] E 1r!(Y) from h*(a) 

to h*(b) in Y. If [h of] = [hog], then there must be a dihomotopy H : I x I -+ Y 

between the representative dipaths h of and hog. As h-1 : Y-+ X is a climap, the 

composition h-1 o H : I x I -+ X is a dihomotopy between the dipaths h-1 o h of 

and h - 1 o h o g in X. This is none other than a dihomotopy between the paths f and 

gin X. Thus we have [f] = [g]. 

Thus there is a bijective correspondence between the objects and the arrows in 

the categories 1r! (X) and 1r! (Y), and so they are isomorphic as categories. 

Thus, the fundamental category is a dihomeomorphism invariant. D 

We now carry out some basic calculations of the fundamental categories of some 

simple examples. One of the obstacles to these calculations is finding some elegant way 

of stating the result. When calculating the fundamental group of a space, the answer 

is usually stated in the form of a group presentation. However, when calculating the 

fundamental category, there is a lot less structure on which to rely when stating the 

result. We shall attempt to state the results of our calculations in terms of familiar 

families of categories, though this shall not always be possible. To this end, we shall 

begin by stating the definitions of a few familiar categories. 

Definition 2.2. [8] A category P in which: given objects p and p', there is at most 

one arrow p -+ p', is called a pr·eorder. Given a partially ordered set Q, the associated 

preorder is the category whose objects are the elements of Q, such that for q and q' in 

Q, q -+ q' if and only if q :::; q'. 
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Proposition 2.3. The fundamental category of In with the product partial order, is 

the associated preorder. 

Proof. Let f: I-t r be a dipath. We have 0::; 1 and so we must have f(O)::; f(1) 

as In is a partially ordered space. Note that we would not have been able to say this 

if we were working in local po-space. 

Now, if we write f as f(t) = (JI(t), ... , fn(t)) then t1 ::; t2 implies that 

f(ti) ::; f(t2) i.e. that (/I(tl), ... , fn(tl)) S (/I(t2), ... ,Jn(t2)), which tells us that 

f1(tl)::; fl(t2) ... fn(tl)::; fn(t2). Thus, each of the component functions off must be 

monotonic as functions from I to I. 

Consider two points x = (x1, ... , Xn) andy= (yl, ... , Yn) in In. 

If x j;_ y then there can be no dipath from x toy. 

Without loss of generality, if x ::; y then consider the path g, from x to y defined 

by, g(t) = x + t(y- x) or g(t) = (x1 + t(yl- x1), ... , Xn + t(yn- Xn)). For t1 S t2 in 

I, t1(Yi- xi) ::; t2(Yi- xi), and so we have Xi+ t1(Yi- xi) S Xi+ t2(Yi- xi). Thus 

g(ti) ::; g(t2). So g is a dipath from x toy. We claim that all other dipaths from x 

to y are dihomotopic to g, or in other words that [g] is the only morphism from x to 

y in the fundamental category. 

Let f be any dipath from x to y. Define a homotopy H : I x I -t In between f and 

g by setting H(t, s) = (1- s)f(t) +sg(t). For t1 ::; t2 in I, and for any sin I, we have, 

on the component functions off and g, the following inequalities. fi(t1) ::; fi(t2) and 

gi(t1) ::; gi(t2), and so we have (1- s)fi(ti) ::; (1- s)fi(t2) and sgi(tl) S sgi(t2), ass 

and (1- s) are greater than 0. Thus, (1- s)fi(t1) + sgi(t1)::; (1- s)fi(t2) + sgi(t2), 

i.e. H(s, ti) ::; H(s, t2) for all s in I. Thus H is a homotopy through dipaths and 

we conclude that His a dihomotopy between f and g. As f was an arbitrary dipath 

from x toy, we can conclude that in the fundamental category, there is one and only 

one morphism [g] from x to y. 

Thus, the fundamental category of In with the product partial order, is the asso-

cia ted preorder. D 

22 



Chapter 3 

Configuration Spaces 

We now define the notions of Homotopy History, and Homotopy Future, of a point 

in a local po-space. The Homotopy History of a point x in a local po-space X is 

taken to be the set of all points y from which there exist dipaths terminating in x. 

The Homotopy Future of a point x in a local po-space X is taken to be the set of all 

points y at which a dipath from x can terminate. 

The notions of Homotopy History and Homotopy Future of points in a local po­

space are used to define what initial and final points are. These are defined to be 

points with no Homotopy History other than themselves, and no Homotopy Future 

other than themselves, respectively. Thus a dipath that begins at an initial point 

cannot be extended "further back in the past" and a dipath that begins at a terminal 

point cannot be extended "further into the future." An Inextensible Dipath is a dipath 

that begins at an initial point and ends at a final point, and thus cannot be extended 

"into the past" or "into the future." 

Definition 3.1. [1] (Homotopy History) If X is a local po-space then for x EX, 

the Homotopy History of xis defined to be the set P(x), containing of all points y EX 

such that there exists a dipath f: I-t X with f(O) = y and f(l) = x. 

Definition 3.2. (Homotopy Future) If X is a local po-space then for x E X, the 

Homotopy Future of xis defined to be the set F(x),. containing all points y EX such 
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that there exists a dipath f: I-t X with f(O) = x and f(1) = y. 

Definition 3.3. [2] (Initial Point) In a local po-space X 1 an initial point x E X is 

a point such that P(x) = {x}. 

Definition 3.4. [2] (Final Point) In a local po-space X 1 a final point x E X is a 

point such that F(x) = { x}. 

Dihomeomorphisms preserve dipaths, and thus they map initial points to initial 

points and final points to final points. 

D 

A 

Figure 3.1: Initial and Final Points 

Consider Figure 3.1, the partial order is the Euclidean Product partial order. The 

points A and C are initial points, and the points B and D are final points. 

Definition 3.5. [2) (Inextensible Dipath) In a local po-space X 1 an inextensible 

dipath is a dipath f : I -t X such that f ( 0) and f ( 1) are initial and final points 

respectively. The set of inextensible dipaths in X is denoted by PI (X). 

Consider Example 1.1. The Directed Cube rn is a partially ordered space, and 

for an arbitrary point (xi, ... , Xn) E r, we have (0, ... , 0) ::; (xi, ... , Xn)· Thus all 
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dipaths that end at (0, ... , 0) must also begin there. Thus the point (0, ... , 0) is an 

initial point. It's Homotopy History is just itself, and its Homotopy Future is the 

entire cube r. Similarly, we can conclude that the point (1, ... , 1) is a final point, its 

Homotopy History is the entire cube In, and its Homotopy Future is just itself. So 

in Example 1.1, any dipath from (0, ... , 0) to (1, ... , 1) is an inextensible dipath. 

In Figure 3.1 a dipath starting at A and ending at B would be an example of an 

inextensible dipath. 

As dihomeomorphisms preserve initial and final points, they must preserve inex­

tensible dipaths. 

Initial and final points don't always exist, and so inextensible paths don't always 

exist. Consider Example 1.4, the Directed Circle, which has no initial and final points 

and so does not admit any inextensible dipaths. 

We now define an equivalence relation on the points in a local po-space called 

Homotopy History Equivalence. Two points are said to be Homotopy History Equiv­

alent if the dihomotopy classes of all the Inextensible Dipaths passing through them 

are the same. 

Definition 3.6. [2] In a local po-space X, the Homotopy History of an Inextensible 

Dipath f : I ---t X is defined to be the set h(f) = {y E Xl3 a dipath g through y such 

that g is dihomotopic to f } 

Definition 3. 7. [2] (Homotopy History Equivalence) In a local po-space X, two 

points x, y E X are Homotopy History Equivalent if x E h(f) {:::} y E h(J) for all 

f E A(X). 

Observe, that were we to consider the local po-space I 2 with n-points deleted, then 

the number of deformation equivalence classes would depend on the configuration of 

those n-points. In other words, we get a function from the configuration space of 

n-points in I 2 to the natural numbers N. We now investigate the properties of this 

function. 

Following Birman [9], we define the configuration space of n-points in I 2 as follows. 
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Definition 3.8. (Configuration Space) The Configuration Space of n points in I 2 

is the space I 2 x ... x I 2 
\ ~' where ~ = { (xll ... , Xn) E (J2)nlxi = Xj for some i =1- j}. 

We denote this space by Fo,n· 

Given a point x E Fo,n, where x = (xi, ... , xn), we can form a corresponding 

partially ordered space from the unit square, with those points deleted, 

i.e. I 2 \{xi, ... ,xn} with the Euclidean product partial order. We shall denote this 

partially ordered space by r;. 
Definition 3.9. (Homotopy History Equivalence Count) Define the Homotopy 

History Equivalence Count to be the function JDl : Fo.n --+ N that counts the number of 

Homotopy History Equivalence Classes of r; for X E Fo,n. In particular JDl( X) = #( rn' 
where # denotes the number of Homotopy History Equivalence Classes. 

Definition 3.10. (Generic Configuration) A configuration of n points in I 2 zs 

called Generic, if no two points lie on the same vertical or horizontal line, and all of 

the points lie in the interior of I 2
. 

Proposition 3.1. Consider x, y E Fo,n, if the po-spaces t; and I~ are dihomeomor­

phic, then JDl( x) = JDl(y). 

Proof. Let F: t;--+ I; be a dihomeomorphism. 

Consider a, b E t; such that a and b belong to the same Homotopy History Equiv­

alence class. Thus a E h(f) <=:?bE h(f)Vf E P1(I';). 

Suppose that F(a), F(b) E I~ do not belong to the same Homotopy History Equiv­

alence class. Thus there exists an inextensible dipath s E PI(!;) such that F(a) E h(s) 

and F(b) tf: h(s), Or F(a) tf: h(s) and F(b) E h(s). 

Consider the case in which F(a) E h(s) and F(b) t/: h(s). Let Z 8 be a dipath in 

I; passing through F(a) that is dihomotopic to s. Such a dipath can be picked by 

Definition 3.6 and Definition 3. 7. 

Now sis an inextensible dipath in I;, sop-los is an inextensible dipath in t;, 
call it t. Also p-I 0 Zs is a dipath in r; passing through a, call it u. As F is a dihome­

omorphism we must have that u is dihomotopic to t, where t E PI(!;). So we have 
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that a E h(t). As a and b belong to the same Homotopy History Equivalence class, 

we must have that bE h(t). Let 9t be a dipath passing through b that is dihomotopic 

tot. Thus we have that u, 9t and tare all dihomotopic to each other, where u and 9t 

are dipaths passing through a and b respectively, and t is an inextensible dipath. 

Let v = F o 9t be the corresponding dipath in I;, it passes through F(b). Note 

also that Zs = F o u is a dipath in I; that passes through F(a). 

As F is a dihomeomorphism, we have that Z8 is dihomotopic to v. But Z8 is 

dihomotopic to s, therefore v is dihomotopic to s and as v passes through F (b) we 

have that F(b) E h(s). 

Thus we have that F(a) E h(s) and F(b) E h(s). This is a contradiction. 

The case in which F(a) ¢:. h(s) and F(b) E h(s) is handled in a similar manner, 

and we obtain a contradiction here too. Thus our supposition that F(a) and F(b) do 

not belong to the same Homotopy History Equivalence class is false. 

Thus, if a, b E t; lie in the same Homotopy History Equivalence class and 

F : t; --> I; is a dihomeomorphism, then F(a), F(b) E I; must lie in the same 

Homotopy History Equivalence class. 

Conversely, consider c, d E t; such that c and d do not lie in the same Homotopy 

History Equivalence class. 

Let if possible that F(c), F(d) E I; belong to the same Homotopy History Equiv­

alence class. 

We have that p-l : I; --> t; is a dihomeomorphism, and soc and d must belong 

to the same Homotopy History Equivalence class, by our result above. This is a 

contradiction. 

Thus, given c, d E J'f: such that c and d do not belong to the same Homotopy 

History Equivalence class, and F: t;--> I; a dihomeomorphism, then F(c), F(d) E I; 

do not belong to the same Homotopy History Equivalence class. 

Thus we can conclude that for arbitrary p, q E I~ we have that p and q belong to 

the same Homotopy History Equivalence class if and only if F(p) and F(q) belong to 

the same Homotopy History Equivalence class. 
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Thus a dihomeomorphism F : t; ---+ I; preserves Homotopy History Equivalence 

classes, so that Jl})(x) = Jl})(y). 0 

Proposition 3.2. Given a generic configuration x = (x1, ... , Xn) E Fo,n with 

Jl})(x) = k, there exists an open neighborhood Ux around X such that for ally E Ux, r; 
is dihomeomorphic to I; and consequently Jl})(y) = lDl( x) = k. 

Proof. Let p1 : I 2 ---+ I and p2 : I 2 ---+ I be the projections on the X and Y axes 

respectively. As none of the Xi's lie on the same vertical or horizontal, p1 ( x1), ... , p1 (xn) 

are all distinct points. Similarly p2 (x1), ... , P2(xn) are all distinct points. 

Let a0 , •.. ,an be a partition of the interval I, such that a0 = 0 and an = 1 and 

Pl(xi) E (ai-b ai)· 

Let b0 , ... , bn be a partition of the interval I, such that b0 = 0 and bn - 1 and 

P2(xi) E (bi-b bi). 

Let ui = (ai-l, ai) X (bi-1, bi) be a "square shaped" neighborhood of Xi· By "square 

shaped" neighbourhood, we mean a rectangular neighbourhood which is the product 

of two open intervals. 

Let u = ul X ... X Un. 

For a E Ui let the coordinate representation of abe (al, a 2 ) where a1 = p1(a), 

a2 = P2(a). 

Consider a pointy= (y1, ... , Yn) E U, where Yi E Ui. Let (yf, yl) be its co-ordinate 

representation. 

Define hi1 : I ---+ I to be, 

X 

X 

Similarly, define hi2 : I ---+ I to be, 
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0:::; x:::; ai-l 

ai-l < x:::; x} 

xf < x:::; ai 



X 

b ( b ) 
(y2-b;_l) 

i-1 + X- i-1 ( Lb ) 
xi t-1 

Y~ + (x - x~) (b;-y'f) 
z z (b;-xil 

X 

0 So X So bi-1 

bi-1 < x S: xl 

xl < x S: bi 

Hi1 (r,s) = (hi 1 (r),s) is a dihomeomorphism that takes (x},xT) to (yf,x7) and 

fixes all points outside [ai-l, ai] xI. 

Hi 2 (r,s) = (r,hi 2 (s)) is a dihomeomorphism that takes (x},xl) to (x},yT) and 

fixes all points outside I x [bi-1, bi]· 

Thus the dihomeomorphism Hi2 o Hii ( r, s) takes ( x}, xf) to (yf, yf), and keeps all 

points outside [ai-l, ai] x I U I x [bi-l, bi] fixed. 

Thus the dihomeomorphism H12 o Hh o ... o Hn2 o Hn 1 : I 2 ---+ I 2 takes x toy. Thus 

t; is dihomeomorphic to I;, by Proposition 3.1. 

This implies that lDl(y) = lDl(x) = k. 

And y = (y1 , ... , Yn) E U was arbitrary. Thus t; is dihomeomorphic to IJ and 

lDl(y) = lDl(x) = k for ally E U. 

D 

Corollary 3.3. Let cc be the set of non-generic configurations. Then the function 

lDl is constant on the path components of Fo,n \ cc. 

Proof. Let a, bE Fo,n \ cc be two generic configurations that belong to the same path 

component. Let f: I---+ Fo,n \ cc be a path from a to b. 

Given a Generic Configuration x E Fo,n, there exists a neighbourhood Vx in Fo,n 

such that for all y E Vx we have that t; is dihomeomorphic to IJ. As every point 

on the image of the path f is a generic configuration, we can cover the path by such 

neighbourhoods. As the image of f is compact, there are only a finite number of 

such neighbourhoods, Vxp ... Vxk, where x1 = a and Xk = b, and such that consec­

utive neighbourhoods Vx; and VXi+I have non-empty intersection. Thus we have r;i 
dihomeomorphic to t;i+

1
• As dihomeomorphism is an equivalence relation, we have 

I~ dihomeomorphic to Il. 
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Thus by Proposition 3.1 we have lill(a) = lill(b). 

Thus the function Jill is constant on the path components of Fo,n \ cc. 0 

Corollary 3.4. Let h: / 2 ---+ / 2 be the map that sends (x,y) to (y,x). It induces a 

map H: Fo,n---+ Fo,n, of the form H = (h, ... ,h). Then lill(x) = lill(H(x)). 

Proof. The map h is a dihomeomorphism, and so the result follows from Proposition 

3.1. 0 
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Chapter 4 

Di-homeomorphisms of the Unit 

Square 

We restrict our attention to the Euclidean product partial order. We look at di­

homeomorphic embeddings of the unit square ! 2 , in the plane ~2 . We show that the 

di-homeomorphic image of ! 2 must be of the form [a, b] x [c, d]. We also classify all pos­

sible di-homeomorphisms that embed the unit square in the Euclidean plane. Namely, 

we show that all such di-homeomorphisms are, up to composition with automorphism 

of ! 2 given by permuting the coordinates, products of independent one-dimensional 

di-homeomorphisms of intervals. 

This result tells us that the isomorphisms in the category of local po-spaces are of 

a very restricted nature. Thus, if one is to deduce useful relations between different 

concurrent systems based on models formulated in the category of local po-spaces, 

a weaker notion of equivalence is required. In particular, this indicates the need to 

pass to an appropriate homotopy category. 

In [13] various categories of fractions of the fundamental category are defined and 

in each case a component category of the category of fractions is also defined. Martin 

Raussen has suggested that an appropriate notion of equivalence is likely to be in 

the form of morphisms between local po-spaces that induce isomorphisms between 

components when one passes to their appropriate component categories. 
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Let us now return to our result, which states that in the 2-dimensional case, a 

dihomeomorphic embedding of the unit square in the plane must factor as a prod­

uct of two 1-dimensional dihomeomorphisms of the unit interval, up-to a change in 

orientation. 

It is not hard to intuit why a di-homeomorphic image of 12 in the plane, must be 

of the form [a, b] x [c, d]. However this intuition does not easily pass to a proof. 

Consider the fundamental category of 12. It's objects can be classified into two 

distinct sets, the points that form the interior of 12 and those that form the bound­

ary( in the manifold sense) of 12
. If one observes the di-homotopy classes of dipaths 

between these two distinct sets, one can subdivide the set of boundary points into 

four connected sets, A= {0} x [0, 1)U[O, 1) x {0}, B = {1} x (0, 1]U(O, 1] x {1} and 

C = { (0, 1)}, D = { (1, 0)}. There are no dipaths from points in the interior of 12 to 

points in A, there are no dipaths from points in B to points in the interior of J2. There 

are no dipaths at all between points in the interior of 12 and the sets C and D. As 

the fundamental category is a di-homeomorphism invariant, any di-homeomorphism 

of 12 must preserve the properties of these sets in the image. 

Applying this intuition to a simple example, we see that there are severe restric­

tions on what the di-homeomorphic image can be. 

Consider a parallelogram P which is not a rectangle, in the plane, with the induced 

partial order (as a subspace). Consider its boundary (as a manifold). One can show 

that in " most" cases, the set of boundary points P does not have subsets that 

satisfy the dipath conditions of either A, B, C or D. And in the few cases where 

such subsets can be found, additional considerations on the set of boundary points, 

derived from the fundamental category can be shown to fail. Thus it can be shown 

that a parallelogram P in the plane, is not di-homeomorphic to 12 , in fact, such 

parallelograms may not even be di-homeomorphic to each other. 

However, it is hard to turn this intuition into a proof that the di-homeomorphic 

image of 12 in the plane must be of the form [a, b] x [c, d]. This is because the 

homeomorphic image of the boundary of 12 can be pretty wild, making it hard to 
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distinguish its subsets based on dipath dihomotopy class properties. Instead, we show 

that the topological boundary of the partial order relation R as a subset of IR2 x IR2 , 

and as a subset of 12 x 12 , consists of pairs of points along lines parallel to the X 

or Y axes. We show that any di-homeom~rphic embedding of 12 in the plane, must 

map points on the topological boundary of the partial order relation in 12 to those 

on the topological boundary of the relation in IR2 . We show that this forces all di­

homeomorphisms that embed 12 in the plane, to preserve vertical and horizontal lines 

parallel to the X and Y axes, up-to orientation reversal of the image of 12 . We then 

see how this forces the di-homeomorphic image of J2 to be of the form [a, b] x [c, d]. 

First we shall characterize the properties of the topological boundary of the local 

partial order as a subset of IR2 x IR2 . We show that a pair of points in the partial 

order lie on its topological boundary if and only if they lie on the same vertical or 

horizontal line. 

Proposition 4.1. (Po-Boundary in the Plane) Consider the relation R C JR2 xlR2 

defined by the product partial order, R = {((a1, a2), (b1, b2)) E IR2 x IR2 with a1 :S b1 

and a2 :S b2}. 

The boundary of the relation R as a subset of IR2 x IR2 is 

bd(R) = {((a1,a2),(bl,b2))ia1 = b1 ora2 = b2} 

Proof. Let A= {((a1, a2), (b1, b2))ia1 < b1 and a2 < b2} be the set of ordered pairs of 

points (ab a2) and (b1, b2) where the co-ordinates a1 and a2 are strictly less than b1 

and b2 respectively. A is a subset of R. 

Note that R \A= { ((a1, a2), (b11 b2))ia1 = b1 or a2 = b2}. 

We will show that A = Int(R) which would imply that bd(R) = R \A and the 

result would follow. 

Define F: IR2 x IR2 ---+ IR2 by F((a1, a2), (b1, b2)) = (b1 - a1, b2 - a2). It is easy to 

check that F is continuous. 

Now, note that A= F-1 (JR+ x JR+), where JR.+= {x E IRix > 0}. 

lR + x lR + is open, and so A is open. 

Now pick arbitrary ((a.1, a.2), (b1, b2)) E R \A thus a.1 = b1 or a.2 = b2. 
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We will show that all neighbourhoods of ((a1 , a2 ), (b1, b2)) contain points that are 

not in R. 

If a 1 = b1 • Let B C IR2 x IR2 be an open neighborhood of ((a1 , a2), (b1, b2)). 

There exist open b-balls Uc5((a 1 , a2)) and Vc5((b1, b2)), in IR2, of (a1, a2) and (bi. b2) 

respectively, such that U8((a 1 ,a2 )) x V:,((b1 ,b2)) C Bas the products of such balls 

form a basis. 

We now construct a point in in Rc that lies in Uc5((a1, a2)) x Vc5((b1, b2)) and hence 

in B. 

Pick E, with 0 < E <b. Let (a1 + E, a2) E Uc5((ab a2)), 

therefore ((a1 + E, a2), (b1, b2)) E B. 

Now a1 + E = b1 + E > b1 and a2 < b2. 

Thus (a1 +E, a2) i (b1, b2) and so ((a1 +E, a2), (b1, b2)) E Rc. As B was an arbitrary 

open neighborhood of (a, b), we conclude that for every neighborhood B C JR2 x IR2 

of (a, b) the intersection B n Rc is non-empty. 

If a2 = b2 . The proof is similar to the previous case. 

Thus, A is the largest open set contained in R. And so we can conclude that 

Int(R) =A. 

Thus bd(R) = R \A, i.e. ((xi, x2), (yi, Y2)) E bd(R) {::}XI= YI or x2 = Y2· D 

We now recall how the topological boundary behaves when we restrict it to a 

subspace of the ambient space. 

Lemma 4.2. (Topological Boundary in a Subspace) Let X be a topological 

space, and A C X a subset of X. LetS C X be a subspace of X. Let bds(A) denote 

the boundary of S n A in the subspace S. Then bds(A n S) c bdx(A). 

Proof. X E bds(A n S) if and only if for every neighbourhood Vx of X in X we have, 

snvxnA # 0 and snvxnAc # 0. 
These conditions imply that Vx n A # 0 and Vx n Ac # 0, which tell us that 

x E bdx(A). 0 
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We now work out what the boundary of the partial order is in a disc in the plane. 

We need Proposition 4.1(Po-Boundary in the Plane) and Lemma 4.2(Topological 

Boundary in a Subspace) for this. We show that if two points in the partial order lie 

on the topological boundary, then they lie on the same vertical or horizontal line. 

Corollary 4.3. (Po-Boundary in a Subspace) LetS be any subspace of TR. 2 . Let 

S:.s denote the restriction of the Euclidean product partial order to S. Let Rls C S x S 

be the set defined by Rls ={(a, b) E S x Sla S:.s b}. 

Then Rls = R n(s X S) and is a closed subset of s X s, making s a partially 

ordered space, and ((a1, a2), (b1, b2)) E bdsxs(Ris) implies a1 = b1 or a2 = b2. 

Proof. By Lemma 4.2 (Topological Boundary in a Subspace) we have that 

bdsxs(Ris) C bd(R). 

The conclusion then follows from Proposition 4.1 (Po-Boundary in the Plane). D 

We get a more detailed picture than the above Corollary if we consider the sub­

space in the plane to be "square shaped," i.e. of the form [a, b] x [c, d]. More precisely, 

we infer that the topological boundary of the partial order is made up of pairs of points 

that lie on the same vertical or horizontal line. 

Proposition 4.4. (Po-Boundary in the Square) 

For (a1, a2), (b1, b2) E P = [p, q] x [r, s], ((a1, a2), (b1, b2)) E bdPxP(Rip) if and only 

if a1 = b1 or a2 = b2. 

Proof. Let P = [p, q] x [r, s] and let R C P x P be the partial-order relation. Consider 

((a1, a2), (b1, b2)) E R. Thus (a1. a2) S:. (b1, b2) and we have a1 S:. b1 and a2 S:. b2. 

By Corollary 4.3 (Po-Boundary in a Subspace), we have 

( (a1, a2), (b1, b2)) E bdPxP(Rip) implies that a1 = b1 or a2 = b2 . 

If a1 = b1 and a2 =/= b2 then ((a1, a2), (bll b2)) E bdPxP(Rip ). 

Let B C P x P be an open neighborhood of (a, b). There exist 8-balls U<l((a1, a2)) 

and \18((b1, b2)), in P, of (a1, a2) and (b1, b2) respectively, such that 

Uo((al, a2)) x V0 ((b 1 , b2)) C B. Pick E, with 0 < E < 8. Thus (a1 +E. a2 ) E U<l((a1 , a2)), 
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therefore ((a1 + E, a2), (b1, b2)) E B. Now a1 + E = b1 + E > b1 and a2 < b2. Thus 

(a1 + E, a2) i (b1, b2) and so ((a1 + E, a2), (b1, b2)) E Rc. As B was an arbitrary open 

neighborhood of ((a1, a2), (b1, b2)) and since ((all a2), (b1, b2)) E R, we conclude that 

((a1, a2), (b1, b2)) E bd(R). 

If a1 =j:. b1 and a2 = b2 then the proof is similar to the previous case. 

Thus ((a1,a2), (b1,b2)) E bdPxP(Rip) if and only if a1 = b1 or a2 = b2. 0 

We now begin the process of proving that a dihomeomorphism of a square shaped 

region preserves rectangles. In the following Lemma and Corollary we prove that 

a dihomeomorphism of 12 must map vertical and horizontal lines in the domain to 

vertical and horizontal lines in the image. 

Proposition 4.5. (Po-Boundary Mapping) Let f : [p, q] x [r, s) -t S be a di­

homeomorphism from [p, q] x [r, s) to aS a subset of"'R2 . Consider a, bE [p, q] x [r, s], 

let a= (ab a2), b = (b1, b2). Let c = f(a), d = f(b) with c = (c1, c2) and d = (d1, d2). 

If a1 = b1 or a2 = b2, then c1 = d1 or c2 = d2. 

Proof. Let P = [p, q] x [r, s). f : P -t S is a di-homeomorphism. Thus f is a 

homeomorphism, and so (f x f) : P x P -t S x S is also a homeomorphism. 

Consider k, l E P. As f is a di-homeomorphism, we have f(k) ::; f(l) if and only if 

k::; l. Thus (fxf)(Rip) c Rls and (fxf)-1 (Ris) C RIP· As f is a homeomorphism 

we must conclude that (f x !)(Rip)= Rls· (f x f) must map Rip homeomorphically 

onto Rls- In particular, (f x f) must map bdpxp(Rip) homeomorphically onto 

bdsxs(Ris). 

Consider a, b E P such that a1 = b1 or a2 = b2. We must have either a ::; b or 

b::; a. And by Proposition 4.4(Po-Boundary in the Square), (a,b) E bd(R!p). Let 

c = f(a), d = f(b), with c = (c1, c2), d = (d1, d2). As(! x f) maps bdPxP(RIP) home­

omorphically onto bdsxs(R!s), we must have (c, d) E bd(Ris). Thus by Corollary 

4.3(Po-Boundary in a Subspace) we must have c1 = d1 or c2 = d2 . 0 

36 



Corollary 4.6. Let f : I 2 
- S C JR2 be a di-homeomorphism. Consider the sets 

I x { a0 } and {b0 } xI. The image of these sets under f must be of the form [x, y] x { c0 } 

or { d0 } x [z, wL where x, y, z, w, c0 and d0 are some real numbers. 

Proof. Consider the set I x {a0 } and the points (O,a0 ), (l,a0 ) in this set. 

Let (r1, r2) = f(O, ao), (s1, s2) = f(l, ao). 

By Prop 4.5(Po-Boundary Mapping), r1 = s1 or r 2 = s2. 

Consider an arbitrary point u = ( u1 , u2 ) E f (I x { a0 }). 

We must have (r1,r2):::; (u1,u2):::; (s1,s2) as f is a climap. Thus r1:::; u1:::; s1 and 

r2 :::; u2 :::; s2. 

If r 1 = s1 =Co for some real number c0 , then u1 = r 1 = s1 = c0 , and if r2 = s2 = d0 

for some real number d0 then u2 = r2 = s2 = do. 

As (u1,u2) was an arbitrary point of f(I x {a0 }) and since f(I x {a0}) is home­

omorphic to an interval, it must be of the form [x,y] x {c0 } or {do} x [z,w]. Where 

x, y, z and ware some real numbers. 

To show that f ( { b0 } x I) is of the form [ x, y] x { c0} or { d0} x [ z, w], the proof is 

similar. D 

The following Corollary is the same result as the previous Corollary, except for 

the fact that it applies to a general square shaped region rather than I 2 alone. 

Corollary 4.7. (Grid Preservation Property) Let f: [p, q] x [r, s]- S C JR2 be 

a di-homeomorphism. Consider the sets [p, q] x { a0 }, and {b0 } x [r, s]. The image of 

these sets under f must be of the form [x,y] x {co} or {do} x [z,w]. 

Proof Define h: I 2
- [p,q] x [r,s] by h(x,y) = (x(q-p)+p,y(r-s)+s). The 

inverse, h- 1 
: [p, q] X [r, s] - I 2 is given by, h- 1(v, w) = c~=~' ~~;). Both hand h-1 

are dimaps, and soh: I 2 
- [p, q] x [r, s] is a di-homeomorphism. 

Thus f o h: I 2
- Sis a di-homeomorphism. 

Subsets of [p, q] x [r, s] of the form [p, q] x { a0 } or {b0 } x [r, s], have inverse images 

in J2 under h - 1 of the form I x { ao-r}, and {bo-P} x I respectively. 
s-r · q-p 
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Thus by Corollary 4.6, f o h(J x { :o..=-;}) and f o h( { b;..=-:} x I), are sets of the 

form [x, y] x { c0 } or { d0 } x [z, w] in S. However f o h(J x { aso_=-;}) = f([p, q] x { a0 }) 

and foh({b;_=-;} xI)= f({bo} x [r,s]). 

Thus f([p, q] x { a0}) and f( {b0 } x [r, s]) are of the form [x, y] x { c0 } or { d0 } x [z, w] 

inS. D 

We now show that the dihomeomorphic image in the plane, of a square shaped 

region, must be a square shaped region. 

Theorem 4.8. (Rectangles to Rectangles) Let f : [p, q] x [r, s] --+ S c IR.2 be a 

di-homeomorphism. 

Then S must be of the form [a, b] x [c, d]. 

Proof. Consider the four distinct sets [p, q] x { r}, [p, q] x { s}, {p} x [r, s], { q} x [r, s]. 

The union of these four sets form the boundary of [p, q] x [r, s]. 

The images of these four sets under f must be four distinct sets, each of the 

form [x,y] x {c0 } or {do} x [z,w]. This follows from Corollary 4.7(Grid Preservation 

Property). 

The images of these four sets also form the boundary of S. 

Also the union of the four sets is homeomorphic to a circle. Thus the image under 

f, of their union, must be homeomorphic to a circle. As the image under f of their 

union is made up of four distinct sets, each of the form [x, y] x { c0 } or { d0 } x [z, w], 

it must be a 4-sided polygon. Thus the boundary of S must be a rectangle. Since 

S must be homeomorphic to [p, q] x [r, s] and have a rectangular boundary formed 

from the union of sets of the form [x, y] x { c0 } or { d0 } x [z, w], it must be of the form 

[a, b] x [c, d]. D 

If a dihomeomorphism maps one vertical line to another vertical line, then it must 

map all vertical lines to vertical lines, and all horizontal lines to horizontal lines. If it 

mapped it to a horizontal line, then it must map all vertical lines to horizontal lines, 

and all horizontal lines to vertical lines. The proof of this is outlines in the following 

Lemma. 
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Lemma 4.9. (Grid Consistency) Let f : [p, q] x [r, s] -+ [a, b] x [c, d] be a di­

homeomorphism. Consider {x} x [r,s] and [p,q] x {y}, subsets oj[p,q] x [r,s]. 

Then f({x} x [r,s]) = [a,b] x {i} and j([p,q] x {y}) = {j} x [c,d] where 

j E [a,b],i E [c,d] or f({x} x [r,s]) = {j} x [c,d] and J([p,q] x {y}) = [a,b] x {i} 

where j E [a, b], i E [c, d]. 

Proof. By Corollary 4.7(Grid Preservation Property) f({x} x [r,s]) = {j} x [c,d] or 

f({x} x [r,s]) = [a,b] x {i} and j([p,q] x {y}) = {j} x [c,d] or 

f([p, q] x {y}) = [a, b] x { i}. Where i E [c, d] and j E [a, b]. 

The intersection of {x} x [r,s] and [p,q] x {y} is the point (x,y) E [p,q] x [r,s]. 

Thus f(x,y) E f({x} x [r,s])nf({x} x [r,s]). 

Let if possible that f( { x} x [r, s]) = {j} x [c, d] and J([p, q] x {y}) = {j'} x [c, d] for 

some j, j' E [a·, b] or that f( { x} x [r, s]) = [a, b] x { i} and j([p, q] x {y}) = [a, b] x { i'} for 

some i, i' E [c, d]. However f( {X} X [r, s]) n J([p, q] X {y}) is nonempty as it contains 

at least the point j(x, y ). But this implies that ( {j} X (c, d]) n( {j'} X (c, d]) =/: 0 or 

((a, b) X { i}) n([a, b) X { i'}) =/: 0, and since {j} X (c, d), {j'} X (c, d) are parallel, and 

[a, b] x { i}, [a, b] x { i'} are parallel, we would have {j} x [c, d] = {j'} x [c, d] in one 

case and [a, b] x { i} = [a, b] x { i'} in the other case. Thus the map f would not be 

injective and would fail to be a homeomorphism. This is a contradiction. 

Thus we must have f({x} x [r,s]) = [a,b] x {i} and j([p,q] x {y}) = {j} x [c,d] 

or f({x} x [r,s]) = {j} x [c,d] and j([p,q] x {y}) = [a,b] x {i}. 

Where i E [c, d], j E [a, b] 0 

Dihomeomorphisms must respect vertical and horizontal lines, in the manner 

stated above. Thus, if one restricts the dihomeomorphism to a vertical or hori­

zontal line, then the restriction is constant either in the X or Y co-ordinate. This 

allows us to factor the dihomeomorphism into a product of dihomeomorphisms up-to 

a change of orientation. Thus we are able to classify all the possible dihomeomorphic 

embeddings of a square shaped region into the plane. 
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Theorem 4.10. (Classification of Di-Homeomorphic Embeddings of a 

Square) Given a di-homeomorphism f : [a, b] x [c, d] --> [m, n] x (p, q], we can factor 

f as f(x,y) = (X(x), Y(y)) or f(x,y) = (Y(y),X(x)). 

Proof. Let h: [a,b] x [c,d] ->IR2 be the climap defined by h(x,y) = (y,x). It is also 

a dihomeomorphism onto its image. 

Without loss of generality we can assume that f(up-to composition with h) maps 

sets of the form [a, b] x { x} to [m, n] x { i} and sets of the form {y} x [c, d] to {j} x [p, q], 

by Lemma 4.9(Grid Consistency). 

Let f be of the form f(x,y) = (JI(x,y),h(x,y)). Let the image off be 

[m, n] x (p, q], the image is of this form by Theorem 4.8(Rectangles to Rectangles). 

Define X : [a,b] --> [m,n] by X(x) = JI(x,c). Define Y: [c,d] --> [p,q] by 

Y(y) = h(a, y). 

Both X and Y are dihomeomorphisms. 

Note that X(x) = JI(x, t)'t/t E [c, d]. If this were not true, there would exist 

t0 E [c,d] such that X(x) =J f 1(x,t0 ), i.e. JI(x,c) =J JI(x,t0 ), which implies that 

f([a, b] x { x}) is not of the form [m, n] x { i}. This is a contradiction. 

Similarly note that Y(y) = h(s,y)'t/s E [a, b]. 

Now define k: [a, b] x [c, d]--> IR2 by k(x, y) = (X(x), Y(y)). 

For arbitrary (x, y) E [a, b] x [c, d] we have, 

k(x, y) = (X(x), Y(y)) = (JI(x, c), h(a, y)) = (!I(x, y), h(x, y)) = f(x, y). 

Thus f(x, y) is of the form (X(x), Y(y)) where X: [a, b]--> [m, n] and 

Y : [c, d] --> [p, q] are dihomeomorphisms. If f needed to be composed with h then f 
is of the form f(x, y) = (Y(y), X(x)). 0 
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