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Abstract 

Acid rain continues to be a major environmental problem. Canada has been 

monitoring indicators of acid rain in various ecosystems since the 1970s. This project 

focuses on the analysis of a selected subset of data generated by the Turkey Lakes 

Watershed (TLW) monitoring program from 1980 to 1997. TLW consists of a series of 

connected lakes where 6 monitoring stations are strategically located to measure the 

input from an upper stream lake into a down stream lake. Segment regression models 

with AR(1) errors and unknown point of change are used to summarize the data. 

Relative likelihood based methods are applied to estimate the point of change. For 

pH, all the regression parameters except autocorrelation have been found to change 

significantly between the model segments. This was not the case for so~- where a 

single model was found to be adequate. In addition pH has been found to have a 

moderate increasing trend and pronounced seasonality while so~- showed a dramatic 

decreasing trend but little seasonality. Multivariate dimension reduction methods are 

used to provide an overall graphical summary of the changes in TLW water system. 

We also report the result of applying segment regression for the analysis of first two 

principal components in selected stations. The results show that the efforts of the 

Canadian and US governments to reduce the emission of 802 have been successful in 
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controlling the acid rain problem in Eastern Canada. The project ends with suggestions 

for various extensions of the present work. 

Key Words: Acid rain; TLW; Likelihood method; Change point; Segment regression; 

Auto-correlation; Principal components. 

lV 



Acknowledgements 

I would like to sincerely thank my supervisor, Dr. Abdel H. El-Shaarawi for his 

great guidance, support, encouragement and patience throughout the entire process of 

this project. 

I would like to thank Dr. Peter Macdonald and Dr. Roman Viveros-Aguilera for 

serving in my examination committee and providing me with valuable advice and help 

over the years. 

Thanks go to my professors and staff in the Department of Mathematics and Sta­

tistics at McMaster University for their valuable support. 

Last but not least I express my appreciation to Dr. DeanS. Jeffries, of Environment 

Canada, for providing the data and some of the background information. 

Thanks also go to all my friends for their friendship and help during the last two 

years, to my daughter for her support. 

v 



Contents 

1 Introduction 

1.1 Background 

1.2 Data Structure and Variables 

2 Graphical Description of the Data 

2.1 The Graphical Display of pH Value 

2.2 The Graphical Display of so~- .. 

3 Multivariate Data Reduction 

3.1 

3.2 

Matrix Factorization . 

Matrix Approximation 

3.3 Biplots . . . . . . . . . 

4 Regression Models with Change Point 

4.1 Likelihood Methods . . . . . . . . . . . 

vi 

1 

1 

5 

8 

9 

14 

22 

22 

24 

27 

33 

34 



4.1.1 

4.1.2 

The Likelihood under the of Independent Assumption . 

The Likelihood under the AR(1) Assumption 

4.2 Results . . . . . . . . . . . . . . . . . 

4.2.1 Modelling the Changes in pH 

Modelling the Changes of Sol- . . 4.2.2 

4.2.3 Change Point of the First Two Principal Components . 

5 Conclusion and Future work 

5.1 Conclusion . . 

5.2 Future Work . 

A R functions 

A.l Monthly mean . 

A.2 Change point under the independent assumption 

A.3 Likelihood function under AR(1) assumption . 

A.4 Result analysis . . . . . . . . . . . . . . . . . 

B R command 

Vll 

36 

37 

41 

41 

49 

51 

58 

58 

59 

62 

62 

63 

65 

68 

71 



List of Tables 

1.1 Example of the data set. . . . . . . . . . . . . . . . . . . . . . . . . 7 

4.1 Change of pH under assumption of independence. 

4.2 Change of pH under assumption of AR(l). 

4.3 The estimates of a in two segments. . . . . 

4.4 ¢h <$2 and their std for the AR(l) model. 

4.5 Coefficients of fitting the trend of So~-. . 

42 

45 

45 

48 

50 

4.6 Change of the first two principal components in SO and S5. 52 

Vlll 



List of Figures 

1.1 Map of the TLW with location of the observation stations. 

2.1 Monthly mean of pH (Jan.- April). 

2.2 Monthly mean of pH (May- Aug.). 

2.3 Monthly mean of pH (Sept.- Dec.). 

2.4 Seasonality of pH. . . . . . . . 

2.5 pH difference among stations. 

2.6 Monthly mean of so~- (Jan.- April) .. 

2.7 Monthly mean of So~- (May- Aug.) .. 

2.8 Monthly mean of So~-(Sept.- Dec.). 

2.9 Seasonality of so~-. . ..... 

2.10 so~- difference among stations. 

3.1 Biplot 1 (Jan.- April). 

3.2 Biplot 2 (May- Aug.). 

lX 

• 0 •• 0 0 • 3 

10 

11 

12 

13 

15 

17 

18 

19 

20 

21 

28 

29 



3.3 Biplot 3 (Sept. -Dec.) .......................... 30 

3.4 Boxplot of angles and distances between pH and the given variable. 31 

4.1 The change point of pH in station SO under assumption of independence. 43 

4.2 The change point of pH in station S5 under assumption of independence. 44 

4.3 The change point of pH in station SO under assumption of AR(l). 46 

4.4 The change point of pH in station S5 under assumption of AR(l). 47 

4.5 The trend of So~- . .......................... 50 

4.6 Boxplots of so~- before and after cutting off the extreme values. 51 

4.7 The change point of first principal component of station SO. ..... 53 

4.8 The change point of second principal component of station SO. •• 0 •• 54 

4.9 The change point of first principal component of station S5. ..... 55 

4.10 The change point of second principal component of station S5. 0 0 • 0 • 56 

X 



Chapter 1 

Introduction 

1.1 Background 

Acid rain has been a hot topic for over thirty years. It has direct and indirect impact 

on natural environment and human health. It kills aquatic life, trees, crops and other 

vegetation, damages buildings and monuments, corrodes copper and lead piping, dam­

ages man-made things such as automobiles, reduces soil fertility and can cause toxic 

metals to leach into underground drinking water sources. In early 1970, several cases 

of surface water acidification and loss of fish population were reported in Scandinavia, 

Canada and the United States of America. Acidification has been shown to be re­

lated to fisheries losses (Beamish and Harvey, 1972; Wales and Beggs, 1986; Smith 

and Underwood, 1986). As a result, environmental agencies in these countries became 

concerned about the potential impact of the long range transport of air pollutants 

(LRTAP) and made funds available to study various aspects of acid rain problem. 

In Eastern Canada, the area south of latitude 52° is generally considered sensitive 
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to elevated atmospheric deposition (Kelso, 1986). The distribution of lake sizes in the 

Sault Ste. Marie district is considered representative of this area, and the lakes in the 

Turkey Lakes Watershed (TLW) are among the type considered most at risk (Jeffries, 

1988). At that time, several other study sites already existed, covering a variety of 

terrain types. TLW was chosen from some 100 potential candidates to fill the gap in 

the overall Canadian research programs investigating the effects of LRTAP on shield 

terrain. Another reason for selecting TLW was to utilize expertise in a truly integrated 

watershed study that was already available in Sault Ste. Marie at the Great Lakes 

Forest Centre (Canadian Forestry Service, Department of Natural Resources) and the 

Great Lakes Laboratory for Fisheries and Aquatic Science (Department of Fisheries 

and Oceans). 

The TLW study was established in 1980 to define the impact of acidic deposition 

on undeveloped aquatic and terrestrial terrain. It was organized as a joint initiative 

of Canadian Forest Service, Environment Canada and Department of Fisheries and 

Oceans. The National Water Research Institute (NWRI) of Environment Canada is 

one of the members in the study team. 

The TLW (Figure 1.1) is located 50 km north of Sault Ste. Marie, Ontario, on 

the Canadian Shield near the northern margin of the Great Lakes-St. Lawrence forest 

region. It is 10.5 krn2 in area and contains a chain of four lakes. There are few emission 

sources within 100 km of the TLW, so most of the atmospheric pollutants that reach 

it are transported from sources hundreds or thousands of kilometers away. 

Acid rain refers to all types of precipitation-rain, snow, sleet, hail, fog-that is acidic 

in nature. The sources of the acid deposition are mainly two kinds of air pollutants: 

sulfur dioxide (802) and nitrogen oxides (include N02 and N03 , denoted as NOx)· 
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These chemicals-produced by burning of fossil fuels, smelting of ore, burning of coal, 

and processing of natural gas- can be carried long distances by the wind before dissolv-

ing in precipitation and being deposited on the earth's surface. The acid deposition is 

an international issue. North America is a huge contributor to the world 's air pollution 

and acid rain. 

""'-J 
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/' 
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Figure 1.1: Map of the TLW with location of the observation stations. 
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Acidity is measured by the pH value, the logarithm of the concentration of the free 

hydrogen ions H+ (electrically charged atoms) in water. The pH scale is logarithmic 
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where pH value changes 1 unit as the concentration of free hydrogen ions changes 10 

times. Because normally carbon dioxide exists in the atmosphere and it reacts with 

water to form carbonic acid, so "pure" rain is acidic with pH 5.6-5. 7. 

A selected subset of the data collected on Thrkey Lake Watershed Study during 

1880 to 1997 is used in this project. During the study period, there were certain 

interventions. In 1985 the governments of Canada and the seven eastern provinces 

joined forces to take action on reducing sulfur dioxide, the major contributor to acid 

rain. They launched a program to cut sulfur dioxide emissions in the eastern provinces 

in half by 1994. In 1990, the U.S. launched action to reduce emissions of sulfur dioxide 

by amending its "Clean Air Act". Do these interventions have significant effect on 

the stream water acidity in TLW? So in this investigation we concentrate mainly on 

the analysis of the pH and So~- data. pH is a response variable and So~- is one of 

explanatory variables. The objective of this project is to evaluate within- and between­

year variability, seasonal cycles and multi-year trends of the stream water acidity in 

TLW, to identify the change of the acidity of the water by using suitable statistical 

methods. 

We begin by performing exploratory analysis using graphical methods for displaying 

univariate and multivariate data using monthly mean values. This was then followed 

by concentrating on the detailed modelling of pH and so~-. The results show clear 

spatial and temporal patterns in the two variables: pH value and the concentration 

of so~- are increasing as the water travels from the upstream lake to a downstream 

lake. Temporally, pH is increasing while So~- is decreasing. 

The result shows that pH has modestly increased and so~- has clearly decreased 

after those interventions took place. 
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A brief description of the data set is in the next section. Chapter 2 presents a 

graphical display of pH and so~- data. Chapter 3 is concerned with the multivari­

ate variable reduction of the data and uses biplots to show the relations among the 

variables. Chapter 4 presents the details of the modelling process and the results. 

Conclusions and suggestions for future work are given in Chapter 5. 

1.2 Data Structure and Variables 

The map of the TLW is shown on Figure 1.1 which indicates the sampling locations 

of stations (SO, S1, · · · , S5). Batchawana Lake is the headwater lake of TLW and 

is separated into two basins. The outflow stream draining Batchawana Lake South 

(and subsequent portions of the watershed) is called Norberg Creek and goes through 

a rapid change in elevation prior to entering Wishart Lake. Then water flows from 

Wishart Lake to Little Turkey Lake and finally Thrkey Lake. The outflow from the 

TLW enters the Bachawana River and then passes on to Lake Superior. 

Samples were collected at the outflow of each lake. The water chemistries (major 

ions, nutrients, DOC) were measured and recorded. Station SO is at the outflow of the 

first lake (Batchwana Lake) and the others are along the main drainage channel, S5 

is at the lowest stream. Sampling frequency was approximately weekly from 1980 to 

1997. We analyzed 6 data sets from 6 stations. 

Table 1.1 shows a sample of the data sets which include the following variables: 

Time (year, month and date), pH value, the concentration of cations (including calcium 

(Ca2+, mg/L), magnesium (Mg2+, mg/L), sodium ( Na+, mg/L ), potassium ( K+, 

mg/L)), ammonia ( NHt, mg/L-N), alkalinity (Alk, meq/L), sulfate anion (So~-, 
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mg/L), nitrite and nitrate (NO:;+ N02 = NO;, mg/L-N), chlorine (cz-, mg/L). 

Dissolved Organic Carbon (DOC) is included in the data set but not considered in 

this work, because a lot of its values were recorded as missing. An empty cell in the 

table indicates a missing measurement. In these 6 data sets between 15% - 20% of 

the observations contain one or more missing measurement(s). The issue of missing 

data does not have a big impact on the univariate analysis since the analysis is based 

on the monthly mean value of the measurements. In the original data there are some 

obvious mistakes, such as some of the pH values are out of range, we just treat them 

as missing. Before the analysis was conducted, the data was checked to make sure all 

the values are reliable. 
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Table 1.1: Example of the data set. 

Y/M/D pH Ca2+ Mg2+ Na+ K+ NH+ 4 Alk so~- NO; cz-
mg/L mg/L mg/L mg/L mg/L-N meq/L mg/L mg/L-N mg/L 

80/09/29 6.14 2.35 0.40 0.32 0.14 0.025 0.051 5.95 0.48 

80/10/08 6.19 3.09 0.48 0.37 0.20 0.028 0.062 5.51 0.48 

80/10/16 6.26 3.50 0.50 0.49 0.15 0.037 0.070 5.95 0.077 

80/10/22 6.36 3.33 0.45 0.54 0.22 0.072 6.42 0.032 0.40 

80/10/29 6.36 3.22 0.44 0.51 0.24 0.066 6.25 0.47 

80/11/13 6.11 3.36 0.47 0.44 0.17 0.067 0.062 6.75 0.43 

80/11/19 5.87 3.17 0.49 0.58 0.08 0.042 6.28 0.37 

80/12/03 5.79 2.99 0.57 0.41 0.17 0.060 0.067 6.59 0.36 

80/12/22 5.73 2.48 0.47 0.53 0.22 0.060 0.043 5.98 0.38 

97/12/22 6.28 2.744 0.413 0.483 0.195 0.0474 0.0567 5.07 0.11 0.28 
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Chapter 2 

Graphical Description of the Data 

In the study of water acidity, pH value is the variable of primary interest. Thus we 

choose it as the most important variable to investigate. in addition, so~- is a very 

important variable, because it is directly related to the emission of so2, which is 

considered to be a big contributor to water acidification. This chapter focuses on 

the visual inspection of the data. Since pH values and so~- are recorded during the 

whole period of study as time series, the objective is to decompose each series into 

three components: long-term trend, seasonality and error terms. That is 

data = trend+ seasonality+ error (2.1) 

We consider a variety of graphical displays of the data with the objective of identifying 

the patterns of seasonality, trend and differences between sampling locations. 
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2.1 The Graphical Display of pH Value 

Figures 2.1 to 2.5 show various types of graphical display of the pH data. In all 

figures the symbols used to identify the stations are as follows: 

o station SO 6:. station 51 + station 52 

x station 53 o station 54 \j station 55 

Figures 2.1 - Figure 2.3 show the yearly trends for each month and stations. It is 

apparent from these figures that the pH level increases as the station elevation level 

decreases with SO having the lowest level and S5 the highest level. In winter and early 

spring months, the differences between the curves decreases as we move downstream. 

Thus in this period of time, the difference between SO and S1 is the largest. But in 

summer and fall months, the levels of the 6 stations roughly form three groups: ( SO 

and 81), S2, ( 83, S4 and 85). As for the time trend there is a general increase in the 

level for the later years. In addition winter months show the strongest trend, while 

the weakest change occurred in the summer months. Around 1985, there appears to 

be a deep pH depression and this seems to be the case with so~- as well. 

Figure 2.4 shows the seasonal cycles of the pH change. The patterns are similar in 

different stations: pH values progressively decrease from January to reach a minimum 

in April, rise to reach a maximum in the mid summer and then decline to the winter 

level. The variation in April is much bigger than other months. The boxplots appear 

to be symmetric, so the median level and the upper and lower quartiles provide an 
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adequate summary statistics of the data. This is the bases for Figure 2.5 which shows 

at glance the pattern of changes in pH in each month and each station. 

The decrease of pH in early spring is caused by the snowmelt. Studies (Semkin 

and Jeffries, 1986) have shown that up to 50% of the chemicals are released in the first 

30% of the snowmelt, as a result, the water from the snowmelt is much more acidic 

than at other times of the year. 

2.2 The Graphical Display of so~-

Figures 2.6 to 2.10 are graphical displays of the variable So~-. 

The time trend patterns appear to be consistent at all stations and month. From its 

starting point so~- concentration declined and reached a minimum around 1985. This 

was followed by steep rise reaching a maximum around 1990, then declined sharply 

afterwards to reach minimum in 1997. The strength of this pattern appears to vary 

seasonally. It is stronger during winter and early spring months and is weaker during 

the remainder of the year. In addition more variability with the appearance of many 

extreme values occurs during the summer and fall months. There is also a consistent 

pattern for the stations with so showing the lowest so~- concentration while S5 

showing the highest. Thus the concentration of so~- increases as the water moves 

from the higher level to the lower level elevation. The difference between the station 

levels is not constant from month to month. The separation between station patterns 

is more pronounced during the winter months and early spring season. This may be 

due to the melting ice which rapidly changes the concentration in the lower lakes due 

to the supply of water derived from the melting ice. In addition the fluctuation is not 
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the same for different stations with S1 showing very high values particularly during 

some years. This is unlikely due to analytical problem, since they are confined only to 

this station. It may be instead due to other sources of so~- that are confined to this 

lake during that period. 

Figures 2.9 shows the pattern of seasonal cycle which appears to be generally 

similar for the six stations. It is high and nearly constant at its station level in the 

winter. A large drop in the level occurs in May and then a slow increase during the 

summer and fall to reach the winter maximum. The range of So~- concentration is 

narrower in the winter and wider during the spring and summer. The shape of the 

distribution tends to be more symmetric in the winter than the rest of the year. As 

expected based on the above the variation at station S1 is more pronounced. 

Further insight about the pattern is shown in Figure 2.10. This compares the main 

feature of the distribution of So~- by station and month. The pattern agrees with 

the outcome reached from the previous figures. 
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Chapter 3 

Multivariate Data Reduction 

In environmental studies, scientists typically collect observations on a large number of 

highly correlated variables. To obtain a concise summary of the data, it is desirable to 

focus on small set of functions of variables that account for most of the information. 

The most common method is to find linear combination of the variables that explain 

most of the variation. Principal components and associated singular value decompo­

sition is a popular method and can be easily implemented in S-plus or R computer 

packages. Here we summarize the mathematical bases of these method and give their 

applications to TLW data. 

3.1 Matrix Factorization 

Generally, any n x m matrix Y of rank r can always be expressed as the product of 

two matrices G and H' of rank r (Rao, 1965). That is 

Y=GH', 
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where G is an n x r matrix, H a m x r matrix and H' is the transpose of H, both of 

them are of rank r. The factorization also can be expressed as the inner product 

Yii is the ith row and lh column element of matrix Y 

g~ is the ith row of matrix G 

hi is the yth row of matrix H 

(3.2) 

We can understand the meaning of the factorization as follow: Assign the vectors 

g 1, g2 , · • · , gn to each of then rows of Y and the vectors h 1 , h 2 , · · · , hm to each of m 

column of Y. The matrix Y then is represented by those m + n vectors in r-space. In 

this sense the g's may be regarded as the "row effect" and the h's may be regarded as 

the "column effect". Gabriel (1971) introduced the biplot by applying it to a matrix 

of rank two. When the matrix Y is of rank two g's and h's are all vectors of order 

two and thus may be plotted in a plane. The elements of Y are represented by the 

inner products of the corresponding row effect and column effect vectors. This biplot 

provides a visual appraisal of the structure of the matrix. It represents the rank 2 

matrix exactly, to the accuracy of plotting. 

The factorization of the matrix is not unique since the same representation is 

obtained when G is replaced by G* = G~-1and H by H* = H~', where~ is a square 

matrix of order and rank r. In order to put it in practical use, some constraints need 

to be placed on the vectors g's and/or h's. 
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3. 2 Matrix A pproxirnation 

For a matrix of rank higher than two, it is not possible to represent it exactly by a 

biplot. These are the cases we encounter most often in multivariate analysis practice. 

Fortunately, if the matrix Y can be satisfactorily approximated by yC2l, a rank two 

matrix, then the biplot of yC2l may serve as a good approximation for the visual 

inspection of matrix Y. The next step is to find the best approximate YC2l matrix for 

Y. Suppose Y is an arbitrary real n x m matrix of rank r, then Y can be expressed 

as the sum of r matrices of rank 1 in a variety of ways. Among them the most useful 

one is the singular value decomposition, or SVD. 

(3.3) 

where the e7
1 s are real, positive numbers and e71 ~ e72 ~ · · · ~ C7r. In matrix notations 

this is expressed as 

Y=U:E V 1 (3.4) 

where U is an n x k orthonormal matrix, its column vectors are the eigenvectors of 

n x n matrix YY1
, 

V 1 is a k x m orthonormal matrix with the eigenvectors of m x m matrix Y 1Y 

as its row vectors. 

:E is a diagonal matrix with the elements e71 ~ e72 ~ · · · ~ C7r ~ 0. e7
1 s are the 

square roots of the positive eigenvalues of either YY1 or Y 1Y. 

We wish to approximate Y as closely as possible by another n x m matrix X of 

smaller rank k (r > k). There might be various definitions of what is meant by "as 
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closely as possible", but in statistical content, it would be in the least square sense of 

minimizing the sum of squared discrepancies between the original elements Yij of Y 

and their fitted counterparts Xij of matrix X 

n m 

s = L L(Yij- Xij)
2 (3.5) 

i=l j=l 

Then the best-fitting matrix X is the singular value decomposition of Y but with 

all O":s for i > k set to zero. That is X is same as the sum of the first k terms on the 

right-hand side of ( 3.3). 

Furthermore, the minimum value of S achieved by the singular value decomposition 

lS 

S 2 2 2 
min = O"k+l + O"k+2 + · · · + (}r (3.6) 

In other words, the approximation matrix X of rank k represents the maximum pro-

portion of the total variation of matrix Y, the fraction is used as a goodness of fit 

measure criterion. 
'\"'k 2 

(k) - L...i=l (}i 
p - '\"'r 2 

L...i=l (}i 
(3.7) 

There is a direct connection between SVD and principal components analysis( Good, 

1969). Based on the above result, if we want to approximately represent a matrix Y 

(of rank r) by a matrix X of rank 2, then X is given by 

2 

X= LO"iU~Vi (3.8) 
i=l 
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X= (3.9) 

When we try to factorize the matrix X in order to obtain a bipolt, the three simple 

expressions come out intuitively: 

uuvf51 u21 yiCi2 

X 
u12yf51 u22y!Ci2 ( vnF> v12yf51 V1mF>) (3.10) 

v21JCi2 v22JCi2 V2mJCi2 

U1nvf51 U2nJCi2 

uu 0"1 u21 0"2 

u120"1 u220"2 ( vn V12 VIm) = (3.11) 
v21 v22 V2m 

U1n0"1 U2n0"2 

uu u21 

u12 u22 ("nul V120"1 V1mU1 ) (3.12) 
V21 0"2 v220"2 V2m0"2 

Uln U2n 

They are corresponding to the different weights assigned to the rows and the 

columns effect. These three versions of the choices of G and H in( 3.1) cover the 
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most useful cases (Krzanowski, 1988). They correspond respectively to a general fac­

torization where the emphasis is placed neither on rows nor columns, and two special 

factorizations placing emphasis on rows and columns in turn. 

3.3 Biplots 

Biplot is a very efficient method to summarize the information available in a multivari­

ate data set. It generates a visual summary that shows both the relationship between 

variables and between cases. In our case, the original data sets have over 1000 rows 

(cases) each. It is not possible to plot the biplot directly, not even the monthly means, 

since these are 200 rows long. It is hard to separate one point from the other. Consid­

ering that some of the variables have yearly cycles, the biplots are produced by month. 

Because missing values are spread over the variables, station SO, S1 and S3 do not have 

sufficient monthly mean values to produce all12 months' biplots. Figure 3.1- Figure 

3.3 give the biplots for station S2 data. In this plots the variables are presented by 

arrows (vectors) and the years by points. The smaller the angle between two vectors, 

the larger is similarity. Orthogonal vectors indicate lack of association between the 

variables. Angles larger than 90° indicate negative association. 

From these biplots we can see that the variables have different contribution to the 

first two principal components in different months. Generally, if two variable have 

similar contributions to the first two principal components, they will appear in the 

biplot as close (or overlapped) arrows. 

To investigate the relationship, we calculate the angles between pH and each of the 

other 9 variables. The distance between two vectors is also a useful measure of the 
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relationship between two variable since it combines the information of the directions 

and the magnitude of the difference between two variables. As mentioned above, the 

angle and distance between pH and a given variable change from one month to another. 

Figure 3.4 presents boxplots of the angles and distances. 

0 
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Ca Mg Na K NH4 Alk 804 NOX Cl 

Figure 3.4: Boxplot of angles and distances between pH and the given variable. 

Overall, Alkalinity (Alk) is the closest one to pH, the average angle is about 40° 

and the variation is the smallest. This angle is close to zero in April and reaches its 

maximum in June. The seasonal variation of Alk angle suggests maximum association 
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with pH in April and minimum association in June. Also the distance between Alk and 

pH is small. Another interesting variable is so~-, the average angle between so~­

and pH is not the biggest one but it exceeds goo. While the variation of the angles 

is much smaller than that of other variables. In addition, the distance between pH 

and so~- is the largest. This puts it in the position that have a constant negative 

correlation with pH as expected. NOx has the largest variable angle and distance. 

The median angles of Ca, Mg, N a are close to goo indicating little association with 

pH. In contrast, negative associations are found with NOx and with Cl. 

Combining the information from the biplot and the boxplot, we can see that of 

all the variable Ca, Mg ,Na, and Alk have average angle smaller than goo and N H4 , 

so~-, NOx and Cl have average angle bigger than goo. When comparing this with 

the correlation of pH with these variables, we find them agree with each other very 

well. 

It should also be noted from the biplots that points representing the later years 

are clustered together. That means the Turkey Lakes chemistry has changed over the 

years. 
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Chapter 4 

Regression Models with Change 

Point 

As shown earlier, pH values vary temporally and spatially. Specifically an increasing 

time trend and a strong periodic seasonality have been observed. Furthermore, upper 

lakes show higher acidity (lower pH ) than lower lakes. Here the focus is on capturing 

the trend and seasonal structure by developing regression models with regime changes. 

Likelihood based methods are used to make inferences about the model's parameters 

including the point at which the regression function changes (change point). It should 

be mentioned that there is a vast literature dealing the detection of the point change in 

regression models. Some are parametric, others are non-parametric or semi-parametric. 

These are summarized in the Encyclopedia of Environmetrics ( 2001, vol.l). 

Here we use the approach presented in Esterby and El-Shaarawi (1981) which 

uses likelihood method for making inferences about the change point and regression 

parameter under the assumption of normal error. Specifically we apply this approach 
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to develop models for the changes in pH, So~- and the first two principal components. 

The two variables are selected due to their importance for acid rain problem. 

4.1 Likelihood Methods 

Let Yt be the observed value of response variable at time T, where T represents the 

Julian day which is defined as: 

T = ( _ 1980) (month- 1) date 
year + 12 + 365 

and let Yt be expressed as: 

Yt (for t=1,2,··· ,k) 
ffil 

a 0 + a 1Tt + · · · + aPTr-
1 + :~:~),Bil sin(27r)Tt) + ,Bj2 cos(27r)Tt)) + elt 

j=l 

Yt (for t=k+1,k+2,··· ,n) 
ffi2 

'Yo+ 1'1Tt + · · · + /'qTr
1 + l:)>.il sin(27r)Tt) + >.i2 cos(27r)Tt)) + e2t,(4.1) 

j=l 

a combination of a polynomial and periodic functions in T and an error term. The 

point k is known as the change point at which the regression model changes its course. 

This model can be expressed in the concise form: 

Yt = I(t :S k)(JLlt + elt) + {1- I(t > k)}(JL2t + e2t), (4.2) 

where the indicator function I(t :::; k)=1 if t :::; k and 0 otherwise. The error terms 

are assumed to be an autoregressive error process AR(p) of order p. We shall consider 

here only two special cases. p = 0 and 1 for both regression segments. that is 

where (4.3) 
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Note that 

1. p = 0 corresponds to the case of independence while p = 1 corresponds to AR(1); 

2. the error term parameters in segment 1 and 2 are different 

letting 

the above model can be written in matrix form as: 

(4.4) 
Yk+l 

Yn 

Where A 1 and A 2 are the design matrices associated with the vectors Y 1 = 

(yl, Y2, · · · , Yk)' and Y2 = (Yk+l, Yk+2, · · · , Yn)' of observations. It is assumed that 

the matrices A 1 and A 2 are of full ranks. 
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4.1.1 The Likelihood under the of Independent Assumption 

First, we assume that the observations are independent from each other and follow the 

normal distribution with constant variances in the two segments respectively. That is 

ei ,...., N(O, aD 

ei N(O, a~) 

(for i=1,2,··· ,k) 

(for i=k+l,k+2,··· ,n) (4.5) 

Let ki denote the number of observations in segment i (for i =1 and 2), we have 

k2 = n - k1 . If the numbers of coefficients (parameters) in the regression are Pi, we 

have then: 

The coefficients of regression are estimated by 

(4.6) 

The estimation of the mean values (fitted values) are : 

(4.7) 

The variances are estimated as 

;; = ki ~Pi Y~(I- Ai(A~Ai)- 1 A~)Yi (4.8) 

Plugging these estimates in the joint density function of the observations we obtain 

the profile likelihood function for the change point k ( =kl) as 

(4.9) 

Maximum likelihood estimate of k is k, the value which maximizes the above func­

tion. This is obtained numerically through the calculation of the likelihood function 
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for all the possible value of k. On the other hand, inferences about k is conducted 

based on the relative likelihood function in the manner discussed in Kalbfieish, (1985). 

L(k) 
ReL = sup{L(k)} (4.10) 

The ReL varies between zero and 1 with the value of k corresponds to ReL = 1 which 

is the most plausible value. Relative likelihood intervals can be used to summarize 

the information about k. For example, the values of k such that ReL ;::: .5 are highly 

plausible while those for which ReL ::; .1 are implausible. So the relative likelihood 

function may be used to rank the parameter values according to their plausibilities. So 

that by plotting the relative likelihood against k, we can find out what is the plausible 

value of k corresponding to the position of the maximum likelihood L( k), that is where 

the change takes place. 

4.1.2 The Likelihood under the AR( 1) Assumption 

Since the data are taken as a sequence of time ordered observations at each of the six 

sampling stations, it is then expected that they are likely to be autocorrelated which 

needs to be taken into account in model development. 

Under the assumption that in each segment the observations are autocorrelated 

with different autocorrelation coefficient and ignoring the correlation between obser-

vations from different segments, the model for the ith (i = 1 and 2) segment is 

(4.11) 

Now the error terms are not independent. Instead, they are successive variables 
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from two stationary processes with the variance-covariance matrices: 

Estimates of regression coefficients are obtained using the generalized least squares 

method. 

and the joint density of Yi is 

For the AR(1) process, we have 

Uit = <Piuit-1 + ait (for t = 0, ±1, ±2, · · ·) 

where I <Pi I< 1 to ensure that the autoregressive process is stationary and 

From the definition of stationarity, we have 

(}2 
U·t ""' N(O _t_) (for t = 1 2 · · · k-) 

t '1-<Pf '' lt 

The variance and covariance matrix of ui (or equivalently Yi) are 

1 

(}2 
V ar(Yi) = V ar( ui) = 

1 
_t <Pt 

<Pi 

<P~i-1 
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<Pi 

1 

<P~i-2 

<Pt 

<Pi 

<P~i-3 

<P~i-1 

<P~i-2 

1 

(4.12) 

(4.13) 

(4.14) 



In the case all the u's ( or y's) are equally spaced we can calculate the determinant 

and the inverse of the variance-covariance matrix L:i : 

alently, the likelihood function of u: 

For any give k1 , k2 ( =n - k1) and (PI, (h the segment regression coefficients are first 

estimated by using generalized least squares, they are functions of k1 , ¢1 and k2 , ¢2 . 

Consequently, residuals are expressed as functions of ki and <Pi· The variance CJ; can 

then be estimated as ;; 
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( 4.16) 

Substituting these estimates into the likelihood function, we obtain a profile likeli-

hood function for ki and <Pi. For a given ki, the maximum likelihood estimate of </Ji can 

be obtained by equating the first order derivative of the profile likelihood with respect 

to </Ji to zero and solving the equation for <Pi· This leads to a cubic equation and 

the solutions could be obtained numerically as suggested in El-Shaarawi and Esterby 

(1982). In practice, the possible value of </Ji is limited to (-1, 1). So we tried to set </Ji 

and ki to their possible values and calculate the value of likelihood function. Then the 

relative likelihood is tabulated and used to rank the plausibility of the parameters. 

In the ideal situation, the observations are equally spaced in terms of time. In our 

case, even though we used the mean value of each month to make them approximately 

equally spaced, still have some missing values in certain month. So it is difficult to 

get an explicit expression for II:il and I:;-1
. In this case a simple modification of the 

likelihood is used to deal with missing values. The simplest approach is to apply 

the EM Algorithm which involves replacing the missing values by their conditional 

expectation and then maximization in an iterative sequence. 

Another assumption we have made is that the observations in two segments (before 

and after the occurrence of the change) are independent from each other, but in each 

segment the observations are dependent. The autocorrelations </Ji are assumed different 

in two segments. This allows us to calculate the likelihood as 

( 4.17) 
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or the log-likelihood function 

l = h + l2 (4.18) 

Calculation consideration: 

1. For a possible value of k1 , the likelihoods L(k1 , <hiYi) and L(ki, ¢2 IY2) for each 

of the two segments with all possible values of ¢i are computed ; 

2. Determine ¢1 and ¢2 that maximize L1 and L2 respectively; 

3. The overall likelihood fork is then computed as L(k) = L1(k, ¢1axiY1)L2(n-

k "'-maxly )· 
''+'2 2 ' 

4. For all possible value of k1 ( 2 :::; k1 :::; n- 1), repeat step 1-3 to form a sequence 

{L(k)}; 

5. Select the MLE of the change point k by identifying the value of k1 which max-

imizes the over all likelihood. 

4.2 Results 

The results of the application of the above methods to the data sets from stations SO 

and S5 are discussed below. 

4.2.1 Modelling the Changes in pH 

The monthly mean of pH data for each station are modeled first assuming independence 

using ( 4.1). Since the assumption of independence was not supported by the data the 
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Table 4.1: Change of pH under assumption of independence. 

St. No. Change Time log(L;:ax) ao /Jn /312 'Yo >-n .\12 

so June 87 52.796 6.057 0.147 0.262 6.108 0.211 0.186 

S1 Dec. 87 87.191 6.194 0.085 0.138 6.294 0.077 0.090 

S2 July 87 127.075 6.525 0.051 0.174 6.637 0.107 0.067 

S3 Aug. 87 90.187 6.760 0.158 0.389 6.833 0.186 0.232 

S4 July 87 106.156 6.799 0.147 0.366 6.911 0.192 0.228 

S5 Feb. 87 128.606 6.805 0.062 0.199 6.969 0.081 0.102 

model was then modified to take account of serial dependence. As the model assumes 

changes in the regression regime, inferences need to be made on regression parameters 

as well as the point at which regression has changed. Table 4.1lists the estimates of the 

parameters and the change points for all the stations. In addition the log maximized 

likelihood is also given. It is interesting to note that the ML estimates of the change 

point are consistent for all stations, since all occur in 1987 but in different month. The 

consistency of the signs and approximate magnitudes of the regression parameters. 

Figures 4.1 and 4.2 present the profile relative likelihood function and the fitted 

regression models for stations SO and S5. The ReL for S5 has a sharp peak indicated 

a precise estimate of the change point. This is contrast with that of SO where double 

peaks are indicated, suggesting that change could have occurred over a wider time 

period. It is interesting however to note that the first peak at SO has nearly occurred 

at the same time as that of S5. The fitted model seems to present an adequate 

representation of the main features of the data patterns. Figure 4.1 and Figure 4.2 

also show that the changes are not only in the levels (trend) but also in the variation 
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Figure 4.1: The change point of pH in station SO under assumption of independence. 
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Figure 4.2: The change point of pH in station S5 under assumption of independence. 
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Table 4.2: Change of pH under assumption of AR(l). 

St.No. Change Time l (LAR(l)) og max ao !3~1 !312 'Yo .An ).12 

so July 88 150.8 6.076 0.163 0.227 6.114 0.210 0.198 

S1 March 88 189.7 6.251 0.079 0.131 6.279 0.070 0.081 

S2 March 88 236.7 6.570 0.074 0.150 6.636 0.102 0.074 

S3 April 87 209.5 6.741 0.161 0.350 6.862 0.182 0.247 

S4 April 87 261.1 6.787 0.158 0.339 6.924 0.182 0.238 

S5 June 85 272.2 6.832 0.074 0.264 6.928 0.075 0.102 

Table 4.3: The estimates of a- in two segments. 

St.No. so S1 S2 S3 S4 S5 

(j1 0.193 0.146 0.130 0.136 0.130 0.101 

0"2 0.149 0.128 0.093 0.117 0.112 0.084 

within the yearly cycles. 

The results of fitting model 4.1 are summarized in Table 4.2 assuming that the 

errors are correlated according to an AR(1) process. It appears that the maximum of 

log-likelihood function is substantially higher than that obtained under the assumption 

of dependence. According to the likelihood ratio test 

(4.19) 

that the model under the AR(1) assumption is a significant improvement over from 

the model with independent error process. 

Figure 4.3 and Figure 4.4 are the profile relative likelihood function and the fitted 
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Figure 4.3: The change point of pH in station SO under assumption of AR(l). 
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Figure 4.4: The change point of pH in station 85 under assumption of AR(l). 
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Table 4.4: c$1 , c$2 and their std for the AR(l) model. 

St.No. (1>1 0"¢1 ¢2 0"¢2 Zi 

so 0.45 0.115 0.35 0.098 0.66 

S1 0.60 0.120 0.35 0.095 1.64 

S2 0.70 0.121 0.45 0.095 1.63 

S3 0.45 0.129 0.60 0.090 -0.95 

S4 0.45 0.129 0.50 0.091 -0.32 

85 0.30 0.164 0.75 0.081 -2.46 

regression models for stations S1 and S5 under AR(1) assumption. In station SO, the 

value of likelihood functions change in a narrow range during the period of 88-89. So, 

the peaks in Figure 4.3 indicate that the change at this station could be some where 

during that time period. For station 85, it seems the extremely variable data around 

the summer months of 86 has a major impact on the likelihood function. 

Table 4.3 presents the estimates of the a's before and after the changes taking 

place: segment 1 and segment 2. The results consistently show that the square root 

of the SSE is smaller in segment 2 than in segment 1. 

The estimates of autoregressive coefficients of two segments for 6 stations are listed 

in Table 4.4 along with their standard deviatio1t. It shows that they are significantly 

different from zero. The quantity Zi is 

is the test statistic for testing the equality of ¢1 and ¢2 . Under the null hypotheses 
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of ¢1 = ¢>2 , it is asymptotically distributed as N(0,1). The test indicate significant 

evidence against the hypotheses (5 % level) except for the lowest station. 

4.2.2 Modelling the Changes of So~-. 

As we have seen in Chapter 2, in all 6 stations the concentration of so~- decreased 

dramatically with time and the yearly cycle is not as clear as that for the pH value. 

The model is different from the one used for pH where segment regression is used. Here 

one regression will describe the data fairly well, so the first part of general model 4.1 is 

used in the fitting. For the monthly mean values of So~-, coefficients of the polynomial 

terms are significant up to the quadratic term. i.e. 81 = (a0 , a 1, a2, f3u, fJ12). 

In the process of fitting different autoregressive processes we have used the AIC 

criterion to select the ARMA order. The results show that the AR(1) has the smallest 

AIC, so it is kept in the final model. The fit results are given in Figure 4.5. And the 

coefficients are listed in Table 4.5. 

From Table 4.5 and Fig. 4.5, we can see that: There is a clear gradient in the 

concentration of So~-, lower downstream lakes have higher so~- concentration. The 

seasonality in downstream lakes become weaker. In all 6 stations the so~- decreased 

in the study period, however the decreasing rates vary from station to station and 

change with time. In recent years the downstream stations have decreased the most. 

Station S 1 is an exception in the sense that the coefficients of linear and quadratic 

terms have opposite sign as those of other stations and the amplitude of periodic 

function describing its yearly cycle is much bigger. The reason is that there are several 

very extreme observations ( the box plot of the data show a long heavy tail in the high 
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Table 405: Coefficients of fitting the trend of So~- 0 

StoNoo ao a1 a2 f3n (312 <P 

so 50656 -00064 00002 -00137 00184 00687 

S1 60060 00047 -00021 -003999 00286 00667 

S2 60137 -00194 00020 -00082 00296 00615 

S3 60346 -00195 00024 -00028 00211 00566 

S4 60325 -00117 00011 -00031 00119 00588 

S5 60494 -00097 00012 -00139 00096 00592 
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"' ... .,; 
0 
(J) 

0 
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"' ... 

85 90 95 

Time 

Figure 405: The trend of So~- 0 
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end), even after removing all data exceeding 10 ( see the before and after boxplot in 

Figure 4.6). It seems there was serious problem with the quality of the data. Fitting 

of Sl is not included in Figure 4.5. 

Before After 

0 ;= 
~ 0 

"' ~ 
0 B 0 

"' ~ 0 
0 

8 
9 
8 

1 "' B "' 

"' a ..,. 

-6--
~ 

"' 0 

Figure 4.6: Boxplots of So~- before and after cutting off the extreme values. 

4.2.3 Change Point of the First Two Principal Components 

In the principal components analysis, the first principal component Y(1) is a combi-

nation of the original variables which explain the biggest proportion of the variation 

in the data. The mathematical details ( Krzanowski, 1988) also show that the com-

bination coefficients is the eigenvector corresponding to the largest eigenvalue of the 

variance-covariance matrix. These are the first column vector of the matrix V' m 

equation ( 3.4) (denoted as vD, so that 
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Table 4.6: Change of the first two principal components in SO and S5. 

St. No. Components Change Time (1>1 0"1 ci'o /3u /3~2 likelihood 

<h 0"2 'Yo >.u ).12 

so 1st April 92 0.60 1.064 0.963 0.637 0.260 -187.2930 

0.50 0.864 1.873 0.575 0.257 

2nd April 85 0.25 1.102 0.744 1.224 1.797 -189.7873 

0.30 0.980 -0.140 1.198 1.160 

S5 1st March 88 0.65 1.087 -0.538 1.036 0.992 -252.9772 

0.55 1.602 0.269 1.548 1.303 

2nd April 92 0.45 0.773 -0.405 0.403 0.620 -134.8241 

0.50 0.694 0.981 0.545 0.526 

1(1) = Yv~ ( 4.20) 

Similarly, the second principal component is 

(4.21) 

In our data sets, the first two components explain about 65 % of the variation for 

both station SO and S5. Each of them contains more information of the data set than 

a single variable. So in this section, we present the result of modelling the first two 

components of SO and S5. The results are given in Figures 4.7 4.10 and Table 4.6. 

The change pattern of the first two components in 81 different from that of 85. It 

indicates that the data structure are different for different stations. More investigation 
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Figure 4. 7: The change point of first principal component of station SO. 
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Figure 4.8: The change point of second principal component of station SO. 

54 



'0 
0 
0 -

..r: co 
Qj 

. -
0 

~ - Station S5 J 
""' Q) . -

> 0 
:;; -

/tv «< 0 Qj . -
~ 0 I I I 

85 90 95 

Time 

""' 
0.. 
E 0 
0 
(.) 

""' 
., ,, 

+" It \Ill 
UJ I 

,, 
~ ,. 

• II 

•• ~ 'I"' ,, 
co ~ ' I 

85 90 95 

Time 

Figure 4.9: The change point of first principal component of station 85. 
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Figure 4.10: The change point of second principal component of station 85. 
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about variables other than pH and So~- is needed in order to explain the change of 

principal components. 

The upper panels of Figures 4.7 and 4.9 show the plots of the relative likelihood 

functions for the change point of the first principal components at stations SO and S5 

respectively. While the corresponding lower panels show the data time plots along with 

the fitted models. Figures 4.8 and 4.10 show the plots based on the second principal 

component. The estimated model parameters and the maximized likelihoods are given 

in Table 4.6 for SO and S5. The change point of the regression model differed for 

two components within the same stations and also between the stations. Inspection 

of the time plots show that time trend was dominating the first component for SO 

while seasonality was the dominant for S5. This resolves somehow the discrepancy 

between the two stations for it is important to compare the pattern of component 

1 at SO with that of component 2 at S5. This shows that the change occurred in 

April 92 for both stations (Table 4.6). There is a clear indication that changes in 

the seasonality pattern at SO (represented by component 2) occurred in 1985. This is 

earlier than that at S5 (1988 for component 1). The table shows that the value of the 

autoregressive parameters hardly changed between the two segments of the regression 

models for SO and S5. It is interesting to note that the variability was lower in segment 

2 in comparison with segment 1 of the regression models of SO which is not the case 

at S5. 
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Chapter 5 

Conclusion and Future work 

5.1 Conclusion 

In this project, inferences about changes in the water chemistry of TWL are made 

using regression models, change point, biplots and principle component analysis. De­

tailed modelling was presented for pH and So~- because of their importance in the 

characterization and control of anthropogenic acid rain. It has been concluded that pH 

has increased and So~- has decreased over the years. The pH trend is less pronounced 

than that of so~- and is well represented by a segmented regression model with the 

point at which the regression changed is also considered as an unknown parameter to 

be estimated from the data. In addition, serial correlation was found to be significant 

and this led us to include an AR(l) error term in the model. The analysis did not 

reject the constancy of the AR(l) parameter for the two segments of the regression 

model, however the variance was different in a consistent pattern. We presented the 

modelling of the two principal components to provide summary for the overall changes 
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in the chemistry of TWL despite the fact more subject matter is needed to interpret 

the findings. 

5.2 Future Work 

The topic of acid rain will remain important since more and more countries and people 

are realizing its potential effect. The TLW study will continue to generate more data 

and will require a more thorough analysis. Issues that need to be addressed in the 

future are: 

1. Include more data in the analysis so that we will be able to detect more than 

one change point and study other single variable intensively. 

2. Apply other methods including non-parametric and semi-parametric to the data 

set, for example, cumulative sum and recursive residuals, smoothing and compare 

the results. 

3. Build a general model to connect the different stations together to account for 

the spatial feature of the data sites. 

4. Multivariate extension of the regression model will be valuable for the integration 

of the information for the entire TLW system. 
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Appendix A 

R functions 

A.l Monthly mean 

mean.monthly<-function(Dat,St.No) 

{ 

mean.monthly=matrix(NA,ncol=14,nrow=216) 

no.row=O 

mean.monthly[,1]=rep(St.No,216) 

mean.monthly[,2]=rep(seq(1,12),18) 

for (i in 80:97) 

for (j in 1:12) 

{ no.row=no.row+1 

mean.monthly[no.row,3]=i+(j-1)/12 

for (k in 4: 14) 

{ flag=((Dat$Yr==i)&(Dat$Mon==j)) 
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} 

} 

} 

cell<-Dat[flag,k] 

if(length(na.omit(cell)!=O)) 

mean.monthly[no.row,k]<-mean(na.omit(cell)) 

dimnames (mean. monthly) [ [2]] =c ( "8t. No" , "Mon", "Time" , 

+dimnames(Dat)[[2]] [-(1:3)]) 

data.frame(mean.monthly) 

A.2 Change point under the independent assump­

tion 

Chglike=function (X = mean.mon.sO, name.var = "PH") { 

if (name.var == "PH") 

Dat = data.frame(X$Time, X$PH) 

if (name.var == "804") 

Dat = data.frame(X$Time, X$804) 

Dat.new <- na.omit(Dat) 

mark = ((Dat.new$X1 >= 82) & (Dat.new$X1 <= 97)) 

Dat.ana <- Dat.new[mark, ] 

n <- length(Dat.ana[[2]]) 

lk <- rep(NA, n) 

for (kin 10:(n- 10)) { 
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} 

Dat.1 <- Dat.ana[1:k, ] 

Dat.2 <- Dat.ana[(k + 1) :n, ] 

r1.lm <- lm(X2- sin(2 *pi* X1) + cos(2 *pi* X1), 

data = Dat .1) 

r2.lm <- lm(X2- sin(2 *pi* X1) + cos(2 *pi* X1), 

data = Dat. 2) 

Dat.1 <- cbind(Dat.1, r1.lm$fitted) 

Dat.2 <- cbind(Dat.2, r2.lm$fitted) 

Dat.com <- rbind(as.matrix(Dat.1), as.matrix(Dat.2)) 

sigma.1 <- sum((Dat.com[1:k, 3] - Dat.com[1:k, 2])-2)/(k-

3) 

sigma.2 <- sum((Dat.com[(k + 1):n, 3] - Dat.com[(k + 

1):n, 2])-2)/(n- k- 3) 

lk[k] <- sum(log(dnorm(Dat.com[1:k, 2], Dat.com[1:k, 

3], sqrt(sigma.1)))) + sum(log(dnorm(Dat.com[(k + 

1):n, 2], Dat.com[(k + 1):n, 3], sqrt(sigma.2)))) 

par(mfrow = c(2, 1)) 

plot(c(82, 97), c(O, 1.05), type "n", xlab ="Time", 

ylab = "Relative Likelihood" ) 

lines(Dat.ana$X1[10:130], exp(lk[10:130])/exp(max(lk[10:130]))) 

point.chang = which.max(lk[10:130]) + 9 

k <- point.chang 

Dat .1 <- Dat. ana[1 :k, ] 
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} 

Dat.2 <- Dat.ana[(k + i):n, ] 

ri.lm <- lm(X2- sin(2 *pi* Xi)+ cos(2 *pi* Xi), data= Dat.i) 

r2.lm <- lm(X2- sin(2 *pi* Xi)+ cos(2 *pi* Xi), data= Dat.2) 

Dat.i <- cbind(Dat.i, ri.lm$fitted) 

Dat.2 <- cbind(Dat.2, r2.lm$fitted) 

Dat.com <- rbind(as.matrix(Dat.i), as.matrix(Dat.2)) 

plot(c(82, 97), c(min(Dat.com[, 2]), max(Dat.com[, 2])), 

type= "n", xlab ="Time", ylab = paste(name.var)) 

points(Dat.com[, i], Dat.com[, 2],pch=20) 

lines(Dat.com[, i], Dat.com[, 3]) 

lines(smooth.spline(Dat.com[i:k, i], Dat.com[i:k, 3], df 5), 

lty = 3) 

lines(smooth.spline(Dat.com[(k + i):n, i], Dat.com[(k + i):n, 

3], df = 5), lty = 3) 

coef.value <- round(iOOO * c(Dat.com[k, i], max(lk[iO:i50]), 

as.numeric(ri.lm$coef), as.numeric(r2.lm$coef)))/i000 

coef.value 

A.3 Likelihood function under AR( 1) assumption 

# miss- row number of missing data 

# X--ni by 2 matrix (time,observation), after deleting missing value 

cor.mat<-function(n,phi) {power<-matrix(NA,ncol=n,nrow=n) 
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for (i in 1:n) 

for (j in 1:n)\oint 

power[i,j]=abs(i-j) 

matrix(as.matrix(outer(phi,power, 11
-

11 )),ncol=n,nrow=n) 

} function (phil, phi2, uO = 0, X= na.omit(mean.mon.s0[-(1:25), 

3:4]), k, miss= missO) 

{ 

n1 = length(X[[2]]) 

y1 X[1:k, ] 

y2 = X[(k + 1) :n1, ] 

if (k <miss[!]) { 

} 

cor.mat.1 = cor.mat(k, phil) 

cor.mat.2 cor.mat((n- k), phi2)[-(miss- k), -(miss­

k)] 

if ((k >=miss[!]) && (k < miss[length(miss)])) { 

m = 0 

for (i in 1:length(miss)) if (k >= miss[i]) 

m = m + 1 

miss.new1 = miss[1:m] 

miss.new2 = miss[-(1:m)] - k 

cor.old1 = cor.mat(k + length(miss.new1), phil) 

cor.old2 = cor.mat((n1- k + length(miss.new2)), phi2) 

cor.mat.1 = cor.old1[-miss.new1, -miss.new1] 
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cor.mat.2 = cor.old2[-miss.new2, -miss.new2] 

} 

if (k >= miss[length(miss)]) { 

cor.mat.1 = cor.mat((k + length(miss)), phi1)[-miss, 

-miss] 

cor.mat.2 = cor.mat((n1- k), phi2) 

} 

A= cbind(rep(1, n1), sin(2 *pi* X[, 1]), cos(2 *pi* 

X[, 1])) 

A1 = A[1:k, ] 

A2 = A[(k + 1) :n1, ] 

theta!= solve(t(A1) %*% solve(cor.mat.1) %*% A1) %*% t(A1) %*% 

solve(cor.mat.1) %*% y1[, 2] 

theta2 = solve(t(A2) %*% solve(cor.mat.2) %*% A2) %*% t(A2) %*% 

solve(cor.mat.2) %*% y2[, 2] 

u1 = y1[, 2] - A1 %*%theta! 

u2 = y2[, 2] - A2 %*% theta2 

sigma.sq1 = as.numeric((1- phi1-2) * t(u1) %*% solve(cor.mat.1) %*% 

u1/k) 

sigma.sq2 = as.numeric((1 - phi2-2) * t(u2) %*% solve(cor.mat.2) %*% 

u2/(n1 - k)) 

like!= -log(det(sigma.sqi/(1- phi1-2) * cor.mat.!))/2-

t(u1) %*% solve((sigma.sq!/(1 - phi1-2)) * cor.mat.1) %*% 

u1 
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} 

like2 = -log(det(sigma.sq2/(1 - phi2-2) * cor.mat.2))/2 -

t(u2) %*% solve((sigma.sq2/(1 - phi2-2)) * cor.mat.2) %*%u2 

c(as.numeric(like1), as.numeric(like2)) 

A.4 Result analysis 

LikeAr1Res=function(phi1,phi2,uO=O,X,k,miss) { 

n1=length(X[[2]]) 

n=n1+length(miss) 

y1=X[1:k,] 

y2=X [ (k+1) : n1,] 

#generate the correlation matrix according to the missing value 

if (k<miss [1]) 

{ cor.mat.1=cor.mat(k,phi1) 

cor.mat.2=cor.mat((n-k),phi2)[-(miss-k),-(miss-k)] 

} 

if ((k>=miss[1]) && (k<miss[length(miss)])) 

{ m=O 

for (i in 1:length(miss)) 

if (k>=miss[i]) m=m+1 

miss.new1=miss[1:m] 

miss.new2=miss[-(1:m)]-k 
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} 

cor.old1=cor.mat(k+length(miss.new1),phi1) 

cor.old2=cor.mat((n1-k+length(miss.new2)),phi2) 

cor.mat.1=cor.old1[-miss.new1,-miss.new1] 

cor.mat.2=cor.old2[-miss.new2,-miss.new2] 

if (k>=miss[length(miss)]) 

{ cor.mat.1=cor.mat((k+length(miss)),phi1)[-miss,-miss] 

cor.mat.2=cor.mat((n1-k),phi2) 

} 

A=cbind(rep(1,n1),sin(2*pi*X[,1]),cos(2*pi*X[,1])) 

A1=A[1:k,] 

A2=A[(k+1):n1,] 

theta1=solve(t(A1)%*%solve(cor.mat.1)%*%A1)%*%t(A1)%*%solve(cor.mat.1)%*%y1[,2] 

theta2=solve(t(A2)%*%solve(cor.mat.2)%*%A2)%*%t(A2)%*%solve(cor.mat.2)%*%y2[,2] 

u1=y1[,2]-A1%*%theta1 

u2=y2[,2]-A2%*%theta2 

sigma.sq1=as.numeric((1-phi1-2)*t(u1)%*%solve(cor.mat.1)%*%u1/k) 

sigma.sq2=as.numeric((1-phi2-2)*t(u2)%*%solve(cor.mat.2)%*%u2/(n1-k)) 

like1=-log(det(sigma.sq1/(1-phi1-2)*cor.mat.1))/2-t(u1) 

%*%solve((sigma.sq1/(1-phi1-2))*cor.mat.1)%*%u1 

like2=-log(det(sigma.sq2/(1-phi2-2)*cor.mat.2))/2-t(u2) 
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} 

%*%solve((sigma.sq2/(1-phi2-2))*cor.mat.2)%*%u2 

plot(X$Time,X$PH,xlab="Time",ylab="PH",pch=20) 

lines(X$Time,X$PH,lty=2) 

lines(X$Time,c(A1%*%theta1,A2%*%theta2),col="red") 

list(ChangeTime=t.change,Phi1=phi1,Phi2=phi2,Likelihood=like1+like2, 

Sigma1=sigma.sq1,Sigma2=sigma.sq2,coefficients=cbind(theta1,theta2)) 
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Appendix B 

R command 

source("e:\\program/fns.R.txt") 

sO=read. csv("e: \ \ProjectData/sO. csv", sep=", ",header=T) 

s1=read.csv("e:\\ProjectData/s1.csv",sep=",",header=T) 

s2=read.csv("e:\\ProjectData/s2.csv",sep=",",header=T) 

s3=read.csv("e:\\ProjectData/s3.csv",sep=",",header=T) 

s4=read.csv("e:\\ProjectData/s4.csv",sep=",",header=T) 

s5=read.csv("e:\\ProjectData/s5.csv",sep=",",header=T) 

mean.mon.sO<-mean.monthly(sO,O) 

mean.mon.s1<-mean.monthly(s1,1) 

mean.mon.s2<-mean.monthly(s2,2) 

mean.mon.s3<-mean.monthly(s3,3) 

mean.mon.s4<-mean.monthly(s4,4) 

mean.mon.s5<-mean.monthly(s5,5) 

m0<-descrip(s0,11) 
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m1<-descrip(s1,11) 

m2<-descrip(s2,11) 

m3<-descrip(s3,11) 

m4<-descrip(s4,11) 

m5<-descrip(s5,11) 

plot(c(.5,12.5),c(3,10),type="n",xlab="Month",ylab="S04") 

for (i in 1:12) 

{points((mO[i,1]-.5+d),mO[i,3],pch=1) 

lines(rep(mO[i,1]-.5+d,2),mO[i,c(2,4)],lty=1) 

points((m1[i,1]-.5+2*d),m1[i,3],pch=2) 

lines(rep(m1[i,1]-.5+2*d,2),m1[i,c(2,4)],lty=2) 

points((m2[i,1]-.5+3*d),m2[i,3],pch=3) 

lines(rep(m2[i,1]-.5+3*d,2),m2[i,c(2,4)],lty=3) 

points((m3[i,1]-.5+4*d),m3[i,3],pch=4) 

lines(rep(m3[i,1]-.5+4*d,2),m3[i,c(2,4)],lty=4) 

points((m4[i,1]-.5+5*d),m4[i,3],pch=5) 

lines(rep(m1[i,1]-.5+5*d,2),m4[i,c(2,4)],lty=5) 

points((m5[i,1]-.5+6*d),m5[i,3],pch=6) 

lines(rep(m5[i,1]-.5+6*d,2),m5[i,c(2,4)],lty=6) 

} 

X1=na.omit(mean.month.s0[-(1:25),2:3]) 

n<-length(X1[,1]) 

X<-na.omit(X1) 

#only use the data from 82 to 95 
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flag=((X[,1]>=2)&(X[,1]<=17)] 

X=X[flag,] 

n1=length(X[,1]) 

pi<-seq(-.9,.9,by=.05) 

#calculate the likelihood corresponding to 

k and phi1 and phi2 

lk1<-lk2<-matrix(NA,ncol=n1,nrow=length(phi)) # 

for (j in 5:(n1-5)) 

for (i in 1:length(phi)) 

{ lk1[i,j]<-like1(phi[i],phi2=0,uO=O,X,j)[1] 

lk2[i,j]<-like1(phi1=0,phi[i],uO,X,j)[2] } 

write(lk1,"c:\\like1PHst01.txt") 

write(lk2,"c:\\like2PHst01.txt") 

lk1 <-read("E: \ \like1PHst01") 

lk2<-read("E:\\like2PHst01") 

like.max1<-apply(lk1,2,max) 

like.max2<-apply(lk2,2,max) 

X=na.omit(mean.mon.s0[-(1:25),3:4]) 

max.l=(like.max2+like.max1)[10:180] 
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ex<-max(max.l) 

plot(c(82,98),c(0,1.05),type= 11 n 11 ,xlab= 11 Time 11 ,ylab= 11 Relative Likelihood 11
) 

lines(X$Time[10:180],exp(max.l)/exp(ex)) 

K=n.change=which.max(max.l)+9 

t.change=X$Time[n.change] 

phi1.max=phi[which.max(lk1[,n.change])] 

phi2.max=phi[which.max(lk2[,n.change])] 

LikeAr1Res(phi1.max,phi2.max,uO=O,X,K,miss) 
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