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To my dearest parents and sister 



Abstract 

In this thesis, we calibrated a one factor CIR model for interest rate and a two factor 

CIR model for each hazard rate of 21 firms. The time series of the interest rate and 

each hazard rate for 21 firms are also obtained. Extended Kalman Filter and Quasi­

Maximum Likelihood Estimation are used as the numerical scheme. The empirical 

results suggest that multifactor CIR models are not better than multifactor Hull-White 

model. Positive correlations between hazard rate and interest rate are discovered, 

although most hazard rates are found to be negatively correlated with the default-free 

interest rate. The 21 filtered time series of the hazard rates suggest that there maybe 

a hidden common factor shared only by the intensities. Monte Carlo Simulation is 

conducted both for interest rate and hazard rates. The simulation indicate that both 

the SKF and the EKF work pretty well as a filter tool but may produce bad estimation 

for the value of the likelihood function. QMLE works fine in linear state space form 

model, but it does a poor job in the case of non-linear state space form. 
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Introduction 

According to Giesecke's (2004) definition, credit risk is the distribution of financial 

losses due to unexpected changes in the credit quality of a counterparty in a financial 

agreement. The changes in the credit quality is so unexpected that it is hardly to 

predict the default events, which usually will bring catastrophic financial losses. Voices 

from the financial markes are asking: how to avoid or at least minimize our expected 

losses, how to price defaultable financial instruments? 

These challenges attract not only the people in the financial industries, but also 

the intellegent minds in the academia. Tools from other disciplines are widely used to 

tackle credit risk problems, such as mathematics, statistics, economics and computer 

programming. People have been answering these problems for years, vaguely however 

promissingly. 

Fischer Black and Myron Scholes are in fact the first to publish their answers to 

these questions, although they are well known because of their contributions to option 

pricing. In 1973 they published their paper The Pricing of Options and Corporate 

Liabilites which led them to the laureate of the Nobel prize in economics in 1997. It 

is in that very paper, that they built the foundation of structure approach to ana­

lyzing credit risk in the second part Corporate Liabilities, although it has not gained 

much attention as it deserves. Ironically, following Black-Scholes idea, in 1974, Robert 

Merton independently published his paper on the pricing of corporate debt and which 
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is now always cited as the first model of credit risk: Merton's Model. Black-Scholes 

and Merton's models are refered as classical models nowadays as a counterparty of the 

first-passage approach proposed by Black and Cox (1976). 

Several drawbacks of structural models turned out to be noticed, which lead people 

to think about other methods. Reduced form credit models are then introduced as 

an alternative by Artzner and Delbaen (1995), Jarrow and Turnbull (1995), Lando 

(1998), Duffie and Singleton (1999). 

Later on, incomplete information framwork is introduce by Duffie and Lando 

(2001), Giesecke (2001) and Cetin, Jarrow, Protter and Yildirim (2002), which is a 

combination of the first two approaches. 

In this thesis, we will do a review of the development of the credit theory. More 

important, specific examples are given to illustrate how the theory is implemented and 

applied to real problems. Technical tools such as Extended Kalman Filter (EKF) and 

Quasi-Maximum Likelihood Estimation (QMLE) are used. 

The contents are organized as follows. Chapter 1 is a short review of interest 

rate theory, focussing on modeling short rates under risk-neutral measure. Chapter 

2 explains the terminologies at the beginning, then analyzes the three approaches to 

credit risk. In Chapter 3, focussing on intensity based models (reduced form approach), 

multi-factor Guassian models and CIR models are studied in detail. Chapter 3 is the 

conjunction of the previous two chapters and Chapter 4. In Chapter 4, we introduce 

the techniques to use the real market data to implement the model built in the previous 

chapter. Our aim is to calibrate the parameters in the model and back out the time 

series of the hazard rate processes. 
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Chapter 1 

Interest Rate Theory 

Interest rates play a crucial role in the pricing of both default-free and defaultable 

securities. As a result, one can not avoid considering interest rates when talking about 

credit risk. Also, the theory of credit risk has many similar characteristics with the 

theory of interest rates (for example, the adjusted interest rate in credit risk and the 

default-free interest rate). In order to keep the context complete, talking about the 

interest rate theory becomes a necessity. 

Both practitioners in industry and the theorists in academia are enthusiastic about 

modeling the dynamics of the interest rate. This enthusiasm has never been cooled 

down ever since the first study on short rates by Vasicek (1977). Other papers on 

short rates are Dothan (1978), Ho and Lee (1986), Cox, Ingersoll and Ross (1985), 

Hull and White (1990). Forward interest rates are well studied in the monumental 

work of Heath, Jarrow and Morton (1992) which is one of the most important papers 

on interest rates ever published. A pricing kernel approach on positive interest rates is 

conducted by Flesaker (1993), Rogers (1997), Flesaker and Hughston (1997), Jin and 

Glasserman (2001). Other contributors on the modern interest rate theory include 

Duffie and Kan (1996), Brennan and Schwartz (1982), Longstaff and Schwartz (1992), 
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just to mention a few. For a more complete list of the contributors and their related 

work, please refer to The New Interest Rate Models edited by Lane Hughston (2000). 

In this chapter, {W(t); t 2:: 0} is a standard Brownian motion on some probability 

space (0, :F, P), and {F(t); t 2:: 0} is the filtration generated by W(t). Let Q denote the 

equivalent martingale measure, or risk-neutral measure. The time horizon is assumed 

to be finite through out this thesis, which means the maturity date T is bounded 

above. We review the short rate models, the forward rate framework and the affine 

term structures. 

1.1 Zero Coupon Bonds 

In this chapter, no credit risk is involved. The primary securities we are consider­

ing here are zero coupon bonds, also known as pure discount bonds. The following 

definition is from Arbitrage Theory in Continuous Time by Bjork (1998). 

Definition 1.1.1. A zero coupon bond with maturity date T, also called a T­

bond, is a contract which guarantees the holder to be paid one dollar on the maturity 

date T. The price at timet of aT-bond is denoted by P(t, T). 

Particularly, P(t, t) = 1 holds for all t by the definition. The bond price P(t, T) 

could be analyzed from two different perspectives. 

First, let's consider when tis fixed. The price P(t, T) turns out to be a deterministic 

function of the maturity T. The graph of this function inTis called the term structure 

of the bond price at t. Typically it is a very smooth graph and thus it is reasonable 

to assume that P(t, T) is differentiable w.r.t T. 

On the other hand, let's consider P(t, T) for fixed maturity date T. It is a stochastic 

process in t, however not a deterministic function in t. This process gives the price at 

different time t of a T -bond. 
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1. 2 Interest Rates 

There are many different kinds of interest rates with different definitions, however two 

of them are mostly concerned, namely the forward rate and the short rate. They 

are defined respectively as follows. 

Definition 1.2.1. The instantaneous forward rate with maturity T, or simply 

forward rate at timet, is defined by 

f( T) = _ 8ln P(t, T) 
t, ar · (1.1) 

The short rate at timet, also known as spot rate is defined by 

r(t) = j(t, t). (1.2) 

It is easy to see from the definition that the forward rate f(t, T) is positive if and 

only if the term strucuture of the bond prices is a decreasing funtion in T. The Figure 

1.1 illustrates a typical zero coupon bond price with positive interest rate. 

Indirect modeling the bond prices by modeling the forward rates or short rates be­

comes a fashion in recent thirty years. The following two sections will discuss modeling 

these two kinds of interest rates respectively. 

1.3 Modeling Short Rates Under Risk-Neutral Mea-

sure 

Short rates could be modelled under the physical measure P, however the bond prices 

are not uniquely determined by the P-dynamics of the short rate r(t) because of the 

lack of specification of the market price of the risk which is determined by the market. 

Therefore, it is favored to model the short rate directly under the risk-neutral measure 

Q. 
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Figure 1.1: Term Structure of The Bond Price at Timet = 0 with Positive Interest 

Rate 

A general model of the short rate rt (from now on, we will use rt to denote r(t)) 

under Q-dynamics is written as a stochastic differential equation (SDE) 

(1.3) 

where f.-l(t, rt) and (J(t, rt) are deterministic functions in t and rt. They are called the 

drift and the volatility respectively of the Q-dynamics of the interest rate rt. 

Once the Q-dynamics of the short rate rt is specified, under the no-arbitrage frame­

work, the zero-coupon bond prices could be given by 

(1.4) 

Ever since Vasicek (1977), a great number of proposals have been made on how to 

specify the Q-dynamics for rt. So far, no standard model for short rates is unanimously 

accepted. Among the existing models, the following ones are mostly favored. 
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• Vasicek 

• Cox-Ingersoll-Ross 

drt = ""(e- rt)dt + o-FtdWt, 

• Hull-White (Extended Vasicek) 

The parameters f3 and "" are required to be positive in the above models so as to 

keep the mean-reverting property of the dynamics. The function a(t) in Hull-White, 

is not random but deterministic function in t. 

The SDEs of Vasicek and Hull-White models could be solved analytically and it 

turns out that they are Gaussian processes. This allows negative interest rates because 

of the properties of Gaussian processes. However, they are very popular in industry 

since they can fit the market data comparatively well given positive initial value of 

their SDEs. On the other hand, the CIR does not have negativity problem, but it does 

not fit the market data so well. 

1.4 Affine Term Structures 

Affine term structure modeling is an extention of the above models. It is well developed 

and used in interest rates modeling as well as in credit risk because of its pleasing 

analytical tractability. 

Definition 1.4.1. If the term structure of the bond prices could be written into 

P(t, T) = exp(A(t, T)- B(t, T)rt) (1.5) 

then the model is said to have an affine term structure. 
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The functions A(t, T) and B(t, T) above are functions of the two real variables t 

and T, however, in most cases, they are functions of the difference between the two 

variables, i.e. they are functions of (T- t). 

Current research puts a lot of efforts on the application of affine processes in finance. 

It deserves to mention an important work made by Duffie, Filipovic and Schachermayer 

(2001). 

The affine term structure models do exist. A special case is that when the drift and 

the square of the volatility term of the short rate rt under Q-dynamics are linear in 

rt. In this case, the problems shrink to solving the Ricatti equations for the function 

A(t, T). This could be described by the following proposition. 

Proposition 1.4.1. (Affine Term Structure) If the drift 11 and volatility a in the 

Q-dynamics of the short rate rt have the following form 

{ 

J-t(t, rt) = a(t)rt + (3(t), 

a(t, rt) = Ja(t)rt + b(t). 
(1.6) 

then the model admits an affine term structure of the form ( 1. 5), where A and B satisfy 

the system 

{ 

aA(t,T) 
at 

A(T,T) 

{ 

aB(t,T) 
at 

B(T,T) 

(3(t)B(t, T) - ~b(t)B2 (t, T), 

0. 

~a(t)B2 (t, T)- a(t)B(t, T)- 1, 

0. 

The Vasicek, CIR and Hull-White all fall in this situation. 

(1.7) 

(1.8) 

Proposition 1.4.2. (Vasick) In the Vasick model, the bond prices are given by 

P(t, T) = exp(A(t, T)- B(t, T)rt), 

where 

B( T) = 1- exp( -(3(T- t)) 
t, (3 ' 
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( ) 
_ (B(t, T) - T + t)(a(3- ~cr2 ) _ cr2 B 2(t, T) 

A t, T - (32 4(3 . 

Proposition 1.4.3. (CIR) In the CIR model, the bond prices are given by 

P(t, T) = A(t, T) exp( -B(t, T)rt), 

where 
A T = { 2')'exp[(T- t)("' + 1')/2] }2rdJju2 

(t, ) ("' + ')')(exp[')'(T- t)]- 1) + 2')' ' 

B T = 2(exp[')'(T- t)]- 1) 
(t, ) ("' + ')')(exp[')'(T- t)]- 1) + 2')'' 

and 

Proposition 1.4.4. (Hull- White) In the Hull- White model, the bond prices are 

given by 

where 

P(t, T) = exp(A(t, T) - B(t, T)rt), 

1- exp( -(3(T- t)) 
B(t, T) = (3 , 

A(t, T) =iT {~cr2 B2(s, T)- a(s)B(s, T)}ds. 
t 2 

In Hull-White model, the function a(t) is chosen so as to fit the observed forward 

rate curve at t = 0, {f(O, T); T > 0}. The above propositions will be needed to 

implement the calibration of those models for short rates. 

1.5 Heath-Jarrow-Morton 

In their 1992 paper, Heath, Jarrow and Morton studied the interior relationships of 

a general framework for forward rates. Although their work is sometimes refered as 

HJM model, it in fact should really be refered as HJM framework because of 
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its great generality built in. Their main contribution in the 1992 paper could be 

summarized as following. 

Theorem 1.5.1. (Heath-Jarrow-Morton) For each positive T, let a(f-1, T) and 

o-(f-1, T) be adapted processes, where 0 ~ f.1 ~ T. Assume o-(f-1, T) > 0 for all f.1 and T. 

Let f(O, T) be a deterministic function, and define 

f(t, T) = f(O, T) + 1t a(f-1, T)df.1 + 1t o-(f-1, T)dW(u). (1.9) 

Then f(t, T), for 0 ~ t ~ T is a family of forward rate processes for a term-structure 

model without arbitrage if and only if there exists an adapted process ()(t), such that 

a(t, T) = a-(t, T) 1T a-(t, f.1)df.1 + a-(t, T)()(t). (1.10) 

where ()(t) is called the market price of risk. 

A simple scenario is when the market price of risk is zero, mathematically ()(t) = 0. 

This simply implies that the model is built in an equivalent martingale measure Q, in 

which the no-arbitrage condition is satisfied. Note that the market price of risk does 

not depend on the maturity date T of the bond. 

More detailed discussion could be found in Stochastic Calculus and Finance by 

Steven Shreve, 1997. 

This framework is very general, however it allows negative forward rates. In order 

to enforce positivity on the forward rate f(t, T), more conditions on the drift and the 

volatility of the dynamics f(t, T) should be satisfied. This discussion can be found in 

Jin and Glasserman (2001). 

1.6 Yield to Maturity 

The short rate is the objective what we model, however we are not able to observe 

the short rate directly from the market. What we do able to observe is the yield to 
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maturity which is defined as follows. 

Definition 1.6.1. For any fixed time t , the yield to maturity of aT -bond is given 

by 
1 

Y(t, T) = --T lnP(t , T). 
-t 

The short rate and the yield to maturity are thus related through the bond prices. 

For affine term structure models of the short rate, it is easy to see from the above 

definition that the yield to maturity Y(t, T) is linear in the short rate rt. 

Yield curve is a graph of the yield to maturity given a fixed t. Alternatively, we 

can think about the yield curve as a function ofT given any fixed t. The following 

figure of the yield curve of the U.S. government strips on September 22nd, 2004, is 

from Bloomberg. 

Figure 1.2: Yield Curve- U.S. Government Strips, 9/22/ 04 
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Chapter 2 

Credit Risk Theory 

In the first chapter, we have discussed the interest rate theory where no credit risk is 

involved. Defaut free zero coupon bonds play an essential role in analyzing the default 

free interest rate. In this chapter, defaultable bonds will be added into our scenario 

and credit risk is thus induced. 

Although people have been facing credit risk ever since early ages, credit risk has 

not been widely studied until recent 30 years. Early literature(before 1974) on credit 

risk uses traditional actuarial methods of credit risk, whose major difficulty lies in 

their complete dependence on historical data. 

Up to now, there are three main quantitative approaches to analyzing credit risk: 

structural approach, reduced form approach and incomplete information 

approach. 

Merton (1974) firstly builds a model based on the capital structure of the firm, 

which becomes the basis of the structural approach. In his approach, the company 

defaults at the bond maturity time T if its assets value falls below some fixed barrier 

at timeT. Thus the default timeT is a discrete random variable which picks T if the 

company defauls and infinity if the company does not default. As a result, the equity 

12 



of the firm becomes a contingent claim of the assets of the firm's assets value. Black 

and Cox (1976) extends the definition of default event and generalize Merton's method 

into the first-passage approach. In Black and Cox (1976), the firm defaults when the 

history low of the firm assets value falls below some barrier D. Thus, the default event 

could take place before the maturity date T. 

Intensity-based approach, also known as reduced form approach, as a counterparty 

of the structure approach, is introduced by Artzner & Delbaen (1995), Jarrow & 

Turnbull (1995) and Duffie & Singleton (1999). In this approach, the default event is 

modelled as either a stopped Passion process or a stopped Cox process with intensity 

ht. The intensity ht is then called hazard rate in reduced form approach, since the 

product of ht and an infinitesimal time period dt is the default probability of the firm 

at that infinitesimal time period dt given the firm has not default yet before time t. 

It was showned in Lando (1998) and Duffie & Singleton (1999) that the defaultable 

bonds can be calculated as if they were default-free using an interest rate that is the 

risk-free rate adjusted by the intensity. 

Incomplete information approach is developed by Duffie & Lando (2001), Giesecke 

(2001), Cetin, Jarrow, Protter & Yildirim (2002), which is a combination of structural 

approach and intensity-based approach. In this approach, the default event is directly 

modelled as a point process Nt with one jump of size of one at default. This point 

process Nt is a positive submartingale and could be decomposed into a martingale 

plus its compensator At by Doob-Meyer decomposition theorem. In reduced form 

approach the compensator At of the default process Nt can be represented as a definite 

integration of the hazard rate ht. Incomplete information approach generalizes the 

forms of the compensator At which may not be represented as an integration of the 

hazard rate ht. People turn to model the compensator At directly from the definition 

of default instead of modeling ht. 

This chapter will simply introduce the concept of credit risk and the common three 
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approaches to analyzing it. Intensity-based approach will be used as our empirical 

modeling study. Therefore more detailed discussion about the second approach is 

conducted in a seperate chapter, chapter 3. 

2.1 Terminologies in Credit Risk 

Risk is almost everywhere at every second on everyone. Although normally the prob­

ability of risky events is comparatively small, people are widely aware that it should 

not be ignored because of its catastrophic aftermath, such as September 11, 2001. 

Financial risks can also lead to tragic results, such as the bankcruptcy of Long Term 

Capital Management in 1998. 

2.1.1 Credit Risk 

Financial risks are the risks people facing in the financial markets, such as the fluctu­

ations of the bonds' prices, the changes of the default-free interest rate, or unexpected 

defaults, etc. Credit risk is one of the most important financial risks in the markets. 

Credit risk is the risk induced from credit events such as credit rating change, 

restructuring, failure to pay, repudiation and bankruptcy etc. A more mathemati­

cal definition is given by Giesecke (2004): credit risk is the distribution of financial 

losses due to unexpected changes in the credit quality of a counterparty in a financial 

agreement. 

In the case of the last three events mentioned above, they are also refer as default 

events. Default events induce default risk which is a risk that your counterparty 

may fail to honor a financial agreement. Since we are mostly concern with default 

events, credit risks are always speaked of as default risk as well. 
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S&P's AAA AA A BBB BB B CCC cc c D 

Moody's Aaa A a A Baa Ba B Caa Ca c 

Table 2.1: Credit Rating Categories by S&P's and Moody's 

Credit risk is believed to have two components for a given company. One is called 

systematic risk which is from the common factors in the market, while the other 

one is refered as idiosyncratic risk which is from specific factors of the firm itself. 

Systematic risk is market-wide factors affecting all the firms and which capture the 

contagious characteristics of credit risk in the market. On the other hand, idiosyncratic 

risk is firm-specific which depicts the health of the firm. Systematic and idiosyncratic 

risks are usually assumed to be independent when we model the credit dynamics. 

2.1.2 Credit Ratings 

The health of the firm is reflected from the credit ratings. Standard & Poor's and 

Moody's are the major two credit rating agencies in North America. Table 2.1 is the 

symbols used by Standard & Poor's and Moody's respectively for rating the obligors 

(this table is also used in Li ( 2002)). Each firm is assigned to one of the categories 

based on their creditworthiness. 

AAA is the highest rating assigned by S&P's, while Aaa is the corresponding 

highest assigned by Moody's. Generally speaking, the healthier a firm is the higher 

rating it will get. For a AAA company, it is less probable to default than a BBB 

company in the same time period. Table 2.2 depicts the average cumulative default 

probabilities for different rating classes over different time periods (this tale is also 

used in Giesecke ( 2002)). It can also be seen from the table that the firm is more 

likely to default in a longer term than a short period. If we let time goes to infinity, 

we would like to think that all the firms will default eventually. 
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Years 1 2 3 4 5 10 

AAA 0.00 0.00 0.07 0.15 0.24 1.40 

AA 0.00 0.02 0.12 0.25 0.43 1.29 

A 0.06 0.16 0.27 0.44 0.67 2.17 

BBB 0.18 0.44 0.72 1.27 1.78 4.34 

BB 1.06 3.48 6.12 8.68 10.97 17.73 

B 5.20 11.00 15.95 19.40 21.88 29.02 

CCC 19.79 26.92 31.63 35.97 40.15 45.10 

Table 2.2: Average Cummulative Default Probabilites of Different Rating Classes (in 

%). Standard and Poor's, 2001. 

The credit rating for each firm is not static but dynamically changing over time 

depending on the changes of creditworthiness of the firm. Alternatively speaking, com-

panies may transfer from one credit category to another. However, the probability of 

remaining in the same category is comparatively larger than the transition probability 

to another. Table 2.3 is the transition matrix of U.S industries from 1981 to 2001. 

Different models of the transition matrix are proposed in the literature. For exam­

ple, Lando (1998) suggests using a generalized Markovian model for the credit rating 

transition matrix, in which the last state of rating is absobing state in Markovian 

Chain representing the default event. 

2.1.3 Liquidity Risk 

Liquidity risk is the lack of supply or demand when you intend to buy or sell a large 

amount of goods. There are many papers in the literature on liquidity risk. However, 

in this thesis, we assume that we are living in a liquid market where you can sell or 

buy as many as you want. 
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AAA AA A BBB BB B CCC D 

AAA 89.55 8.80 0.83 0.17 0.08 0.00 0.00 0.00 

AA 0.50 86.79 6.43 0.54 0.07 0.06 0.03 0.02 

A 0.06 1.91 87.35 4.74 0.42 0.15 0.05 0.05 

BBB 0.04 0.24 4.41 85.43 4.06 0.60 0.17 0.26 

BB 0.04 0.07 0.43 6.48 79.00 7.33 0.88 1.18 

B 0.00 0.10 0.26 0.34 5.23 79.32 4.04 6.28 

CCC 0.14 0.00 0.29 0.82 1.85 9.60 54.37 27.84 

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 93.96 

Table 2.3: One Year Bivariate Transition Matrix-U.S All Industries (in%), 1982-2001. 

Source: Giesecke, Kay (2002). 

2.1.4 Recovery Rate and Loss Rate 

So far, we have not specify how much the bond investors lose in the event of default. 

They may receive nothing when default happens. In this case, we refer it as zero 

recovery rate. However, in practice, investors usually receive some recovery payment 

upon default. Loss Rate is defined by one minus recovery rate. In the case of zero 

recovey rate, the loss rate thus is 1. 

A variety of ways on modeling the recovery rate of defaultable claims have been 

proposed in the literature: recovery of face value, recovery of an equivalent default free 

bond and recovery of market value. 

Under reduced form framefork, as in Duffie & Singleton (1999), we model the 

recovery of market value as a constant 1 - L, in which L denotes the corresponding 

loss rate. 
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2.1.5 Credit Spreads 

As in interest rate theory, we use P(t, T) to denote the price of a default-free zero­

coupon bond paying $1 at maturity date T. Defaultable bonds are added into our 

consideration when credit risk is involved. Empirically, we assume treasuary bonds 

issued by the government are default-free while corporate bonds issued by firms are 

defaultable. A defaultable bond is always mentioned together with its issuer. Thus 

we use Pj ( t, T) denotes the price of a defaultable zero-coupon bond issued by firm j 

paying $1 at maturity date T given there is no default. We will see in this section that 

credit risk theory share many similarities with interest rate theory. 

As the term structure of default free bond prices in interest rate theory, the term 

structure of defaultable bond price Pj(t, T) is a function ofT, for fixed t. We only 

consider the bond prices when T ;:::: t. We assume both bond prices vanish to 0 as T 

goes to infinity. 

Recall that the Default-Free Yield Spread Y(t, T) is defined by 

Y(t, T) = _ln ;(t, T). 
-t 

(2.1) 

We could similarly define Defaultable Yield Spread Yj(t, T) of firm j through 

Yj(t, T) = _ln i(t, T). (2.2) 
-t 

Credit Yield Spread Sj(t, T) for defaultable bond Pj(t, T) is defined by the 

difference of those two yields mentioned above 

( ) ( ) ( ) 
1 Pj ( t, T) 

Sj t, T = 1j t, T - Y t, T =-T _ t ln P(t, T). (2.3) 

The term structure of credit yield spread Sj(t, T) is a function ofT, for fixed t. 

Giesecke (2004) points out that it should tend to increase with increasing maturity, 

reflecting the fact that uncertainty is greater in the distant future than in the near 

term. 

18 



Recall that the Default-Free Forward Rate f(t, T) is defined by 

a 
f(t, T) =-aT ln P(t, T). (2.4) 

and the Default-Free Spot Rate r(t) is defined by r(t) = f(t, t). Usually, we 

informally call r(t) default-free interest rate or simply interest rate. 

Similarly we could define Forward Default Rate Ri(t, T) for bond Pi(t, T) 

(2.5) 

The Spot Default Rate R(t) is defined by R(t) = R(t, t). 

The Credit Forward Spread Hi(t, T) is defined by the difference of the default­

able forward rate and the default-free forward rate 

( ) ( ) ( ) a Pi ( t, T) 
Hi t, T = Ri t, T - f t, T = -aT ln P(t, T) . 

The Spread Hi(t) is defined by Hi(t) = Hj(t, t). People usually use h(t) to denote 

hazard rate. In reduced form models, it could be shown that the credit spot spread is 

the product of the hazard rate and the loss rate L. Since empirically the hazard rate 

and the loss rate can not be observed seperately, the product (credit spot spread) of 

the two is usually modelled directly. Hazard rates will be discussed in detail in the 

section of Reduced Form Approach. 

Credit Spreads (credit yield spread, credit forward spread, credit spot spread) of 

different firms are correlated through time in the market. Firstly, the correlation 

means that these firms share common economic factors in the market. Secondly, 

people believe that the credit spreads of other firms will jump upon one firm defaults. 

Therefore, we often say credit risk is contagious. 

Ideally, we would like to assume positivity as a characteristic of both default free 

forward rate and credit forward spread which is equivalent to impose positivity on 
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interest rate and hazard rates. If we impose this positivity, it can be easily shown 

that the term structures of default-free and defaultable bond prices should satisfy the 

following conditions (for fixed t): 

• Both P(t, T) and Pj(t, T) are smoothly decreasing in terms ofT 

• Pj(t, T) is always less than P(t, T) for the same T 

• P2 (t, T) is always less than P1(t, T) given firm 2 has a higher credit forward 

spread 

These restrictions also guarantee positive credit yield spread. Credit spreads are 

used to measure credit premium, which compensates risk-averse investors for as­

suming credit risk. Therefore, the credit spreads should remain positive. The higher 

credit risk assumed by the investors, the higher credit premium got be payed by them. 

These conditions mentioned above are depicted by Figure 2.1. 

2.1.6 Default Time and Default Processes 

Default time T is when the default happens. It is modelled as a random process which 

is specified in a model assumption. In Merton's method, which we will study later 

on, the default time is a predictable discrete random variable. But in reduced form 

approach, the default time T is an unpredictable process. 

Default process Nt is defined through default timeT by 

{ 

1 if T ~ t 
Nt = l{T~t} = 

0 if else. 

In general, the default process Nt is just a point process. But this is too general 

to conduct research on credit risk. Therefore, in different models, it is specified under 
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Figure 2.1: Term Structure of Bond Prices at t = 0, with Positivity Restrictions on 

Interest Rate and Hazard Rates. Firm 2 Has a Higher Credit Spread Than Firm 1. 

different assumptions. Such as reduced form models, the default process is assumed 

to be either a stopped Poisson or a stopped Cox. 

Default time and default process will be discussed in detail under different scenarios 

when we talk about different approaches to analyzing credit risk. 

2.1. 7 Default Probabilities 

The portfolio manager would like to know how likely a firm will default before some 

fixed time. Thus the default probabilities play an essential role in managing credit risk 

as well as pricing credit claims. Consider firm j, let Tj denote the default time of that 

firm. The physical default probability of the firm j before time Tj is mathematically 

calculated by Ph < Til which is called the marginal default probability for firm j in 

multi-firm case. After a change of measure, the physical probability could be transfered 

into risk-neutral default probability Qh < Til· The survival probability for firm j is 
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defined by the difference of one and its default probability. 

Consider multi-firm cases, say n firms, the joint probability of each firm j defaults 

before time Tj, for j = 1, 2, ... , n is calculated by 

If all the n firms are mutually independent, then the joint default probability is thus 

given by the product of their marginal default probabilities. However, as we have 

mentioned a lot previously that the default events may highly correlated. Then, the 

default correlation is introduced. 

2.1.8 Default Correlation 

Default correlation is far from exhausted understanding by us, but it is one of the most 

interesting subject in credit risk theory. In fact, default correlation is an ambiguous 

expression to describe the default dependency due to the short history of research 

on this subject. In Merton's method, default correlation is modelled by assuming 

the dependency of the assets of the firms. Some structure models use the equity 

correlations to approximate the asset correlation. In reduced form models, default 

correlation is thought as the correlation of the hazard rates. 

Whatever correlation you are talking about, the correlation of the default time Tj 

is among the most important. Because when the correlation of the default time Tj 

is given, as well as the marginal default probabilty, then the joint default probability 

can be derived. This is one way of modeling, namely starting from marginal default 

probabilities plus correlation to obtain joint default probability. A typical example is 

factor models which we will discuss in detail in the next chapter. Some researchers 

like Hull-White propose to use the other way around, namely beginning from joint 

default probability to marginal default probabilities and correlation. For the second 
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approach, copula functions become a major mathematical tool on dependency mod­

eling. Gaussian, student-t, and Archimedean copulas are among the most popular. 

Please refer to Nelsen (1999) for details on copulas. 

2.1.9 Credit Derivatives 

One of the reason why modeling on default dependency becomes popular is the emer­

gence of multi-name credit instruments involving several reference entities, such as 

basket Credit Default Swaps (CDS) and Collateralized Debt Obligations (CDO). 

Credit derivatives can separate the credit risk from an underlying and thereby 

enable investors to reduce the exposure to credit risk. As a result, the credit derivatives 

market had grown from $200Bn in 1997 to more than $1600Bn in 4 years. 

One of the main tasks of credit risk theory is to price those credit derivatives. 

Another one is to effectively use these derivatives to hedge credit risk. These prac­

tical problems arising from the real world are, however, dealt with by using abstract 

mathematics. 

2.2 Structure Approach 

Although the title of this chapter is called Credit Risk Theory, the problems of credit 

risk are originally from the real life of practicing in financial markets rather than 

theoretic reasoning itself. However mathematics and theoretical reasoning are the 

major tools to tackle these problems. From now on, more mathematics will be involved 

in analysing instead of literally description. 

Structure approach is firstly pioneered by Merton (1974), and then is extended to 

first-passage approach by Black and Cox (1976). 
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2.2.1 Merton's Method 

Consider a firm j with market value V, which is financed by equity and a single issue 

ofT -bond with face value K. Suppose the market we live in is frictionless in which we 

could trade continuously. 

The total market value of the firm Vis modelled by a geometric Brownian motion 

with constant drift J-L and constant volatility a, i.e. 

dvt = J-Lvtdt + avtdWt, Vo > 0. 

We know that the solution of this SDE is simply 

Default-free interest rate is assumed to be a positive constant r, therefore the risk­

free bond prices are given by 

P(t, T) = K exp( -r(T- t)). 

Default time T is the next crucial ingredient we need to model. The firm is assumed 

to default at the bond maturity date T, if the total market value of the firm is not 

sufficient to pay its obligation to the bond holders. In this situation, the bond holders 

immediately take over the firm. Thus the default time T is a discrete random variable 

given by 

{ 

T if Vr < K 
7 

= oo if else. 

We have thus set up a model for the credit risk of the firm j. The following analysis 

is for two objectives: firstly, the default probability, second, the pricing of the equity 

E and the defaultable bond Pj(O, T). 
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Situation Assets Bonds Equity 

No Default Vr 2:: K K Vr-K 

Default Vr<K Vr 0 

Table 2.4: Payoffs at maturity of a firm 

Since Wr is normally distributed with mean zero and variance T, default probability 

p(T) is given by 

(
logl- mT) 

p(T) = P[Vr < K] = P[aWr < logl- mT] =<I> aVT 

where we define l = ~ as the initial leverage ratio, and m = J.L - ~a2 . 

From debt covenants priority assumption and limited liability of the firm, it is easy 

to see that the payoffs (equity) at maturity of the firm is (Vr-K)+ which is equivalent 

to the payoff of a European call option on the assets of the firm with strike K and 

maturity T. Thus, pricing equity and credit risky debt is reduced to pricing European 

options. Table 2.4 depicts the situation of the equity of the firm. 

The equity value thus is given by the Black-Scholes call option formula 

where 

The bond payoff is K- (K- Vr )+which is equivalent to hold a portfolio composed 

of a long T -bond with face value K and a short European put on the asset of the firm 

with strike price K and maturity T. Therefore the defaultable bond price at time 

t = 0 is 

Pj(O, T) = K exp( -rT)- P(a, T, K, r, V0 ) 

where P(a, T, K, r, V0 ) is the Black-Scholes formula for put options. Using the put-call 
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parity, we could also write the above equation into 

Recall the definition of credit yield spread, or simply credit spread, from the previous 

section 

S·(t T) = __ 1_ 1 (Pj(t, T)) 
3 ' T - t n P( t, T) . 

Thus, the credit spread in Merton's model at time t = 0 is given by 

which is a function of the maturity date T, the asset volatility a, and the leverage 

ratio L. 

The short spread is the credit spread for maturities going to zero. It is the credit 

premium over an infinitesimal period of time demanded by the bond holders as a 

compensation for bearing the default risk. It is easy to see from the graphs (also easy 

to check from mathematical point of view) that the short spreads tend to zero when 

the leverage ratio is less than one, while go to infinity for the leverage ratio not less 

than one. 

The Figure 2.2 and the Figure 2.3 show the credit spreads in basis points with 

different parameters. 

2.2.2 First-Passage Method 

In Merton's model, the firm can only default at the maturity date T. However, it is 

recognized that, as in Black-Cox (1976), the firm may default before the maturity date 

T. As in Merton's model, we still use geometric Brownian motion to model the total 

market value of the firm vt, but the definition of default time T is modified to 

T = min { t > 0 : vt :::; D} 
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Figure 2.2: Term Structure of Credit Spreads at time 0 with the interest rater= 6% 

per year and leverage ratio L = 0.9, for different volatilities. 
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Figure 2.3: Term Structure of Credit Spreads at time 0 with the interest rate r = 6% 

per year and leverage ratio L = 1.0, for different volatilities. 
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where D is called the barrier of the firm's assets. 

This definition says a default takes place when the assets of the firm fall to some 

positive level D for the first time. The firm is assumed to take the position of not 

default at timet= 0. Thus the barrier Dis bounded above by V0 , i.e. D < V0 . 

Since { T ~ t} = { mins::;t Vs ~ D}, the default probability is given by 

P[r ~ t] = P[min(ms + o-W8 ) ~ ln(D/Vo)], 
s::;t 

We know that the historical low Mt = mins::;t(ms + o-W8 ) follows the inverse Gaus­

sian distribution, and it follows that the default probability can be calculated explicitly 

by 

Consider a defaultable zero coupon bond with zero recovery rate which means 

that the bond holders get nothing when a default happens. Under the no arbitrage 

argumentation, this bond price is given by the discounted payoff under the risk-neutral 

measure 

Pj(O, T) = EQ[exp( -rT)l {r>T}] = exp( -rT)(l- Q[r ~ T]). 

The risk-neutral probability Q[r ~ T] can be calculated by using the previous 

result for P[r ~ T] if we set J.1 = r. 

The term structure of credit spreads in first-passage method is pretty much similar 

to the structures in Merton's model. But the short spreads are always zero in first­

passage method. This is not plausible, since the bond holders pay a non-zero premium 

to compensate the risk that the firm may default in the next infinitecimal time. 

Also, the credit spreads decrease as the maturities increase both in Merton's method 

and first-passage method which contradicts to empirical observation that spreads tend 
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to increase with increasing maturity, reflecting the fact that uncertainty is greater in 

the distant future than in the short term, pointed by Giesecke (2004). 

Because of these drawbacks in structural approach, people turn to figure out some 

other new method such as reduced form approach, which is the main theme of the 

next section. 

2.3 Reduced Form Approach 

Reduced form approach or intensity-based approach goes back to Artzner and Del­

baen (1995), Jarrow and Turnbull (1995), Lando (1998), Duffie and Singleton (1999). 

The basic idea is based on modeling the default process as a stopped passion process 

(Giesecke, 2002). 

Let T1 , ... , Tn denote the arrival times of some event, say default. We call the 

sequence {7i} a homogeneous Poisson process with intensity A if the inter-arrival times 

Ti+1 - 7i are independent and exponentially distributed with parameter A. 

Equivalently, letting N(t) = L:i 1{ri::;t} count the number of event arrivals in the 

time interval [0, t], we say that N(t), for t ~ 0, is a homogeneous Poisson process 

with intensity A if the increments N(t)- N(s) are independent and have a Poisson 

distribution with parameter A(t- s) for s < t, i.e. 

P[N(t)- N(s) = k] = ~! (A(t- s))ke->.(t-s). 

Suppose A is a constant, in intensity-based approach, we set the default time to be 

the first jump of the Poisson process N(t). Therefore, default timeT is exponentially 

distributed with parameter A and the default probability can be expressed as 

F(t) = P[T S t] = 1- e->-t. 
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I.e. 

The intensity is the conditional default arrival rate given no default up to time t, 

. 1 
hm -hP[T E (t, t + h]IT > t] =A. 
h!O 

In probability theory, people call A hazard rate and it is the density j(t) over 

survival probability 

A= j(t)/(1- F(t)). 

Survival probability is defined by S(t) = 1 - F(t). Figures 2.4 and 2.5 depicts 

default probability and survival probability respectively for different constant A. 
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Figure 2.4: Default Probabilities with Different Constant A 

Suppose A = A(t) is a deterministic function of time t. Then N(t) is an in­

homogeneous Poisson process with intensity function A(t). Therefore the default prob­

ability is 

Empirically, people use parametric intensity model as 
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Figure 2.5: Survival Probabilities with Different Constant A 

for constants hi and 7i, which can be calibrated from market data. 

In general, the hazard rate A is not a constant either deterministic function, but a 

stochastic variable itself. In this case, this Poisson process is called doubly stochastic 

or Cox process with parameter At, which is stochastic. Conditional on the realization 

of At, it becomes an in-homogeneous Passion. 

A Cox process N(t) with intensity At, fort :2: 0, is a generalization of the inhomo­

geneous Poisson process in which the intensity is allowed to be a stochastic process 

itself such that conditional on the realization of the intensity. Lando (1998) studied 

credit risky securities on Cox processes and built up the pricing blocks. 

The conditional and unconditional default probabilities are given by 

F>.(t) = P[r ::; t I A] = 1- e- I: >.(u)du 

F(t) = P[r::; t] = 1- E[e- I: >.(u)du]. 

Let Lt denote the loss fraction in market value if the firm were to default at time 
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t. Duffie & Singleton (1999) shows that the defaultable zero-coupon bond Pj(t, T) 

can be priced as a default-free bond using the adjusted default-free interest rate with 

intensity. This is given in the fomula 

where the expectation is taken under the risk-neutral measure Q given the infor­

mation up to time t and the 5-.j ( u) denotes the hazard rate under risk-enutral measure. 

Different models of the hazard rates or default intensities will produce different 

results from the above pricing formula. Particularly, we are interested in those which 

could give closed form formulae for the defaultable bond prices, one of which is affine 

term structure models. Intensity based modeling will not be discussed in detail until 

the next chapter. 

Since generally the defaultalbe bond pricing formulae are very complex, it is im­

possible to analyse the credit spreads in a generalized fashion. Here, we simply give 

an example to illustrate how the credit spreads in reduced form approach differ from 

those in structure approach. 

Example 1. Let's consider firm j with constant hazard rate A. Assume its risk­

neutral hazard rate is 5.. Default free interest rate is assumed to be a constant r which 

is positive. A defaultable zero coupon bond with maturity T issued by firm j with 

zero recovery rate is priced at time 0 through 

That is, the defaultable bond could be priced using the default-adjusted discounting 

rate r + 5. instead of discounting with the risk-free interest rate r. 

The term structure of the credit spread at time 0 is thus given by 

1 e-(r+5.)T ~ 
Si(O, T) =-T ln e-rT =A. 
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This tells us that the credit spread is therefore given by the risk-neutral intensity 

A. The term stucture of credit spread is fiat with a constant intensity. This is quite 

different from the term structure depicted in Figure 2.2 and Figure 2.3. 

We consider n firms with respective intensities A1 , A2 , ... ,An forming a multivari­

ate Cox process driven by some state process which includes both systematic and 

idiosyncratic economic factors driving the credit risk of firms. 

The joint survival probability is given by 

where At = J~ A8 ds is the upward trend of the increasing default process Nt, and 

it is also called compensator, as the difference of Nt and At is a martingale. In incom­

plete information approach, Giesecke(2001), Duffie & Lando (2001) gives more general 

reduced form formula in terms of trend. 

Incomplete Information Approach is firstly studied by Duffie and Lando (2001), 

Giesecke (2001) and Cetin, Jarrow, Protter and Yildirim (2002). The mathematical 

fundation for this approach is Doob-Meyer decomposition theory. We will not discuss 

in detail here. 
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Chapter 3 

Intensity Based Models 

In previous two chapters, we have talked about the theory of interest rates and the 

theory of credit risk. As the title of this thesis indicates, from now on, we are going to 

talk about practical issues in credit risk management. There are two aspects with which 

we need to concern. The first is modeling. Models are the bridge of the relationships 

between theoretical and empirical study of this field. Theoretical modeling is based 

on practical issues arising from the market. Available information from the market 

needs to be taken care of when we start to set up the model. Although you will find 

that it is impossible to incorporate all the ingredients required by the real situation, 

people try to improve their models so as to satisfy as much requirements as possible. 

The second aspect is the calibration of the model, which is saved for the next chapter. 

In this chapter, we first talk about Two-Factor Gaussian model under reduced form 

framwork to clarify the calculations in this kind of modeling. Then, we will talk about 

Multi-Factor Gaussian models and Multi-Factor CIR. Examples are given respectively 

to illustrate how to improve the models. 
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3.1 Two-Factor Gaussian Model 

In this section, we study the two factor Gaussian hazard rate model for two companies. 

Our aim is to find the joint survival distribution of the two companies. Firstly, we 

study the case with constant coefficients without considering default-free interest rate. 

Then, we extend the first case to a model with coefficients which are deterministic 

functions. Finally, we set up a model with consideration of the default-free interest 

rate. In the previous chapter, since we start with Poisson distribution, we use A to 

denote the hazard rate. But here we use h as the hazard rate notation which is more 

widely used in the literature. 

3.1.1 Model with Constant Coefficents 

Assume the hazard rates of firm 1 and firm 2 follow Vasicek model 

(3.1) 

Where ai, /3i, ai, Pi are constants, and ai, f3i, ai are positive while Pi could be 

negative; dW is systematic shock (standard Brownian motion) while dZi (standard 

Brownian motion) are idiosyncratic shocks. We assume that dW, dZ1 , dZ2 are inde­

pendent. 

If we define dVVi = PidW + J1- pldZi , then dVVidVVi = dt , so Wi are Brownian 

motions. Therefore, equation (3.1) could be rewriten as 

(3.2) 

with correlation relationships 
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. We know that the solution of this SDE is given by 

The mean of h~ is given by 

E[h~] = ;: + (hh - ;: )e-!3it i = 1, 2 (3.4) 

Notice that when t = 0 , it is just hh , when t-+ +oo, it tends to ~· This property 

is called mean-reverting. 

The variance of h~ is given by 

2 

Var[h~] = ;~ i (1 - e-2f3it) i = 1, 2 (3.5) 

2 

Notice that when t = 0 , it is just 0 , when t-+ +oo , it tends to ~i . 

Let Ai(T) = J0T h~dt . In order to study Ai(T), we define 

Xi(t) = 1t e13iuaidWi(u), Yi(T) = 1T e-!3itXi(t)dt 

Integrating equation (3.3) from 0 toT, we obtain 

Ai(T) = 1T e-f3it [hb + ;;(ef3it -1)] dt+ Yi(T) i = 1, 2 (3.6) 

It is easy to show that Yi(T) is Gaussian with mean 0. Hence Ai(T) is a Gaussian 

too with mean and variance given by 

E[Ai(T)] = a:iT + _!_(hb- a:i)(1- e-/3iT) i = 1, 2 
f3i f3i /3i 

(3.7) 

Var[Ai(T)] = a~ [r + -1 
(1- e-2/3iT) - !(1- e-!3iT)] i = 1, 2 (3.8) 

~ 2~ ~ 

Notice that when T = 0, the mean is 0 and the variance is 0; when T-+ +oo, the 

mean tends to infinity and the variance tends to infinity too. 
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From equation (3.6) and (3.7), we have the following equation 

Ai(T) = E[Ai(T)] + Yi(T) i = 1, 2 (3.9) 

It follows that Cov[A1 (T1 ), A2(T2)] = E[Y1(T1)Y2(T2)] . Without loss of generality, we 

assume that T1 < T2 

E[Y1 (T1)Y;(T2 )] = 1T
1 
1T

2 
e-tht-!328 E[X1(t)X2(s)jdsdt 

1T1 1T2 e-!3~t-!32s (1t/\s ala2P1P2e(i3I+i32)udu) dsdt 

ala2PIP2 {Tl {T2 e-!3~t-!32s(e(t/\s)(i3I+i32) - 1)dsdt 
fJ1 + fJ2 Jo Jo 

a1a2P1P2 [ {T
1 t e-!3~t-i32s(es(i31+i32) _ 1)dsdt 

fJ1 + fJ2 lo lo 
+ 1T1 1T2 e-!3~t-i32s(et(i3I+i32)- 1)dsdt] 

(fJia:~;~?{Ji [f3If32(f3I + fJ2)T1- fJ2(fJ1 + fJ2) + fJ2(fJ1 + fJ2)e-i3
1
T
1 

+fJI(fJI + {32)e-i32T2 _ fJ?e-i32(T2-T1) _ fJifJ2e-i31T1-i32T2] . 

The next important ingredient we need to model is the default timeT. Following 

Schonbucher (2003), we assume the default trigger variables vi are independent expo­

nentially distributed random variables with parameter 1. Furthermore, we assume vi 

are independent of Ai(Ti)· 

by 

Define default time Ti 

(3.10) 

Then, the conditional and unconditional marginal survival probabilities are given 

P[ri > Ti I h~J = exp[-Ai(Ti)] i = 1, 2 

Ph> Ti] = E[exp[-Ai(Ti)]] i = 1, 2 
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Next, we want to calculate the joint survival distribution function. Suppose the 

joint distribution density function of (A1(T1), A2(T2)) is f(x, y). Since A1(T1), A2(T2) 

are normal random variables, the joint density function f(x, y) is determined by its 

mean vector and the covariance matrix which we have already calculated. In fact, 

f(x, y) is given by 

81 = y'var(A1(T1)) 82 = y'Var(A2(T2)) 

p = Cov[A1(T1), A2(T2)]j y'Var(A1(T1))Var(A2(T2)) 

Let ~ = (x- a 1)/81 , ( = (y- a2 )/82 ; then~ and ( are correlated (with p) unit 

normal random variables. We simplify f(x, y)dxdy into 

f(x,y)dxdy j(81~ + a1,82( + a2)8182d~d( 

2rrv'~- P' exp {-2(1 ~ P') [e- 2pf,( + (']} df,d( 

g(~,()d~d( 

Mathematically, we calculate the joint survival probability 

E[l(n>T1) l(T2>T2)J 

E[l(Al (T1)<v1) l(A2(T2)<v2)J 

1
+oo1+oo ( r+oo r+oo e-(vl+v2)dv1dv2) f(x,y)dxdy 

-oo -oo lovx lovy 
I:oo I:oo e-(ovx+Ovy) f(x, y)dxdy 

I: I: f(x, y)dxdy +I: 1+oo e-x f(x, y)dxdy 

+ r+oo 1° e-y f(x, y)dxdy + r+oo r+oo e-(x+y) f(x, y)dxdy 
Jo -oo Jo Jo 
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Practically, we can simply use the last term JtX) Jt:xJ e-<x+y) f(x, y)dxdy to ap­

proximate the joint survival probability. Since this probability highly depends on the 

initial value hh, given rightly chosen positive hh, this approximation should be quite 

accurate. Hazard rate could be negative from mathematical point of view in Hull­

White model, which is not quite applausable from financial point of view. Considering 

this, CIR model is better than Hull-White model. 

This approximation enables us to compute the joint survival distribution function 

in a closed form 

E[exp( -A1 - A2)] 

exp(-E[A1] - E[A2] + V ar[A1 + A2]/2) 

- exp( -E[A1] - E[A2] + Var[A1]/2 

+ Var[A2]/2 + Cov[A1, A2]) 

{ 
a1 1 (h1 a1)( -f31T1) exp - -T1 - - 0 - - 1 - e 
!31 (31 !31 

- a2T2- ~(h~- a2 )(1- e-f32T2) 
(32 !32 !32 

+ ai2 [r1 + _1_(1- e-2f31Tl) - _3_(1- e-f31Tl )] 
2(31 2(31 !31 

+ a~2 [r2 + _1_(1- e-2f32T2)- ~(1- e-f32T2)] 
2(32 2(32 !32 

+ ((31a;~;~~{J~ [fJ1fJ2(fJ1 + fJ2)T1 - fJ2(fJ1 + fJ2) + fJ2(fJ1 + fJ2)e-f31T1 

+(31((31 + (32)e-f32T2 _ fJie-f32(T2-T1) _ {31{32e-f31T1-f32T2]} 

Unfortunately, this messy formula can not be simplified. However if (Ji are suffi-
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ciently small, we can simplify this formula by approximating e-f3iTi as (1 - f3iTi)· In 

this situation 

E[Ni] ~ h~Ti Var[Ni] ~ 0 Cov[N1, N2] ~ 0 

P[T1 > T1,T2 > T2] ~ exp[-h6T1- h6T2] = P[T1 > T1]P[T2 > T2] 

This tells us when f3i are sufficiently small, we can simplify regards Ti as independent 

variables. 

3.1.2 Model with Coeffients of Deterministic Functions 

We can extend the above case into a model with coefficients which are deterministic 

functions in time. Hence the equation (3.1) should be modified into 

(3.13) 

Where ai(t), f3i(t), ai(t) are positive functions in time, while Pi remains constant. 

Define: Ki(t) = J~ /3i(u)du, then we can do calculations as above. But it will be 

more complicated to compute those formulae. In the constant case, Ki(t) is just /3it 

which simplifies the computations. Also, this two-dimentional case can be extended 

to n-dimentional case. 

3.1.3 Model Combining Default-Free Interest Rate 

Following Miu (2003), we use Hull-White model to capture the dynamics of default 

free interest rate rt . We know that rt is Gaussian. In the above cases we model h~ 

without considering default-free interest rate. In Miu (2003), the author models hit 

(here we will use Miu's notation hit to denote hD as affine 

(3.14) 
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where aih and bir are constants, and hit is modelled as a constant coefficient Hull-White 

hazard rate model. The stochastic process driving hit is assumed to be independent 

of the stochastic process driving the default-free interest rate rt. Here, hit is still 

Gaussian. Therefore we can do the same calculations for the joint survival probability. 

But, generally speaking, a closed form can not be obtained. 

3.2 Multi-Factor Gaussian Model 

In the previous section, we investigate a Gaussian Model with two companies. This 

can be extended to multi-firm case. The hazard rates of each firm are assumed to 

follow a Gaussian dynamics with some correlation. Let's consider k firms. The model 

could be set up in the following way 

drt = (a- brt)dt + adWt 

dhit = (ai- f3ihit)dt + aidWi(t), i = 1, 2, ... , k 

dW dWi = Pidt. 

Since mostly empirical studies show that the interest rate and the hazard rates are 

negatively correlated, most of Pi should be expected to be negative. As a result, the 

correlations between two hazard rates of two firms are likely to be positive. However, 

empirical studies also implies that negaitve correlations between hazard rates do exist. 

Also, the interest rate and the hazard rates could be negative due to the Gaussian 

dynamics assumed in the model. In short, this model has its shortcomings as well as 

advantages which are summarized as follows. 

The shortcomings are: negative interest rates and hazard rates allowed in the 

model, and only positive correlations allowed between default intensities. 
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The advantages are: analytical tractability because of the closed-form solutions for 

bond prices, negative correlation between interest rate and hazard rates are satisfied, 

the model can be calibrated to full term structures of bond prices and spreads. 

3.2.1 An Example: Miu {2003) 

In this section, we give an example of multi-factor Gaussian model studied by Miu 

( 2003). In his paper, the default-free interet rate r t is assumed to follow Hull-White 

model. The hazard rates hi ( t) for each firm i are decomposed into three parts: a 

constant aih, an rt independent term hit and an rt dependent term f3irrt. Finally, we 

assume hit follows mean-reverting process and we decompose default randomness into 

two resources: one comes from the market (systematic), the other comes from the firm 

itself (unsystematic). The model is like this 

under physical measure: drt = [Br(t)- Krrt]dt + ardZrt (3.15) 

under risk-neutral measure: drt = [Br(t) - Krrt- Arar]dt + ardZrt 

where Ar is the market price of default-free interest rate risk, Br(t) is a function so 

chosen to ensure the fitting of all observed default-free bond prices, and Zrt is Q­

Brownian motion. Hazard rates are modelled as follows 

under physical measure: dh;t = Kih(Oih- h;t)dt + aihdziht 

under Q measure : dh;t = Kih(Oih- h;t)dt- Aihaihdt + aihdziht 

where Aih is the market price of default risk for firm i. 

(3.16) 

(3.17) 

The data chosen for calibration of the model is composed of the US Treasury 

prices and month-end corporate bond prices. The observation is from January 1993 

to December 2001. The US Treasury prices are used to calibrate the interest rate by 
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Figure 3.1: The Hazard Rate Filtration of Firm 4 with Aa Rated. Time 0 is January 

1993. The unit of X-axis is monthly. The time 108 is December 2001. 

polynomial spline specification proposed by Adams and Van Deventer (1994). About 

72 bonds issured by 21 firms are observed. These data are used to calibrate the hazard 

rates for each firm. Figure 3.5 and Figure 3.6 are the filtrations of the hazard rates of 

those firms obtained by Kalman Filtering. You can see that there are many negative 

values of the hazard rates in the graphics. 

3.3 Multi-Factor CIR Model 

For multi-factor Gaussian model, we notice that the interest rate and hazard rates 

could be negative which is not plausible. However, if we use CIR instead of Vasicek 
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Figure 3.2: The Hazard Rate Filtrations of Firms 1 to 20. Time 0 denotes January 

1993. The unit of X-axis is montly. The last observation is December 2001. 
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as the factors, the negativity problem will be solved easily. The model is like this 

i = 1, 2, ... , n, ai > 0'; /2, 
n 

r(t) L aixi(t), ai ~ 0, 
i=l 
nj 

hj(t) L bi,jxi(t), bi,j ~ 0. 
i=l 

where wi are independent. 

Although, the positivity of the interest rate and hazard rates is satisfied in the 

model, some shortcomings also arise as a by-product. The correlations between the 

interest rate and the hazard rates are all positive. And still there are no negative 

correlations between the hazard rates of different firms. 

Since it has closed-form solutions too for the bond prices, it can be calibrated by 

fitting the market data. In fact, this multi-factor framework is not only restricted for 

Vasicek or CIR factors, we can use some other affine factors, which will still produce 

closed form solutions for the bond prices. 

Some specific models, however, showed by the calibration that some of the coeffi­

cients ai and bi,j are negative. The following example is studied by Duffee (1999). 
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3.3.1 An Example: Duffee (1999) 

In Duffee (1999), interest rate is assumed to follow two-factor CIR, while the hazard 

rates follow three-factor CIR model. 

dsi,t Ki(()i- Si,t)dt + aiJSi:tdZi,t, i = 1, 2. 

hj,t G.j + hj,t + fJI,j(sl,t- Sl,t) + fJ2,j(s2,t- S2,t) 

dhj,t - Kj(()j- hj,t)dt + ajjhi;dWj,t 

where si,t are the averages of the time serious of si,t respectively, and dZ1,t, dZ2,t and 

dWj,t are independent, and a, K, (), {3, a are constants. 

The calibration of this model is easy to implement. The interest rate model is 

calibrated first using the Treasury bills. Then the hazard rates model for each firm 

are calibrated seperately using the corporate bond prices of each firms. 

Empirical study by Duffee (1999) shows that {J1,j and {J2,j are all negative. Theo­

retically speaking this may cause producing negative hazard rates hj,t· However, the 

firm specific shocks hj,t are comparatively larger than the negative terms in the hazard 

rates model. The interest rate and hazard rates are thus negatively correlated, because 

their correlations, if any, are entirely captured by the f31,j and {J2,j. 
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Chapter 4 

Calibration: Extended Kalman 

Filter with Quasi-Maximum 

Likelihood Estimation 

For affine term structure models, there are many numerical techniques available in 

the literature to implement the calibration. Here we use the Extended Kalman Filter 

with Quasi-Maximum Likelihood Estimation proposed in Duan & Simonato (1995) to 

illustrate how a calibration is conducted. In order to make the text easy to read, the 

model we choose is very simple with one factor CIR as the interest rate, while two 

factor CIRs as the hazard rates. In fact, the calibration method explained below is 

also effective when we extend our model by adding more CIR common factors shared 

both by the interest rate and the hazard rates, such as Duffee (1999). 

The structure of this chapter is organized as follows. We first introduce the model 

and study the term stucture of the model. Then, the calibration method is explained. 

Time series of the interest rate is obtained by Standard Kalman Filter while the time 

series of the hazard rates are obtained by Extended Kalman Filter. The coeffiecients 
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of the model are obtained by Quasi-Maximum Likelihood Estimation with Extended 

Kalman Filter. Some empirical results are given in the end and Monte Carlo Simulation 

is also analysed. 

4.1 The Model 

Here, I follow Miu (2003) and Duffee (1999) by using one CIR factor to model the 

default-free interest rate while using two CIR factors to capture the dynamics of the 

hazard rates for each firm. 

where CYr, aj,h and /3j are constants while St and Bj,t follow CIR, i.e. 

dst = "'(()- Bt)dt + ay'sidZt 

ds · t = "'·(()·- s · t)dt +a· rs:-:tdZ· t J, J J J, JV"'J,t J, 

dZt, dZj,t and dZi,t are independent for i =/= j. 

Under the equivalent martingale measure, these SDEs can be written as 

dst = ("'()- ("' + A.)st)dt + ay'sidZt 

ds · t = ("' .() · - ("' · + ).. ·)s · t)dt +a· rs:-:tdZ · t ), J J J J ), J y .., ),t J, 

where dZt, dZj,t and dZi,t are independent fori=/= j; ).. and Aj are the market price of 

the risks. 

4.2 Term-Structure of The Model 

For zero-coupon bonds, this model has closed forms of pricing formula, which has 

exponential affine term structure. For details of the derivation, please refer to Pearson 
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and Sun (1994) or Duffie (1996). Here we simply present the results. 

4.2.1 Default-Free Zero-Coupon Bonds 

The pricing formula of default-free zero-coupon bond P(t, T) which pays 1$ at timeT 

can be represented as 

P(t, T) = A(t, T)e-B(t,T)st-(T-t)a.r 

where 
A t T = { 2/'exp[(T- t)(/'i, +A+ !')/2] }2,.dJ/a2 

( ' ) (K, +A+ !')(exp[!'(T- t)]- 1) + 2!' 

B t T = 2(exp[!'(T- t)]- 1) 
( ' ) (K, +A+ !')(exp[f'(T- t)]- 1) + 2!' 

The yield to maturity of this default-free zero-coupon bond is defined as 

Y(P T) = _ln P(t, T) 
,t, T- t 

It turns out that the yield is linear in the underlying factor St 

Y(p T) = B(t, T)st ( _ ln A(t, T)) 
, t, T + CYr T · -t -t 

4.2.2 Defaultable Zero-Coupon Bonds 

We follow Duffie & Singleton (1999) framework and suppose that the loss rate is the 

same constant L for all firms. Duffee (1999) chose 0.56 as the loss rate in line with 

Moody's evidence for the data he used, while Miu (2003) selected 0.5116 according 
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to Moody's (2000). Since the corporate bonds data I use here is the same as Miu's 

(2003) data, I also use 0.5116 as the loss rate. Thus, the pricing formula for defaultable 

zero-coupon bond of firm j could be represented as 

where 

Both bjSt and Lsj,t are CIRs and they are independent because of the independence 

of St and Sj,t· It follows from the multi-factor CIR interest rate model theory that the 

defaultable bond price Pj(t, T) has closed form 

P·(t T) = A1 -A2 ·exp[-Bl ·b·st- B2 ·Ls·t- (T- t)a·] J ' ,J ,J ,J J ,J J, J 

B _ 2(exp["Y1,j(T- t)]- 1) 
l,j- ("'bi +A+ 'Yl,j)(exp["Yl,j(T- t)]- 1) + 2'Yl,j 

B
2

j = 2(exp["f2,j(T- t)]- 1) 
' ("'iL +.Xi+ /'2,j)(exp["Y2,j(T- t)] - 1) + 2'Y2,j 
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The yield to maturity of this defaultable zero-coupon bond }j (Pi, t, T) is thus linear 

in St and Sj,t 

4.2.3 Defaultable Coupon Bonds 

Let Gj(t, T) denote the price at timet of the defaultable coupon bond issued by firm j 

bearing coupon Cj which is assumed to be the same at different date of payment. We 

further suppose that there are n remaining number of coupon payments. Therefore, 

the defaultable coupon bond price Gj(t, T) could be represented by linear combination 

of defaultable zero-coupon bond prices Pj(t, Tk) of different maturities Tk that are the 

coming payment date of the remaining coupons. 

n 

Gj(t, Tn) = L CjPj(t, Tk) + lOOPj(t, Tn) 
k=l 

In this situation, the yield of the defaultable coupon bond is not linear in the CIR 

factors any more. However, if we employ a first-order Taylor approximation of the right 

hand side of the above equation, then, Gj(t, Tn) itself is linear in the state variate St. 

We will discuss it in detail in the section 4. 7. 

4.3 State Space Models and Kalman Filter 

Kalman Filter is applied on state space models which are very powerful tools for 

handling a wide range of time series models. 
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4.3.1 The State Space Form 

The state space form consists of two main equations which are called Transition Equa­

tion and Measurement Equation respectively. Transition equation captures the dynam­

ics in time of the state vector Xk (here we use k to denote t = k) which is unobservable. 

Measurement equation builds the relationship between the unobservable state vector 

Xk and the observable measurement Yk· The general state space form applies to mul­

tivariate time series and it could be non-linear. For Standard Kalman Filter (SKF), 

these equations are linear in state vector xk. 

The state space model of the SKF is 

{ 

Xk+l = Fk+l,kXk + Ck + Wk 

Yk = HkXk + dk + llk 

(4.1) 

where the state vector Xk+l is K dimentional if the model has K factors, Fk+l,k is a 

K x K transition matrix, ck is a K dimentional array; where the observation Yk is an 

N dimentional array, H k is N x K matrix, dk is also an N dimentional array; where 

wk and llk are independent Gaussian noise with mean zero and covariance matrix Q k 

and Rk respectively. 

The first equation is called the transition equation which describes how the 

unobserved state variable xk change dynamicly. The second equation is called the 

measurement equation which builds up the relationship between the unobserved 

state variable xk and the observation Yk· 

4.3.2 Standard Kalman Filter 

Given the state space form above, our objective is to use the entire observation of 

y 1, y2 , ... , Yk up to time k to optimally estimate the state vector xk in the sense of 

minimum mean square error. Kalman filter is implemented in two steps. The first step 
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is prediciton in which we use the information y1 , y2 , •.. , Yk- 1 to get the best estimate 

of xk. Let xJ: denote this best estimate, which is called prior estimate. The next step 

is to use the lately information observed in Yk to update the first estimate xJ:. Let xk 

denote this optimal estimate, which is called posteriori estimate. From the state space 

form, we have that 

(4.2) 

Correspondingly, the prior covariance matrix P;; and posterior covariance matrix 

Pk are defined by 

pk- = E[(xk- xJ:)(xk- xJ:)T] 

Pk = E[(xk- xk)(xk- xkf] 

The error covariance propagation from Pk_1 toP;; is given by 

(4.3) 

Equation ( 4.2) and Equation ( 4.3) are called prediction equations. Once the new 

information Yk is observed, the prior estimate of Xt could be updated through the 

following updating equations 

xk = xJ: + Gk(Yk- HkxJ: - dk) 

Pk = (I- GkHk)Pk-

(4.4) 

(4.5) 

(4.6) 

Equation (4.4) is called Kalman Gain Matrix. Equation (4.5) is called state esti­

mate update equation, while Equation ( 4.6) is called error covariance update equation. 

We need to initialize this algorithm to get it started. Without any observation of 

y, the best estimate of x0 at time k = 0 is chosen to be its unbiased mean 

53 



Xo = E[xo] 

Po = E[(xo- E[x0])(xo- E[x0])T] 

For the details of derivation of the SKF, please refer to A. Harvey, 1989, Forecasting, 

Structural time series models and the Kalman filter; S. Haykin, 2001, Kalman Filtering 

and Neural Networks. 

4.3.3 Extended Kalman Filter 

For SKF, the measurement equation and transition equation are both linear in the 

state vector Xk· However, in most cases the measurement equation is nonlinear which 

we may extend the classical SKF through a linearization procedure. This linearized 

filter is referred as the Extended Kalman Filter (EKF). For general EKF, both the 

measurement equation and the transition equation could be nonlinear. Since the situ­

ation we have here (and most situations we have) is that nonlinearality only happens 

in the measurement equation, we will derive the EKF in this particular case. 

The state space model is 

Fk+l,kxk + ck + wk 

rp(k, xk) + vk. 
(4.7) 

where rp is a nonlinear function in xk and we also require that rp is differentiable with 

respect to x. The other assumptions needed are the same as in SKF. 

The first order derivative of rp in x is constructed as 

H = 8rp(k, Xk) I ·-
k OX x=xk 

The nonlinear function rp is linearized through first order Taylor expansion around 
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Substituting this approximation into the measurement equation, we obtain 

where 

Then, the SKF is implemented. 

4.4 Maximum Likelihood Estimation 

4.4.1 Likelihood Function 

In the classical theory of Maximum Likelihood Estimation (MLE), the T sets of ob­

servations, {y1, y2 , ••• , YT }, are required to be independently indentically distributed 

(i.i.d.). However, for a time series model, the observations are typically not indepen­

dent. Thus, a conditional probability density function is used to write the joint density 

function. The log likelihood function is therefore defined as 

T 

£(y; '1/J) = L lnp(ytlrt-1) 
t=1 

where 'ljJ denotes the parameters vector which is to be determined; yt_ 1 denotes the 

observations up to timet- 1; P(Ytlrt-1) is the (joint) probability density function of 

the t-th set of observations. 

If the initial state vector and the noise in the state space model has multivariate 

Gaussian distributions, the distribution of Yt conditional on yt_1 is also Gaussian. 

Recall the section of SKF, the measurement equation could be rewritten as 
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It follows that the distribution of Yt conditional on yt_1 is also Gaussian with mean 

and the covariance matrix Dt 

For a Gaussian model, therefore the log likelihood function can be written explicitly 

as 

where Et = Yt - f)t. 

4.4.2 Maximum Likelihood Estimator 

The maximum likelihood estimator of the parameters vector '1/J based on a sample 

(observation) Y is the parameter value ~ at which the likelihood function £(y; '1/J) 

attains its maximum as a function of '1/J, with y fixed. If the likelihood function is 

differentiable in '1/J, the likely candidates for the maximum likelihood estimator are 

the values at which the gradient vector of the likelihood function is 0. This possible 

estimator is given by solving 

a 
8'lj;£(y;'l/J)- g('l/J) = 0. 

The solution of the above equation is the local maximum, provided that the second 

derivatives in '1/Ji of the likelihood function £(y; '1/J) exist and the function £(y; '1/J) is 

concave, which means that -1 times the matrix of second derivatives is everywhere 

definite positive, i.e. 
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However, the boundary must be checked separately for extrema in order to get the 

global maximum. 

In stead of finding the estimator, an alternative way of obtaining the estimates 

of the parameters is to use Newton-Raphson method which has a better convergence 

property. 

4.4.3 Newton-Raphson Method 

Newton-Raphson Method requires that Z('ljJ) to be definite positive. Let's consider 

the second-order Taylor series expansion of .C(y; '1/J) (from now on, we will simply use 

.C('IjJ) to denote .C(y; '1/J) given no confusion) around 'ljJ(o) 

In order to maximize £( 'ljJ), we set the first order derivative of the above approxi­

mation with respect to 'ljJ equal to zero. It turns out 

This recursive equation allows us to get an improved estimate of 'ljJ (denoted 'ljJ(1)) 

using 'ljJ(0) as the initial guess. 

Once 'ljJ(l) is obtained, we could calculate the gradient and Hessian at 'ljJ(l) in order 

to find another improved estimate of 'ljJ (denoted 'ljJ(2)). We could continue this iterating 

fashion until the desired estimate is obtained. The general formula for this iteration is 
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Since the second-order Taylor expansion of £( '1/J) is only an approximation of it, this 

iteration is often modified as following 

where o is a step control scalar chosen so as to find the best choice of '1/J(m+l) which 

maximizes the log likelihood [, ( '1/J ( m+ 1)). 

4.4.4 Quasi-Maximum Likelihood Estimation 

The SKF is based on the normality assumption which is violated in some non-Gaussian 

models. However MLE may still be a consistent way to estimate parameters even if the 

normality assumptions are relaxed. The case we have here is CIR whose innovations 

are not Gaussian. The MLE we impliment in this situation is called Quasi-Maximum 

Likelihood Estimation. More detailed discussions could be find in Duan and Simonato 

(1997). 

4.5 Data Description 

Month-end American strips (Treasury Bills) from January 1993 to December 2004 

are obtained from Bloomberg, totally 132 months. Maturities are chosen as 1-year, 

2-year, 3-year, 5-year, 7-year, 10year and 30-year. Figure 4.1 is the term structure of 

the zero coupon bond prices observed at time January 29th, 1993. Figure 4.2 is the 

time series of the yield to maturity 1 year, observed monthly from January 29th, 1993 

to December 31, 2003. We have totally 7 time series for the yield to maturity, since 

we have chosen 7 different maturities, pictured by Figure 4.2 to Figure 4.8. 

Treasury Bills are assumed to be non-defaultable, and thus are used to calibrate 

the parameters in the model for interest rates. 
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Figure 4.1: Term Structure of The Bond Price at Timet= O(Jan. 29, 1993). 
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Figure 4.2: Time Series of Yield to Maturity 1 Year (time 0 is Jan. 29, 1993, time 132 

is Dec. 31, 2003, monthly observation). 
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Figure 4.3: Time Series of Yield to Maturity 2 Year (time 0 is Jan. 29, 1993, time 132 

is Dec. 31, 2003, monthly observation). 
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Figure 4.4: Time Series of Yield to Maturity 3 Year (time 0 is Jan. 29, 1993, time 132 

is Dec. 31, 2003, monthly observation). 
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Figure 4.5: Time Series of Yield to Maturity 5 Year (time 0 is Jan. 29, 1993, time 132 

is Dec. 31, 2003, monthly observation). 
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Figure 4.6: Time Series of Yield to Maturity 7 Year (time 0 is Jan. 29, 1993, time 132 

is Dec. 31, 2003, monthly observation). 
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Figure 4.7: Time Series of Yield to Maturity 10 Year (time 0 is Jan. 29, 1993, time 

132 is Dec. 31, 2003, monthly observation). 
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Figure 4.8: Time Series of Yield to Maturity 30 Year (time 0 is Jan. 29, 1993, time 

132 is Dec. 31, 2003, monthly observation). 
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Corporate bonds data were obtained from Dr. Peter Miu from the Michael G. 

DeGroote School of Business at McMaster University. There are totally 82 bonds 

issued by 21 firms (around 4 bonds per firm) observed monthly from January 1995 

to June 2001 (totally 78 observations for each bond). These corporate bonds are 

assumed to be defaultable, and thus are used to conduct the calibration for hazard 

rates. Coupons are paid half-yearly. Table 4.1 lists all the names of the companies 

observed and their rating classes. Figure 4.9 depicts the time series of three bond 

prices issued by Atlantic Richfield Company. 
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Figure 4.9: Time Series of Three Bond Prices Issued by Atlantic Richfield Company. 

The Coupons and Maturities are $4.565, $4.94, $5.44 and 16.09 year, 21.09 year, 10.609 

year for Bond 1, Bond 2 and Bond 3 respectively(time 0 is Jan. 29, 1995, time 77 is 

June, 2001, monthly observation). 

Notice that we only have the data of corporate bonds data from January 1995 to 

June 2001. Therefore we will only need the time series of interest rate in that time 

horizon. 
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N am~ of the company Rating Class Number of Bonds 

Atlantic Richfield Company AA+ 3 

AT&T #NA 5 

BellSouth Telecommunication Inc AA- 4 

Burlington BBB+ 6 

Carterpillar A+ 5 

Coastal Corp BBB 5 

Consolidated Nat ural Gas Company BBB+ 3 

Eli Lilly AA 2 

Illinois Power Company BBB+ 3 

Mcdannel Douglas AA- 3 

New York Telephone A+ 7 

Pacific Bell AA- 4 

Philadelphia Electric A 3 

Phillips Petroleum BBB 3 

Public Service Electricity & Gas Company A- 9 

Ralston Purina Company BBB+ 3 

Pockwell International Corporation AA- 2 

Safeway Plc BBB- 3 

Southern California Gas AA- 4 

Southwestern Bell Telephone Company AA- 3 

Time Warner Incorporated BBB+ 2 

Total: 21 firms 82 bonds 

Table 4.1: Issuers of Corporate Bonds Observed, Data is from Peter Miu. 

4.6 Calibrate the Default-free Interest Rate 

The state space form of the model for the default-free interest rate could be represented 

as 
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_ _ -~>112) -~>112 _ ~ ~ M 
sk+II12 -t9(1 e +e sk+wk, k-0,

12
,

12
, ... ,

12 

Y(P k T) = B(k, T)st ( _ lnA(k, T)) 
' ' T - k + CXr T - k + l!k 

The first equation is transition equation which is obtained from discretizing the 

CIR of St which is unobserved state variable. Since the data we choose is month-end, 

time steps we choose here is monthly too, or 1
1
2 yearly. However, St itself is non-central 

chi-square distributed but non-Gaussian. The innovation w has conditional expected 

mean of zero and a conditional variance of 

2 - e -~> 12 -~> 12 (1 -~>112) (1 ) 
Qk = a K, 2!9(1 - e 1 ) + e 1 sk-1112 

Noticing that Qk is linear in sk-1112, we construct Qk by replacing sk-1112 in Qk 

with Bk-1112 

A 2 - e -K 12 -K 12 A (1 -~>112) (1 ) Qk = a K, 2!9(1 - e I ) + e I sk-1112 

The second equation is the measurement equation in which the yield Y(P, t, T) is 

observed monthly. The noise iterm vk is added to allow some imperfect measurements 

from observing the yeilds' data. 

Given the state space form, we could perform SKF with QMLE to get the filtration 

of the state variable sk as well as the parameters in the model. The calibrated result 

and analysis could be found in section 4.8. 

4. 7 Calibrate the Hazard Rates 

After we have calibrated the parameters in interest rate model, we assume the esti­

mated value are exact value when we conduct the estimation for hazard rates. We do 
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not need to run the KF for the interest rate again. For each firm j, we need to run 

the EKF with QMLE once. There are totally 21 firms, thus we need to run 21 times 

EKF with QMLE. 

As in section 4.2.3, we know that observed corporate coupon bond prices are non­

linear in the unobserved variable Sj,t· As a result, we could not implement Standard 

Kalman Filter directly to conduct this calibration. Extended Kalman Filter is therefore 

needed to solve this nonlinear problem. Since defaultable corporate bond prices could 

be represented into a linear combination of zero-coupon bond price which followes term 

structure, this makes linearization much easier to do. 

The transition equation is of the same form as in the calibration of interest rates. 

Following the discussion in section 4.3.3, cp(t, Xt) is the linear combinations of the zero­

coupon bond prices for Gj(t, Tn)· At every observation timet, the Ht and dt in Kalman 

Filter have to be updated each time which are given as follows 

n 

dt = L cjPj(t, Tk) + 100Pj(t, Tn)- Hkxt 
k=l 

h dP·(t Tk) . . b w ere 2 
' IS g1ven y dx 

and where x't denotes the priori estimate for Sj,t at timet. 

4.8 Empirical Results 

The empirical results are based on the previous two sections. The constant parameters 

ar and aj,h as in the model (section 4.1) are unable to be pinned down with any reliabil-
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ity by the data. Pearson and Sun (1994), Duffee (1999) also faced this problem. Here, 

I follow their approach and set both of them equal to zero. Therefore, the parameters 

we care about are: for interest rate, (t£, (),a,>.); for hazard rates, (t£j, ()j, aj, Aj, (3j) for 

each company j. Since time here is measured in year, all the parameters calibrated 

are expressed on an annual basis. 

4.8.1 Results for Interest Rates 

Estimation results for the default free interest rates are displayed in Table 4.2. The 

parameter 1'£, which represents the rate of mean reversion is around 0.3790. The pa­

rameter() is around 0.0365 which is the limit mean of this CIR model. The volatility 

a is around 0.0666 which is very low. The product oft£ and() is 0.01383 which should 

remain the same even the two parameters are under risk-neutral measure. The sum 

oft£ and >.is around 0.1931 which represents the kappa in the CIR under risk-neutral 

measure which remains positive. Table 4.3 shows the Root of Mean Square Error of 

the yields for seven different maturities. They are computed by using the calibrated 

parameters and the filtered time series of the default-free interest rate. The average of 

the RMSE is around 0.0041 which is comparatively high. Duffee (1999), Chen & Scott 

(2003) have calibrated multi-factor CIR model for the default-free interest rate using 

the same technique over different time periods. Duffee (1999) claims that the RMSE 

he found is less than 10 basis points using two factor CIR model for the default-free 

interest rate. This is the reason why two factor models are prefered than one factor 

models. Figure 4.10 is the filtered time series of the interest rate. 

Since we only have corporate bond data available from January 1995 to June 2001, 

only the time series of the interest rate in that time horizon is used when we calibrate 

hazard rate models. Figure 4.11 shows the time series of the interest rate from January 

1995 to June 2001, which is very similar to the filtration Miu got in his paper (2003). 
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/'1, () a ,\ K,() K,+,\ 

0.3790 0.0365 0.0666 -0.1859 0.0138 0.1931 

(0.0044) (0.0050) (0.0045) (0.0543) 

Table 4.2: Estimation Results for Interest Rate. The numbers in the parentheses are 

the standard errors. 

1-year 2-year 3-year 5-year 7-year 10-year 30-year 

0.0044 0.0027 0.0026 0.0032 0.0045 0.0049 0.0061 

Table 4.3: Root of Mean Square Error of the yields for different maturities. 
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Figure 4.10: Time Series of interest rate (time 0 is Jan. 29, 1993, time 132 is Dec. 31, 

2003, monthly observation). 

But my result is a little bit higher than his, around 50 basis point higher. Miu used 

Hull-White model for the interest rate and calibrated the parameters by spline fitting. 

This time series of interest rate is somewhat robust, given the consideration that we 

are using different models for the default free interest rate. 

68 



0.08 .--....---,.-----.------,--....,-------r---.-------, 

0.055 

0.05 

0.045 

0.04 

0 10 20 30 40 50 60 70 80 

Figure 4.11: Time Series of interest rate (time 1 is Jan 1995, time 78 is June 2001, 

monthly observation). 

4.8.2 Results for Hazard Rates 

Let's firstly concentrate on the results of one company say Atlantic Richfield Company 

(the results of all other 20 firms will be given in shortly in the section Results by 

Ratings). There are total three bonds issued by Atlantic Richfield Company observed. 

The coupons of the three bonds are $4.565, $4.94, $5.44 respectively paid half yearly. 

The time to maturity at the first observation time Januray 1995 are 16.09 years, 21.09 

years, 10.609 years respectively. The observation time horizon is from January 1995 

to June 2001 with monthly observation (refer to Figure 4.9). 

K,· 
J (}j a· J . .A· J (3j ,.,.(). 

J J Kj + Aj 

0.2884 0.0007 0.0713 -0.2256 -0.0274 2.02e-4 0.0628 

(0.1217) (0.0001) (0.0141) (0.0663) (0.0424) 

Table 4.4: Estimation Results for Hazard Rate of Atlantic Richfield Company. The 

numbers in the parentheses are the standard errors. AA + Rated. 
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Table 4.4 shows the estimated parameters in the hazard rate model for the Atlantic 

Richfield Company. The calibrated results show that the Atlantic Richfield Company 

has a median mean-revearting coefficient K,j and a low volatility. The long run mean 

e1 is around 0.0007 which is very small. Small long run mean indicates small hazard 

rates. This is consistant with the rating class of the Atlantic Richfield Company which 

is AA + rated. The correlation coefficient {31 is found to be negative. This is also found 

in some other papers, such as Duan & Simonato (1995), Chen & Scott (2003), Geyer 

and Pichler (1998). Duffee (1999), Miu (2003). Since the correlation between interest 

rate and hazard rates are fully determined by {31 in our set up, negative {31 means that 

the default-free interest rate is negatively correlated with the hazard rates. However, 

there are also some papers in the literature claiming that positive correlation between 

those two are found, such as Tauren (1999). This correlation relationship is still a 

controversial problem nowadays. For some other firms, I also find positive {31. 

Because we are using relatively a few bond data to fit each firm's term structure, 

the individual parameters estimated are subjected to a certain uncertainty. This is also 

noticed by Duffee (1999), in which he focuses his discussion on the median parameter 

across all 161 firms. 

Figure 4.12 is the filtered time series of the firm specific factor for the Atlantic 

Richfield Company. Figure 4.13 depicts the corresponding filtered time series of the 

hazard rate process. Notice that most the hazard rates are positve during the observed 

time horizon, but still some of them are below zero. Negative hazard rates are due to 

the small firm specific factor s j,t and the negative coefficient {31 of the common factor. 

Since the hazard rates in the model are risk-neutral hazard rates which is usually much 

higher than the real hazard rates, the time series of the real hazard rates should be 

much lower than the one have got here in Figure 4.13. 

The RMSE of the three different coupon bonds are $2.0132, $2.5000 and $1.3730 

respectively. The average RMSE is $ 1.9620 which is less than two dollars. 
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4.8.3 Results by Ratings 

The results for the all 21 firms are given by Figure 4.14 to Figure 4.34 in the or­

der of decreasing ratings. In these figures, the numbers in the vector "Para" are 

[Kj,t9j,CTj,Aj,,Bj]. Notice that, there are 7 firms(out of 21 firms), whose "Para" is not 

available. This is due to the drawbacks of the numerical scheme we have used. QMLE 

does not work very well when it is combined with EKF. Although the filtered time 

series does not depend on the small change of the initialized parameters very much, 

QMLE is very sensitive on the initial parameters. We do not have a prototype to select 

the initialization. If we choose a very bad parameter vector as a start, it may cause 

the MLE diverges or it may produce a singular matrix or matrices which are badly 

scaled. Details will be discussed in next section. 

Figure 4.14 is the time series of the hazard rates for a AA+ rated company. Com­

paring Figure 4.14 to the Figure 4.34 which is the time series of the hazard rates for 

a BB- rated company, we clearly see that the hazard rates of a lower rated company 

is much lower than a higher rated firm. Since t9 j indicates the level of the hazard 

rates, it is expected to be smaller for a higher rated firm. This is not that clear in the 

results. The changes of the hazard rates over the observation periods for all the 21 

firms have something in common. For most of them, the time series decrease in the 

first half period and then increase again in the second half period. But the time series 

of filtered interest rates have a reverse phase, meaning that it increase first and then 

decrease. This realization shows the negative correlation between the interest rates 

and the hazard rate. However, for some of the firms, negative ,Bj are found, indicating 

the negative correlations between the hazard rates and the interest rate. The simi­

larity of the changes of the time series across different firms captures the systematic 

influence of the common factors on all the firms in the market. 
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Figure 4.12: Time series of the firm specific factor of the Atlantic Richfield Company 

(AA+ rated). Time 1 is Jan. 1995, time 78 is June 2001, monthly observation. 
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Figure 4.13: Time series of the hazard rates of the Atlantic Richfield Companytime 

(AA+ rated). Time 1 is Jan. 1995, time 78 is June 2001, monthly observation. 
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Figure 4.14: AA+ rated; Para= [0.2884, 0.0007, 0.0713, -0.2256, -0.0274]; RMSE = 

1.9. Atlantic Richfield Company. 
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Figure 4.15: AA rated; Para = [0.3124, 0.0020, 0.0855, -0.1800, -0.0240]; RMSE = 

4.6992. Eli. 
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Figure 4.16: AA- rated; Para= []; RMSE = 7.0115. Southcal. 
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Figure 4.17: AA- rated; Para= []; RMSE = 0.8229. Bellsouth. 
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Figure 4.18: AA- rated; Para= [0.0846, 0.0176, 0.3835, -0.5606, 0.4379]; RMSE = 

16.2830. Mcdonnell. 
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Figure 4.19: AA- rated; Para= [0.2198, 0.0005, 0.0385, -0.1368, -0.1012]; RMSE = 

2.1666. Pacific. 
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Figure 4.20: AA- rated; Para = [0.2635, 0.0012, 0.0455, -0.2407, 0.1214]; RMSE = 

5.4235. Southwest. 
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Figure 4.21: AA- rated; Para= [0.0327, 0.0032, 0.0343, -0.6227, 0.1784]; RMSE = 

39.7250. Rockwell. 
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Figure 4.22: A+ rated; Para= []; RMSE = 4.3658. Newyork. 
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Figure 4.23: A+ rated; Para= []; RMSE = 4.3271. Caterpillar. 
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Figure 4.24: A rated; Para= []; RMSE = 0.9935. AT&T. 
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Figure 4.25: A rated; Para 

21.8183. Philadelphia. 
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[0.2837, 0.0026, 0.0423, -0.3780, 0.1473]; RMSE -
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Figure 4.26: A- rated; Para= []; RMSE = 3.4751. Public. 
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Figure 4.27: BBB+ rated; Para= [0.0176, 0.0006, 0.0309, -0.0279, -0.1885]; RMSE = 

7.3986. Time. 
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Figure 4.28: BBB+ rated; Para= [0.0366, 0.0011, 0.0478, -0.0116, 0.3973]; RMSE = 

2.6671. Illinois. 
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Figure 4.29: BBB+ rated; Para = []; RMSE = 2.2893. Burlington. 
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Figure 4.30: BBB+ rated; Para= [0.2719, 0.0051, 0.0595, -0.1851, 0.3607]; RMSE = 

10.0519. Ralston. 
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Figure 4.31: BBB+ rated; Para= [0.3000, 0.0007, 0.0679, -0.2047, -0.0082]; RMSE = 

4.8428. Consol. 
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Figure 4.32: BBB rated; Para = [0.2769, -0.0004, 0.0240, -0.4296, 0.4568]; RMSE = 

20.3572. Phillips. 

10 20 30 50 60 70 80 

Figure 4.33: BBB rated; Para = [0.2695, 0.0015, 0.0281, -0.2651, -0.02]; RMSE = 

3.0630. Coastal. 
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Figure 4.34: BBB- rated; Para = [0.1970, 0.0014, 0.0357, -0.2073, 0.2556]; RMSE = 

2.6624. Safeway. 

4.9 Monte Carlo Simulation 

In this section, Monte Carlo Simulation is conducted for both interest rate and hazard 

rates. For the case of interest rate, KF with QMLE works well at least in the simulated 

world. Duan and Simonato (1999) also have showed their evidence by Monte Carlo 

Simulation. However, no evidence of Monte Carlo Simulation has been done yet for the 

case of hazard rates where the state space form is non-linear. In our study, the results 

show that the Quasi Likelihood function does not produce a good approximation for 

the real likelihood function in this non-linear problem. But the EKF still works very 

well in this situation. 
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4.9.1 Simulation for Interest Rate 

Assume the default free interest rate follows CIR and the parameters under physical 

measure are given as well as the market price of risk ..\. In short, the origial parameters 

given are (K-, (),a,..\). Our objective is to use the Monte Carlo Simulation to recover 

the original parameters. This is done through the following logic. 

First, we use the discretized CIR with the given parameters to simulate a path of 

default free interest rate under physical measure. Then, use the given parameters and 

simulated time series of default free interest rate to calculate the theoretical yields for 

different maturities. After that, the theoretical yields are entered into the Kalman 

Filter and an estimated time series of the default free interest rate is produced by KF. 

Finally, we use QMLE in conjunction with the KF to recover the original parameters. 

The step size for simulating CIR is chosen to be monthly, i.e. 1/12 yearly. Totally 

around 132 observations is simulated (11 years). Strips are simulated for seven different 

maturities: 1-year, 2-year, 3-year, 5-year, 7-year, 10-year and 30-year. 

Figure 4.14 shows the simulated interest rate path and the filtered path. Graphi­

cally the Kalman Filter works pretty well. The accuracy of the Kalman Filter depends 

on the observation error (measurement error). Graphically we observe that the less 

observation error we have, the more accurate the KF works. In fact, the Root of Mean 

Square Error (RMSE) calculated for the filtered interest rate with smaller observa­

tion error R is smaller than the one that has bigger observation error. In the Figure 

produced, the RMSEs are 0.0043 for R = 0.001 and 0.0023 for R = 0.0001 respectively. 

The calibration of the parameters is conducted under the assumption that the 

observation error R is 0.0001. The accuracy of the calibrated results depend on three 

factors: the step size dt, the number of simulated points (observations) for each path 

M and the number of simulated paths No. 

Let's consider the latter two cases by fixing dt to be monthly. Table 4.5 shows 
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Figure 4.35: Filtered Interest Rates with different observation error R. Parameters 

used for simulation are K = 0.3790, () = 0.0365, a = 0.0666. Step size is chosen to be 

monthly (1/12 yearly). Around M = 132 points are simulated. 

the calibrated results for different M and No we choose. The second row of the table 

is the origial parameters given. The third row is obtained by simulating one path of 

interest rate with 132 points. The fourth row is obtained by simulating one path of 

interest rate with 1000 points. The last row is obtained by doing the second row for 

20 times and average the results. It is clear that the more points we simulate the more 

accurate results we will get; and that the more paths we simulate the more accurate 

results we will get. 

Notice that the second row with M = 132 and No = 1 is exactly the situation we 

have in calibrating the interest rate parameters using the real observed yields. We 

have totally 132 observations with one path of interest rate process. The simulated 

results are not very good comparing to the origial parameters. This is also noticed by 

Duffee (1999). He mentioned that the individual parameter estimates are subject to 

substantial uncertainty due to lack of data. For the hazard processes, since we have 
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K, () a ,\ 

Original 0.3790 0.0365 0.0666 -0.1859 

M=132, No=1 0.3310 0.0415 0.0434 -0.1375 

M=1000,No=1 0.3779 0.0366 0.0518 -0.1814 

M=132, No=20 0.3898 0.0381 0.0599 -0.1877 

Table 4.5: Estimated Parameters with different number of simulated points M and 

different number of simulated paths No. 

even less observations, the estimated parameters are even more uncertain. This is why 

Duffee (1999) studied the median of the calibrated parameters of 161 firms instead of 

individual results. But if we choose daily observations instead of monthly and hence 

increase the number of observations, the results will become better numerically, see 

Duan & Simona to ( 1999). 

Alternatively, we can calibrate those parameters by minimizing the RMSE of the 

yields. Unfortunately, this does not work not very well due to the fact that the 

measurements (the yields) are too small. But it works pretty well in the simulation of 

hazard rates. More detailed discussion is in the next section. 

4.9.2 Simulation for Hazard Rate 

This part of simulation is based on the assumption that the calibrated interest rate 

parameters and its filtered time series are exact. Assume the firm specific factor Sj,t 

follows CIR and its parameters are given as well as the market price of risk and the 

coefficient of the common factor. Thus the parameters we care about for each firm j are 

(,;,j, ()j, aj, Aj, /3i)· Since we used EKF to calibrate the hazard rate processes, we want 

to know how well EKF works for non-linear problems. Another objective is also to 

recover the origial given parameters by QMLE in conjunction with EKF. A simulation 
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to check this has been done in following ways. 

Firstly, we use the given parameters to simulate one path of the firm specific factor 

Sj,t· Since we already assume the calibrated interest rate is exact, the hazard rate 

of the firm is totally determined by the time series of the firm specific factor. Then 

we simulate the prices of several coupon bonds using CIR pricing formula with the 

relationship between the zero-coupon bond prices and coupon bond prices. Next, we 

use the simulated bond prices to back out the time series of the firm specific factor. 

A comparison between the original and the filtered time series is given by the graphs. 

Finally we use QMLE with EKF to recover the origial parameters. The time step of 

the simulation is set to be monthly (1/12 yearly). Three coupon bonds are simulated 

using the coupons and maturities as the same as the Atlantic Richfield Company's. 

Figures 4.15 and 4.16 show the original simulated time series of the firm specific 

factor and the filtered time series with different observation error R. From both of the 

graphs, we can tell EKF works fine for this non-linear problem. The accuracy does 

depend on the observation error R but not the same way as in the simulation of interest 

rate. Here the left hand side of our measurement equation is the bond price which is 

around 100. This is different from the case in the interest rate simulation in which the 

left hand side of the measurement equation is the yield which is around 0.06. Thus 

the error term is at least different in order. Figure 4.15 shows the difference with R 

= 0.01 and R = 1. The RMSE of the time series of the firm specific factor for R = 

0.01 is 0.0030 while for R = 1 is 0.0021 which is smaller. This shows that the EKF 

does not necessarily become more accurate for less observation error. This realization 

is at odds with our common sence that the filtered results should be more accurate for 

more accurate meassurement. This is true in the linear case when the standard KF 

is used. However, if the model is non-linear, the linearization is not exact when the 

EKF is executed. Numerical errors may add up and have bad influence as in here. For 

Figure 4.16, both the RMSE for R = 1 and R = 10 are 0.0023. The accuracy does 
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not change much if you use any number from 1 to 10. But RMSE decreases a lot if 

we put R = 100, which is around the bond price. Therefore, we useR= 1 to conduct 

our calibration for the parameters. 

o.a31--.-----.---.----.-----;:==~~:;:;,:~==::::::!:====;~ 
+ Original Time Series 
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· - · - · Filtered Time Series with R = 0.01 
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Figure 4.36: (1)Time series for the firm specific factor Bj,t with different obervation 

error R. Parameters for this simulation are Kj = 0.3244, (}i = 0.005, O"j = 0.0633, 

>..i = -0.1587, j3i = -0.01. Coupons are [4.565, 4.94, 5.44] dollars half-yearly. Initial 

time to maturities are [16.083, 21.083, 10.583] years respectively. 

Another way to calibrate those parameters is to minimize the RMSE of the bond 

prices by simulation. Theoretically, minimizing the root of mean square error is the 

same as maximizing the likelihood function. However, numerically they are different 

here. We use the simulated bond prices to achieve our MRMSE, but we calculated 

the derivatives of the likelihood function in order to get the estimator in MLE. The 

RMSE works perfectly in the simulation world even for a small number of simulated 

points. Table 4.6 shows the calibrated results by different methods, where No and 

M have the same meaning as in the simulation of interest rate. The second row of 

the table is the original given parameters. The third row is the calibrated results by 
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Figure 4.37: (2)Time series for the firm specific factor Sj,t with different obervation 

error R. Parameters for this simulation are ""j = 0.3244, ()j = 0.005, aj = 0.0633, 

Aj = -0.1587, f3j = -0.01. Coupons are [4.565, 4.94, 5.44] dollars half-yearly. Initial 

time to maturities are [16.083, 21.083, 10.583] years respectively. 

minimizing RMSE. The next row is the estimated results by QMLE with EKF. We 

can tell that the calibrated results by QMLE with EKF are not very good. This is 

due to several factors. It is maybe because we have not enough simulated points M, 

which we used here is only 78. The inaccurate linearization of the EKF may also have 

bad contribution for this. There is another one factor may have bad influence on the 

results. That is the degree of the freedom of the CIR. It is defined by d = 4""j()jjaJ 

which is around 0.4 here. We know that if the degree of freedom d is less than or equal 

to 1, the process will hit zero with infinite many times with probability one. Many zero 

hazard rates will add the possibility of producing badly scaled matrix or matrices close 

to singular. Considering this, we can modify the discretized CIR a little bit by setting 

the point to ()j whenever it hits zero. We call this method Modified CIR (MCIR). The 

last row of the table shows the results by MCIR with QMLE in conjunction with EKF. 
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K,j (). 
J a· J >.· J (3j 

Original 0.3244 0.0050 0.0633 -0.1587 -0.0100 

M=78, No=1 0.3172 0.0051 0.0637 -0.1551 -0.0100 

by RMSE (0.0346) (0.0100) (0.0656) (0.0100) (0.0346) 

M=78, No=1 0.2708 0.0035 0.0490 -0.1420 -0.1086 

by QMLE (1.3630) (0.0100) (0.0900) (0.7426) (0.4287) 

M=78, No=1 0.3423 0.0036 0.0561 -0.1752 -0.0755 

by MCIR (0.5283) (0.0001) (0.0173) (0.2867) (0.1005) 

Table 4.6: Estimated Parameters by different approaches. 

Unfortunately, we do not get a better off result by modifying the discretized CIR. 

Although the minimizing RMSE approach (MRMSE) works nicely in the simulated 

world, this approach may fail when we use the real bond prices. We do not know 

exactly how the bond prices are produced in the real market. Let's think that there 

is a real mechanism which determines the bond prices. What we do is to model that 

mechanism based on our knowledge. It is impossible that our model will perfectly 

capture the properties of the real mechanism. Put it in another way that the real 

mechanism is different from our model. This let the minimizing bond prices approach 

fail. The reason why it works in the simulated world is pretty simple. Since the 

simulated bond prices are produced by the same mechanism of our model. Thus we 

choose QMLE in conjunction with EKF instead of MRMSE. 

We can also use the filtered time series to back out the bond prices. If the calibrated 

parameters are exact for the firm specific factor, then the backed out bond prices should 

be almost exactly to the original simulated bond prices. This is because both bond 

prices are calculated using the theoretical bond pricing formula. Numerical result show 

that the average of the RMSE of the bond prices is less than 30 basis points which is 

very tiny considering the bond price is around $100. 
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Chapter 5 

Conclusion 

This thesis studies how the theory of credit risk and its applications are combined 

together. For the theoretical part, a short review of credit risk theory is covered as 

well as interest rate theory. For the application part, modeling analysis is conducted 

and the calibrations of the model are implemented by using EKF in conjunction with 

QMLE. 

In the calibration, we use one factor CIR model for default-free interest rate and 

two factors CIR model for the default intensities. Our data includes Treasury strips 

yields (monthly) of U.S for seven different maturities from Jan. 1993 to Dec. 2003 

(Data source: Bloomberg) and month-end corporate coupon bond prices issued by 21 

firms (total 82 bonds) from Jan. 1995 to Jun. 2001 (Data source: MDG Business 

School). The model (one factor CIR) for default-free interest rate was calibrated by 

using the yileds data as input and Standard Kalman Filter (SKF) in conjunction with 

Quasi-Maximum Likelihood Estimation (QMLE) as numerical scheme. The time series 

of the interest rate from Jan. 1993 to Dec. 2003 was obtained by the filter tool. Root 

of Mean Square Errors (RMSE) of the theoretical yields were also calculated. The 

model (two factor CIR) for the hazard rates for each firm was calibrated by using 
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the observed corporate bond prices as input and Extended Kalman Filter (EKF) in 

conjunction with QMLE as numerical scheme. The time seires of the hazard rates for 

each of the 21 firms were filtered out. RMSEs of the theoretical corporate bond prices 

were calculated. 

The results of default-free interest rate is not so good compared with two factor 

CIR model. The RMSE of the yields is around 0.0040, but Duffee (1999) claims it 

will be decreased to 0.0010 if two factor CIR model for the default-free interest rate 

is assumed. This could be one of the future studies. The filtered time series of the 

interest rate is very similar to Miu's (2003) result. 

The calibrated parameters for most of the firms are reasonable, however there are 

seven firms whose parameters are not available. This is due to the drawbacks of the 

numerical scheme we have used. QMLE does not work very well when it is combined 

with EKF. Although the filtered time series does not depend on the small change of the 

initialized parameters very much, QMLE is very sensitive on the initial parameters. We 

do not have a prototype to select the initialization. If we choose a very bad parameter 

vector as a start, it may cause the MLE diverges or it may produce a singular matrix 

or matrices which are badly scaled. Details will be discussed in next section. How to 

improve the numerical scheme of the calibration may be another direction of future 

research. Figure 4.6 shows the time series of the yield to maturity with seven years, 

in which there is a jump around 50 on x-axis. I did not modify this bad data, which 

may also have bad contributions to the results. 

Because we are using relatively a few bond data to fit each firm's term structure, 

the individual parameters estimated are subjected to a certain uncertainty. This is also 

noticed by Duffee (1999), in which he focuses his discussion on the median parameter 

across all 161 firms. 

Notice that there are many negative {3 which causes the hazard rates to go down 
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to zero sometimes. This implies that the CIR factors are not necessarily better than 

Hull-White factors. The 21 filtered time series for each firm display some properties in 

common. They look similar in general. Almost all of them firstly go up a little bit and 

then go down, and then go up and down. And they are dented in the middle. This 

shows that they are mostly positively correlated to each other. It also suggests that 

when the interest rate goes up, most hazard rates go down, capturing the negative 

correlation between the interest rate and the hazard rates. Surprisingly, the ones with 

positive f3 show the same dynamics. This is at odds to what we have expected, since 

positive f3 in hazard rate process will produce positve correlations with the interest 

rate. One explaination is that there are maybe some other hidden common factor 

shared only by the hazard rates. For further study, we could add another common 

factor for all the hazard rates only. 

Monte Carlo Simulation is conducted both for interest rate and hazard rates. The 

simulation indicates that: both the SKF and the EKF work pretty well as a filter tool 

but may produce bad estimation for the value of the likelihood function; QMLE works 

fine in linear state space form model (such as interest rate model here), but it does a 

poor job in the case of non-linear state space form(such as hazard rates model here). 
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