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Arbitrage Pricing Restrictions and the Predictability of Stock  
Returns by Statistical Factor Analysis 

 

Introduction 

The Arbitrage Pricing Theory (APT) of Ross (1976) provides the crucial insight that any set of 

factors covering the systematic risk of a particular group of assets should also explain the mean 

returns of these assets.  Empirical implementation may be subdivided into three approaches. 

First, the macroeconomic sources approach as employed by Chen, Roll, and Ross (1986) in 

which a set of macro variables, thought on a priori theoretical grounds to contain all systematic 

risks, is used as the factors to explain asset returns. Second, the mimicking factors approach, as 

prominently employed by Fama and French (1993) and Fama and French (1996), for instance, in 

which a predetermined number of well-diversified portfolios of the assets to be evaluated are 

used as the risk factors.1 The idea is that, as long as the factor portfolios are well diversified, 

sufficiently diverse, and equal in number to the true number of underlying factors, they will be 

linear combinations of the underlying factors and hence capture all systematic risk.   

 The third approach, the factor analysis approach by which factors are obtained 

statistically as linear combinations of the assets to be evaluated, is the focus of our paper.2 We 

adapt the factor analytical approach here by including the theoretical APT restrictions on mean 

returns to improve estimation and forecast performance under the maintained hypothesis that the 

APT is (approximately) correct. Roll and Ross (1980) and others utilize factor analysis (FA) or 

principal components analysis (PCA) to identify the portfolios that best explain the variation in 

                                                            
1 See also Hugerman, Kandel, and Stambaugh (1987) and Grinblatt and Titman (1987) for more on the mimicking 
portfolio approach. 
2 While there have been limited empirical evaluations of the APT recently, Lehmann and Modest (1988) provide a 
good overview of the empirical issues and estimation techniques of the APT.  Grinblatt and Titman (1987) introduce 
the idea of local efficiency and show that the APT implies that the factors are locally efficient.  This also helps the 
APT avoid the Roll (1977) critique. 
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realized returns of all assets under consideration. The number of such portfolios that have 

significant explanatory power for return covariances may be determined statistically from Bai 

and Ng (2002). Having established the factors that best explain covariances, subsequently the 

implication of the APT that exposures to this set of factors fully explain the differences in mean 

returns across assets may be tested.  

 Whereas FA focuses on finding the factors that explain systematic covariances and PCA 

focuses on finding the factors that explain total return covariances, Chamberlain and Rothschild 

(1983) show that asymptotically either approach will correctly identify the systematic risk factors 

because as the number of assets goes to infinity the systematic risk dominates any non-pervasive 

idiosyncratic risk.  PCA allows the idiosyncratic risk matrix not to be diagonal so that returns 

may be correlated after correction for systematic risk as long as the idiosyncratic risk is not 

pervasive.  PCA is also easy to implement and so we focus on (adapting) this approach. 

 Based on the third approach, principal component factors are used as systematic asset 

pricing factors to test the APT and can then be applied in practice if the APT is not rejected. 

However, for purposes of obtaining factors that are useful for generating improved decisions in 

practical applications, dealing e.g. with costs of capital3, hedging strategies, forecasting asset 

returns, evaluation of portfolio managers, and event studies, it is advantageous to impose the 

                                                            
3 For examples of asset pricing models used for cost of capital estimates, see Pratt and Grabowski (2008), Myers and 
Turnbull (1977), Goldenberg and Robin (1991), Bartholdy and Peare (2005), Fuller and Kerr (1981), and Cummins 
and Phillips (2005).  Bruner et al. (1998), among others, provide survey evidence that practitioners typically use the 
CAPM in cost of capital estimation.  Koedijk and van Dijk (2004) examine cost of capital from a global perspective 
with the CAPM, finding that the domestic market factor is sufficient for a firm to estimate cost of capital and that 
the CAPM and international CAPM provide little difference.  Aside from estimates implied by asset pricing theory, 
previous research has used implied cost of capital measures (Li, Ng, and Swaminathan, 2013; Lee, Ng, and 
Swaminathan, 2011; Pástor, Sinha, and Swaminathan, 2008; Hou, Van Dijk, and Zhang, 2012; Easton, 2004) and 
accounting measures (Easton and Monahan, 2005) to estimate cost of capital. 
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APT restrictions in advance as part of the factor estimation so that the resulting factor weights 

are more reliably estimated. 

 The objective in this paper is to provide a new method for obtaining statistical asset 

pricing factors that imposes a condition limiting the pricing errors for mean returns jointly with 

maximizing the variance in returns explained by the factors.  In the language of the standard two-

pass asset pricing approach, it maximizes the first-pass fit averaged across all test assets subject 

to a guaranteed minimum fraction of second-pass mean pricing errors.  A related work is that of 

Nardari and Scruggs (2007), who impose the APT pricing restriction (that of mean returns being 

linear combinations of systematic factors) into a latent factor model with a multivariate 

stochastic volatility (MSV) process under a Bayesian methodology.  They find their best model 

in terms of its Bayes factor is the model with three latent factors with MSV and the APT 

restrictions.  Nardari and Scruggs use a Bayesian methodology, whereas we use an approach 

similar to PCA (PCA while imposing APT restrictions).  They assign a unit weight to certain test 

assets (based on correlation with a preliminary first principal component) to form their three 

factors while we use linear combinations of all test assets to form optimal APT factors.  This 

allows for an investor/practitioner to find the portfolio weights and form our factors in real time.  

We argue that our approach provides true APT factors (rather than selecting one portfolio to 

serve as a factor): a linear combination of all assets that is designed to capture covariance risk 

while perfectly explaining mean returns.  Another difference is that we look out of sample 

whereas Nardari and Scruggs only look at in-sample posterior distributions and cross-sectional 

averages.  Other differences include the following: Nardari and Scruggs allow for mean errors to 

be nonzero, whereas our main focus is on restricting mean errors to be zero; we do not make any 
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assumptions on volatility; we use industry portfolios with no strong factor structure while they 

use ten size-sorted portfolios. 

Another related work is MacKinlay and Pástor (2000), which assumes that a factor is 

missing from a linear factor model.  They show that, under the strong assumptions of 

homoscedastic errors and uncorrelated errors, accounting for an unobserved factor amounts to 

the alpha showing up in the covariance matrix.  Linking means and covariances allows for 

improved estimation of expected returns/means and higher Sharpe ratios in out-of-sample 

portfolio selection/optimization.  They point out that they essentially are combining two factor 

approaches: FA/PCA, which focuses on covariance only, and factor mimicking portfolios (Fama-

French three-factor model), which focuses on means only.4  Our approach does the same: we link 

means and covariances by explaining mean returns up to an allowable error while maximizing 

covariance simultaneously.  The benefits of our approach are as follows: we do not make any 

strong assumptions on the error terms as does MacKinlay and Pástor, and their approach requires 

conditioning on the Sharpe ratio of the missing factor (which must be pre-specified by the 

practitioner/econometrician).  Since we impose that the number of specified factors perfectly 

price all assets, the latter issue is avoided by our approach.  We also compare to the traditional 

asset pricing models (means only and covariances only as mentioned previously), which 

MacKinlay and Pástor do not.  Finally, while MacKinlay and Pástor examine maximum possible 

Sharpe ratios out-of-sample, we implement an out-of-sample hedging approach. 

While we perform forecasting of a hedged position rather than the raw portfolio returns 

with our derived factors, Simin (2008) examines the out-of-sample forecast performance of the 

                                                            
4 Pukthuanthong and Roll (2014) provide a way of identifying whether a factor is related to mean returns or risks (or 
both).  
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CAPM and Fama-French three-factor model, finding that they perform poorly in predicting 

future asset returns compared to historical averages or constants.  Simin further points out that 

statistical APT factors and macroeconomic factors perform worse than either of these two 

models.  This differs starkly from our results, where the APT factors perform better than the 

CAPM and Fama-French three-factor model.  One reason may be that Simin uses a rolling 60-

month estimation window, while we find that a larger estimation window allows PCA factors to 

become more reliable (at least in terms of bias).  Simin also uses the 25 size and book-to-market 

portfolios as the test assets, while we use industry portfolios.  The Fama-French three-factor 

model can explain size and book-to-market portfolios well, but not industry portfolios. 

 One simple approach to performing PCA and also imposing zero pricing errors would be 

to restrict time series constants, “alphas”, to equal zero. However, in this case there is no 

requirement that mean pricing errors are zero so that an unknown level of pricing errors is 

allowed.  Our approach, however, allows imposing in advance any desired mean return errors as 

a fraction of the squared sum of mean returns, including setting the fraction equal to zero. 

 An alternative way to view our method, if zero mean return errors are enforced (a 100% 

cross-sectional R-squared), is as an approach that generates a tangency portfolio as a portfolio of 

the factors and subject to this constraint finds the factors that also explain as much as possible of 

the variation in the time series of returns of all assets.  Our approach differs from the Markowitz 

optimization approach, which has had limited success in out-of-sample application.  For 

example, DeMiguel, Garlappi, and Uppal (2009) find that a naïve equal-weighted approach 

performs better out of sample in terms of its Sharpe ratio, turnover, and certainty equivalent 

return compared to the tangency portfolio.  For an examination of investing in the tangency 

portfolio out of sample see also Best and Grauer (1991) and Michaud (1989).  Kan and Zhou 
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(2007) show the pitfalls of using sample estimates rather than population mean and covariance 

when performing out-of-sample mean-variance optimization, while also finding that a sample 

tangency portfolio and riskless asset can be beaten by adding the sample minimum-variance 

portfolio.  This shows that using a larger sample/estimation window (as close to population as 

possible) may work better.  Thus, we look at a large expanding estimation window (as well as a 

rolling window which does not perform as well perhaps due to this reason) when performing our 

out-of-sample analysis.  Kan and Smith (2008) show that sample minimum-variance frontiers 

can be highly biased.   Kan, Wang, and Zhou (2016) show that accounting for estimation error 

allows for portfolios that outperform the equal-weighted approach of DeMiguel, Garlappi, and 

Uppal (2009). 

 A fundamental issue in this paper is that an asset pricing model generates return 

forecasts. To evaluate the performance of these forecasts, we may simply calculate the mean 

square errors (MSE) generated from realized returns relative to the forecast. As we confirm 

below, PCA identifies factors that minimize these mean square errors, at least in sample. And 

this is true, irrespective of whether the APT holds.  However, a typical decision maker 

employing the asset pricing model may distinguish between components of the errors that are 

systematic and caused by a mean bias in the asset pricing model, and errors that are simply part 

of return risk.  From this perspective, it is important to consider separately the bias and the noise 

in the pricing model, as does Simin (2008).  Simin (2008) and Leitch and Tanner (1991) both 

point out that investors/practitioners may have asymmetric loss functions, which requires a need 

to examine both bias and variance.  Others that examine the limitations of symmetric loss 

functions/MSE and the implications of asymmetric loss functions include Patton and 

Timmermann (2007), Basu and Markov (2004), Clatworthy, Peel, and Pope (2012), and Elliot, 
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Komunjer, and Timmermann (2008).  Although they do not examine the breakdown of MSE, 

MacKinlay and Pástor (2000) do report both bias and MSE separately.  Giacomini and White 

(2006) and Diebold and Mariano (2002) examine the issue of separating bias and variance (and 

the need for examining more than just MSE) from a forecasting perspective. 

 To provide an indication of the usefulness of imposing APT restrictions we apply our 

approach to a set of test assets and compare the results both in-sample and out-of-sample against 

those for other basic models. In particular, we consider the Fama-French 3-factor model as 

representative of a model typically applied and we consider a factor model obtained from 

conventional PCA.  The test assets we consider are the 30 Industry portfolios obtained from 

Fama and French (available from Kenneth French’s website).  These assets constitute a good 

target as they do not have a strong factor structure and their mean returns have traditionally been 

difficult to explain (see Lewellen, Nagel, and Shanken, 2010; Fama and French, 1997; Chou, Ho, 

and Ko, 2012).  

 Imposing the APT restrictions perfectly will obviously result in a zero alpha/bias in 

sample, and PCA by design will have the lowest possible MSE in sample.5  We do indeed find 

that the MSE when imposing the APT restrictions (“constrained” PCA or C-PCA) is only 

slightly higher while completely eliminating bias.  To judge the out-of-sample performance we 

consider a hedging approach where the in-sample portfolio weights and betas are used to hedge 

each portfolio over the next month.  While this is not a true forecasting approach in that factor 

realizations are used, it is nevertheless an approach that is applicable in real time.  The out-of-

                                                            
5 Comparing the in-sample cross-sectional R-squared of the models does not provide much insight either; Kan, 
Robotti, and Shanken (2013) investigate the significance of differences between cross-sectional R-squared values, 
rather than a simple comparison of the values, and they find that most models are not significantly different. 
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sample results show that again the MSEs are not significantly different between PCA and C-

PCA.  However, C-PCA reduces the bias out of sample by around 30% compared to PCA.   

We argue that any investor or practitioner who has a long-term investment horizon in 

mind would prefer C-PCA due to the reduced bias, regardless of loss function.6  In our out-of-

sample application we re-estimate and change the hedged position each month, and then evaluate 

performance over the full out-of-sample window.   While it is possible that an investor would 

still prefer reduced bias over this large sample period/window, it is also conceivable that the 

investor would implement a longer forecast horizon and avoid monthly re-estimation and 

rebalancing.  As the forecast horizon lengthens, the target return will approach the mean return, 

so C-PCA should perform better regardless of loss function (its MSE should improve relative to 

all other models).  This is also consistent with the findings of MacKinlay and Pástor (2000): as 

the sample size gets larger (240 and/or 360 months) the unbiased/unrestricted estimator they use 

performs better than their restricted estimator that links means and covariances but is biased.  We 

also provide a theoretical and empirical discussion of the relationship between investment 

horizon and bias: lower bias at a smaller horizon is preferable as the horizon grows.  Thus, lower 

bias will mean as the horizon is increased, the particular model will perform better in terms of 

MSE compared to a model with a higher bias. 

Higher MSE due to higher variance is akin to higher month-to-month fluctuations around 

the target (albeit only slightly higher MSE/variance for C-PCA), while lower bias means being 

closer to the target on average.  For example, for a long-term project, a firm would want a cost of 

capital estimate that is as accurate as possible, while the firm may not care much about short-

                                                            
6  Investment horizon also has a clear monotonic relationship with bias, whereas various loss functions may have 
contrasting implications.  Also, asymmetric loss functions may place more weight on bias or variance depending on 
the specification/investor or analyst. 
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term variations.   If the application emphasizes bias (average accuracy) even slightly in 

comparison to variance, then this particular practitioner prefers C-PCA.  C-PCA also has a better 

second pass fit both in sample and out.  We additionally find that PCA and C-PCA are both 

significantly better than the traditional asset pricing models for these industry portfolios.   

While the application of the derived C-PCA pricing factors that we focus on is out-of-

sample hedging, there are many potential applications of these factors.  There has been extensive 

research applying APT/PCA factors to various settings.7  Kozak, Nagel, and Santosh (2014) find 

that a stochastic discount factor based on PCA can explain away many anomalies out-of-sample.  

They also show it may not be possible to distinguish whether these factors are sentiment-based 

or risk-based.  Bussière, Hoerova, and Klaus (2015) apply PCA to hedge fund returns in order to 

construct the main factor for a set of hedge fund assets and examine changes in the hedge funds’ 

sensitivity to the factor over time.  Herskovic et al. (2016) develop a common idiosyncratic 

volatility (CIV) factor, which they note can be seen as an APT factor.  They find this factor to be 

priced and to help explain various pricing anomalies.  One of the models used to find CIV 

(residual variance) is the first five principal components.  Ludvigson and Ng (2009) conduct 

factor analysis on a panel of macroeconomic variables to construct macro factors which are used 

to forecast bond returns, and examine bond risk premia.  Goyal, Pérignon, and Villa (2008) find 

that there are two common APT factors in both the NASDAQ and NYSE, but each one has 

another separate risk factor that does not extend to the other market.  Chen, Hsieh, and Jordan 

(1997) applies the APT to the real estate market, by examining both macroeconomic risk factors 

and derived factors as they relate to REIT returns.  They find that for some time periods the 

                                                            
7 Many implementations of PCA, especially those for forecasting purposes, follow either the methodology of Stock 
and Watson (2002) or Forni et al. (2000).  Stock and Watson use static principal components while Forni et al. use 
dynamic principal components, although both use dynamic factor models to forecast. 
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macro factors explain REIT returns better, while in other periods the two models perform 

equally.  An example of an application of macroeconomic factors is Kavussanos, Marcoulis, and 

Arkoulis (2002), which applies macroeconomic factors to international industry returns and 

examine the investment implications of their findings. 

 In the following we first review in Section 2 the basic theory regarding the PCA approach 

and its optimality properties.  In Section 3 we present the derivation of an approach that 

optimally imposes the APT pricing restrictions when extracting factors from a group of assets 

based on applying the Ky Fan maximum principle for Rayleigh quotient pencils. Section 4 

applies the approach to explain the returns of the thirty Fama-French industry portfolios in and 

out of sample and contrasts the performance with alternative approaches.  Section 5 concludes. 

2. Basic Properties of Statistical Factor Analysis  

Returns Specification with Factor Structure 

Consider the returns of a group of assets as given by 

 (1)  erQBαr  , 

where eαr ,,  are n x 1 vectors indicating, respectively, the set of returns, the mean pricing errors, 

and the non-systematic pricing errors for each of n risky assets. The matrix Q is an n x k matrix 

of full column rank that represents for each of the k factors the weights put on the n assets.  Thus, 

rQrk   represents the k x 1 vector of factor returns. The factor loadings (betas) for all assets are 

given by the n x k matrix B .  We define the n x n covariance matrix of returns as 

])μμ)(rE[(rΣ  .  The distribution of returns is constant over time, and, by extension, μ  
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and Σ  are time invariant. Note that any set of returns may be represented by equation (1) 

without loss of generality such that 0)( eE  and such that 0erk )'(E . 

 Taking expectation in equation (1), the mean returns of all assets are given as 

 (2) μQBαμ  .        

Factors Chosen to Minimize Errors and PCA 

We show first that selecting factors to minimize the sum of squared non-systematic 

pricing errors is equivalent to adopting the principal components as factors. While this result was 

noted previously (Jong and Kotz, 1999), it is not well known in the finance literature. We 

emphasize that PCA does not simply select the linear combinations of assets that best captures 

the communalities in returns, but that adopting these components as factors provides the lowest 

attainable quadratic variation in the return errors: 

   )( ee
QB,

E
Min

 . 

Since )]([)( eeee  ETrE , where Tr represents the trace of the matrix, minimizing the sum of 

squared errors from equations (1) and (2) amounts to: 

 (3)  )()( BQIΣQBI
QB,

Tr
Min

.       

First, for given factor weights, choose the factor loadings B that minimize the squared errors. 

Matrix differentiation in equation (3) and finding the stationary point implies 

0)'(  ΣQQBΣQ  so that 

 (4) 1)'(  ΣQQΣQB ,               
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the standard formula for obtaining multivariate betas. Plug equation (4) into equation (3) to find 

the concentrated objective: 

 (5)  ΣQΣQQΣQΣ
Q

 1)(Tr
Min

.      

Since Tr (Σ ) is constant and using the property that Tr ( AB ) = Tr ( BA ) equation (5) becomes 

 (6)  12 ))((  ΣQQQΣQ
Q

Tr
Max

.      

Taking the “square root” of the positive definite Σ  and defining QΣQ ½*   we obtain  

 (7)  1****

*
)')('( QQQΣQ

Q
Tr

Max
.      

The trace in equation (7) is known as the Rayleigh Quotient which by the Ky Fan maximum 

principle (Fan, 1949. See also for instance Bhatia, 2013, p. 35, and Li, 2015) is maximized when 

the n x k matrix *Q  is orthonormal and consists of the k eigenvectors associated with the k 

largest eigenvalues of matrix Σ  (and is minimized if *Q  contains the k eigenvectors 

corresponding to the k smallest eigenvalues of Σ ).  Thus, we know that  

 (8) kΔQQΣ **  , as well as kΔQQΣ       

where kΔ is the k x k diagonal matrix containing the k largest eigenvalues of Σ . Pre-multiplying 

both sides of equation (8) by '*Q  (or the second equation by 'Q ) shows that the maximum trace 

of the Rayleigh Quotient in equation (7) is equal to Tr ( kΔ ) which is the sum of the k largest 

eigenvalues.  Also, we find that 112 ))(())((   QQΣQQΣQQQΣQ TrTr . It follows that either 
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the eigenvectors *Q  or Q  may be used to generate the k factors rQr '** k or rQr 'k that 

minimize the unexplained variation. Note that equation (8) satisfies the first-order conditions for 

a stationary point in *Q or Q  subject to a normalization constraint kIΣQQ ' : if we define the 

Lagrangian )]()[( 2
kkTrMaxL IΣQQQΣQ   it generates equation (8).  The second-order 

conditions do not hold, however, which is the reason that we need to appeal to the properties of 

Rayleigh Quotients to generate the result.  We can view the fraction of return variation explained 

by the k factors as Tr ( kΔ ) / Tr (Σ ), the sum of the k largest eigenvalues divided by the sum of 

all eigenvalues. The *Q or Q  matrix obtained via equation (8) consists of the first k principal 

components and, by Ky Fan’s theorem, the optimal realized objective of equation (6) equals the 

sum of the k largest eigenvalues of the Σ  matrix.  

3. Incorporating Arbitrage Pricing Restriction 

Adding APT Constraint 

 If the factor returns explain most of the variance in returns so that the remaining variance 

is non-pervasive and may be diversified (Chamberlain and Rothschild, 1983), then the APT of 

Ross (1976) implies that the α ’s are (approximately) zero.  To optimally generate the statistical 

set of factors characterized by Q  and obtain factor returns rQr k  we now consider the 

following optimization problem:  

 (9)  )()(
,

μμααee
QB,

 


E
Min

,      

where 10    represents the target level for the sum of squared alphas relative to the sum of 

squared mean returns. Thus,   represents the targeted fraction of mean return errors allowed, 
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i.e., the sum of squared mean pricing errors compared to the sum of squared means. Most often 

we will consider 0  as the target which means that all mean pricing errors, the “alphas”, are 

constrained to be zero.  

 Using equations (1) and (2), the properties of traces, and taking expectations we may 

replace equation (9) by 

(10)   μμBQIVQBI
QB,

 


)()()(
,

Tr
Min

, μμΣV  )( .     

Analogously to the unconstrained case, we have  

 (11)  1])('[)(  QVQQVB  ,        

and in addition the constraint implies that μμαα   .  Note that the objective in equation (9) 

requires that the optimally estimated betas, B , are not the standard OLS betas of equation (4). 

The relevant association between asset return and factors here also involves consideration of the 

mean returns.  The concentrated objective becomes after eliminating B : 

 (12)  12 ])(][)([  QVQQVQ
Q

Tr
Max

 ,     

where λ is set to force μμαα   . Similar to the unrestricted case the eigenvectors are found 

from 

 (13)  kΔQQμμΣQV  )()(  .      

Pre-multiplying by 'Q  and subsequently pre- and post-multiplying both sides by Qμ  and its 

transpose, respectively, and using the normalization that kIQQ   implies for the optimal choice 
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of Q  that  2)()( μQQμμΣQQΔμ  kkk . To impose μμαα    eliminate α  from equation 

(2). Equations (11) and (13) imply μμμQQμ  )1(  . Thus, imposing μμαα    for optimal 

Q  into 2)()( μQQμμΣQQΔμ  kkk  produces 

 (14) 22 )()1/()( μμμΣQQΔμ   kkk .     

Solving equations (13) and (14) jointly generates both the optimal Q and λ. Accordingly, the k 

factor returns are rQr 'k  which guarantee the lowest non-systematic errors subject to the mean 

pricing errors corresponding to a target fraction 0/  μμαα .   

 Appendix A provides a Matlab program for solving equations (13) and (14) 

simultaneously. The Lagrangian multiplier λ must be determined so that the optimization weight 

on reducing the alphas is sufficient to deviate enough from minimizing overall pricing errors to 

meet the alpha target.  The resulting optimal Q must generate a mean square error in-sample that 

is higher than in the standard PCA case, but produces a larger cross-sectional R-squared that 

would rise to 100% for 0 . The approach comes down to calculating the eigenvalues and 

eigenvectors of matrix μμΣV  )( and using the eigenvectors of the k largest eigenvalues 

as follows from the Ky Fan maximum principle. As in standard PCA the factor loadings may be 

obtained from QB  so that for the case of 0  (zero alphas) from equation (1) the predicted 

returns equal kQrrQQr ˆ . 

Imposing OLS Betas  

The standard approach for determining the unexplained component of asset returns 

implied by a particular asset pricing model is to calculate alphas from “first-pass” time series 

regressions of the asset returns on the factor returns.  In this approach the factor sensitivity 
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estimates are usually obtained as OLS betas: The empirical results for the (non-optimal) case of 

OLS betas, 1)'(  ΣQQΣQB   , when the factors are specified as )(' μrQ   are available upon 

request from the authors.  While this does not provide the minimum MSE it is a reasonable case 

to consider as it corresponds to imposing a constraint on alphas as typically calculated. For 

reasons of tractability we focus here on the weighted alphas which relate to the difference in 

maximum squared Sharpe ratios of the assets compared to the factors as discussed by Gibbons, 

Ross, and Shanken (1989): μQ'ΣQ)(Q'Qμ'μΣμ'αΣα' 111   . We set the weighted alphas 

equal to a target fraction of the weighted mean returns: )( μΣμ'αΣα' 11    .  As before, if we set 

0   then this implies the constraint 0α   (for all assets).   Appendix B derives that for the 

case of 

 (15)  )()(
,

μΣμγαΣαee 11

Q
  


E

Min
 ,     

subject to equations (1) and (2) and 1)'(  ΣQQΣQB , that the factors are found first from 

 (16) kΔQQΣμμΣΣQV 2
1

2
1

 
)()(  .     

using the normalization that kIQQ   and, second defining μQ'μk  , from 

 (17) 212 )()1/()( μΣμμΣQQΔμ   kkk .     

Then, subject to a target fit in the second pass, the factors maximize the first-pass fit.   

Sub-Optimal Direct Restriction on the Alphas  

An alternative way of reducing the mean pricing errors, as mentioned previously, is to 

omit the constant in estimating B  and Q .  Thus, in equation (1) we set α=0.  Then )( eeE  is 
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given as  )()()( BQIrrQBI  ETr . Since μμΣrr )(E , the estimation problem 

becomes similar to both the restricted and unrestricted cases but with 1   instead of the 

constrained on the mean pricing errors.  Due to the omission of the constant, 0)( eE so that 

mean pricing errors are not avoided, as is the case in Nardari and Scruggs (2007). In fact, the 

fraction of squared mean pricing errors may be obtained from the constrained PCA case by 

searching for the particular target fraction of mean pricing errors,  , that implies 1 . 

Correlation Matrix instead of Covariance Matrix 

PCA analysis is often based on a correlation matrix rather than a covariance matrix. See, 

for instance, Jolliffe (2002). While working with returns implies there is no serious need for 

further normalization, there may still be cases in which a correlation matrix is preferable.  

 In effect, we now examine normalized returns for which rSr 1*  , where S is an n x n 

diagonal matrix containing the standard deviations of the returns on the diagonal such that 

ΣS2  .  The covariance matrix of *r  is then the correlation matrix of r . The only difference 

compared to the covariance analysis case is in the interpretation of the results. In particular, 

maximizing explained covariance (first-pass) now becomes maximizing explained correlation, 

which is in turn equivalent to maximizing the squared correlation.  The latter amounts to 

maximizing the equal-weighted average of the R-squares for the n first-pass regressions (subject 

to a restriction on the squared mean pricing errors for the normalized returns). 

4. Application to Industry Portfolios 

Number of Factors and MSE Breakdown 

 The in-sample and out-of-sample performances of PCA and C-PCA will be compared, 

along with the traditional asset pricing models (CAPM, Fama-French three-factor model (FF3), 
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and Carhart, from Carhart, 1997), using the thirty Fama-French industry-sorted monthly 

portfolios.  The industry portfolios are chosen due to their weak factor structure.  The sample 

starts in January 1927, when the momentum factor is first available.  The sample ends in 

December 2015.  Excess returns are used (with three-month T-bill used as the risk-free rate), so 

that each portfolio can be considered as a zero-investment portfolio.   

 First, we investigate the optimal number of factors to implement.  While there have been 

many that investigate the appropriate number of factors in PCA/FA (see Connor and Korajczyk, 

1993), a widely used test is that of Bai and Ng (2002).8  Bai and Ng develop a test for factor 

models with large panels.  The loss functions they implement penalize in both the time and 

cross-sectional dimension.  They propose three variations of a panel information criterion (IC), 

which do not depend on the specified maximum number of factors, and three variations of a 

panel pC 9 criterion (PC) which implement the Mallows (1973) pC criterion in a panel setting.  

Table 1 shows that five of the six criteria suggest k=4 factors for the set of industry portfolios, 

with the last PC criterion suggesting k=5 factors.  Therefore, we will use four factors as our base 

model (with PCA and C-PCA both having four factors unless otherwise specified). 

 
[Table 1 goes here] 

 

 Before examining the results, the breakdown of MSE should be discussed further.  MSE 

in this context can be broken down into two parts: the variance of the error term and the bias 

squared (average error squared).  The simple summation of the two gives MSE; this implies 

putting an equal weight on each, however.  We argue there are situations such as those related to 

                                                            
8 See also Harvey, Liu, and Zhu (2015) for an examination of the statistical hurdle that a new factor must clear in 
order to be accepted. 
9 The pC criterion stands for the Mallows (1973) information criterion for a model with P regressors. 
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cost of capital, hedging, long-term investments/projects, etc. where an investor would care more 

about bias.  This equates to caring more about on average how far from the target (bias) an 

investor/practitioner/firm is rather than about the short-term fluctuations from the target 

(variance).  In finance and forecasting especially, most researchers report MSE but do not 

consider the two components separately.  The breakdown is as follows (using the definition of 

variance): 
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where r is the realized return, r̂ is the predicted return, and 2
 is the variance of the error term 

)ˆ( rr  .  The first term on the right-hand side in (18) is the bias squared, and the last term is 

the variance term.  We will mostly focus on the absolute level of the bias, the square root of the 

bias squared (in order to give an economic interpretation), and the MSE. 

Expanding Window 

 Panel A of Table 2 shows the in-sample results of PCA, C-PCA, the CAPM, the FF3 

model, and the Carhart model.  Reported are the MSE (multiplied by 10,000) and absolute value 

of the bias multiplied by 100 to be in percent form (bias is the mean of the thirty portfolios is 

given for each test statistic), as well as the second pass adjusted R-squared (using mean returns).  

Note that this implementation of C-PCA does not use OLS alphas; therefore, the 2nd pass fit will 

not be 100%.  We know two things will be true of the in-sample results: first, PCA will have the 

lowest possible MSE.  Second, C-PCA with 0 will have zero bias (with a much better second 

pass fit).10  Kan, Robotti, and Shanken (2013) argue that simple comparisons of second-pass R-

                                                            
10 As discussed in Section 3, the alphas and betas we use in our main approach differ from the traditional OLS betas 
and alphas. Therefore, these C-PCA factors will not achieve a perfect second-pass fit, as they are designed to 
achieve zero error when applying the weights and betas (which are the same) directly from the approach, rather than 
using the weights as regressors in a second-pass regression. An alternative C-PCA methodology achieves zero OLS 
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squared values are not sufficient or may induce misleading conclusions.11  The MSEs of C-PCA 

and PCA are not significantly different, however.  The interpretation is that an investor would 

only have to sacrifice a bit of MSE (due to variance) in order to achieve zero bias.  Also, the 

panel shows that the traditional asset pricing models perform much worse in all areas. 

 
[Table 2 goes here] 

 

 Since we know that PCA will have the lowest MSE and variance while C-PCA will have 

zero bias by construction, we now turn to the out-of-sample results for a more meaningful 

comparison.  Panel B shows the results when out-of-sample estimation begins in January 1977, 

with an anchored starting point for the estimation window of January 1927 so that the estimation 

window begins at 50 years.  Recursive monthly estimation is performed, with an expanding 

estimation window.  The out-of-sample analysis here can be thought of as a hedging approach.  

The portfolio weights and betas (for PCA and C-PCA, the weights and betas are the same) are 

applied one month ahead to the portfolio realizations.  Thus, the portfolio betas are applied to the 

factor realizations to provide a predicted return for each portfolio.  While realizations are used 

(rather than a pure forecasting approach), this strategy is still implementable by an investor in 

real time.  The portfolio weights can be found prior to the upcoming month via the in-sample 

estimation.  The investor would then hold the portfolios with the given weights in order to form 

the factors for the next month.  Then, the in-sample betas are used as factor weights.  If the 

model holds perfectly out-of-sample, then each portfolio would be hedged against systematic 

risk perfectly out-of-sample. 

                                                                                                                                                                                                
alphas and a perfect second-pass fit. The empirical results of this alternative approach are available from the authors 
upon request. 
11 Kan, Robotti, and Shanken (2013) examine R-squared differences when the models have beta misspecification.  
However, C-PCA would not apply here as a perfect fit is imposed. 
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 Panel B shows the MSE and the absolute value of the bias for each model out of sample.  

Again, PCA has a slightly lower MSE compared to C-PCA, while the other models perform 

much worse.  Whereas C-PCA obviously no longer has a zero bias, it is still much lower than 

PCA, with a roughly 30% reduction in bias.  This translates to an average error of 1.8% for PCA 

annually, versus 1.3% for C-PCA.  If an investor wished to eliminate the systematic risk of these 

industry portfolios for any given application, she would have a slightly higher MSE (and 

variance) with C-PCA.  This would mean the predicted return has more fluctuation around the 

realized return for a given month compared to PCA.  However, in the long run (from 1977 to 

2015), the investor’s average error is roughly 0.5% lower annually (which equates to 19% over 

the sample).  We argue that for certain applications and for those more concerned with the long-

run performance rather than month-to-month fluctuations, bias would be of more importance.  In 

other words, imposing the APT restrictions allows an investor to be closer to the target on 

average.  Those more concerned with less error on average rather than short-term fluctuations 

would prefer C-PCA to PCA. 

 Panel B of Table 2 also reports a second pass fit and an error ratio.  In this instance, the 

second pass fit is the adjusted R-squared of a regression of mean returns on mean predicted 

returns for the thirty portfolios.  This gives an idea how well the predicted returns explain returns 

on average.  The C-PCA model again is superior to the competing models.  The error ratio is the 

ratio of the sum of the squared errors (mean returns less mean predicted returns, squared) to 

squared mean returns.12  Hence, a lower ratio means lower errors on average, and C-PCA has a 

ratio much lower than the other models. 

 Panel C shows the results when only an initial estimation window of 60 months is used, 

so that hedging starts in January 1932.  This not only provides a larger sample, but also allows 
                                                            
12 Note that this is similar to, but not exactly the same as, 1 – second pass fit.  
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for comparison to the results that follow where a rolling 60-month window is used.  Again, 

imposing the APT restrictions reduces bias greatly (around 33% on average).  C-PCA provides a 

better fit and also now a slightly lower MSE compared to PCA.  However, the overall fit based 

on second pass fit and error ratio compared to Panel B in this case is worse.  Again, the 

competing models perform much worse compared to PCA and C-PCA. 

Bias and Random Error 

 The MSE may be written as 

 (19) 22 )]ˆ()[()ˆ( tttttt rErEMSE   ,    

where 

 (20) ),0(~, 2
 IIDr tttt  .     

 (21) ),(~,ˆ 2
 bIIDtttt  .      

The bias is given by b.  Since t  is uncorrelated with anything we can write equation (19) as 

 (22) 222 bMSE    .        

 The PCA estimation of t̂  provides the lowest possible MSE based on the perspective of 

the observation frequency.  I.e., it effectively minimizes the MSE for the one-period ahead 

forecast since the observation frequency is (by definition) one period, a month for our data. We 

may, however, be interested in a T-period forecast horizon. In that case, given the IID 

assumptions, the MSE becomes: 

 (23) 222 )()()( TbTTMSE    .      

Thus, if we define the fraction of MSE due to bias as )/( 222
   b , then the MSE per unit 

of the forecast horizon is: 
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 (24) )1)((/)( 22 TTTMSE    .      

It is constant if the forecast is not biased and otherwise, whether the bias is positive or negative, 

increases linearly with the forecast horizon T.   

 Thus, if we compare two forecasts, based on PCA and C-PCA, such that:  

)1()1( PCACPCA MSEMSE   and PCACPCA    (both conditions should hold in our set-up), then 

there is a critical T=T* such that for all T<T* we have )()( TMSETMSE PCACPCA  and for all 

T>T* we have )()( TMSETMSE PCACPCA  . 

Varying time horizon 

 While it is possible to have an asymmetric loss function that does not use MSE as the loss 

function and therefore prefer less bias to variance, the time horizon of the investment or forecast 

matters as well.  Specifically, we argue (and show empirically) that as the out-of-sample time 

horizon increases, bias matters proportionately more compared to the variance term.  This 

section performs the same out-of-sample risk hedging of the previous sections, but varies the 

out-of-sample time horizon.  The results from a one-month horizon are shown again for 

comparison purposes, but now 3, 12, and 48-month horizons are added.  The out-of-sample 

estimation starts after 60 months, so that an initial estimation window of 60 months is 

implemented, expanding to add the most recent month.  Again, the sample is January 1927 to 

December 2015, with the out-of-sample window starting in January 1932 and ending in 

December 2015.  Monthly returns are still used to find the loadings for risk hedging purposes.  

Table 3 shows the results for the C-PCA and PCA methods.    
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Table 3 provides the MSE, root MSE (RMSE), bias, bias squared, and variance and 

standard deviation of the error term.  Bias, standard deviation, and RMSE are multiplied by 100 

and reported in percent form.  MSE, bias squared, and variance are multiplied by 10,000 to be 

consistent.  The RMSE and standard deviation are provided in order to give units in percentage 

terms.  Also, the proportion of bias to RMSE is provided as well in order to give an economic 

magnitude of how much bias contributes to the investor’s loss (RMSE).13  The first thing that can 

be seen is that extending the horizon for hedging purposes results in C-PCA performing 

relatively better compared to PCA in terms of MSE.  At a one-month horizon, PCA has a MSE 

that is 0.51% higher than C-PCA.  At three months this proportionate increase rises to 1.14%, 

and it is 3.01% higher at twelve months.  However, it does drop to 0.76% at 48 months, perhaps 

due to lost forecast power.  Nonetheless, the less biased C-PCA factors perform relatively better 

than PCA as the time horizon increases, even when using MSE as the loss function. 

[Table 3 goes here] 

The results in Table 3 also show that the bias increase for both models is relatively linear 

and proportionate to the horizon. Going from one month to three months results in a bias that is 

very close to three times larger (and twelve times larger for twelve months).  The variance terms 

are also close to linear increases as the horizon increases, albeit with slightly larger increases 

compared to bias.  However, bias squared is what matters for MSE, so the increase from one 

month to three months is actually times nine, and times 144 for twelve months (assuming exactly 

                                                            
13 It should be noted that bias over RMSE and standard deviation over RMSE do not sum to one.  The reason is that 
there are covariance terms that are ignored.  However, the ratio of bias to RMSE does provide a better economic 
interpretation than bias squared over MSE, since the units (percent returns) are unchanged.  It should also be pointed 
that while equations (17) – (24) assume that the covariance terms are zero this is not the case empirically, as the 
covariance terms are noticeable. 
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linear increases, which breaks down a bit as the horizon approaches 12 and 48 months).  

Therefore, bias has a larger impact empirically as the horizon increases.   

In order to relate to equation (24), we can also examine MSE/T.  For C-PCA the MSE/T 

is 11.2, 12.5, 16, and 29.4 at 1, 3, 12, and 48 months, respectively.  For PCA it is 11.3, 12.7, 

16.5, and 29.7.  The pattern is clear in going from one to three to twelve months: MSE/T is 

getting progressively larger for PCA compared to C-PCA.  Thus, it would seem that 

PCACPCA   , as expected from equations (19) to (24).  At the longest horizon of 48 months, we 

can infer (roughly) the lambdas.  For C-PCA the lambda is roughly 1.9% and for PCA it is 

roughly 3.4%.  The difference in lambdas between the two models is approximately the same for 

the other horizons as well, and the lambdas are what should be expected based on the bias for 

each model.  We know that the larger lambda for PCA will make it perform worse as the horizon 

grows. 

Note that this effect would be amplified further if the investor’s loss function was 

asymmetrically shifted towards bias.  Table 3 shows how a slightly higher weight on bias 

squared can make a large difference.  This can be seen by comparing the magnitudes of the bias 

squared and variance terms (which together compose MSE).  Bias squared is of an extremely 

small magnitude compared to variance, so placing a weight even slightly above an equal weight 

would dramatically change the resulting loss.  The ratio of bias to RMSE can be examined to 

obtain the economic magnitude of how much more bias matters with a longer horizon.  At one 

month, bias only makes up around 2.4% to 3.6% of RMSE depending on the model (and 

ignoring covariance terms in RMSE).  However, this increases to 4.1%-5.8% at three months and 

8%-10.9% at twelve months.  At the longer-term horizon of 48 months, bias makes up as much 
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as 18.5% of RMSE.  It is expected that this would increase further as the horizon grows beyond 

four years (which we find in unreported results). 

Rolling Window 

 The same out-of-sample analysis is performed, but with a rolling 60-month window 

rather than an expanding window with an anchored starting point.  This is done both for 

robustness and because many researchers use a rolling 60-month window.  Table 4 shows that 

while both PCA and C-PCA easily beat the traditional asset pricing models, C-PCA has the 

lowest MSE.  However, it is only slightly lower and PCA has a slightly lower bias.  In 

comparing Table 4 to Panel C (so that the sample period is the same), it can be seen that using a 

rolling window results in lower MSE for all models.  However, for C-PCA the bias is now 

slightly higher.  It appears that a smaller, rolling window allows the model to capture the local 

variation, resulting in less variance and lower MSE.  However, if one would rather have a lower 

bias, then a larger, expanding window would be the proper choice.  Also, the benefits of 

imposing the APT restrictions are greater when using a larger estimation window.  In both Panels 

B and C of Table 2, C-PCA is able to drastically reduce bias (while having either a slightly 

higher or lower MSE, depending on the sample).  However, with the rolling window the bias is 

not reduced (although MSE is still slightly lower).  Therefore, if an investor/practitioner is 

interested in obtaining a lower bias (perhaps due to their asymmetric loss function or time 

horizon), then she should use an expanding window. 

 
[Table 4 goes here] 

 
 

Using in-sample betas 
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 Another test is performed to see how well the factors of each model explain future 

returns.  Here the portfolio weights are applied to the next month’s realized portfolio returns (so 

that the factor realization is stored each month based on information up to the previous month).  

Where the methodology differs is that now instead of applying the previously estimated betas, a 

full-sample regression (similar to following the Black, Jensen, and Scholes, 1972 approach) is 

run of portfolio returns on factor returns.14  The sample here is the previous out-of-sample 

estimation period (1977 – 2015 for the expanding window).  While this is not a true out-of-

sample test in that it cannot be applied in real-time by a potential investor, it still gives an idea of 

how well these portfolio weights (and consequently factors) explain future returns.  Additionally, 

the betas are now allowed to be constructed optimally based on the realized returns. 

Table 5 shows the regression results for the 1977 – 2015 sample, where the expanding 

window is used.  The results with and without a constant (alpha) are shown for both PCA and C-

PCA.  Note that these are averages of the thirty time-series regressions.  Now that we allow each 

portfolio to optimize its betas based on the factor realizations, the C-PCA appears to better 

explain returns.  The R-squared values are higher than those for PCA factors, and the MSE is 

lower.  Further, when allowing for a non-zero alpha, the C-PCA approach produces an alpha that 

is 4 basis points lower per month.  It can also be seen that only the first factor for each model is 

priced, although all four help explain covariance risk. 

 
[Table 5 goes here] 

 

The same analysis is repeated with the rolling window, where now the sample period is 

1932 – 2015.  Table 6 shows that while the MSE is slightly higher and the R-squared is slightly 

                                                            
14 We also perform the traditional Fama and MacBeth (1973) test on all models, but the results did not vary much 
across models and are therefore omitted, but available upon request. 
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lower for C-PCA, it does produce an average alpha that is 10 basis points lower per month.  

Again, it appears that when imposing the APT restrictions, it is better to use a larger window.  

PCA is slightly better when implementing a rolling 60-month window, consistent with the 

findings in Table 4.  The short estimation window may not allow for sufficient information in 

generating the weights, which should hold one-month-ahead out of sample if expected returns 

are efficiently estimated. 

 
[Table 6 goes here] 

 

 

5. Conclusion 

 In this paper we derive an approach in which the APT result of zero pricing error is 

imposed on principal components analysis (PCA).  We also show that PCA can be represented as 

an approach that minimizes the sum of squared errors of a panel (or maximizing first pass time 

series fit).  Thus, our approach imposes a perfect second pass fit (or up to a specified fraction of 

mispricing) while simultaneously maximizing first-pass fit.  While PCA has the lowest possible 

mean squared error (MSE), we examine the breakdown of MSE into variance and bias (squared) 

terms.  In sample, PCA will have the lowest MSE (and variance) of any model, while C-PCA 

(the model imposing APT restrictions) will have the lowest bias if mispricing is set to zero.  We 

argue that for most applications of asset pricing models (cost of capital, forecasting, hedging, 

etc.) the practitioner may prefer lower bias rather than variance/MSE.  Relatedly, any practitioner 

with a more long-term horizon would most likely prefer a model that is closer to the target on 

average (less bias), rather than being concerned with period-to-period fluctuations around the 
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target (variance).  We also show both analytically and empirically that a model with a lower bias 

will perform relatively better in terms of MSE as the investment horizon grows. 

 Due to the in-sample properties of the two models, an out-of-sample test is needed in 

order to properly compare the two.  We implement a hedging approach based on portfolio 

realizations, where the weights and betas based on previous in-sample estimation are applied to 

the realized portfolio returns in the following month.  We use the thirty Fama-French industry 

portfolios due to their weak factor structure in order to give a stronger test.  With in-sample 

estimation starting (and anchored) in 1927 and out-of-sample estimation starting in 1977 and 

ending in 2015, we show that bias is reduced by almost one-third when imposing the APT 

restrictions while MSE is only slightly higher (not significantly different).  Both in sample and 

out of sample, an investor or practitioner could adopt our approach and greatly reduce bias while 

only sacrificing a bit of MSE.  We also show that allowing betas to be optimized in-sample (with 

factor weights applied out-of-sample) results in C-PCA better explaining returns in terms of both 

bias and MSE.  For robustness purposes we also examine a rolling 60-month window.  However, 

it appears that a larger sample is needed to properly estimate the factors.  We also show that PCA 

and C-PCA perform significantly better than the traditional asset pricing models (CAPM, Fama-

French three-factor model, and Carhart model). 

 It is argued that in order to properly implement the APT model, the model restrictions 

should be imposed a priori.  Doing so results in lower bias out-of-sample, which would be 

desirable in certain applications.  The methodology is derived herein, with possible extensions 

examined as well.  This allows for future research to implement our approach for various 

applications.  We implement the model to a portfolio hedged against systematic risk so that there 

is no need to estimate the risk premia, and show that bias is indeed reduced greatly.  Future 
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research in this area should also consider the breakdown of MSE and whether bias or variance is 

more important in the appropriate context. 
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Table 1: Bai and Ng (2002) results 
Results are shown for the Bai and Ng (2002) criteria, using the 30 Fama-French 
industry portfolios with a sample of January 1927 - December 2015. The top 
panel shows the loss function results for each criterion and k factors from one to 
five. The bottom panel shows the optimum number of factors based on each 
criterion. The three different panel information criteria (IC) and panel pC  

criteria (PC) are shown, and k* gives the optimal number of factors which gives 
the lowest loss function. See Bai and Ng (2002) for details. 

k= IC1 IC2 IC3 PC1 PC2 PC3 
0 -5.2909 -5.2909 -5.2909 0.00504 0.00504 0.00504 
1 -6.2904 -6.2894 -6.2926 0.00176 0.00176 0.00176 
2 -6.3479 -6.346 -6.3524 0.00161 0.00161 0.00161 
3 -6.3713 -6.3685 -6.378 0.00154 0.00155 0.00154 
4 -6.3733 -6.3695 -6.3823 0.00152 0.00152 0.00151 
5 -6.3664 -6.3616 -6.3775 0.00152 0.00153 0.00151 

k* 
IC1 4 
IC2 4 
IC3 4 
PC1 4 
PC2 4 
PC3 5           
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TABLE 2: In-Sample and Out-Of-Sample Performance 
Panel A shows the full, in-sample results for the 30 Fama-French industry portfolios for the various models/approaches. The sample is January 1927 - December 
2015. Panel B shows the one-month-ahead out-of-sample results with an anchored starting point and initial 50-year estimation window. The sample is January 
1927 - December 2015, with out-of-sample hedging starting in January 1977 and ending in December 2015. Panel C shows the same OOS results, but with an 
initial 60-month window, with hedging starting in January 1932, ending again in December 2015.  All panels show the mean squared error (MSE) and bias 
(absolute value of the average pricing error), averaged across all 30 portfolios. Bias is multiplied by 100 and reported in monthly percent form.  MSE is 
multiplied by 10,000 to be consistent. The error term comes from directly applying weights and betas calculated from the particular approach to give a predicted 
return for each month (error is difference between realized return and predicted return). Note that MSE and Bias is not calculated via regression. The 2nd pass fit 
in Panel A is the adjusted R-squared value of a regression of mean returns regressed on 1st pass coefficients. The 2nd pass fit in Panels B and C is the adjusted R-
squared value of a regression of mean returns regressed on mean predicted returns. Error ratio is the sum of squared errors (mean returns less mean predicted 
returns, squared) over the sum of squared mean returns, multiplied by 100. PCA is principal components analysis, C-PCA is the constrained PCA introduced in 
this paper, CAPM is capital asset pricing model, FF3 is the Fama-French three-factor model, and Carhart adds the momentum factor to the FF3 model. Results 
are shown for the case with zero mispricing (γ=0) and k=4 (four factors). 

Panel A: In-Sample Results 
PCA C-PCA CAPM FF3 Carhart 

MSE 10.75 11.09 18.03 16.52 16.40 
Bias 0.11 0 0.14 0.18 0.15 
2nd pass fit -0.78 0.41 -1.51 -0.78 -0.42 

Panel B: Out-Of-Sample Results Starting in 1977 
PCA C-PCA CAPM FF3 Carhart 

MSE 11.35 11.45 18.30 17.72 17.72 
Bias 0.15 0.11 0.19 0.21 0.19 
2nd pass fit -0.09 0.44 -0.90 -1.14 -0.77 
error ratio 8.15 4.20 14.24 16.06 13.20 

Panel C: Out-Of-Sample Results Starting In 1932 
PCA C-PCA CAPM FF3 Carhart 

MSE 11.29 11.23 17.71 16.76 16.85 
Bias 0.12 0.08 0.15 0.17 0.14 
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2nd pass fit -0.82 0.00 -2.07 -2.93 -1.66 
error ratio 3.27 1.79 5.74 7.07 4.87 
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Table 3: Varying Time Horizon Out of Sample 
This table shows the mean squared error (MSE), root mean squared error (RMSE), bias/absolute value of the average error, bias squared (bias sq), variance of the 
error (var), and standard deviation of the error (std dev) for the constrained principal components analysis (C-PCA) and principal components analysis (PCA) 
models with the 30 Fama/French industry portfolios as the test assets. Also shown is the proportion of bias to RMSE (multiplied by 100) in order to give an 
economic interpretation of how much bias contributes to the loss. The sample is January 1927 - December 2015 (out-of-sample estimation ending at December 
2015). Bias, standard deviation, and RMSE are multiplied by 100 and reported in percent form.  MSE, bias squared, and variance are multiplied by 10,000 to be 
consistent.  Bias is reported as monthly returns. The error term comes from directly applying weights and betas calculated from the particular approach to give a 
predicted return for each month (error is difference between realized return and predicted return). Note that MSE and Bias is not calculated via regression. Each 
panel shows the results when varying the forecast/hedging horizon from 1 month to 3, 12, and 48 months. The in-sample estimation window starts at January 
1927, and out-of-sample estimation starts at January 1932 giving an initial estimation window of 60 months, which is expanding. Monthly returns are used to 
find the loadings in all cases. 

1-month returns 
Model: MSE RMSE Bias Bias sq Var Std dev Bias/RMSE 
C-PCA 11.23 3.35 0.08 0.01 11.22 3.35 2.39 
PCA 11.29 3.36 0.12 0.01 11.28 3.36 3.57 

3-month returns 
Model: MSE RMSE Bias Bias sq Var Std dev Bias/RMSE 
C-PCA 37.59 6.13 0.25 0.06 37.53 6.13 4.08 
PCA 38.02 6.17 0.36 0.13 37.89 6.16 5.84 

12-month returns 
Model: MSE RMSE Bias Bias sq Var Std dev Bias/RMSE 
C-PCA 192.18 13.86 1.11 1.23 190.95 13.82 8.01 
PCA 197.97 14.07 1.53 2.34 195.63 13.99 10.87 

48-month returns 
Model: MSE RMSE Bias Bias sq Var Std dev Bias/RMSE 
C-PCA 1413.42 37.60 5.20 27.04 1386.38 37.23 13.83 
PCA 1424.19 37.74 6.97 48.58 1375.61 37.09 18.47 
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 TABLE 4: Out-Of-Sample Performance with a Rolling Window 
This table shows the one-month-ahead out-of-sample results when using a rolling 60-month window for the 30 Fama-French industry portfolios for the various 
models/approaches. The sample is January 1927 - December 2015, with hedging starting in January 1932 and ending in December 2015. The above results show 
the mean squared error multiplied by 10,000 (MSE) and bias (absolute value of the average pricing error) multiplied by 100, averaged across all 30 portfolios. 
The error term comes from directly applying weights and betas calculated from the particular approach's in-sample estimation to give a one-month-ahead 
predicted return for each month (error is difference between realized return and predicted return). Note that MSE and Bias is not calculated via regression. 2nd 
pass fit is the adjusted R-squared value of a regression of mean returns regressed on mean predicted returns. Error ratio is the sum of squared errors (mean returns 
less mean predicted returns, squared) to the sum of squared mean returns (reported as multiplied by 100). PCA is principal components analysis, C-PCA is the 
constrained PCA introduced in this paper, CAPM is capital asset pricing model, FF3 is the Fama-French 3-factor model, and Carhart adds the momentum factor 
to the FF3 model. Results are shown for the case with zero mispricing (γ=0) and k=4 (four factors). 

PCA C-PCA CAPM FF3 Carhart 
MSE 10.12 10.05 17.04 15.90 16.15 
Bias 0.09 0.10 0.12 0.16 0.13 
2nd pass fit -0.01 -0.05 -0.89 -2.14 -1.30 
error ratio 1.82 1.91 4.02 5.75 4.19 
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Table 5: Out-Of-Sample Factor Weights with In-Sample Betas 

This table shows the results the regression results of returns on one-month-ahead factor returns. Reported are the mean for the 30 Fama-French industry 
portfolios. To form the one-month-ahead factor realizations, the factor weights are found in-sample and the one-month-ahead factor realization is stored based on 
those weights. The in-sample estimation period for the factor weights starts in January 1927, utilizing an expanding window with an anchored starting point. The 
regression sample is January 1977 to December 2015. F1 refers to the first factor, F2 the second, etc. Reported are coefficients and t-stats in parentheses. Also 
reported are the adjusted R-squared values and mean-squared error of the regression, multiplied by 10,000 (mean of the 30 portfolios). Results are shown for the 
case with zero mispricing (γ=0) and k=4 (four factors). 

PCA C-PCA 

constant 0.0018                 (0.23) 0.0014                   (0.11) 

F1 0.1810               (27.27) 0.1812               (27.58) 0.1817                 (24.09) 
0.1818                 
(25.05) 

F2 0.0092                  (0.91) 0.0095                  (0.92) -0.0081                 (0.32) 
-0.0070                 
(0.37) 

F3 0.0052                  (0.13) 
0.0055                 
(0.14) 

-0.0085                          (-
1.11) 

-0.0087                 
(-1.12) 

F4 0.0099                  (0.36) 
0.0103                 
(0.38) 

-0.0015                        (-
0.50) 

-0.0009                        (-
0.44) 

adj. R-squared 0.63 0.63 0.68 0.68 
MSE 14.12 14.18 11.89 11.86 
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Table 6: Out-Of-Sample Factor Weights with In-Sample Betas (Rolling Window) 
This table shows the results the regression results of returns on one-month-ahead factor returns. Reported are the mean for the 30 Fama-French industry 
portfolios. To form the one-month-ahead factor realizations, the factor weights are found in-sample and the one-month-ahead factor realization is stored based on 
those weights. The in-sample estimation period for the factor weights starts in January 1927, utilizing a rolling 60-month window. The regression sample is 
January 1932 to December 2015. F1 refers to the first factor, F2 the second, etc. Reported are coefficients and t-stats in parentheses. Also reported are the 
adjusted R-squared values and mean-squared error of the regression, multiplied by 10,000 (mean of the 30 portfolios). Results are shown for the case with zero 
mispricing (γ=0) and k=4 (four factors). 

PCA C-PCA 

constant 0.0081                 (4.01) 0.0071                    (3.50)

F1 
-0.0536                
(-8.03) 

-0.0532                         (-
7.91) 0.0191                  (1.81) 

0.0227                 
(2.11) 

F2 0.0109                  (0.50) 0.0123                  (0.56) 
-0.0452                         (-

2.77) 
-0.0422                          (-

2.55) 

F3 
-0.0286                          (-

0.86) 
-0.0362                          (-

1.11) 
-0.0699                          (-

2.54) 
-0.0729                          (-

2.70) 

F4 
-0.0851                          (-

2.33) 
-0.0923                          (-

2.53) 
-0.0348                          (-

0.98) 
-0.0376                          (-

1.06) 
adj. R-squared 0.07 0.05 0.06 0.04 
MSE 43.64 44.30 44.25 44.76 
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Appendix A 

%=============================================================== 
MATLAB sample program designed to optimally choose k factors (portfolios 
chosen from among n zero-investment assets) to minimize the unexplained 
'first-pass' errors subject to a targeted fraction of 'second pass' pricing 
errors (astar). Output provides Q as k vectors of portfolio weights 
normalized to square to one. Further a and s provide the fractions of pricing 
errors and unexplained variance, respectively, whereas a0 and s0 provide the 
benchmark, unrestricted fractions of these. 
=============================================================== 
  
clear all; clc; 
  
%User Inputs k and astar: 
k=2; %chosen number of factors; must be less than n 
astar=0.00;  %chosen fraction of pricing errors (sum of squared alphas 
relative to sum of squared mean returns).  
%astar should logically be between 0 and 1, but also less than a0, the 
implied a for lambda=0 for the optimization to make sense (otherwise the 
constraint is not binding). 
 
load FF25.txt;  
FF=FF25(:,2:26);  %Fama-French excess returns for 25 size and value sorted 
portfolios starting July 1963 ending June 2005 
[t,n]=size(FF); 
  
Sigma=cov(FF); %covariance matrix for the N asset returns 
mu=mean(FF)'; %vector of mean returns over the T periods of the N assets 
lambda=0; %lambda is the lagrangian multiplier constraint for the pricing 
errors constraint.  Initial value is zero. 
eps=0.0000000001; %tolerance level for deviations from the target fraction of 
squared pricing errors. 
diff=-5; %the experimental change in the lagrangian multiplier 
a=0.10; %initial level for the fraction of pricing errors  
its=0; %iterations counter 
CHECK=[]; %storing results for all iterations 
  
%Loop to converge to true lambda (and Q) contingent on choice of astar 
while (a-astar)^2>eps && its<1000; %continue revisions until pricing errors 
are within tolerance or the number of iterations becomes too large 
V=Sigma+lambda*mu*mu'; %V is the matrix for which eigenvectors are found 
[Q,Delta]=eigs(V,k); %'eigs' easier than 'eig' since it provides Qk 
abar=a; %abar accounts for the lagged iteration of a 
a=(mu'*mu - (mu'*Q*Q'*mu))/(mu'*mu); %defines fraction of pricing errors 
s=1-trace(Q'*Sigma*Q)/trace(Sigma); %defines fraction of unexplained variance 
if (a-astar)*(a-abar)>0   %if a worsens reverse the change in lambda 
    diff=-diff/2; %reverse change in lambda but at half the pace 
end 
lambda=lambda+diff;  %update lambda in the direction that brings pricing 
errors closer to target 
its=its+1; 
CHECK=[CHECK;[lambda a s]]; 
end 
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lambda=lambda-diff %corrected for the unnecessary change in lambda in the 
final iteration.  
%Note that lambda must be positive. If not, change the sign or lower the 
value of the initial 'diff' choice. 
lamcheck=trace((Delta-Q'*Sigma*Q)/((1-a)*mu'*mu))  %check that lambda is 
indeed the equilibrium value 
  
[Q0, Delta0]=eigs(Sigma,k); %find eigenvectors for unconstrained case 
a0=(mu'*mu - (mu'*Q0*Q0'*mu))/(mu'*mu); %provides fraction pricing errors in 
unconstrained case. 
s0=1-trace(Q0'*Sigma*Q0)/trace(Sigma); 
%Check to make sure that a0>astar 
  
Q,[a,a0;s, s0] %factor weights (Q) plus fractions of pricing errors and 
unexplained variance in optimized case (column 1) and benchmark case (column 
2). 
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Appendix B 

Consider the following optimization problem:  

 (B1)  )()(
,

μΣμγαΣαee 11

Q
  


E

Min
,     

where 10    represents the target level for the sum of squared alphas relative to the sum of 

squared mean returns. Using equations (1) and (2), the properties of traces, and taking 

expectations  
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The B  are set exogenously equal to the standard OLS betas of equation (4): 

 (B3)  1 ΣQ][Q'ΣQB ,        

Using the definition of B   and the properties of traces in (4.B2), dropping constants and 

multiplying by -1 gives 

 (B4)  ][ 1 QΣQ)Q[Q(μμΣQ]QQ][ΣQ 12

Q
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 ,   

and in addition λ is set to force μΣμγαΣα 11   .  Using Trace properties: 
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This is equivalent to 
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 (B6)  )[ XXΔ(I)X]mm(ΣX
X

 Tr
Max

, 

where QΣX 2/1 ,  μΣm 1/2   and IΣQQXX     and Δ   is the multiplier enforcing this 

constraint. Then the first-order conditions are 

 (B7)  ΔX)Xmm(Σ   .      

 (B8) ΔXXΣμμΣΣXV 2
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Pre-multiplying (4.B7) by 'X  gives 

 (B9) XmmXΣXXΔ    

 and subsequently pre- and post-multiplying both sides by XmQμ k  and its transpose, 

respectively, and using the normalization that IXX   implies for the optimal choice of X  that  

2)()( mXXmμΣXXΔμ  kk . To impose mmμΣμγαΣα 11      eliminate α  from 

equation (2).    This produces mmμΣμμQQμmXXm 1   )1()1(  . Then, 

mmmXXm  )1(   and 2)()( mXXmμΣXXΔμ  kk  jointly imply 

 (B10)  212 )()1/()( μΣμμΣXXΔμ   kk . 

Thus we use (4.B8) and (4.B10)  together with QΣX 2/1 ,  IΣQQXX  , and Qμk  to 

obtain the appropriate portfolios given OLS betas. 

 


