
PROBABILISTIC SUPERVISORY CONTROL OF
PROBABILISTIC DISCRETE EVENT SYSTEMS

By

VERA PANTELIC, B.Eng., M.A.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of
Doctor of Philosophy

McMaster University

©Copyright by Vera Pantelic, April 2011

DOCTOR OF PHILOSOPHY (2011)

(Software Engineering)
MCMASTER UNIVERSITY

Hamilton, Ontario

TITLE:

AUTHOR:

Probabilistic Supervisory Control of Probabilistic

Discrete Event Systems

Vera Pantelic

B.Eng., University of Belgrade, Serbia

M.A.Sc., McMaster University, Canada

SUPERVISOR: Dr. Mark Lawford

NUMBER OF PAGES: ix, 109

ii

To Ivan and Stefan

Abstract

This thesis considers probabilistic supervisory control of probabilistic discrete

event systems (PDES). PDES are modeled as generators of probabilistic lan­

guages. The probabilistic supervisors employed are a generalization of the

deterministic ones previously employed in the literature. At any state, the su­

pervisor enables/disables events with certain probabilities. The probabilistic

supervisory control problem (PSCP) that has previously been considered in

the literature is revisited: find, if possible, a supervisor under whose control

the behavior of a plant is identical to a given probabilistic specification. The

existing results are unified, complemented with a solution of a special case and

the computational analysis of synthesis problem and the solution.

The central place in the thesis is given to the solution of the optimal

probabilistic supervisory control problem (OPSCP) in the framework: if the

conditions for the existence of probabilistic supervisor for PSCP problem are

not satisfied, find a probabilistic supervisor such that the achievable behaviour

is as close as possible to the desired behaviour. The proximity is measured

using the concept of pseudometric on states of generators. The distance be­

tween two systems is defined as the distance in the pseudometric between the

initial states of the corresponding generators.

The pseudometric is adopted from the research in formal methods com­

munity and is defined as the greatest fixed point of a monotone function. Start­

ing from this definition, we suggest two algorithms for finding the distances

in the pseudometric. Further, we give a logical characterization of the same

pseudometric such that the distance between two systems is measured by a

formula that distinguishes between the systems the most. A trace characteri­

zation of the pseudometric is then derived from the logical characterization by

which the pseudometric measures the difference of (appropriately discounted)

iv

probabilities of traces and sets of traces generated by systems, as well as some

more complicated properties of traces. Then, the solution to the optimal prob­

abilistic supervisory control problem is presented.

Further, the solution of the problem of approximation of a given prob­

abilistic generator with another generator of a prespecified structure is sug­

gested such that the new model is as close as possible to the original one in

the pseudometric (probabilistic model fitting). The significance of the approx­

imation is then discussed. While other applications are briefly discussed, a

special attention is given to the use of ideas of probabilistic model fitting in

the solution of a modified optimal probabilistic supervisory control problem.

v

Acknowledgments

I would like to express my gratitude and appreciation to Dr. Mark Lawford,

my advisor, for his guidance, and support during my Ph.D. journey.

Also, I would like to thank Dr. Ryszard Janicki for his constant en­

couragement since my first days at McMaster University.

I offer my sincere gratitude to the other members of my Ph.D. commit­

tee, Dr. Tom Maibaum, and Dr. Doug Down, for their valuable suggestions

and advices.

Above all, I thank my family and friends, especially my beloved parents

Divna and Milos, for being by my side all these years.

vi

Contents

Abstract

Acknowledgments

List of Figures

1 Introduction

1.1 Motivation

1.2 Related Work

1.3 Comparison with MDPs

1.4 Contributions of the Thesis

1.5 Thesis Outline

2 Preliminaries

2.1 Notation .

2.2 Modeling PDES

2.3 Probabilistic Supervisory Control of PDES

2.4 Probability Matching

2.5 Handling terminating PDES

2.6 Probabilistic Pseudometrics

iv

vi

ix

1

1

5

10

12

13

16
16

17

18

22

24

25

3 The Framework 30

3.1 Solution of the PSCP 31

3.1.1 Supervisor for PSCP: Existence and Synthesis 31

3.1.2 Formal Proof 33

3.1.3 Example . 41

3.1.4 Complexity Analysis of Synthesis Problem and Algorithm 42

vii

3.2 Reactive Model of Probabilistic Supervisor 45

3.3 Optimal Probabilistic Supervisory Control Problem: Formulation 47

3.4 Applications: An Example 50

3.5 Summary . 52

4 The Metric: Definition, Algorithms and Characterizations 54
4.1 The Metric: Definition . 54

4.2 Calculating the Metric . 57

4.2.1 Simplifying Function 'D for Deterministic Generators 57

4.2.2 Calculating the Metric: Algorithms 60

4.3 Logical Characterization 67

4.4 From Logic to Traces 73

4.5 Choosing the Metric: Justification . 75

4.6 Summary 76

5 Optimal Probabilistic Supervisory Control of PDES 78
5.1 Algorithm: Part I 79

5.2 Algorithm: Part II 80

5.3 Summarizing the Algorithm 88

5.4 Example . 89

5.5 Summary 91

6 Probabilistic Model Fitting
6.1 Probabilistic Model Fitting: Problem and Solution

6.2 Some Applications of Model Fitting

93

93
99

6.3 Model Fitting and Closest Approximation: Problem Revisited 100

6.4 Summary

7 Conclusions
7.1 Future Research .

viii

104

105
107

List of Figures

1.1 Transformation from a probabilistic generator to an MDP 12

2.1 Plant G and requirements specification G2 . . . • • . 19

2.2 Deterministic supervisor V and controlled plant V/G 19

2.3 Probabilistic supervisor Vp 21

2.4 Mapping from (x(s)(a),x(s)(,B)) to (P0 , Pp) plane . . 24

2.5 Terminating PDES G and resulting nonterminating PDES G' 25

3.1 Plant G and requirements specification G2 41

3.2 Fixpoint iteration 43

3.3 Probabilistic supervisor Vp as MDP ~R • 46

3.4 Sensors and resulting plant . . . 49

3.5 Requirements specification Gr1 •

3.6 Requirements specification Gr2 •

4.1 FUnction 'D: Example .

4.2 Example

51

52

60
69

5.1 An example: Plant Gp, and requirements specification Gr . 79

5.2 Generators G1 , and G2 . 91

5.3 Optimal approximation G~ and probabilistic supervisor V such

that V/G1 = G~ 91

6.1 Model fitting: an example 95

6.2 Generators G1 , G2 , and the closest approximation G~ in the

revisited problem . 103

ix

X

Chapter 1

Introduction

1.1 Motivation

The supervisory control theory of discrete event systems (DES) was developed

in the seminal work of Ramadge and Wonham (Ramadge and Wonham, 1987).

A supervisor (controller) controls a plant by enabling/ disabling controllable

events based on the observation of the previous behaviour of the plant. DES

are most often modeled by generators, finite automata whose transitions are

labeled with events: therefore, the behaviour of a DES can be represented as

a regular language. The supervisory control problem typically considered is to

supervise the plant so it generates a given specification language.

On the other hand, probabilistic models have attracted considerable

attention in modeling systems with uncertainty. They are of interest in many

application areas, e.g., communication protocols, distributed computing, per­

formance analysis, and fault tolerance. Many probabilistic logics are used in

the specification and verification of probabilistic systems (excellent overviews

caB be found in (Rutten et al., 2004; Kwiatkowska et al., 2007)). Prob­

abilistic model checking provides for limited guarantees when conventional

model checking is not possible (e.g., the state space is too large) (Huth and

Kwiatkowska, 1998). Many of probabilistic models have been widely researched

and applied. While reactive models have been predominantly used in proba­

bilistic model checking tools as well as in the control of probabilistic systems,

1

PhD Thesis- ·Vera Pantelic- McMaster- Computing and Software

generative models have also found their applications, especially in the con­

trol and modeling of robot systems (Li et al., 1998; Mallapragada et al., 2009;

Chattopadhyay et al., 2009), human sequence prediction (Feldman and Hanna,

1966), etc. The difference between reactive and generative systems is in the

treatment of events (Schroder and Mateus, 2002; Glabbeek et al., 1995). In

a reactive system, an event is seen as an input from environment: the system

reacts to it by choosing a next state according to a probability distribution on

the states of the system. On the other hand, in a generative system, an event

is seen as an output: the system chooses a transition according to a proba­

bility distribution, and generates as an output the event the chosen transition

is labeled with. In terms of expressiveness, in general, a generative model is

more expressive than a reactive model.

We seek for a comprehensive theoretical framework for probabilistic

supervisory control theory of probabilistic discrete event systems (PDES). We

build upon the framework introduced in (Lawford and Wonham, 1993; Postma

and Lawford, 2004). Finite state machines with transitions labeled with events,

generators, commonly used in classical supervisory theory to represent discrete

event systems, are generalized to a generative probabilistic model called prob­

abilistic generators, which are generative models. Roughly speaking, proba­

bilistic generators are generators extended with probabilities attached to each

transition. A probability attached to an event that can occur from a state

represents the probability of occurrence of that event from the state. A prob­

abilistic generator generates a probabilistic language: each string generated by

the underlying (nonprobabilistic) generator has a probability attached to it

that represents the probability of occurrence of that particular string in the

language. The standard supervisory control problem is accordingly general­

ized to the probabilistic supervisory control problem (PSCP): find, if possible,

a supervisor for a plant so that the plant under control generates a given prob­

abilistic language. The problem has been solved in (Lawford and Wonham,

1993; Postma and Lawford, 2004).

The most widely used framework for control of PDES is that of Markov

decision processes (MDPs, also known as Markov controlled processes). An

MDP is a reactive model. Most state-of-the-art probabilistic model checkers

2

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

support this model directly. The generative model that will be used in this

thesis can be straightforwardly transformed into an MDP (with the introduc­

tion of a special event) so that the probabilistic model checking tools can be

used for the analysis of these systems. The details of the transformation will

be discussed later in this chapter. Also, as will be shown, probabilistic su­

pervisor in our framework can be represented as an MDP, and probabilistic

policy as defined in the MDP framework can be represented using an aug­

mented probabilistic generator. This convertibility of the components of one

framework to the components of the other has a potential in the reuse of the

existing knowledge base of one framework in the other one, in terms of both

control theory and verification. However, simply transforming our model to

an MDP and applying the control as defined in the MDP framework on the

resulting MDP is pointless: the control applied to the transformed model in

the MDP framework cannot change the dynamics of the system.

A distinguishing feature of our framework is probabilistic control (as

opposed to deterministic control). Probabilistic control means the employ­

ment of the control method of random disablement: after observing a string

s, the probabilistic supervisor enables an event CY with a certain probability.

Although deterministic control of PDES is easier to deal with than probabilis­

tic control (both from the viewpoint of analysis, and practice), probabilistic

control of PDES is much more powerful. It has been shown in (Lawford and

Wonham, 1993) that probabilistic supervisory control can generate a much

larger class of probabilistic languages than deterministic control. In the sense

of the probabilistic supervisory control problem mentioned, the use of deter­

ministic control might be too restrictive for a designer. Hence, probabilistic

control is employed in this framework.

The main goals of the thesis are, firstly, to merge the existing results

of (Lawford and Wonham, 1993) and (Postma and Lawford, 2004) while com­

pleting them with the solution of a special case and complexity analysis, and,

secondly, and more importantly, to solve the optimal probabilistic supervisory

control problem (OPSCP, also known as the closest approximation problem)

inside the framework. Analogous to a problem in classical supervisory control

theory, it can happen that, given a plant to be controlled and a probabilistic

3

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

specification language, no supervisor exists such that the plant under prob­

abilistic control generates the prespecified (probabilistic) language. In this

case, when the exact solution is not achievable, a designer tries to find a su­

pervisor such that the plant under control generates a closest approximation

of the desired behaviour. The non probabilistic behaviour of the requirements

specification is considered to be a safety constraint in the standard supervisory

control sense similar to (Kumar and Garg, 2001; Kumar and Garg, 1998a; Ku­

mar and Garg, 1998b). Therefore, the suprema! controllable sublanguage of

the specification with respect to the plant is generated as the maximal achiev­

able legal nonprobabilistic behaviour of the plant under control. Then, the

closest approximation is calculated by minimizing the distance between the

achievable probabilistic behaviour of the plant under control and the prob­

abilistic behaviour of the specification whose nonprobabilistic behaviour is

reduced to the mentioned suprema! controllable sublanguage. The distance

between (generators representing) PDES is measured using a pseudometric on

states of probabilistic generators.

While our initial focus was on its use in supervisory control, the concept

of pseudometric is obviously useful outside of supervisory control theory as a

tool to measure the behavioural similarity of systems represented as probabilis­

tic generators. As (Giacalone et al., 1990; Desharnais et al., 1999; Desharnais

et al., 2002) (to name a few) pointed out, probabilistic bisimulation is not

robust as it requires the exact matching of the values of probabilities of cor­

responding transitions. It is too sensitive to small changes in probabilities: a

slight change of probabilities makes bisimilar systems nonbisimilar. Similarly,

two systems with only slightly different probabilities of corresponding transi­

tions would be as different as two systems with disjoint event sets (Deng et al.,

2006). Further, as the values of probabilities are often only approximations,

using either probabilistic bisimulation or reasoning in a boolean-valued logic

is not sensible (van Breugel and Worrell, 2005). The notion of a pseudometric

is hence used to approximate the notion of equivalence. The pseudometric we

use is based on the pseudometric introduced in (Deng et al., 2006). It mea­

sures behavioural similarity between two states: the smaller the distance, the

greater similarity between the states. The pseudometric subsumes probabilis-

4

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

tic bisimulation: two states are at distance 0 in the pseudometric if and only if

they are probabilistic bisimilar. No algorithms have been previously suggested

for the calculation of distances in the pseudometric for probabilistic genera­

tors, and previously only a fixed point characterization has been offered. We

suggest two algorithms for the calculation of the distance between two gen­

erators in the pseudometric, and then present different characterizations of

the pseudometric that offer more information about its nature. Further, we

explore the approximation of a PDES with a probabilistic generator with pre­

specified structure such that the original probabilistic behaviour of the PDES

is preserved as much as possible (the approximation will be referred to as prob­

abilistic model fitting). One of the possible applications of this approximation

is the state reduction of PDES. However, as it turns out, the approximation

has far more reaching applications with regards to the optimal probabilistic

supervisory control problem. More precisely, some of the ideas of probabilistic

model fitting are used to modify the OPSCP algorithm so that the distance

between the achievable probabilistic behaviour of the plant under control and

the original (probabilistic) requirements specification (without constraining

the specification to its supremal controllable sub language) is minimized.

1.2 Related Work

Many models of stochastic behaviour of discrete event systems have been pro­

posed. Markov chains (Cassandras, 1993), Markov decision processes (also re­

ferred to as controlled Markov chains) (Bellman, 1957; Howard, 1960), Rabin's

probabilistic automata (Rabin, 1963), and stochastic Petri nets (Molloy, 1982)

are some of the most referenced and widely applied. Markov chains extend

automata with probability distributions induced by states: each transition

has a certain probability of occurrence. Markov decision processes (MDPs)

are Markov chains with actions. For each state, and an action, a probability

distribution is induced: the sum of transition probabilities of one event at a

state is 1. MDPs are a classical reactive model: for each state, probabilities

are distributed over the outgoing transitions labeled with the same event. In

a generative system, on the other hand, for each state, probabilities are dis-

5

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

tributed over all outgoing transitions. Another popular reactive model is that

of Rabin's probabilistic automata (Rabin, 1963). The model is similar to that

of MDPs, with the addition of accepting states and no cost/reward typically

associated with transitions in MDPs. The motivation of Rabin's automata was

to model cut-languages: the sets of strings whose probability of occurrence is

greater than a certain value, ,\.

The work of (Garg et al., 1999; Garg, 1992a; Garg, 1992b) models

probabilistic systems using probabilistic languages: a map assigns each trace

in a system a value that represents its probability of occurrence. The following

two constraints are imposed on the probabilities: (i) the probability of the trace

of zero length is 1, and (ii) the probability of any trace is greater than or equal

to the cumulative probability of all of its extensions. The second constraint

allows for modeling of termination. As (Garget al., 1999) states, probabilistic

languages can also be viewed as formal power series (Salomaa, 1990), or fuzzy

sets (Lee and Zadeh, 1969). A probabilistic language is a formal power series

with the two constraints stated above. The difference of the approach of

(Garg et al., 1999; Garg, 1992a; Garg, 1992b) and formal power series is in

the operator definitions (for details, see (Garg et al., 1999)). On the other

hand, fuzzy languages are sets of event traces with a membership grade in the

interval [0, 1]. Compared to fuzzy languages, probabilistic languages allow only

the membership grades that satisfy certain constraints, such that membership

grades can be viewed as the probability of occurrences of traces. Further,

in (Garget al., 1999; Garg, 1992a; Garg, 1992b), probabilistic languages are

represented using probabilistic automata.

We use the approach of (Garget al., 1999; Garg, 1992a; Garg, 1992b)

and model PDES as probabilistic languages. Further, a probabilistic language

can be generated by a finite state automaton with transitions labeled with

events and probabilities. The model is generative: the probabilities of all the

events in a certain state add up to at most one. When the probabilities add

up to less than one, the remaining probability is the probability of termi­

nation. Terminating automata can be transformed into nonterminating with

introduction of a special, terminating event that would lead to a dump state.

Generative models are more general than reactive models: for every state, a

6

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

generative model contains not only the information about relative probabilities

of transitions on the same event, but also information on relative probabilities

of transitions on different events (Schroder and Mateus, 2002; Glabbeek et al.,

1995). However, as opposed to the automata of (Garg et al., 1999; Garg,

1992a; Garg, 1992b), our probabilistic automaton (probabilistic generator) is

deterministic in the sense that, for each state of the automaton, there is at

most one next state to which the automaton can move to on a given event.

Also, unlike Markov chains, MDPs or stochastic Petri nets, the emphasis of the

approach of (Garget al., 1999; Garg, 1992a; Garg, 1992b) is on event traces

rather than state traces. As previously mentioned, the model has been used

in control and modeling of robot systems (Li et al., 1998; Mallapragada et al.,

2009; Chattopadhyay et al., 2009), human sequence prediction (Feldman and

Hanna, 1966), etc.

The most widely used framework for the study of control of probabilis­

tic systems is that of MDPs or controlled Markov chains (for details on the

control of MDPs, and its comparison with our chosen setting, see Section 1.3).

The control typically studied in this framework is optimal in the sense that

a certain performance criterion is optimized (Gihman and Skorohod, 1979;

Bertsekas, 1987; Herm1ndez-Lerma and Lasserre, 1996). Probabilistic control

(usually referred to as randomized control in the literature) has been exten­

sively studied in this framework. The famous result (Blackwell, 1962) states

that for every MDP with a finite state space and set of actions, there is a

deterministic and stationary policy that is optimal. In the case of partial ob­

servability things become more complicated (Arapostathis et al., 1993). It has

been shown in (Rosenberg et al., 2000) that an optimal policy for MDP with

partial observation is, in the general case, neither deterministic nor stationary.

However, if the model is deterministic, then the optimal policy can be chosen

to be deterministic and stationary too. But, if we add the constraint for a

supervisor to have bounded memory, a deterministic policy is outperformed

by a randomized policy (Kalai and Solan, 2003) (without taking the cost of

randomization into account). In (Beauquier et al., 1995), partially observed

MDPs are considered. The goal is to find optimal control where the criterion

of optimality is described in terms of a regular language that represents the ad-

7

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

missible behavior of the system. The paper shows that, when it comes to finite

memory policies, randomized policies can do better than deterministic ones.

Optimality·of the trunk reservation problem (the problem of serving customers

using finite-capacity queues, where the number of customer types is fixed) with

a different type of constraints is considered in (Feinberg and Reiman, 1994;

Fan-Orzechowski and Feinberg, 2007). E.g., in (Fan-Orzechowski and Fein­

berg, 2007), the goal is to maximize the average rewards per unit time subject

to multiple constraints on the average costs per unit time. It is shown that an

optimal policy is randomized.

In (Arapostathis et al., 2003), state feedback control of controlled

Markov chains is studied, where the requirements specification is given as

a unit-interval vector that represents an upper bound on the state probability

vector. First, the set of state feedback controllers that satisfy the require­

ment for any given safe initial state probability distribution is identified, and,

then, the set of all safe initial state probability distributions for a given state

feedback controller is found. The work of (Arapostathis et al., 2005) further

extends the results of (Arapostathis et al., 2003) to a more general class of

Markov chains. Also, a safety requirement is given by two vectors representing

lower and upper bounds on the state probability vector. Also, (Arapostathis

et al., 2005) presents a more general iterative algorithm to find safe initial

distributions, and provides the number of iterations needed for the result to

be reached.

Controller synthesis for probabilistic systems has also attracted atten­

tion in the formal methods community. E.g., (Baier et al., 2004; Kucera

and Strazovsky, 2008) consider different control policies: deterministic or

randomized (probabilistic) on one hand; memoryless (Markovian) or history­

independent on the other. The systems considered are finite Markov decision

processes with the state space divided into two disjoint sets: controllable states

and uncontrollable states. In (Baier et al., 2004), the controller synthesis prob­

lem for a requirements specification given as a probabilistic computation tree

logic (PCTL) formula is shown to be NP-hard, and a synthesis algorithm for

automata specifications is presented. Controller synthesis was considered in

(Kucera and StraZovsky, 2008) for a requirements specification given as a for-

8

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

mula of PCTL extended with long-run average propositions. It is shown that

the existence of such a controller is decidable, and an algorithm for the synthe­

sis of a controller, when it exists, is presented. Further, controller robustness

with respect to slight changes in the probabilities of the plant is discussed.

The paper shows that the existence of robust controllers is decidable and the

controller, if it exists, is effectively computable.

Rabin's probabilistic automata are used in (Mortazavian, 1993) as the

underlying model. A requirements specification is given as a cut-language, and

the classical supervisory control definitions of controllability and observability

are modified accordingly. E.g., a language is A-controllable if the probability

that uncontrollable events leave the set of legal strings legal is greater than A.

Necessary and sufficient conditions for the existence of a supervisor are given.

A deterministic supervisory control framework for stochastic discrete

event systems was developed in (Kumar and Garg, 2001; Kumar and Garg,

1998a; Kumar and Garg, 1998b) using the model of (Garget al., 1999; Garg,

1992a; Garg, 1992b). Controllable events are disabled dynamically as first

suggested in (Lawford and Wonham, 1993), so that the probabilities of their

execution become zero, and the probabilities of the occurrence of other events

proportionally increase. The control objective considered is to construct a su­

pervisor such that the controlled plant does not execute specified illegal traces,

and occurrences of the legal traces in the system are greater than or equal to

specified values. While (Kumar and Garg, 2001; Kumar and Garg, 1998a) give

necessary and sufficient conditions for the existence of a supervisor, (Kumar

and Garg, 2001; Kumar and Garg, 1998b) offer an algorithm to compute a

maximally permissive supervisor on-line. An optimal supervisory theory of

probabilistic systems was considered in (Li et al., 1998), where the system is

allowed to violate the specification, but with a probability lower than a pre­

specified value. PDES are modeled as the deterministic version of probabilistic

automata used in (Garg et al., 1999; Garg, 1992a; Garg, 1992b). In (Chat­

topadhyay and Ray, 2007 a; Chattopadhyay and Ray, 2007b), the same model

is used. The requirements specification is given by weights assigned to states

of a plant and the control goal is, roughly speaking, to reach the states with

more weight (more desirable states) more often. A deterministic control is syn-

9

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

thesized for a given requirements specification so that a measure based on the

specification and probabilities of the plant is optimized. In (Chattopadhyay

et al., 2009), an algorithm for robot path planning is suggested based on this

measure. Further, this measure-theoretic approach is generalized to partially

observed probabilistic transition systems modeled as probabilistic generators

in (Chattopadhyay and Ray, 2010).

The framework we adopt was first suggested in (Lawford and Won­

ham, 1993). PDES are modeled as the deterministic version of probabilistic

automata from (Garget al., 1999; Garg, 1992a; Garg, 1992b). As mentioned

before, in the sense of probabilistic languages generated, it has been shown in

(Lawford and Wonham, 1993) that probabilistic supervisory control is much

more powerful: it can generate a much larger class of probabilistic languages

than deterministic control. Hence, (Lawford and Wonham, 1993), (Postma

and Lawford, 2004) investigate probabilistic supervisory control: conditions

under which a probabilistic control can generate a prespecified probabilistic

language, and, if the supervisor exists, the algorithm for its synthesis. Further,

(Lawford and Wonham, 1993) gives the necessary and sufficient conditions for

the existence of a supervisor for a class of PDES. The conditions reduce to

checking whether certain linear equalities and inequalities hold. A formal proof

of the necessity and sufficiency of the conditions and an algorithm for the cal­

culation of the supervisor, if it exists, are presented in (Postma and Lawford,

2004).

1.3 Comparison with MDPs

MDPs represent a widely used framework for study of control of Markov chains.

They have been applied in many fields (engineering, economics, statistics,

control of epidemics). An MDP is a tuple (8, A, {A(s)Js E S}, P, c), where 8

is a set of states, A is a set of actions, {A(s)Js E S} is the family of nonempty

subsets of A, where A(s) is the set of admissible actions at a state s. Let K be

a set of admissible state-action pairs, K = {(s, a)Js E S, a E A(s)}. Then, P

is a transition function, P: K x 8-+ [0, 1], such that for every (s, a) E K, it

holds that Es'ES P((s, a), s') = 1. · P((s, a), s') is interpreted as the probability

10

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

of the action a taking the system from the state s to state s'. The function c

is a one-stage cost function, c : K ---+ R Alternatively, a reward function can

be defined.

Let St be the state at timet EN. If the action a is chosen ((st, a) is an

admissible pair), then the system moves to the state St+l with the probability

P((st, a), St+l), and with the cost c(st, a). A control policy 1r is a sequence

{7rt}, where 1ft is the mapping 1ft : K ---+ [0, 1], such that 7rt(A(st)lht) = 1,

where ht is the admissible history of the form ht = (so, a0 , ••. , St-b at_1 , St)

with (si, ai) E K fori= 0, ... , t- 1 and St E S. Note that the defined policy

is probabilistic: the deterministic one is just its special case (the choice of

action to be taken is deterministic). The period of time over which the system

is observed is called the planning (or decision making or control) horizon T.

It can be finite or infinite.

The optimal control problem is to find the admissible control policy

such that a certain criterion is optimized (possibly with some additional con­

straints, as already mentioned). Different cost evaluation criteria have been

used. Some of the most commonly used are total cost, discounted cost, average

cost, and sample path average cost. For more details, the interested reader is

referred to (Borkar, 1991; Arapostathis et al., 1993).

As already stated, compared to classical reactive models, a generative

model is the more general one: for every state, it contains not only the in­

formation about relative probabilities of transitions on a particular event, but

also information on the relative probabilities of transitions on different events

(Schroder and Mateus, 2002; Glabbeek et al., 1995). Therefore, as a generative

model contains more information than a reactive one, a direct transformation

of a generative model to a reactive model would abstract from this informa­

tion. However, a probabilistic generator can be transformed into a reactive

model by the introduction of a special event 7 (see Figure 3.3), with a state

expansion factor of O(!'Ei). The new model is an MDP, with a special event

7.

Let G be a probabilistic generator representing a plant, and G MDP its

equivalent MDP. For every states E S of GMDP, the set A(s) is a singleton as

only one event is admissible from a state. That means that a controller in the

11

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

G

a: 0.3

~POl ~~C)
qo~ql

~
(}: 0.4

rz::· 0.3 -s: 1 t2 T: 0.1

7:0.7 /3:1 ~
~""-----:- tl • t6

to\~dY
O:~ r:OA

t5

Figure 1.1: Transformation from a probabilistic generator to an MDP

MDP framework would always pick that one event available, and, consequently,

would not be able to affect the probabilistic behaviour of the plant. Effectively,

the control in MDP framework would not make sense for an MDP equivalent

to a probabilistic generator.

1.4 Contributions of the Thesis

The contributions of this thesis are the following:

• The framework for probabilistic supervisory control of probabilistic dis­

crete event systems, initiated in the work of (Lawford and Wonham,

1993; Postma and Lawford, 2004), is further refined by solving a special

case previously unconsidered. The main results of (Lawford and Won­

ham, 1993; Postma and Lawford, 2004) are updated to reflect the special

case. The formal proofs are reworked accordingly. Then, time complex­

ity analyses of both the controller synthesis problem and the proposed

synthesis algorithm are discussed.

• An optimal supervisory control problem inside the probabilistic frame­

work is posed and solved. Again, as in classical supervisory theory,

if there does not exist a (probabilistic) supervisor such that the con­

trolled plant's behaviour can exactly match a prespecified probabilistic

behaviour, a supervisor is synthesized such that the controlled plant's

12

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

behaviour is "as close as possible" to the desired behaviour. The mea­

sure of proximity is a pseudometric on states of probabilistic systems.

The distance between two generators in the pseudometric is the distance

between the initial states of the generators.

• Significant results regarding the chosen pseudometric are presented. The

pseudometric that is used to measure the proximity of two probabilistic

systems (represented as two generators) is defined based on the pseudo­

metric of (Deng et al., 2006) (more precisely, our pseudometric is equal

to the pseudometric of (Deng et al., 2006) up to a constant). First, we

simplify the fixed point characterization of the pseudometric for prob­

abilistic generators. Then, we suggest two efficient algorithms for the

calculation of distances in the pseudometric. Further, both logical and

trace characterizations of the pseudometric are ·given. The logical char­

acterization measures the distance between two systems by a real-valued

formula that distinguishes between the systems the most. The trace

characterization offers an insight into the similarity of (appropriately dis­

counted) probabilistic traces of the systems (whose distance is measured

by the pseudometric), certain sets of the traces and certain properties of

the traces.

• Probabilistic model fitting is presented: a probabilistic generator can

be approximated (under certain conditions) with another one with a

prespecified structure such that the new representation is as close as

possible to the original one in the pseudometric. Applications of ideas of

model fitting are numerous, starting with PDES state space reduction.

Then, the solution to model fitting is used to justify a criterion for the

optimal probabilistic supervisory control problem of PDES. The most

significant use of an idea of model fitting is in the solution of a modified

optimal probabilistic supervisory control problem for PDES.

1.5 Thesis Outline

Now, we present the organization of the thesis.

13

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Chapter 2 introduces PDES modeled as generators of probabilistic lan­

guages. Then, probabilistic control and the probabilistic supervisory control

problem (PSCP, or the probabilistic model matching problem) are presented.

Also, the intuition behind the necessary and sufficient conditions for the ex­

istence of a supervisor for solving the PSCP is given. Then, the concept of a

pseudometric is explained, and a detailed literature review of pseudometrics

on probabilistic transition systems is offered.

Chapter 3 presents the PSCP and its solution in detail. Also, the

time complexity analyses of both the synthesis problem and algorithm are

presented. Probabilistic supervisor is then represented using an MDP. The

chapter further presents the formulation of the optimal probabilistic super­

visory control problem (the closest approximation problem): if a supervisor

for the PSCP does not exist, an optimal control should be synthesized such

that the resulting controlled plant is as close as possible to the (appropriately

modified) requirements specification. Also, an application of the research is

depicted.

Chapter 4 first presents the pseudometric to be used in the solution of

the OPSCP. Then, it derives and proves the correctness of two algorithms for

the calculation of the distances between the states of a PDES in this pseu­

dometric. Then, the pseudometric is also given a logical characterization and

a trace characterization: these characterizations help understand the pseudo­

metric itself.

Chapter 5 solves the optimal probabilistic supervisory control prob­

lem: the algorithm for finding the closest approximation within a prespecified

accuracy is presented.

Chapter 6 introduces probabilistic model fitting, and some of its main

applications. The main application of model fitting presented is that a slightly

different optimal probabilistic supervisory control problem is solved by a straight­

forward modification of the OPSCP algorithm derived in Chapter 5.

Chapter 7 concludes the thesis and offers avenues for future work.

Note: Most of this thesis has already been published. The material of

Chapter 3 (except for Section 3.2 and Section 3.4) was introduced in (Pantelic

et al., 2009; Pantelic et al., 2008). Chapters 4 and 5 present the work that

14

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

was published in (Pantelic and Lawford, 201Gb; Pantelic and Lawford, 2009;

Pantelic and Lawford, 2010a; Pantelic and Lawford, 2011). Finally, the con­

tents of the Chapter 6 were presented in (Pantelic and Lawford, 201Gb), and

(Pantelic and Lawford, 2011).

15

Chapter 2

Preliminaries

In this chapter, we first set the notation to be used throughout the thesis

(Section 2.1). Next, PDES modeled as generators of probabilistic languages

are presented in Section 2.2. The method of probabilistic control (random

disablement) is introduced in Section 2.3. Then, the probabilistic supervi­

sory control problem is presented, and its solution is informally sketched in

Section 2.4. In Section 2.5, transformation of terminating to nonterminating

generators is given. The notion of a pseudometric as a dominant concept in the

solution of the optimal probabilistic supervisory control problem is introduced

in Section 2.6, and the related literature is reviewed.

2.1 Notation

Small Greek letters will be used to denote events and capital Greek letters

will denote sets of events. To denote sets whose elements are not necessarily

events, capital Roman letters will be used, and small Roman letters will denote

functions. Given sets A, and B, the power set of A will be denoted by P(A),
and the set difference of A and B by A \B. Also, we assume the set difference

operation to be left-associative. Further, the set of functions from A to B will

be denoted as BA.

16

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

2.2 Modeling PDES

Following (Lawford and Wonham, 1993),· a probabilistic DES can be modeled

as a probabilistic generator G = (Q, :E, 8, q0 ,p), where Q is the nonempty

finite set of states, :E is a finite alphabet whose elements we will refer to as

event labels, 8 : Q x :E --+ Q is the (partial) transition function, q0 E Q is
the initial state, and p : Q x :E --+ [0, 1] is the statewise event probability

distribution, i.e. for any q E Q, EuE:E p(q, cr) ~ 1. The probability that

the event cr E :E is going to occur at the state q E Q is p(q, cr). For the

generator G to be well-defined, (i) p(q, cr) = 0 should hold if and only if

8(q, cr) is undefined and (ii) \/q EuE:Ep(q, cr) ~ 1. The probabilistic generator

G is nonterminating if, for every reachable state q E Q, EuE:Ep(q, cr) = 1.

Conversely, G is terminating if there is at least one reachable state q E Q

such that EuE:Ep(q, cr) < 1. The probability that the system terminates at

state q is 1 - EuE:Ep(q, cr). Throughout the sequel, unless stated otherwise,

we assume nonterminating generators. If a PDES is terminating, it can easily

be transformed into a nonterminating one using the technique described in

Section 2.5.

The state transition function is traditionally extended by induction on

the length of strings to 8 : Q x :E* --+ Q in a natural way. For a state q,

and a string s, the expression 8 (q, s)! will denote that 8 is defined for the

string s in the state q. Note that the definition of probabilistic generators

does not contain marking states since the probabilistic specification languages

considered in this thesis are prefix closed languages.

The language L(G) generated by a probabilistic DES generator G =

(Q, :E, 8, q0 ,p) is L(G) = {s E :E* l8(q0 , s)!}. The probabilistic language gener­

ated by G is defined as:

Lp(G)(c) = 1,

Lp(G)(scr) = { Lp(G)(s) · p(8(qo, s), cr),
0,

if 8(qo, s)!

otherwise.

Informally, Lp(G)(s) is the probability that the strings is executed in G. Also,

Lp(G)(s) > 0 iff s E L(G).

17

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

For each state q E Q, we define the function pq : :E x Q --+ [0, 1] such

that for any q' E Q, a E :E, we have pq(a, q') = p(q, a) if q' = 8(q, a), and

0 otherwise. The function pq is a probability distribution on the set :E x Q
induced by q. Also, for a state q, we define the set of possible events to be

Pos(q) := {a E :Eip(q, a) > 0}.

Next, the synchronous product of (nonprobabilistic) discrete event sys­

tems (DES) that underlie PDES is defined in a standard manner. For a prob­

abilistic generator G = (Q, :E, 8, q0 , p), the (nonprobabilistic) discrete event

system (DES) that underlies G will be denoted GnP, i.e., GnP= (Q,:E,8,q0)

throughout this thesis. Let G~P and ~P be the nonprobabilistic generators

(DES) underlying G1 = (Qll :E, 81, qopP1) and G2 = (Q2, :E, 82, qo2 ,P2), respec­

tively, i.e., ~P = (QI, :E1181, qoJ and ~P = (Q2, :E, 82, qo2).

Definition 2.1. The synchronous product of ~P = (Q1, :E, 81, qoJ and ~P =
(Q2, :E, 82, qo2), denoted ~P II ~P, is the reachable sub-DES of DES Ga =

(Qa, :E, 8, qo), where Qa = Q1 X Q2, qo = (qoll qo2), and, for any a E :E,

qi E Qi, i = 1, 2, it holds that 8((q1, q2), a) = (81(qb a), 82(q2, a)) whenever

81(qll a)! and 82(q2, a)!.

2.3 Probabilistic Supervisory Control ofPDES

As in classical supervisory control theory, the set :E is partitioned into Ec and

Eu, the sets of controllable and uncontrollable events, respectively. Also, let

plant Gunder the supervision of supervisor V be denoted as V jG. Given prob­

abilistic generator G2 of a probabilistic specification language E (i.e. Lp(G2) =

E) and probabilistic generator G of probabilistic language Lp(G) representing

a plant, the goal is to find a supervisor V such that the language generated

by the plant under supervision, Lp(V/G), is equal to E. After observing a

string s, a classical, deterministic supervisor must consistently either enable

or disable each controllable event a E :Ec. Let G = (Q, :E, 8, qo,p). Then, a

deterministic supervisor can be defined using a function V : L(G) --+ {0, 1 P\

18

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

where:

. { 1, if u E ~u or su E E
('Vs E L(G))('Vu E ~)V(s)(u) =

0, otherwise.

We now explore the limited effect a classical supervisor can have on a

PDES. Figure 2.1 shows two PDES: the first one, G, represents a plant, and

the second one, G2 , is a requirements specification. Controllable events

G
a: 0.6

b (3:0.2

OR q;~.,
~

a: 0.4

Figure 2.1: Plant G and requirements specification G2

are marked with a bar on their edges. A number next to an event represents

the probability distribution of that event. G has alphabet ~ = {a, ,8, 1}
and is nonterminating. The event 1 is uncontrollable, and, therefore, always

enabled. An important assumption about the behaviour of a supervisor is

made: After an event is disabled, the probabilities of the remaining enabled

events proportionally increase. The question to be answered is: Does there

exist a deterministic supervisor V such that Lp(V/G) = Lp(G2)?
We first consider the case when the PDES G is in state q0 and the

PDES G2 is in state q20 . The required probabilities of all events in state q20

Figure 2.2: Deterministic supervisor V and controlled plant V/G

19

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

are nonzero. Therefore, the deterministic supervisor V should enable all (con­

trollable) events (state qv0 of DES V in Figure 2.2). Hence, the probabilities of

events in the controlled plant remain unchanged (see state r0 of the controlled

plant V/G in Figure 2.2).

Next, after an odd number of a or r events (PDES G is in state q0 and

PDES G2 is in state q21), the supervisor should disable (3. When V disables

only (3, the plant can choose between a and r· The probabilities of these

events occurring in the resulting system are increased proportional to their

original probabilities. Therefore, the probability of a occurring in state r 1 of

the controlled plant is equal to:

(I { }) p(qo, a) 0.6
p aaE [,a = p(qo,a)+p(qo,[)- 0.6+0.2 =0.75

Similarly, the probability of r occurring is 0.25.

Therefore, although the requirement was met nonprobabilistically (mean­

ing L(V /G) = L(G2)), it is obvious that there is no deterministic control such

that Lp(V/G) = Lp(G2). This example illustrates that application of deter­

ministic supervisors to PDES results in a rather limited class of probabilistic

languages. Hence, applying a deterministic supervisor to a PDES might be

unacceptable for a designer.

Now, deterministic supervisors for DES are generalized to probabilistic

supervisors. The control technique used is called random disablement. Instead

of deterministically enabling or disabling controllable events, probabilistic su­

pervisors enable events with certain probabilities. This means that, upon

reaching a certain state q, the control pattern (the set of events to be enabled)

is chosen according to the supervisor's probability distributions of controllable

events. Consequently, the controller does not always enable the same events

when in the state q.

For a PDES G = (Q, :E, 6, q0 ,p), a probabilistic supervisor is a function

Vp: L(G)---+ [0,1]E such that for s E L(G),a E :E:

Vp(s)(a) = {
1
'

x(s)(a),

if a E :Eu

otherwise, where x(s)(a) E [0, 1].

Therefore, after observing a strings, the supervisor enables the event a with

probability Vp(s)(a). After a set of controllable events to be enabled, 8, has

20

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

been decided upon (uncontrollable events are always enabled), the system acts

as if supervised by a deterministic supervisor. An example of a probabilistic

supervisor is given in Figure 2.3. Note that the probabilities of all the events

Vp

li.886~62

~~."
~

a: 0.533

Figure 2.3: Probabilistic supervisor Vp

that can execute in a state of this generator do not, in general, add up to 1.

This is because those are not the probabilities of events occurring, but rather

being enabled.

What is the probability that an event a will occur in a plant Gunder

the control of probabilistic supervisor Vp when the string s E £(G) has been

observed? First, the control pattern is chosen according to the controllable

event probabilities of the supervisor, and then, under that pattern, the plant

makes a choice according to its events probabilities. Let q E Q be the state of

the plant after s.

The probability that the event a E :E will occur after string s has been

observed is equal to:

where

P(a in Vp/GJs)

= L P(aJVp enables e after s). P(Vp enables 8Js)
6EP(Pos(q)n:Ec)

(

p(q, a)
if a E 8 U :Eu

P(aJVp enables e after s) = I: p(q, cr) '
uE6U:Eu

0, otherwise

P(Vp enables 8Js) = II Vp(s)(cr) II (1- Vp(s)(cr)).
uE6 uE(Pos(q)n:Ec)\6

21

(2.1)

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

For the probabilistic controller from Figure 2.3, the possible control

patterns in state qp0 are 8 = 0, 8 = {a}, 8 = {,8}, and 8 = {a, ,8}. Let

Pu (s) be the probability of u occlirring in the plant under control after the

strings is observed, Pu(s) = P(u E VpjGjs). If we apply (2.1) to the controller

from Figure 2.3 for a strings such that the controller is at state qp0 , then :

Pa(s)

Pf3(s)

P1 (s)

- p(q0 , a)Vp(s)(a)Vp(s)(,B) + P(aju E {/,a})Vp(s)(a)(1- Vp(s)(,B))

- 0.6(0.162)(0.886) + 0.75(0.162)(1- 0.886) (2.2)

- 0.1

- p(q0 , ,8)Vp(s)(a)Vp(s)(,8) + P(,Bju E {/, ,8})(1- Vp(s)(a))Vp(s)(,B)

- 0.2(0.162)(0.886) + 0.5(1- 0.162)(0.886) (2.3)

- 0.4

- p(qo, 1)Vp(s)(a)Vp(s)(,8) + P(Jju E {''a})Vp(s)(a)(1 - Vp(s)(,8))

+P(Jju E {!,,8})(1- Vp(s)(a))Vp(s)(,B)

+P(Jju E {!})(1- Vp(s)(a))(1- Vp(s)(,B)) (2.4)

- 0.2(0.162)(0.886) + 0.25(0.162)(1- 0.886)

+0.5(1- 0.162)(0.886) + 1.0(1- 0.162)(1- 0.886)

- 0.5

Similarly, for a string t that corresponds to the supervisor in Figure 2.3

being at state qPI, we have Pa(t) = 0.4, Pf3(t) = 0 and P1 (t) = 0.6. Therefore,

the plant under probabilistic control succeeds in generating the probabilis­

tic language Lp(G2) from Figure 2.1 whereas a deterministic controller failed.

However, in the general case, for a given plant, there might not exist a proba­

bilistic supervisor for a given probabilistic specification language. In the next

section, we will explore the conditions under which a probabilistic supervisor

exists.

2.4 Probability Matching

The goal is to match the behaviour of the controlled plant with a given prob­

abilistic specification language. We call this problem the Probabilistic Super-

22

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

visory Control Problem (PSCP). More formally:

Given a plant PDES Gp and a requirements specification PDES Gr, find, if

possible, a probabilistic supervisor Vp such that Lp(Vp/G~) = Lp(Gr)·

Let G = (Q,L;,8,q0 ,p) be the plant as seen in Figure 2.1. Let x(s) E

[0, 1]Pos(q)ni:c be the control input after string s has been observed, and the

plant is in state q E Q.

First, we note that the ratio between the probabilities of two uncon­

trollable events in an uncontrolled plant should remain the same in the plant

under control. Here is the informal reasoning for this claim. Let a, {3 E L;u·

We compare the values of P(a E Yp/Gis) and P({3 E Yp/Gis) when calculated

using (2.1). For a control policy 8, the value of P(Vp enables 8ls) is the same

for both a and {3. Also, the factor 1/ 2::: p(q, a) is the same for both events.
uE9UI:u

Therefore, the only distinguishing factor is p(q, a). The formal proof of this

claim will be presented in Section 3.1.2.

Further, we consider controllable events. We slightly abuse the notation

for Pu(s) in order to explicitly relate Pa(s) and Pf3(s) of (2.2) and (2.3) to

supervisor probabilities, x(s)(a) and x(s)(f3). If we apply (2.1) to the plant G
from Figure 2.1, then:

Pa(x(s)(a), x(s)(f3)) - 0.6x(s)(a)x(s)(f3) + 0.75x(s)(a)(1- x(s)(f3))

- 0.75x(s)(a)- 0.15x(s)(a)x(s)(f3) (2.5)

Pf3(x(s)(a), x(s)(f3)) - 0.2x(s)(a)x(s)(f3) + 0.5(1- x(s)(a))x(s)(f3)

- 0.5x(s)(f3)- 0.3x(s)(a)x(s)(f3) (2.6)

For notational convenience, in the sequel of this section, let us denote

Pu(x(s)(a),x(s)(f3)) with Pu, where a E {a,{3,{}. Our goal is to find con­

straints on Pa and Pf3 such that (2.5) and (2.6) are satisfied, and (x(s)(a),

x(s)(f3)) E [0, 1] x [0, 1]. To map this region from the (x(s)(a),x(s)(f3)) plane

to the (Pa. Pf3) plane (as shown at Figure 2.4), we use the following logic. If

x(s)(a) is equal to 0, then, according to (2.5) and (2.6), Pa = 0 (a is disabled),

and Pf3 = 0.5x(s)(f3). So, in this case, Pa = 0 and Pf3 E [0, 0.5]. Similarly,

when x(s)(f3) = 0, then Pf3 = 0 and Pa E [0, 0.75]. For x(s)(a) = 1, we solve

for x(s)(f3) in one of (2.5) or (2.6) and substitute it into other equation to get

23

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

0.5 1 X 8 ,a 0.5 1 Pa

Figure 2.4: Mapping from (x(s)(a), x(s)(f3)) to (Fe:.:, Pf3) plane

~Pa + Pf3 = 1. Similarly, for x(s)(f3) = 1, we get Pa + 2Pf3 = 1. Those two

lines intersect at the point (0.6, 0.2), that corresponds to the probabilities of

a and (3 in the original, uncontrolled system.

There exists another way to derive those bounds. Since G is nontermi­

nating and the controller never disables all the events, then

(2.7)

Since "(is uncontrollable, then Vp (s) ("!) = 1. Let us consider a case when

x(s)(a) = 1. This means that a is effectively uncontrollable, so:

p(q, "!) 1
-

p(q, a) 3

Also, as x(s)(a) decreases, P(a) decreases too. Therefore:

1
P1 2: 3Pa

with equality holding when x(s)(a) = 1. We plug this back into (2.7) to get

~Pa + Pf3:::; 1. Similarly, if we assume that x(s)(f3) = 1, we get Pa + 2Pf3:::; 1.

2.5 Handling terminating PDES

The results and proofs presented in this thesis apply only to nonterminating

systems. We now present their extension to terminating systems as introduced

in (Lawford and Wonham, 1993). The terminating PDES G = (Q, ~' 8, q0 ,p)
I

can be extended to non terminating G' = (Q U { qj_}, ~ U { CJ j_}, 8', q0 , p'), where

24

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

p'(q, u) = p(q, u), u E}:

p'(q, aj_) = 1 -l:uEI:p(q, a) and

p'(qj_, aj_) = 1

~'(q, a) = ~(q, a), a E}:

~'(q,aj_) =qj_ ifp'(q,aj_) > 0

~'(qj_, aj_) = qj_.

An example of a terminating generator and its extension to a nonter­

minating one is shown in Figure 2.5.

G

a: 0.2

q

p,o.~o.4
~::..___ ____ ~,.

"(: 0.5

Q.l.

(TJ_ = 1.0 a
(T j_ : 0.3

G'

"(: 0.5

Figure 2.5: Terminating PDES G and resulting nonterminating PDES G'

There is one obstacle to a straightforward extension of presented results

to terminating generators. At the state q, as depicted in Figure 2.5, all the

events that can occur are controllable. Then, the termination in the controlled

plant can come about not only as a consequence of a termination in the original

plant, but also as a consequence of the controller disabling all the (controllable)

events. This problem is addressed in Section 3.1.2.

2.6 Probabilistic Pseudometrics

Central to the solution of the optimal probabilistic supervisory control problem

is the concept of a pseudometric. The concept is defined next, and the relevant

literature is reviewed.

Probabilistic bisimulation, introduced in (Larsen and Skou, 1991), is

commonly used to define an equivalence relation between probabilistic systems.

However, probabilistic bisimulation is not a robust relation: roughly speaking,

two states of probabilistic systems are bisimilar if and only if they have the

same transitions with exactly the same probabilities to states in the same

equivalence classes. The formal definition follows and represents a modified

25

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

version of the definition of probabilistic bisimulation given in (Barrett and

Lafortune, 1997).

Definition 2.2. Let G = (Q, ~' ~' q0 ,p) be a PDES. A probabilistic bisimula­

tion on Q is the binary relation= such that for any(]' E ~' and any q1, q2 E Q
such that q1 = q2, the following holds:

1. For every q~ E Q such that ~ (q1, (]') = ift, there is q~ E Q such that

~(q2, (]') = ~' p(qr, (]') = p(q2, (]'), and ift = q~.
2. For every ~ E Q such that ~(q2 , (]') = ~' there is q~ E. Q such that

~(q1, (]') = ift, p(qi, (]') = p(q2, (]'), and ift = ~·
States q1 and q2 are probabilistic bisimilar if there exists a probabilistic bisim­

ulation = such that ql - q2.

As a more robust way to compare probabilistic systems, a notion of

pseudometric is introduced. A pseudometric on a set of states Q is a function

d : Q x Q --+ JR that defines a distance between two elements of Q, and

satisfies the following conditions: d(x, y) > 0, d(x, x) = 0, d(x, y) = d(y, x),

and d(x, z) :::; d(x, y) + d(y, z), for any x, y, z E Q. A pseudometric generalizes

a metric in that two distinct points are allowed to be at the distance 0. If all

distances are in [0, 1], the pseudometric is 1-bounded. In the sequel, we will

use the terms metric and pseudometric interchangeably.

Little work on metrics has focused on generative models. The first

paper that discussed the use of a metric as a way to measure the distance

between two probabilistic processes is (Giacalone et al., 1990). This early

work considers deterministic generative probabilistic systems. The distance

between processes is a number between 0 and 1, and represents a measure

of a behavioural proximity between the processes: the smaller the number,

the smaller the distance. The work of (Garg et al., 1999) suggests a metric

based on probabilities of occurrence of strings in languages generated by two

automata. More precisely, the distance between two automata in the metric is

defined as a maximal difference in occurrence probabilities of strings in the cor­

responding languages. Probabilistic generators are used to model probabilistic

26

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

systems in (Chattopadhyay and Ray, 2008). In a symbolic pattern recogni­

tion application, a metric is introduced to measure the distance between the

original model and the transformed one, where the transformed model has the

same long term distribution over the states as the original one.

The work of (Deng et al., 2006) introduces a pseudometric on states

for a large class of probabilistic automata, including reactive and generative

probabilistic automata. Further, this metric is inspired by the Kantorovich

metric (Kantorovich, 1942) which is used in transport problems, and more

recently has been used by Hutchinson in his theory of fractals (Hutchinson,

1981). The metric is also known as Wasserstein metric (Wasserstein, 1969).

The metric is characterized as the greatest fixed point of a function. Two states

are at distance 0 in this metric if and only if they are probabilistic bisimilar.

They also introduce two process calculi, and show that process combinators

are non-expansive: they do not increase distance. This is the metric we will

use in the solution of our problem. For reactive systems, the work of (Deng

et al., 2006) is closely related to (Desharnais et al., 1999; Desharnais et al.,

2002; Desharnais et al., 2004; van Breugel and Worrell, 2001b; van Breugel

and Worrell, 200la; van Breugel and Worrell, 2005; van Breugel et al., 2005;

van Breugel and Worrell, 2006; Ferns et al., 2004; Ferns et al., 2005; Ferns

et al., 2006).

The work of (Desharnais et al., 1999) considers partial labeled Markov

chains (Markov decision processes of Section 1.3, possibly with termination,

and no cost function defined). The ·motivation of the paper is to explore the

possibility of substituting one process with another that is sufficiently close in a

metric space. Two states are at distance 0 in this metric if and only if they are

probabilistic bisimilar. The pseudometric is given via a real-valued logic that is

motivated by the well-known result that the Hennessy-Milner logic is complete

for bisimulation (Arnold, 1994). More concretely, the ideas of (Kozen, 1985)

are used to generalize a logic so that reasoning about probabilistic systems is

supported. Let :F be a set of functions such that a function f E :F evaluated

at a state takes truth values in the interval [0, 1], instead of {0, 1}. Then, the

27

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

distance between two states is defined as a pseudometric:

This paper also offers an algorithm to calculate a distance between two systems

in the introduced metric with a prespecified accuracy. The algorithm runs in

exponential time. Further, asymptotic metrics have been considered as a side

topic. Also, compositional reasoning is shown to be possible by showing the

non-expansiveness of process combinators. Non-expansiveness means that the

distance between processes does not increase when they are put in the same

context.

An extension of (Desharnais et al., 1999) is given in (Desharnais et al.,

2004). It considers not only discrete probabilistic systems (partial labeled

Markov chains of (Desharnais et al., 1999)), but also continuous systems (la­

beled Markov processes). A pseudometric analogue to weak bisimulation is

presented in (Desharnais et al., 2002) for labeled concurrent Markov chains:

the set of states is divided into two disjoint sets of probabilistic and nonde­

terministic states. The transitions from probabilistic states are not labeled,

while the transitions from nondeterministic states are. Two systems can be

differently designed to satisfy the same requirement: they would use different

actions to reach the same goal. Then, it would not make sense to compare

them logically, as they would be completely different, and use of the metric

analogue of strong bisimulation would not be appropriate. However, if inter­

nal actions are abstracted away using an appropriate metric analogue of weak

bisimulation, the systems would be similar in the logical, metric, and quan­

titative senses. The metric is given a fixed-point characterization that allows

for a coinductive proof.

A pseudometric as a measure of behavioral similarity between the sys­

tems is suggested in (van Breugel and Worrell, 2001a; van Breugel and Worrell,

2006) for reactive nonlabeled probabilistic systems, but the results can be eas­

ily generalized to labeled reactive systems (partial labeled Markov chains) (van

Breugel and Worrell, 2005). The pseudometric is coalgebraic. An algorithm

to approximate (with a prespecified accuracy) the distances in the presented

pseudometric between states of a system is presented. The algorithm is polyno-

28

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

mial and uses linear programming techniques. Comparison of this metric with

a number of metrics (e.g., (de Vink and Rutten, 1999; Norman, 1997; Baier

- and Kwiatkowska, 2000; den Hartog, 1998)) is given in (van Breugel and Wor­

rell, 2001b). As opposed to the metric (de Vink and Rutten, 1999) (and also

those of (Baier and Kwiatkowska, 2000) and (den Hartog, 1998)), the metric

of (van Breugel and Worrell, 2001a) reflects the fact that two systems with

probabilities of corresponding transitions only slightly different, are metrically

very close. The distance between systems in the metric of (Norman, 1997)

can be zero, even though the systems are not probabilistic bisimilar. Also, the

metric of (van Breugel and Worrell, 2001a) can be recovered from the metric of

(Desharnais et al., 1999) by adding negation to the logic of (Desharnais et al.,

1999) (see (van Breugel and Worrell, 2001b)). The work of (Ferns et al., 2004;

Ferns et al., 2005; Ferns et al., 2006) builds on the aforementioned bulk of re­

search closely related to the pseudometric of (Deng et al., 2006) by considering

pseudometrics on states of MDPs, in optimization context.

In the probabilistic model checking literature, the model of (van Breugel

and Worrell, 2001a) is extended with a state labeling function that assigns to

each state a set of atomic propositions valid in that state, e.g., probabilis­

tic transition systems of (van Breugel and Worrell, 2001a) are extended to

(labeled) discrete time Markov chains of (Rutten et al., 2004; Kwiatkowska

et al., 2007) (although, the latter does not allow for termination, while the

former does). Our generative models can be transformed to (labeled) discrete

time Markov chains of (Rutten et al., 2004; Kwiatkowska et al., 2007), but

with a state space expansion by a factor of O(J:EJ). Also, with the same state

expansion factor, our generators can be converted to the labeled concurrent

Markov chains of (Desharnais et al., 2002) and partial labeled Markov chains

of (Desharnais et al., 1999; Desharnais et al., 2004). However, as the current

mathematical apparatus allows for direct reasoning about distance between

our generators, no benefits in regards to the optimal supervisory control of

PDES would have been gained by a transformation to one of the aforemen­

tioned models. Furthermore, keeping generators as the primary model allows

for a smooth integration of use of classical supervisory control theory and

probabilistic methods.

29

Chapter 3

The Framework

In (Lawford and Wonham, 1993), the probabilistic supervisory control problem

(PSCP, or the probability matching problem) is formulated, and necessary and

sufficient conditions for the existence of a probabilistic supervisor such that a

given specification is satisfied are given. The results of that work were pre­

sented in Chapter 2. In this chapter, we present the material first introduced

in (Postma and Lawford, 2004; Pantelic et al., 2009; Pantelic et al., 2008).

The core of the material was first presented in (Postma and Lawford, 2004),

where the formal proof of necessity and sufficiency of the conditions for the

existence of a probabilistic supervisor for the PSCP is given, and an algorithm

for synthesis of a supervisor is presented. Then, in (Pantelic et al., 2009),

the main results of (Lawford and Wonham, 1993) and (Postma and Lawford,

2004) are modified to include a special case when only controllable events can

occur from a state in a plant. This case has not been explicitly handled in any

of the previous work. Further, the time complexity analyses of both the con­

troller synthesis problem and the synthesis algorithm are given. The work of

(Pantelic et al., 2008) represents a long version of (Pantelic et al., 2009), with

a detailed formal proof being a reworked version of proofs from (Postma and

Lawford, 2004). This is the proof that will be presented in this chapter. Then,

in Section 3.2, previously unpublished material on a probabilistic supervisor

being modeled by a reactive model is introduced. In Section 3.3, the OPSCP

problem is formulated. At last, an application is presented in Section 3.4.

30

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

3.1 Solution of the PSCP

In Chapter 2, the intuition behind the conditions for the existence of a proba­

bilistic supervisor (that were first presented in (Lawford and Wonham, 1993))

was given. Now, in Section 3.1.1, the conditions are presented formally to­

gether with an algorithm for the computation of the supervisor which is the

main result of (Postma and Lawford, 2004). A detailed formal proof of the

results of Section 3.1.1 is presented in Section 3.1.2. The modification of the

results of (Lawford and Wonham, 1993) and (Postma and Lawford, 2004) that

accounts for the special case when all events possible from a state are con­

trollable is discussed in detail in this section. An example is presented in

Section 3.1.3. The complexity analysis of both the synthesis problem and its

solution is given in Section 3.1.4.

3.1.1 Supervisor for PSCP: Existence and Synthesis

First, we state necessary and sufficient conditions for the existence of a solution

to the PSCP problem for nonterminating PDES.

Theorem 3.1. Let Gp = (Qp, "E., 6p, qp0 ,pp) and Gr = (Qr, "E., 6n qr0 ,Pr) be

two nonterminating PDES with disjoint state sets Qp and Qr. There exists a

probabilistic supervisor Vp such that Lp(Vp/Gp) = Lp(Gr) iff for all s E L(Gr)

there exists q E Q P such that 6p (qp0 , s) = q and, letting r = 6r (qr0 , s), the

following two conditions hold:

(i) Pos(q) n "E.u = Pos(r) n "E.u, and for all O" E Pos(q) n "E.u,

Pp(q, O")
2: Pp(q, a)

aEEu

Pr(r,O")
2: Pr(r, a)

aEEu

(ii) Pos(r) n "E.c ~ Pos(q) n "E.c, and, if Pos(q) n "E.u =/:- 0, then for all O" E

Pos(q) n "E.c,

Pr(r, 0") """"' () """"' ()
()

L......J Pp q, a + L......J Pr r, a ~ 1.
Pp q, O"

aEEu aEPos(q)nEc

31

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

The first part of both conditions of Theorem 3.1 corresponds to con­

trollability from classical supervisory control theory (namely, the condition

Pos(q) h L:u = Pos(r) n I:u of (i), and Pos(r) n I:c ~ Pos(q) n I:c of (ii)). The

remaining equations and inequalities correspond to the conditions for proba­

bility matching.

For each uncontrollable event possible from a state in a plant, the equa­

tion to be checked ref:l.ects the fact that the ratio of probabilities of uncontrol­

lable events remains the same under supervision. As elaborated in Chapter 2,

this comes from the fact that after a control pattern has been chosen, the

probabilities of disabled events in the plant are redistributed over enabled

events in proportion to their probabilities. All possible uncontrollable events

are always enabled, hence the ratios of their probabilities remain unchanged.

Also, as shown in Chapter 2, an inequality for each possible controllable event

a is derived from the upper bound on the probability of the occurrence of a

in the supervised plant, that is reached when the controllable event is always

enabled.

When the conditions are satisfied, a solution to the PSCP exists. After

a string has been observed, the control input is given as a solution to the system

of nonlinear equations given by (2.1). This solution can be approximated by

the f:ixpoint iteration algorithm as presented in the following theorem.

Theorem 3.2. Assume that conditions (i) and {ii) of Theorem 3.1 are satis­

fied. Let r(s) = Pos(q) n I:c if Pos(q) n I:u f. 0, and r(s) = (Pos(q) n I:c)\ { 1}
otherwise, where 1 E Pos(q) is chosen such that for every a E Pos(q),
Pr(r,r) > Pr(r,u) is satisfied. Let x0(s) E [0, 1]r(s) and f(s) : JRr(s) -+ JRr(s).
Pp(q,/) -- Pp(q,u)

For x0 (s) = 0, the sequence

k = 0, 1, ... , where

f(s)(x)(o') = Pp(q, :)t(s)~x)(a), u E f(s), x E JR.r(s) and

h(s)(x)(u)

= L 1 II (1- x(s)(a)) II x(s)(a)
SE'P(r(s)\{u})

1 - cx"fePp(q, a) exES r:xEr(s)\{u}\6

converges to the control input x*(s) {i.e., Vp(s) = x*(s)).

32

(3.1)

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

In the theorem, in the case when all possible events from a state are

controllable, event 1 is chosen to be the one with the greatest ratio of required

probability to uncontrolled probability- in some sense, the controllable event

whose probability is "farthest" from its desired value.

3.1.2 Formal Proof

If there exists a probabilistic supervisor Vp such that Lp(VpjGp) = Lp(Gr), then

L(Gr) ~ L(Gp)· Therefore, lets E L(Gr) and assume there exists q E Qp such

that q = 8p(qp0 , s), and r = 8r(qr0 , s). For notational convenience, whenever

obvious from the context, we will omit the symbols for strings and states so

that, e.g., instead of Pp(q, a), we shall write Pp,u, and instead of Pr(r, a), we

shall write Pr,u·

Further, without loss of generality, we assume that in state q, not all the

possible events are controllable, that is 'L:uEl:c Pp,u < 1 (equivalently, P os (q) n
Ec =/:- 0). This assumption is safe since if Pp,u = 0 for all a E Eu, then the PSCP

reduces to the PSCP with only controllable events which can be transformed

into a problem with exactly one uncontrollable event (we will discuss this

further later in this section). Note that in the case of at least one possible

uncontrollable event, we have r(s) = Pos(q) n Ec, where r(s) is defined in

Theorem 3.2. We will writer instead of r(s).

After a string s E L(Gr) has been observed, the supervisory problem is

effectively the problem of finding the control input vector x(s) E [0, l]r such

that P(a in Vp/Gpls) = Pr,u, where P(a in VpjGpls) is given by (2.1), for all

a E E.

Proof

For the purposes of the proof, we will write x instead of x(s), Xu instead of

x(s)(a), fu(x) instead of f(s)(x)(a), hu(x) instead of h(s)(x)(a), for a E E.

Also, we will denote P(a in Vp/Gis) by Pu(x).

Lemma 3.1. Let \]! ~ r and X E JRW. Then, I: IT Xu IT (1 - Xu) = 1.
<P~W uE<P uE'll\<P

33

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Proof. We prove the lemma by the induction on the size of W. Let k = jwj.
For k = 0, the left hand side of the identity reduces to an empty product;

therefore, the identity is satisfied. Assume that it holds for k = n - 1. We

now prove that it holds for k = n. Let CJ E r, but CJ rj;_ W. Then:

I: IIxa II (1- Xa)
<I>~IJIU{u} aE<I> aE(IJIU{u})\<I>

- L: IIxa II (1-xa)+ L IIxa II (1- Xa)
<I>~IJIU{u} aE<I> aE(IJIU{u})\<I> <I>~Il!U{u} aE<I> aE(IJIU{u})\<I>

uE<I> uf/:.<I>

- 1

0

Lemma 3.2. Let x E [0, 1]r. Then, Pu(x) = Pp,uXuhu(x) for every CJ E :E,

where hu : ~r ----+ ~ is given by

1
hu(x) = L

8EP(r\{u}f - a"'fePp,a
II (1 - Xa) II Xa
aE8 aEr\{u}\8

(3.2)

Proof. Let x E [0, 1]r. For(}' E :E, Equation 2.1 can be equivalently expressed

as:

Pu(x) = L Pp,u II Xa II (1- Xa)
8EP(r\ { u}) aESU~ }U.Eu Pp,a aE8U{ u} aEr\(eu{ u})

If we apply the substitution n = r\ (8 u { (J}) to the previous equation, it

becomes

Pu(x) = L
1

_ Pp,u II (1- Xa) II Xa
nEP(r\{u}) 'IoPp,aaEn aEr\n

The previous equation is well-defined as, for any n E P (r\ { CJ}), we have

1 - EaEn Pp,a > 0 since we assumed that there is at least one event a E Eu

such that Pp,a > 0 . Therefore, for (}' E Ec, we have:

34

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

For ()" E ~u, since ()" ¢:. r and Xu = 1, then:

D

Next, we introduce a partial order on JR.r. For x, y E JR.r, x ::; y iff

Vo- E r Xu ::; Yu· Let f : (X,::;) --t (Y, ::;) be a mapping between posets. This

mapping is monotone if whenever x < x', then f(x) ::; f(x'); it is antitone if

whenever x::; x', then f(x) 2: f(x'). Also, for a E JR., let a denote x E JR.r such

that Xu =a for all a E f.

Lemma 3.3. Let~ ~ r and l : P(f) --t JR. be positive and monotone. The

function f-6. :]Rr --t JR. given by f.6.(x) - E l(<I>) n (1- Xu) n Xu 'lS

<PE'P(-6.) uE<P uE-6. \<P

positive and antitone on [0, 1]r.

Proof First, we find the derivative of the function f.6.(x) with respect to Xco

for a E ~- When a tj. ~' f-6. does not depend on Xa and ¥x!(x) = 0. For the

case when a E ~'

uE-6. \ <P

L (l(<I>U{a})(1-xa)+l(<I>)xa)II(1-xu) II Xu
<PE'P(-6.\{cr.}) uE<P uE-6.\{cr.}\<P

and so

of-6. ~ II II ox (x)=(-1)· ~ (l(<I>U{a})-l(<I>)) · (1-xu) xu
cr. <PE'P(-6.\{cr.}) uE<P uE-6.\{cr.}\<P

which is always non-positive on x E [0, 1]r since lis monotone. Therefore, f-6.

is antitone on [0, 1]r and, consequently, f.6.(x) 2: f.6.(I) = l(0) > 0. Hence, f-6.

is positive on [0, 1]r. D

Lemma 3.4. The functions hu (x), a E ~, as defined in Lemma 3. 2 are positive

antitone, and such that xuhu(x) ::; h"f(x) on [0, 1]r for all a E ~c, 1 E ~u·

35

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Proof. Let~ ~ r be a nonempty set. Let l: P(~) ---+~be given by l(~) =

1_ ~ Pp,u. Let <I>, A E P(~) be such that <I> ~ A. Since 0 ~ Eue<I>Pv,u ~
uELI.

EueAPp,u < 1, l is monotone. Therefore, according to Lemma 3.3, hu are

positive antitone. We now prove that for all(]' E :Ec, 'Y E :Eu we have xuhu(x) ~

h1 (x):

Xuhu(x) =Xu L l(8) II (1- Xa) II Xa
8E'P(r\{u}) aE8 aer\{u}\8

L l(8) II (1- Xa) II Xa
8E'P(r\ { u}) aE8 aer\8

~ L l(8) II (1- Xa) II Xa
8E'P(r) aE8 aH\8

L l(8) II (1- Xa) II for any "/ E :Eu, since "/ ¢:_ r
8eP(r\{T}) aE8 aEr\8\b}

for any "(E :Eu.

D

Let { xk} be a sequence of real numbers, and x E R We will write

xk j x iff xk ~ xk+1 for all k E N, and xk ---+ x as k ---+ oo. The following

lemma gives sufficient conditions for the existence of a fixpoint of the function

f.

Lemma 3.5. Let f: D---+ ~r be a monotone function on D ~ ~r, a0 , b0 E ~'

such that a0 ~ b0 , [a0 , b0]r ~ D and a0 ~ f(a0). Assume that for every

x E [a0 , b0]r such that x ~ f(x), we have f(x) ~ b0 . Then, the sequence {xk}

given by

x 0 = a0 , xk+l = f(xk), k = 0, 1, ...

exists and is such that xk i x* for some x* E [ao, b0]r. If, furthermore, f is

lower continuous (limf(xk) = f(x)), then x* = f(x*).
xkjx

Proof. We first use induction to show that the sequence { xk} is a monotone

chain contained in [a0 , b0]r. Because of the assumptions, a0 ~ f(a0) ~ b0 , so

that the basis step is true. Assume that {xi} for i ~ k forms a monotone chain

in [a0 ,b0]r. Since xk is in [a0,b0]r, xk+1 = f(xk) is defined. By the induction

36

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

hypothesis xk-1 ~ xk holds. Hence, since f is monotone, f(xk- 1) ~ f(xk) also

holds; consequently, xk ~ xk+l. Since a0 < xk, then a0 ~ xk+1 . Also, since

f (xk) ~ b0 , then xk+ 1 ~ b0 • Therefore, for i ~ k + 1, {xi} is a monotone chain

contained in [a0 , b0]r.

Since {xk} is monotone and has a finite upper bound b0 , it converges

to a point x* ~ b0 . Since f is lower continuous, from xk j x* follows xk+1 ----*

f(x*); therefore x* = f(x*). D

The following theorem presents necessary and sufficient conditions for

controllable events' probabilities to be assignable to given probabilities. If the

conditions hold, the fixpoint algorithm to calculate the control input is given.

Theorem 3.3. Assume that Pos(r) n :Ec ~ r, and, for every u E r:

(3.3)

Then, the sequence { xk} given by

exists and is such that xk j x* for some x* E [0, l]r. Furthermore, Pu(x*) =

Pr,u for all u E :Ec. Conversely, for any x E [0, l]r, if Pr,u 6 Pu(x) for all

u E :Ec, then Pos(r) n :Ec ~ r and {3.3} holds.

Proof. First, we show that f is defined on [0, 1]r and monotone. By Lemma 3.3,

hu is positive and antitone on [0, l]r. Therefore, fu is positive and monotone

on [0, l]r, and f(O) ;::: 0. We show that whenever x ~ f(x), then f(x) ~ I.
For x E [0, l]r assume that x ~ f(x). Then Pu(x) = Pp,uXuhu(x) ~ Pr,u for

u E r. For u E r let

1- 2:: Pp,a.
a.Er\{u}

lu = ----'---
Pp,u

37

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Note that la is well-defined since Pp,a > 0.

= 1 - I: I:
1

_ Pp,a II (1 - Xa) II Xa
aEr\{a} nEP(r\{a}) a~nPp,a aEn aEr\n

(SupposeD E P(r) and a E r\{o"}\D. Then a E r\{u}. Since aft D,D\{a} = D,

son E P(r\{a}))

= 1- L Pa(x) (from Lemma 3.2)
aEr\{a}

~ 1- L Pr,a
aEr\{a}

Therefore,

(since Pa ::::; Pr,a for a E r)

J. () Pr,a laPr,a < laPr,a < 1
a X = Pp,aha(x) - laPp,aha(x) - 1- L Pr,a -

aEr\{a}

Using Lemma 3.5, the sequence x 0 = 0 and xk+l = f(xk) for k = 0, 1, ... ,

exists and is such that xk j x* for some x* E [0, 1]r. Since f is continuous

38

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

on [0, l]r, it follows that f(x*) = x*, or equivalently that Pa-(x*) = Pr,a- for

a E r. Also, since Pos(r) n :Ec ~ r, then for a E :Ec, but a fj. r, we have

- Pa-(x*) = Pp,ux;hu = 0 = Pr,a-· Therefore, Pa-(x*) = Pr,a- for a E :Ec.

We now prove the necessity of the condition. Suppose that there is

X E [0, l]r such that Pa-(x) = Pr,u for any a E :Ec. Then, for a fj. r we

have Pa-(x) = 0 = Pr,a-· Therefore, Pos(r) n :Ec ~ r. Next, we note that

for any a, a E :Eu we have that hu = ha. We therefore introduce the function

g: ~r--+ lR such that g(x) = hu(x) for any a E :Eu. Then, since our generators

are nonterminating,

= g(x) L Pp,a + LPr,a· (3.5)
aEEu aEr

Since Pr,a- = Pp,a-Xa-hu(x) for a E :E, and, according to Lemma 3.4, Xa-hu(x) ~

g(x), it follows that g(x) ~ Pr,,.. By plugging this inequality into Equation 3.5,
Pp,o-

we get the condition (3.3). 0

So far we have considered the conditions under which the specified

probabilities can be assigned to probabilities of controllable events. Next, we

consider uncontrollable events as well.

Lemma 3.6. There exists x E [0, l]r such that Pa-(x) = Pr,a- for every a E :E

iff Pos(r) n :Ec ~ r, Pos(q) n :Eu = Pos(r) n :Eu, {3.3} holds for every a E r,
and for every a E Pos(q) n :Eu

Pr,u
E Pr,a.

(3.6)

aEEu

Proof. Assume that Pos(r)n:Ec ~ r, Pos(q)n:Eu = Pos(r)n:Eu, (3.3) holds for

a E r, and (3.6) holds for a E Pos(q) n :Eu. Then, according to Theorem 3.3,

for all a E :Ec, we have Pa-(x) = Pr,a-, and, according to Lemma 3.2, for all

a E :Eu, Pa-(x) = Pp,a-Xa-hu(x), that is Pa-(x) = Pp,a-g(x). Therefore, for all

39

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

For the converse, assume that there is a supervisory controller x such

that Pu(x) = Pr,u for every a E :E. Then, according to Theorem 3.3, Pos(r) n
:Ec ~ r and (3.3) holds. For a E Pos(q) n :Eu, if Pp,u = 0, then Pu(x) =

Pp,ug(x) = 0 = Pr,u· Also, for a E Pos(r) n :Eu, if Pr,u = 0 = Pu(x) = Pp,ug(x),

then Pp,u = 0 (since g(x) =j:. 0). Therefore, Pos(q) n :Eu _:... Pos(r) n :Eu. Then,

for a E Pos(q) n :Eu:

Pu(x)
E Pp,ag(x)

Pr,u Pp,u g(x) =
Pp,u o:E:Eu

E Pr,a E Pr,a
- E Pr,a E Pr,a E Pp,a

o:E:Eu o:E:Eu o:E:Eu o:E:Eu o:E:Eu

E Pa(x) E Pr,a
Pp,u o:E:Eu Pp,u o:E:Eu Pp,a

- - -E Pr,a E Pp,a E Pr,a E Pp,a E Pp,a
o:E:Eu o:E:Eu o:E:Eu o:E:Eu o:E:Eu

D

Special Case: Pos(q) n :Eu = 0

We now address the issue previously mentioned: in a certain state, only con­

trollable events can happen in the plant. Then, a probabilistic supervisor can

disable them all which would cause termination. However, as we consider non­

terminating generators, this is not allowed. An elegant solution is to always

enable one event: this event effectively becomes uncontrollable and the prob­

lem reduces to the one already proved. We now show that, if an event 1 with

the maximal ratio Pr,-r/Pp,-y is chosen, then condition (3.3) is satisfied.

Formally, let Pos(q) n Eu = 0. Then, only for this local problem, we

declare event 1 E Pos(q) n :Ec to be uncontrollable. Then, r(s) = (Pos(q) n
Ec)\{1}, denoted r for simplicity. The left hand side ofthe condition in (3.3),

for a E r, becomes:

40

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Pr,u + "'""' Pr,u + "'""' + -pp,-y L.....t Pr,o: = -pp,-y - Pr,-y L.....t Pr,o: Pr,-y
Pp,u o:Er Pv,u o:Er

Pr,u + "'""' Pr,u + 1 = -pp,-y- Pr,-y L.....t Pr,o: = -pp,-y- Pr,-y
Pp,u o:EPos(q)nEc Pp,u

Then, the condition (3.3) becomes

Pr,u < O -pp,-y - Pr,-y -
Pp,u

which, since Pv,-r > 0, is equivalent to

Pr,u _ Pr,-y < O.
Pv,u Pv,-r -

If the event 1 is one with the maximal ratio Pr,-r!Pv,-r (meaning, for every

<I E Pos(q), Pr((r,-y)) ;::: Pr((r,u))), it is obvious that the condition is satisfied for
Pp q,-y Pp q,u

any <I E r. Now, it is easy to show that this case and Lemma 3.6 result

in Theorem 3.1. Further, if the conditions of Theorem 3.1 are satisfied, the

algorithm for computation of control input from Theorem 3.3 can be applied

to this special case, with 1 considered an uncontrollable event.

3.1.3 Example

Let G = (Qp, ~' bp, qo,Pv) and G2 = (Qr, ~' br, q2o,Pr) for the example from

Figure 3.1 (the same as Figure 2.1), where ~c = {a, /3}, and ~u = { 1 }.

G
a: 0.6

b (3:0.2

0?.

G2

1

.:·~.,,
~

a: 0.4

Figure 3.1: Plant G and requirements specification G2

We now present the calculation of a probabilistic supervisor for the

example. The case when the string s E L(G2) has been observed such that

41

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

G is at the state q0 , and G2 is at q20 will be presented in detail. Again,

for notational convenience, we shall write Pp,u instead of Pp (qo, a), and Pr,u

instead of Pr(q20 , a) where a E -~.-With a slight abuse of notation, let Pp =

(Pp,a,Pp,f3,Pp,-y), Pr = (Pr,anPr,(3,Pr,-y), and x(s) = (x(s)(a), x(s)(;J)). From

Figure 3.1, it follows Pp = (0.6, 0.2, 0.2),Pr = (0.1, 0.4, 0.5). First, we check the

conditions of Theorem 3.1. The equality of Theorem 3.1 is trivially satisfied.

We then check if the inequalities of Theorem 3.1 are satisfied:

1
"f?P·'Y + Pr,a. + Pr,f3 = 0.53 :S: 1,

2pp,-y + Pr,a. + Pr,(3 = 0.9 :S: 1.

Then, the control input x* (s) can be calculated by the fixpoint iteration where

x0 (s) = (0, 0), xk(s) = f(s)(xk- 1(s)), and, for x E R{a.,f3}:

f(s)(x)(a) = Pr,a. ,
Pp,a. (x(,B) + 1 _~p,B (1 - x(,B)))

f(s)(x)(,B) = Pr,(3 .
Pp,2 (x(a) + 1 _~P·"' (1- x(a)))

After just a few iterations, the sequence {xk(s)} converges to x*(s) = (0.162,

0.886) (see Figure 3.2).

The calculation of the supervisor after the string t E L(G2) has been

observed such that G2 is in the state q21 gives the result x*(t) = (0.533, 0).

The supervisor is shown in Figure 2.3.

3.1.4 Complexity Analysis of Synthesis Problem and

Algorithm

Let G? and G~P be the nonprobabilistic automata underlying generators Gp

and Gr, i.e. c;p = (Qp, ~. 8p, qpo) and G~P = (Qr, ~. 8Tl qro)· Also, let the non­

probabilistic automaton Gs = (Q 8 , ~' 88 , q8 o) be the synchronous product of

G;P and G~P. The check of the conditions of Theorem 3.1 can be implemented

by checking conditions (i) and (ii) of Theorem 3.1 for each (q, r) E Q8 • The

construction of G s and the check of the conditions of Theorem 3.1 can be per­

formed in time O(IQpi·IQrl·l~l). Assume that the conditions of Theorem 3.1

42

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

0.9,-----r--r-----r--r---.-.--.. - .. - .. .,--_ -. .-. ..-r-.. - .. - .. .---'·· ---· .. .-.---,

0.8

0.7

0.6

0.5

0.4 i

0.3 '

0.2

1

-x(s) (all

-- x (s) (J3ll

Figure 3.2: Fixpoint iteration

are satisfied. Then, for each state (q, r) E Q s of the automaton G s (there are

at most IQpi·IQrl states), control input x(s) E [0, 1]r(s), where s E L(Gs) such

that q = 6p (qp0 , s), and r = 6r (qr0 , s), is the solution of the system of nonlinear

polynomial equations

x = f(s)(x), (3.7)

on the interval [0, 1]r(s), where f(s) is defined as in (3.1). This control input

can be calculated using the algorithm from Theorem 3.2.

We assume that the probabilities of both the plant and specification

are rational. Even in this case, control inputs are, in general, irrational. E.g.,

let us consider the plant and specification in Figure 2.1, after string s has

been observed such that PDES G is in state q0 and the PDES G2 is in state

q20 • Then, solving for x = x(s)(a), the system of equations (3.7) reduces to

the equation 45x2
- 69x + 10 = 0, whose roots are irrational numbers, and,

therefore, cannot be computed exactly. Hence, the best we could do is ap­

proximate the supervisor's probabilities to a certain accuracy. The theoretical

complexity of this problem is equal to the theoretical complexity of approxi­

mating the solution of the system of nonlinear polynomial equations (3.7). It

is known that even for systems of quadratic equations, the problem is at least

exponentially hard (Kreinovich et al., 1998).

43

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

For deriving the upper bounds on complexity of the problem, we use

reasoning similar to that presented in. (Etessami and Yannakakis, 2009). We

resort to results on complexity of decision procedures on the Existential Theory

of Reals, ExTh(IR). Results of (Canny, 1988; Renegar, 1992) give the upper

time complexity bounds for deciding sentences in ExTh(IR). A sentence in

ExTh(IR) is of the form: ~ = 3x1 , ... , XnP(xr, ... , Xn), where Pis a quantifier

free boolean formula with "atomic predicates" of the form gi(x1 , ... , xn).6.0,

where gi is a (multivariate) polynomial with rational coefficients, and .6. E

{>, ~' =, =f, :S, <}. Let m be the number of atomic predicates gi, and d the

maximal degree of polynomials gi. Then, there is an algorithm that decides if

the sentence ~ is true over real numbers, that runs in PSPACE, and in time

O((md)0 (n)). This complexity result contains an implicit assumption that the

validity of P can be decided in constant time (given the truth values of its

atomic predicates); this assumption serves to simplify the result and does not

have a significant impact on the following complexity results.

It is easy to construct a sentence in ExTh(IR) that compares x(s)(a)

(a E r(s)) to a rational number. The sentence

~(s)(a) 3x(s) (x(s) = f(s)(x(s)) 1\ 1\ 0 :S x(s)(a-) :S 1/\ x(s)(a) < u)
crEr(s)

checks if there exists control input x(s) that is a solution of (3. 7) such that

x(s)(a) is less than a rational number u. Since each x(s)(o-) (a- E r(s)) is in

the interval [0, 1], we can use binary search and queries similar to ~(s)(a) to

close in on the value of a control input up to an accuracy 10-i, i E N. In

order to reach this accuracy, we need to use O(i · Jr(s)J) queries. Therefore,

there is an algorithm that approximates the solution of (3.7) up to prespecified

accuracy 10-i, and it runs in time O(i ·Jf(s)J0 <1r(s)l)).

On the other hand, a straightforward analysis of (3. 7) suggests that

the worst-case running time of one iteration of the fixpoint algorithm of The­

orem 3.2 that approximates the solution of (3.7) is O(Jf(s)J2 • 2ir(s)i). Since

the number Jf(s)J is typically small in practical applications, this complexity

does not represent a practical limitation of the algorithm.

We next discuss the rate of convergence of the algorithm. Let A(s) =

44

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Pos(r) n I:c if Pos(q) n I:u =I- 0, and A(s) = (Pos(r) n I:c)\{r} otherwise,

where 1 E Pos(q) is chosen, as before, such that for every u E Pos(q),

Pr(r, r)/Pp(q, !) ?. Pr(r, u)jpp(q, u) is satisfied. Also, let xu(s) denote x(s)(u)

for any u E f(s). The exact rate of convergence is not yet known. However,

experimental results indicate that the speed of convergence can be given as:

max{Jxu(s) -x~(s)J} ~ K(s) · max{Jxu(s) -x~-1 (s)J}, k = 1, 2, ... , (3.8)
crEr(8) crEr(8)

where K(s) is at most I:crEA(
8
)Pr(r,u) < 1. The estimate was obtained in

the following manner. For a number of controllable events N, we randomly

generated controllable events' probabilities of the plant Pp E [0, 1]N, such that

the elements of Pp sum to less than 1. Also, supervisor probabilities x E [0, 1]N

were randomly generated. Then, the resulting controllable events' probabil­

ities Pr of the plant under the control were calculated, and then, in turn,

used to calculate xk using the algorithm of Theorem 3.2. In this manner,

the inequality (3.8) was checked for a thousand problems for each number of

controllable events up to 10. Practically, the convergence of (3.8) means that,

when the value K(s) ~ 0.6, the algorithm converges fast (gaining one decimal

of precision in at most five iterations). When 0.6 < K(s) < 0.9, it takes not

more than 22 iterations per decimal of precision. For K(s) very close to 1,

the number of iterations per decimal of precision (at most 1/log(1/K(s))) can

become quite large.

3.2 Reactive Model of Probabilistic Supervi-

sor

In general, a probabilistic supervisor is not a probabilistic generator (an ex­

ample is the probabilistic supervisor in Figure 2.3). This comes from the fact

that, with a probabilistic supervisor, the probabilities attached to events are

the probabilities of the events being enabled, not occurring (see Section 2.3).

Therefore, the probabilities of occurrences of events from a state of the super­

visor in Figure 2.3 are not distributed according to a probability distribution.

A probabilistic supervisor, however, can be represented using a reactive

45

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

model. In Figure 3.3, probabilistic supervisor Vp from Figure 2.3 is represented

using an MDP. The transformation illustrated in Figure 3.3 is next explained

briefly.

a: x,

'Y: 1- Xf3

Figure 3.3: Probabilistic supervisor Vp as MDP ~R

Each state q E Q of probabilistic supervisor Vp maps to a set of states

{(q, <I>1)J<I>1 ~ Pos(q)\~u}· Events admissible from state (q, <1> 1) are exactly

those from <1> 1 together with uncontrollable events possible from state q. The

probability attached to event 0' going from state (q, <1>1) to (r, <1>2) (where r E Q,

<1>2 ~ Pos(r)\~u) is the probability of <1>2 being enabled at stater (not the

probability of <1> 1 being enabled at state q). Event 'fJ rf. ~ and state r0 rf. Q are

used to initialize the supervisor properly.

On the other hand, a randomized control policy in the MDP framework

(see Section 1.3) cannot be represented with a probabilistic generator in a

straightforward manner. This comes from the fact that, even when a Markov

policy is being implemented (decision at a state of a system depends only

on that state), there might be two different paths corresponding to the same

sequence of events leading to two different states of the system. In this case,

we would not be able to encode two different decisions at these two states

using our probabilistic generator without event augmentation. I.e., it would

be possible to encode information about the different states reached by same

46

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

strings through event labeling: transitions would be labeled not only with

events, but also the states of the system that these events lead to.

Therefore, probabilistic supervisor in our framework can be represented

as an MDP. Similarly, probabilistic policy as defined in the MDP framework

can be represented using an augmented probabilistic generator. This fact can

turn out to be extremely useful, as it would potentially allow for the exchange

of some results between the models and the frameworks.

3.3 Optimal Probabilistic Supervisory Control

Problem: Formulation

In the case when the conditions for the existence of a solution of the proba­

bilistic supervisory control problem are not satisfied, we search for a suitable

approximation. We define the problem as follows.

The Optimal Probabilistic Supervisory Control Problem (OPSCP): Let Gp =

(Qp, ~,6p,qp0 ,pp) be a plant PDES, and let Gr = (Qr,~,6r,qr0 ,pr) be are­

quirements specification represented as a PDES. If there is no probabilistic

supervisor Vp such that Lp(Vp/Gp) = Lp(Gr) (i.e., the conditions of Theo­

rem 3.1 fail), find, if it exists, Vp such that

1. L(Vp/Gp) ~ L(Gr) and supervisor Vp is maximally permissive and deadlock­

free in the nonprobabilistic sense (i.e., L(Vp/Gp) is the suprema! deadlock­

free and controllable sublanguage of L(Gr) with respect to Gp)·

2. The probabilistic behaviour of the controlled plant is "as close as pos­

sible" to the probabilistic behaviour of the requirements specification

restricted to the suprema! deadlock-free and controllable sublanguage of

L(Gr) with the respect to Gp.

Let G = Vp/Gp = (S, ~' 6, s0 ,p) be the closest approximation.

The first criterion is straightforward. The requirement Gr represents a

safety constraint: the controlled plant is not allowed to generate strings not in

L(Gr) even with the smallest of probabilities. Further, the criterion of maxi­

mal permissiveness is a standard one for optimality of supervisory control. The

47

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

controlled plant should be deadlock-free as nonterminating generators are con­

sidered. The second criterion, on the other hand, is probabilistic: the distance

in a pseudometric between the initial states of the probabilistic generators

G and an appropriately modified Gr is chosen as a measure of probabilistic

similarity. The requirements specification Gr is modified such that its non­

probabilistic behaviour is reduced to the maximal permissible deadlock-free

legal nonprobabilistic behaviour of the plant under control. In other words,

the (nonprobabilistic) language of the modified specification is the supremal

deadlock-free and controllable sublanguage of L(Gr) with respect to Gp. Con­

sequently, the probabilities of the specification are revised so that the prob­

abilities of the events inadmissible for not satisfying the first criterion are

redistributed over the admissible ones. The rationale behind the modified

specification is as follows:

• It makes sense for a designer to modify the (probabilistic) requirements

specification as she cannot do better in a non probabilistic sense. So, after

realizing that only a subset of the desired nonprobabilistic behaviour

is achievable, the designer sees no reason in insisting on probabilities

suggested for the behaviour that cannot be achieved. We assume that

the designer wants to, for each state, distribute the probabilities of the

events not possible anymore over the remaining events so that the new

probabilities are proportional to the old ones. However, the designer

might want to rebalance the probabilities any way it suites her.

• Obviously, it might be the case that the designer prefers to leave the

specification intact. Then, the problem to solve becomes the OPSCP

with criterion (2) modified so that the difference between the controlled

plant and the original specification is minimized. As it turns out, the

solution of the original OPSCP is an important step en route to the

solution of this modified OPSCP. The solution of the modified OPSCP

will be presented in this thesis, too.

48

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

3.4 Applications: An Example

We now present a real-world application of the research presented in this thesis.

We adapt the simplified model of a distributed robot control system presented

in (Li et al., 1998) to our setting. The example is simple, but illustrative of

one class of application. A processor processes the readings from two sensors.

The sensors models are shown at the top of Figure 3.4. Fori = 1, 2, event

ai stands for "sensor i requests the processor" , event f3i for "sensor i uses the

processor" , and /i is "sensor i releases the processor" . The resulting plant

is given in the same figure. Its nonprobabilistic behaviour is given as the

shu:ffie of two DES that represent the sensors. Sensor 1 uses the processor

more frequently. E.g., sensor 1 reads the speed of the robot at a fixed rate,

while sensor 2 sends warning signals when the robot approaches an obstacle.

Probabilities attached to transitions are such that the probabilities of a 1 , {31 , 11

are 0.95, while the probabilities of a 2 , {32 , 12 are 0.05.

The requirements specification Gr1 is given in Figure 3.5. The nonprob­

abilistic part of the specification expresses the mutual exclusion requirement:

two sensors cannot use the processor at the same time. Therefore, state (2, 2')

is the forbidden state of the plant. The probabilistic part of the requirements

specification reflects a need for a prioritization of sensor 2 when both sensors

have requested the processor. More precisely, at state r4 , after both sensors

have requested the processor, sensor 2 should be four times more likely to use

the processor than sensor 1.

In order to solve the PSCP for the given plant and requirements speci­

fication, the results of Section 3.1.1 are used. The probabilistic supervisor for

the PSCP exists, and it disables event {31 at state (1, 2') and event {32 at state

(2, 1'), while event (31 is enabled with probability 0.2105 at state (1, 1').

As already mentioned, in general, the solution of the PSCP might not

exist. The requirements specification from Figure 3.6 is different from Gr1 in

that at state r 2 , it is more likely that sensor 2 will be allowed to apply for the

processor. For the plant from Figure 3.4 and the requirements specification

from Figure 3.6, there is no probabilistic supervisor such that the probabilistic

language of the plant under control is the same as the probabilistic language

49

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

'Y2 : 0.05

sensor 1
1

~~
:;..~ E "f1 2

0:1 : 0.95

0:1 : 0.95

0:1 : 0.95

(1, 1')

sensor 2
1'

(1, O') /31 : 0.95

'Y1 : 0.95

Figure 3.4: Sensors and resulting plant

50

'Y2 : 0.05

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

a 1 : 0.95

132 : 0.8

/'2: 0.05
a 1 : 0.95

a1: 0.95 {31 : 0.95

"Yl: 0.95

Figure 3.5: Requirements specification Gr1

51

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

generated by the requirements specification (for state (2, O') of the plant and

r 2 of the specification Gr2 , the conditions of Theorem 3.1 do not hold). In

0:1: 0.95

'Y2 : 0.05
a1: 0.95

ro 0:1: 0.95 (31 : 0.95

'Y1 : 0.7

Figure 3.6: Requirements specification Gr2

this case, the closest approximation is sought after (see Section 3.3 for the

problem formulation).

3.5 Summary

The focus of this chapter was on the solution of the probabilistic supervisory

control problem. First, necessary and sufficient conditions for the existence

of a probabilistic supervisor for the problem were presented. The conditions

consist of two different types of conditions: the conditions for classical (non­

probabilistic) controllability in classical supervisory control theory, and the

conditions for probabilistic matching. The conditions for probabilistic match­

ing are represented by a set of equalities and inequalities.

52

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Next, an algorithm for the calculation of a supervisor, if one exists, and

its correctness proof were introduced. The algorithm is iterative, and linear

in the number of states of both the plant and the requirements specification.

Also, although each iteration runs in time exponential in the maximal number

of events possible from any state, this is not a limitation of the algorithm as

this number is typically small.

Next, probabilistic supervisors were modeled using a reactive model,

more concretely, using MDPs. Then, the chapter introduced a problem central

to the thesis: the optimal probabilistic supervisory control problem. Finally,

a simplified robot control system was used to illustrate an application of the

research presented in this thesis.

53

Chapter 4

The Metric: Definition,

Algorithms and Alternative

Characterizations

This chapter introduces a metric as a means of quantifying the behavioural

difference between two systems in the solution of the OPSCP as formulated

in Section 3.3. The metric, based on the metric suggested in (Deng et al.,

2006), is defined in Section 4.1 using a fixed point characterization. Then, two

algorithms for the calculation of distances in the metric are given in Section 4.2.

Further, we develop two alternative characterizations of the metric. First, in

Section 4.3, the logical characterization measures how similar the systems are

in terms of how closely they satisfy real-valued formulae of a logic. Section 4.4

offers a trace characterization by which the metric measures the difference of

(appropriately discounted) probabilities of traces and sets of traces generated

by systems, as well as some more complicated properties of traces. Section 4.5

justifies the use of the metric in the solution of the OPSCP.

4.1 The Metric: Definition

Let G = (Q, ~' 8, qo,p) be a PDES, where Q = {qo, q1, ... qN-1}· This is the

system that will be used throughout the sequel. Our pseudometric is based on

54

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

the metric suggested in (Deng et al., 2006) for a large class of automata which

includes our generator: the two metrics are the same up to a constant.

First, (Deng et al., 2006) introduces the class M of 1-bounded pseudo­

metrics on states with the (partial) ordering

(4.1)

as was initially suggested in (Desharnais et al., 2002). Note that the ordering

in (4.1) is reverse for the purpose of characterizing bisimilarity as the greatest

fixed point of a function. It is proved that (M, ::::;) is a complete lattice.

Then, let d E M, and let the constant e E (0, 1] be a discount fac­

tor that determines the degree to which the difference in the probabilities of

transitions further in the future is discounted: the smaller the value of e, the

greater the discount on future transitions. Next, we introduce some useful

notation. Let qq, qr E Q and let pqq and pqr be the distributions on :E x Q

induced by the states qq and qr, respectively. Assume 0 :::; i,j :::; N- 1. For

notational convenience, we will write Pu,i instead of pqq (lT, qi), and, similarly,

P~,j instead of Pqr (lT, qi). Without loss of generality, we assume that the total

mass of pqq is greater than or equal to the total mass of pqr:

L Pu,i ~ L P~,i·
uE~ uE~

0:-:;:i~N-1 O~i~N-1

This assumption is not needed for nonterminating automata. Then, the dis­

tance between the distributions pqq and pqr, d(pqq, pqr) (note the slight abuse

of notation) for our generators is given as:

Maximize (L au,iPu,i) - (L au,iP~,i)
uE~ uE~

0:-:;:i~N-1 O~i~N-1

(4.2)

subject to 0 :::; au,i S 1, lT E :E, 0 S i S N - 1

lT, a E :E, 0 S i, j S N - 1

where

eft"= { e · d(qi, qj) if lT =a
1 otherwise

55

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

If the total mass of pqq is strictly less than the total mass of Pqr, d(pqq, pqr) is

defined to be d(pqr, pqq).

The pseudometric on states, djp, is then given a8 the greatest fixed­

point of the function 'D on M (here, for probabilistic generators, we give a

simplified version of that in (Deng et al., 2006)):

(4.3)

The definition of the metric on distributions is a modified version of

that of (Deng et al., 2006): the metric is changed such that the distances

between the states in diP are larger by a factor of 1/ e than the distances in the

metric defined in (Deng et al., 2006). This is done so that the distances in our

metric are in the [0, 1] interval instead of [0, e]. A number of existing results can

be reused in reasoning about our metric. The distance between distributions

(4.2) is a 1-bounded pseudometric, and is consistent with the ordering (4.1)

(see (Desharnais et al., 2002), (van Breugel and Worrell, 2001a)). The proofs

that the function defined by (4.3) is monotone on M, and that it does have a

greatest fixed point originate from (Desharnais et al., 2002). Also, according

to Tarski's fixed point theorem, the greatest fixed point of function 'D can be

reached through an iterative process that starts from the greatest element. As

the number of transitions from a state of a probabilistic generator is finite,

the greatest fixed point of the function 'D is reached after at most w iterations

(Deng et al., 2006; Desharnais et al., 2002) (equivalently, the closure ordinal

of 'D is w). Therefore, the metric diP can be reached through the following

iterative process.

Definition 4.1. The distance function d~ : Q x Q ---+ [0, oo) is defined as:

elk= 0,

and the distance function djp+1
: Q x Q---+ [0, oo), n EN, is given as:

where'D is defined as in (4.3).

56

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Remark 4.1. An important feature of diP is to be noted: metric diP is defined

on any two states of a single PDES, not on two states that belong to different

PDES. In order to define the distance between two PDES (with disjoint sets

of states} as the distance between their initial states, a new PDES is created

that represents the union of the two PDES (the union is defined in a natural

way as will be presented formally in Section 5.2). However, in the sequel of

the thesis, most often, the union will not be formalized as it does not change

the distance between the states.

The work of (Deng et al., 2006) does not offer any algorithms for the

calculation of distances in their metric. In the following section, two algorithms

for calculating distances in our metric are proposed.

4.2 Calculating the Metric

In this section, function V as defined by (4.2) and (4.3) is simplified for our

probabilistic generators. Then, two algorithms for the calculation of the metric

are suggested. The first algorithm calculates exact distances in the metric. The

second algorithm approximates the distances with a prespecified accuracy. It

is iterative and better suited for large systems.

4.2.1 Simplifying Function V for Deterministic Gener­

ators

The function that represents the pseudometric on distributions is defined as

the linear programming problem (4.2). We now show that, for deterministic

generators, this function, and consequently, function V as defined by (4.3),

can be simplified by explicitly solving the linear programming problem (4.2).

First, recall that our generators are deterministic: for an event u and a

state q, there is at most one state q' such that q' = 8 (q, u). For the purposes of

the following analysis of our deterministic generators, we rewrite the objective

function of the optimization problem of (4.2) as:

L (au,i(qq,u)Pu,i(qq,<T) - au,j(qr,<T)P~,j(qr,<T))
uE:E

57

(4.4)

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

where i(qq, a-) = i such that qi = 8(qq, a-) if 8(qq, a-)!, and i(qq, a-) = 0, otherwise.

We arbitrarily choose i(qq, a-) to be 0 when 8(qq, a-) is not defined although we

could have chosen any other i E {1, ... , N -1}. This is because when 8(qq, a-)!

does not hold, then Pu,i(qq,u) = 0 for any i(qq, a-) E {1, ... , N- 1}. Similarly,

j(qn a-) = j such that qj = 8(qr, a-) if 8(qn a-)!, and j(qr, a-) = 0, otherwise.

For readability purposes, we will write i instead of i(qq, a-), and j instead of

j(qr, a-).
We are now ready to state our first result.

Lemma 4.1. Let G = (Q, "E, 8, q0 ,p) be a PDES. Then, the function 1J sim­

plifies to:

where Cij = e · d(qi, qj), and i and j denote i(qq, a-) and j(qn a-), respectively,

as defined in (4.4).

Proof The objective function (4.4) can be maximized by maximizing each of

its summands separately. In order to explain this observation, we consider

a summand au,iPu,i - au,jP~,j· Due to the generator's determinism, there is

no other nonzero summand containing au,k, 0 :::; k :::; N- 1, k =/:- i, k =/:- j.

Therefore, the last constraint of (4.2) for any two coefficients au,i and aa,j

(0 :::; i, j :::; N - 1) from different summands becomes au,i - aa.,j :::; 1. This

constraint is already implied by the first constraint, so we can independently

pick the coefficients a in different summands, and, consequently, independently

maximize the summands in order to maximize the sum.

In order to maximize a summand of the objective function (4.4), we

solve the following linear programming problem for a- E "E:

Maximize (au,iPu,i - au,jP~,j)

subject to 0 :::; au,i, au,j :::; 1,

where i and j are defined as in (4.4), and Cij = ed(qi, qi) as before. Also, note

that the set of constraints does not contain the inequality au,j - au,i :::; Cji·

In order to maximize the given function, the coefficient au,i is to be chosen

58

PhD Thesis- Vera. Pantelic- McMaster- Computing and Software

to be greater than au,j since the given constraints allow it. In that case,

since Cij = Cji 1 if au,i - au,j :::; Cij, then au,j - au,i :::; Cji follows, SO the latter

~ constraint is redundant. Further, it is not hard to see that the solution of the

given linear programming problem for Pu,i ~ P~,j is equal to Pu,i- P~,j + CiiP~,j·
We can solve this problem using graphical method, simplex method or using

the following line of reasoning. In order to maximize the given function, we

can either choose au,i to be 1 and then pick au,j so that it has the minimal

value for the given constraints, or we choose au,j to be 0, and then pick au,i so

that it has the maximal value under the given constraints. In the first case,

we pick au,i to be 1, au,j to be 1 - Cij, and value of the objective function

is Pu,i - P~,j + CiiP~,j· In the second case, since au,j is 0, then au,i is equal

to Cij, and the objective function becomes CijPu,i· The latter is our solution,

since CijPu,i = Cij (Pu,i - P~,j + P~,j) :::; Pu,i - P~,j + CijP~,j (for Pu,i ~ P~,j and

Cij E [0, 1]). Using the same reasoning, for Pu,i < P~,i' the maximum is reached

at (ai, aj) = (Cij, 0) and its value is CijPu,i·

Now, we put together the presented solution of the linear programming

problem (4.2). The distance between the distributions pqq and Pqr is then:

d(pqq' Pqr) = Lf(d, Qq, Qr, a), where
uEE

f(d, q,, q, u) = {
' + ' Pu,i - Pu,j CijPu,jl

Cij Pu,i,

or, equivalently,

if Pu,i ~ P~,i
otherwise

f(d, Qq, Qr, 0") = max(Pu,i- P~,j + CijP~,j' CijPu,i),

(4.6)

(4.7)

where Cij = e · d(qi, Qj) as before, and i and j denote i(qq, a) and j(qr, a),

respectively, as defined as in (4.4). Equation (4.7) comes from the fact that,

for any dE M, it holds that:

max(Pu,i - P~,j + CijP~,j' CijPu,i) =

{

' ' "f > ' Pu,i - Pu,j + CiiPu,j' 1 Pu,i - Pu,j (4.8)

CijPu,i, otherwise.

59

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

To summarize, the function V(d) for our model is given as:

uEE

where, again, Cij = e·d(qi, qi) as before, and i and j denote i(qq, O") and j(qr, O"),
respectively, as defined in (4.4). D

Example

For the systems from the figure:

~.
a: 0.4 a: 0.2

1: 0.3

Qa 'TJ: 0.3

Figure 4.1: Function 'D: Example

we have:

V(d)(qo, qb) - (0.2 + 0.2ed(ql, qD) + (0.2 + 0.1ed(q2, q~)) + 0.3ed(q3, q~)

- 0.4 + 0.2ed(ql, qD + 0.1ed(q2, q~) + 0.3ed(q3, q~)

- V(d)(q~, q0)

As stated in Section 4.1, the pseudometric diP is now characterized as

the greatest fixed point of function 'D.

4.2.2 Calculating the Metric: Algorithms

ForeE (0, 1), we will pro~e that the function V has only one fixed point, d*,

and, consequently, diP = d*. Then, two algorithms for calculating the distances

in metric djp are suggested.

First, some useful definitions and results from linear algebra are intro­

duced.

60

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

A real n x n matrix A = (aij) defines a linear mapping from]Rn to]Rn,

and we will write A E L(lRn) to denote either the matrix or the linear function,

as no distinction between the two will be made. Also, the absolute value of

column vector x = (x11 ••• , xn)T E JRn will be denoted by JxJ, and defined as

Jxl = (jx1l, ... , Jxnlf. A partial ordering on lRn is defined in a natural way:

Vx, y E JRn x ~ y {::} (Vi = 1, . .. , n Xi < Yi)·

Definition 4.2. For any complex n x n matrix A, the spectral radius of A is

defined as the maximum of I-A1I, · · · , I -Ani, where .A1, · · · , An are the eigenvalues

of A.

The spectral radius of A, denoted rp(A), satisfies rp(A) < JJAJJ, where

JJAJJ is an arbitrary norm on lRn. During the course of the following proof, we

will make use of infinity norm JJAJJoo = ~~~ E7=1Jaijl· Also, the proof will

use functions div : N x N ---+ N and mod : N x N ---+ N defined in the standard

manner to be the quotient and remainder, respectively, of the division of the

first argument with the second.

Definition 4.3. (Ortega and Rheinboldt, 1970) An operator G : D ~]Rn ---+

]Rn is called a P -contraction on a set D0 ~ D if there exists a linear operator

P E L(lRn) such that P 2:: 0, rp(P) < 1 and

JG(x)- G(y)J ~ P Jx- yJ for all x, y E Do. (4.9)

Now, let dE M. Next, we define the function V: M---+ [0, 1]N
2

:

Note that the vector V(d) could be further cut down, as d(s, s) = 0 and

d(s, t) = d(t, s) for any s, t E Q. However, for ease of presentation, we will not

decrease the size of the vector. Therefore, v (d) = (Vl (d)' v2 (d)' . . . ' v N2 (d)) T'
where Vk(d) fork E {1, ... , N 2 } is given as:

Vk(d) = d(qi, QJ), i = k div (N + 1), j = (k- 1) mod N.

Now, the function Vis redefined in a natural way as V(V(d)) = (V1(V(d)), ... ,

VN2(V(d)))r, where for any k E {1, ... , N 2}:

Vk(V(d)) = d(pqi, pqJ, i = k div (N + 1),j = (k- 1) mod N. (4.10)

61

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Further, let Do= {V(d)id EM}.

Lemma 4.2. The function V is a P-contraction on D0•

Proof. Let d', d" E M, and D' = V(d'), and D" = V(d"). Let k E {1, ... , N 2
},

and let i and j (0 ::; i,j ::; N- 1) be given as in (4.10). Also, let t(i, CY) =

t such that 6(qi, CY) = qt if 6(qi, CY)!, and t(i, CY) = 0, otherwise. Similarly,

l(j, CY) = l such that 6(%, CY) = q1 if 6(qj, CY)!, and l(j, CY) = 0, otherwise. Again,

for notational convenience, we will write t instead of t(i, CY), and l instead of

l(j, CY). Also, we will write Pu,t instead of pqi (CY, qt), and, similarly, P~,z instead

of pqJ (CY, qz) for qt, qz E Q. Then:

IVk(D')- Dk(D")i = Jd'(pqi,pqj)- d"(pqi,pqj)l

= il:max(Pu,t- P~,z + ed'(qt, qz)P~,z, ed'(qt, qz)Pu,t)

since, for any dE M, according to (4.8), it holds that:

max(Pu,t- P~z + ed(qt, qz)P~z, ed(qt, qz)Pu,t) =
' '

{

Pu,t- P~,l + ed(qt, qz)P~,z, if Pu,t ~ P~,l
ed(qt, qz)Pu,t. otherwise

::; e l:min(Pu,t, P~,z) id'(qt, qz)- d"(qt, qz)i (4.11)

::; e L min(Pu,t, P~,z) ID~- D~j.
uEE

m=tN+l+l

(4.12)

Note that t = t(i, CY) and l = l(j, CY) are also functions of k (since i and j are

functions of k). Now, without the explicit construction of matrix P, we can

see from (4.12) that there exists P such that ID(D')- D(D")i ::; P ID'- D"l,

62

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

where

IIPIIoo = mfx{ e Lmin(Pu,t, P~.l)}
uEE

~e

(since L Pu,t = 1, L P~.l = 1)
uEE

tE{O, ... ,N-1}

< 1 (since e E (0, 1))

uEE
lE{O, ... ,N-1}

Therefore, r.p(P) < 1 and, since, obviously, P 2: 0, then Vis P-contraction. 0

Lemma 4.3. Let d', d" E M, and ()1 = V(d'), and ()" = V(d"). For any

k E {1, ... , N 2}, there exists mE {1, ... , N 2} such that:

Proof

~ e""min(Put,P~l) max {ld'(qt, ql)- d"(qt, qt)l}
~ ' ' (t,l)E
uE {(t(u,i),l(u,j))luEE}

~ e Lmin(Pu,t, P~,l) ld'(qr, qs)- d"(qn qs)l

for some r, s E { 0, ... , N - 1}

~ eld' (qr, qs) - d" (qr, qs) I
(since L Pu,t = L P~.l = 1)

uEE uEE
tE{O, ... ,N-1} lE{O, ... ,N-1}

< e I"' ·- "" I £ E {1 N 2
} _ vm vm or some m , ... ,

Theorem 4.1. For any ()0 E D0 , the sequence

63

0

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

converges to the unique fixed point of V in D0 , ~*, and the error estimate is

given componentwise {k E {1, ... , N 2}) as:

(4.13)

Proof Note that this is a variant of the contraction-mapping theorem extended

to P-contractions (see (Ortega and Rheinboldt, 1970), Theorem 13.1.2.). A

similar proof technique is employed.

Let n, m ~ 1. Then:

m :::; ::L: ~~~+t _ ~~+t-1 1
t=1
m

:::; L etl~«t)- ~«01 1
t=1

(applying Lemma 4.3 t times, where i(t) E {1, ... , N 2
})

m

:::; L et"f{Dx{l~«t)- ~«011}
t=1

:::; (f et) l~j- ~j-1 1 (for some j E {1, ... , N 2
})

t=1
m

:::; (1- e)-1 el~j- ~j-1 1 (since Let:::; (1- e)-1 form~ 0)
t=O

:::; (1- e)-lenl~f- ~?I

(for some l E {1, ... , N 2
}, using Lemma 4.3 (n- 1) times)

(4.14)

(4.15)

(4.16)

Therefore, the sequence {~k}n<::o is a Cauchy sequence and hence con­

verges to some ~k' and, consequently, the sequence {~n}n<::O converges to some

~* E D 0 . Also, we have:

When we let n-+ oo, we see that~* = V(~*).

64

PhD Thesis- Vera Pantelic- McMaster:..._ Computing and Software

Then, it should be proven that()* is the only fixed point in D0 • Assume

that there is another fixed point of V in the same set D0 , ()+. Then,

Hence, (I -P)ID*-D+I :::; 0. However, since cp(P) < 1, (I -P)-1 = L::o pi 2: 0

(see (Ortega and Rheinboldt, 1970), 2.4.5.), then ID* - D+l :::; 0. Therefore,
()* = ()+.

The error estimate (4.13) can be easily proven by induction and using

Lemma 4.3. The base case (for n = 0) is trivially satisfied. Assume that

IDk- Dkl :::; en for any n EN, and k = 1, ... , N 2
• Then:

ID~+l- Dkl = IVk(Dn)- Vk(D*)I

< eiD~- D:nl, for somem = 1, ... , N 2 (according to Lemma 4.3)

:::; en+l (from induction hypothesis)

D

Remark 4.2. It is important to note that the error in the n-th iteration (n =

1, 2 ...) can also be estimated as (k = 1, ... , N 2)

or, as:

that follow from (4.16), and (4.15), respectively, when m---+ oo in (4.14).

Now, using the presented analysis, the following two algorithms for

the calculation of the distances between the states of PDES in the chosen

pseudometric are suggested.

Algorithm 1

Theorem 4.1 proves that the system of equations

D = V(D) (4.17)

65

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

has a unique solution. The system (4.17) is a system of linear equations.

Therefore, the system (4.17) can be rewritten into the standard form AiJ = b,

where A is a N 2 x N 2 matrix and b is a column vector of dimension N 2 •

Therefore, the distances in the metric dfp can be calculated by solving this

system of linear equations.

Algorithm 2

Theorem 4.1 suggests an iterative algorithm to approximate distances in the

metric diP between the states of a probabilistic generator. Let cJ,O(qq, qr) = 0 for

any two states qq, qr E Q. As before, let pqq and Pqr be the distributions induced

by the states qq and qr, respectively. The n-th iteration of the algorithm

calculates the distance dn between each two states qq, qr E Q:

~(qq, qr) = l:max(Pu,i- P~,j + CijP~,j' CijPu,i)
uEE

where Cij = e · dn-l(qi, qj), and i = i(qq, u) and j = j(qr, u) are defined as

in (4.4). The accuracy of the solution found at the n-th iteration is en.

The iterative method can be useful for systems with large N 2, where

the direct method can be rather expensive. Furthermore, the mathematical

apparatus used to reach the iterative method will be reused in the solution

of the OPSCP in Chapter 5. The number of iterations sufficient to reach the

accuracy of E is rloge E l· This term is obtained from the fact that the number of

iterations n for which an accuracy E is achieved should be the smallest natural

number for which E ~ en is satisfied.

The pseudometric of (Deng et al., 2006) is closely related to the ones

suggested in (van Breugel and Worrell, 2001a; van Breugel and Worrell, 2006;

Ferns et al., 2004; Ferns et al., 2005). It is not a surprise then that our iterative

algorithm turns out to be similar to those of (van Breugel and Worrell, 2001a;

van Breugel and Worrell, 2006; Ferns et al., 2004; Ferns et al., 2005) that

calculate distances in similar pseudometrics suggested for different kinds of

probabilistic system. Those algorithms are similar to ours in that they all

approximate the distances by fixed point iterations. In each iteration, however,

the algorithms of (van Breugel and Worrell, 200la; van Breugel and Worrell,

66

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

2006; Ferns et al., 2004; Ferns et al., 2005) solve the special case of the linear

programming problem - the transshipment problem - for each pair of states.

The transshipment problem can be solved in time polynomial in the number

of states. On the other hand, in each iteration, for each pair of states, our

algorithm simply evaluates an expression. The evaluation is done in time linear

in lEI. The simplification is possible due to the nature of our generators. Also,

while our algorithm is derived from the characterization of the pseudometric

as the greatest fixed point of a monotone function, the pseudometric of (van

Breugel and Worrell, 2001a; van Breugel and Worrell, 2006) is defined as

the pseudometric kernel induced by the unique map from the probabilistic

transition system, viewed as a coalgebra, to the terminal coalgebra. In that

regard, the derivation of (Ferns et al., 2005) is more similar to ours since it

starts from the fixed point characterization, and then uses the Banach fixed

point theorem, whereas we use its generalization to ?-contractions.

Also, it should be stressed that the presented algorithms work for

e E (0, 1). However, (van Breugel et al., 2008) presented an algorithm for

calculating distances in the pseudometric of (Desharnais et al., 2004) for a

variant of Markov chains for the case when e = 1. The key element in the

algorithm is Tarski's decision procedure for the first order theory of real closed

fields that solves the satisfiability problem for the existential fragment of the

first order of the real closed fields. We believe that this algorithm can be mod­

ified to calculate diP between the states of probabilistic generators. However,

as the satisfiability problem for the existential fragment of the first order of

the real closed fields is PSPACE, an efficient calculation of distances in the

metric for e = 1 is still an open problem.

4.3 Logical Characterization

The metric with the fixed point characterization as presented in Section 4.1

is now given a logical characterization, along the lines of (Desharnais et al.,

2002). The logic used is real-valued so that it can handle probabilities. How­

ever, the logic itself is different than that of (Desharnais et al., 2002) as our

models are generative. Also, the main part of the characterization proof is, to

67

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

the best of our knowledge, novel. The idea behind the logical characterization

is that the distance between two systems is measured by a logical formula

that distinguishes between the systems the most. If the systems are proba­

bilistic bisimilar, there should not be a formula that distinguishes between the

systems.

As before, let G = (Q, .E, 6, q0 ,p) be a nonterminating generator, where

Q = {qo, q1, ... qN-1}·

Def,inition 4.4. The logic £, is defined as follows:

¢ ::= 1 I (o")¢ I V (a-)¢ 11- ¢ I ¢ e p,
uE6

where p is a rational number in [0, 1], o- E .E, and 8 ~ .E.

The formula¢ evaluated at a state q E Q, ¢(q), is a measure of how

much ¢ is satisfied at the state. The semantics of the logic £, is given next.

Definition 4.5. Let q E Q, and pq be the probability distribution on .E x Q
induced by state q. Let¢ E £, and 'ljJ : .E-+ £. The notation '1/Ju will be used

for 'l/J(o-), o- E .E. Then:

1(q) = 1

(o-)¢(q) = epq(o-, qi(q,u))¢(qi(q,u))

V (o-)'1/Ju(q) =I: epq(o-, qi(q,u))'l/Ju(qi(q,u))

(1- ¢)(q) = 1- ¢(q)

(¢ e p)(q) = max(¢(q)- p, 0)

where o- E .E, and, as before, i(q, o-) = i such that qi = 6(q, o-) if 6(q, o-)!, and

i(q, o-) = 0, otherwise.

The presented logic represents a probabilistic modification of Hennessy­

Milner logic (Hennessy and Milner, 1985). The formula 1 corresponds to the

constant true, (o-)¢ is the next operator, 1- ¢corresponds to negation, and

¢ e p provides for the testing of the value of¢ (Desharnais et al., 2002). The

logic supports only a specific disjunction of form V (a-)¢; extending it to V ¢

68

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

would require a more complicated formalization not necessary for the main

result to be presented.

The metric -dL is defined next. The distance between two states is

measured by a formula that differentiates them the most.

Definition 4.6. For every qq, qr E Q, the metric dL is defined as:

dL(qq, qr) = sup{i¢(qq)- ¢(qr)l}.
¢EC

In this logical setting, the smaller the factor e is, the more discounted

the difference is for complex formulae.

An example is given in Figure 4.2.

T: 1.0

(3: 0.5

The states q0 and q~ are at

G' 1

Figure 4.2: Example

the distance 0.25e + 0.75e2 in the metric dL, witnessed by the formula ¢ =

VaE{a,{J} (a)¢a, where ¢a= 1- ('y)l, and ¢r; = (7)1. Further, states ql and q~

(also, q1 and q~) are at the distance e as witnessed by the formula¢= (7)1.

The goal is to show that the metric diP is equal to the metric dL up to

constant e.

Lemma 4.4. Let qq, qr E Q. For a function '¢ E --+ £, the shorthand

notation 't/Ja will be used for '¢(a). Then:

Proof. The idea of the proof is similar to that of (Desharnais et al., 2002),

Lemma 4.4. As before, for a function cp: E--+ £,the shorthand notation 'Pa

69

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

will be used for cp(a). It should be proven that there exist C,Ou E .C, a E :E,

such that

for any¢ E .C. Induction on the structure of¢ is used. The base case (¢ = 1)

is satisfied. Next, the case when¢= (o:)¢', ¢' E .C, is investigated. It should

be shown that

If, for a =/:- o:, C,Ou = 1 - 1 = 0, and C,Ou = ¢' for a = o:, the inequality is

obviously satisfied. The case for ¢ = v uE8 (a)cpu, for e ~ :E, is proven in the

same manner.

The functions ¢ = 1 - ¢' and ¢ = ¢' e p are non-expansive (easily

shown), so

Jc/J(qq)- c/J(qr)J ~ Jc/J'(qq)- c/J'(qr)J

~ V (a)cpu(qq)- V (a)cpa(qr)

by the induction hypothesis on¢'. D

The following two definitions will be used for the proof of the main

result. First, the depth of a formula¢ E .Cis defined (in a manner similar to

that of (Desharnais et al., 2002)). Then, the formula ¢~q,qr is introduced.

Definition 4. 7. The depth of a formula of logic .C is defined as:

depth(1) = 0,

depth((a)¢) =depth(¢)+ 1,

depth(V (a)'l/Ja(q)) = max{depth('l/Ja)Ja E 8} + 1,

depth(1- ¢)=depth(¢),

depth(¢ e p) =depth(¢).

70

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Definition 4.8. Let qq, qr E Q. The notation adopted for (4.3) is used here.

Then, formula ¢~q,qr is defined as

and, for n EN, formula ¢~:J-r is defined as

-~,n+l - V ((j)"''n where 'f' qq,qr - 'f' u,qq,qr'
uEI:

= { 1- ((1- ¢~i,qj) e (1- ¢~i,q,(qi)))
¢~i,qj e ¢~i.qj (qi)

if > I Z Pu,i - Pu,j
otherwise.

The main result relating the two metrics is presented next. It states

that dL and diP are equal up to constant e.

Theorem 4.2. dL = edfp

Proof. The proof consists of two parts. In the first part, it is proven that, for

every qq,qn there exists ¢ E .C such that ¢(qq)- ¢(qr) = edfp(qq, qr)· Con­

sequently, dL(qq, qr) ~ edfp(qq, qr). In the second part, inequality dL(qq, qr) :::;

edfp(qq, qr) is proven.

First, let us prove that for every qq, qn there exists ¢ E .C such that

¢(qq)- ¢(qr) = edfp(qq, qr)· Given Definition 4.1, it is sufficient to prove that

¢~q,q)qq) - ¢~q,q)qr) = edjp(qq, qr), for every n E N, where ¢~q,qr is given as

in Definition 4.8. The proof is by induction. The base case is satisfied, since

¢~q,q)qq) = ¢~q,qr(qr) = 1, and d~(qq,qr) = 0 according to Definition 4.1. Let

assume that, for every qq, qr E Q, n EN:

Also, let pqq and Pqr be the distributions on :E x Q induced by the states

qq and qr, respectively. Also, for notational convenience, we will write Pu,i

instead of pqq((j, qi), and, similarly, P~,i instead of Pqr((j, qi) for any i,j such

that 0:::; i, j :::; N- 1. Then, for (j E :E, let i(qq, (j) = i such that qi = b(qq, (j)

71

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

if 8(qq, a)!, and i(qq, a) = 0, otherwise. Similarly, let j(qr, a) = j such that

qj = 8(qr, a) if 8(qr, a)!, and j(qr, a) = 0, otherwise. For readability purposes,

we will write i instead of i(qq, a); arid j instead of j(qr, &). Then:

</J~:ir (qq) - </J~:ir (qr)

= (L epu,i + L epu,iecl'}p(qi, qj))
uE{ uEI!IPu,i ?:.P~,j} uE{ uEl:IPu,i <p~,j}

L ep~)l- ed'}p(qi, qj))
uE{ uE:EIPu,i?:.P~,i}

(by the definition of <P~;':Jr and the induction hypothesis)

L (e(Pu,i- P~) + e2p~,jd'}p(qi, qj))
uE{ uE:EIPu,i?:.P~,j}

+ L e2Pu,idfp(qi, qj)
uE{uEl:IPu,i<p~,j}

= e L (Pu,i- Pu,j + ep~,jd'}p(qi, qj))
uE{ uEl:IPu,i ?:.P~,j}

+ e L epu,icl'}p(qi, qj)
uE{ uEl:IPu,i <P~,j}

Next, the induction on the depth of formula is used to prove that

dL(qq,qr) S edfp(qq,qr) by proving that d£(qq,qr) S ed'jp(qq,qr) for any n EN,

where

The base case is satisfied as cfi(qq, qr) = dfk(qq, qr) = 0. For n EN, assume:

72

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Then, according to Lemma 4.4, and the definition of function depth:

c£'l+l (qq, qr)

= sup { V (a)¢~(qq)- V (a)¢~(qr) }
¢~EC uEE uEE

L P~,j</J~(qj)- L Pu,i</J~(qi)}
uEE uEE

O~.J-:::N-1 O~i~N-1

(as G is deterministic)

where, for any a, a E E, I<P~(qi)- <P~(qi)l ~ d£(qi, qi) ~ edjp(qi, qi) (by induc­

tion hypothesis). The function in (4.2) is a pseudometric (therefore, symmetry

holds), and for au,i = <P~(qi), the constraints are satisfied, so cfl+l(qq, qr) ~

ed'j.p+l (qq, qr). 0

Remark 4.3. The logic .C can be easily extended such that dL = edfp still

holds. Therefore, it is easy to make the logic more expressive while preserving

the same characterization of our logic. As logic .C is sufficient for the char­

acterization of the metric, and for the sake of simplicity of formalization, the

logic was not extended.

4.4 From Logic to Traces

First, Lp(G)(s) is modified to define the discounted probability of a strings in

G, denoted Pd(G)(s).

73

PhD Thesis - Vera Pantelic - McMaster - Computing and Software

Definition 4.9. Let Pd(G) : L(G)--+ [0, 1] be defined as:

Pd(G)(c) = 1

Pd(G)(sa) = { e · Pd(G)(s) · p(<S(qo, s), a), if <S(qo, s)!
0, otherwise

where s E L(G), a E :E. Then, Pd(G)(s) is the discounted probability of a

string s in G.

Informally, the discounted probability of a string is the probability of

occurrence of a string discounted by factor e for every event in the string, i.e.

Pd(G)(s) = elsiLp(G)(s).

Let G1 and G2 be two probabilistic generators. An important result

states that there is not a string whose discounted probabilities differ by more

than the distance dL between the corresponding generators.

Theorem 4.3.

(4.18)

Proof Let t be the string for which the supremum in (4.18) is reached. The

formula corresponding to this distance is easily constructed. Assume that

t = a1a2 ... O"n· Then, the formula is given as¢= (a1)(a2) ... (an)l. D

Further, it can be shown that distance in the metric dL between the

two systems is also greater than the difference in discounted probabilities of

a set of strings such that none of the strings is a substring of another. Let

r ~ :E*, such that no string in r is a prefix of another string in r. Then:

Theorem 4.4.

Proof Similar to Theorem 4.3, by using the disjunction formula. D

74

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Similarly, the correspondence between the discounted probability of

strings and formulae in .C can be made for the remaining formulae of Defini­

tion 4.5. Therefore, the metric measures not only the difference in probabilities

of strings in two languages (discounted for their length), but also the difference

in discounted probabilities of a certain set of strings, or some more compli­

cated properties of strings, e.g., whether the discounted probability of a string

is greater than a prespecified value.

4.5 Choosing the Metric: Justification

Next, we give rationale for choosing the metric in the solution of the OPSCP.

• The metric intuitively matches our notion of the distance between PDES

and accounts for all differences between corresponding transition proba­

bilities, as opposed to e.g., that of (Giacalone et al., 1990) that, roughly

speaking, considers only the maximum of the differences between the

corresponding probabilities.

• As presented in this chapter, the metric has both logical and trace char­

acterization. The logical characterization measures the distance between

two systems by a [0, 1]-valued formula that distinguishes between the sys­

tems the most, while the trace characterization describes the similarity

between the probabilistic traces of similar systems. More precisely, the

trace characterization shows that the metric measures not only the dif­

ference in (appropriately discounted) occurrence probabilities of strings

in two systems, but also differences in (appropriately discounted) oc­

currence probabilities of certain sets of strings as well as complicated

properties of strings.

• The metric is suggested for a large class of systems. Therefore, it allows

for an extension of our work to e.g., nondeterministic systems.

• The metric discounts the future. The concept of discount has been widely

applied in game theory, economics and optimal control. From an engi-

75

PhD Thesis- Vera Pantelic- McMa"Ster- Computing and Software

neering point of view, one cares more about an error in the near future

than the one in the distant future (de Alfaro et al., 2003).

• There is a simple algorithm to compute distances in this metric for our

generative, deterministic model (see Section 4.2).

4.6 Summary

This chapter focused solely on the metric that is going to be used in the next

chapter to solve the optimal probabilistic supervisory control problem.

The metric is defined on the states of a probabilistic transition system

as a fixed point of a function that is given as a linear programming problem.

For the case of probabilistic generators, the linear programming problem is

solved, and the function is given a closed-form solution. This simplification

enables the efficient calculation of the distances in the metric using two dif­

ferent algorithms. The first algorithm reduces to finding the (unique) solution

of the system of linear equations. If, e.g., Gaussian elimination is used, the

worst-case complexity of the algorithm is O(JQJ 6). The second algorithm ap­

proximates the distances with a prespecified accuracy and is iterative. Each

iteration takes O(JQJ2 J:EJ) time, while the number of iterations sufficient for

reaching the accuracy of E is poge E l· This iterative algorithm will be modified

in the solution of the optimal probabilistic supervisory control problem in the

next chapter, and its proof of correctness will be partially reused.

Then, this chapter turned to alternative characterizations of the met­

ric: the logical and trace characterizations. First, the metric is characterized

through a real-valued logic: the distance in the metric between two systems is

measured by a formula that distinguishes between the systems the most. Then,

from this logical characterizations follows the trace characterization: systems

are similar if the probabilities of their (appropriately discounted) traces, cer­

tain sets of traces, and certain properties of traces are similar. The goal of

alternative characterizations is to deepen the understanding of what similarity

between systems as measured by the metric means in terms of similarities of

their logical properties, and similarities of their probabilistic traces.

76

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

Finally, the reasoning behind the use of the metric as a measure of be­

havioural similarity in this thesis is presented. In short, the metric is sensitive

enough in the sense that it accounts for more than just maximal differences

between corresponding events' probabilities or probabilistic traces. Better in­

tuition of what the metric measures comes from the trace characterization.

We observe that the metric, as originally defined, is applicable to more gen­

eral systems. Further, for the class of systems used in this thesis, efficient

algorithms for calculating/ approximating the metric have been given.

77

Chapter 5

Optimal Probabilistic

Supervisory Control of PDES

In this chapter, the algorithm that solves the OPSCP is presented. All the

results in the chapter are applicable for future discount factor e E (0, 1). The

results of this chapter have been previously published in (Pantelic and Lawford,

2009) and (Pantelic and Lawford, 2010a).

First, the formulation of the OPSCP is repeated. Assume that the

plant is given by the PDES Gp = (Qp, E, bp, qp0 ,pp), and the .requirements

specification is given by the PDES Gr = (Qr, E, br, qr0 ,pr)· (An example is

displayed in Figure 5.1.) If there is no probabilistic supervisor Vp such that

Lp(VpfGp) = Lp(Gr), an optimal solution is sought. The solution is optimal

in the following sense. First, it is assumed that the nonprobabilistic language

of the requirement is a safety requirement: no other strings are allowed in the

plant. Then, it is required that maximal permissible deadlock-free behaviour

(in the nonprobabilistic sense) is achieved. Further, in the probabilistic sense,

the probabilistic behaviour of the controlled plant should be as close as possi­

ble to the requirements specification that is now normalized so that it is con­

strained to the suprema! deadlock-free and controllable sublanguage of L(Gr)

with respect to Gp. The algorithm to be proposed uses this separation of prob­

abilistic and nonprobabilistic aspects of optimality so that it deals with each

aspect separately: the first part handles the "nonprobabilistic optimality",

78

PhD Thesis- Vera Pantelic- McMaster- Computing and Software

and the second part handles the "probabilistic optimality". This separation is

also notable in the conditions (i) and (ii) of the Theorem 3.1 for the existence

- of a probabilistic supervisor. The first part of both conditions corresponds

to controllability as used in classical supervisory control theory (namely, the

condition Pos(q) n I:u = Pos(r) n I:u of (i), and Pos(r) n I:c ~ Pos(q) n I:c of

(ii)). The remaining equations and inequalities correspond to the conditions

for probability matching.

a: 0.1

~~~ ~fiOI 
q~ ~1 

(): 0.6 

1: 0.2 

Figure 5.1: An example: Plant Gp, and requirements specification Gr 

Sections 5.1 and 5.2 describe the algorithm that solves the OPSCP 

problem. The algorithm is summarized and its complexity is analyzed in 

Section 5.3. Finally, the algorithm is illustrated by an example in Section 5.4. 

5.1 Algorithm: Part I 

Before we start looking for the closest approximation in the sense of probability 

matching, we resort to the classical supervisory theory of supremal controllable 

sublanguages. First, the classical controllability condition that corresponds 

to the first parts of conditions (i) and (ii) of Theorem 3.1 is checked while 

constructing L(Gp) nL(Gr)· Then, if the condition is not satisfied, the goal is 

to find K, the supremal deadlock-free and controllable sublanguage of L(Gr) 

(with respect to Gp)· The language K is required to be deadlock-free as only 

nonterminating PDES are considered. Now, let PDES G1 be the modified plant 

such that its underlying DES represents this language K, further equipped 

79 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

with distribution Pp (appropriately normalized). Also, let G2 represent the 

desired behaviour PDES, such that its underlying DES represents language K, 

equipped with the distribution Pr- appropriately normalized. Formally, let the 

reachable and deadlock-free DES G1k = (T, :E, (, t0 ) represent language K. We 

define a PDES G1 = (T, :E, (, t 0 ,p1 ), where the distributionp1 : T x :E---+ [0, 1], 

for any q E T, a E :E, is defined as: 

Pl ( q' a) = -----=P=-'"p-'-( q....:...P_, a-'-) __ 
L Pp(qp, a) 

uE{ uEE/((q,u)!} 

where qP = 6p(qp0 , 8) for any 8 E K such that q = ((t0, 8). 

Similarly, we define a PDES G2 = (Q, :E, 6, q0,p), where Cl';,P = (Q, :E, 

6, q0 ) is a DES isomorphic to Glk (identical up to renaming of states), and, 

without loss of generality, we assume T n Q = 0. Obviously, the nonproba­

bilistic language generated by Cl';,P is K, too. Distribution p : Q x :E ---+ [0, 1] 

is defined as (q E Q, a E :E): 

p( q, a) = __ P_r-'-( q_n_a'--) __ 
L Pr(qr, a) 

uE{ uEE/8(q,u)!} 

where qr = 6r(qr0 , 8) for any 8 E K such that q = 6(qo, 8). Note that P1 and 

p are well-defined as no state minimization is performed on the automaton 

representing language K. 

5.2 Algorithm: Part II 

Now, the probability matching equations and inequalities from Theorem 3.1 

are checked. If they are not satisfied (i.e., there is no probabilistic supervisor 

Vp such that Lp(Vp/G1 ) = Lp(G2 )), the goal is to find G~ = (Q', :E, 6', qb,p') 
such that there exists a probabilistic supervisor Vp so that Lp(Vp/G1 ) = Lp(G~) 

holds, and G~ is closest to G2 in our chosen metric. Without loss of generality, 

it is assumed that Q n Q' = 0. Also, without loss of generality, it is assumed 

that the non probabilistic automata underlying G2 and G~ are isomorphic (with 

labeling of events being preserved). Therefore, the nonprobabilistic automata 

underlying G2 and G~ are identical up to renaming of states. This assumption 

80 



PhD Thesis-. Vera Pantelic- McMaster- Computing and Software 

is not restrictive as there cannot be any string in the desired system that does 

not belong to K, and, therefore, since K = L(G2 ), there cannot be any string 

in the desired system that does not belong to L(G2). This comes from the 

fact that L(G2 ) is the supremal deadlock-free and controllable sublanguage: 

if any string not in L( G2) would be allowed in the controlled plant, either 

the safety or nontermination requirement would not be met. As our metric is 

defined on the states of a single system, in order to define distances between 

the states of different systems, namely G2 and G~, the union PDES Gu = 

( Q U Q', :E, 8u, q0 , Pu) is considered, where for a- E :E and q E Q U Q': 

{ 

8(q, a-), 
8u(q, a-) = 8'(q, a-), 

{ 

p(q, a-), 
Pu(q, a-) = p'(q, a-), 

if q E Q 
otherwise, 

if q E Q 
otherwise. 

Note that the union Gu is just an artificial construct introduced so that it 

would be possible to overcome the obstacle of defining the distance between 

the states that belong to different PDES since the metric is defined on states 

of a single PDES. Generator Gu is merely a PDES consisting of the union of 

G2 and G~ with the initial state arbitrarily chosen (between q0 and q~) to be 

qo. 

Then, M is the set of 1-bounded pseudometrics on the states of this 

union system with the same ordering as in ( 4.1). 

First, note that, considering the isomorphism between ~P and c;np, 
only the distances between (probability measures on) states q E Q of G2 and 

q' = f(q) E Q' of G~ are of interest, where f .is the isomorphism between 

~p and c;np. Also, let h be an isomorphism between ~p and G';P. It is 

assumed that PDES G2 is in state q after the occurrence of string s E L( G2) 

(8(q0 , s) = q). Then, the closest approximation c; is in state q', respectively, 

where q' = f(q). Let pq be the probability distribution induced by the state 

q E Q of PDES G2 and let p~, be the probability distribution induced by the 

state q' E Q' of PDES c;. 
Next, a class A of partial functions a : Q x Q' --+ [0, 1] is defined, such 

81 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

that Vq E Q, q = f(q) E Q' a(q, q') = d(q, q), where dE M. Therefore, the 

class A is the class ofall 1-bounded pseudometrics with domain reduced to 

Q x Q', and only distances between q E Q and q = f ( q) E Q' defined since 

the algorithm is independent of the distance between the other states. Next, 

we define a family A as a set of probability distributions onE x Q'. Now, for 

each p' E Q' ---+ A, we define function VP' : A---+ A as (q E Q, q' = f(q) E 

Q',d E A): 

VP' (d)(q, q') = d(pq, p~,) and p'(q') = p~,, 

where, as before, d is lifted to the metric on distributions, and d(pq, p~,) is 

defined as in (4.6). Also, the reversed ordering on A is introduced to match 

the one in ( 4.1): 

d1 -:5.' d2 if Vq E Q Vq' E Q' (q' = j(q) ===} d1(q, q');:::: d2(q, q')). 

The fact that (A, -:5.') is a complete lattice follows from the fact that (M, -:5.) 
is a complete lattice. Further, for each p' E Q' ---+ A, we define function 

d~ as the greatest fixed point of function VP'. The problem of finding the 

optimal approximation reduces now to finding P'm E Q' ---+ A such that 

d~:n(q0 ,qb) = ?'in{d~(q0 ,qb)lp' E Q' ---+ A} and the conditions for the ex­

istence of a probabilistic supervisor of Theorem 3.1 are satisfied. It follows 

straight from the definitions of Vp' and d~ that, for any p' E Q' ---+ A, 

q E Q, q' = f ( q) E Q', the distances d~ ( q, q') are distances in our pseudo­

metric. 

We assume that T ={to, tr, ... tN-1}, Q = {qo, q1, ... qN-1}, and Q' = 

{qb, ch' ... q~_1 }, where q~ = f(qi), ti = h(qi), i = 0, ... , N- 1. Note that, for 

probability distributions, a different notation will be used than the one used 

in the previous section. Let dE A, 0::; i ::; N- 1, w(qi) = Pos(qi), Wu(qi) = 
Pos(qi) n Eu, and Wc(qi) = Pos(qi) n Ec. Also, we will write j for j(i, u), then 

pqi,u instead of pqi(u, qk), and P~,u instead of p~~(u, q~), k = 0, 1, ... N- 1. 

82 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

Now, the function P : A --7 A is defined as: 

P(d)(qi, qD = Min~mize L max(pqi,u- p~~,u + Cjp~~,u' Cjpqi,u), (5.1) 
Pqi,u 'T'( ) uE"' qi 

where Cj = e · d(qj, qj) s.t. qi = 8(qi, a) 

subject to 

L P~~,a = 1' 
aEW(qi) 

p~~,u ~ 0, 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The constraints (5.2) and (5.3) represent the conditions for the existence 

of probabilistic supervisor given by Theorem 3.1. The function P is well­

defined since, if P~,u = p1(ti, a) for all a E :E, the constraints (5.2), (5.3), 

(5.4), (5.5) are satisfied. Therefore, the optimization problem has a feasible 

origin. Since A is a complete lattice, and the function P can be easily shown 

to be monotone, it has a greatest fixed point. Next, a useful lemma is stated. 

Lemma 5.1. Let (£, ::S) be a complete lattice, and let f, g : C ---+ C be 

two monotone functions such that Vx E C : g(x) ::S f(x). Let gfp(f) and 

gfp(g) denote the greatest fixed point of functions f and g, respectively. Then, 

gfp(g) ::S gfp(f). 

Proof. According to Knaster-Tarski theorem, the functions f and g have the 

greatest fixed points gjp(f) and gfp(g), respectively, where gjp(f) = sup( { xlx ::S 
f(x)}), and gfp(g) = sup({xlx ::S g(x)}). Since Vx : g(x) ::S f(x), then 

{xlx ::S g(x)} ~ {xlx ::S f(x)}; hence gfp(g) ::S gfp(f). D 

Obviously, because of the definition of function P, for any function 

1)P', where p' E Q' --7 ~' it holds that Vd E A 1)P' (d) ::S' P(d). Using 

Lemma 5.1, we conclude that the greatest fixed point of P is greater than or 

83 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

equal to any d~, p' E Q ---t .6.. This greatest fixed point corresponds to the 

minimal distance between q0 and qb because of the reversed ordering on A. 

Therefore, the greatest fixed point of function P corresponds to the distances 

in our pseudometric where the distance between q0 and qb is minimized under 

the conditions of Theorem 3.1 for the existence of a probabilistic supervisor. 

Consequently, the values of decision variables p~, for q' E Q' when the greatest 

fixed point of P is reached correspond to the statewise probability distributions 

of the optimal approximation. 

We suggest an iterative algorithm to calculate the minimum achievable 

distance (i.e. the only fixed point of the function P) up to a desired accuracy 

and provide the probability distribution of the system's achievable behaviour 

when this distance is reached. The proof pattern used for the algorithm from 

Section 4.2.2 is followed. However, as mentioned before, the only relevant 

distances are the ones between q E Q and q' = f ( q) E Q'. 
Let d E A. Again, we assume that Q = {q0 , q1, ... QN-1}, and Q' = 

{qb, q~, ... q~_1 }, where q~ = f(qi), i = 0, ... , N- 1. Further, let us define 

function V: M ---t [0, 1]N as: 

A A A T 
Therefore, V(d) = (V1(d), ... , VN(d)) , where, fork= 1, ... , N: 

vk(d) = d(qk~1, q~-1). 

The function P is redefined in a natural way as P(V( d)) 
PN(V(d)))T, where for any k E {1, ... , N}: 

where q~_1 = f(qk-1)· Also, let Po= {V(d)Jd E A}. 

Theorem 5.1. Function P is P-contractive on P0 . 

(5.6) 

Proof Let d', d" E A, and D' = V(d'), and D" = V(d"). Next, for q E Q, q' = 

f(q) E Q', we define set <I>(q) to be the set of all distributions p~, that satisfy 

conditions given by (5.2), (5.3), (5.4), and (5.5). Let k E {1, ... , N}. Then, 

84 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

PkCD') = P(d')(qk-1. rh-1), and PkCi") = P(d")(qk-1. rh-1). Assume that the 

minumum of the objective function in (5.1) in function P(d')(qk-b rh-1 ) is 

reached for p~, = J..L for J..L E ~(q). Further, assume that the minumum of the 

objective function in (5.1) in function P(d")(qk-1, rh-1) is reached for p~, = v 

for v E ~(q). Let W = \ll(qk-1)· Also, let j(k, a) = j such that qi = 8(qk-I. a), 

and f(qi) = qj. Assume that Pk(fJ') ~ Pk(~"). Then: 

IPk(~') - Pk(~") I 

= 12:.:max(pqk_1 ,17- J..Lq~_ 1 , 17 + ed'(qj, qj)J..L~_ 1 , 17 , ed'(qj, qj)Pqk_1 ,17) 

- L.::max(pqk_1,17- llq~-1'17 + ed"(%, qj)vq~_ 1 , 17 , ed"(%, qj)pqk-1>17)1 
17E'l' 

~ IL.::max(pqk-1> 17 - llqL
1

,17 + ed'(%, qj)vq~_ 1 , 17 , ed'(qj, qj)pqk_ 1 ,17) 

- L.::max(pqk-1>17- llq~_ 1 ,17 + ed"(%, qj)v~_1 ,17, ed"(qj, qj)pqk-1>17)1 (5.7) 
17E'l' 

(for p~~_, 1 , 17 = J..lq~-1'17 the minimum in Pk(-6') is reached) 

~ Llmax(pqk_1 ,17 - llq~_ 1 , 17 + ed'(qj, qj)vq~_ 1 ,17 , ed'(qj, qj)pqk-1>17 ) 
17E'l' 

(Similarly, when Pk(~') ~ Pk(~"), we get (5.8), with J..lq~_ 1 , 17 instead of llq~_ 1 , 17 .) 
Since, for any d E A, ( 4. 7) holds, then every summand in (5.8) has one of the 

following forms: 

lpqk_ 1 ,17- llq~-1'17 + ed'(qj, qj)vq~_ 1 , 17 - (pqk-1> 17 - llq~-1'17 + ed"(qj, qj)vq~_ 1 , 17 ) I or 

led'(%, qj)pqk-1>17- ed"(qJ, qj)pqk-1>17) I· 
Then: 

1Pqk_ 1 ,17- llq~_ 1 ,17 + ed'(qj, qj)v~_ 1 ,17 - (pqk_ 1 ,17 - llq~_ 1 , 17 + ed"(qj, qj)vq~_ 1 , 17 ) I 
= evq~-1'17 ld'(qj, qj)- d"(qj, qj) I ~ epqk_1 ,17 ld'(qj, qj)- d"(qj, qj) I 

and 

led'(qj, qj)pqk_ 1 ,17- ed"(qj, qj)pqk-1>17) I = epqk_ 1 ,17 ld'(qj, qj)- d"(qj, qj)l 

85 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

Hence, 

1Pk(6')- Pk(6") I :::; :Lepq~-l>cr ld'(qi, qj)- d"(qj, qj) I 
crEW 

Further, using the same reasoning as in the proof of Lemma 4.2, it is straight-

forward to show that Pis P-contractive. 

Lemma 5.2. Let d', d" E A, and 6' = V(d'), and 6" 
k E {1, ... , N}, there exists mE {1, ... , N} such that: 

D 

V(d"). For any 

Proof First, use the proof of Theorem 5.1 up to (5.7), and, then, analogous 

to the proof of Lemma 4.3. D 

Theorem 5.2. For any 6° E P0 , the sequence 

~n+l - P(~n) - 0 1 v - v , n- , , ... 

converges to the only fixed point oJP in P0 , 6*, and the error can be estimated 

componentwise {k E {1, ... , N}) as: 

Proof Analogous to the proof of Theorem 4.1 (with the use of Lemma 5.2 

instead of Lemma 4.3). D 

Remark 5.1. Analogue to Remark 4.2, the error in the n-th iteration {n = 

1, 2 ... ) can also be estimated as {k E {1, ... , N}) 

or, as: 

The optimization problem of (5.1 - 5.5) is not a linear programming 

problem, but it is transformable into one by using additional variables Yqi,cr' 

86 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

and by transforming (5.2) into (5.9): 

Minimize L Yqi,u 

uEill(qi) 

subject to 

""' I - 1 ~ Pc!;,o:- , 
o:Eill(qi) 

I >0 Pc!;,u - ' 

(5.9) 

It might look as if (5.9) is weaker than (5.2) as it allows the possibility 

of p~~,u = 0 for all a- E Wu(qi), which (5.2) forbids. However, this is not the 

case. Let p~~,u = 0 for every a- E Wu(qi)· From (5.3) it follows that: 

which would mean that p~~,u = 0 for every a- E Wc(qi) which contradicts the 

condition (5.4). 

We now present the iterative algorithm for finding the fixed point of 

function P. 

Let cf!J(qi, qD = 0, i = 0, 1, ... N- 1. The distance d:n(qi, qD in the n-th 

87 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

iteration (n > 0) is given as: 

Minimize L Yqi,u 

uEIJ!(qi) 

subject to 

P~~,u 2: 0, 

(5.10) 

After the n-th iteration, the values of decision variables p~~,u that repre­

sent the unknown transition probabilities, are such that the distance between 

the (initial states of) systems G2 and G~ is within en of the minimal achiev­

able distance between the two systems (in our pseudometric). Note that the 

aforementioned results hold fore E (0, 1). 

5.3 Summarizing the Algorithm 

We now summarize the presented algorithm and give a brief complexity anal­

ysis. 

1) First, the classical algorithm for finding the supremal controllable 

sublanguage is modified. The automaton G8 , the synchronous product of 

the nonprobabilistic automata underlying Gp and Gn is constructed. While 

constructing the product, the classical controllability conditions are checked 

for each state. If the conditions are satisfied for each state of the product, 

then G = G8 , and go to 2). If there is at least one state of the product 

for which the classical conditions do not hold, the rest of the algorithm for 

88 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

finding the automaton representing the supremal controllable sublanguage is 

then applied. The algorithm can easily be modified to exclude deadlock states: 

these states are considered uncontrollable. Let (reachable and deadlock-free) 

DES G = (Q, ~' 8, q0 ) represent this supremal deadlock-free and controllable 

sublanguage. 

2) Let G1 , G2 , and G~ be defined as previously in this chapter. Check 

the equalities and inequalities of Theorem 3.1 for each state: if they are satis­

fied, a supervisor exists, and G2 is the optimal approximation. If not, then let 

~(qi, qD = 0 for all 0::; i::; N -1. The distance d!"(qi, qD in the n-th iteration 

(n > 0) is given by (5.10). 

For each of the states of G2 (typically, the number of states of G2 

is much smaller than IQPI · IQrl), either the simplex method or an interior 

point method can be used to solve the linear programming problem (5.10). 

Depending on what method is used, the running time of the algorithm is either 

exponential (the simplex method) or polynomial (interior point methods) in 

the maximal number of events possible from a state of G2 • Even the worst­

case exponential complexity of the simplex method is not problematic for two 

reasons: first, the method is very efficient in practice, and second, the number 

of possible events from a state is small in practical applications. Furthermore, 

the number of iterations sufficient to reach the accuracy of E is poge E l· As 

before, this term is obtained from the fact that the number of iterations n 

for which an accuracy E is achieved should be the smallest natural number for 

which E 2:: en is satisfied. 

5.4 Example 

For plant Gp and Gr, depicted in Figure 5.1, there does not exist a probabilistic 

supervisor Vp such that G(Vp/Gp) =Gr. Figure 5.2 shows the modified plant 

G1 and modified specification G2 , defined as suggested in Section 5.1. Also, 

let c;np be defined as in Section 5.2. For PDES G2 , let pq be the probability 

distribution induced by the state q E Q and, for PDES G~, let p~, be the 

probability distribution induced by the state q' E Q'. As before, we will write 

Pq,u instead of pq(CJ, qi), and p~',u instead of p~,(CJ, qj), i, j = 0, 1, 2. 

89 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

At the n-th iteration, distances lff!(q0 , rfo), dn(q1 , qD, and tff!(q2 , ~) are 

calculated as follows: 

~(qo, qb) =Minimize (Yq0 ,a + Yq0 ,r;) 

subject to 

I _m-l( I) I < Pqo,a- Pqb,a + e · u q1, ql Pqb,a - Yqo,a, 

I _m-l( I) I < Pqo,f3 - Pqb,r; + e · u q2, q2 Pqb,r; _ Yqo,f3, 

e. ~-1 (ql, qDPqo,a :::; Yqo,a, 

e · ~-l(q2, q~)Pqo,f3 :::; Yqo,f3, 

p( qo,(J) I + I < 1 I I 1 p( qo, a) Pqo,a Pqo,a - , Pqb,a + Pqb,r; = , 

~(q1 , qD =Minimize (yq1,r; + Yq1,-y) 

subject to 

I _m-l( I) I < Pq1,r; - Pqi,f3 + e · u q2, q2 Pqi,f3 _ Yq1,r;, 

I _m-l( I) I < Pq1;y- Pqi,'Y + e · u qo, qo Pqi,'Y - Yq1m 

e · ~-1 (q2, q~)Pq1,r; :::; Yqr,f3, 

e · ~-l(qo, qb)Pql,"f :::; Yq1;r' 

p(ql,{J) I I < 1 I I 1 
p(qr, !) Pq0 ,-y + Pqr,-y - ' Pqi,f3 + Pqi,'Y = ' P~i.f3 2: 0, P~,-y 2: 0. 

~(q2, q~) =Minimize (Yq2,r; + Yq2,e + Yq2,T) 

subject to 

e · ~-1 (q2, q~)Pq2,f3 :::; Yq2,r;, 

e · ~-1 (qo, qb)Pq2,0 :::; Yq2,e, 

Pq2,T- P~~,T + e · ~-1 (qo, qb)P~~,T :::; Yq2,n e · ~-1 (qo, qb)Pq2,T :::; Yq2,n 

p(q2, 7) (p~~,T + p~~,(j) = p~~,T (p(q2, 7) + p(q2, /3)), 

p(q2, !3) + p(q2, T) 1 + 1 < l 
p( q

2
, ()) Pq2,e Pq2,e - ' 

p~~.r; 2: 0, P~~.e 2: 0, P~~,T 2: 0. 

Note that, for each lff!(q0 , qb), and dn(q1 , £h), the equation that corre­

sponds to the controllability condition for the sole uncontrollable event is miss­

ing, as it is trivially satisfied. Also, for dn(q2 , ~), the controllability equation 

was generated only for one of two uncontrollable events, as the two equations 

can be derived from each other. 

For the accuracy E = 0.001, and e = 0.5, 10 iterations of the algorithm 

are sufficient. It is found that the closest behaviour achievable with proba-

90 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

bilistic control is as given in Figure 5.3. It took 0.3 seconds on a 2.6GHz dual 

core Opteron processor with 8GB of RAM running Red Hat Enterprise Linux 

Server 5.5. In order to find the corresponding probabilistic supervisor, the 

algorithm of Theorem 3.2 can be used. The supervisor is shown in Figure 5.3. 

/3: 0.5556 

/3: 0.2 

--~-~ 

{I: 0.6 8: 0.375 

Figure 5.2: Generators G1 , and G2 

"' G~ 
'11. 

a : o .. l /:1'3 : 0.5556 

~"'U' :~~0 /3: 0.3125 

c/o ~~A~ 
~o/ 

8: o.a75 8: 0.625 

Figure 5.3: Optimal approximation G~ and probabilistic supervisor V such 
that V/G1 = G~ 

5.5 Summary 

This chapter solved the OPSCP problem: an algorithm to approximate the 

probabilities of the closest approximation was given and its proof of correctness 

was presented. 

The requirement, given as a probabilistic language, and equivalently, 

represented as a probabilistic generator, is considered a hard safety require-

91 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

ment. Therefore, the suprema! deadlock-free and controllable sublanguage 

of the requirement with respect to the plant is generated as the maximal 

deadlock-free behaviour "of the controlled plant. The requirements specifica­

tion is constrained to the same sublanguage, with appropriately normalized 

probabilities. The generators representing achievable behaviour of the con­

trolled plant and the modified requirements specification are isomorphic. The 

distance between the two is then minimized. The distance is measured by 

the metric presented in Chapter 4. The algorithm is iterative and works for 

e E (0, 1). In each iteration, for every two isomorphic states, a linear pro­

gramming problem is solved: the distance between two states in the metric is 

minimized under the controllability conditions of Theorem 3.1. The algorithm 

iterates until a prespecified accuracy of the distance between the systems is 

reached. In the next chapter, the algorithm above will be modified for the 

case when the requirements specification is not revised (see Section 6.3). More 

precisely, a modification of the presented algorithm can be used to solve the 

control problem presented in Section 3.3 with criterion (2) changed so that 

the distance between the controlled plant and the original requirement is min­

imized. 

92 



Chapter 6 

Probabilistic Model Fitting 

In this chapter, the idea of approximating a given probabilistic generator by 

another probabilistic generator of a prespecified structure is explored, such 

that the distance between the original generator and the new one is minimized 

in metric dfp. This a.pproximation is called probabilistic model fitting. 

Section 6.1 formulates the problem of probabilistic model fitting and 

presents its solutio::1. Next, Section 6.2 presents the applications of model 

fitting. Then, in Section 6.3, some of the ideas used in the solution of the 

model fitting problem are also applied in the solution of the modified OPSCP 

problem. 

6.1 Probabilistic Model Fitting: Problem and 

Solution 

First, the probabilistic model fitting problem is introduced. Note that no 

minimization is done in the construction of the synchronous product of (non­

probabilistic) generators as defined by Definition 2.1 in Section 2.2. 

The Probabilistic lviodel Fitting Problem: Let G1 = (Qll :E, 81l qobPI) be a 

probabilistic generator. Given a nonprobabilistic generator CJ'.lP = (Q2 , :E, 82 , r 0) 
such that Cf';P II CJ'.lP is isomorphic to CJ'.lP, find the statewise event probability 

distribution P2 such that probabilistic generator G2 = ( Q2 , :E, 82 , r0 , p2 ) is as 

close as possible to G1 in metric dfp. 

93 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

The idea of solving the problem is as follows. The generator G1 is to 

be modified to make O';P isomorphic (identical up to renaming of states) to 

a subautomaton of modified G'.{P, while the probabilistic language of G1 is 

preserved. Then, the distance between G1 and G2 is minimized by minimizing 

the distance between the modified G1 , and G2• This is allowed as the two 

distances are the same, since G1 and its modified version are probabilistic 

bisimilar: 

Theorem 6.1. Let G1 and G2 be two probabilistic generators. Theri, if Lp(G1) = 

Lp(G2), then d!P(G1, G2) = 0. 

Proof Since Lp(G1) = Lp(G2), G1 and G2 are probabilistic trace equivalent 

in the sense of (Jou and Smolka, 1990). As G1 and G2 are deterministic, 

probabilistic trace equivalence implies probabilistic bisimulation equivalence. 

Therefore, djp(G1, G2) = 0. D 

Next, as previously stated, we seek to represent Lp( G1) with an automa­

ton G1a such that O';P is isomorphic to a subautomaton of G'.{~. Figure 6.1 

illustrates an example. The part of G1a drawn by a solid line corresponds to 

the subautomaton of G'.{~ isomorphic to O';P. In general, the automaton G1a 

will represent a non-minimal realization of Lp( G1) (in the sense that it might 

have more states than G1 , but Lp(G1) = Lp(G1a)). Generator G1a can be 

constructed in the following manner. 

1. Self-loop each state of G~P with events not possible from that state. 

Formally, 0';~ = (Q2, :E, 82a, ro), where, for q E Q2, a- E :E: 

- ( ) { 82 ( q' (]") ' if 82 ( q' (]") ! 02a q, a- = 
q, otherwise. 

3. The probabilistic version of G'.{~ is G1a = (Qla, :E, 81a, qo,Pia), such that, 

for all q E Qla, a- E :E: 

where r = 81 (q01 , s) for any s E L(Gia) such that q = 81a(qo, s). 

94 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

a: 0.1 

'Y: 0.2 

r:0.4 
Gla / ------ .i/,,95 ;...' , 

q1 ,'' (): 0.3 __ ,..,,~a: 0.1 \ 

a:r:l~\8---:-0.1 ,/ ',,, :r():00.34 
/ {3 : 0.9 ' ,' . . 

: 0.2 // '~ // 'Y : 0.2 

~· ~ {3:0.1 -·-
" ~·09 ?"'- -rf' q4 -.0 •. ,'q2<~~:---}J:0.1 

T ; 0.4 ~ \ \'Y ; 0.2 
\ {3: 0.9\\ 
\ ,'IJ 

():0.3 -- -· --- ~ qg 
a: 0.1 

Figure 6.1: Model fitting: an example 

95 

() 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

Lemma 6.1. Lp(G1) = Lp(G1a)· 

Proof Follows from the construction of G1a. D 

Now, let f : Q2 -+ Q1a be an embedding (a monomorphism) of G';,P 
into en~, i.e.: 

1. f(ro) = qo, 

The function f always exists and is unique. This fact follows from the 

construction of G1a and the determinism of generators. 

Without loss of generality, it is assumed that, Q1a = {qo, ... , qM-1}, 

Q2 = {ro, ... , rN-1}, and M 2: N > 0, d E M, q E Q2 , where M is the set 

of 1-bounded pseudometrics on the states of the system that represents the 

union of G1a and G2 (see Remark 4.1) with the same ordering as in (4.1). Next, 

i(f(q), cr) = i such that qi = 81a(f(q), cr) if 81a(f(q), cr)!, and i(f(q), cr) = 0, 

otherwise. Let j(q, cr) = j such that rj = 82 (q, cr) if 82(q, cr)!, and j(q, cr) = 0, 

otherwise. For readability purposes, we will write i instead of i(f(q), cr), and 

j instead of j(q, cr). The distance between G1a and G2 is dfp(q0 , r0 ). Also, 

f(ro) = qo, and 

V(d)(f(q),q) 

= l:max(Pu,i- P~,j + ep~,jd(qi, rj), epu,id(qi, rj)) 

L Pu,i 
uEPos(!(q))\Pos(q) 

+ L max(pu,i- P~,j + ep~,jd(f(rj), rj), epu,id(f(qj), qj)) (6.1) 
uEPos(q) 

(since f ( r j) = qi, by the definition of f) 

where PJ(q) and pq are the distributions on :E x Q induced by the states f(q) 

and q, respectively, and Pu,i is written instead of PJ(q)(cr, qi), and, similarly, P~,j 

instead of pq(cr, ri)· 

96 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

Remark 6.1. Based on (6.1), it can be concluded that, forq E Q2 , the distance 

between state f(q) E Qla and state q depends only on distances between f(t) 

and t, t E Q2 • In Figure 6.1, the distance between G1a and G2 depends only 

on distances between states of pairs (qo, r0 ), (q1, r1), and (q2, r2); states q3, 

q4, q5 are irrelevant. 

Therefore, in order to calculate the distance between G1a and G2 , only 

the distances dJp(j(q), q), q E Q2 , are of interest. Hence, the distance between 

G1a and G2 , for a fixed p2 , can be found by at most w iterations given in 

Definition 4.1, where the domain of d''jp is restricted to Q1a x Q2 and only 

distances between f(q) E Q1a and q E Q2 are defined. 

This reasoning leads to the solution of the probabilistic model fitting 

problem as presented next. 

Theorem 6.2. Let G1 = (Q1, :E, <h, qobPl) be a probabilistic generator. For 

given c;P = (Q2 , ~~' 82 , r0) (such that G'!_P II c;P is isomorphic to c;P ), the 

statewise event probability distribution p2 such that G2 = ( Q2, :E, 82, r0 , p2) is 

as close as possible. to G1 in the metric diP should satisfy, for all r E Q2, 

a E Pos(r): 

P2(r, a) 2:: Pl(q, a) (6.2) 

where q = 81(qob s) for any s E L(G2) such that r = 82(r0 , s). 

Proof Let G2 = (Q2, :E, 82, ro,p2), where p2 satisfies (6.2). Also, let G~ -

( Q2, :E, 82, r0 , p~) be a probabilistic generator with an arbitrary probability dis­

tribution p~. We use induction to show that dfp(G1a, G~) 2:: dfp(G1a, G2) by 

showing that d%(Gla,G;) 2:: d%(Gla,G2), n EN. For q E Q2, let db(f(q),q) 

be the distance be1;ween the states f(q) of G1a and q of G2 , and d';(f(q), q) 

be the distance between f(q) of G1a and q of a;. The base case is trivially 

satisfied. Next, assume that, for each q E Q2, d';(f(q), q) 2:: df.p(f(q), q). The 

functions i and j are defined as for (6.1), and, for q E Q2 , k(q, a) = k such that 

rk = 82 (q, a) if 82 (q, a)!, and k(r, a) = 0, otherwise. The shorthand notation 

k will be used. For q E Q2 , let PJ(q), Vq and v~ be the distributions induced by 

the states f(q) of G1a, q of G2 and q of G~, respectively. Also, for q E Q2 , let 

Pu,i be used instead of PJ(q)(a, qi), and, similarly, Vu,j instead of vq(a, ri) and 

97 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

v~,k instead of v~(O", rk)· Then: 

d';+l(J(q), q) 

L (Pu,i- v~,k + ev~,kd';(qi, rk)) + L epu,id';(qi, rk) 
uE{ uE:EIPa,i2::1{,k} uE{ uE:EIPa,qi <v~,k} 

L Pu,i + L (Pu,i- v~,k + ev~,kd';(qi, rk)) 
uEPos(f(q))\Pos(q) uE{ uEPos(q) IPa,i2::v~,k} 

+ L epu,id';(qi, rk) 
uE{ uEPos( q) IPa,i <v~,k} 

> L Pu,i + L epu,id';(qi, rk) 
uEPos(f(q))\Pos(q) uEPos(q) 

> L Pu,i + L epu,id'j.p(qi, rk) 
uEPos(f(q)) \Pos(q) uEPos(q) 

(because of induction hypothesis, since qi = f(rk)) 

Pu,i 
uEPos(f( q) )\Pos(q) 

+ L:max(pu,i- Vu,j + evu,jd'j.p(qi, Tj), epu,id'j.p(qi, rj)) 
uEPos(q) 

(since Vu,j > Pu,i for every O" E Pos(q)) 

= a'fp+l(J(q), q) 

0 

Therefore, the new model is not unique: as long as the probabilities of 

the events possible in the new model do not decrease, the new model is as close 

as possible to the original one. For the example from Figure 6.1, one of the 

possible solutions is represented by the generator at the bottom right corner 

of the figure. In another possible solution, the probabilities of occurrence of 

{3 and"( at state r 1 would be 0.2 and 0.8, respectively. Therefore, the fitting 

can be performed by any redistribution of the probabilities of events that 

are not possible anymore over the possible ones. Hence, model fitting can 

accommodate some further requirements on p2 • 

98 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

6.2 Some .A.pplications of Model Fitting 

, Other than the obvious use of the presented fitting to simplify and reduce 

the state space of probabilistic systems, the fitting has much more significant 

control implications. 

As mentioned before, it is possible to choose probabilities of events 

in the new system to a certain extent: as long as they are greater than or 

equal to the original ones. However, some of the further requirements on P2 

cannot be accommodated by Theorem 6.2 (e.g., an obvious one would be that 

the probability of an event still possible in the new system should be smaller 

than in the original system). If the restrictions are given on probabilities of 

events, statewise, a straightforward modification of the OPSCP algorithm of 

Chapter 5 for e E (0, 1) would suffice. An example of such an additional 

requirement would be that the probability of a certain event from a state is 

less than a specified value, that is, in turn, smaller than the original one. 

Further, in the solution of the OPSCP presented in Chapter 5, in order 

for the first criterion as presented in Section 3.3 to be satisfied, the supremal 

deadlock-free and controllable sublanguage of L( Gr) with respect to Gp is gen­

erated. Then, the distance between the controlled plant, and the probabilistic 

requirement now restricted to the sublanguage, with normalized probabilities, 

is minimized. Intuitively, after satisfying the nonprobabilistic requirement, 

and before the probabilistic part is handled, it makes sense for a designer to 

modify the original requirement so that its nonprobabilistic behaviour matches 

the one achievable Then, the probabilities are revised accordingly: proba­

bilities of the events that are inadmissible because they do not satisfy the 

nonprobabilistic requirement, are redistributed over the admissible ones. The 

redistribution is such that the probability of an event in the new system is 

proportional to its original probability. Theorem 6.2 proves that this normal­

ization is justified in a strict mathematical sense, as the new model that is 

normalized is as close as possible to the original one in the metric diP. How­

ever, a revised specification is going to be at a minimal distance from the 

original one, as long as the probabilities of its remaining events are greater 

than or equal to the original ones: a designer has a freedom to choose how to 

99 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

redistribute the probabilities over the events that are still possible. 

Further, the transformation of G1 into G1a presented here can be used 

in a modification of the OPSCP algorithm to solve the OPSCP (as presented 

in Section 3.3) with criterion (2) changed so that the controlled plant is "as 

close as possible" to the unmodified requirement. More precisely, the proba­

bilistic language Lp(Gr) of the requirements specification Gr can be exactly 

represented by a probabilistic generator G2 with nonprobabilistic automaton 

G;-P that has a subautomaton that is isomorphic to automaton G1k represent­

ing the suprema! deadlock-free and controllable sublanguage of the controlled 

plant (see Section 5.1). Then, using the reasoning of Remark 6.1, the distance 

between the requirement and the controlled plant depends only on the dis­

tances between isomorphic states of the subautomaton of G;-P and Glk. Hence, 

the OPSCP algorithm can be modified to minimize the distance between the 

two systems under the probabilistic controllability conditions of Theorem 3.1. 

This modification is shown in the next section. 

6.3 Model Fitting and Closest Approximation: 

Problem Revisited 

In Section 3.3, after satisfying the nonprobabilistic criterion (the first part of 

OPSCP of Section 3.3), a designer revises the requirements specification before 

satisfying the probabilistic criterion (the second part of OPSCP of Section 3.3). 

In this section, after satisfying the nonprobabilistic requirement, the distance 

between the achievable behaviour of the plant under control and the original 

requirements specification is minimized. 

Let e E (0, 1). As before, assume that the plant is given as PDES 

Gp = (Qp, E, 8p, qp0 , Pp), and the requirements specification is given as Gr = 

( Qr, E, 8r, qr0 , Pr). Formally, let the reachable and deadlock-free DES G1k = 

(T, E, (, t 0 ) represent language K, the suprema! deadlock-free and controllable 

sublanguage as defined in Section 5.1. Then, G1 = (T, E, (, t 0 ,p1 ) is defined 

in the same manner as in Section 5.1- it is the probabilistic automaton corre­

sponding to the restriction of the plant Gp to K. Next, the requirement is not 

100 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

normalized as before, but, instead, the language Lp(Gr) is represented using 

the generator G2 = (Q, :E, 8, q0 ,p), such that a subautomaton of ~Pis isomor­

phic to G1k; hence, isomorphic to G"{P, too (see Figure 6.2 for an illustration). 

The part of G2 dra.wn by a solid line corresponds to the subautomaton of 

~P isomorphic to (J'{P. As before, we should find p' in G~ = (Q', :E, 8', ifo,p'), 

such that Lp(Vp/G1 ) = Lp(G~) holds, and G~ is closest to G2 in our chosen 

metric. Also, G';P is such that c;np is isomorphic to G'{P. This comes from 

the fact that there cannot be any string in the desired system that does not 

belong to K, and, therefore, there cannot be any string in the desired system 

that does not belong to L(G1 ) (as explained in Section 5.2). It follows from 

Lemma 6.1 that minimizing the distance between the Gr and G~ is the same 

as minimizing the distance between G2 and G~. Also, generator G2 can be 

constructed in the same manner as G1a in Section 6.1, and, according to the 

results of Section 6.1, the construction is possible, as G~P II G'{P is isomorphic 

to G'{P. Now, given the definitions of G2 and G~, there exists an embedding 

f: Q' ~ Q of c;np to c;P, i.e.: 

2. Vq E Q' Va E Pos(q) (!(8'(q, a))= 8(f(q), a)). 

We assume that T = {t0, tb ... tN-1}, Q = {qo, q1, ... qM-1}, and Q' = 

{qb, q~, ... q~_1 }, where qi = f(qD, ti = h(ch), i = 0, ... , N- 1, where M 2: 
N > 0, and h is the isomorphism between a;np and (J'{P. Let pqi be the 

probability distribution induced by the state qi E Q of PDES G2 and let 

p~~ be the probability distribution induced by the state q~ E Q' of PDES 

G~. Also, we will write j for j(i, a), then pqi,u instead of pqi(a, qk), and p~~,u 

instead of p~ (a, q~), k = 0, 1, ... , N - 1. Let A be the class of all 1-bounded 

pseudometrics on the states of the system that represents the union of G2 and 

G;, with domain reduced to Q X Q', and only distances between q = f(q') E Q 
and q' E Q' defined (similar to Section 5.2). Let dE A, 0::;; i::;; N -1, w(qi) = 

Pos(qi), w(ch) = Pos(qD, Wu(ch) = Pos(qD n :Eu, and Wc(qi) = Pos(ch) n :Ec. 

101 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

Let ci = e · d(qi, qj) such that qi = 8(qi, a"). Note that, since, 

V(d)(qi, qD = :2::. pqi,u + 'L: max(pqi,u- P~~,u + Cjp~~,u' Cjpqi,u), 
uEW(qi)\ w(q~) uEW(q~) 

(6.3) 

the distance between G2 and G~ is going to depend only on distances between 

the isomorphic states. E.g., in Figure 6.2, the distance between G2 and G~ 

depends only on distances between states of pairs (q0 , qb), (q1, qD, and (q2 , 

q~); states q3 , q4 , q5 are irrelevant. 

Theorem 6.3. Let ~(qi, ~) = 0. The distance dn(qi, qD in the n-th iteration 

(n > 0) is given as: 

Minimize :2:: Pqi,u + :2:: Yqi,u 
uEw(qi)\ w(qD uEw(qD 

subject to 

0 ::=; p~~,u ::=; 1, 

L P~~,a = 1. 
aEw(qD 

(6.4) 

(6.5) 

After the n-th iteration, the values of decision variables p~~,u that rep­

resent the unknown transition probabilities, are such that the distance between 

the (initial states of) systems G2 and G~ is within en of the minimal achiev­

able distance between the two systems (in our pseudometric}. Note that the 

aforementioned results hold fore E (0, 1). 

Proof The proof follows from (6.3) and the proof of the algorithm of Sec­

tion 5.2. 0 

102 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

tl 

a' 0 166~'~: 0.5556 r /~:0.4444 ~ 
~· :...___) 

~ ~2/'' 
(}: 0.6 

G' 2 th 

dl:/~p' 06566 r / ~ = 0.3434 ,A 0.35 

~· :...___) % ,B: 0.9 q2 

(}: 0.3 

Figure 6.2: Generators G1, G2 , and the closest approximation G~ in the revis­
ited problem 

103 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

For the example from Section 5.4, the closest approximation G~ (for 10 

iterations, e = 0.5) is given in Figure 6.2. 

6.4 Summary 

This chapter focused on the probabilistic model fitting problem: a transforma­

tion (under certain conditions) of a probabilistic generator to another proba­

bilistic generator of a prespecified graph. The new probabilistic generator is 

at the smallest possible distance from the original probabilistic generator in 

the metric of Chapter 4. As it turns out, the solution of the fitting problem 

is rather simple: the probability of a transition in the new probabilistic gen­

erator can have any value greater than or equal to the original probability of 

that transition. The proof of this claim consists of two parts. In the first part, 

the probabilistic language generated by the original probabilistic generator is 

exactly represented using another generator such that the new generator has 

a subgraph isomorphic to the prespecified graph (this is always possible under 

the conditions given in the formulation of the problem). In the second part, 

the distance between the two generators is minimized. From this point, it is 

easily shown that any redistribution of the probabilities of events not possible 

anymore over the probabilities of the events that are still possible, would result 

in the generator that is at the minimal distance from the original one. 

Model fitting has a number of applications. A trivial state space re­

duction is one of them. Also, the solution to the fitting problem can serve to 

show that the normalized requirements specification as used in criterion (2) 

of the OPSCP problem is mathematically sound. Most notably, some inter­

mediate results reached while solving the probabilistic model fitting problem 

are used in order to solve a modified version of the OPSCP problem. More 

concretely, the OPSCP problem is modified such that criterion (2) now states 

that the distance between the controlled plant and the original (unmodified) 

requirement should be minimized. It has been shown that the algorithm from 

Chapter 5 can be reused in a straightforward manner, without any change in 

complexity. 

104 



Chapter 7 

Concl us :ions 

The research presented in this thesis focuses on establishing a framework for 

reasoning about probabilistic supervisory control of probabilistic discrete event 

systems. The systems are modeled using probabilistic generators, a straight­

forward extension of generators used in standard supervisory theory. The 

control used is pro.Jabilistic as it allows for greater flexibility in design. The 

main control goal is to match the probabilistic language generated by a plant 

to the probabilistic language of a requirements specification. In this thesis, the 

solution of the problem as already existing in the literature is completed with 

the solution of a special case and complexity analysis. Another standard prob­

lem is solved: if there does not exist a probabilistic supervisor to match the 

two languages, what is the optimal solution? The problem is called the opti­

mal probabilistic supervisory control problem (OPSCP). The nonprobabilistic 

language of the requirement is considered a safety requirement: the plant can­

not leave the required (nonprobabilistic) language even with the smallest of 

probabilities. Further, the requirement of maximal permissiveness in nonprob­

abilistic sense is imposed. Also, the controlled plant should be deadlock-free 

as only nontermim~ting generators are considered. In the probabilistic sense, 

on the other hand, it is required that the controlled plant is as close as possi­

ble to the requirement. As a measure of proximity, a metric on the states of 

probabilistic generators is chosen. 

The metric -- adopted from the literature - is defined on the states of a 

large class of probabilistic transition systems and is given as a greatest fixed 

105 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

point of a monotone function. In the case of our probabilistic generators, this 

function can be significantly simplified. This simplification then permits the 

derivation of two efficient algoritbm for the calculation of distances between 

the states of a probabilistic generator. The distance between two generators 

is defined as the distance between their initial states. 

An algorithm to solve the OPSCP is described. First, the algorithm 

finds the suprema} deadlock-free and controllable sublanguage of the nonprob­

abilistic part of the requirements specification with respect to the plant. This 

sublanguage represents the most permissible deadlock-free (nonprobabilistic) 

behaviour of the controlled plant. As the requirements specification is also 

constrained to the sublanguage, the underlying nonprobabilistic generators of 

the controlled plant and the modified requirements specification are isomor­

phic. Probabilities of the transitions in the generator representing the con­

trolled plant are approximated through an iterative process: in each iteration, 

for each state of the controlled plant, the distance between the state and its 

corresponding isomorphic state of the modified requirements specification is 

minimized by solving a linear programming problem. The algorithm runs in 

time linear in the number of states of both generators representing the plant 

and the requirement. Depending on what method is used for solving linear 

programming problems as a part of algorithm, the worst-case running time 

of algorithm is either exponential (simplex method) or polynomial (interior 

point methods) in the maximal number of events possible from a state of the 

supremal deadlock-free and controllable sublanguage of the specification (with 

respect to the plant). Even the worst-case exponential complexity of the sim­

plex method is not typically problematic for two reasons: first, the method 

is very efficient in practice, and second, the number of possible eventf> from a 

state is often small in practical applications. 

The metric used in the solution of the optimal probabilistic supervisory 

control problem for PDES is based on the well-researched Kantorovich metric 

that has been widely used for reactive systems. As mentioned, the metric 

is initially given a fixed point characterization. This thesis further expands 

the understanding of the metric by giving it an alternative, logical charac­

terization. Logical characterization measures how close the systems satisfy 

106 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

formulae of a real-valued logic. Next, this logical characterization is used to 

reason about similarity of probabilistic strings of systems: the distance in the 

metric is viewed through differences of appropriately discounted probabilities 

of traces (strings) and sets of traces of the systems, as well as some more 

complicated properties of traces. 

The same metric can be used in the approximation of one probabilistic 

generator with another one with a prespecified underlying automaton, where 

the distance in the metric between the original and the new model is mini­

mized. First, the probabilistic language of the original probabilistic generator 

is represented using another probabilistic generator such that a subautomaton 

of its underlying nonprobabilistic generator is isomorphic to the prespecified 

automaton's. From here, it can be shown that the minimal distance between 

the original generator and the new one can be achieved by any distribution of 

probabilities of events not possible from a state in the new generator over re­

maining events. The approximation can be used in model order reduction, but 

its ideas have a more significant application in the solution of the modified OP­

SCP. More concretely, the requirements specification can be represented using 

a probabilistic generator such that a subautomaton of its underlying nonprob­

abilistic generator is isomorphic to the automaton representing the suprema! 

deadlock-free and controllable sublanguage of the requirements specification. 

Then, the iterative part of the OPSCP algorithm can be modified in a straight­

forward manner so that the resulting closed loop system is optimally close to 

the original requirements specification. 

7.1 Future Research 

In the OPSCP algorithm, uniqueness of the closest approximation has not 

been researched. The problem would reduce to the uniqueness of values of de­

cision variables in the solution of the linear programming problem of Equation 

(6.4). The same analysis, we believe, could give the answer to the question of 

whether the nonprobabilistic language generated by the closest approximation 

is exactly equal to the suprema! deadlock-free and controllable sublanguage 

of requirements specification with respect to plant. Equivalently: in the solu-

107 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

tion of the linear programming problem of (6.4) can it happen that one of the 

variable Pu is 0? 

The systems considered in this thesis are completely observable. How­

ever, it is often the case that some of the events generated by a plant are not 

observable by a supervisor. The work of (Desharnais et al., 2002) suggests a 

metric analogue to ours for a special kind of probabilistic systems (labelled 

concurrent Markov chain), with hidden internal events. Also, partially ob­

served MDPs (Astrom, 1965; Drake, 1962; Dynkin, 1965) have been a focus 

of much of research. Partially observed probabilistic transition systems mod­

eled as probabilistic generators in the context of the infinite horizon decision 

problem are considered in (Chattopadhyay and Ray, 2010). 

A simple application of the research to a real-world system was pre­

sented in this thesis. More applications should also be found in the field of 

robotics as probabilistic generators have been used to model systems in the 

problems of control of robot systems (Mallapragada et al., 2009; Chattopad­

hyay et al., 2009). Further, the use of probabilistic generators in the modeling 

of systems in human sequence prediction (Feldman and Hanna, 1966) might 

be a starting point for the introduction of control in similar systems. Also, 

the application in QoS (Quality of Service) should be investigated. One of the 

routes to explore is the use of our research in the generation of test cases (ad­

versaries) for MDPs. More precisely, a probabilistic generator can be viewed 

as a supervisor for MDPs (see Section 3.2). On the other hand, a probabilistic 

supervisor as defined in our framework can be represented as an MDP (also 

shown in Section 3.2). This duality of systems to be controlled and probabilis­

tic supervisors in the two frameworks might prove fruitful in the search for an 

application of the theory. 

Operators on probabilistic generators remain to be defined (prefixing, 

choice operators, parallel composition, etc.). The desired property of non­

expansiveness of operators with the respect to the metric merits further study. 

The property of non-expansiveness would provide for compositional reasoning 

about complex systems made of modules. 

The nonprobabilistic behaviour of requirements specification is consid­

ered a safety requirement: a plant is not allowed to execute any trace not 

108 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

in the requirement. An interesting problem to solve would be relaxing this 

requirement such that, after a string has been observed, an event that is oth­

~rwise illegal, is allowed to occur with a small prespecified probability (similar 

to (Mortazavian, 1993)). 

109 



Bibliography 

Arapostathis, A., Borkar, V. S., Fernandez-Gaucherand, E., Ghosh, M. K., and 

Marcus, S. I. (1993). Discrete-time controlled Markov processes with aver­

age cost criterion: a survey. SIAM Journal on Control and Optimization, 

31(2):282-344. 

Arapostathis, A., Kumar, R., and Hsu, · S.-P. (2005). Control of Markov 

chains with safety bounds. Automation Science and Engineering, IEEE 

Transactions on, 2(4):333- 343. 

Arapostathis, A., Kumar, R., and Tangirala, S. (2003). Controlled Markov 

chains with safety upper bound. Automatic Control, IEEE Transactions 

on, 48(7):1230- 1234. 

Arnold, A. (1994). Finite Transition Systems. Prentice Hall. 

Astrom, K. J. (1965). Optimal control of Markov processes with incomplete 

state information. Journal of Mathematical Analysis and Applications, 

10:17 4-205. 

Baier, C., GroBer, M., Leucker, M., Bollig, B., and Ciesinski, F. (2004). Con­

troller synthesis for probabilistic systems. In Levy, J.-J., Mayr, E. ~., and 

Mitchell, J. C., editors, Proceedings of the IFIP International Conference 

on Theoretical Computer Science, pages 493-506. Kluwer. 

Baier, C. and Kwiatkowska, M. (2000). Domain equations for probabilistic 

processes. Mathematical Structures in Computer Science, 10(6):665-717. 

Barrett, G. and Lafortune, S. (1997). Using bisimulation to solve discrete event 

control problems. In Proceedings of the 1997 American Control Conference, 

pages 2337-2341, Albuquerque, NM. 

Beauquier, D., Burago, D., and Slissenko, A. (1995). On the complexity of 

finite memory policies for Markov decision processes. In Proceedings of the 

110 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

20th International Symposium on Mathematical Foundations of Computer 

Science, pages 191-200, London, UK. Springer-Verlag. 

Bellman, R. (1957). Dynamic Programming. -Princeton University Press, 

Princeton, N J. 

Bertsekas, D. P. (1987). Dynamic Programming and Optimal Control. 

Prentice-Hall, Englewood Cliffs, NJ. 

Blackwell, D. (1962). Discrete dynamic programming. Annals of Mathematical 

Statistics, 33(2):719-726. 

Borkar, V. S. (1991). Topics in controlled Markov chains. Wiley, New York. 

Canny, J. (1988). ,Some algebraic and geometric computations in PSPACE. 

In Proceedings of 20th annual ACM symposium on Theory of computing, 

pages 46D-469, New York, NY, USA. ACM. 

Cassandras, C. G. (1993). Discrete Event Systems: Modeling and Performance 

Analysis. Richard D. Irwin, Inc., and Aksen Associates, Inc., Homewood, 

IL, USA. 

Chattopadhyay, I., Mallapragada, G., and Ray, A. (2009). v*: A robot path 

planning algorithm based on renormalized measure of probabilistic regular 

languages. International Journal of Control, 82(5):849-867. 

Chattopadhyay, I. and Ray, A. (2007a). Language-measure-theoretic optimal 

control of probabilistic finite state systems. In Proceedings of 46th IEEE 

Conference on Decision and Control, pages 593Q-5935, New Orleans, LA, 

USA. 

Chattopadhyay, I. and Ray, A. (2007b). Language-measure-theoretic opti­

mal control of probabilistic finite-state systems. International Journal of 

Control, 80(8):1271-1290. 

Chattopadhyay, I. and Ray, A. (2008). Structural transformations of proba­

bilistic finite stc,te machines. International Journal of Control, 81(5):820-

835. 

Chattopadhyay, I. and Ray, A. (2010). Optimal control of infinite horizon par­

tially observable decision processes modelled as generators of probabilistic 

regular languages. International Journal of Control, 83(3):457-483. 

de Alfaro, L., Henzinger, T. A., and Majumdar, R. (2003). Discounting the 

future in systems theory. In Baeten, J. C. M., Lenstra, J. K., Parrow, J., 

111 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

and Woeginger, G. J., editors, Proceedings of International Colloquium on 

Automata, Languages and Programming, volume 2719 of Lecture Notes in 

Computer Science, pages 1022-1037. Springer. 

de Vink, E. P. and Rutten, J. J. M. M. (1999). Bisimulation for probabilistic 

transition systems: a coalgebraic approach. Theoretical Computer Science, 

221(1-2):271-293. 

den Hartog, J. (1998). Comparative semantics for a process language with 

probabilistic choice and non-determinism. Technical Report IR-445, Free 

University, Amsterdam, Netherlands. 

Deng, Y., Chothia, T., Palamidessi, C., and Pang, J. (2006). Metrics for action­

labelled quantitative transition systems. Electronic Notes in Theoretical 

Computer Science, 153(2):79-96. 

Desharnais, J., Gupta, V., Jagadeesan, R., and Panangaden, P. (1999). Met­

rics for labeled Markov systems. In Baeten, J. C. M. and Mauw, S., ed­

itors, Proceedings of the lOth International Conference on Concurrency 

Theory, volume 1664 of Lecture Notes in Computer Science, pages 258-

273. Springer. 

Desharnais, J., Gupta, V., Jagadeesan, R., and Panangaden, P. (2004). Metrics 

for labelled Markov processes. Theoretical Computer Science, 318(3):323-

354. 

Desharnais, J., Jagadeesan, R., Gupta, V., and Panangaden, P. (2002). 

The metric analogue of weak bisimulation for probabilistic processes. In 

Proceedings of the 17th Annual IEEE Symposium· on Logic in Computer 

Science, pages 413-422, Washington, DC, USA. IEEE Computer Society. 

Drake, A. W. (1962). Observation of a Markov Process Through a Noisy 

Channel. PhD thesis, Department of Electrical Engineering, MIT, Cam­

bridge, MA. 

Dynkin, E. B. (1965). Controlled random sequences. Theory of Probability 

and its Applications, 10(1):1-14. 

Etessami, K. and Yannakakis, M. (2009). Recursive Markov chains, stochastic 

grammars, and monotone systems of nonlinear equations. Journal of ACM, 

56(1):1-66. 

Fan-Orzechowski, X. and Feinberg, E. A. (2007). Optimality of randomized 

112 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

trunk reservation for a problem with multiple constraints. Probability in 

Engineering and Informational Sciences, 21(2):189-200. 

Feinberg, E. A. and Reiman, M. I. (1994). Optimality of randomized 

trunk reservation. Probability in Engineering and Informational Sciences, 

8(4):463-489. 

Feldman, J. and Hanna, J. F. (1966). The structure of responses to a sequence 

of binary events. References Journal of Mathematical Psychology, 3(2):371-

387. 

Ferns, N., Castro, P. S., Precup, D., and Panangaden, P. (2006). Methods for 

computing state similarity in Markov Decision Processes. In Proceedings of 

the 22nd Conference on Uncertainty in Artificial intelligence, Cambridge, 

MA, USA,July 13-16, 2006, pages 174-181, Cambridge, MA, USA. AUAI 

Press. 

Ferns, N., Panang;aden, P., and Precup, D. (2004). Metrics for finite 

Markov Decision Processes. In Proceedings of the 20th Conference 

Annual Conference on Uncertainty in Artificial Intelligence (UAI-04), 

Banff, Canada, July 07-11, 2004, pages 162-169, Arlington, Virginia. AUAI 

Press. 

Ferns, N., Panangaden, P., and Precup, D. (2005). Metrics for Markov Decision 

Processes with infinite state spaces. In Proceedings of the 21st Conference 

in Uncertainty in Artificial Intelligence, July 26-29, 2005, Edinburgh, 

Scotland, pages 201-208, Cambridge, MA, USA. AUAI Press. 

Garg, V. (1992a). An algebraic approach to modeling probabilistic discrete 

event systems. In Proceedings of 31st IEEE Conference on Decision and 

Control, pages ~:348-2353, Tucson, AZ, USA. 

Garg, V. (1992b). Probabilistic languages for modeling of DEDS. In 

Proceedings of 26th Conference on Information Sciences and Systems, vol­

ume 1, pages 198-203, Princeton, NJ. 

Garg, V., Kumar, R., and Marcus, S. (1999). Probabilistic language formalism 

for stochastic discrete event systems. IEEE Transactions on Automatic 

Control, 44(2):28Q-293. 

Giacalone, A., Jou, C., and Smolka, S. (1990). Algebraic reasoning for prob­

abilistic concurrent systems. In M. Broy and C.B. Jones, eds, Proceedings 

113 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

of the Working Conference on Programming Concepts and Methods, pages 

443-458, Sea of Gallilee, Israel. North-Holland. 

Gihman, I. and Skorohod, A. (1979). Controlled Stochastic Processes. 

Springer-Verlag, New York. 

Glabbeek, R. J. V., Smolka, S. A., and Steffen, B. (1995). Reactive, gen­

erative and stratified models of probabilistic processes. Information and 

Computation, 121(1):59-80. 

Hennessy, M. and Milner, R. (1985). Algebraic laws for nondeterminism and 

concurrency. Journal of the ACM, 32(1):137-161. 

Hermindez-Lerma, 0. and Lasserre, J. B. (1996). Discrete-Time Markov 

Control Processes: Basic Optimality Criteria. Springer-Verlag, New York. 

Howard, R. A. (1960). Dynamic Programming and Markov processes. The 

~MIT Press, Cambridge, Massachusetts. 

Hutchinson, J. E. (1981). Fractals and self-similarity. Indiana University 

Mathematics Journal, 30(5):713-747. 

Ruth, M. and Kwiatkowska, M. (1998). Comparing CTL and PCTL on labeled 

Markov chains. In Proc. PROCOMET'98. IFIP, Chapman & Hall. 

Jou, C.-C. and Smolka, S. A. (1990). Equivalences, congruences, and complete 

axiomatizations for probabilistic processes. In Baeten, J. C. M. and Klop, 

J. W., editors, Proceedings of International Conference on Concurrency 

Theory, volume 458 of Lecture Notes in Computer Science, pages 367-383. 

Springer. 

Kalai, E. and Solan, E. (2003). Randomization and simplification in dynamic 

decision-making. Journal of Economic Theory, 111(2):251-264. 

Kantorovich, L. (1942). On the transfer of masses (in Russian). Doklady 

Akademii Nauk, 37(2):227-229. Translated in Management Science, 5:(1-

4), 1959. 

Kazen, D. (1985). A probabilistic PDL. Journal of Computer and System 

Sciences, 30(2):162-178. 

Kreinovich, V., Lakeyev, A., Rohn, J., and Kahl, P. (1998). Computational 

complexity and feasibility of data processing and interval computations. 

Kluwer Academic Publishers, Dordrecht, The Netherlands. 

Kumar, R. and Garg, V. (1998a). Control of stochastic discrete event systems: 

114 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

Existence. In Proceedings of 1998 International Workshop on Discrete 

Event Systems, pages 24-29, Cagliari, Italy. 

Kumar, R. and Garg, V. (1998b). Control of stochastic discrete event sys­

tems: Synthesis. In Proceedings of 37th IEEE Conference on Decision and 

Control, pages 593-606, Tampa, FL. 

Kumar, R. and Garg, V. (2001). Control of stochastic discrete event sys­

tems modeled by probabilistic languages. IEEE Transactions on Automatic 

Control, 46(4):593-606. 

Kucera, A. and Strazovsky, 0. (2008). On the controller synthesis for finite­

state Markov decision processes. Fundamenta Informaticae, 82(1-2):141-

153. 

Kwiatkowska, M., Norman, G., and Parker, D. (2007). Stochastic model 

checking. In Bernardo, M. and Hillston, J., editors, Proceedings of 

Formal Method~. for the Design of Computer, Communication and Software 

Systems: Performance Evaluation, volume 4486 of Lecture Notes in 

Computer Science (Thtorial Volume)~ pages 22Q--270. Springer. 

Larsen, K. G. and Skou, A. (1991). Bisimulation through probabilistic testing. 

Information and Computation, 94(1):1-28. 

Lawford, M. and Wonham, W. (1993). Supervisory control of probabilistic dis­

crete event systems. In Proceedings of the 36th IEEE Midwest Symposium 

on Circuits and Systems, volume 1, pages 327-331. IEEE. 

Lee, E. and Zadeh, L. (1969). Note on fuzzy languages. Information Sciences, 

1(4):421-434. 

Li, Y., Lin, F., and Lin, Z. H. (1998). Supervisory control of probabilistic 

discrete event systems with recovery. IEEE Transactions on Automatic 

Control, 44(10):1971-1975. 

Mallapragada, G., Chattopadhyay, I., and Ray, A. (2009). Autonomous 

robot navigation using optimal control of probabilistic regular languages. 

International Journal of Control, 82(1):13-26. 

Molloy, M. (1982). Performance analysis using stochastic Petri Nets. IEEE 

Transactions on Computers, 31(9):913-917. 

Mortazavian, H. (1993). Controlled stochastic languages. In Proceedings 

of 31st Annual Allerton Conference on Communications, Control, and 

115 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

Computing, pages 938-947, Urbana, illinois. 

Norman, G. J. (1997). Metric semantics for reactive probabilistic processes. 

PhD thesis, University of Birmingham. 

Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative solution of nonlinear 

equations in several variables. Academic Press, Inc., New York, New York, 

USA. 

Pantelic, V. and Lawford, M. (2009). Towards optimal supervisory control of 

probabilistic discrete event systems. In Proceedings of 2nd IFAC Workshop 

on Dependable Control of Discrete Systems, pages 85-90, Bari, Italy. 

Pantelic, V. and Lawford, M. (2010a). Optimal supervisory control of proba­

bilistic discrete event systems. IEEE Transactions on Automatic Control. 

Accepted subject to revision, December 2010. 

Pantelic, V. and Lawford, M. (2010b). Use of a metric in supervisory con­

trol of probabilistic discrete event systems. In Proceedings of the lOth 

International Workshop on Discrete Event Systems, pages 227-232, Berlin, 

Germany. Selected for possible publication in Discrete Event Dynamic Sys­

tems, Special issue on WODES'lO. 

Pantelic, V. and Lawford, M. (2011). Pseudometric in supervisory control 

of probabilistic discrete event systems. Submitted March 11th 2011 to 

Discrete Event Dynamic Systems, Special issue on WODES 2010. 

Pantelic, V., Postma, S., and Lawford, M. (2008). Supervisory control of 

probabilistic discrete event systems. Technical Report 21, Software Quality 

Research Lab, McMaster University, Hamilton, ON, Canada. 

Pantelic, V., Postma, S., and Lawford, M. (2009). Probabilistic supervi­

sory control of probabilistic discrete event systems. IEEE Transactions 

on Automatic Control, 54(8):2013-2018. 

Postma, S. and Lawford, M. (2004). Computation of probabilistic supervisory 

controllers for model matching. In Venu V eeravalli and Geir Dullerud, 

editors, Proceedings of Allerton Conference on Communications, Control, 

and Computing, Monticello, Illinois. 

Rabin, M. 0. (1963). Probabilistic automata. Information and Control, 

6(3):23D-245. 

Ramadge, P. and Wonham, W. (1987). On the supremal controllable sublan-

116 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

guage of a given language. SIAM Journal on Control and Optimization, 

25(3):637-659. 

Renegar, J. (1992). On the computational complexity and geometry of the 

first-order theory of the reals, part I-III. Journal of Symbolic Computation, 

13(3):255-352. 

Rosenberg, D., Solan, E., and Vieille, N. (2000). Blackwell optimality in 

Markov decision processes with partial observation. Discussion Papers 

1292, Northwestern University, Center for Mathematical Studies in Eco­

nomics and Management Science. 

Rutten, J., Kwiatkowska, M., Norman, G., and Parker, D. (2004). 

Mathematical Techniques for Analyzing Concurrent and Probabilistic 

Systems, P. Panangaden and F. van Breugel ( eds.), volume 23 of CRM 

Monograph Series. American Mathematical Society. 

Salomaa, A. (1990). Formal language and power series. In Handbook of 

Theoretical Com.puter Science, Volume B: Formal Models and Sematics 

.@l, pages 103-132. 

Schroder, L. and Mateus, P. (2002). Universal aspects of probabilistic au­

tomata. Mathematical Structures in Computer Science, 12(4):481-512. 

van Breugel, F., Hermida, C., Makkai, M., and Worrell, J. (2005). An acces­

sible approach to behavioural pseudometrics. In Caires, L., Italiano, G., 

Monteiro, L., Palamidessi, C., and Yung, M., editors, Automata, Languages 

and Programming, volume 3580 of Lecture Notes in Computer Science, 

pages 1018-1030. Springer Berlin / Heidelberg. 

van Breugel, F., Sharma, B., and Worrell, J. (2008). Approximating a be­

havioural pseudometric without discount for probabilistic systems. Logical 

Methods in Computer Science, 4(2:2):1-23. 

van Breugel, F. and Worrell, J. (2001a). An algorithm for quantitative veri­

fication of probabilistic transition systems. In Larsen, K. G. and Nielsen, 

M., editors, Proceedings of International Conference on Concurrency 

Theory, volume 2154 of Lecture Notes in Computer Science, pages 336--

350. Springer. 

van Breugel, F. and Worrell, J. (2001b). Towards quantitative verification of 

probabilistic transition systems. In Orejas, F., Spirakis, P. G., and van 

117 



PhD Thesis- Vera Pantelic- McMaster- Computing and Software 

Leeuwen, J., editors, International Colloquium on Automata, Languages 

and Programming, volume 2076 of Lecture Notes in Computer Science, 

pages 421-432. Springer. 

van Breugel, F. and Worrell, J. (2005). A behavioural pseudometric for proba­

bilistic transition systems. Theoretical Computer Science, 331(1):115-142. 

van Breugel, F. and Worrell, J. (2006). Approximating and computing 

behavioural distances in probabilistic transition systems. Theoretical 

Computer Science, 360(1-3):373-385. 

Wasserstein, L. (1969). Markov processes over denumerable products of 

spaces describing large systems of automata. Problems in Information 

Transmission, 5(3):47-52. 

118 




