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Abstract

There are several methods available for estimating the parameters of bivariate logis-
tic model. In this report, we compare the method of Maximum Likelihood (MLM),
weighted least squares cdf method (WLS), elemental percentile method (EPM) and
Castillo’s least square method (CLS) for estimating the parameters A, 4§, o, 7, of bi-
variate logistic model. We perform Monte Carlo simulation to compare the MLM,
WLS and CLS on the basis of mean squared errors (MSE) and bias of the estimators
6 and 7 by keeping A = 0 and o = 1 fixed. It has been found that no method is
uniformly better than the others, but MLM and CLS perform better than the others
in terms of MSE. We compared MLM and CLS on the basis of average confidence
lengths for § and 7. It has been found that MLM produces shorter confidence inter-
vals than the CLS. In the CLS method, three different weights, 8 = 0.5,0.9, 1, have
been considered and comparative results for this method are also presented.

We applied four methods of estimation to the UK pig production data (1967-
'78) as the bivariate logistic distribution has been found to be a good fit to this
data (Castillo, Sarabia and Hadi 1997). We compared all four methods on the basis
of MSE, bias and lengths of confidence intervals for the parameters \, 4, 0,7 using
bootstrap resampling technique. Again, MLM and CLS are found to be performing
better than the other two methods, which agrees with the results obtained using
Monte Carlo simulation.

CLS has been found to be advantageous than MLM for small sample size (e.g.,
n < 25) and especially when the scale parameters are very small.
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Chapter 1

An Overview

1.1 Introduction

The history of logistic distribution dates back to the mid eighteenth century when the
logistic growth function was first proposed as a tool for use in demographic studies
(see Balakrishnan (1992)) by Verhulst (1838) and Verhulst (1845). Reed and Berkson
(1929) gave its present name. There are some other authors who used the logistic
function for estimating the growth of human population; see, for example, Pearl
and Reed (1920) and Schultz (1930), and more recently by Oliver (1964). Some
applications of logistic function in bioassay problems were given by Pearl (1940),
Wilson and Worcester (1943). The function was applied in the analysis of survival
data by Plackett (1959) and Fisk (1961) used it in studying the distribution of income.
Apart from the applications in growth studies, Dyke and Patterson (1952) and Grizzle
(1961) applied it in public health research.

“Although multivariate data sets with logistic-like marginals have always been
around” (Arnold 1992), it was not until Gumbel (1961) who proposed bivariate logistic
model. Gumbel (1961) proposed three bivariate logistic distributions, the first of

which takes the simple form
Fxy(z,y)=[1+e"+e7, z,yeR. (1.1.1)

1



2 CHAPTER 1: AN OVERVIEW

The bivariate logistic distribution is such that both marginal distributions are logistic.
This can be shown by letting y — oo in (1.1.1) to get Fx(z) = [1+e7]~! and similarly
by letting £ — oo in (1.1.1) to get Fy(y) = [L+e7¥]~. The function in (1.1.1) cannot
be written as a product of the marginal distribution functions and therefore, the

variables X,Y are not independent.

1.2 Objective of the Study

We intend to compare various estimation methods for the bivariate logistic model.

Specifically, our objective is to

e Compare between MLM, CLS, WLS and EPM on the basis of bias and mean

squared error of the estimators,

e Compare MLM and CLS on the basis of percentile bootstrap confidence interval.

1.3 Organization of the Report

This report is organized into seven chapters. In the first chapter, we outline the
project. Bivariate logistic distribution is discussed briefly in the second chapter. We
derive moment generating function for this distribution and present an algorithm for
generating samples from this distribution.

In Chapter 3, we elaborate four methods of estimation for the bivariate logistic dis-
tribution. These are the maximum likelihood method, weighted least squares method,
elemental percentile method, and a method based on least squares as proposed by
Castillo et al. (1997).

Simulation algorithms and results are discussed in detail in Chapter 4. We com-
pare the estimation methods on the basis of MSE, bias and length of the confidence
intervals for the parameters. Results of simulation are presented at the end of this

chapter.
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Chapter 5 deals with comparison of the methods of estimation. We compare
CLS method for various weights § = 0.5,0.9,1 and sample size n = 25, 50, 100, 200.
Comparative results for the other methods are also presented.

The four methods of estimation are applied to a real-life data and the results
are discussed in Chapter 6. We also perform bootstrap resampling to compare these
methods and the corresponding results are presented in this chapter.

Finally, some conclusions are made in Chapter 7.

1.4 List of Notations

BL(X,0,0,7) : Bivariate logistic distribution with parameters X,d,0, 7
Beta(m, n) :  Beta function with parameters m and n
boot-p . Bootstrap percentile confidence interval
cdf : Cumulative distribution function

CLS . Castillo’s least squares method

ecfd . Elemental cumulative distribution function
EPM . Elemental percentile method

iid . Independent and identically distributed
MGF . Moment generating function

MLE : Maximum likelihood estimate

MLM :  Maximum likelihood method

MSE . Mean squared error

pdf : Probability density function

V-C :  Variance-covariance matrix

WLS : Weighted least squares

r . Gamma function
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Chapter 2

Bivariate Logistic Distribution

In this chapter, we briefly discuss the bivariate logistic distribution. Density and dis-
tribution functions are presented and moment generating function (MGF) is derived
using the conditional distribution. In the end, we present a method of generating

samples from bivariate logistic distribution.

2.1 Density and Distribution Functions
The cdf of a standard bivariate logistic distribution in its reduced form is given by
Fxy(z,y) = [1 +e 7+ e‘y]_l ;. r,yeR (2.1.1)

and the joint pdf of (X,Y) is obtained by differentiating (2.1.1) w.r.t. z,y as

2e eV

; Y € R. 2.1.2
(1+e®+e¥)3 Y ( )

flz,y) =

The cdf of a bivariate logistic distribution BL(A, 0,4, T) is given by

— —5\17
Fxy(z,y;0) = [1 + exp <—£0_/\> + exp (-—yT)} T,y €R (2.1.3)

where 8 = (), 6,0,7), —00 < A, § < oo are location parameters and o, 7 > 0 are scale

parameters. The joint pdf of (X,Y’) can be obtained by differentiating the joint cdf

5



6 CHAPTER 2: BIVARIATE LOGISTIC DISTRIBUTION

in (2.1.3) w.r.t. z and y, which is:
2e—(@=N/0o o= (y=6)/7
0‘7’[1 -+ e—(z=A)/o -+ e—(y"é)/TP ’

f(xvy;)‘75’ g, 7—) = T,y € R. (214)

The marginal distributions are obtained by letting y — oo and z — oo in (2.1.3)

giving, respectively,

—A\17!

Fx(z;\o) = {1 + exp <_x ﬂ , z€eR (2.1.5)
o

y—6\]"

Fy(y;6,7) = {1 + exp <——T—)] , y€ER. (2.1.6)
Hence, the marginal distributions in standard form are

Fx(z) = [1+e2]7", zeR (2.1.7)
Fr(y) = [1+e]™, yeRr (2.1.8)

Marginal pdfs can be obtained by differentiating the marginal cdfs in (2.1.5) and
(2.1.6) giving
1 e/

flz) = p s e—(z—)\)/d]2; z€R (2.1.9)
—(y-8)/r
1_ e y € R. (2.1.10)

f(y) = ; [1 + 6_(3/_5)/7]2;

2.2 Conditional Density Function

The conditional density functions are defined as usual by

fly) = flz,0)/f(y); flylz) = f(z,v)/f(2)

giving (in standard form)

flzly) =

2e%e7Y ) e Y
(1+ez+e¥)3 " (1+ev)2
2e7%(1 +e7V)?

(14+e=+ev)3

(2.2.1)
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Similarly, it can be shown that

2¢7Y(1 + e7%)?

Flylz) = Ttestevp

(2.2.2)

2.3 Moment Generating Function

Gumbel (1961) obtained moment generating function (MGF) of bivariate logistic
distribution using conditional moment generating function approach. Conditional
MGF, M(t1]y), is defined as

Ml = [ " e f(aly)de, (2.3.1)

o0

and the bivariate moment generating function M (t1,ts) is defined as

Mty t2) = / / £ (@, y)e"0 v ddy, (2.3.2)

If the conditional MGF in (2.3.1) has been evaluated, the bivariate MGF can be

obtained as

M{(t1,t2) = /_°° f(y)e? M(t:ly)dy. (2.3.3)

Substituting f(z|y) in (2.3.1), we get

©  9e7(14 e Y)?
M(t = wh d
(t1ly) /_oo C Uresrevp™

" oo eztle—x d
= 2(14+e” / . 2.34
( ) coo (L4 e e7v)3 ( )
Letting

1+e7¥

=2z, (2.3.5)
l1+e™®+e ¥
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we get

= dr=d
l1+e®+e? ’ ‘
- 2
= ¢ z_ dr = dz
1+e™Y
d
= e ””da:—(l-{-e"y)z—j. (2.3.6)

Again, from (2.3.5), we get
l+eV=2z(1+e*+eY)

= z2%=(14+eY)(1-2)
= = ( z ) (1+e¥)L. (2.3.7)

1—2

Substituting for e* and e *dz, (2.3.4) becomes

1 (31 —y —3d
_ —y\2 z 1 1 _nf1lte az
M) =20+ [ (Fohs) asen ()8

. 1 P t
- ~v)-t1
2(1+e7Y) /0 (l—z) 2dz

1

=2(1+e¥)™™ / 71— 2) "dz
0

1
= 2(]_ + e_y)—tl / Z(2+t1)—1(1 _ Z)(l_tl)_ldz
0
=2(1+e¥) " Beta(2 + t1,1 — t;)
(1+e ) ™M0(2 +)T(1 - t).

Thus, from (2.3.2), we get

M(t1,t2) = /_°° Fy)e™(1+ €)™ 0(2 + t)I(1 - tr)dy

o0

=T(2+t)I(1 —tl)/ e Ve (1 4 e7¥) "t gy,

—00
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Let
I/(I+e¥)=u =e¥1l+e¥)%dy=du Alsoe¥=u/(1-u).

Thus, the moment generating function of bivariate logistic distribution is

U b2
T u) uttdu

1
=T2+t)0(1 - ) / uhtt2(1 — )2 du
0

M(ty,t;) =T(2+t)I(1 —tl)/o1 (

1
24+t)T (1—t1)/ pHiti)=l(] ) (=t)=1gy,
0

(

(2 + tl) (1 — tl) Beta(l + 1 + tg, 1-— tg)
@+h)uf¢ﬂm1+h+@waa@)
(

T(14t +ta+1—t3)

r
r
r
C(1+t +t)IAQ —t)I(1 - t2).

I

2.4 Generating Samples from BL(\, 6,0, 1)

In the following chapters, we will estimate the parameters of BL(\, §,0,7) and per-
form simulations to obtain MSE and bias of the estimators. Therefore, we need to
generate samples from BL(A,6,0,7). The following theorem suggested by Castillo
et al. (1997) will be useful to generate samples from BL(\,d,0,7). The proof is

presented here in detail.

Theorem 1. Let U and V be two independent uniform U(0,1) random variables;
then (X,Y) defined by

X = A—olog <% — 1) : (2.4.1)

Y = §—rlog <U\1/_ (1]) (2.4.2)

has a bwariate logistic distribution BL(), 6, 0,7T).
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Proof. Let

F(X) = U, and (2.4.3)
FY|X) =V (2.4.4)
From (2.4.3), we get
F(X)=U = [l 4 e &N/~
14+ e XN/ - 1/U
e XNl —1/U ~1
- (X_a_)\) =log(1/U - 1)
A—X =clog(1/U - 1)
X=X—olog(1l/U —1). (2.4.5)

¢4l

We can express the conditional cdf as follows

Frx(ylX =2) = / f(tlz)dt

'S,

ta:

fx(ﬂf / f
1 0*F
- fX(x/ é)ta:r
18 [V 9F(ta)
= Rwor) . ot @
1 0

= W%F(y,m)
_ OF(y,z)/0s
= BEx(@)/0r (2.4.6)

From (2.4.4) and using (2.4.6), it can be shown that

OF(y,z)/0x [1 4 e~ (X=N/e]2

Fyix(y|X =z) = OFx(z)/0z [l + e (X-N/o 4 o=-(¥-d)/7]2 B
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from which we get

[1+e—(x—x)/o+e—(y—5)/f]2: 1

?27
o~ (X — Mo L ~Y =8)/m_ 1 _
= [1+ + ] NG |
= 6_(Y — 5)/7' — ; _ _1_ since F(X) =0 = [1 + e—(X—)\)/(r]—l

UV U

1 1
e ERY 2.4.7
= Y=0—r7log (U\/_ U> ( )
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Chapter 3

Methods of Estimation

There are several methods available for estimating the parameters of bivariate logistic
distribution BL(A,d,0,7). We discuss four such methods, namely, the method of
maximum likelihood (MLM), weighted least squares cdf (WLS) method, the elemental
percentile method (EPM), and a method based on least squares proposed by Castillo
et al. (1997). In this, and in the later chapters, we will denote the least squares
method as Castillo’s least square (CLS) method.

3.1 Maximum Likelihood Method (MLM)

This is the most widely used method of parameter estimation and is based on maxi-
mizing the likelihood of the observed sample. We use this method to find the point
estimates of the parameters of BL(), d, 0, 7). Suppose (z;,9i),s = 1,2,...,n is an in-
dependent random sample from the bivariate distribution of (X,Y") with probability
density function (pdf) f(x,y; @) where 8 is possibly a vector of parameters. Since the

variables are independent, their joint pdf is

L(z,y|0) = Hf i, Yi; 0 (3.1.1)

13



14 CHAPTER 3: METHODS OF ESTIMATION

After the sample has been collected, the values of (x,y) = {(z1,41), (z2,%2), - - -, (T, Yn) }
becomes known and the above function (3.1.1) can be considered as a function of

0 given (x,y) and is written as

L(flz,y) = Hf (i, 53 0 (3.1.2)

Sometimes, it is easier to deal with the loglikelihood of the function (which is the

logarithm of the function in (3.1.2)). The loglikelihood function is given by
¢(8|z,y) = log L(0|z,y) Zlogf zi,vi; 6 (3.1.3)

The maximum likelihood estimate (MLE) of 8 is obtained by maximizing the like-
lihood function in (3.1.2), or equivalently, the loglikelihood function in (3.1.3), with
respect to 8. We denote MLE of @ by 6. Thus,

mgx£(9|ac,y) = 08|z, y). (3.1.4)

If there exists a regular relative maximum 9, the maximum likelihood estimator is
obtained by solving the system of equations

0L(0|z,y) :

—= =0, =1,2,...,k, 3.1.5

30, j (3.1.5)

where 6 = (61,65, . ..,0k).

3.1.1 Maximum Likelihood Estimation of BL(},d,0,7)

Let (z1,¥1),--.,(Zn,Yn) be a random sample from a bivariate logistic distribution
with joint pdf given in (2.1.4), where 8 = (\,4,0,7), —00 < A\, § < oo are location

parameters and 0,7 > 0 are scale parameters. The likelihood function is given by
n

L(/\,(S,O’,T) = Hf(xi;yi;)\aa,UaT)

i=1
one—n(E—N)/0 o—n(j-6)/T
_ . © , (3.1.6)
o H [1 + e—(mi-—)\)/a + e—(yi—5)/T] 3

i=1
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where Z denotes the mean of x;,z,,...,z, and 7 denotes the mean of y;,vs,. .., yn.

The log-likelihood function is

0L — £005.007104) — mlogz— "E=N _ n(?JT— 5)
g

n
—nlogo —nlogT — 3 Z log [1 + e~ @=N/o e—(yi—é)/‘r] '
i=1

Now removing the constant term nlog 2, the log-likelihood function becomes

- - )—nloga—nlogr—fiz:log [1+e‘(m""’\)/"+e_(yi‘5)/7]. (3.1.7)

=1

The partial derivatives of £(A,d, 0, 7) with respect to A, 4,0, 7 are

04(N, 0,0,7T) n 3 e (@i=A)/o

N ; [T e GiN/e 4 oG’ (3.1.8)
0N, d,0,T) n 3 e~ Wi=0)/7

86 ST z_; 1+ e @V 1 w3/’ (3.1.9)
ot(\,b,0,7)  n(Z—-XA) n 3 - (z; — A)e~@=N/o 3110

do - 02 _E_'— < 1+ e~ N/o e~ d/r ( )
o\, b,0,1)  n(j-— (y; — 8)e W=7

87' o T2 T 7-2 Z 1 + e~ (xs— A)/eo + e_(y1 8)/t" (3111)

The MLEs ), 4,6,7 of \,8,0,7 can be obtained by simultaneously solving the
equations 94(\,d,0,7)/0AX = 0, 9¢(X\,6,0,7)/06 = 0, 04(\,6,0,7)/00c = 0, and
0(X,6,0,7)/01 = 0. Note that these equations can not be solved analytically and
hence numerical methods must be employed. Newton-Raphson or some other type of
iteration process can be used. Alternatively, we can use any optimization package to
maximize the log-likelihood equation and obtain the MLEs for a given data. We have
used R (R Development Core Team 2004) computational environment to compute
the MLEs by maximizing the loglikelihood function in (3.1.7).
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3.1.2 Score Functions and Fisher Information Matrix

Let (x,y) = {(z1,%1),---,(Zn,¥n)} ba a random sample from the bivariate density
function f(z,y|@), where 8 = (6y,...,60;). Then the Fisher information matrix I,,(6)
with sample size n is based on the expected values of the second order partial deriv-
atives, and is given by

1,(0);; = —E [w] . (3.1.12)

00,00

Strictly, this definition corresponds to the expected Fisher information. If taking
the expectation is not possible or very complicated we can obtain a data-dependent
quantity that is called the observed Fisher information.

For the bivariate logistic distribution, second order derivatives are not mathe-
matically tractable and hence we resort to the observed Fisher information. The
asymptotic variance-covariance matrix of the MLE can be obtained by inverting the
observed Fisher Information matrix I, evaluated at the MLEs of X, 4, 0,7. The ob-

served Fisher Information matrix is given by
0? lo% L & lo§( L log L 0° log L
( 29X 52 A 2)\ ¢ 5797 \
0°log L 10§L 0 logL d IO%L
) A add o T (3.1.13)
° O*logL &*logL O*logL 0§°logL o
852 05)\ 652 05% 23(;2 (29087
log L logl 0°logL 0°loglL
‘3?38)7 ‘ﬁTgE‘ _673g0_ _5)7§_ ) (36,5,

Second order derivatives are obtained using Maple (2003) and are as follows

PlogL = 3 < e~ (@i=N/o
oz g2 L |1+ em@Nfo 4 =)/
e—2(xi—)\)/a

- } (3.1.14)

(14 e~@i—N/o 4 e=i=8)/7)>

% log L 3 < e~ Wi=0)/7
052 2 L |1+ e N/ 4 e~wi-d)/7

e 2ui=0)/7

- ] (3.1.15)

[1+ e~/ 4 g=i=0)/7]?
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% log L n(X -2 n

Oo? - o3 * )
s - Y (zi—A) /o
o) | e
| 04(1 + e~(@-N/o 4 = wi=d)/7)

2(z; — N)e 2@i—N/e
o3[l 4 e~ @N/o 4 e~wi=8/7]
(xi _ )\)2 —2(z;—N) /o

- -1, (3.1.16)
041 + e~ @i=N/o 4 e~i— /T]
0*logL _ 2n(F-0) n
o2 o T3 T2
n (yZ — 5)26_(:92'_5)/7
-3 z_; [74 [1+ e~ @i=N/o 4 e=i=8)/7]
Q(yz — 5)6_2(:‘/1‘_6)/7'
] [1+ e—@i—A)/o e—(yi—5)/"']
C_ 5\2e—2yi—8)/T
(g = 9)" - (3.1.17)
4 []_ + e~ (@i=A)/o 4 e—(yi—5)/7]
2 (:L‘., )0 o—(yi=8)/T
ONOd oT =1+ +e (y1—5)/T]
PlogL n z”: (z; — N)e~ @ N/e
oo o2 o3[l + e-@—N/o t - wi—d)/7]
e—(@i-N)/o
02 [1 + e~ (@=N/o 4 e=W:i=0)/7]
— 2(x;=A) /o
- (2= Ve~ - (3.1.19)
o3 [1 “+ e~ —(zi—A) /o e“(yi-‘fs)/T]
2 - ~A)/0 o= (yi=0)/T
0"log L _ Z (y: — 9)e 2, (3.1.20)
ONOT oT? + e=@i=N/0 4 e~ (i=8)/7]
2 n _ —(zi=A)/o o= (y:i=8)/7
0000 o3t - [1 + e~ ( zi-A)/o 4 o—(yi—8 )/T]
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leogL L Z 5) yi—0)/T
880t - T3 [1 _|_ e (:c1 =N/e 4 =i~ )/T]
e—wi—0)/7
2 1+ e—(@i—N)/o 4 e—(yi—5)/7]
C_ §e2vi—d)/T

_ (yi —d)e -1, (3.1.22)

31+ e=(@i=N/o 4 o= {4i=9)/7]
52 log L B 3 i ( o )\)(yl _ 5) (®i=A)/0 o—(Wi—0)/T (3 ) 23)

R e B e e e .

3.2 Weighted Least Squares CDF Method (WLS)

Let (X,Y) be a bivariate random variable with cdf Fix,v)(z,y; 0), where 8 = (64, ...,0k)
is a possibly vector-valued parameter and (x1,%1),- ., (Zn, ys) is a sample from F.
Consider

- 0.5

Ty
pv = "0 (3.2.1)
n

where m*¥ = number of points in the sample where X < z and Y < y. The parameter

0 is then estimated by

: - n g _ pTili\2
mln;pmiyi(l_pxiyi) (Fxy (zi,yi; 0) — p"¥)2, (3.2.2)

0

where the factors are the weights that account for the variance of the

n
poivi(1—p®i¥i)
different terms. This is why this method is called weighted least squares cdf method.

3.2.1 Application of WLS to BL(A,4,0,7)

Substituting the bivariate cdf in (3.2.2), we get

- n 2
: —(z—=N)/o —(y—=8)/m\-1 __ _ziys
min E (1 = o) [(1+e + e~ WOyl pEave] T (3.2.3)

Equation (3.2.3) can be minimized for a given data using any optimization package.

We have used R to optimize it for the parameters of BL(\, 4, o, 7).
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3.3 Castillo’s Least Squares Method (CLS)

Castillo et al. (1997) proposed this method based on least squares. The main idea
of this method is to write the predicted values as a function of the parameter, say,
0. The sum of squared deviations between the predicted and observed values are
then taken. The parameter estimate of @ is then obtained by minimizing the sum of

squared deviations.

3.3.1 Description of CLS Method

Let X and Y be jointly a bivariate random variable with cdf Fix yy(z,y;0). Let us
denote the marginal cdfs of X and Y by Fx(z,80) and Fy(y;8), respectively. Let

p® = proportion of points in the sample where (X < z),
pY = proportion of points in the sample where (Y < y),
p*¥ = proportion of points in the sample where (X <z and Y < y).

In this method, the joint and the marginal cdfs are used for calculating the predicted

values as functions of 8. This can be done in two possible ways:
1. Using Fix,y)(z:,y:;0) and Fx(z;0), we have

Fi(21;0) = 7 } N { 3(6) = F5' (57 6),
Fixyy(Ti, yi; 0) = p™¥ 3:(0) = Fixyy(p™¥; 2:(0),6),

where Fi'(p, 0) is the inverse of Fx(z;,8) and F(}l’y) (p; z;, @) is the inverse of

(3.3.1)

Fix,vy(z;, yi; 0) with respect to its second argument.
2. Using Fix,v)(@i, y:;0) and Fy(y; 0), we have

Fy (y:;0) = p* } N { 9:(6) = Fy'(p%; 0),
Fix vy (zi, yi; ) = p™i¥s £:(0) = F(}l,y) (p™¥; 9:(0), 0),

where Fy '(p, @) is the inverse of Fy(y;,8) and F(;{l’y) (p; yi, @) is the inverse of

(3.3.2)

Fixvy(:, yi; 8) with respect to its first argument.
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Taking the weighted average of (3.3.1) and (3.3.2), we obtain the new estimates

2:(0) = BFx'(17:0) + (1= B)F 5y, (0"%; Fy' (1 6),6),

. (3.3.3)
9:(0) = BFy'(p¥;6) + (1 — B)F Ry, (p"¥; Fx' (p™6),6),
where 0 < 3 <1 is an appropriately chosen weight.
An estimator of 8 can now be obtained by minimizing
E= Z ; — &:(0)]* + [ys — 9:(0)]*) (3.3.4)

with respect to 6.

3.3.2 Choosing the Weight

There are two options of choosing the appropriate weight (3 :

1. We may choose 3 to be equal to 0.5, which will put equal weight on both parts
of the expressions in (3.3.3). Taking 8 = 0.5, (3.3.3) reduces to

Fl (0™, 0) + Fiyy (™% Fy ' (1%;6),0) )

o (3.3.5)
Fidy 055 F (7 6), 0) + Fy ' (5%36) )

W= N

which is the average of (3.3.1) and (3.3.2).

2. We may choose a value of # optimally, by minimizing (3.3.4) with respect to
both 3 and 8.

3.3.3 Finding an Optimum (

Finding the optimum weight is very simple. All we need is to find the weight 8 and

the set of parameters for which (3.3.4) is minimized. The steps are as follows.

Step 1: Choose a value of § between 0 and 1.

Step 2: Obtain the estimates of parameters for the given data using (3.3.4).
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Step 3: Finally obtain E.

Repeat these steps to obtain E for all the values of 8 between (0,1) e.g., 0.01, 0.02,

and so on. The optimum value of 3 is the one for which F is minimized.

3.3.4 Application of CLS to BL(},d,0,7)

The joint cdf and marginal cdfs of BL(\,§,0,7) are given in (2.1.3), (2.1.5) and
(2.1.6). Setting F(xy)(Z,9;0) = p™ and Fx(#;8) = p*, we obtain the following

system of equations in £ and ¢ :

-&/o -g/r _— _. 1
e + ase =14 =%,
) ? P (3.3.6)
aie”?/? =-1+.,
P
where a; = M7 and @y = €7, which has the following solution:
& =A—olog(d -1
8y (3.3.7)

)y
ﬂ =0- Tlog(# - pim)7
provided that p™ # p®. Similarly, setting Fx y(z,y;0) = p*™ and Fy(y;0) = p¥, it

can be shown that

= )‘_CT]'Og(L - L)a

prY pY
=6— Tlog(# - 1),

=

(3.3.8)

s

provided that p®™ # p¥.
Thus, we propose using the following equations to compute the predicted values,

which are obtained by averaging (3.3.7) and (3.3.8), and replacing £ and ¢ by &; and
i :

.’2’1(0) =\— or;,

3.3.9)
@i(e) =0—Ts, (
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where

. Blog(zh — 1)+ (1 - B)log(sam — 7)), i p™¥ # p¥,
' 10g(1% - 1), if poi¥i = pui,
(3.3.10)

Blog(zr — 1) + (1 = B) log(gmmm — ), i p™¥ # p™,
8 =
log(z — 1), if p¥ = p%,

where (3 is the weight used for the solution (3.3.3). Note that when the sample size
is finite, it is possible to have p*¥ = p® or p™¥ = p¥ for some sample values. Now,

we minimize, with respect to A, 4,0, and 7,

= Z[:L‘,L - &(A, 4,0, T)]2 +[ys — 9(N, 6, 0, T)]2
(3.3.11)

—Z (zi = A+ or)* + (g — 0+ 75)%].
Taking the derivatives of E with respect to each of the parameters, we obtain

oF
a :—22 —)\"i‘UTl

oFE
— =-2 - )74,
5 _S_ A+ ory)r;

oFE
25 =—22 i — 0+ 784),

OFE
F ———.‘ZZ (yi — 6+ 7s;)s

(3.3.12)

Equating each of the above equations to zero, we obtain the following system of
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equations:

n n
an—o E 5 = E Ti,
i=1 i=1
n n n
2 __
A E r—0 E Ty = E Ty,
i=1 i=1 i=1

n n (3.3.13)
on—r1 Z S = Z Yis
L= i=1
5ZS¢—TZSE =Zyisi.
i=1 i=1 i=1
The solution of the above equations yield the estimators:
n n n n n n n
inriZn—iner aniri—inZri
3 = .=l =l i=l =l 5 =l S B S
n n n n
(Z) a3 (Z) Y
i=1 i=1 i=1 i=1
(3.3.14)
n n n n n n n
Z?JiSiZSi”ZinS% nzyisi_zyizsi
§ = =1 i=1 izl i=l o x o i=1 =1 =1

n 2 n n 2 n
E S; —-n E 81-2 E 85 —n S?
i=1 i=1 i=1 =1

3.4 The Elemental Percentile Method (EPM)

Classical estimation methods such as maximum likelihood method and method of
moments work well, for example, in cases where the distribution belongs to the expo-
nential family. In many other cases, they may not exist or may be computationally
difficult or they may produce unsatisfactory results. EPM was originally proposed by
Castillo and Hadi (1995), for estimating the parameters and quantiles of continuous
distributions. There are some advantages of this method including the fact that the
estimates are unique and well-defined for all parameter and sample values. Also, the
estimates exist in case where other classical estimators do not exist. This method is

most useful when the distribution function and its inverse is given in closed form.
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In this section, we describe the EPM for estimating the parameters and quantiles
of F(x;0),0 € ©. The method gives well-defined estimators for all values of 8 € ©.

3.4.1 Description of EPM

In this method, the estimates are obtained in two steps. First, some elemental es-
timates are obtained by solving equations relating the cdf to their percentile values
for some elemental subsets of the observations. These elemental estimates are then
used to obtain statistically more efficient estimates of the parameters. The steps are

described below.

Elemental Percentile Estimates

Suppose X = {Xi,Xa,...,X,} are éid random variables having a common cdf
F(z,0), then we have

F(xi:n; 0) = pin =1, 2, R (341)

or equivalently,
Tin 2 F Y pin;0), i=1,2,...,n, (3.4.2)

where z;, are the order statistics and p;., are empirical estimates of F(z;;0) or
suitable plotting positions. One such plotting position is given in (3.2.1).

Let I = {41,42,...,%} be a set of indices of k distinct order statistics (for order
statistics, see Arnold, Balakrishnan and Nagaraja (1992)). We refer to a subset of
size k observations as an elemental subset and to the resultant estimates as elemental

estimates of 8. For each observation in an elemental subset I, we set
Ly = F_l(pi:n; 9), 1€ I, (343)

where we have replaced the approximation in (3.4.2) by an equality. The set I is
chosen so that the system in (3.4.3) contains k independent equations in k unknowns
0 = {01,05,...,0x}. An elemental estimate of 6 can then be obtained by solving
(3.4.3) for 6.
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Final Estimates

The estimates obtained in the first step as described in the previous section, depend
on k distinct order statistics. For large n and k, the number of elemental subsets
may be too large for the computations of all possible elemental estimates to be fea-
sible. In such cases, instead of computing all possible elemental subsets, one may
select a prespecified number, NV, of elemental subsets either systematically, based on
some theoretical considerations, or completely at random. For each of these subsets,
an elemental estimate of 8 is computed. We denote these elemental estimates by
9j1,éj2, e ,éjN, j = 1,2,...,k. The elemental estimates are then combined, using
some suitable robust functions, to obtain an overall final estimate of 8 . Examples of
robust function include the median (MED) and the a—trimmed mean (TM,), where
« indicates the percentage of trimming. Thus, a final estimate of @ = {6;,60s, ..., 0k},

can be obtained as

~

6,(MED) = Median(0;,,0;2,...,0;n), §=1,2,...,k, (3.4.4)

or

6,(TMy) = TMa (01,050, -, 0;n), §=1,2,...,k, (3.4.5)

where Median(y;, ys, . .., yn) is the median of the set of numbers {y1,ys,...,yn}, and
TMa (Y1, Y2, - - -, Yn) is the mean obtained after trimming the (c/2)% largest and the
(a/2)% smallest order statistics of (y1,ya, - ., Yn)-

The MED estimators are very robust but inefficient. The TM,, estimators are less
robust but more efficient than the MED estimators. The larger the trimming, the
more robust and less efficient are the TM,, estimators (Castillo, Hadi, Balakrishnan
and Sarabia 2005).

3.4.2 Application of EPM to BL(\,4,0,7)

The EPM described in the previous section can be easily extended for bivariate logistic

distribution. Let (X,Y") be a bivariate random variable with cdf Fix y)(z,y; ), where
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0 = {01,...,0}, that is, there are k parameters in 8. Now consider a subset I; of k

different sample points
I = {irlir € {1,2, ..., 0}, in, F by, if 11 £ 19y 7 =1,2,... K},
and assume that the system of k equations in k unknowns {6,,0s,...,0k}
Fix,y) (i Yirs Or, Oary -, Okr) = poin¥ir, (3.4.6)

allow obtaining a set of elemental estimates {él, 9}, cel ék} Now we select m different
sets Iy, I, ..., I, instead of just one I;. Thus, we obtain m elemental set of estimates
{élm, B, - . . ,ékm}. Finally, we select an appropriate robust estimate é;‘ of ;, ] =
1,2,...,k using the MED or TM,,.

In the case of bivariate logistic distribution with parameters A, d, o, 7, we choose

an elemental subset I of k = 4 different sample points
L ={i i, €{1,2,...,n}, ir, #ir, if 11 # 19, 7=1,2,3,4}.

Now using (3.4.6) the system of four equations in four unknowns (A, §, o, 7) is:

F(X,Y)(xi17yi1; )\, 5, ag, T) = pxilyil
F Tins Yins A, 0,0, T) = pTic¥iz

(X,Y)( 23 Yia ) P (347)
F(va) (xi3 ) '!-/13, >\7 5, ag, T) pziayia

Tiyyr Yigs )‘7 57 g, T) = pxi4yi4 .

—~

Fixy)

Replacing the cdfs of bivariate logistic distribution in (3.4.7), we get the following

system of equations:

331—/\ ) 1
1+ exp = + exp 2 - = T
- A ) 1
1+exp 22 + exp 42 =
g T pietis 3.4.8
1133—)\ y3—<5 1 ( o )
trep| =5 ) rew (T ) =

- A -9 1
1+ exp T + exp Y4 = .
o T pm14y14
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Elemental estimates are obtained by solving the system of equations (3.4.8). These
equations are nonlinear in parameters and hence they can not be solved analytically.
Any Newton-type algorithm can be used to find a solution of the system. Given a set
of n equations in n unknowns, seeking a solution r(x) = 0 is equivalent to minimizing
the sum of squares r(z) - r(z) when the residual is zero at the minimum. (Bates and
Watts 1988). We used optim() in R to get the solution of (3.4.8).

3.4.3 An Example

Consider the following data simulated from BL(A = 3,6 = 1,0 = 0.5,7 = 0.25).

x: 3.69 194 268 343 278 137 3.6 371 3.65 3.20
y: 068 030 1.22 1.07 130 015 0.8 134 1.04 0.96

and we want to estimate the parameters. By EPM, we take an elemental subset
of size four (as there are four parameters) and then obtain an elemental estimate.
There are (140) =210 possible elementary subsets to choose from. Let us consider all
the possible subsets to obtain the elementary estimates. For each of the subsets,

we will get elementary estimates. In this way, we will have 210 elemental estimates

for each of the four parameters ()\1, )\2, ceey /\210), (51, 52, RN ,5210), (&1, 5'2, PN ,5’210),
(1, T2y - -« s T210)-

Final estimates can be obtained by using any of the functions MED or TM, as

discussed in the previous section.

3.5 Confidence Intervals

For the maximum likelihood method, we obtain the standard deviations of the estima-
tors from the asymptotic variance-covariance matrix, which is obtained by inverting
the observed Fisher information matrix. But for the other three methods, variances
of the resultant estimates may not be available analytically. In such cases, an esti-

mate of the standard deviation can be obtained using some sampling methods such
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as the jackknife and the bootstrap methods; (see Efron (1979), Diaconis and Efron
(1974)). Since the parameter estimates are well defined for all feasible combinations
of parameters and sample values, the standard error of the estimates and hence the
confidence intervals for the corresponding estimates can be computed easily. The
bootstrap sampling (Gomes and Oliveira 2001) can be done in two ways: the samples
can be drawn with replacement directly from the data, or they can be drawn from the
parametric cdf, F(z,y; é) However, we preferred the parametric bootstrap to obtain
the variance of the estimates for a particular method.

To obtain a confidence interval for a parameter 8;, we simulate a large number of
bootstrap samples and obtain the corresponding estimates for each parameter. We
use these estimates to obtain an elemental cdf (ecdf) for that parameter estimate 0}

From each of these ecdfs, we calculate confidence intervals and calculate probability

coverages.



Chapter 4

Simulation Study

We use mean squared errors (MSE) and bias to assess the performance of the estima-
tors of the parameters of BL(A, 4,0, 7) by Monte Carlo simulation. For simplicity, we
generate data for only BL(A = 0,6,0 = 1,7) with 6 = 0,0.5,1 and 7 = 0.25,0.5, 1.
That is, we calculate MSE and bias for § and 7. Because parameter estimation by
EPM is computationally very time consuming, we did not perform Monte Carlo sim-
ulation for this method. However, boostrap resampling has been done for all four
methods using a real-life data and the results are discussed in the next chapter. In
the following, simulation algorithm and results are discussed for the MLM, WLS and
CLS methods.

4.1 Simulation

4.1.1 Maximum Likelihood Method

We estimate the parameters of BL(A, d, ¢, 7) using the method of maximum likelihood
as described in Section 3.1. We generate data from bivariate logistic distribution with
A=0,0=1and § =0,0.5,1, 7 = 0.25,0.50, 1 for sample sizes n = 25,50, 100, 200.
The maximum likelihood estimates are then obtained using the methods described in

Section 3.1 for the generated data. The steps are summarized below.

29
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Step 1. Generate a sample of size n from bivariate logistic distribution with
A=0,0=1,6=0,0.5,1, 7 =0.25,0.5, 1.

Step 2. Obtain the MLEs of the parameters.

Step 3. Repeat steps 1 and 2 R times and calculate MSE and bias of the

estimators.

The MSE and bias of 4 and 7 for different sample sizes are presented in Table 4.1
and Table 4.2, respectively.

MLM: Discussion of Results

For a fixed 7 and n = 25, MSE(é) = 0.00699,0.00694, 0.00704 for 6 = 0.25,0.5,1,
respectively. This implies that for a fixed 7 and n, MSE(S) does not vary according
to varying 6. The behavior is same for all sample sizes. Similarly, for a fixed 7, and
n = 25, MSE(#) = 0.00138,0.00142,0.00143 for § = 0.25,0.5, 1, respectively. As
we can see, the MSEs are very close to each other and the behavior is same for all
sample sizes. For both $ and 7, MSE decreases with the increase of sample size n,
and the decrease is inversely proportional to the increase of n. As 7 increases, MSE
also increases. In general, location parameter 4 has a larger MSE than that of scale
parameter 7.

Bias of § and 7 are presented in Table 4.2. We see that 7 globally underestimates

7 while § overestimates § in most of the cases.

4.1.2 Weighted Least Squares Method

MSE and bias of the parameters of bivariate logistic distribution have been ob-
tained by simulation. Parameters are estimated for four different sample sizes-
n = 25,50,100, and 200 for each of 9 different combinations of parameters, keep-
ing the location A = 0 and scale ¢ = 1 fixed. Other values of the parameters that
are considered include: § = 0,0.5,1 and 7 = 0.25,0.50, 1. The estimates are based on
1,000 Monte Carlo runs. The steps of MC simulation is the same as that of MLM.
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WLS: Discussion of Results

For fixed 7 and n = 25, MSE(S) = 0.01125,0.01212,0.00119 for 6 = 0.25,0.5,1,
respectively. This implies that for a fixed 7 and n, MSE(S) does not depend on
location parameter. We observe the same behaviour for all sample size. Similarly,
for a fixed 7, and n = 25, MSE(7) = 0.00413, 0.00402, 0.00424 for § = 0.25,0.5,1,
respectively. As we can see, the MSEs are very close to each other and the behavior
is same for all sample sizes. This implies— MSE depends only on the scale parameter.
For both é and 7, MSE decreases with the increase of sample size n, and the decrease
is inversely proportional to the increase of n. Also, as the value of scale parameter 7
increases, MSE increases. Like the maximum likelihood method, location parameter
4 has a larger MSE than that of scale parameter 7.

Bias of § and 7 are presented in Table 4.4. We see that § and # globally underes-

timates 7 and §.

4.1.3 Castillo’s Least Squares Method

After estimating the parameters using Castillo’s least squares method, we calcu-
late MSE and bias of 4,7 by simulation. Results are obtained for three differ-
ent weights, 8 = 0.5,0.9,1. Like the MLM and WLS, four different sample sizes
(n = 25,50,100,200) have been considered for each of 9 different combinations of
(6, 7), while keeping A = 0 and ¢ = 1 fixed. The estimates are based on 1,000 Monte

Carlo runs.

CLS: Discussion of Results

MSE($), MSE(#) are presented in Tables (4.5- 4.7) and bias(4), bias(7) are presented
in Tables (4.8 4.10). Like the MLM, we observe that MSE(é) and MSE(#) does not
depend on the location parameter. We observe that MSE($) and MSE(7) increases
with the increase of sample size. Also, for a given sample size, MSE increases with

the increase of 7. Overall, MSE(7) is smaller than MSE(d) for any combination of
(6,7) and B.



32 CHAPTER 4 : SIMULATION STUDY
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Bias(d), bias(7) produce negative values for most of the cases, indicating that they
underestimate the parameters 6 and 7, respectively.

Comparison within MSE(§) and MSE(#) for different 3 are presented in Table 4.11.
Except on a few occasions, for both estimators, MSE decreases with increasing 5. Of

the three values of 8, MSE is the highest for 3 = 0.5 and the lowest for § = 1.0.

4.1.4 Elemental Percentile Method

The steps of calculating MSE and bias of the estimators of the parameters of BL(\, §, o, 7) us-

ing elemental percentile method is given below:

1. First we choose an elemental subset from the available subsets. For large sample
size, there are hundreds of such elemental subsets to choose from. In such case,

we randomly select a predefined number N, of subsets.

2. For each of the N elemental subsets, we obtain elemental estimates giving N

elemental set of estimates.

3. We use MED and the TM, functions to obtain the final estimates. For TM,

function, we consider o = 10 and 20.

This method is computationally very time consuming especially if the number of
parameters to be estimated is large. In our case, we have four parameters and four
different sample sizes, n = 25,50, 100, 200. Because of time constraints, we did not
perform Monte Carlo simulation on this method. However, we presented the results

of bootstrap simulation for this method in Chapter 6.

4.2 Coverage Probability

Coverage probability of an estimator may be defined as the probability that the
confidence interval based on the estimator includes the parameter of interest. One can

easily calculate coverage probability by simulation. We construct pivotal quantities,
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say, P; for the parameters and simulate the probability coverage
Pr(—1.96 < P; < 1.96)

which should approximately be 95 percent. This way, we calculated probability cov-
erage for the location parameter ¢ and scale parameter 7. The procedure is discussed
in the following sections. In the following subsections, we discuss coverage percentage
for the MLEs of § and 7. We also present the steps of calculating probability coverage
for 6 and # for CLS method.

4.2.1 95% Coverage Percentage For MLEs

To compute confidence intervals or to conduct tests of the hypothesis for the loca-
tion and scale parameters of BL(A,d,0,7), we need to construct pivotal quantities.
Since the MLEs are asymptotically normally distributed, we have the asymptotic
distribution of

P = _0-0 P = T (4.2.1)

/Var(g) \/Var(i')
to be standard normal. The quantities in (4.2.1) are pivotal quantities because they
are functions of the data and the parameters; but their distributions do not depend
on the unknown parameter. The steps of calculating probability coverage is given

below:

1. For a given set of the initial values of the parameters, we generate a sample of

size n from the bivariate logistic distribution.
2. Calculate the MLEs by the maximum likelihood method.

3. Obtain the asymptotic variance-covariance (V-C) matrix by inverting the Fisher
information matrix evaluated at the MLEs. The diagonal elements of V-C

matrix are the variance of the parameters.

4. Compute the pivotal quantities in (4.2.1). If the pivotal quantity lies between
(-1.96, 1.96), we add 1 to the counter.
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5. The steps 1-4 are repeated R times and probability coverage is calculated as

f times P, is b ~1.96,1.96
95% Probability coverage = # of times F is ;cween( 6 ) x 100

where P; is the pivotal quantity.

Table 4.12 shows 95% probability coverage for § and 7. For large n, probability cov-

erage is approximately 95%.

4.2.2 95% Coverage Percentage for CLS

We have seen in the previous section that calculation of probability coverage requires
variance and hence standard deviations of the estimators. But variance of the estima-
tors are not analytically available for the WLS, CLS and EPM methods. Therefore,
we use bootstrap within each Monte Carlo run to calculate the variance. The steps
are described below. Monte Carlo steps are denoted by MC Step and bootstrap steps
are denoted by Boot Step.

MC Step-1: For a given set of the initial values of the parameters, generate a

sample of size n from bivariate logistic distribution.

MC Step-2: Obtain the estimates 5\, ) , 0,7 by Castillo’s method based on least

squares.

Boot Step-1: Generate bootstrap sample with the estimates obtained in
MC Step-2 as the initial values.

Boot Step-2: Repeat Boot Step-2 B=999 (say) times to obtain 999 boot-
strap replicates ):*, 5*, o, T,
Boot Step-3: Calculate variance of the estimators using the bootstrap

replicates found in Boot Step-2.

MC Step-3: Using the variance of the estimators found in Boot Step-3, we
compute pivotal quantities using (4.2.1). If the pivotal quantity lies between
(-1.96, 1.96), we add 1 to the counter.
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MC Step-4: Repeat MC Steps 1-3 R times and calculate probability coverage

as

f ti P; is bet —1.96,1.96
95% Probability coverage = 7 of times F, is ;ween ( ) x 100,

where P; is the pivotal quantity.

Remark 1. Table 4.13 and Table 4.14 shows 95% probability coverage for 6 and 7,
respectively based on 200 Monte Carlo runs. Overall coverage is around 95%. However
lower (e.g., 89.5%) or higher (e.g., 97.5%) percentages might be due to small number
of Monte Carlo runs.



Table 4.1: MLM: MSE($) and MSE(#) for A = 0 and ¢ = 1 based on 1,000 Monte Carlo runs.

Parameters MSE(d) MSE(7)
) T n=25 n=50 n=100 n=200 n=25 n=50 n=100 n=200
0 0.25 0.00699 0.00346 0.00174 0.00087 0.00138 0.00068 0.00034 0.00017
0.50 0.02789 0.01396 0.00698 0.00339 0.00574 0.00272 0.00137 0.00071
1.00 0.11273 0.05601 0.02841 0.01371 0.02221 0.01103 0.00542 0.00268
0.5 0.25 0.00694 0.003537 0.00183 0.00082 0.00142 0.00069 0.00031 0.00017
0.50 0.02844 0.013636 0.00688 0.00342 0.00552 0.00239 0.00137 0.00071
1.00 0.11689 0.055271 0.02886 0.01380 0.02347 0.01142 0.00519 0.00246
1 0.25 0.00706 0.00349 0.00174 0.00088 0.00143 0.00070 0.00034 0.00017
0.50 0.02805 0.01387 0.00681 0.00346 0.00559 0.00276 0.00135 0.00067
1.00 0.11170 0.05577 0.02713 0.01395 0.02296 0.01083 0.00545 0.00274
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Table 4.2: MLM: Bias(8) and bias(7)for A = 0 and ¢ = 1 based on 1,000 Monte Carlo runs.

Parameters Bias(9) Bias(7)

5 T n=25 n=50 n=100 n=200 n=25 n=50 n=100 n=200

0 025 0.00049 0.00189 -0.00016 0.00002 -0.00661 -0.00311 -0.00185 -0.00098

0.50 0.00303 0.00156 0.00158 -0.00013 -0.01393 -0.00680 -0.00326 -0.00182

1.00 0.00557 0.00400 0.00156 0.00092 -0.02651 -0.01299 -0.00613 -0.00340

0.5 025 0.00205 0.00389 0.00048 0.00071 -0.00905 -0.00321 -0.00210 -0.00090

0.50 0.00090 0.00334 -0.00305 -0.00083 -0.01501 -0.00637 -0.00413 -0.00175

1.00 0.01104 0.00388 -0.00021 0.00011 -0.02443 -0.01808 -0.00959 -0.00462

1 0.25 0.00160 0.00046 0.00014 -0.00007 -0.00658 -0.00345 -0.00179 -0.00098

0.50 0.00201 0.00253 0.00003 0.00015 -0.13870 -0.00660 -0.00342 -0.00180

1.00 0.00478 0.00297 0.00256 -0.00073 -0.02883 -0.01181 -0.00674 -0.00358
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Table 4.3: WLS: MSE(6) and MSE(#) for A = 0 and ¢ = 1 based on 1000 Monte Carlo runs.

Parameters MSE(6) MSE(7)
) T n=25 n=50 n=100 n=200 n=25 n=50 n=100 n=200
0 0.25 0.01125 0.00535 0.00246 0.00122 0.00413 0.00160 0.00069 0.00036
0.50 0.04553 0.02007 0.01039 0.00499 0.01647 0.00699 0.00332 0.00135
1.00 0.17958 0.07870 0.03823 0.01886 0.06543 0.02843 0.01323 0.00579
0.5 0.25 0.01212 0.00539 0.00256 0.00116 0.00402 0.00165 0.00073 0.00038
0.50 0.04594 0.02053 0.01014 0.00481 0.01685 0.00674 0.00298 0.00149
1.00 0.19285 0.08522 0.04239 0.01790 0.06288 0.02703 0.01306 0.00577
1 0.25 0.01119 0.00496 0.00272 0.00125 0.00424 0.00169 0.00079 0.00035
0.50 0.04490 0.01968 0.00956 0.00471 0.01636 0.00711 0.00331 0.00145
1.00 0.17710 0.07938 0.04344 0.02000 0.06734 0.02707 0.01263 0.00554
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Table 4.4: WLS: Bias(d) and bias(#)for A = 0 and o = 1 based on 1000 Monte Carlo runs.

Parameters Bias(6) Bias(7)
] T n=25 n=50 n=100 n=200 n=25 n=>30 n=100 n=200
0 025 -0.01147 -0.00208 -0.00097 -0.00103 -0.00548 -0.00528 -0.00518 -0.00142
0.50 -0.01714 -0.00836 -0.00168 -0.00075 -0.02055 -0.01171 -0.00842 -0.00379
1.00 -0.04639 -0.00382 -0.00007 -0.00648 -0.02293 -0.02043 -0.02152 -0.00742
0.5 025 -0.01306 -0.00423 -0.00457 -0.00175 -0.00508 -0.00499 -0.00269 -0.00374
0.50 -0.01052 -0.01148 -0.00130 -0.00303 -0.00955 -0.00570 -0.00651 -0.00269
1.00 -0.05000 -0.01699 -0.00065 -0.00351 -0.03193 -0.02622 -0.01485 -0.01182
1 0.25 -0.01542 -0.00291 -0.00173 -0.00192 -0.00910 -0.00422 -0.00476 -0.00124
0.50 -0.02319 -0.00191 -0.00003 -0.00324 -0.01146 -0.01021 -0.01076 -0.00371
1.00 -0.06081 -0.01166 -0.00692 -0.00770 -0.03595 -0.01689 -0.01902 -0.00497
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Table 4.5: CLS: MSE(J) and MSE(7) for A = 0 and ¢ = 1, 8 = 0.50 based on 1,000 Monte Carlo runs.

oy

Parameters MSE(4) MSE(7)
) T n=25 n=50 n=100 n=200 n=25 n=50 n=100 n =200
0 0.25 0.00983 0.00528 0.00288 0.00157 0.00209 0.00109 0.00058 0.00033
0.50 0.04028 0.02203 0.01130 0.00572 0.00823 0.00437 0.00231 0.00126
1.00 0.15729 0.08265 0.04605 0.02335 0.03243 0.01770 0.00923 0.00510
0.5 0.25 0.01002 0.00538 0.00282 0.00143 0.00202 0.00111 0.00055 0.00032
0.50 0.04037 0.02141 0.01175 0.00585 0.00815 0.00439 0.00243 0.00131
1.00 0.15770 0.08501 0.04348 0.02162 0.03384 0.01779 0.00964 0.00515
1 0.25 0.01008 0.00543 0.00261 0.00148 0.00203 0.00110 0.00057 0.00031
0.50 0.03989 0.08565 0.04532 0.02343 0.00832 0.00442 0.00232 0.00123
1.00 0.16344 0.08714 0.04309 0.02472 0.03424 0.01757 0.01006 0.00497
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Table 4.6: CLS: MSE(8) and MSE(#) for A= 0 and o = 1, # = 0.90 based on 1,000 Monte Carlo runs.

finqoqou abvisnoy) g%

Parameters MSE(9) MSE(7)
) T n=25 mn=50 n=100 n=200 n=25 n=50 n=100 n =200
0 0.25 0.00839 0.00424 0.00220 0.00114 0.00195 0.00098 0.00051 0.00024
0.50 0.03354 0.01706 0.00882 0.00440 0.00765 0.00396 0.00207 0.00102
1.00 0.13590 0.06784 0.03209 0.01853 0.03110 0.01583 0.00752 0.00416
0.5 0.25 0.00840 0.00424 0.00209 0.00114 0.00190 0.00097 0.00051 0.00025
0.50 0.03412 0.01751 0.00920 0.00445 0.00767 0.00392 0.00202 0.00099
1.00 0.13680 0.06910 0.03522 0.01758 0.03151 0.01538 0.00804 0.00404
1 0.25 0.00853 0.00417 0.00220 0.00111 0.00192 0.00099 0.00050 0.00024
0.50 0.03393 0.01725 0.00905 0.00464 0.00786 0.00395 0.00212 0.00106
1.00 0.13508 0.07090 0.03375 0.01652 0.03092 0.01587 0.00749 0.00411
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Table 4.7: CLS: MSE(4) and MSE(#) for A = 0 and 0 = 1, 8 = 1.00 based on 1,000 Monte Carlo runs.

44

Parameters MSE(6) MSE(7)
) T n=25 n=50 n=100 n=200 n=25 n=50 n=100 n =200
0 0.25 0.00807 0.00417 0.00205 0.00103 0.00192 0.00096 0.00048 0.00025
0.50 0.03318 0.01623 0.00777 0.00434 0.00787 0.00386 0.00189 0.00098
1.00 0.13358 0.06537 0.02969 0.01774 0.03093 0.01561 0.00766 0.00376
0.5 0.25 0.00832 0.00402 0.00222 0.00104 0.00188 0.00095 0.00047 0.00022
0.50 0.03232 0.01655 0.00837 0.00425 0.00754 0.00379 0.00174 0.00101
1.00 0.12929 0.06642 0.03318 0.01581 0.03013 0.01536 0.00774 0.00370
1 0.25 0.00827 0.00412 0.00203 0.00100 0.00190 0.00096 0.00046 0.00025
0.50 0.03259 0.01633 0.00800 0.00437 0.00765 0.00389 0.00184 0.00095
1.00 0.13029 0.06445 0.03087 0.01650 0.03077 0.01555 0.00844 0.00370
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Table 4.8: CLS: Bias($) and bias(7) for A= 0 and ¢ = 1, 8 = 0.50 based on 1,000 Monte Carlo runs.

Parameters Bias(9) Bias(7)
) T n=25 mn=50 n=100 n=200 n=25 n=50 n=100 n=200
0 0.25 -0.00395 -0.00467 -0.00251 -0.00522 -0.00531 -0.00408 -0.00303 -0.00166
0.50 -0.00789 -0.00935 -0.01105 -0.00528 -0.01015 -0.00636 -0.00577 -0.00468
1.00 -0.01250 -0.01767 -0.01212 0.00001 -0.01883 -0.01385 -0.01138 -0.01117
0.5 0.25 -0.00416 -0.00347 -0.00180 -0.00428 -0.00501 -0.00310 -0.00310 -0.00177
0.50 -0.00464 -0.01133 -0.00801 -0.00643 -0.01011 -0.00753 -0.00555 -0.00515
1.00 -0.01300 -0.01542 -0.00911 -0.00991 -0.02123 -0.01729 -0.00945 -0.00474
1 0.25 -0.00402 -0.00437 -0.00341 -0.00335 -0.00492 -0.00399 -0.00210 -0.00161
0.50 -0.00755 -0.00972 -0.00489 -0.00330 -0.00928 -0.00811 -0.00599 -0.00446
1.00 -0.01724 -0.01688 -0.02827 -0.01221 -0.01743 -0.01458 -0.00865 -0.00651
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Table 4.9: CLS: Bias($) and bias(7) for A = 0 and ¢ = 1, # = 0.90 based on 1,000 Monte Carlo runs.

4%

Parameters Bias() Bias(7)
) T n=25 mn=2>50 n=100 n=200 n=25 n=2>50 n=100 n=200
0 0.25 0.00065 -0.00068 -0.00201 -0.00073 -0.00318 -0.00259 -0.00254 -0.00056
0.50 -0.00314 -0.00228 0.00081 0.00086 -0.00639 -0.00308 -0.00250 -0.00185
1.00 -0.00359 -0.00064 0.00090 0.00045 -0.01608 -0.00888 -0.00414 -0.00068
0.5 0.25 -0.00081 -0.00051 -0.00096 -0.00021 -0.00338 -0.00200 -0.00090 -0.00060
0.50 0.00005 0.00093 -0.00570 -0.00056 -0.00715 -0.00360 -0.00325 -0.00209
1.00 -0.00697 -0.00692 -0.00702 -0.00591 -0.01408 -0.00841 -0.00435 -0.00112
1 0.25 -0.00095 -0.00193 -0.00092 -0.00166 -0.00390 -0.00190 -0.00032 -0.00106
0.50 -0.00122 -0.00089 -0.00163 -0.00207 -0.00539 -0.00308 -0.00106 -0.00087
1.00  0.00308 -0.00088 -0.00815 -0.00600 -0.01173 -0.00674 -0.00784 -0.00333
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Table 4.10: CLS: Bias(d) and bias(#) for A= 0 and o = 1, § = 1 based on 1,000 Monte Carlo runs.

Parameters Bias(9) Bias(7)
) T n=25 mn=50 n=100 n=200 n=25 mn=50 n=100 n=200
0 025 -0.00122 -0.00009 0.00021 0.00004 -0.00296 -0.00194 -0.00139 -0.00047
0.50  0.00195 0.00033 0.00293 -0.00234 -0.00706 -0.00481 -0.00290 -0.00213
1.00 0.00372 -0.00046 -0.00451 -0.00216 -0.01556 -0.00745 -0.00065 -0.00567
0.5 025 0.00832 0.00402 0.00222 0.00104 -0.00344 -0.00215 -0.00023 -0.00106
0.50 -0.00060 -0.00207 0.00418 0.00570 -0.00731 -0.00293 -0.00248 -0.00256
1.00 -0.00119 -0.00206 0.00208 -0.00294 -0.01461 -0.00563 -0.00264 -0.00348
1 0.25 0.00134 0.00046 -0.00304 0.00097 -0.00317 -0.00181 -0.00121 -0.00051
0.50 -0.00081 0.00197 0.00085 0.00121 -0.00777 -0.00442 -0.00278 -0.00114
1.00 -0.00329 -0.00392 0.00711 -0.00724 -0.01535 -0.00714 -0.00737 -0.00051
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CHAPTER 4 : SIMULATION STUDY

Table 4.11: Comparative MSEs of $ and # for different B using CLS method.

n  Parameter MSE(d) MSE(7)
5 7 B=05 B=00 B=10 B=05 =09 B=10

25 0 025 0.00983 0.00839 0.00807 0.00209 0.00195 0.00192
0.50 0.04028 0.03354 0.03318 0.00823 0.00765 0.00787
1.00 0.15729 0.13590 0.13358 0.03243 0.03110 0.03093

50 0 0.25 0.00528 0.00424 0.00417 0.00109 0.00098 0.00096
0.50 0.02203 0.01706 0.01623 0.00437 0.00396 0.00386
1.00 0.08265 0.06784 0.06537 0.01770 0.01583 0.01561

100 0 0.25 0.00288 0.00220 0.00205 0.00058 0.00051 0.00048
0.50 0.01130 0.00882 0.00777 0.00231 0.00207 0.00189
1.00 0.04605 0.03209 0.02969 0.00923 0.00752 0.00766

200 0 0.25 0.00157 0.00114 0.00103 0.00033 0.00024 0.00025
0.50 0.00572 0.00440 0.00434 0.00126 0.00102 0.00098
1.00 0.02335 0.01853 0.01774 0.00510 0.00416 0.00376




Table 4.12: MLM : Probability coverage for § and 7 with A =0, o = 1 based on 1,000 Monte Carlo runs.

Parameters 95% Coverage(0) 95% Coverage(7)
) T n=25 n=>50 n=100 n=200 n=25 n=50 n=100 n=200
0 025 0935 0946 0959 0.947 0.908 0.938 0.947 0.948
0.50 0938 0945 0941 0.934 0.907 0.939 0947 0.938
1.00 0938 0951 0957 0.945 0.906 0916 0.939 0.948

0.5 025 0930 0947 0944 0.965 0.897 0940 0.961 0.941
050 0932 0949 0944 0.941 0914 0947 0.940 0.946
1.00 0923 0951 0938 0.947 0913 0921 0.941 0.959

1 025 0934 0952 0.950 0.956 0917 0936 0.925 0.930
0.50 0945 0953 0944 0.941 0.912 0939 0.948 0.956
1.00 0946 0.929 0963 0.948 0.928 0922 0941 0.944
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Table 4.13: CLS: 95% Probability coverage for § with A = 0 and 0 = 1 based on
R=200 Monte Carlo runs.

Weight Parameter n
06 ) T 25 50 100 200
0.50 0 025 0.930 0.945 0.945 0.940
0.50 0.975 0.945 0.960 0.960
1.00 0.910 0.955 0.935 0.960

0.90 0 025 0.965 0.975 0.960 0.970
0.50 0.955 0.945 0.980 0.960
1.00 0.960 0.965 0.985 0.965

1.00 0 025 0.975 0.950 0.985 0.980
0.50 0.970 0.960 0.975 0.980
1.00 0.960 0.970 0.970 0.965

Table 4.14: CLS: 95% Probability coverage for # with A = 0 and o = 1 based on
R=200 Monte Carlo runs.

Weight Parameter n
16} ) T 25 50 100 200
0.50 0 025 0.925 0.940 0.910 0.945
0.50 0.915 0.930 0.950 0.965
1.00 0.895 0.945 0.955 0.955

0.90 0 025 0.935 0.935 0.965 0.975
0.50 0.950 0.965 0.965 0.970
1.00 0.930 0.920 0.955 0.955

1.00 0 025 0.925 0.940 0.925 0.970
0.50 0.950 0.955 0.975 0.965
1.00 0.930 0.955 0.940 0.960




Chapter 5

Comparison of the Methods

Methods of parameter estimation and Monte Carlo simulation steps are presented in
the previous chapter. Here, we compare the methods discussed in the earlier chapters
on the basis of MSE and bias of the estimators. We conducted simulation study
for MLM, WLS and CLS methods as they are computationally less time consuming
as compared to the EPM. We also compare MLM and CLS on the basis of average
confidence lengths (ACL). For MLM, we use asymptotic confidence interval whereas
bootstrap percentile (boot-p) confidence intervals are constructed for CLS method
with the weights G = 0.5,0.9, 1. Finally, comparative tables are presented at the end
of this chapter.

5.1 Comparison Based on MSE

~

In order to compare the MLM, CLS and WLS methods, we tabulate MSE(J) in
Table 5.1 and MSE(7) in Table 5.2. We observe that MLM gives the smallest MSE
regardless of the sample size. For CLS method, MSE is the smallest when 3 = 1.
Between CLS and WLS, CLS(8 = 1) gives smaller MSE irrespective of sample size.
However, WLS gives smaller MSE when compared with CLS (6 = 0.5) for sample
size 50 or more. For large sample size (n = 200), MSEs are approximately equal for
all the methods. For 7, similar conclusion can be drawn except that WLS always

produces larger MSE than that of CLS. In general, MSE gets smaller as the sample

49



50 CHAPTER 5: COMPARISON OF THE METHODS

size increases.

5.2 Comparison Based on Bias

~

From bias(d) in Table 5.3, we find that sometimes the parameter is underestimated
and sometimes overestimated. Particularly for MLM, overestimation occurs more
frequently than underestimation. For WLS, parameter is mostly underestimated and
so for the CLS. The irregular underestimation (in MLM) and overestimation in WLS
and CLS might be due to simulation.

On the other hand, bias(7) in Table 5.4 clearly shows that 7 underestimates 7
irrespective of the method of estimation.

In general, bias becomes smaller for both § and 7 as the sample size increases.

5.3 Comparison Based on Boot-p
Confidence Interval

Bootstrap percentile confidence intervals have been constructed in order to compare
the different methods of estimation. We have observed in the previous chapter that
MSE mainly depends on the scale parameter 7, when we fixed A = 0 and ¢ = 1. That
is why it is sufficient to construct bootstrap percentile confidence intervals for location
parameter § = 0 with varying scale parameter 7. That is, we run the simulations for
the parameter combinations BL(A = 0,6 = 0,0 = 1,7 = 0,0.5,1). Also, we limit our
comparison between MLE and CLS methods only due to computational simplicity.
In the following we construct boot-p confidence intervals for § and 7. This method
was first proposed by Efron (1982). We shall illustrate the procedure for the location

parameter §. Confidence intervals for 7 can be obtained in a similar fashion.
Step 1. Estimate the parameters of BL(A, 4, o, 7)from the available data using

a suitable method.

Step 2. Generate a sample from the bivariate logistic distribution with para-

meters estimated in Step 1.
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Step 3. Repeat Step 2 R times. This gives R estimates \*, §*, o*,7* for each

of the parameters A, 6, o, 7.

Step 4. Then a 100(1—5?% confidence interval for 4 is given by (5(R+1)(§)’ 5(R+1)(1_%)).
That is, we sort the R 0*’s in ascending order and take the (R + 1)(5)®™" and
(R + 1)(1 — §)™ values. In other words, we take the (g)th and (1— %)th per-
centile point of the distribution of 6*. Percentile bootstrap confidence intervals

for 7 is obtained in an analogous manner.

Following the above steps, boot-p confidence intervals for 6 and # have been
obtained and the average lengths of the confidence intervals based on 200 Monte
Carlo runs are presented in Table 5.5 and Table 5.6, respectively. In each Monte
Carlo step, standard deviations of the estimates are obtained from 999 bootstrap
replicates of the estimators.

For &, we observe that for a particular combination of (§,7), MLM has a smaller
confidence length as compared to CLS for any sample size. We see that confidence
length for ¢ decreases with increasing sample size. We also observe that confidence
length for § increases with increasing 7. Similar conclusion can be drawn for confidence

lengths for 7 as given in Table 5.6.

Remark 2. Comparison of average confidence lengths (ACL) for 6 and 7 gives rise
to the fact that ACL of 7 is globally smaller than that of §. For large sample, while
there is noticeable difference in ACL(d) between the methods, ACL(7) do not vary
that much.
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Table 5.1: Comparison of MSE(§) between MLE, WLS, and CLS methods.

n  Parameter MLM WLS CLS
) T =05 =09 =10
25 0 0.25 0.00699 0.01125 0.00983 0.00839 0.00807
0.50 0.02789 0.04553 0.04028 0.03354 0.03318
1.00 0.11273 0.17958 0.15729 0.13590 0.13358

50 0 0.25 0.00346 0.00535 0.00528 0.00424 0.00417
0.50  0.01396 0.02007 0.02203 0.01706 0.01623
1.00 0.05601 0.07870 0.08265 0.06784 0.06537

100 0 0.25 0.00174 0.00246 0.00288 0.00220 0.00205
0.50  0.00698 0.01039 0.01130 0.00882 0.00777
1.00  0.02841 0.03823 0.04605 0.03209 0.02969

200 0 0.25 0.00087 0.00122 0.00157 0.00114 0.00103
0.50  0.00339 0.00499 0.00572 0.00440 0.00434
1.00 0.01371 0.01886 0.02335 0.01853 0.01774




5.3 Comparison Based on Boot-p Confidence Interval

Table 5.2: Comparison of MSE(7) between MLM, WLS, and CLS methods.

n  Parameter MLM WLS CLS
0 T 6=05 =09 (=10
25 0 0.25 0.00138 0.00413 0.00209 0.00195 0.00192
0.50 0.00574 0.01647 0.00823 0.00765 0.00787
1.00 0.02221 0.06543 0.03243 0.03110 0.03093

50 0 0.25 0.00068 0.00160 0.00109 0.00098 0.00096
0.50  0.00272 0.00699 0.00437 0.00396 0.00386
1.00 0.01103 0.02843 0.01770 0.01583 0.01561

100 0 0.25 0.00034 0.00069 0.00058 0.00051 0.00048
0.50 0.00137 0.00332 0.00231 0.00207 0.00189
1.00  0.00542 0.01323 0.00923 0.00752 0.00766

200 0 0.25 0.00017 0.00036 0.00033 0.00024 0.00025
0.50  0.00071 0.00135 0.00126 0.00102 0.00098
1.00  0.00268 0.00579 0.00510 0.00416 0.00376
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Table 5.3: Comparison of Bias(8) between MLM, WLS, and CLS methods.

n  Parameter MLM WLS CLS
) T 6=05 (=09 pg=1.0
25 0 025 0.00049 -0.01147 -0.00395 0.00065 -0.00122
0.50 0.00303 -0.01714 -0.00789 -0.00314 0.00195
1.00 0.00557 -0.04639 -0.01250 -0.00359 0.00372

50 0 0.25 0.00189 -0.00208 -0.00467 -0.00068 -0.00009
0.50  0.00156 -0.00836 -0.00935 -0.00228 0.00033
1.00  0.00400 -0.00382 -0.01767 -0.00064 -0.00046

100 0 0.25 -0.00016 -0.00097 -0.00251 -0.00201 0.00021
0.50  0.00158 0.00168 -0.01105 0.00081 0.00293
1.00  0.00156 0.00007 -0.01212 0.00090 -0.00451

200 0 025 0.00002 -0.00103 -0.00522 -0.00073 0.00004
0.50 -0.00013 -0.00075 -0.00528 0.00086 -0.00234
1.00  0.00092 -0.00648 -0.00001 0.00045 -0.00216
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Table 5.4: Comparison of Bias(7) between MLM, WLS, and CLS methods.

n  Parameter MLM WLS CLS
) T =05 (B=09 (=10
25 0 0.25 -0.00661 -0.00548 -0.00531 -0.00318 -0.00296
0.50 -0.01393 -0.02055 -0.01015 -0.00639 -0.00706
1.00 -0.02651 -0.02293 -0.01883 -0.01608 -0.01556

50 0 0.25 -0.00311 -0.00528 -0.00408 -0.00259 -0.00194
0.50 -0.00680 -0.01171 -0.00636 -0.00308 -0.00431
1.00 -0.01299 -0.02043 -0.01385 -0.00888 -0.00745

100 0 025 -0.00185 -0.00518 -0.00303 -0.00254 -0.00139
0.50 -0.00326 -0.00842 -0.00577 -0.00250 -0.00290
1.00 -0.00613 -0.02152 -0.01138 -0.00414 -0.00065

200 0 0.25 -0.00098 -0.00142 -0.00166 -0.00056 -0.00047
0.50 -0.00182 -0.00379 -0.00468 -0.00185 -0.00213
1.00 -0.00340 -0.00742 -0.01117 -0.00068 -0.00567
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Table 5.5: Comparison of average confidence lengths for § between MLM and CLS
methods based on B=999, R=200.

n  Parameter MLM CLS
5 7 G=05 B=09 B=10
25 0 025 03175 0.3843 0.3881 0.3815
0.50 0.6474 0.7827 0.7686 0.7824
1.00 1.2624 1.5408 1.5458  1.5577

50 0 0.25 0.2316 0.2825 0.2852 0.2861
0.50 04576 0.5739 0.5786 0.5693
1.00 0.9225 1.1421 1.1348 1.1543

100 0 0.25 0.1601 0.2071 0.2085 0.2085
0.50  0.3252 0.4127 0.4188 0.4216
1.00 0.6503 0.8324 0.8253 0.8283

200 0 0.25 0.1157 0.1492 0.1506  0.1503
0.50 0.2310 0.3019 0.2993 0.3014
1.00 0.4606 0.5995 0.5969  0.6046
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Table 5.6: Comparison of average confidence lengths for 7 between MLM and CLS
methods based on B=999, R=200.

n  Parameter MLM CLS

0 T =05 =09 [F=1.0

25 0 025 01391 0.1732 0.1743 0.1723
0.50 0.2827 0.3537 0.3475 0.3543

1.00 0.5555 0.6961 0.6933 0.7030

50 0 0.25 0.1024 0.1271 0.1283 0.1292
0.50 0.2013 0.2580 0.2600 0.2576

1.00 0.4070 0.5135 0.5082 0.5196

100 0 0.25 0.0708 0.0936 0.0938 0.0945
0.50 0.1438 0.1875 0.1895 0.1905

1.00 0.2879 0.3758 0.3763  0.3760

200 0 0.25 0.0510 0.0681 0.0688 0.0688
0.50 0.1023 0.1381 0.1366 0.1369

1.00 0.2032 0.2734 0.2722 0.2757
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Chapter 6

Illustrative Example

In this chapter we apply the methods discussed in the previous chapters for estimating
parameters of bivariate logistic distribution using a real-life data. We use bootstrap
resampling technique to calculate bias and MSE of the estimators of the parameters.
We also present the percentile bootstrap confidence intervals for the parameters at
the end of the chapter.

6.1 The UK Pig Production Data

We use the data obtained from UK pig production during the period 1967-78. The
data are given by Andrews and Herzberg (1985) and used by Castillo et al. (1997).
The data are presented in Table 6.1. ‘Pig slaughter’ is the number of clean pigs (in
thousands), reared for meat as opposed to being culled from the breeding herd, which
are slaughtered during one quarter of a year. It is the main measure of pig production.

‘Herd size’ is a measure of the actual size of the breeding herd.

Castillo et al. (1997) used CLS method to fit bivariate logistic distribution to this
data. They have shown, in their paper, the hypothesis that the “sample (of the pig

production) cannot be rejected from coming from the bivariate logistic population.”
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Table 6.1: UK pig production data (1967-’78)

Clean pig Herd Clean pig Herd size Clean pig Herd

slaughter  size  slaughter size slaughter  size
2.645 0.703 2.540 0.722 2.565 0.738
2,776 0.747 2.725 0.755 2.623 0.780
2.722 0.806 3.004 0.807 2.952 0.805
2.968 0.801 2.961 0.821 3.243 0.809
3.027 0.797 2.902 0.831 3.057 0.867
3.331 0.862 3.266 0.871 3.290 0.864
3.223 0.854 3.501 0.846 3.402 0.854
3.278 0.851 3.258 0.876 3.400 0.876
3.303 0.888 3.228 0.903 3.269 0.922
3.396 0.902 3.396 0.820 3.386 0.819
3.385 0.797 3.262 0.751 3.113 0.743
2.851 0.744 2.752 0.747 2.919 0.764
2.842 0.759 2.834 0.807 2.957 0.798
3.305 0.811 3.256 0.752 3.151 0.761
3.141 0.719 3.266 0.741 3.061 0.745
3.018 0.764 3.085 0.764 3.242 0.786

n = 48

6.2 Estimation of Parameters

Since bivariate logistic distribution reasonably fits the UK pig production data, we
use MLM, CLS, WLS and EPM to estimate the parameters A, §, o, 7. The results are
presented in Table 6.2. The relevant R functions are given in Appendix Sections
A1, A2 A3, and A4

To estimate the parameters using MLM, WLS and EPM, we need to supply initial
values for the parameters. We use the estimates obtained by CLS method (with
B = 0.5) as the initial values. For CLS method, three different weights (8 = 0.5,0.9, 1)
along with the optimal weight § = 0.8468 have been considered.

In the elemental percentile method, we randomly choose 4000 elemental subsets
out of (45): 194,580 possible subsets. Using these elemental subsets, we obtain 4000

elemental estimates for each of the parameters. Finally, we obtain the estimates using
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the functions MED and TM,, with o = 10 and 20.

In order to compare between the methods of estimation, we conduct simulation
study based on bootstrap resampling with 999 replications. The results are presented
and discussed in the following sections.

To obtain the MLEs of the parameters, we maximize the likelihood function using
the optimization function optim() available in R (R Development Core Team 2004).
The R functions used to obtain the MLEs are given in Appendix A.1. We got the
estimates from the UK pig data as A= 3.10,3 =0.8,6 = 0.157,7 = 0.03.

Later, we applied Castillo’s method to the data for weights 8 = 0.50,0.90, 1.0.
The optimum weight obtained for this data set is 0.8468. We have also estimated the
parameters for the optimum weight and the results are tabulated in Table 6.2

From the UK pig production data we use bootstrap resampling to calculate
the MSE, bias, and percentile bootstrap confidence intervals for the parameters of
BL(\,6,0,7). The bootstrap sampling can be done in two ways: the samples can be
drawn directly from the data or they can be drawn parametrically from F(z,y; @) of
the bivariate logistic distribution. Here, we followed the second approach to generate
999 bootstrap samples and the estimated the MSE and bias of the estimators are
presented in Table 6.3 and Table 6.4.



Table 6.2: Estimated parameters of BL(A, §, 0, 7) by four different methods.

Parameter MLE  WLS CLS EPM
6=05 (=09 =10 p*=0.847 TMp=10 TMgy—o Median
A 3.1019 3.1121 3.0837 3.0838 3.0838 3.0838 3.0227 3.0246  3.0209
5 0.8049 0.7935 0.8015 0.8023 0.8025 0.8022 0.7584 0.7781 0.7853
o 0.1575 0.1757 0.1344 0.1364 0.1365 0.1363 0.1628 0.1553  0.1440
7 0.0318 0.0256 0.0291 0.0299 0.0301 0.0299 0.0862 0.0512 0.0361

B* is the optimum weight obtained from the UK pig production data.
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6.3 Discussion of Results

MSE of the estimators are presented in Table 6.3. We do not see much difference
between the methods as far as MSE is concerned. However, MLM shows the smallest
MSE as compared to the other three methods. CLS gives smaller MSE than that of
WLS and EPM whereas EPM gives smaller MSE than that of WLS. This implies,
WLS has the largest MSE while MLM has the smallest.

In Table 6.4 bias of the estimators are compared between different methods. From
the negative bias of the estimators, we can say that all four methods underestimate
the parameters.

Boot-p confidence intervals and length of the intervals are presented in Table 6.5
and Table 6.6, respectively. It is reasonable to say that no method is uniformly
better than the others on the basis of confidence lengths. For example, MLM gives
the smallest interval for § and 7 but produces largest interval for A. However, after
comparing all the methods, we can reasonably say that MLM and CLS (6 = 0.5)
performs well as compared to WLS and EPM.



Table 6.3: MSE of 5\, B) , 0, and T based on 999 bootstrap replications for different methods.

MSE MLM WLS CLS EPM
of ,8 =0.5 ,8 =0.9 ,B =1.0 ,B* = (.8468 TMazlo TMa=20 MED
A 0.00030 0.00153 0.00005 0.00046 0.00005 0.00045 0.00056 0.00072 0.00087
6 0.00000 0.00005 0.00006 0.00004 0.00000 0.00007 0.00228 0.00067 0.00030
o  0.00005 0.00012 0.00004 0.00001 0.00008 0.00006 0.00018 0.00001 0.00025
7 0.00001 0.00001 0.00002 0.00000 0.00001 0.00000 0.01112 0.00089 0.00002

0B* is the optimum weight obtained from the UK pig production data.
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Table 6.4: Bias of \, 6 , 0, and 7 based on 999 bootstrap replications for different methods.

Bias MLM  WLS CLS EPM
of =05 pB=00 PB=10 [ =08468 TMyo TMa_s MED
X\ 001743 0.03909 -0.00727 -0.02137 0.00680  -0.02131 _0.02356 -0.02680 -0.02958
5 -0.00207 0.00682 -0.00748 -0.00627 -0.00056  -0.00837 0.04772 -0.02582 -0.01724
&  0.00679 -0.01076 -0.00638 0.00241 -0.00910  0.00754 0.01325 0.00231 -0.01581
7 -0.00368 -0.00301 -0.00388 0.00212 0.00349  0.00175 0.10543  0.02982 -0.00449

(* is the optimum weight obtained from the UK pig production data.
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Table 6.5: Bootstrap percentile confidence intervals for A, 4, o, 7 based on 999 bootstrap replications for different

methods.
CI MLM WLS CLS
for 6=0.5 8=09 6=1.0 G* = 0.8468
A (3.043,3.201) (3.0453, 3.2474) (3.010, 3.143) (2.982, 3.132) (3.017, 3.160) (2.978, 3.134)
5 (0.785, 0.811) (0.7935, 0.8195) (0.777,0.808) (0.774, 0.813) (0.779, 0.819) (0.772, 0.811)
6 (0.129,0.199) (0.1139, 0.2314) (0.092, 0.155) (0.099, 0.169) (0.091, 0.153) (0.103, 0.175)
7 (0.020, 0.032) (0.0146, 0.0297) (0.020, 0.033) (0.024, 0.040) (0.024, 0.043) (0.023, 0.041)

(* is the optimum weight obtained from the UK pig production data.

CI EPM

for TMa=10 TMa—20 MED

A (2.8084, 3.0102) (2.8177, 3.0044) (2.8238, 3.0021)

5 (0.5505, 0.7507) (0.5608, 0.7465) (0.5758, 0.7451)

& (0.1542,0.3122) (0.1371, 0.2446) (0.1178, 0.2062)
( ( )

0.1478, 0.2955) (0.1332, 0.2354) (0.1139, 0.1980)

~>
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Table 6.6: Confidence lengths for A, 4§, 0,7 and 7 based on 999 bootstrap replications for different methods.

Confidence MLM  WLS CLS EPM

length for =05 =09 [B=10 p*=0.8468 TMgo=10 TMgy—o9 MED
A 0.15840 0.2021 0.13220 0.15010 0.14300 0.15590 0.2018  0.187 0.17838
5 0.02600 0.0260 0.03180 0.03950 0.04030 0.03840 0.2001  0.1857 0.16931
o 0.06930 0.1175 0.06340 0.06950 0.06250 0.07160 0.1580  0.1075 0.08832
7 0.01190 0.0150 0.01320 0.01660 0.01820 0.01750 0.1477  0.1022 0.08410

B* is the optimum weight obtained from the UK pig production data.
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Chapter 7

Conclusion

Our objective was to compare between different estimation methods for estimating
the parameters of bivariate logistic distribution. In this study, we compared maximum
likelihood method (MLM), weighted least squares method (WLS), and Castillo’s least
squares method (CLS) on the basis of bias and mean squared errors.

There are four parameters in the bivariate logistic distribution namely, A, § as the
location parameters, and o, 7 as the scale parameters. In this study, we limited our
simulation for the parameters § and 7 keeping A = 0 and o = 1 as fixed. Thus, we
simulated only for 6 = 0,0.5,1 and 7 = 0.25,0.5, 1. We compute MSE and bias for B
and 7. It has been found that MSE for both § and # are approximately equal for
(6,7)= (0, 0.25), (0.5, 0.25), (1, 0.25). But when we allow 7 to vary, MSE of § and
7 also varies. This implies, MSE depends on scale parameter when we fix A and o.

Comparative results based on MSE show that MLM produces smaller MSE as
compared to WLS and CLS while CLS has smaller MSE than that of WLS. In terms of
bias, we can conclude from the negative bias that the parameters are underestimated
in most of the situations for all the methods.

Because MLM and CLS produce smaller MSE than that of WLS, we compared
MLM and CLS on the basis of confidence lengths. Average lengths of asymptotic
confidence intervals for MLM have been compared with the average percentile boot-
strap confidence lengths for the CLS. For both § and 7, MLM has smaller length than

that of CLS. However, when sample becomes large (n = 200) the difference becomes
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negligible.

We applied all four methods of estimation to a real life-data. Bootstrap resam-
pling was employed to compute bias, mean squared error and confidence lengths for
the parameters using those data. Bootstrap resampling result shows that EPM has
higher MSE than that of other methods. Although there is not much difference in
MSE between MLM, CLS and WLS, it is reasonable to say that MLM and CLS pro-
duce similar result. There is no clear division between the methods in terms of bias
of the estimators. Comparing the lengths of confidence intervals between methods
(Table 6.6), we can say that MLM and CLS produce similar results.

In summary, MLM and CLS are found to be better than the other two methods
of estimation and they can be used alternatively. CLS has some advantages over
MLM, especially when the range of the variable depends on the parameters. In such
cases, CLS can be used without any difficulty. It has been found that MLM takes less
time but it is not straight forward computationally, for all values of the parameters.
Also, for small sample sizes (n < 25) and especially when the scale parameters are
very small, optimization of the loglikelihood function often fails. In those situations,
even constrained optimization gives unsatisfactory results. On the other hand, CLS
is computationally fast and can be applied without any difficulty for any sample size

and acceptable parameter values.



Appendix A

R Functions: Simulation on UK
Pig Production Data

A.1 Functions Related to MLM

mle.bivlog<-
function(ini, data, ...)
{
xx<-datal,1]
yy<-datal,2]
n<-nrow(data)
BLLL<-function(x,data)
{
lambda<-x[1]
delta<-x[2]
sigma<-x[3]
tau<-x[4]
xx<-datal,1]
yy<-dataf,2]
n<-length (xx)
log(2°n)- n*(mean{xx)-lambda)/sigma - n*(mean(yy)-delta)/tau -
n*log(sigma) - n*log(tau) - 3*sum(log(l+exp(~(xx-lambda)/sigma)+
exp(-(yy-delta)/tau)))
}
out<-optim(ini,BLLL,method="L-BFGS-B", lower=c(2,0,0.05,0.01),
upper=c(6,2,1, .5) ,data=data, control=list (fnscale=-1) ,hessian=T)
var.para=diag(solve(abs(out$hessian)))
para=out$par
if(is.na(sqrt(var.paral[1]))){sd.lambda=1e-4}
else sd.lambda=sqrt(var.para[i]) '
if (is.na(sqrt(var.para[2]))){sd.delta=1e-4}
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else sd.delta=sqrt(var.para[2])
if(is.na(sqrt(var.paral3]))){sd.sigma=1e-4}
else sd.sigma=sqrt(var.para[3])

if (is.na(sqrt(var.para[4]))){sd.tau=1e-4}
else sd.tau=sqrt(var.para(4])
list(para=para,var.para=var.para)

1

sim.mle<-
function(ini,nsize,R=1000,B=999, ...)
# ini= initial lamda, delta, sigma, tau
# nsize is the sample size
{
options(digits=4)
para.store<-matrix(0,nrow=R,ncol=4)
asy.var<-matrix(0,nrow=R,ncol=4)
p.val.store.lambda=NULL
p.val.store.delta=NULL
p.val.store.sigma=NULL
p.val.store.tau=NULL
bp.conf<-matrix(0,nrow=R,ncol=12)
for (1 in 1:R)
{
datal= rbivlog(nsize,ini)
tmp=mle.bivlog(ini,datal)
para.store[i,]=tmp$para
asy.var[i,]<-tmp$var.para
p-val.store.lambda[i]=tmp$p.val.lambda
p.val.store.delta[i]=tmp$p.val.delta
p.val.store.sigma[i]=tmp$p.val.sigma
p.-val.store.tau[i]=tmp$p.val.tau
confl<-boot.mle(c(para.store[i,]) ,nsize,B)
bp.conf[i,]<-round(c(confi$p.lam.ci[1],confi$p.lam.ci[2],
confi1$p.del.ci[1],confi$p.del.ci[2],confi$p.sig.ci[1],
conf1$p.sig.ci[2],confi$p.tau.cif1],confi1$p.tau.ci[2],
(confi$p.lam.ci[2]-confi$p.lam.ci[1]), (confi$p.del.ci[2]-
confi$p.del.ci[1]), (confi$p.sig.ci[2]-confi8p.sig.ci[1]),
(confi$p.tau.ci[2]~confi1$p.tau.ci[1])),digits=4)
}
#para.store
mse.lambda=sum((para.store[,1]-ini{1])"2)/R
mse.delta=sum((para.store[,2}-ini[2])"2)/R
mse.sigma=sum((para.store[,3]1-ini[3])"2)/R
mse.tau=sum((para.store[,4]-ini(4])"2) /R
bias.lambda=mean(para.store[,1])-ini[1]
bias.delta=mean(para.store[,2])-ini[2]
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bias.sigma=mean(para.store[,3])-ini[3]
bias.tau=mean(para.store[,4])~ini[4]

# pivotal quantities of the parameters
p.lambda=(para.store[,1]-ini[1])/sqrt(asy.var([,1])
p.delta=(para.store[,2]-ini[2])/sqrt(asy.var[,2])
p.sigma=(para.store[,3]-ini[3])/sqrt(asy.var([,3])
p.tau=(para.store[,4]-ini[4])/sqrt(asy.var[,4])

# Asymptotic 95% Pr coverage
aprx95.lambda=length(p.lambda[p.lambda>=-1.96 & p.lambda<=1.96])/R
aprx95.delta=length(p.deltalp.delta>=-1.96 & p.delta<=1.96])/R
aprx95.sigma=length(p.sigma[p.sigma>=-1.96 & p.sigma<=1.96])/R
aprx95.tau=length(p.taulp.tau>=-1.96 & p.tau<=1.96])/R

# BootP average length of CI

conf.len.lam<-mean (bp.conf[,9])
conf.len.del<-mean(bp.conf[,10])
conf.len.sig<-mean(bp.conf[,11])
conf.len.tau<-mean(bp.conf[,12])
result<-matrix(c(mse.lambda,mse.delta,mse.sigma,mse.tau,
bias.lambda,bias.delta,bias.sigma,bias.tau,
aprx95.lambda,aprx95.delta,aprx95.sigma, aprx95. tau,
conf.len.lam, conf.len.del, conf.len.sig, conf.len.tau),
ncol=4,byrow=T)

rownames (result)<-c("mse", "bias", "aprx95", "aveconflen")
colnames (result)<-c("lambda", "delta", "sigma", "tau")
result

# Comment the part below for MC simulation
# list(result=round(result,digits=4), bp.conf=bp.conf)

sim.mle.nb<-
function(ini,nsize,R=1000,B=999, ...)

{

options(digits=4)
para.store<-matrix(0,nrow=R,ncol=4)
asy.var<-matrix(0,nrow=R,ncol=4)
for (i in 1:R)

{
datal= rbivlog(nsize,ini)
tmp=mle.bivlog(ini,datal)
para.store[i,]=tmp$para
asy.var[i,]<-tmp$var.para
}

#para.store
mse.lambda=sum((para.store[,1]-ini[1])"2)/R
mse.delta=sum((para.store[,2]-ini[2])"2)/R
mse.sigma=sum((para.store[,3]-ini[3])"2)/R
mse.tau=sum((para.store[,4]-ini[4])"2)/R
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bias.lambda=mean(para.store[,1])-ini[1]
bias.delta=mean(para.store[,2])-ini[2]
bias.sigma=mean(para.store[,3])-ini[3]
bias.tau=mean(para.store[,4])-ini [4]

pivotal quantities of the parameters
.lambda=(para.store[,1]-ini[1])/sqrt(asy.var{,1])
.delta=(para.store[,2]-ini[2])/sqrt(asy.var([,2])
.sigma=(para.store[,3]-ini[3])/sqrt(asy.var[,3])
.tau=(para.store[,4]-ini[4])/sqrt(asy.var[,4])

Approximate 95% Pr coverage
aprx95.lambda=length(p.lambda[p.lambda>=-1.96 & p.lambda<=1.96])/R
aprx95.delta=length(p.delta[p.delta>=-1.96 & p.delta<=1.96])/R
aprx95.sigma=length(p.sigmalp.sigma>=-1.96 & p.sigma<=1.96])/R
aprx95.tau=length(p.tau[p.tau>=-1.96 & p.tau<=1.96])/R
result<—matrix(c(mse.1ambda,mse.delta,mse.sigma,mse.tau,
bias.lambda,bias.delta,bias.sigma,bias.tau,
aprx95.lambda,aprx95.delta,aprx95.sigma,aprx95.tau),
ncol=4,byrow=T)

#'0 ‘U ' U

rownames (result)<-c("mse", "bias", "aprx95")
colnames(result)<-c("lambda", "delta", "sigma", "tau")
result

# Comment the part below for MC simulation
# list(result=round(result,digits=5), asy.var=asy.var)

A.2 Functions Related to CLS

lsest<-
function(data,wt=0.5,...)
{

x<-datal,1]

y<-datal,2]

r<-NULL

s<-NULL

n<-length(x)
for (i in 1:length(x))

{
if (pxy(data,x[il,y[i])==px(y,y[il))
{
r[il<-log(1/px(x,x[1]1)-1)
}
else
{

rlil<-wt*log(1/px(x,x[i])-1)+(1-wt)*
log(1/pxy(data,x[i],y[i1)-1/px(y,y[i]))
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}

}
if (pxy(data,x[i],y[i])==px(x,x[i]))
{
s[il<-log(1/px(y,y[i1)-1)
}  else
{
s[il<-wtxlog(1/px(y,y[i]1)-1)+(1-wt)*
log(1/pxy(data,x[i],y[i])-1/px(x,x[i]))
}

}

x.dnominator<-(sum(r) ) "2-n*sum(r~2)
y.dnominator<-(sum(s)) "2-n*sum(s~2)

lam<- (sum(x*r)*sum(r)-sum(x)*sum(r~"2))/x.dnominator
sig<-(n*sum(x*r)-sum(x)*sum(r))/x.dnominator
del<-(sum(y*s)*sum(s)-sum(y)*sum(s~2))/y.dnominator
tau<-(n*xsum(y*s)-sum(y)*sum(s))/y.dnominator
pred.x<-lam-sig*r

pred.y<-del-tau*s

E<-sum((x-pred.x) "2+ (y-pred.y)"2)
list(para=c(lam,del, sig, tau),E=E)

optim.weight<-
function(data, lo=0,up=1, fig=F,...)

{

weight<- round(seq(lo,up,len=1000) ,digits=4)
xx=NULL

for (i in 1:length(weight))

{
x=lsest (data=data,weight{i])
xx [1]=x$E
}
if(fig)
{
plot(weight,xx,type="1",xlab="Weight",
ylab="Value of E in CLS method")
}
weight [which.min(xx)]
}
boot.lsest<-
function(ini,boot.ini,nsize,op.wt=0.5, B=999, ...)
{

boot . para<-matrix(0,nrow=B,ncol=4)
boot.var<-matrix(0,nrow=B,ncol=4)
for (i in 1:B)

{
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data.gen<-rbivlog(nsize,boot.ini)
if (op.wt==0)
{
wt<-optim.weight (datal)
} else if (op.wt==0.5)

{
wt<-0.5
} else if (op.wt==0.9)
{
wt<-0.9
} else if (op.wt==1)
{
wt<-1

}else wt<-op.wt

boot.para[i,]<-1lsest(data.gen, wt)$para

}

boot .sd<-apply(boot.para,2,sd)

# Boot P conf

p.lam.ci<-c(sort(boot.paral,1]) [(B+1)*0.025],
sort(boot.paral[,1]) [(B+1)*0.975])
p.del.ci<-c(sort(boot.paral,2]) [(B+1)*0.025],
sort (boot.paral,2]) [(B+1)*0.975])
p.sig.ci<-c(sort(boot.paral,3]) [(B+1)*0.025],
sort(boot.paral,3]) [(B+1)*0.975])
p.tau.ci<-c(sort(boot.paral,4]) [(B+1)*0.025],
sort (boot.paral(,4]) [(B+1)*0.975])
sd.lambda=boot.sd[1]

sd.delta=boot.sd[2]

sd.sigma=boot.sd[3]

sd.tau=boot.sd[4]
if(is.na(sd.lambda)){sd.lambda=1e-4}
if(is.na(sd.delta)){sd.delta=1e-4}
if(is.na(sd.sigma)){sd.sigma=1e-4}
if(is.na(sd.tau)){sd.tau=1e-4}
list(p.lam.ci=p.lam.ci, p.del.ci=p.del.ci,
p.sig.ci=p.sig.ci,p.tau.ci=p.tau.ci,
sd.lambda=sd.lambda,sd.delta=sd.delta,
sd.sigma=sd.sigma, sd.tau=sd.tau)

}

sim.lsest<-

function(ini, nsize, op.wt=0.5, R=1000, B=999,...)

{  options(digits=5)
para.store=matrix(0,nrow=R,ncol=4)
sd.store<-matrix (0,nrow=R,ncol=4)
bp.conf<-matrix(0,nrow=R,ncol=12)
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for (i in 1:R)
{
if (op.wt==0)
{
wtt<-optim.weight (datal)
} else if (op.wt==0.5)
{
wtt<-0.5
} else if (op.wt==0.9)
{
wtt<-0.9
} else if (op.wt==1)
{
wtt<-1
} else wtt<-op.wt
datal= rbivlog(nsize,ini)
tmp=lsest(datal,wt=wtt)
para.store[i,]=tmp$para
confl<-boot.lsest(ini,boot.ini=c(para.store[i,]),nsize,B=B)
sd.store[i,]<-round(c(conf1$sd.lambda,confi$sd.delta,
conf1$sd.sigma,confl$sd.tau) ,digits=4)
bp.conf[i,]<-round(c(confi$p.lam.ci[1],confi1$p.lam.ci(2],
conf1$p.del.ci[1],confi$p.del.ci[2],confl1$p.sig.cil1],
confi$p.sig.ci[2],confi1$p.tau.ci[1],confi$p.tau.cil2],
(confi$p.lam.ci[2]-conf1$p.lam.ci[1]),
(conf1$p.del.ci[2])-confi$p.del.ci[1]),
(conf1$p.sig.cil[2]-confi$p.sig.ci[1]),
(confi$p.tau.ci[2]-confi$p.tau.ci[1])) ,digits=4)
# p95.lam’s are boot percentile conf.

pivotal quantities of the parameters
.lambda=(para.store[,1]-ini[1])/sd.storel[,1]
.delta=(para.store[,2}-ini[2])/sd.store[,2]
.sigma=(para.store[,3]-ini[3])/sd.store[,3]
.tau=(para.store[,4]-ini[4])/sd.store[,4]

Approximate 95% Pr coverage
aprx95.lambda=length(p.lambda[p.lambda>=-1.96 & p.lambda<=1.96])/R
aprx95.delta=length(p.deltalp.delta>=-1.96 & p.delta<=1.96])/R
aprx95.sigma=length(p.sigmalp.sigma>=-1.96 & p.sigma<=1.96])/R
aprx95.tau=length(p.taulp.tau>=-1.96 & p.tau<=1.96])/R
#para.store

mse . lambda=sum( (para.store[,1]-ini[1])"2)/R
mse.delta=sum((para.store[,2]-ini[2])~2)/R
mse.sigma=sum((para.store[,3]-ini[3])"2)/R
mse.tau=sum({para.store[,4]-ini[4])"2)/R
bias.lambda=mean(para.store[,1])-ini[1]

#T T T T OH W
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bias.delta=mean(para.store[,2])-ini[2]
bias.sigma=mean(para.store[,3])-ini[3]
bias.tau=mean(para.store[,4])-ini (4]

# BootP average length of CI
conf.len.lam<-mean(bp.conf[,9])
conf.len.del<-mean(bp.conf[,10])
conf.len.sig<-mean(bp.conf[,11])

conf.len.tau<-mean (bp.conf[,12])
result<-matrix(c(mse.lambda,mse.delta,mse.sigma,mse.tau,
bias.lambda,bias.delta,bias.sigma,bias.tau,
aprx95.lambda, aprx95.delta,aprx95.sigma,aprx95.tau,
conf.len.lam, conf.len.del, conf.len.sig, conf.len.tau,),
ncol=4,byrow=T)

rownames (result)<-c("mse", "bias","aprxp", "aveconflen")
colnames(result)<-c("lambda", "delta", "sigma", "tau")
#result

# Comment the part below for MC simulation
list (result=round(result,digits=5), bp.conf=bp.conf)
} #end

A.3 Functions Related to WLS

wls<-
function(ini,data,...)
{
E<-function(ini,data,...)
{
lambda<-ini [1]
delta<-ini[2]
sigma<-ini [3]
tau<-ini[4]
n<-nrow(data)
pxiyi=NULL
for (i in 1:n)
{
data$pxiyil[il<-pxy(datal,1:2],data[,1][i],datal,2][i])
}
sum({(n/(datal,3]*(1-data[,3])))*(1/(1+ exp(-(datal,1]-
lambda)/sigma)+ exp(-(datal,2]-delta)/tau))-datal,3])"2)
}
out<-optim(ini,E,data=data,control=list (maxit=2000))$par
list(para=out)
}

boot.wls<-
function(ini,boot.ini,nsize,B=999, ...)
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X

boot.para<-matrix(0,nrow=B,ncol=4)
for (i in 1:B)
{
data.gen<-rbivlog(nsize,boot.ini)
boot.parali,]<-wls(boot.ini, data.gen)$para
}
boot.sd<-apply(boot.para,2,sd)
# Boot P conf
p.lam.ci<-c(sort(boot.paral,1]) [(B+1)*0.025],
sort (boot.paral[,1]) [(B+1)*0.975])
p.del.ci<-c(sort(boot.paral,2]) [(B+1)*0.025],
sort (boot.paral,2]) [(B+1)*0.975])
p.sig.ci<-c(sort(boot.paral[,3]) [(B+1)*0.025],
sort (boot.paral,3]) [(B+1)*0.975])
p-tau.ci<-c(sort(boot.paral,4]) [(B+1)*0.025],
sort (boot.paral,4]) [(B+1)*0.975])
sd.lambda=boot.sd[1]
sd.delta=boot.sd[2]
sd.sigma=boot.sd 3]
sd.tau=boot.sd[4]
if(is.na(sd.lambda)){sd.lambda=1e-4}
if(is.na(sd.delta)){sd.delta=1e-4}
if(is.na(sd.sigma)){sd.sigma=1e-4} .
if(is.na(sd.tau)){sd.tau=1e-4}
list(p.lam.ci=p.lam.ci, p.del.ci=p.del.ci,
p.sig.ci=p.sig.ci,p.tau.ci=p.tau.ci,
sd.lambda=sd.lambda,sd.delta=sd.delta,
sd.sigma=sd.sigma, sd.tau=sd.tau)

sim.wls<-
function(ini,nsize,R=1000, B=999,...)

{

options(digits=5)
para.store=matrix(0,nrow=R,ncol=4)
sd.store<-matrix(0,nrow=R,ncol=4)
bp.conf<-matrix(0,nrow=R,ncol=12)
for (i in 1:R)
{
datal= rbivlog(nsize,ini)
tmp=wls(ini,datal)
para.store[i,]=tmp$para
confi<-boot.wls(ini,boot.ini=c(para.store[i,]) ,nsize,B=B)
sd.store[i,]<-round(c(confi$sd.lambda,confi$sd.delta,
confl1$sd.sigma,confi$sd.tau) ,digits=4)
bp.conf{i,]<-round(c(confi1$p.lam.ci[1],confi1$p.lam.ci[2],
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conf1$p.del.ci[1],confi$p.del.ci[2],confi$p.sig.cil1],
confi1$p.sig.ci[2],confi$p.tau.cil1],confi$p.tau.ci(2],
(confi1$p.lam.ci[2]-confi1$p.lam.cif1]),
(confi1$p.del.cil2]-confi$p.del.cil1]),
(conf1$p.sig.ci[2]-confi1$p.sig.cif1]),
(conf1$p.tau.cil2]-confi$p.tau.cil1])) ,digits=4)
}
#para.store
mse.lambda=sum((para.store[,1]-ini[1])"2)/R
mse.delta=sum((para.store(,2]~-ini[2])~2)/R
mse.sigma=sum((para.store(,3]-ini[3])"2)/R
mse.tau=sum((para.store[,4]-ini[4])~2)/R
bias.lambda=mean(para.store[,1])-ini[1]
bias.delta=mean(para.store[,2])-ini[2]
bias.sigma=mean(para.store[,3])-ini (3]
bias.tau=mean(para.store[,4])-ini [4]
# pivotal quantities of the parameters
.lambda=(para.store[,1]-ini[1])/sd.store[,1]
.delta=(para.store[,2)-ini[2])/sd.store[,2]
.sigma=(para.store[,3]-ini[3])/sd.store[,3]
.tau=(para.store[,4]-ini[4])/sd.store[,4]
Approximate 95% Pr coverage
aprx95.lambda=length(p.lambda([p.lambda>=~1.96 & p.lambda<=1.96])/R
aprx95.delta=length(p.deltalp.delta>=-1.96 & p.delta<=1.96])/R
aprx95.sigma=length(p.sigmalp.sigma>=-1.96 & p.sigma<=1.96])/R
aprx95.tau=length(p.taulp.tau>=-1.96 & p.tau<=1.96])/R
# BootP average length of CI
conf.len.lam<-mean(bp.conf[,9])
conf.len.del<-mean (bp.conf [,10])
conf.len.sig<-mean(bp.conf[,11])
conf.len.tau<-mean(bp.conf[,12])
result<-matrix(c(mse.lambda,mse.delta,mse.sigma,mse.tau,
bias.lambda,bias.delta,bias.sigma,bias.tau,
aprx95.lambda,aprx95.delta,aprx95.sigma,aprx95.tau,
conf.len.lam, conf.len.del, conf.len.sig, conf.len.tau,),
ncol=4,byrow=T)

#'0 0T Y

rownames (result)<-c("mse", "bias","aprxp", "aveconflen")
colnames(result)<-c("lambda", "delta", "sigma", "tau")
#result

# Comment the part below for MC simulation
list (result=round(result,digits=5), bp.conf=bp.conf)
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A.4 Functions Related to EPM

epm.bivliog<-
function(ini, data, eset,...)

{

data.origin=data

N=nrow(eset)

out=matrix(0,nrow=N,ncol=4)

for(i in 1:N)

{
data=rbind(datal[eset[i,1],],dataleset[i,2],],
data[eset[i,3],] ,dataleset[1i,4],])
data$k=1/biv.cdf (data)-1
tmp.out=nlest (ini,data)
out [1,]=tmp.out$para
data=data.origin

}
para.mean20=c (trim.mean(out{,1],trim=20),
trim.mean(out [,2] ,trim=20),trim.mean(out(,3],trim=20),
trim.mean(out[,4],trim=20))
para.mean10=c(trim.mean(out[,1],trim=10),
trim.mean(out[,2] ,trim=10) ,trim.mean(out(,3],trim=10),
trim.mean(out [,4],trim=10))
para.median=c(median(out[,1]) ,median(out[,2]),
median(out[,3]),median(out[,4]))
list(para.meanlO=para.meaniO,
para.mean20=para.mean20,para.median=para.median)

¥

A.5 Miscellaneous R Functions

biv.cdf<-function(data, ...)
{
x=datal[,1]
y=datal,?2]
k=NULL
for (i in 1: length(x))
{
k[i]= pxy(data,x[i],y[i])
¥
k
}
item<-
function(nsize,r=4,...)

# required package "gtools"; library(gtools)
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# nsize=nrow(data)
# r = # of parameters, 4 in our case.

{
options(expressions=1ie5)
comb=combinations(nsize,r)
if (choose(nsize,r)>4000)
{
comb=comb [c (sample (choose(nsize,4),4000)),]
} else
{
comb<-combinations(nsize,4)
}
comb
}
nlest<-
function(ini, data, method="Nelder-Mead",...)
{
E<-function(x,data)
{
lambda<-x[1]
delta<-x[2]
sigma<-x[3]
tau<-x[4]
k<-datal,3]
sum((exp(-(datal,1]-lambda)/sigma) +
exp(-(data[,2]-delta)/tau)~k) ~2)
}
out=optim(ini,E, method=method, data=data,control=list(maxit=4000))
para=out$par
list(para=para)
}
optim.weight<-function(data, lo=0,up=1, fig=F,...)
{
weight<- round(seq(lo,up,len=1000),digits=4)
xx=NULL
for (i in 1:length(weight))
{
x=lsest(data=data,weight [i])
xx [1]=x$E
}
if (fig)
{

plot(weight,xx,type="1",xlab="Weight",
ylab="Value of E in CLS method")
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weight [which.min(xx)]

¥
px<-function(data,val,...)
{
(length(data[data<=val])-0.5)/length(data)
¥
pxy<-function(data,valx,valy,...)
{
x=datal,1]
y=datal[,2]
(nrow(matrix((as.matrix(data) [x<=valx & y<=valyl),
ncol=2))-0.5)/length(x)
}

# Generates bivariate logistic random numbers
# for a given set of parameter values
rbivlog<-function(n,par)
{
lambda<-par[1]
delta<-par[2]
sigma<-par [3]
tau<-par [4]
random<-matrix(c(runif(n),runif(n)) ,ncol=2)
u<-randoml[,1]
v<-random[,2]
x<-NULL
y<-NULL
for(i in 1:n) {
x[i]<-lambda-sigma*log(1/ulil-1)
y[il<-delta-tauxlog(1l/(ulil*sqrt(v[i]))-1/ulil)
}

data.frame(x,y)

trim.mean<-
function(x, trim=20,...)
# trimming is top 10% and bottom 10%
{
n=length(x)
x=sort(x)
if (n<20)
{
alpha=ceiling(trim*n/200)
if (alpha<1){alpha=1}
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}

else

{
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mean(x [x>x [alphal& x<=x[n-alphall)

alpha=trim*n/200
if (alpha<1){alpha=1}
mean (x [x>x [alpha] & x<=x[n-alpha]l)
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