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ABSTRACT 

The focus of my master's project research involves Conditional Value at Risk (or Ex­

pected Shortfall) as a risk measure for optimal portfolio selection. The project is orga­

nized as follows. In the first chapter, we introduce and discuss the quantile based risk 

measures, Value at Risk (VaR) and Conditional Value at Risk (CVaR), with respect to ax­

iomatic characterization of coherent risk measures. As an alternative to VaR, CVaR has 

been attracting attention since it is a coherent measure. The properties and advantages of 

CVaR are analyzed. The second chapter deals with mean-risk models of portfolio opti­

mization. The common idea in all asset allocation models is the minimization of some 

measure of risk while simultaneously maximizing portfolio expected return. Portfolio op­

timization in a mean-CVaR framework has been actively discussed recently. CVaR is a 

numerically tractable measure, allowing optimal portfolios to be computed by means of 

convex programming. Most importantly for applications, however, a mean-CVaR model 

can be used with scenario simulation of loss distributions. We investigate the convergence 

of the Monte-Carlo based CVaR optimal portfolio algorithm when an analytical solution 

of the optimization problem can be obtained. The last chapter considers the benchmark 

(or relative) portfolio selection problem in terms of a multiobjective problem. Tracking 

error optimization in a mean-multirisk framework allows implementation of an interactive 

decision making and taking into account of the investor's preferences. 
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CHAPTER 1 

Risk Measures 

1.1. Risk Measures and Coherence 

Risk in finance has no single definition. It is usually understood as the future chance 

or probability of losing or not gaining in value. Therefore, it is better to speak of measures 

that describe risk, or measures that give the manager or decision maker a "quantitative" 

tool to compare different alternatives. In risk management, risk measures are considered as 

mathematical objects, whereas risk is a concept from real life subject to different interpre­

tations. 

1.1.1. Risk Measures- Definition, Classification. 

In order to introduce some examples and basic concepts from risk measurement, we 

first give a formal definition of risk measures. We assume that the financial consequences 

of economic activities can be assessed on the basis of a random variable X. This random 

variable may represent the absolute or relative return of an investment, the profit or the 

return on capital of a company, or the accumulated return for a portfolio of risky assets. 

In general, we think of X as a profit-and-loss (payoff or return) random variable, which 

may have positive, as well as negative values. We may also specify the loss of a financial 

position as the random variable Y = -X. Let now (D, A, P) be some probability space, 

where the elements w of n represent future states, or individual scenarios; A is the field of 

measurable subsets of n and P is a probability measure on A. Denote by .6.t a fixed time 

interval and consider a set V of all real-valued A-measurable random variables X (on the 

(D, A, P) ), which we interpret as the possible profit-and-losses of some financial position 

over the time horizon .6.t. 
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DEFINITION 1.1.1. A risk measure is any mapping p : V --+ R 

There are great number of risk measures considered in the financial literature. We 

present here a classification, given in [Albrecht, 2004]. Risk measures are plased into two 

main categories: risk as the magnitude of deviations from a target; and risk as necessary 

capital respectively necessary premium. We now explain these two categories: 

1. Risk as the magnitude of the deviation from a target 

The target is an arbitrary deterministic value, for example the expected value. When 

the target is the mean of the random variable, risk measures are called deviation measures. 

The first category includes: 

(a) Two-sided risk measures - penalize negative as well as positive deviations. Some 

examples are the classical measures, variance and standard deviation, as well as the mean 

absolute deviation, given by: 

MAD(X) =IE [lx -IE(X)IJ 

or the more general risk measures 

p(X) =IE [lx -IE(X)Ik] , 

[ ]

1/k 
p(X) =IE lx -IE(X)Ik , 

[ ] 

1/k 
p(X) =IE f (x -IE(X))k . 

The last type, with f a monotonic function, allows a different weighting of positive and 

negative deviations from the expected value, and is considered by Rockafellar et al. [2002]. 

2 
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(b) One-sided (downside) measures - penalize only the negative deviation from a target. 

A general class of risk measures of this type is the class of lower partial moments of 

degree k (k = 0, 1, 2, ... ) : 

where c denotes the reference level from which the deviation is measured. 

The expected regret, considered by Dembo [1991], is the case k = 1: 

ER = E[max(c- X, 0)]. 

The lower-semi-absolute deviation is the case c = E(X), k = 1 : 

LSAD = E[max(E(X) -X, 0)], 

and also considered by Ogryczak and Ruszczynski [1999, 2001] and Gotoh and Konno 

[2000] with relation to the theory of stochastic dominance and mean-risk analysis. 

The semivariance, proposed by Markowitz [1987], is the case c = E(X), k = 2 : 

p(X) = E (max (E(X)- X, o?]. 

2. Risk as necessary capital (or necessary premium) 

Here, the risk is regarded as either: 

(a) necessary capital (in terms of capital to be added to a financial position to make it 

riskless) in case the value of the risk measure is positive; or 

(b) necessary premium (to be withdrawn from a position without endangering safety) 

in case the risk measure is negative 

Note that these risk measures can have both positive and negative values, whereas the 

measures in the first category have only positive ones. Examples are Value at Risk (VaR) 

3 
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and Conditional Value at Risk. For an overview of the risk measures and their properties, 

the reader can see also [Cheng et al., 2004]. 

In the financial industry, VaR is a widely used measure for quantifying the future losses. 

For example, the Basel Committee on Banking Supervision requires banks to use VaR to 

determine the minimum capital to support their portfolios. Moreover, Hull [2003] notes 

that VaR is also used by dealers, fund managers, and financial institutions. With the emerg­

ing of VaR as one of the most popular concepts in Risk Management, researchers have 

been extensively criticized the use of VaR as a "good" measure of risk. In fact, before the 

appearance of the seminal works of Artzner et al. [1999], Delbaen [2002], the notion of a 

risk measure was not clearly defined, and there was no list of the properties a good (from a 

financial point of view) measure should have. Artzner et al. [1999] stated the foundations 

of the axiomatic approach to the characterization of risk measures. They proposed a list of 

structural properties, called axioms of coherence, a reasonable measure should satisfy. 

1.1.2. Axiomatic Characterization of Risk Measures. 

We now introduce the axioms of coherence, and give their financial interpretation. 

DEFINITION 1.1.2. A mapping p 

satisfies the following axioms 

V ---+ R is called a coherent risk measure if it 

(a) Translation invariance: ifm E R, then p(X + m) = p(X)- m, VX E V; 

(b) Monotonicity: if X :::; Y, then p(X) 2: p(Y), VX, Y E V; 

(c)Positivehomogeneity: ifm 2:0, thenp(mX) =mp(X), VX E V; 

(d) Subadditivity: p(X + Y) :::; p(X) + p(Y), VX, Y E V; 

Coherent risk measures were extended to convex risk measures [Follmer and Schied, 

2002], also called weakly coherent measures, by relaxing the constraint of subadditivity 

and positive homogeneity, and instead requiring convexity: 

(e) Convexity: p(>..X + (1- >..)Y) :::; >..p(X) + (1- >..)p(Y), X, Y E V,).. E [0, 1]; 
4 
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DEFINITION 1.1.3. A mapping p: V----+ lR is called a convex risk measure if it satisfies 

the axioms oftranslation invariance (a), monotonicity (b), and convexity (e). 

Axiom (a) states that adding a deterministic quantity m to the initial position decreases 

risk by that amount. In particular, we have p(X + p(X)) = p(X)- p(X) = 0. Thus, once 

we have added p(X) to a position, the resulting position is acceptable (i.e. has nonpositive 

risk) without any further changes. 

Monotonicity (b) means that if X ( w) ~ Y ( w) for every state of nature then X is riskier 

than Y because of the higher loss potential. 

Subadditivity (d) requires the risk of a combined position to be less than the sum of the 

risks of the separate positions. In fact, this axiom reflects the idea that risk can be reduced 

by diversification, one of the principles in finance. At the same time, subadditivity is the 

most debated axiom because it rules out certain risk measures popular in practice, such as 

semivariance and Value at Risk. 

Axiom (c) implies that the risk of a certain multiple of a financial position is identical 

with corresponding multiple of the risk of the position. This axiom is natural in conjuction 

with the previous axiom. Subadditivity implies that for m E N, 

p(mX) = p(X + ... +X) ~ mp(X). 

Since there is no diversification in this portfolio, it is natural to require that equality 

holds above, which leads to positive homogeneity. 

The axiom of convexity (e) takes into account the situations where the risk of a position 

increases in a nonlinear way with the size of the position. 

The axioms of coherence have been very influential. We already mentioned that VaR is 

not a coherent measure since it fails to satisfy the subadditivity property, that is, the VaR of 

a portfolio of two securities may be larger than the sum of the VaR of each of the securities 

in the portfolio. Starting from coherent risk measures, several quantile-based alternatives 

5 
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to VaR were proposed in the literature: firstly, "tail conditional expectation" (TCE) (see 

[Artzner et al., 1999]; and later, "expected shortfall" (ES) (see Aserbi and Tashe [2002b]) 

and "conditional value at risk" (CVaR) (see [Rockafellar and Uryasev, 2002]). Research 

in this direction has received much attention in the last few years. In the next section, 

we introduce different mathematical definitions of VaR and its quantile-based alternatives, 

given in the literature, and discuss the relations between the measures. The main questions 

that we address in the next section are the following: 1) What mathematical definitions of 

VaR and its quantile-based alternatives exist in the literature? 2) Is there a relation between 

these measures? and 3) What properties of CVaR make it a risk measure, dominating and 

therefore preferable to VaR as a risk management tool? 

1.2. Quantile Type Risk Measures 

1.2.1. Quantiles. 

DEFINITION. Let X be a real random variable defined on a probability space (0, A, P) 

and a E [0, 1]. Then the a quantiles of X are the elements of the set: 

Qa(X) = {x E JR, P(X < x) ~a~ P(X ~ x)}. 

DEFINITION 1.2.1. Upper and Lower Quantiles 

Let (0, A, P) be a probability space and a E [0, 1]. For X, a random variable defined on 

(0, A, P), the upper quantile of order a of X is 

q~(X) = sup{x E JR, P(X < x) ~a}; 

the lower quantile of order a of X is 

q;;(X) = inf{x E JR, P(X ~ x) ~a}. 
6 
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Furthermore q;;(X) and q~(X) are the left and resp. the right end of the a-quantile set: 

The next proposition provides an alternative characterization of quantiles. 

PROPOSITION 1.2.2. (in [Laurent, 2003] ) 

Let (0, A, P) be a probability space, a E [0, 1] and X a random variable. Then, 

q~(X) = inf{x E JR, P(X:::; x) >a} 

and 

q;:(X) = sup{x E JR, P(X < x) <a}. 

The next proposition [Laurent, 2003] gives the relation between the quantiles of random 

variables X and -X. 

PROPOSITION 1.2.3. Let (0, A, P) be a probability space, a E [0, 1] and X a random 

variable. Then, the a quantiZes of -X are the opposites of the (1 - a) quantiZes of X. 

Thus, 

and therefore 

(1.2.1) 

For discrete distributions, we have: 

PROPOSITION 1.2.4. Let X be a discrete random variable taking values among xi E 

JR, i = 1, ... , n. Then 

xi = q~(X) ~ P(X < Xi) :::; a < P(X :::; xi) 

7 
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and 

Next, we introduce Value at Risk, Conditional Value at Risk, and Expected Shortfall, 

and give the conditions under which Conditional Value at Risk and Expected Shortfall 

represent the same risk measure. 

1.2.2. Value at Risk. 

Let us first introduce the cumulative distribution function ( cdf) F ( x) = P (X :s; x) of 

the random variable X. According to def.l.2.1 and prop.l.2.2, in terms of F(x) we get 

(1.2.2) q~(X) = inf{x E JR., F(x) >a} 

and 

(1.2.3) q;;(X) = inf{x E JR, F(x) ~a}. 

Let the above random variable X represents some portfolio's profit and loss (P&L) random 

variable. Now define the first quantile-based risk measure: Value at Risk (VaR). We join 

here Aserbi and Tashe [2002a], Delbaen [2002], Artzner et al. [1999] by taking VaRa as 

the upper a quantile of the ( P &L) distribution. Thus, we have 

DEFINITION 1.2.5. Value at Risk. 

Let X be a profit and loss ( P &L) random variable, defined on a probability space 

(0, A, P). For a fixed level a E (0, 1), the Value at Risk of X for the level a, VaRa(X) 

is: 

(1.2.4) VaRa(X) =- inf{x E JR., F(x) >a}= -q~(X) 

8 
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pdf 

-VaR 
probability a 

Figure 1: Value at Risk ofX at level a 

Note that for the random variable -X, representing portfolio loss, the following rela­

tion holds: 

VaRI-a(-X) = -VaRa(X) 

REMARK 1.2.6. Value at Risk, defined as a limit from the left is given in [Aserbi and 

Tashe, 2002b]: 

VaRa(X) = -sup{x E IR, P(X < x) ~a} 

This formulation of VaR, however, is not used very often. 

To explain the V aR concept, we consider figure 1. Let qa is the a-quantile of a 

continuous ( P &L) distribution, i.e. 

Given the threshold Za, the VaRa(X) is by definition the amount of money, which is 

needed to cover losses up to -qa,i.e VaRa(X) = -qa(X). Therefore, VaRa(X) is im­

plicitly defined by 

9 
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P(X:::; -VaRa(X)) =a if P(X < 0) >a and 

VaRa(X) = 0 if P(X < 0):::; a 

Usually, when working with (P&L) distribution, we take a between 0.01 and 0.05 (1 %-

5%). 

1.2.3. CVaR and Expected Shortfall. 

The term Conditional Value at Risk was introduced in [Rockafellar and Uryasev, 2000, 

Uryasev, 2000] for the case of continuous loss distributions. The concept of CVaR for 

general probability distributions, including discrete distributions, was later developed by 

Rockafellar and Uryasev [2002]. They define Conditional Value at Risk of X at the level 

a, denoted by CVaRa(X), as a weighted average of VaRa(X) and CVaRt(X), called 

"upper CVaR". 

DEFINITION 1.2.7. Conditional Value at Risk 

Let X be a P&L random variable, defined on a probability space (0, A, P) with finite 

expectation and a E (0, 1). Then CVaR of X at the level a is given by: 

(1.2.5) CVaRa(X) =A VaRa(X) + (1- A) CVaR~(X), 

where 

CVaR~(X) = -lE[X I X :S q~(X)] = -lE[X I X :S -VaRa(X)] 

and 

A= a- P(X:::; qt(X)) =a- P(X:::; -VaRa(X)) < 
1 

Q Q -

Independently, Aserbi and Tashe [2002b,a] introduced the term Expected Shortfall 

(ES). 

10 
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DEFINITION 1.2.8. Expected Shortfall 

Let X be a P&L random variable, defined on a probability space (D, A, P) with finite 

expectation and a E (0, 1 ). Then the Expected shortfall of X at the level a is defined by: 

(1.2.6) 

where lE denotes the indicator function of a set E. 

In the same paper, the authors adopt the term tail conditional expectation, (TC Ea (X)), 

for CV aR"t. (X): 

TCEa(X) = -E[X/ X :::; q!(X)] 

PROPOSITION 1.2.9. Let X be a real random variable defined on a probability space 

(n, A, P), s E JR. and a E (0, 1) be fixed. Then 

ESa(X) = CVaRa(X) 

PROOF. The expressions given by right hand sides of (1.2.5) and (1.2.6) are equivalent. 

For example, (1.2.5) can be derived from (1.2.6) multiplying and dividing by P(X :::; q"t.) 

and expressing E[Xl{x~q;t}] as a 

0 

NOTE. The term q"t.(P(X :::; q"t.) -a) in (1.2.6) is interpreted as the exceeding part 

to be subtracted from the expected value E[Xl{x~q;:t"}] when P(X :::; q"t.) 2: a. When 

the distribution is continuous, P(X :::; q-:.) = a and therefore ESa(X) = TCEa(X). 

By analogy, when P(X :::; q"t.) = a, the coefficient A equals zero and CVaRa(X) 

11 
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CVaRt(X) (see 1.2.5). In general, CVaRa(X);::: CVaRt(X) (equivalently ESa(X);::: 

TCEa(X)). This can be easily seen if we rewrite (1.2.5) as 

CVaRa(X) = CVaR!(X) + (J-t- 1) (CVaR!(X)- VaRa(X)) 

where 

J-l = P(X ~ qt) ;::: 1. 
a 

Note also that CVaRa(X) is conditional tail estimation, while VaRa(X) is a quantile 

function. Figure 1 displays CVaRa(X) as a average value of the losses, given the losses 

are larger than VaRa(X). 

Keeping in mind that the terms "CVaR" and "ES" are interchangeable, further in our 

discussions we will use only the notion Conditional Value at Risk. 

There are two alternative representations of the CVaR, which are given by the following 

propositions: 

PROPOSITION 1.2.10. CVaR by optimization 

Let X be a P&L random variable defined on a probability space (D, A, P) with ex­

pectation E[X-] < oo, where x- = max(O, -X). Let a E (0, 1). CVaRa(X) is the 

solution of the minimization problem: 

(1.2.7) CVaRa(X) =min~ IE[(X- s)-]- s. 
sEIR a 

The above minimization formula was first developed for the case of continuous loss distri-

butionfunction in [Rockafellar and Uryasev, 2000]. Later Pflug [2000] proved the validity 

of the formula for discontinuous c.d.f as well. 

12 
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PROPOSITION 1.2.11. Spectral representation of CVaR 

Let X be a real random variable defined on a probability space (0, A, P), and a E 

(0, 1) befixed. Then 

(1.2.8) 1 10< CVaRa(X) = -- q~(X) du. 
a o 

Formula 1.2. 8 shows that CV aRa (X) can be expressed as a V aRa average. Because of 

that, Follmer and Schied [2002] proposed another name: "average value at risk". The last 

formulation ofCVaRa( 1.2.8) is related to the so-called spectral risk measures, considered 

in [Aserbi, 2004 ]. 

The next proposition shows the relation between V aRa (X) and CV aRa (X), expressed 

by eq. (1.2.7). 

PROPOSITION 1.2.12. (see [Aserbi and Tashe, 2002a, Rockafellar and Uryasev, 2002, 

Chabaane et al.]) 

Let X be a real random variable defined on a probability space (0, A, P) with finite 

expectation. Let a E [0, 1] and s E llt Then the function 

is minimal on the quantile set Qa(X), i.e. 

argmin Fa(s) = [q;:(X), q~(X)] 
s 

Inparticular, one always has IVaRa(X)I E argmins Fa(s). 

PROOF. Let Za(s) =a (X -s)++(l-a) (X -s)-, where (X -s)+ = max(X -s, 0) 

and (X- s)- = max(s- X, 0). The set of minimizers of 

Ha = E(Za(s)) = aE[(X- s)+] + (1- a) E[(X- s)-] 
13 
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is the a-quantile set (see the proof in Chabaane et al.), i.e. argmins H01 (s) = Q 01 (X). 

Then using the equality x+ = x + x-, we can write 

1 
Z01 (s) =a (X- s) +a (X- s)- + (1- a) (X- s)- =a [X+- (X- s)-- s]. 

a 

Thus note the following equivalent representation for H 01 ( s): 

Then the function F01 ( s) can be expressed as: 

1 1 
Fa(s) = -IE[(X- s)-]- s =- H01 (s) -IE[X]. 

a a 

As a consequence, its minimum is attained for s E Q01 (X) = [q~(X), q;t(X)]. D 

1.2.4. Properties of CVaR. 

Before we state some properties of CV aR01 (X), we define properties of risk measures 

in terms of preference sructures induced by dominance relations. 

DEFINITION 1.2.13. [Pflug, 2000] 

(1) A relation between two random variables X 1 ,X2, denoting the profit-and-loss of 

two portfolios, is of stochastic dominance of order 1, xl --<sn(I) X2, iff 

for all monotonic nondecreasing functions f. We say that x2 dominates XI(or x2 is pref­

ered to X 1) if! the above inequality holds. 

(2) A relation between two random variables X 1 ,X 2 is of stochastic dominance of order 

for all concave, monotonic nondecreasing functions f. 
14 
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PROPOSITION 1.2.14. (1) CV aRa is translation invariant, i.e. 

CVaRa(X + m) = CVaRa(X)- m. 

form any real number. 

(2) CVaRa is positively homogeneous, i.e. 

CV aRa ( mX) = m CV aRa (X) 

form> 0. 

( 3) CVaRa is convex, i.e. for arbitrary random variables X 1, X2 and A E [0, 1], 

(4) CVaRa is monotonic w.r.t. stochastic dominance of order 2 (and therefore w.r.t. 

stochastic dominance of order I), i.e. if 

PROOF. Properties (1) and (2) are immediate from the characterization of CVaRa. To 

prove the convexity, we fix numbers si such that 

Since the function x ~ ( x - s)- is convex, we have 

15 
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Note that monotonicity w.r.t. stochastic dominance of order 1 is the axiom (b) of coherence. 

The proof of the ordering properties follows from the fact that the function x ---+ ( x - s)­

is convex and monotone. D 

In contrast to CV aR0, V aRa is only translation equivariant, positively homogeneous, 

and monotonic w.r.t. stochastic dominance of order 1, but is not convex. Moreover, sto­

chastic dominance of order 1 does not account for the decision maker's risk aversion. Let 

us consider the function f in Definition 1.2.13 as a utility function. The condition that f is 

nondecreasing and concave means that f represents a nonsatiated (J' > 0) and risk-averse 

(J" < 0) preference. Then, if X 2 dominates X 1 in the sense of second order stochastic 

dominance every risk-averse investor chooses X 2 over X 1 . The connection between utility 

theory and stochastic dominance is given in [Levy, 1998]. 

16 



CHAPTER 2 

Optimization of CVaR 

2.1. Mean-Risk Portfolio Selection 

2.1.1. Preliminaries. 

Consider a given portfolio '1/J from a universe of n risky instruments, for example, a 

book of n derivatives, or collection of n stocks or bonds. We denote the value of this 

portfolio at a present time t0 = 0 by V'l/1(0). For a given time horizon b.t = [0, t], such as 

one or ten days, the portfolio profit and loss X over the period is given by the change in a 

portfolio market value: 

While X is observable at time t, it is random from the viewpoint of time 0. The distribution 

of the random variable X is the so-called profit & loss (P&L) distribution. 

Furthermore the change in portfolio value is expressed as: 

n 

b. v.,p = L: '1/Ji(o) [Pi(t)- Pi(o)] 
i=l 

where '1/Ji ( 0) is number of units of asset iheld at time 0, and Pi (.) is the price of asset i at a 

fixed time. 

A vector '1/J = ( '1/J1 ( 0), '1/J2 ( 0), ... , '1/Jn ( 0)) is called a trading strategy, since it characterizes 

the investor's decision. 

Calculating the distribution of future prices (prices at time t) is a modeling issue. Fol­

lowing risk management practice, the asset's price usually is modelled as a function of 

stochastic market factors, which are observable at time 0. Examples of the most frequently 

used risk factors are the logarithmic prices of stocks, yields, exchange and interest rates. 

17 



MSc Project- M.Betcheva "McMaster- Mathematics and Statistics" 

Instead of working with prices, we often use return. The rate of return ri(t) of 

a security i at time t is defined by ri = Pi(t)/ Pi(O) - 1. Now, instead of the trad­

ing strategies defined for absolute security prices, we use the normalized strategies ¢ = 

(¢1(0), ¢2(0), ... , <Pn(O)f, where 

¢·(O) = '1/Ji(O) Pi(O) 
~ V(O) 

is the fraction of V(O) in asset i at time 0 and also E~=l ¢i = 1 holds. 

Thus the portfolio return R¢ is considered as a function of the vector of assets' weights 

¢and the vector of assets' relative returns r = (r1 , r 2, ... , rnf, the latter one expressing 

the uncertanty in the price change: 

R¢ = V¢(t)- V¢(0) = ~ A-.(0) r·(t) 
V¢(0) {;j_ '~-'~ ~ 

Unless stated otherwise, we assume that the set of all admissible portfolios is <I> 

{ ¢ E JRn I E~=l ¢i = 1, <Pi ;::=: 0 for all i}, (i.e. no short-sales are allowed). Additional 

constraints B can be introduced, as for example diversification constraints B = { ¢ E JRn I 
</Ji E ( o;, ot) for i = 1, ... , n}, which give the limits for the weights. 

Note that we will consider mean-risk models of portfolio optimization based on using 

a normalized strategy. Now we introduce some basic formulas. 

Let J-li = JE(ri) denotes the expected return of asset i for i = 1, ... , n, and f-l = 

(J-li. f-l2, ... , f-lnf· For two risky assets ri and rk 0 =I k), ajk = Cov(ri, rk) is the co-

variance between them. Then V = (ajkh~j,k~n is the variance-covariance matrix, since 

aik = Var(rj) = aJ when j = k. For a portfolio¢, we have the portfolio expected rate of 

return and the variance, calculated by the formulas: 

(2.1.1) 
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and 

(2.1.2) 

2.1.2. Mean-Risk Models. 

The common idea in all asset allocation mean-risk models is the minimization of some 

measure of risk while simultaneously maximizing portfolio expected return. For example, 

the variance of portfolio returns is used as a risk measure in the classical Markowitz ap­

proach. Variance has been very attractive as a risk measure in general and in the portfolio 

optimization problem in particular because it is a basic probability concept, well under-

stood and easy to calculate (eq.2.1.2). Further, it allows for development of closed form 

solutions for finding optimal allocations, or for optimization using standard quadratic op-

timization techniques. However, variance as a risk measure has some obvious drawbacks. 

For example, variance is a measure of the first type in our classification, i.e. it penalizes 

negative as well as positive returns. Also, one of the fundamental assumptions of the tradi­

tional mean-variance problem is multi-normality of the return distributions- which does not 

take into account fat tails and skewness. With the progress in risk measurement, a number 

of alternative risk measures have been suggested for solving the asset allocation problem. 

Portfolio optimization in a mean-CVaR framework has been actively studied during the 

last years. This problem, and all mean-risk models in general, denoted by (J_t( R), p( R)), 

can be formulated as problems of the bicriterion mathematical programming problem (see 

Appendix): 

max IE(R) 
¢ 

min p(R) 
¢ 

s.t. q) E <I> C lRn 
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We state the following definition: 

DEFINITION 2.1.1. A portfolio ¢ 1 is mean-risk, (J.Lp, p), efficient, and therefore a solu­

tion of the above problem, if and only if no portfolio ¢ 2 exists such that IE( R¢1 ) :::; IE( R¢2 ) 

and p(R¢1
) 2: p(R¢2 ), where at least one of the inequalities is strict. The (J.Lp, p)-efficient 

frontier is the subset of 1R.2, defined by all pairs (IE(R¢), p(R¢)), where ¢ is an efficient 

portfolio. 

PROPOSITION 2.1.2. Let us consider the following three optimization problems: 

min p(R) - AIE(R), 
¢ 

¢ E <I>, A 2: 0 

minp(R), 
¢ 

min -IE(R), 
¢ 

IE(R) 2: J.L;, 

p(R) :::; p;, 

cP E <I>, 

¢ E <I>, 

(Pl) 

(P2) 

(P3) 

Varying the parameters A, J.L;, and p; traces the efficient frontiers for the problems (P 1), 

(P2) and (P3) accordingly. If p(R) is convex, and the set <I> is convex (note that IE(R) is 

linear), then the three problems ( P 1 )-( P 3) generate the same efficient frontier. 

PROOF. Proof is given in [Krokhmal et al., 2002] 0 

2.1.3. CVaR Minimization. 

The minimization problem of CVaR has been investigated by Rockafellar and Uryasev 

[2000, 2002], Uryasev and Rockafellar [2001], Pflug [2000]. The fundamental result of 

these papers is that the minimization of CV aRa ( R( ¢)) is shown to be equivalent to the 

problem of the minimization of the following function containing an auxiliary variable s: 

(2.1.3) 
1 

Fa(R(¢), s) = -IE[R(¢)- sr- s 
a 

Note, that we already discussed the equivalence of the representations of CV aRa, given by 

formulas (1.2.5), (1.2.6), (1.2.7) and (1.2.8). In fact, CVaRa was given as the minimum of 
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the function FD.(R, s) ins (see eq.(1.2.7) and Prop.1.2.12). Moreover, Prop. 1.2.12 stated 

that the minimum of FD.(R, s) is attained when the auxiliary variables takes any value in 

the quantile set, i.e. 

min FD.(R, s) = FD.(R, s*) = CVaRD.(R) Vs* E [q~(R), q~(R)] 
s 

The following proposition summarizes these results: 

PROPOSITION 2.1.3. 1. FD.(R(¢), s) is convex ins, as well as in¢, if R(¢) is convex 

in¢. 

2. if R( ¢) is linear in ¢, i.e. if the parameters cPi are the assets weights (which is 

the case here) then the function FD. ( R( ¢), s) is convex in the extended set of parameters 

{¢, s}. 

3. The minimum of CV aRC< ( R( ¢)) in ¢ coincides with the minimum ofF D. ( R( ¢), s) in 

the extended set of parameters { ¢, s} : 

min CVaRD.(R(¢)) =min FD.(R(¢), s). 
¢ ~s 

Furthermore, if the constraints are such that <I> is a convex set, the joint minimization is an 

instance of convex programming. 

When the multivariate distribution of the return variables of the portfolio assets is given 

in empirical form by a sample of N scenarios with equal probabilities, (2.1.3) can be re­

placed by: 

(2.1.4) 
1 N 

F~N)(R(¢), s) = Na l:[Rz(¢)- st- s 
l=l 

where Rz(¢) = ¢1r1,1 + c/J2r2,1 + ... + cPnrn,l, l = 1, 2, ... , N. 

Since R1 ( ¢) is linear in ¢, the function F~N) is convex and piecewise linear. 
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Let's now discuss the optimization problem (P2) with the Conditional value at risk as a 

risk measure p(R). The sample objective function F~N)(R(¢), s) can be minimized by the 

means of standard nonlinear optimization approaches. The nonlinear optimization problem 

is therefore the following: 

~~~ ,ja l:::~ 1 [Rz(¢)- s]-- s (NP) 

s.t. IE(R(¢)) ~ J-l; 
¢ E <PC JRn 

sElR 

Further by using auxiliary variables zi = 1, ... , N, the nondifferentiable sample function 

F~N) ( R( ¢), s) can be replaced by a linear function and a set of linear constraints: 

· 1 "\;"'N mm Na L...-1=1 Zz - s 
r/!,s,z 

s.t. zz ~ s- Rz(¢), l = 1, ... , N 

zz ~ 0 l = 1, ... , N 

IE(R(¢)) ~ J-l; 
¢ E <PC JRn 

s E lR 

(LP) 

The two optimization problems (N P) and (LP) are equivalent. The latter one is linear 

programming problem since R1 ( ¢) is linear in ¢. The number of variables of the linear 

problem is n + N + 1 while in the nonlinear case is n + 1. 

An alternative of the (LP) problem is proposed in [Alexander et al., 2003]. The ap-

proach is based on approximation of the piecewise linear function z+ = max(z, 0) by a 

continuously differentiable piecewise quadratic function '1}€ ( z); given a resolution parame­

ter E > 0 
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z if Z 2: E 

if - E:::; Z:::; E 

0 otherwise 

Thus, the sample objective function F~N) ( R( ¢>), s) is replaced by the approximate sam­

ple objective function 

(2.1.5) 

We have the following convex nonlinear programming problem: 

IIJin ,}a L~1 r!E(s- Rt(1>))- s 
'~-'•s 

(NPa) 

s.t.IE(R(¢)) 2: ~-t; 

c/J E ci> C JRn 

s E lR 

The CV aR minimization technique, described in this section, can be used with different 

schemes for generating scenarios. For example, one can assume a joint distibution for 

the return process for all assets and generate scenarios in a Monte Carlo simulation. As 

well, the approach allows using of historical data without assuming a particular distribu-

tion. Additionally, an approximate value of V aRa ( R( ¢>)) when CV aRa ( R( ¢>)) reaches its 

minimum is obtained. It is given as the negative value of s* in the minimum. 

REMARK 2.1.4. 1. Alexander et al. [2003] observe that ( N pa) is more efficient than 

the linear programming method with up to 1100% efficiency speedup. The computational 

efficiency of (N pa) is important when we are dealing with large number of scenarios and 

assets. On the other hand, it is shown [Alexander et al., 2003] that the proposed smoothing 

method (NPa) yields accurate solutions. 
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2. Equivalent formulations of the problems (P1) and (P3) with CVaRa(R(¢)) can be 

stated in a similar way. 

2.2. CVaR and Monte-Carlo simulation 

One of the advantages of the mean-CVaR model is that it allows using of scenarios. 

To simulate scenarios from a known distribution, Monte Carlo method is used. Our goal 

is to test the convergence of the Monte-Carlo based CVaR optimal portfolios when an 

analytical solution of the optimization problem is known. We use the approach, suggested 

in [Abad and Hurd, 2004]. The discussion is based on [De Giorgi, 2002] and [Kamdem, 

2004], where formulas for V aRa ( R) and CV aRa ( R) as explicit functions of the portfolios 

weights are derived. Let's assume that the vector r of assets' relative returns is multivariate 

Gaussian distributed, and consider the following optimization problem: 

min CV aRa ( R( ¢)) 
¢ 

s.t. /lp(R(¢)) = 11; > 0 

¢Te = 1 

PROPOSITION 2.2.1. (VaRa and CVaRa for normal distributions): Let a E (0, 0.5) 

and the vector r is multivariate Gaussian distributed with mean 11 and variance-covariance 

matrix V. Then R¢ "' N(f1p, a;), where /lp and a; are given by formulas 2.1.1 and 2.1.2, 

and 

(2.2.1) 

with Za,l = ci>-1(1- a), <I>(.)- cdf ofthe standard normal distribution 

(2.2.2) CVaR~(R) = Za,2 a;- 11t 

with Za,2 = p(za,l)/a, p(.)- density of the standard normal distribution 
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Since the coefficients Za are positive, it is evident that the mean-CVaR optimization 

problem leads to the classical mean-variance Markowitz problem. An analytical solution 

of the problem 

min a;(R(¢)) (MV *) 
¢ 

s.t. f.J-p(R(¢)) = t-t; > 0 

<PTe= 1 

where e = (1, ... , lf E IR.n, is given in [Merton, 1972]. We will formulate it according to 

De Giorgi [2002]. Under the assumption that the variance-covariance matrix Vis strictly 

positive definite, a portfolio <P solves the problem (MV *) iff: 

(2.2.3) 

where 

with 

(2.2.4) 

b = eT v-l e 
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Formula 2.2.3 also sets the relation between the target expectation ~-t; and the optimal stan­

dard deviation a(~-t;), which is 

(2.2.5) 
1/b 

From the last equation it follows that the global minimum variance on the mean-variance 

boundary can be obtained with ~-t; = cjb. Hence we have the global minimum variance 

portfolio given by 

(2.2.6) 1 -1 
</Jmin Varia nee = - V f-t 

c 

PROPOSITION 2.2.2. The global minimum CVaR portfolio exists iff Za,2 > /dfb. It is 

given by 

(2.2.7) 

where 

(2.2.8) 

</JminCV aR = /-tpminCV aR <Po - </J1 

c 
/-tpminCV aR = b + d ( z; 2 1) ' - ----

b b z; 2 b 
' 

REMARK 2.2.3. When Za,2 < /dfb and decreases, the (f-tp, CVaRa) boundary ap­

proches to a straight line with a slope -1. Therefore, an efficient portfolio doesn't ex­

ist. Moreover, a (f-tp, CVaRa) portfolio is an efficient portfolio only if we choose ~-t; ;:::: 
/-tpminCV aR · 

When the multivariate Gaussian distributed vector r is simulated, the numerical solution 

of ( CV aR*), denoted by <Pa, is an approximate solution depending on the number of Monte 
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Carlo simulations. We want to investigate the convergence of Monte Carlo based solutions 

with the increase of the simulation number. For this purpose, we observe the behaviour of 

the distance between the portfolios ¢P and ¢e. Research has been done for the case of a 

portfolio of stocks. 

Case Study: Portfolio of stocks. 

A commonly used model for stock price behavior is the geometric Brownian motion, 

which is also consistent with the Black-Scholes option-pricing model. We assume that the 

stock price process 

Bt = (st, s;, ... ,s~) 

is a multivariate geometric Brownian motion: 

n 

(2.2.9) dSi - ~~i si dt + ~ (Jij si dWj 
t-r t L.....t t t• 

j=l 

where f.J, = (J.1,1 , f.J,2 , ... , f.J,n)T is a vector of instantaneous rates of return, and ((Jijh~i,j~n is 

a matrix of stock volatilities. The solution of the stochastic differential equation (2.2.9) is: 

where Sb is the initial price. The vector of relative stock returns over a short time inter­

val .6.t = [0, t], r = (r1 , r 2 , ... , rn?, where (ri = st;sb ), is approximately multivariate 
0 

normally distributed, i.e r"' N(J.1,.6.t, ((J(JT).6.t). 

Next, for our real life application, we constructed a portfolio of n = 10 stocks from 

S&PlOO index. The criterion for choosing an equity was last year's return > 5%. As 

well, the portfolio was diversified by including small (Black & Decker Corp. (BDK), 

Toys R Us Inc. (TOY)), mid (The AES Corp. (AES), Dell Inc. (DELL), Dow Chemical 

Co. (DOW), United Technologies Corp. (UTX)), large (Allstate Corp. (ALL)) and mega 

(Exxon Mobil Corp. (XOM), General Electric Co.(GE), Johnson & Johnson Inc. (JNJ)) 
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caps. We collected 5 years of data set, consisting of 1252 adjusted closing daily prices 

for each equity, that is 1251 relative returns for the period May 8/00 to May 4/05. In other 

words, we utilized an historical time-series ofT = 1251 returns for each stock. Our holding 

period is one day, and we suppose standing on the 4th of May, 2005. The estimated daily 

expected returns and covariances are given in table 1. 

By applying the analytical method, described above, we solve the ( CV aR*) problem. 

For a chosen confidence level a = 0.01, we obtain z0.01 = 2.6652. Since z0.01 > j"i = 

0.0519, a global minimum CVaR0.01 exists, and f.J,pminCVaR = 6.8965 x 10-4 . For an 

appropriate target expectation p; = 0.0008, we have the efficient portfolio </Je, displayed 

below, as a unique solution of our problem. 

equity AES ALL BDK DELL DOW XOM GE JNJ TOY UTX 

weights, c/Je -0.0023 0.3000 0.1257 0.0192 0.0137 0.2042 -0.1541 0.3585 0.0557 0.0792 

The value of the objective function is CV aRt.~1 = 0.0282. Also, the value of V aR0.01 ( R( ¢)) 

when CVaR0.01 (R( ¢)) reaches its minimum is VaRt,~1 = 0.0245. 

The second part of our experiment is in generating scenarios for the random vector of 

the future daily returns for each stocks in our portfolio, r = (r1 , r 2 , ... , rn)· We use Monte 

Carlo simulation from the multivariate Gaussian distribution, thus satisfying the hypothesis 

of our model. As well, to solve ( CV aR*) we apply a linear programming approach from 

Section 2.1.3. We have 

· 1 -.;;;:"N mm No. L...Jt=l Zz- s 
c/J,s,z 

s.t. zz ;::::: s- Rz(¢), l = 1, ... , N 

Zz :2: 0 l = 1, ... , N 

IE(R(¢)) = p; 
<j;Te = 1 

s E lR 
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equity II AES ALL BDK I DELL I DOW I XOM I GE JNJ TOY UTX 

C(AES, .) 0.00277 0.00015 0.00015 0.00029 0.00020 0.00014 0.00023 0.00006 0.00026 0.00023 
C(ALL, .) 0.00015 0.00031 0.00009 0.00010 0.00010 0.00007 0.00012 0.00003 0.00008 0.00009 
C(BDK,.) 0.00015 0.00009 0.00044 0.00019 0.00019 0.00008 0.00017 0.00005 0.00018 0.00019 
C(DELL, .) 0.00029 0.00010 0.00019 0.00090 0.00015 0.00008 0.00026 0.00004 0.00022 0.00020 
C(DOW,.) 0.00020 0.00010 0.00019 0.00015 0.00049 0.00011 0.00020 0.00007 0.00019 0.00021 
C(XOM,.) 0.00014 0.00007 0.00008 0.00008 0.00011 0.00023 0.00011 0.00008 0.00008 0.00011 
C( GE, .) 0.00023 0.00012 0.00017 0.00026 0.00020 0.00011 0.00042 0.00009 0.00017 0.00023 
C(JNJ, .) 0.00006 0.00003 0.00005 0.00004 0.00007 0.00008 0.00009 0.00022 0.00005 0.00007 
C(TOY, .) 0.00026 0.00008 0.00018 0.00022 0.00019 0.00008 0.00017 0.00005 0.00073 0.00017 
C( UTX, .) 0.00023 0.00009 0.00019 0.00020 0.00021 0.00011 0.00023 0.00007 0.00017 0.00042 
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TABLE 2. Minimum error versus log2 simulation size, LP problem 

AES -0.0023 0.0131 0.0366 -0.0181 -0.0267 0.0106 
ALL 0.3000 0.2518 0.2578 0.2974 0.2948 0.3259 
BDK 0.1257 -0.0032 0.1123 0.1461 0.1291 0.1074 
DELL 0.0192 0.0267 0.1421 -0.0647 0.0606 0.0299 
DOW 0.0137 -0.0238 -0.0137 0.0479 0.0015 0.0409 
XOM 0.2042 0.2655 0.2004 0.2843 0.2463 0.2362 
GE -0.1541 -0.0751 -0.2186 -0.1365 -0.0997 -0.1492 
JNJ 0.3585 0.3877 0.3696 0.3425 0.3486 0.2959 
TOY 0.0557 -0.0152 0.0225 0.0009 0.0070 0.0427 
UTX 0.0792 0.1726 0.0911 0.1003 0.0384 0.0596 

Emin = llc/Ja(.)- c/Jell 0 0.5712 0.3694 0.3466 0.2825 0.2271 
V aRo.o1 ( ¢\.J) 0.0245 0.0224 0.0248 0.0240 0.0241 0.0242 

CVaRo.o1 ( cjJ(·l) 0.0282 0.0224 0.0285 0.0255 0.0273 0.0274 

where the portfolio return function for each scenario is given by: 

Rl(¢, Yl) = cP1T1,l + ... + cP10T1Q,l, l = 1, ... , N 

The aproximate solution ¢a of our optimization problem, given by the solution of (LP* ), 

depends on the number of generated scenarios N. Let us assume N = 2k. Our interest is 

in observing whether the Monte Carlo approximate cjJa(k) converges to the true solution ¢e 

ask increases. In particular, we observe the L 1 -distance between the vectors ¢a(k) and ¢e, 

c = ll¢a(k) -¢ell = L:~=l ~c/J~(k) - ¢il for each value of k = log2(N) in some fixed range. 

We use the linear programming problem (LP*) for our data set, simulating scenarios for 

k E [8, 12] and executing the program 20 times for each k. These calculations yield 20 

estimates ¢a(k) for each kin the range. The error values, denoted by s(k), are displayed on 

figure 2. The average error is shown as a function of the log2 simulation size. We use the 

Matlab optimization toolbox to solve the minimization problem. 

Table 2 displays the exact portfolio ¢e, and the portfolios cjJa(k) for which a minimum 

error is obtained in the set of experiments. 
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Error versus Simulation Size 
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Figure 2: Observed average error as a function oflog2 simulation size, LP problem, 
a= 0.01 

TABLE 3. Average estimates versus simulation size, LP problem 

I N I error (av) I VaRCN) (av) I VaRCN) (diff.%) I CVaRCN)(av) I CVaRCN)(diff.%) I 
2/:j 0.9922 0.0228 -6.76 0.0231 -18.05 
2!) 0.8510 0.0242 -1.27 0.0255 -9.70 

21U 0.7415 0.0249 1.53 0.0270 -4.09 
211 0.6389 0.0250 1.98 0.0279 -1.01 
2l:l 0.4962 0.0249 1.68 0.0281 -0.51 

As well, we compare the average values of the estimates for V aR01 and CV aR01 with 

the corresponding exact values. The obtained results are displayed in table 3. We see 

that while V aR~N) ( av.) values differ from the exact value by only few percentages, the 

convergence of the CV aR~N) ( av.) estimates is slower. Besides, CV aR01 appears to be 

underestimated in the most cases. 
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Since the smoothing method, where the sample objective function F~N)(R(¢), s) is 

replaced by the approximate sample objective function F!;(N) ( R( ¢), s) ( eq.2.1.5), is more 

computationally efficient compared to the linear programming method, we conduct the 

same experiments fork= [14, 17] by using the following convex nonlinear program. 

II]in rJa ~~1 T]f(s- Rz(¢))- s 
'l'oS 

(NP*) 

s.t.IE(R(¢)) = Jl; 
¢Te = 1 

s E lR 

Moreover, when the number of samples N increases the difference between the function 

F~N) ( ¢, s) and F!;(N) ( ¢, s) becomes smaller. This difference depends also on the reso­

lution parameter E, typically set to have a value :::; 0.05 [Alexander et al., 2003]. Smaller 

values of E lead to a better approximation when simulation size N is large. On the other 

hand, smaller values of Ealso lead to increased computational time. The resolution param­

eter used here is 0.0001. The implementation of the both methods is made on a machine 

with Pentium IV processor and 1GB RAM. The average CPU time for a linear method with 

number of simulations N :::; 210 is less than 60 sec, whereas it is 10 min for N = 211 and 

respectively 110 min for N = 212 . Due to less memory requirement, the nonlinear method 

( N pa) with N = 217 can be solved in less than 25 CPU min. For comparison, the ( N pa) 

requires an average CPU time of 1 min for number of simulations N = 214 , 2 min for 

N = 215 , and 5 min when N = 216 . 

Note that the implementation of the smoothing method is based on a standard algorithm 

for nonlinear minimization in Matlab. The observed results are displayed on figure 3 and 

in tables 4 and 5. We conclude that CV aR asset allocation problem based on Monte Carlo 

simulation yields a good approximate solution of CV aR when the sample size is relatively 

large. 
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Error versus Simulation Size 
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Figure 3: Observed average error as a function of log2 simulation size, CVaR problem 
solved as a convex nonlinear programming problem, a= O.Ol,E = 0.0001 

TABLE 4. Minimum error versus log2 simulation size, NP problem 

AES -0.0023 -0.0098 -0.0027 -0.0024 -0.0043 
ALL 0.3000 0.2666 0.3004 0.2969 0.2945 
BDK 0.1257 0.1155 0.1184 0.1169 0.1444 
DELL 0.0192 0.0128 0.0234 0.0109 0.0108 
DOW 0.0137 0.0205 0.0441 0.0206 0.0102 
XOM 0.2042 0.2346 0.1844 0.2424 0.1963 
GE -0.1541 -0.1205 -0.1382 -0.1545 -0.1502 
JNJ 0.3585 0.3561 0.3435 0.3399 0.3506 
TOY 0.0557 0.0578 0.0540 0.0599 0.0561 
UTX 0.0792 0.0663 0.0728 0.0694 0.0845 

C:min = llc/>a(.) -¢ell 0 0.1466 0.1014 0.0984 0.0562 
VaRo.o1 ( ¢(·l) 0.0245 0.0244 0.0243 0.0243 0.0245 

CVaRo.o1 (¢(·>) 0.0282 0.0278 0.0282 0.0278 0.0281 
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TABLE 5. Average estimates versus simulation size, NP problem 

I N II error (av) I VaR(N) (av) I VaR(N) (diff.%) I CVaR(Nl(av) I CVaR(Nl(diff.%) I 
214 0.2681 0.02453 0.10 0.02831 0.37 
2lb 0.2231 0.02460 0.39 0.02822 0.05 
2lti 0.1948 0.02454 0.14 0.2828 0.26 
21{ 0.1154 0.02447 -0.14 0.0281 -0.37 
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CHAPTER 3 

CVaR Relative Portfolio Optimization 

3.1. Relative Portfolio Optimization in Practice 

Relative portfolio optimization has emerged from practice with the implementation of 

various portfolio optimization algorithms. Since the asset managers' performances are of­

ten evaluated with reference to a benchmark, managers are concerned not only with abso­

lute return, but also with return relative to the benchmark. In fact, instead of implementing 

the classical mean-variance approach, they optimize portfolios focusing on the difference in 

a managed portfolios' return and the return of a chosen benchmark portfolio. The random 

variable describing this difference is known as "excess", "relative", "active" or "differen­

tial" portfolio return, as well as a "tracking error". Although the tracking error is mostly 

understood as the standard deviation of the relative return, we use the term "tracking er­

ror" to refer to the random variable itself. We define the variable tracking error RE by the 

expression [Roll, 1992]: 

RE = R-RB, 

where R denotes the managed portfolio return, and RB is the benchmark return. 

When evaluating relative performance against the benchmark in reward and risk terms, 

the reward parameter is therefore represented by the mean tracking error, and the risk 

measure is represented by the tracking error variance during the evalution period. The 

main assumption is that the portfolio manager desires to minimize the tracking error vari­

ance a 2 ( RE ( ¢)) = ( ¢ - b) rv ( ¢ - b), while maximizing the expected excess return 

IE(RE(¢)) = (¢- bff-l. Similarly to the mean-risk model (MR*), we formulate the 

tracking error problem as a problem of the biobjective programming: 
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max IE(RE(¢)) 
¢ 

min 0"
2 (RE(¢)) 

¢ 

s.t. 4> E <I> C :!Rn 

(TEV) 

where b = (bb ... , bn) is the vector of fixed benchmark weights, and bi > 0 fori = 

1, ... , n. 

In the literature, models of relative portfolio optimization have gained interest since the 

publication of Roll's work [Roll, 1992], considering the optimization problem: 

min 0"
2(RE( ¢)) (T EV *) 

¢ 

s.t. IE(RE(¢)) = f-le > 0 

(¢-b)Te=O 

An analytical solution of the problem is given in the above paper. Note also, that if the 

constant tracking error expectation /1E equals zero, 4> = b is a trivial solution. An overview 

of the recent models can be found in [Wagner, 2003]. 

3.2. Relative CVaR 

All the models in [Wagner, 2003] have in common that the relative portfolio risk is rep­

resented by the tracking error variance. The linear models of tracking error minimization 

are introduced by Markus et al. [1999]. The authors argue that the linear deviations between 

the benchmark and portfolio returns give a more accurate description of the investors' risk 

attitude than the squared deviations. Their models are based on minimizing the absolute 

deviations between the returns. Expected regret is another risk measure which is utilized 

in a model for benchmark portfolio optimization [Dembo and Rosen, 2000]. Dembo and 

Rosen [2000] solve the problem of mean-expected regret portfolio optimization by using 

the scenario approach. In contrast to the mean-tracking error variance optimization, the 

scenario approach allows for general non-normal distributions (see the discussion in the 
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previous chapter). Another application of the risk measures to the excess portfolio return 

is presented in [Watson and Mina, 2000]. A measure, labeled "Relative VaRa:', is defined 

as the level of tracking error that will not be exceeded over the chosen time period with an 

assigned confidence level a. As well, Jorion [2003] notes that constraining tracking error 

variance is equivalent to constraining tracking error V aRo. (or relative V aRo.) when the 

expected return is omitted in computing V aRo.. In this case, however, normal distributions 

of the returns are assumed. Taking into account the advantages of the Conditional Value at 

Risk as a risk measure, we propose CVaR techniques to be applied to the distribution of 

the excess return, or in a more general setting, to the profit and loss distribution of the so 

called "differential" portfolio. Moreover, we don't make any assumption about the form 

of the distribution. We call this measure "Relative CVaRo." and explain the similarity 

with the formulas for CV aRo., measuring total portfolio risk. For example, for continuous 

distributions relative CV aR at confidence level a is given by the formula: 

CVaRo.(RE) = -E[RE/RE:::; -VaRo.(RE)], 

where V aRo. ( RE) denotes relative V aRo. 

VaRo.(RE) =- inf{x E JR, FRE(x) >a} 

We formulate the mean-relative CV aR optimization problem as: 

max E(RE(¢)) 
¢ 

min CVaRo.(RE(¢)) 
¢ 

s.t. </> E <I> C lRn 

(RCVaR) 

Note that the discussions from Section 2.1.3, in terms of using scenarios and sample objec­

tive function, hold here. 
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Case study: Relative CVaR. 

A benchmark is simply a reference portfolio. Let us suppose that our benchmark is a 

portfolio, which includes the 10 equities from Chapter 2, weighted according their market 

capitalization. Note, that this is the principle of construction of a market index. Standing 

on the 4th of May, 2005, we have: 
equity AES ALL BDK DELL DOW XOM GE JNJ TOY UTX 

weights, b 0.0087 0.0316 0.0056 0.0715 0.0374 0.3070 0.3200 0.1703 0.0046 0.0433 

The objective is to track the given target portfolio as closely as possible. We want to 

illustrate the form of the mean-relative CV aRa efficient frontier for different values of the 

confidence level a. In order to construct it, we minimize the relative risk (relative CV aRa) 

subject to attaining an expected excess return larger or equal to a given level. We design 

this case study as a demonstration of the methodology of using a sample objective function, 

representing relative CVaRa, rather than as a demonstration of using a particular multi­

variate distribution of the vector of assets' returns. Therefore we can simply simulate from 

a multivariate Gaussian distribution, and apply one of the numerical approaches, decribed 

in Section 2.1.3. We want to show the results, obtained by using the smoothing method 

with relation to the relative return RE. Hence, the relative CVaRa minimization implies 

minimization of the approximate function F~(N) ( RE ( ¢), s). We have the following convex 

nonlinear problem 

II]in ~a 2:~ 1 TJe(s- RE,l(¢))- S 
'~-'•s 

s.t. (¢- b?J1;:::: /1e 
qy E <I> C JRn 

s E lR 

where 

RE,l(¢, r1) = (¢1- b1) r1,1 + ... + (¢w- bw) rw,l, l = 1, ... , N 
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TABLE 1. Mean-Relative CVaR 

mean, t-t(RE) 0.0001 0.0002 0.0003 0.0004 0.0005 

CVaR6~i (RE) 0.0051 0.0102 0.0153 0.0203 0.0262 
CVaRo.o1 (RE) 0.0050 0.0101 0.0152 0.0207 0.0287 

c = 11¢6~~- ¢11 0.0996 0.1941 0.2893 0.2661 0.3968 

CV aR6~~ ( RE) 0.0047 0.0093 0.0140 0.0186 0.0240 
CV aRo.o2 ( RE) 0.0046 0.0091 0.0137 0.0188 0.0260 

c = 11¢6~~- ¢11 0.1005 0.2004 0.2994 0.2807 0.4252 

CVaR6~~(RE) 0.0044 0.0087 0.0131 0.0175 0.0225 
CVaRo.o3(RE) 0.0043 0.0085 0.0128 0.0176 0.0244 

c = 11¢6~1- ¢11 0.1000 0.2006 0.3001 0.3082 0.4304 

The program is executed for number of simulations N = 25000, parameter E = 0.0005 and 

confidence levels a= 0.01, a= 0.02 and a= 0.03. 

Figure 4 clearly shows that the behaviour of relative CV aRa is similar to that of 

CVaRa, measuring the total portfolio risk, where with the increase of the confidence level 

a the value of the risk measure also increases for the same value of expected return. It can 

be noted here, that small percentages of outperformance are related to small differences 

in the relative CVaR values at different confidence levels. The obtained results are also 

displayed in table 1. Since we simulate from multivariate normal distribution, we can use 

quadratic programming solutions to the method of minimizing relative CV aRain order to 

compare the results from the ( RN pa) program. The error between the approximate and 

quadratic programming solution is calculated at each value of the expected return, and the 

results are displayed in table1 (Mean- Relative CVaR). 

3.3. CVaR and Mean-Multirisk Relative Portfolio Problem 

We note first that in the literature the problem of mean-multirisk portfolio optimization 

has been investigated under the assumption of normal distribution of the portfolio return. 

All the models introduced in this section have this assumption. As noted by Roll [1992] 

and Jorion [2003] institutional investors often manage money against a benchmark. When 
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mean-relative CVaR efficient frontier a 
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Figure 4: Mean-Relative CVaRa. confidence level a= 0.01; 0.02; 0.03, simulation size 
N = 25000, parameter E = 0.0005 

the investor's goal is to beat the return of a benchmark by a given percentage, the issue is 

whether the added value is in line with the risk undertaken. This leads to the formulation of 

the mean-risk problem in excess return space, which we discussed in the previous section. 

However, the problem with this setup is that the overall portfolio risk is totally ignored. Roll 

[ 1992] points out that for a given mean-variance inefficient benchmark portfolio, the excess 

return optimization (T EV *) yields mean-variance inefficient solutions. In fact, one always 

assumes that the benchmark is not on the mean-variance efficient frontier; otherwise there 

is no need of outperformance. Moreover, the solution of (T EV *) is independent of the 

benchmark. Jorion [2003] investigates whether the (T EV *) problem can be corrected with 

additional restrictions on the relative portfolio. Since the tracking error variance constraint 
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is widely used in practice, he considers the problem 

maxlE(RE(¢)) (TEV * *) 
¢ 

s.t. a 2 (RE(¢)) = T > 0 

(¢-b)Te=O 

and by imposing an additional total return volatility constraint above, in particular vari­

ance V ar ( R( 4>)) = V ar*, he shows that the selected portfolio dominates the benchmark 

in the mean-variance space. Another method for overcoming the problem of investing in 

inefficient portfolios is proposed in [Alexander and Baptista, 2005]. The authors show that 

adding a Value at Risk, VaRa(R(¢)), constraint to the (TEV*) model, examined by Roll 

[1992], leads to a selection of a portfolio that is also closer to the mean-variance efficient 

frontier. These two papers ([Alexander and Baptista, 2005, Jorion, 2003]) comprehensively 

interpret relative portfolio allocation solutions with an additional portfolio total risk con­

straint. Independently of them, several other models in a multirisk framework have been 

proposed in the literature. The model of Chow [1995] and Zhang [1998] can be regarded 

as a mean-multiple-variance model. It is given by the following minimization problem: 

where k 2:: 0. 

min a 2 (RE(¢)) + ka2 (R(¢)) 
¢ 

s.t. IE(R(¢)) = p,; 
¢E<PclRn 

(EMV) 

Note that Chow, 1995 and Zhang, 1998 simply add the tracking error variance to the 

objective function of the classical Markowitz problem. 

A slightly different approach is followed by Wagner [2002]. He derives the objective 

function from a multi-attribute utility theory. By introducing a regret aversion coefficient 

..\, he formulates the optimization problem: 
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min a 2 (R(¢))- )..Cov(R(¢), RB) 
¢ 

s.t. JE(R(¢)) = p,; 

cp E <I> C JRn 

(EVC) 

It is easy to check that if ).. = 1
2;k, the mean-variance-covariance model ( EV C) is 

equivalent to (EMV). Note also that JE(R) = JE(RE) + Jl-B, where Jl-B = p,Tb is a con­

stant benchmark portfolio return. Therefore having lE(R) in (EMV) and (EVC) doesn't 

affect our discussion. The common idea in all of the above models is that when opti­

mizing with respect to a benchmark, the total risk should be taken under consideration. 

Moreover, Jorion [2003] shows that adding a volatility constraint to the problem of excess 

return maximization subject to a given level of tracking error variance (T EV * *) leads to 

the selection of a portfolio with smaller volatility but also with a smaller expected excess 

return (and with the same tracking error variance). Similar conclusions can be made for 

the others optimization problems too. In fact we are dealing with conflicting objectives 

in terms of multiple risks and expected return, and this is our motivation to investigate 

the discussed models as multiobjective optimization models. We summarize and develop 

a multiple criteria formulation of the relative portfolio allocation problem, represented by 

the above models: 

max lE(RE(¢)) (MTEV) 
¢ 

min a 2(RE(¢)) 
¢ 

min p (R(¢)) s.t. ¢ E <I> C lRn 
¢ 

where p( R) is given by the variance a 2 ( R), or Value at Risk V aRa ( R). Further, we propose 

Conditional Value at Risk, CV aRa ( R), to be used as a portfolio total risk measure in the 

relative portfolio optimization problem ( MT EV). 
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Case study: Mean - Multirisk Problem. 

Our experiment is in generating a Pareto optimal (efficient) solution of the tricriterion 

( MT EV) problem with CV aRa as a portfolio risk measure and investigate the ideas, 

implemented in [Jorion, 2003, Alexander and Baptista, 2005]. For this purpose we consider 

the benchmark portfolio, described in the previous section. To generate an efficient solution 

we use an a priori method of multiobjectve optimization, in particular an approach of the 

goal programming. The method involves setting a set of goals, expressing the desicion 

maker's preferences for the values of the objective functions. The initial goals can be 

under- or overachieved with relative degree of under or overachievement, depending on a 

vector of positive weighting coefficients. Note that different solutions can be obtained by 

altering the weights. The scalarizing problem to be solved is: 

. "'3 mm L...Jj=l 'Yi cp,-y 

s. t. !1 ( c/J) - wn1 :::; goah 

h ( c/J) - W2'Y2 :::; goal2 

h ( c/J) - W3"f3 :::; goal3 

cP E <P C JRn 

'Y E JR3 

(GP) 

where the vector function is F(c/J) = (-IE(RE(cfJ)), a 2 (RE(cfJ)), CVaR0.01 (R(c/J))), 

and 'Y is the vector of deviations from the goals. 

Let us define the following goal point in the criterion space 

goal = ( -0.0005, 0.0002, 0.05) 

and set the weighting vector w = abs(goal). Note that calculating the benchmark statistics 

/-LB = 3.596x10-4
, a1 = 1.656x10-4

, as well as CVaR0.o1 (RB) = 0.0339 assists us in 

setting the goals. 
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The obtained Pareto optimal solution for the criterion vector (representing a point from 

the efficient surface of (MT EV)) is: 

The corresponding efficient solution is 

1h = (0.0105, 0.2902, 0.1463, 0, 0, 0.1875, 0, 0.2047, 0.0454, 0.1153). 

For this portfolio we have expected return 

and variance 

It is easy to check that this is a mean-variance, (f.l, a 2 ), inefficient, as well as a mean­

CV aRo.o1, (J-l, CV aR0.01 ), inefficient portfolio, since there is a portfolio ¢>* such that 

is a point on the (J-L, a 2 ) efficient fronier and resp. 

(f.l(R4>*) = 7.3046x10-4
, CVaRo.DI(R4>*) = 0.0283) 

is a point on the (f.l, CVaR0.01 ) efficient frontier. However, we want to show that solving 

tracking error minimization problem (TE) with f.l*(RE) ;::: 3.7084x10-4 leads to a selec­

tion of portfolio, which is also (J-l, a 2
) and (f.l, CV aR0.01 ) inefficient, but dominated by the 

solution of the tricriterion problem. We have 

¢>2 = (0.0179, 0.2743, 0.1505, 0.0001, 0.0022, 0.2031, 0, 0.1521, 0.0428, 0.1572) 
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as a solution of 

mina2 (RE(¢)) (TE) 
¢ 

s.t. 1-L(RE(¢));::: 3.7084x10-4 

¢Ei!J 

and 

Obviously, for the objective vectors we have the following relations of preference: 

and 

Hence the benchmark portfolio selection problem considered with an additional objec­

tive for the total portfolio risk produces preferred mean-risk vectors. We note here that 

the assumption of normal distribution allowed us to compare the solutions in both mean­

variance and mean-CV aR space. As well, the choice of a particular risk measure depends 

only on the investor and therefore when working with Conditional Value at Risk, relative 

CV aRa can be used for measuring the active risk. 

When we address optimization problems with three or more criteria, the theory of multi­

objective optmization is mostly concerned with interactive algorithms for repetitively sam­

pling the Pareto optimal criterion (nondominated) set until a final solution is obtained. 

The problem of tracking error optimization in a mean-multirisk framework allows imple­

mentation of an interactive decision making and thus taking into account of the investor's 

preferences during the interactive process. 
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Concluding Remarks 

Optimal portfolio selection is a longstanding issue in both practice and academic re­

search on portfolio theory. From theoretical perspective, portfolio optimization can be 

managed in the framework of risk management. Risk management methodologies assume 

some measure of risk that impacts the assets' allocation in the portfolio. Because of the 

practical importance of "Value at Risk" measure, several alternatives to VaR, overcoming 

some of its shortcomings, have been proposed in the literature. This projects deals with 

the portfolio optimization model with the "Conditional Value at Risk" measure. CVaR de­

velops the ideas incorporating in the Value at Risk concept, as for example measuring the 

downside risk, but also shows advantages over VaR. The purpose of the first chapter was to 

present and compare the different CVaR definitions, existing in the literature, and to discuss 

CVaR in terms of a coherent and therefore "relevant" risk measure. In the second chapter 

we introduced the formulation of the mean-risk models of portfolio selection, and presented 

the CVaR minimization as a convex programming problem. Our goal was in investigating 

the convergence of Monte Carlo based CVaR optimal solutions when two different ap­

proaches to representation of the sample objective function are used. This allowed solving 

of linear and convex nonlinear programming problems. The obtained results showed that 

a large number of simulation is required in order to obtain a satisfactory solution in terms 

of the error between the exact and approximate (Monte Carlo) solution. In the last chapter 

we extended our investigation on CVaR and proposed the use of "relative CVaR" measure 

in the problems of active portfolio management. As well, we proposed and showed that by 

adding a CVaR criterion to the classical relative portfolio optimization problem, preferred 

(in mean-total risk space) portfolios are generated. This supported the conclusion from the 
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analytical analysis of benchmark optimization problem under normality assumptions. The 

suggested technique can be applied to non-normal distributions and future research on this 

problem can be done. 
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Appendix: 

Multiobjective optimization 

Problem formulation. 

The mathematical formulation of the classical multiple objective optimization problem 

is: 

"opt" f(x) 

s.t. X E S C JRn 

where f : IRn ----+ JRk, f(x) = (h (x), h(x), ... , fk(x)) is a vector of the objective functions 

(criteria) fi(x) fori= 1, ... , k and k ~ 2. The decision vectors x = (x 1 , x 2 , ... , Xn) belong 

to the set of feasible solutions (admissible decisions) S, and "opt" stands for optimization. 

For simplicity we assume that all the objective functions are to be minimized. If an objec-

tive function fi is to be maximized, it is equivalent to minimize the function- fi· Thus we 

study the problem 

min {h(x), h(x), ... , fk(x)} (MOP) 
X 

s.t. X E S C 1Rn. 

If there is no conflict between the objective functions, then a solution can be found where 

every objective function attains its optimum. To avoid such trivial cases, the formulation 

of each multiobjective programming problem suggests that there does not exist a solution, 

which minimizes all objective functions simultaneously. We are in the situation of trying to 

minimize each objective to the "greatest extent possible", i.e. we search for these solutions 

x* where the increase of some objective functions is improved only by sacrificing some 

other functions. This means that the objective functions are at least partly conflicting. 
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DEFINITION. The decision vector x* E S is an Pareto optimal (efficient) solution 

if there does not exist another decision vector x E S, such that fi(x) ::;: fi(x*) for all 

i = 1, ... , k and fj(x) < fi(x*)forat least one index j. 

The vector f ( x*) corresponding to the Pareto optimal (efficient) solution x* is called a 

Pareto optimal or nondominated vector function. 

Decision space vs. Criterion space. 

It can be seen that whereas in the single-objective programming there is only the fea­

sible region S in decision space JRn, in multiobjective programming there is the feasible 

region Z = { z / z = f ( x), x E S} in criterion space JRk. Each x E S in decision space 

has an image z E Z in criterion space, and each z E Z in criterion space has at least 

one inverse image x E S in decision space. Note that regardless of the dimension of S, 

the dimension of Z is k, usually much smaller number than n. Then a criterion vector 

z* E Z is nondominated iff there does not exists another vector z E Z s.t. zi ::;: z; for all 

i = 1, ... , k and Zj < zj for at least one index j. Furthermore x* E S is an efficient solution 

iff its image criterion vector z* = f(x*) = (h(x*), h(x*), ... ,fk(x*)) is nondominated. 

Multiple objective programming is mostly studied in criterion space. The set of all effi­

cient points is called the efficient set. The nondominated set (image of the efficient set) 

is in the boundary of the feasible region Z in criterion space. The nondominated points 

in the hi-objective optimization problem form the so-called nondominated frontier, while 

the nondominated points in the case of higher dimension form the nondominated surface. 

Note: Despite the fact, that nondominance is a criterion space concept and efficiency is 

only a decision space concept in terms of multiple criteria optimization, "efficient frontier" 

and "efficient surface" will be used when considering portfolio optimization problems as 

problems of multiple criteria optimization. 
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Solving multiobjective optimization problem. 

Multiobjective optimization (also called multicriteria optimization, multiple objective 

mathematical programming) is defined as a problem of finding a vector of decision vari­

ables which satisfies constraints and optimizes a vector function whose elements represent 

the objective functions. Since the objectives are with conflict with each other, the term 

"optimize" means finding such a solution, which would give the values of all the objective 

functions acceptable to the desicion maker. In other words, we want to determine from 

among the set of feasible solutions s a particular Pareto vector X = ( xr' X~' ... 'x~) that is 

most acceptable to a user or decision-maker. Assuming such a solution exists, it is called 

a final solution. Multiobjective optimization problems are usually solved by scalariza­

tion. Scalarization means that the problem is converted into a single or a family of single 

objective optimization problems with a real-valued objective function, called scalarizing 

function, depending possibly on some parameters. The scalarizing tinction is required to 

cover Pareto solutions. Hence the Pareto optimal solutions of multiobjective optimization 

problems can be characterized as solutions of certain single objective optimization prob­

lems. In general, there are many Pareto solutions. The final decision is made among them 

taking the total balance over all criteria into account. This is a problem of value judgment 

of the decision-maker (DM). Balancing over all criteria is called trade-off 

Methods of multiobjective optimization [Miettinen, 1998]. 

Methods of solving multiobjective optimization problems can be classified in many 

ways according to different criteria. Here we give a cllassification according to the partici­

pation of the decision maker in the solution process: 

1. Methods where no articulation of preference information is used (no-preference 

methods). 

2. Methods where a posteriori articulation of preference information is used (a pos­

teriori methods) - examples: weighting method, E-constraint method. After the Pareto 
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optimal set (or part of it) has been generated, it is presented to the DM, who selects the 

most preferred among the alternatives. 

3. Methods where a priori articulation of preference information is used (a priori meth­

ods) - examples: goal programming. The DM specifies his/her preferences before the 

solution process. 

4. Methods where progressive articulation of preference information is used (interactive 

methods)- most developed class of methods. Procedures of this type are characterized by 

phases of decision alternating with phases of computation. At each computation phase, a 

solution, or a subset of solutions, is generated for examination in the decision phase. As 

a result of the judgment, the DM inputs some preferential information, which intends to 

"improve" the proposed solution(s) generated in the next computation phase. The DM is 

"learning" about the problem and therefore building his/her preference model during the 

interactive process. 
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