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Abstract 

This dissertation drvotes itself to algorithmic approaches to the problem of scalable 

multicast with netvrork coding. Several original contributions can be concluded as 

follows. 

We have proved that the scalable multicast problem is NP-hard, even with the 

ability to perform network coding at the network nodes. Several approximations are 

derived based on d fferent heuristics, and systematic approaches have been devised 

to solve those problems. We showed that those traditional routing methods reduce 

to a special case in the new network coding context. 

Two important frameworks usually found in traditional scalable multicast solu­

tions, i.e. layered multicast and rainbow multicast, are studied and extended to the 

network coding scenario. Solutions based on these two frameworks are also presented 

and compared. Sunrisingly, these two distinctive approaches in the traditional sense 

become connected and share a similar essence of data mixing in the light of net­

work coding. Cases are presented where these two approaches become equivalent and 

achieve the same P'~rformance. 

We have made significant advances in constructing good solutions to the scal­

able multicast problem by solving various optimization problems formulated in our 

approaches. 
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In the layered multicast framework, we started with a straight-forward extension 

of the traditional layered multicast to the network coding context. The proposed 

method features an intra-layer network coding technique which is applied on different 

optimized multicast graphs. Later on, we further improved this method by introduc­

ing the inter-layer network coding concept. By allowing network coding among data 

from different data layers, more leverage is gained when optimizing the network flow, 

thus higher performance is achieved. 

In the rainbow multicast framework, we choose uneven erasure protection (UEP) 

technique as the practical way of constructing balanced MDC, and optimize this MDC 

design using the max-flow information of receivers. After the MDC design is final­

ized, a single linear network broadcast code is employed to deliver MDC encoded data 

to receivers while satisfying the individual max-flow of all the receivers. Although 

this rainbow multicast based solution may sacrifice the performance in some cases, it 

greatly simplifies the rate allocation problem raised in the layered multicast frame­

work. The use of one single network code also makes the network codes construction 

process a lot clearer. 

Extensive amount of simulation is performed and the results show that network 

coding based scalable multicast solutions can significantly outperform those tradi­

tional routing based solutions. In addition to the imaginary linear objective function 

used in the simulation, the practical convex objective function and real video data are 

also used to verify the effectiveness of the proposed solutions. The role of different 

parameters in the proposed approaches are analyzed, which gives us more guidelines 

on how to fine-tune the system. 
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Chapter 1 

In trod uc:tion 

How does one tran:>mit a source data over a network from the server to a set of 

receivers to fully utilize available network resource and realize the best possible re­

construction of the :lata at the receivers? 

The answer to the above problem is crucial to the network applications which 

involve a large amount of data transmission. This is also the question we try to 

investigate in this dissertation. 

1.1 Applications and Motivations 

Real-time multimedia communication spans a wide range of applications, including 

online video streaming, video conferencing, video on demand, voice over IP (VoiP), 

online gaming, surveillance modules and many more. With the multimedia appli­

cations becomig th~ major form of bandwidth consumption over Internet, efficient 

multimedia data ddivery mechanism is of great importance not only to the service 
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subscriber, but also to the service provider. Better multimedia data delivery mecha­

nism not only brings better user experience but also means lower cost for the service 

provider. 

The intrinsic multicast nature of multimedia traffic (from a source toward many 

destinations) arguably renders multicast one of the most important forms of multi­

media applications on the Internet. 

In this dissertation, we are especially interested in the scalable multicast. Unlike 

the unirate multicast which emphasizes delivering the same of amount of data to all 

the receivers, scalable multicast considers the scenario with heterogeneous subscribers, 

i.e. users with different network resources, and aims to transmit different amount of 

data to different receivers according to their resources. The "scalable" means receivers 

with different amount of received data can recover the source to different reconstructed 

quality. The more data received, the better reconstructed quality can be achieved. 

The network resources we referred to here can be the physical limitation such as 

capability of display hardware, network bandwidth or some virtual restriction such 

as subscriber priority (paid/unpaid). 

Unlike the traditional way of considering optimized source coding and optimized 

data transmission separately, we jointly consider the source coding and network trans­

mission problems. As we will show in the following section, this joint design usually 

achieves better performance in the scalable multicast scenario. 

2 
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1.2 Separability of Source Coding and Network 

Transn1ission 

To solve the data communication problem in a lossless network, we have to face two 

major challenges. I'irst, the source coding problem, i.e. how to encode the source 

data such that a minimal amount of bits is needed for transmission. Second, the 

network communic::tion problem, i.e. how to transmit the encoded data over the 

networks such that a maximal transmission rate can be achieved. 

Ideally, a simple solution that solves the aforementioned two problems separately 

without sacrificing the overall system performance is preferred. In other words, when 

finding the optimal :30urce coding scheme, we do not need to know which transmission 

scheme will be depl•)yed, and vice versa. 

In the unicast scenario where single server communicate with single receiver, it is 

clear that the sourc<~ coding problem and network transmission problem are separate­

hie. We can compress source data to its entropy [1, 2] (in the lossless communication) 

or any rate point on its RD curve [3](in the lossy communication), then transmit these 

encoded bits using a transmission scheme which achieves the maxflow value [4] be­

tween the server and receiver. Furthermore, only routing (simple store-and-forward) 

is needed in the ne;work communication step, as the max-flow min-cut theorem [5] 

proves that there is always a set of edge-disjoint paths achieving the maxflow value. 

Unlike the uninst scenario that the seperability is clear for all the cases, the 

multicast scenario is more complicated, and there is no single unified answer for 

all the cases. For some cases the source coding and network transmission can be 

3 
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separately performed without sacrificing any performance compared to the joint con­

sideration. However, it turns out that source coding and network communication are 

non-separable in more general scenarios, and the joint design of source coding and 

network transmission can achieve better performance. 

1.2.1 Unirate Multicast Scenario 

In the traditional multicast problem which emphasizes on delivering the same amount 

of information to all receivers, the source coding problem and the network communi­

cation problem can be solved separately without loss of any potential performance. 

Considering a heterogeneous network where different receivers have different maxfiow 

values from the server node, the maximum achievable common information multicast 

rate is limited by the minimum maxfiow value among all the receivers. Similar to the 

unicast cases, to achieve the best performance, one can compress source data to its 

entropy [2] (in the lossless communication) or any rate point on its RD curve [3](in 

the lossy communication), then transmit these encoded bits at the transmission rate 

specified by the minimum maxfiow value between the server and receivers. However, 

in the network communication step, the traditional routing technique is no longer suf­

ficient, and the network coding technique is required to achieve the minimum maxfiow 

rate to all receivers. 

The essence of network coding is to enabling data processing at the intermedi­

ate nodes. Precisely, instead of simply relaying the data packets they receive, the 

intermediate nodes of a network will mix several data packets together for transmis­

sion. It has been proven in the network coding theory that the minimum maxfiow 

value among all the receivers is guaranteed to be achieved in a common information 

4 
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multicast with netw::>rk coding. 

1.2.2 Scalable Multicast Scenario 

The more general setting of multicast problem is that the data rates to receivers are 

not identical, i.e. different receivers may receive different amount of data. However, 

the nature of the problem changes drastically when we relax the equal rate constraint. 

In this case, a joim consideration of source coding and network communication is 

necessary. Fig. 1.1 is a step by step example of how source coding and network 

communication (routing and network coding) can become entangled, in a complex 

way. 

Fig. 1.1. (a) ill us ~rates the case where the source data X has to be communicated 

only to the nodes t 1 , b The max-flow into both nodes t 1 and t2 is 2. Thus, as stated 

before, one can optimally encode X into a source code stream of rate 2, break the 

stream into two sue-streams x andy, each of rate 1 and communicate them to nodes 

t 1 and t 2 . Note that network coding (i.e., bitwise XOR operation on streams x and 

y) is necessary at n::>de u4 . 

But, what if nodes t1 , t2 and t3 constitute the set of sink nodes, as shown in 

Fig. l.l.(b)? In this case, the max-flow is 1 for node t3 and is 2 for nodes t 1 and b 

The better strategy now is to progressively encode X into a stream of rate 2. Take 

the first portion of this stream to make a stream x of rate 1 and make the rest of the 

stream into another stream named y, again of rate 1. Network coding should be used 

to get both x and:; to nodes t1 and t2 and stream x to node h Note that node u1 

gets the stream y only. Since this is the second portion of a progressively encoded 

source code stream, node u1 will not be able to reconstruct X at all (but this is OK, 

5 
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(a) (b) 

(c) (d) 

Figure 1.1: Optimal delivery strategy varies according to network structure 

since node u1 is not a sink node). 

Fig. 1.1. (c) is yet another scenario, in which nodes t 1 , t 2 , t3 and t4 are sink nodes. 

In this case, a more suitable strategy is to encode X into two multiple description code 

(MDC) [6] streams each of rate 1 (name them streams x and y); then use network 

coding to communicate both x and y to nodes t 1 , t 2 . Node t3 will receive only the 

description x and node t4 will only receive y. 

When nodes t 1 , t 2 and t3 are sinks, for instance, none of the above strategies is 

necessarily optimal (Fig. 1.1. (d)). 

6 
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As Fig. 1.1 sug~;est, in more general multicast scenario where receivers are not 

required to receive ;he same amount of data, a joint consideration of source coding 

and network communication is a must. Even if it is possible to break (without loss 

of generality) the task into a proper concatenation of source coding operations (e.g., 

progressive coding •)r MDC), followed by network communication techniques (e.g., 

network coding or routing). This breakdown, however, is not done blindly. In an­

other word, to achiE!Ve the best possible performance, one should choose the network 

communication strategy in accordance with the source coding technique adopted, and 

vice versa. 

1.3 Related Topics 

1.3.1 Relation to Network Coding 

Network coding, a new powerful paradigm of network communication, can greatly 

improve throughput over traditional routing. The essence of network coding is the 

provision of multiple paths and the coding ability at intermediate nodes which enable 

information flows for different receivers to share the common network capacity [7]. It 

has been proved th::.t network coding can achieve the minimum of individual max-flow 

values in the unirate multicast scenario, where all the receivers demand for the same 

amount of information [7]. 

Linear network coding refers to network coding scheme in which the encoding 

functions at each n·)de is linear, i.e. the outgoing data of a certain node is the linear 

combination of data from the incoming links. Li et al. [8] showed that linear network 

coding is sufficient to achieve the unirate multicast capacity. Koetter and Medard 

7 
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gave an algebraic characterization for a linear network coding scheme in [9]. They 

also gave an upper bound on the field size and a polynomial time algorithm to verify 

the validity of a network coding scheme. A polynomial time algorithm to construct 

the optimal unirate multicast network code is given in [10]. 

However, due to a decodability issue, network coding is less straightforward in 

the multirate multicast scenario. Unlike unirate multicast where network codes are 

guaranteed to exist and are easy to construct, multirate multicast network codes do 

not necessarily exist for the desired data rates of the receivers. Algebraic conditions 

for the existence of multirate multicast network code are derived in [9], and finding 

the optimal network code for a given network, which maximizes the total amount of 

information flow, is proven to be NP-hard. 

Random network codes are linear network codes in which the encoding coefficients 

are chosen randomly from a finite field. The sink nodes can decode correctly if and 

only if the overall transfer matrix from the sources to each sink is invertible. 

Random network coding was first described in [11], which gave, for acyclic delay­

free networks, a bound on error probability, in terms of the number of receivers and 

random coding output links, that decreases exponentially with code length. The 

proof was based on a result in [12] relating algebraic network coding to network 

flows. The result was improved later with a success probability bound for randomized 

network coding in link-redundant networks with unreliable links, in terms of link 

failure probability and amount of redundancy. 

Compared to the deterministic network coding, random network coding only pro­

vides asymptotic optimality for the unirate multicast case. The performance bound 

for the multirate multicast case is generally unknown. Since the main focus of the 

8 
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work is to achieve the highest throughput or best reconstructed quality as possible 

by using network coding technique, to avoid ambiguity and uncertainty, we confine 

our discussion only ·;o the deterministic network coding. Actually, those solutions we 

introduce in the foll)wing chapters using unirate network coding can be immediately 

generalized to inconorate random network coding. 

1.3.2 Relation to Linear Broadcast in Network Coding 

At the very beginning of network coding research, most of the works dealt with 

common information multicast. Namely, the design objective is for all sinks to realize 

the maximum samE data rate. This setup makes sense if all sinks need to achieve 

lossless decoding of the same message, but it is quite limiting for scalable signal 

network communicLtions. Later, some of the pioneer researchers of network coding 

generalized the earlier work to include three types of linear network codes: linear 

multicast, linear broadcast and linear dispersion [13]. According to the definition, a 

w-dimensional linear network code is said to be a linear broadcast if the dimension 

of the received information of each receiver equals to the minimum value of w and 

the max-flow of that receiver (dim(Vr) =min{ w, maxflow(T)} for every sink node 

T) [13]. The authors proved the existence of the linear broadcast network code. By 

choosing sufficiently large w (w;:::::: maxflow(T) for all sink T), one can find a network 

code that the dimension of linear independent information received by each receiver 

achieves its max-flow value. 

In the above view, the linear broadcast problem appears similar to the scalable 

multicast problem, since both of them emphasize on delivering different amounts 

of information to r•?ceivers with different network resources. Moreover, the answer 

9 
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Figure 1.2: (a) Sink node t3 can not decode all of its received descriptions, (b) by 
transmitting linear combinations from the source, sink nodes t1 , t 2 and t3 can decode 
all of the received descriptions. 

to the scalable multicast problem seems to be straightforward given that the linear 

broadcast theory states that each receiver can definitely achieve its max-flow value. 

However, the dimension of linear independent information received by a receiver 

does not always imply the same number of distinct messages which are helpful for 

reconstructing original data. There are such situations that the messages received by 

a receiver are linearly undecodable. This will never happen in the linear multicast 

because the dimension of received information always equals to the code dimension 

w. But linear broadcast allows the dimension of received information for a receiver 

to be less than the code dimension w, thus leads to a possible linearly undecodable 

situation (as shown in Fig. 1.2(a)). 

Fig. 1.2(a) shows a linear broadcast code. In this network, node s is the source 

node, and nodes t 1 , t 2 , t 3 are three sinks. All edges in the graph have unit capacity. 

Now supposing the dimension of the linear broadcast code w to be 3, the source node 

10 
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transmits three linear independent data messages x, y, z, and the dimension of the 

received information of each receiver achieves its own maximum flow value (2, 3, 2). 

However, we observe that although sink node t 3 receives two messages, i.e. x + y and 

z, it can only decodE~ message z. Since node t 3 can decode neither x nor y, the message 

x + y makes no contribution to the reconstruction fidelity at receiver t 3 . Thus, the 

actual numbers of effective descriptions received by the three receivers are (2, 3, 1) 

in this case. 

In certain graphs, we can avoid the undecodable situation by letting the source 

node(s) transmit the linear combination of original data, i.e. performing network 

coding at source node(s). But this technique is not a general remedy, it can fail on 

some graphs. For example, Fig. 1.2(b) shows a network code that achieves max-flows 

if nodes t1 , t2 , and t3 are the only sinks (the same as in Fig. 1.2(a)). But, if nodes 

u 1, u2 and u3 are dso sinks in that network, then the network code in Fig. 1.2(b) 

cannot realize the max-flow values of u 1 and u 2. In order for sink nodes u 1 and u 2 to 

decode, they must ~eceive single description, which in turn leads to the situation in 

Fig. 1.2(a) where nl)t all three sink nodes t 1 , t 2 and t 3 can achieve their max-flow. 

Clearly, the dirrension of the received information is not a suitable performance 

metric for many applications with scalable signal compression. Therefore, the scalable 

multicast problem s formulated with the objective of optimizing for the amount of 

actually decodable information. 

1.3.3 Relation to Inter-session Network Coding 

An extension of unirate multicast network coding is to apply network coding to multi­

ple concurrent unirate multicast sessions, which is called inter-session network coding. 

11 
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In [14] the authors showed that linear network coding is insufficient to achieve 

multicast capacity for multiple multicast sessions. Li and Li [15] showed that there 

is no coding gain for an undirected graph. Some preliminary work on inter-session 

network coding for the case with only two simple multicast sessions is given in [16]. 

The authors of [16] gave the condition under which there exists a linear network cod­

ing scheme for two multicast sessions. Wu [17] applied random network coding to all 

the sessions on a transformed network topology such that the source can only reach 

the receivers that are interested in the source. In [18], the authors proposed an op­

timization method which maximizes the inter-session network coding gain according 

to two metrics: overlap ratio and overlap width. 

The differences between inter-session network coding and the network coding scal­

able multicast rely on the dependency of data transmitted among different sessions. 

Inter-session network coding focuses on the cases that the data transmitted in differ­

ent network coding session are mutually independent. While in the scalable multicast, 

a single multicast session is considered. Although some of the scalable multicast so­

lutions do divide the single scalable multicast session into multiple unirate multicast 

sessions, the data transmitted at different sessions is usually dependent and the data 

dependance among different sessions should be carefully considered. 

1.3.4 Relation to Scalable Multicast using Fountain Codes 

Fountain codes [19] are a class of random erasure codes with the property that a 

potentially limitless sequence of encoding symbols can be generated from a given 

set of source symbols. The original source symbols can ideally be recovered from any 

subset of the encoding symbols of size equal to or only slightly larger than the number 

12 
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of source symbols. The fountain codes are also called rateless erasure codes due to 

the fact that these codes do not exhibit a fixed code rate. 

Fountain codes are known that have efficient encoding and decoding algorithms 

and that allow the recovery of the original N source symbols from any N ( 1 + E) of 

the encoding symbols with high probability, where the small value E represents the 

coding overhead. 

Many practical realizations of fountain, i.e. LT codes and Raptor code, are pro­

posed and used to :;calable multicast applications [20-22]. For example, in [20] the 

authors proposed an application of sliding window Raptor codes on scalable video 

coding (SVC) in a lossy networks. SVC layers are encoded independently of each 

other using a SW-F~aptor code, and the rates of SW-Raptor code for SVC layers, as 

well as the number of coded packets generated for each layer, are optimized so as to 

yield the best possible expected quality at the receivers. [21, 22] design and use the 

optimal expanding window fountain (EWF) code to multicast scalable multimedia 

content through a l1)ssy networks, such that the given quality-of-service requirements 

for different receiver classes are satisfied. The essence of these approaches resembles 

the idea of uneven erasure protection (UEP), with the difference that EWF codes 

allow overlap among different priority levers. 

The fundamental difference between these works and ours relies in the fact that 

the fountain codes based schemes are deployed to fight against packet loss rather than 

increase network throughput. These schemes usually require predefined bandwidth 

information for th<~ receivers instead of optimizing these parameters for a certain 

network topology. Besides, all the coding is done at the server (the source node), 

thus no network coding is performed. 

13 
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1.4 Contributions 

This dissertation devotes itself to algorithmic approaches to the problem of scalable 

multicast with network coding. Several original contributions can be concluded as 

follows. 

We have proved that the scalable multicast problem is NP-hard, even with the 

ability to perform network coding at the network nodes. Several approximations are 

derived based on different heuristics, and systematic approaches have been devised 

to solve those problems. We showed that those traditional routing methods reduce 

to a special case in the new network coding context. 

Two important frameworks usually found in traditional scalable multicast solu­

tions, i.e. layered multicast and rainbow multicast, are studied and extended to the 

network coding scenario. Solutions based on these two frameworks are also presented 

and compared. Surprisingly, these two distinctive approaches in the traditional sense 

become connected and share a similar essence of data mixing in the light of net­

work coding. Cases are presented where these two approaches become equivalent and 

achieve the same performance. 

We have made significant advances in constructing good solutions to the scal­

able multicast problem by solving various optimization problems formulated in our 

approaches. 

In the layered multicast framework, we started with a straight-forward extension 

of the traditional layered multicast to the network coding context. The proposed 

method features an intra-layer network coding technique which is applied on different 

optimized multicast graphs. Later on, we further improved this method by introduc­

ing the inter-layer network coding concept. By allowing network coding among data 
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from different data layers, more leverage is gained when optimizing the network flow, 

thus higher performance is achieved. 

In the rainbow nulticast framework, we choose uneven erasure protection (UEP) 

technique as the practical way of constructing balanced MDC, and optimize this MDC 

design using the max-flow information of receivers. After the MDC design is final­

ized, a single linear :1etwork broadcast code is employed to deliver MDC encoded data 

to receivers while s3.tisfying the individual max-flow of all the receivers. Although 

this rainbow multica.st based solution may sacrifice the performance in some cases, it 

greatly simplifies the rate allocation problem raised in the layered multicast frame­

work. The use of one single network code also makes the network codes construction 

process a lot clearer. 

Extensive amount of simulation is performed and the results show that network 

coding based scalable multicast solutions can significantly outperform those tradi­

tional routing based solutions. In addition to the imaginary linear objective function 

used in the simulation, the practical convex objective function and real video data are 

also used to verify the effectiveness of the proposed solutions. The role of different 

parameters in the proposed approaches are analyzed, which gives us more guidelines 

on how to fine-tum· the system. 

1. 5 Organization of This Dissertation 

The rest of this dissertation is organized as follows. 

In Chapter 2, we introduce and discuss some of the previous solutions to the scal­

able multicast problem first. Then, our methodology to solve the scalable multicast 

problem is describE~d, followed by a formal definition of the target problem on which 
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many of the discussions in the rest of the dissertation relies. Finally, the complexity 

analysis of the target problem is presented. 

In Chapter 3, we try to solve the scalable multicast problem in a layered multicast 

framework. Starting from a straight-forward way to extend the traditional layered 

multicast to the network coding scenario, we provide a scalable multicast solution 

based on the intra-layer network coding. This solution divides source data into dif­

ferent data layers and a separate network code is applied on each data layer. 

Chapters 4 solve the target problem in a different way. A rainbow multicast 

framework is employed instead of the layered multicast framework used in Chapter 

3. Uneven erasure protection (UEP) technique is chosen as the practical way of 

constructing balanced MDC. A single linear network broadcast code is employed to 

deliver the optimized MDC encoded data to receivers while satisfying the individual 

max-flow of all the receivers. The differences and similarities between this rainbow 

multicast approach and the aforementioned layered multicast approach are discussed. 

In Chapter 5, the layered multicast approach presented in Chapter 3 is reviewed, 

with its drawbacks being pointed out. Based on those analysis, we introduce the inter­

layer network coding concept, and further improve our optimization formulation by 

enabling data combination among different data layers. An efficient network code 

construction algorithm is also proposed to deliver the inter-layer optimized flow. 

In Chapter 6, an extensive amount of experiments are carried out to verify the 

effectiveness of the proposed approaches. The role of different parameters in the 

proposed approaches is analyzed in both imaginary and practical setting. 

Chapter 7 summaries this dissertation and suggests some of the possible future 

directions. 
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Chapter 2 

Scalable Multicast Problem: 

Review ;and New Perspective 

Scalable multicast problem has been studied for many years, and many solutions 

have been proposed. In this chapter, we will first review some of the existing scalable 

multicast solutions. Then, our new approach of jointly designing scalable source 

coding and network coding will be discussed. 

2.1 A Review of Previous Solutions 

A common approach to achieve scalable multicast is layered multicast. A multimedia 

source is encoded nto a sequence of progressively refinable layers £ 1 , £ 2 , · · · , L M, 

a base layer and S(~veral successive enhancement layers. Each layer n may be used 

to increase the qm.lity of the data reconstruction, but only if all previous layers 

1, · · · , n - 1, are available as well. Thus, a receiver desires to receive as many as 

possible consecutiv·~ layers 1, · · · , n, not just any subset of layers. Therefore, for such 
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applications, the design objective is to maximize the network throughput while also 

ensuring that each sink receives only consecutive layers of data (including the base 

layer). The additional constraint imposed is due to the layered characteristic of source 

data. For this reason we refer to this problem setting as layered multicast. 

In traditional networks where only routing is allowed, each node can only send 

copies of received messages. Therefore, the transmission of data layers is naturally 

separated into transmission layers (or multicast layers). Each multicast layer will 

send a layer of data to all designated receivers over a single multicast tree. Therefore 

the solutions to this problem [23-25] focus on the construction of multiple multicast 

trees, each representing a multicast layer. Each receiver can subscribe to one or more 

multicast tree(s), and the more multicast trees a receiver subscribes to, the better 

multicast quality it can achieve. Still, the progressive decoding constraint is applied 

on the subscribed multicast trees. 

Another approach to deliver scalable multicast is rainbow multicast [26,27]. In the 

rainbow multicast, source data are encoded using multiple description code (MDC). 

MDC encodes source data into independently decodable descriptions, and the receiver 

is able to reconstruct the source given any subset of these descriptions. And the more 

descriptions are available at the decoder, the better reconstruction it can get. The 

objective of rainbow multicast problem is to maximize not the total number of packets 

but rather the total number of distinct packets received by one or more clients. The 

problem is therefore called rainbow multicast which carries an intuitive connotation: 

distinctively color the MDC descriptions and optimize the network flows to achieve 

the rainbow effect of getting as wide a spectrum of colors as possible at the sinks. In 

contrast to the layered multicast approach with the progressive decoding constraint, 
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rainbow multicast fEatures the freedom in optimizing the network throughput without 

worrying which data segments are received. 

Network coding, the new promising paradigm of network communication, is shown 

to be able to greatly improve throughput over traditional routing. However, due to 

the decodability isste as discussed in Chapter 1, network coding is less straightforward 

in the multirate multicast scenario. Unlike unirate multicast where network codes are 

guaranteed to exist and are easy to construct, multirate multicast network codes do 

not necessarily exist for the desired data rates of the receivers. 

Despite of the difficulty of the problem, many layered multicast schemes using 

network coding have been proposed to improve the performance of traditional routing 

based layered multicast. In general, they divide the network into different layers and 

construct a unirate multicast network code for each layer. However, these schemes 

do not perform network coding between data layers, and consequently cannot realize 

the full potential of network coding. 

A number of pn~vious works applied networking coding in the layered multicast 

setting [28~30], demonstrating substantial improvement in the bandwidth efficiency 

over traditional mEthods. As in the network coding-free scenario, these methods 

transmit each layer of data in a single multicast layer. But instead of constructing 

different multicast trees as in the traditional approach, network coding-based layered 

multicast divides the network graph into multicast sub-graphs according to certain 

criteria and determ nes the optimal amount of information transmitted on each mul­

ticast graph (i.e., the size of each data layer). Each multicast layer is considered 

as a session, and n,3twork coding is performed on different layers separately. Since 

the rates for differEnt receivers in the same layer are equal, it is easy to construct 
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the network code for a single layer using the existing polynomial-time algorithm [10]. 

Specifically, in [28], sinks are grouped into subsets T1 , T2 , · · · , TN, such that all sinks 

in the same subset have the same max-flow value and moreover, the max-flow value 

of any sink in Tk is smaller than the max-flow value of any sink in Tk+l· Then for 

each layer k a multicast sub-graph containing all sinks in Tk u n+l u ... u TN is 

constructed. Thus, the scheme ensures that all sinks in Tk receive k layers of data. 

The rate allocation between data layers (i.e., the size of each data layer) is decided by 

solving a linear programming problem. In [29], the authors resort to layered multicast 

and session scheduling ideas to provide rate control in scalable multicast. In [30], the 

authors proposed a similar layered network coding based solution with a centralized 

deterministic algorithm as well as a distributed heuristic algorithm. The heuristic 

algorithm organizes the receivers into layers progressively. Each receiver can sub­

scribe to a number of layers to maximize its throughput according to its available 

bandwidth. 

Independently, Wu [31] proposed a cross-layer network coding technique which is 

closely related to the inter-layer network coding approach presented in this disser­

tation. However, the problem formulation in [31] uses the heuristic that sink nodes 

with the same max-flow value are partitioned into the same group, which is included 

in our formulation as a special case. Also, we proposed a deterministic polynomial­

time algorithm with guaranteed optimality for network code construction, whereas 

the scheme in [31] uses simple random linear mixing of asymptotical optimality. 
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2.2 Our Methodology 

In this dissertation, 'Ne try to solve the scalable multicast problem from a network cod­

ing perspective. Two traditional scalable multicast frameworks, i.e. layered multicast 

and rainbow multicast, are analyzed and extended to a network coding scenario. 

Surprisingly, these two distinctive approaches in the traditional sense become 

related and share a similar essence of data mixing in the light of network coding. 

For some cases, the:;e two approaches even become equivalent and achieve the same 

performance. 

2.3 Problem Formulation 

Consider a directed acyclic network G = (V, E), a set of source nodes S, and a set 

of sink nodes T. The multimedia source is scalably encoded into source segments 

(or messages) x 1 , · · · , xM, of equal size. A source segment is an indivisible flow unit, 

and all data messaf;es x1 , · · · , x M are available at all source nodes, for transmission 

during a transmissi·Jn slot. Therefore, the edge capacities are expressed in terms of 

number of source SE·gments during the transmission slot. 

The source segments are grouped into data packages (either with or without re­

dundancy) for transmission. For simplicity, we assume the size of the redundancy 

data (if there is an?) in a data package is also a multiple of the size of single source 

segment. A transmssion scheme using network coding allows each data package sent 

along an edge to bt~ a function of the data package received at the node where the 

edge originates. 

Define a transmission scheme using network coding achieving rate R(t) (number 
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of source segments) at each sink t, as a scheme which ensures that each sink t can 

recover the first R( t) source segments (out of the M source segments available at the 

source nodes for transmission during the transmission slot) after decoding the received 

messages. We assume a non-decreasing fidelity function ¢( R) is given, representing 

the fidelity of the reconstruction after decoding the first R messages. The simplest 

example is ¢(R) = R. Other examples of fidelity functions, meaningful in multimedia 

applications, are PSNR, SNR, or the negative distortion. The problem we address in 

this dissertation is finding a data packaging and designing a linear network code such 

that l:tET ¢(R(t)) is maximized. 

Since the main purpose of this dissertation is to establish that higher throughput 

is possible, we do not consider the transmission delay of the network links. Also, we 

assume that the nodes in the networks have buffers large enough to store received 

data. 

Without loss of generality, the following development is confined to the case of a 

single source node. The case of multiple sources can be converted into one with a 

single source by adding a super source node and connecting the super source node to 

all source nodes by edges of infinite capacity. This conversion is depicted in Figure 2.1. 

2.4 Complexity Analysis 

Theorem 1. Finding the optimal solution of the scalable multicast problem is NP­

hard even when there is a single server node, the underlying topology is a directed 

acyclic graph (DAG) and network coding is allowed. 

The proof is constructed by reducing the well known NP-complete problem [32,33] 

of graph k-colorability [34, 35] to a special instance of the decision version scalable 
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Figure 2.1: Converting a problem with multiple sources to one with a single source. 

multicast problem on a DAG with only a single server node. 

Given a k-colora ble graph G = (V, E), we create an instance of scalable multicast 

problem, which is a directed acyclic graph G' = (V', E', S', T'). The reduction is 

carried out as follov1s. 

1. Initialize V' = E' = S = T = ¢; 

2. add a dummy source nodes* to V' and let S' = { s*}; 

3. for each vertex v E V, add a v' to V' and add an edge ( s*, v') to E'; 

4. for each edge : u, v) E E, add a vertex v~v to V' and T', then add edges ( u', v~v), 

(v' v' ) to E' 
' uv 

5. set the capacity of all edges in E' to be 1; 

6. let the total number of data segment to be k. 

The above reduction can be done in polynomial time. Fig. 2.2 shows an example 

of this reduction. 
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(1'1~ 
'-~ 

(a) k-colorability problem (b) Equivalent scalable multicast 

Figure 2.2: The reduction from an instance of k-colorability problem (a) to an instance 
of scalable multicast problem (b). 

Lemma 1. The graph G(V, E) is k-colorable if and only if the transformed 

scalable multicast problem has a solution such that the total number of received 

decodable data of the nodes in T' equals to the sum of the number of incoming edges 

ofT'. 

Proof. =?: Assume the graph G = (V, E) is k-colorable by function f: V -+ 

{ 1, 2, · · · , k}. For each v E V, let v' E V' have the source segment i from s' through 

the edge (s', v'), if f(v) = i. Then for each v' E V', the only source segment is 

transmitted along all outgoing edges. Note that each vertex t' E T' corresponds to 

an edge in G. The two incoming edges must carry different source segments to t', 

otherwise the assumption is contradicted. Therefore, the incoming edges of each sink 

in T' deliver distinct source data segments to that sink, and it is obvious that the 

resulting solution is optimal for the transformed scalable multicast problem. 

~: Assume that in the transformed scalable multicast problem, the total number 

of distinct source data segments delivered to the sink nodes equals to the sum of the 

number of the incoming edges of T'. For this to hold, all incoming edges of each 

sink must deliver distinct source data segments. Since each v' E V' only receives one 
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source segment frorr s', we just use that source segment to color the corresponding 

vertex in G. Thus the graph G is k-colorable. 

Note that there i3 only one source segment available at each v' E V', so the ability 

of network coding does not change the solution. 0 

The decision version of the scalable multicast problem is to determine whether 

the optimal value of the sum of received source data segments equals to an arbitrary 

integer n. From Lemma 1, it is clear that the decision version of the scalable multicast 

problem is in NP. Therefore Theorem 1 follows. 

Since the target problem is NP-hard, we can only refer to heuristic solutions. 

In the following ch.:tpters, two important frameworks usually found in traditional 

scalable multicast solutions, i.e. layered multicast and rainbow multicast, are studied 

and extended to the network coding scenario. Surprisingly, these two distinctive 

approaches in the traditional sense become related and share a similar essence of 

data mixing in the light of network coding. 
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Chapter 3 

Scalable Multicast using 

Intra-layer Network Coding 

Starting from this chapter, we will look at several linear network coding based scal­

able multicast schemes. All of these schemes share the same key idea: make the 

full usage of network bandwidth by delivering linear combinations of source data to 

heterogeneous receivers. 

We start our exploitation of network coding based scalable multicast approaches 

with a straight-forward extension of the layered multicast to the network coding 

scenario. The transmission is still divided into layers, but network coding is applied 

on each layer instead of simple routing. 

3.1 Intra-layer Network Coding Multicast 

As we discuss in the previous chapter, traditional layered multicast solutions divide 

multicast transmission into different layers, and a multicast tree is constructed for 
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each multicast layer. All the leaves in a multicast tree receive the same amount of 

data within that mdticast layer. However, the multicast tree structure is no longer 

suitable for network coding scenario due to the inherent property of network coding 

technique. The main advantage of network coding over the traditional routing lies 

in the ability of cod[ng at intermediate nodes, which can "share" conflict links used 

by different receiven;. Apparently, the single path multicast tree can not provide any 

leverage for network coding to do data mixing. 

In order to exploit the full potential of network coding, the underlying network 

structure on which network coding is applied must have multiple paths from the 

source node to sink nodes. Therefore, we still divide the multicast transmission into 

different layers, but a multicast graph rather than a multicast tree is constructed for 

each multicast layer where network coding is applied. Considering that the multirate 

network coding problem is still open and there is currently no good way to construct 

multirate network codes with guaranteed decodability of the received packets, we use 

the well-studied uni··rate network codes in each multicast graph. 

Therefore, the proposed method consists of two major steps. First, a flow opti­

mization problem is solved to determine the optimal rate allocation among different 

layers and the mult:cast graph of each multicast layer. Then, the standard uni-rate 

network codes cons;ruction algorithm is run for each layer to construct the corre­

sponding network codes. 

Since the propo:;ed method only applies network coding within each multicast 

layer, and there is no interaction of the source data among different multicast layers, 

we call this method scalable multicast using intra-layer network coding. 
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3.1.1 Problem Reformulated 

Given the layered multicast nature of the method discussed in this chapter, we can 

re-formulate the target problem to a more precise one. 

We define a layered multicast code achieving rate R(t) (number of source seg­

ments) at each sink t, as a transmission scheme using network coding which ensures 

that each sink t can recover the first R(t) source segments (out of the M source 

segments available at the source nodes for transmission during the transmission slot) 

after decoding the received messages. 

We partition the set of data sequences into several layers, and each sink subscribes 

a certain number of layers. Note that, due to the property of scalable source coding, 

only the base layer and the following consecutive layers can contribute to the recon­

struction fidelity. By grouping together the sink nodes which receive the same data 

flow layers we get a partition of sink nodes T1 , · · · , TN, such that R(t) = R(t') for 

any t, t' in the same subset Tk> and R(t) < R(t') for any t E Tk, t' E Tk+l and any k. 

Let Rk denote the common value of R(t) for the sinks t E Tk. Define the k-th data 

layer as the set of source messages {xRk_ 1+1, · · · , xRJ· Clearly, the layered multicast 

code guarantees that any sink in Tk receives the first k data layers. Then the above 

problem can be reformulated as follows. 

Problem 1. Find the partition T = {T1 , · · · , TN} (where N is also a variable), the 

values 0 < R1 < R2 < · · · < RN, and a layered multicast code achieving rate Rk at 

each sink t E Tk> for each k, such that E~=l EtETk <P(Rk) is maximized. 

28 



Ph.D. Thesis- Mingkai Shao McMaster - Electrical Engineering 

3.1.2 Proposed Solution 

Since the problem i.3 proven to be NP-hard, we resort to some heuristic in order to 

simply the problem. A simplification of the problem is to impose a fixed partition 7 

of the sinks and find the optimal rate allocation corresponding to T Intuitively, the 

number of layers received by each sink should be proportional to the sink's max-flow 

value. This intuition motivates choosing for 7 the partition induced by the max-flow 

values, i.e., where E1l sinks in the same subset have the same max-flow value and 

moreover, the max-flow value of any sink in Tk is smaller than the max-flow value of 

any sink in Tk+l· We will denote this partition by 7max-flow· 

Having the partition of sinks specified, our target problem can be formulated as 

follows. 

Problem 2. Giver a partition 7 = {T1 , T2 , · · · , TN} of the set of sinks, find the 

values 0 :::; R 1 :::; R2 :::; • • • :::; RN and a layered multicast code achieving rate Rk at 

each sink t E Tk, such that I:r=l L:tETk cjJ(Rk) is maximized. 

Remark 1. By allowing equality between consecutive rates Rk and Rk+l in the for­

mulation of Problem 2, we actually perform a search over all sink partitions obtained 

from 7 by cumulati1g consecutive subsets. (The equality Rk = Rk+I means that Tk 

and Tk+I are merged into a single subset). 

The proposed solution to Problem 2 consists of two major steps. First an intra­

layer flow optimization problem is solved to decide the optimal rate allocation among 

different layers. Then, the standard uni-rate network code construction algorithm is 

run for each layer tc· construct a network code for each layer. The uni-rate network 
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code construction algorithm is well established, we will skip it and only discuss the 

flow optimization part in the rest of the chapter. 

3.2 Flow Optimization for Intra-layer Network Cod-

. 
1ng 

For every node v E V, let In( v) denote the set of incoming links to v and let Out( v) 

denote the set of outgoing links from v. Ci,j is the capacity of edge (i,j), and sis the 

source node. 

We divide the flow into N layers. Any sink t E Tk, for some k, may receive flow in 

the first k layers with the requirement that the total amount of flow received over the 

first k layers equals Rk. Let x~;~ be the flow on edge ( i, j) for sink t in layer l. Define 

b~' 1 to be the potential of node j for sink tin layer l, which is defined as the difference 

between the incoming flow and the out-going flow. Negative node potential indicates 

a supplying node, while positive node potential indicates a demanding node. Let yf,1 

be the actual flow on edge ( i, j) in layer k (over all sinks). For each sink node t, let 

L(t) denote the number of data layers that sink t will receive (i.e., L(t) = k if and 

only if t E Tk)· Then, the flow optimization problem can be formulated as shown in 

Figure 3.1. 

Constraint (3.1c) follows from the definition of node potential. (3.1d) is the po-

tential constraints at the source node. The total flow sent out from the source s to 

sink t over each layer should equal RL(t). 

Constraint (3.1e) concerns the potential of sink nodes. The flow received in each 

layer should equal the flow sent by the source over the same layer. 
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max 

subject to 

(i,j)Eln(j) 

j 

(j,h)EOut(j) 

t,l 
xj,h 

Ri =- :~::::>~·i, Vt E T, 1:::; j:::; L(t) 
i=l 

j j 

""'bt,i = - ""' bt,i Vt E T 1 < y· < L(t) L.....tt L.....ts' '--
i=l i=l 

j 

(3.1a) 

(3.1b) 

(3.1c) 

(3.1d) 

(3.1e) 

L b~i = 0, Vt E T, 1:::; j:::; L(t), n tJ_ {s, t} (3.1f) 
i=l 

l { t,l} y .. =max x .. 
t,J tET t,J ' 

Vl 1:::; l:::; N (3.1g) 

N 

LYL :::; Ci,j, V(i,j) E E (3.1h) 
l=l 

x~;~ is non-negative integer, Vt E T, V(i,j) E E (3.1i) 

Figure 3.1: Inter-layer flow optimization. 

(3.1f) is the constraint for the potential at the intermediate nodes. The total flow 

received by an intermediate node n in certain layer j should be equal to the flow send 

out by the intermediate node in the same layer. Therefore the node potential must 

be 0; 

Constraint (3.1g) is the network coding constraint, meaning that the flow for 

different sinks in the same layer can be combined together. Constraint (3.1h) confines 

that the actual flow in each edge cannot exceed the edge capacity. 

Finally, notice that inequality (3.1 b) follows from (3.1d) since the sink potentials 
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are nonnegative, thus (3.1b) can be removed. 

3.3 Polynomial Time Randomized Approximation 

The preceding section proposes a RNC solution based on integer programming. How­

ever integer programming is a NP-hard problem itself, and further simplification 

is necessary. For linear rate-fidelity functions, we can develop a provably good 

polynomial-time randomized approximation algorithm. The idea is to relax the in­

teger constraints and further reduce the RNC problem to one of the ordinary linear 

programming problems that is polynomially solvable. This approach is called the 

rounding method in combinatoric optimization literature [36]. 

The algorithm consists of the following three phases: 

• Solve the non-integral version of (3.1) 

• Construct candidate flows. 

• Random flow selection. 

Algorithm Details: 

Step 1. Finding the fractional solution 

By removing the integral constraint in (3.1), we get a relaxed version of the original 

integer programming problem which can be solved efficiently. Let L be the optimum 

solution of the relaxed problem and fJt1, Xk be the resulting variables. Lis obviously 

an upper bound on the integral value of L. 

Step 2. Flow stripping 
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Flow stripping iH the process of constructing potential flows used in the random 

flow selection. For each layer k, we divide the resulting flow xk into I xk l subflows 

such that xi= 1 fm 1:::; i:::; fi:kl-1 and xlxkl = xk -lxd. 

Step 3. Random graph selection 

Pick a suitable scaling factor A E [0, 1] (the computation of A is described below). 

Let ilc = 1 - Axi. Then, for each subflow xi, augment it to 1 and add it to the 

final resulting flow with probability Axi while discard it with probability xi. After 

the random flow selection, check the capacity constraint on all the edges. Accept 

the resulting flow design if no capacity constraint is violated, otherwise repeat the 

random selection process. 

To prove the quality of the integer result obtained by above method, we need to 

show three things. First, the expected value of the resulting integral solution L* is 

AL Second, to bound the running time of our algorithm, we need to show that by 

choosing an appropriate value of A, the probability that any of the capacity constraint 

is violated can be made arbitrarily small. Finally, we need to show that the value of 

L * remains close to its expected value AL with high probability. 

We start by the following theorem. 

Theorem 2. The expected value of L * is AL 

Proof. When selecting subflows xi for each layer k, the expected number of times 

a subflow is chosen is precisely AXk· Applying this to the total flow on the graph and 

noting the linearity of L in the amount of flow proves the lemma. 0 

We then need to show that by choosing an appropriate value of A, the probability 

33 



Ph.D. Thesis- Mingkai Shao McMaster - Electrical Engineering 

that any of the capacity constraint is violated can be made arbitrarily small. To do 

this, we need to use Chernoff/Hoeffding bounds [37] as follows. 

Lemma 2(Chernoff/Hoeffding Bounds). Let X be the sum of a number of 

independent random variables and let f.1 = E[X]. Then we have 

where 0 ::; (3 ::; 1. 

~ 
Prob{x < (1 - f3)f.1} ::; e- 2 

~ 
Prob{x > (1 + f3)f.1}::; e- 3 

(3.2a) 

(3.2b) 

Let Cmin be the smallest capacity of all the links in the network. Using the above 

lemma, we can prove the following theorem. 

Theorem 3. Choose any E E [0, 1] and assume that Cmin > 6Zn1~1. Then there 

exists a scaling factor 1/2 ::; ,\ ::; 1 such that the probability that any of the capacity 

constraint is violated is less than E. 

Proof. Take a arbitrary link e. The expected flow in e with our randomized scheme 

is at most ..\C(e). We are interested in bounding the probability that the flow exceeds 

C( e) and hence violates the capacity constraint on e. Using the notation of Lemma 

2, we are interested in the probability of an event that x > (1 + (3)..\C(e) = C(e), 

thus (3 = 1/,\- 1. If 1/2 ::; ,\ ::; 1, then 0 ::; (3 ::; 1, this probability is bounded as: 

Pe = Prob{ X > (1 + f3)f.1} 

(1-1/ .\) 2 .\C(e) 

= e 3 
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To ensure that Pe::; E/IEI, it is sufficient to have: 

1 3ln~ 
( 

1 )2 € A2-- > --
A! - C(e) 

(3.4) 

for some 1/2 :::; A ::; 1. Now consider the equation: 

1 3ln~ 
77(A) = (A! - -1 )

2
- __ € = 0 

A2 C(e) 
(3.5) 

in the unknown A. To see that this equation has a solution in the interval [1/2, 1], 

it is sufficient to show that 77(1)77(1/2) < 0. Note that 77(1) = - 3~(~ < 0 and 
31 @1 

77(1/2) = ~- ;)(e) > 0 by the assumption of the theorem. Which shows the existence 

of A E [1/2, 1] for which Pe::; E/IEI. 

There are totally lEI edges, so the probability that any constraint is violated is 

less than IEIPe ::; E by union bound. 0 

We have the following theorem on the quality of our integral solution L* for any 

scaling factor A provided that the constraints are satisfied. 

Theorem 4. For all 0 < E < 1, with probability at least 1 - E, the value of L* is 

lower bounded by )J,- vhALln~. 

Proof. Using th<3 first part of Lemma 1 and letting (3 = 21n;y€) gives the result. 

0 
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Chapter 4 

Scalable Multicast using Multiple 

Description Codes 

In this chapter, a new framework of jointly designing multiple description codes and 

linear network codes for scalable multicast is presented. The uneven erasure pro­

tection (UEP) [38] packetization scheme is applied as a practical way to generate 

balanced MDC packets. Unlike the network coding based scalable multicast schemes, 

the proposed technique does not explicitly divide the transmission into multicast lay­

ers and construct a separate network code for each layer. Instead, it only constructs 

one unified network code for the whole multicast transmission, and the computational 

expensive rate allocation problem is reduced to an UEP optimization problem, which 

can be solved efficiently. 

The idea of transmitting UEP packets using linear network code to satisfy the 

individual max-flow values seems to be quite straightforward. However, as we will 

show in the following section, if it is not well designed, the decodability of the received 

UEP packets is hard to guarantee. The novelty and strength of this scalable multicast 
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framework lies in a joint design of UEP and linear network codes. This joint design 

ensures that any linear combination of different UEP packets can be successfully 

decoded. 

4.1 Transrrdtting UEP Packets using Linear Net­

work Code 

Apparently, the best performance of a scalable multicast system can achieve is when 

the max-flow rates cf all receivers are satisfied, if possible. A topic closely related to 

this objective is the linear broadcast network code [13]. 

A w-dimensional linear network code is said to be a linear broadcast if, for each 

receiver, the number of received linearly independent packets equals the minimum 

value of wand the max-flow of that receiver (dim(Vr) = min{w,maxflow(T)} for 

every sink node T) [13]. The existence of the linear broadcast network code is proved 

for an arbitrary network. By choosing a sufficiently large w ( w 2:: maxflow(T) for all 

sink T), one can find a network code such that the dimension of linear independent 

packets received by each receiver achieves its max-flow value. However, the number 

of linearly independent packets available at a receiver does not always equal the 

number of packets which can be used to reconstruct the original data. There are such 

situations where thE packets received by a receiver are linearly undecodable. This will 

never happen in the linear multicast because the dimension of received information 

always equals the code dimension w. But it happens in the linear broadcast when the 

k messages availabl<~ at a receiver are linearly independent, but they are combinations 

of more thank source messages (as shown in Fig. 4.1). It is this undecodability issue 
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that makes the problem of constructing optimal multirate network code to be NP­

hard. 

Figure 4.1: Receiver t3 cannot decode all of its received packets. 

To circumvent the aforementioned decodability issue, it is natural for one to resort 

to the universal decoding ability of multiple description code (MDC). MDC encodes 

source data into independently decodable descriptions, and the receiver is able to 

reconstruct the source given any subset of these descriptions. The more MDC de-

scriptions received, the better reconstruction quality one can achieve. If the source 

data are encoded with MDC, those undecodable packets in the linear broadcast net-

work code can be decoded partially if we take into account the redundancy among 

different MDC encoded descriptions. Then our problem can be formulated as de-

signing the MDC scheme with minimum overall redundancy and the linear broadcast 

network code such that the max-flow rates of all receivers are satisfied. 

Based on the reasoning above, a two-step joint design framework is proposed. 

First, the UEP packetization scheme is applied to the scalable data, as a practical 

way to generate balanced MDC packets. Next the UEP packets are sent over the 
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network using a line1r network code. 

4.1.1 Uneven Erasure Protection (UEP) Packetization 

Uneven erasure protection is a packetization scheme used to achieve robust transmis­

sion in lossy network. The idea is to partition the scalable coded source segments 

into data layers of c.ecreasing importance, and protect these data layers by progres­

sively weaker erasure correction codes. Precisely, in order to create w UEP packets, 

the scalable source segments are partitioned into w consecutive layers L1 , L2 , · · · , Lw. 

Each layer Lk consists of k source segments xk,1 , xk,2 , · · · , Xk,k· Each source layer is 

protected by a maJ<imum distance separable (MDS) code, e.g. Reed-Solomon (RS) 

code. Precisely, the k source segments of the k-th source layer are protected by an 

(w, k) RS code. Tbe effect of such a code is that, all k source segments can be re­

covered from any k channel symbols. Further, the UEP packets are formed accross 

the channel codewords. This packetization scheme guarantees that the first k source 

layers can be recovmed from any k packets, 1 ~ k ~ w. Fig. 4.2 shows an example 

of UEP packetizati,)n with three packets, and hence three layers. In this example, 

systematic RS codes are used. 

Packet 1 Packet 2 Packet 3 

Layer 1 x,, 
Layer2 x2,1 

Layer3 x3,1 

Figure 4.2: UEP packetization with three layers. 
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4.1.2 Linear Network Code 

The linear network code applied to the UEP packets should ensure that any node is 

able to recover a number of source layers equal to its max-flow value. This is possible 

because the k- th layer of any UEP packet is a linear combination of only k source 

messages. Then, when only k packets are received at some sink, the first k layers can 

be recovered. 

However, given an UEP design, there are certain constraints on the construction 

of the linear network code. For example, suppose the UEP design in Fig. 4.2 is used, 

and a receiver with max-flow rate 2 receives 2 packets. Assume that the global coding 

vectors of the received packets are [1, 1, 0] and [0, 0, I] respectively, i.e. the first one 

is packet 1 EB packet 2 in Fig. 4.2 while the second one is packet 3 in Fig. 4.2 alone. 

Although the rank of the received global coding vectors is 2, we cannot decode the 

first 2 layers because the layer 2 data in both packets are X 2,1 + X 2,2 . This example 

shows that the condition that the rank of received global coding vectors equals k does 

not ensure the decodability of the first k source layers. 

Remark. Although careful construction of the network code is required, using UEP 

still greatly simplifies the problem: since any received packet is useful, we can simply 

construct a linear network code achieving all the individual max-flow rates according 

to a specific UEP design. As we will discuss later, with certain simplifications on our 

proposed solution, the complexity of constructing such a network code is equivalent 

to the complexity of ordinary linear network code construction. 
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4.2 Polynomial Time Algorithm 

In this section, we d13scribe the detailed polynomial time algorithm for joint UEP and 

network code design. 

4.2.1 Basic l\·otation 

Consider an acyclic unit capacity network G = (V, E) where parallel edges are al­

lowed. Any non-unit capacity link can be replaced by several parallel unit capacity 

links. Node s E V :s the source node, and T <;;;: V is the set of receivers. For every 

node t E V, let In( 1 ) denote the set of incoming links to t; Out( t) denote the set of 

outgoing links from t; Start( e) denote the node at which edge e starts. 

Let mt denote the max-flow rate from s to receiver t E T, and w = max{ mt : t E 

T}. We use linear ~~odes over a finite field F. For each edge e E E, let f(e) E pw 

denote the w-dimensional global coding vector, and ke E plln(Start(e))l denote the 

IIn(Start(e))l-dime1sionallocal coding vector. Then we have 

f(e) = ke( e') f ( e') ( 4.1) 
e'Eln(Start(e)) 

For an edge e in a path from s to t E T, let <Pt(e) denote the predecessor edge 

on the path. Let r~:e) denote the set of sinks using e in the max-flow paths and let 

P( e) = { <Pt( e) : t E T( e)} denote the set of predecessor edges of e in some flow paths. 

The notation ( ·) stands for the linear span of a set of vectors. 
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4.2.2 Condition of Decodability 

Let Gt be the mt x w global network coding matrix of a receiver t, in which each row 

is the global coding vector of a received packet. As argued in the preceding section, 

the condition rank( Gt) = mt does not guarantee that receiver t recovers the first mt 

source layers. Now we derive a sufficient condition under which the first mt source 

layers can be decoded. Let Mi be the w x i generator matrix of the RS code applied 

in the i-th UEP layer, for any 1 ::; i ::; w. For example, the generator matrix of the 

1 0 

(3, 2) RS code used in the second layer of Fig. 4.2 is 0 1 . Further, note that layer 

1 1 

i of the packets received at node t is a linear combination of the i source segments 

Xi,l,Xi, 2 ,··· ,Xi,i· This linear combination, described by the matrix Gt · Mi, must 

have dimension i in order to ensure that these i source segments can be recovered. 

Therefore, the coding algorithm should construct a network code such that for any 

receiver t, 

(4.2) 

for all i = 1, · · · , mt. 

A straightforward way to satisfy condition ( 4.2) is to check the linear indepen­

dency in all the first mt layers when we choose the coding vector for a certain edge. 

In fact, as long as condition ( 4. 2) is satisfied for all i = 1, · · · , mt, the recovery of 

the first mt source layers is guaranteed even if the channel code applied in each UEP 

layer i is an arbitrary ( w, i) linear code, not necessarily an MDS code. The simplest 

example of such a code is a systematic code with all redundancy bits equal to 0. This 

corresponds to filling with zeros the shadowed area in Fig. 4.2. Moreover, using such 
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codes in the UEP packetization scheme simplifies the algorithm for the network code 

design. This is because we only need to check the linear independency condition ( 4.2) 

in layer mt, accordirg to the following Lemma. 

Lemma 1. If Jo.1i = [ Ii ] , where Ii is the i-dimensional identity matrix, 
O(w-i)xi 

for all i = 1,· ·· ,u;, then rank(Gt · Mk) k implies that rank(Gt · Mi) z for 

i = 1, ... , k- 1. 

Proof Matrix Gt can be written as [c1, · · · , cw], where c1 , · · · , Cw are thew columns 

of Gt. Then rank(Gt · Mk) = rank([c1 , · · · , ck]) = k implies that the first k columns 

of Gt are linearly independent to each other. Clearly, since Gt · Mi = [c1 , · · · , ci], we 

have rank(Gt · Mi) := i, for any i = 1, · · · , k- 1. 0 

4.2.3 Algorithm Description 

Our multirate multicast network coding algorithm consists of the following three steps. 

Step 1. Calculate tbe max-flow rate 

For each receiver t E T, calculate the max-flow rate mt. Since the network is lossy, 

the expected capacities of edges are used to calculate the max-flow rate. This can be 

done using the shonest augmenting path algorithm in O(IVI 2 IEI) time, or using the 

FIFO preflow-push algorithm in O(IVI3 ) time [4]. 
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Step 2. Design the optimal UEP 

Let the total number of the packets in the UEP packetization scheme equal w, so 

there are also at most w UEP layers. The optimal UEP packetization scheme can be 

derived using the polynomial time algorithms described in [39]. The optimal solution 

can be found in 0( w 2 L2
) time for the most general setting, and 0( wL2

) time for 

the data stream with convex R-D function. The UEP packet loss probability in the 

input of the algorithm is, in our case, the max-flow rate distribution among all the 

receivers. The algorithm minimizes the expected overall distortion within the given 

total rate budget (L x w) and outputs the size of each source layer. Note that the 

size of a layer can be zero. Then, fill the scalable source sequence into the optimized 

UEP packets, and fill all the redundant bits with 0. 

Step 3. Construct the linear network code 

Algorithm 1, which is inspired by the LIF algorithm [10], constructs a linear 

network code for a given UEP design. The key idea is to maintain an invariant that 

for each receiver t E T there is a set of mt edges Ct, such that {f(c) · Mmt : c E Ct} 

form a basis of pmt. 
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Algorithm 1. (Corstruction of linear network code) the objective is to construct a 

w-dimensional F-valued linear network code satisfying condition (4.2) when IFI > ITI. 

{ 

} 

Insert a new sou ~ce s' into V 

Insert w parallel edges { e~, · · · , e~} from s' to s into E 

for each imaginary link e~ do 
I f(eD = [oi-l 1, ow-iJ; 

end 

for each t E T do 
Construct m~ disjoint paths from s' to t, which start with imaginary links 

{ e~ , .. · , e~t} ; 

Set Ct = { e~ , · · · , e~J; 

end 

for each node t' E V\ { s'} in topological order do 

for each edge e E Out(t') do 
Choose a global coding vector f (e) such that Vt E T( e), f (e) · Mmt is 

linearly independent of {f(c) · Mmt: c E Ct \ {<Pt(e)}}; -(*) 

for each t E T(e) do 
I Ct = ( Ct \ { <Pt (e)}) U { e}; 

end 

end 

end 
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To see the existence of such a vector f (e) in the step ( *) of Algorithm 1, note 

that for a receiver t E T(e), 9mt(e) = f(e) · Mmt equals the first mt components of 

f(e). Then, relation (5.6) implies: 9mt(e) = Le'Eln(Start(e)) ke(e')gmt(e'). Further, 

since {gmt (c) : c E Ct} form a basis of pmt, it follows that for any combination of 

{ke(e') : e' E P(e) \ {<Pt(e)} }, there is one and only one ke(<Pt(e)) to make 9mt(e) 

linearly dependent of {9mt(c): c E Ct \ {<Pt(e)} }. So there are IFIIP(e)l-1 invalid local 

coding vectors for a receiver t E T( e), and the total number of invalid local coding 

vectors is N ::=:; ITI · IFIIP(e)l-1 < IFIIP(e)l_ Therefore, there must exist at least one 

valid local coding vector. 

Initializing the imaginary links takes 0( w 2 ) time. Finding a flow augmenting 

path takes O(E) time. Hence constructing mt disjoint path for each t E T takes 

O(IEIITiw) time. The vector f(e) can be found in O(ITI 2w) time, similarly to the 

deterministic implementation in LIF. Combining all the parts, the total running time 

of Algorithm 1 is O(IEIITI 2w). 

4.3 Relation to Scalable Multicast using Intra-layer 

Network Coding 

Although the joint design framework described in this chapter takes a very different 

methodology as the intra-layer network coding method presented in previous chapter, 

they share the same essence: the use of linear combination of source data inside each 

data layer. 

In the intra-layer network coding method, the optimal layer division is firstly 

calculated. Then a single uni-rate network code is constructed to linearly mix the 
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data in each layer. 'Nhile in the UEP plus network coding method, although there 

is only one network code constructed and no explicit division of data layers, the 

data layer division iE: actually included in the UEP design process. In fact, the UEP 

packetization itself iE a linear combination of source data. The linearly combined data 

packets are further nixed by the single linear network code to form the final received 

packets. 

Another connection between these two methods is the layered structure. In the 

intra-layer network coding method, the multicast transmission is explicitly divided 

into layers and each layer transmits a data layer using a separate network code. In 

the UEP plus network coding method, although only one single network code is used 

for the whole netwcrks, the layered structure is actually implied inexplicitly by the 

UEP packetization. 

With regard to ;he system performance, there are cases that these two methods 

achieve the same performance, and cases that they perform differently. For simplicity, 

suppose the object .ve function is linear, i.e. our goal is to maximize the overall 

throughput. FigurE 4.3(a) shows an sample network that both method achieve the 

same throughput. Assume the capacity of all the links are 1, then the two approach 

can both achieve a throughput of 6 as shown in Figure 4.3(b)(c). Note that, in the 

UEP based method each UEP packet consists two data layers. However the first data 

layer reduces to 0 during the UEP optimization process due to the linearity of the 

objective function. If the objective function is non-linear, i.e. convex, the optimized 

data layers in the final UEP design are more likely to be non-zero. In Figure 4.4, a 

sample networks which leads the two methods to perform differently is illustrated. 

With the intra-layer network coding method, we can achieve a total throughput of 6, 

47 



Ph.D. Thesis- Mingkai Shao 

(a) Original Networks 

Optimal o =0 

2·0 

'~ \ ( t1 ) \ ) 
'....._./ 

McMaster - Electrical Engineering 

(b) Layered Multicast Solution 

(c) Rainbow Multicast Solution 

Figure 4.3: Case that two methods perform the same. 

while the UEP based method can only achieve a total throughput of 4. 

In fact, we can conclude that intra-layer network coding based method introduced 

in previous chapter always outperforms, or at least performs the same as the UEP 

based method. This is because any solution of the UEP based method is also a valid 

solution for the intra-layer network coding based method. Precisely, in an UEP based 

solution, sink nodes with the same maxfiow value will receive the same amount of 

data (UEP layers), and the sink node with larger maxfiow value will receive larger 

amount of data (UEP layers). 
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(b) Layered Multicast Solution 

(c) Rainbow Multicast Solution 

Figure 4.4: Case that two methods perform differently. 
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Chapter 5 

Scalable Multicast using 

Inter-layer Network Coding 

The scalable multicast schemes introduced so far use intra-layer network coding. How­

ever the intra-layer constraint does not realize the full potential of network coding. To 

overcome the above limitation and take full advantage of network coding technique, 

we present a scalable multicast framework using inter-layer network coding in this 

chapter. 

To perform inter-layer network coding, we still divide the transmission into mul­

ticast layers. However the concept of a multicast layer in the new framework is 

significantly different from previous work. In the previous methods, we do not dif­

ferentiate multicast layer and data layer, since they are always consistent. Precisely, 

multicast layer k can only transmit the mixture of data in data layer k. While in the 

new inter-layer setting, we allow flow in multicast layer k to carry data in all data 

layers 1, 2, · · · , k. Network coding is applied inside each multicast layer, thus, mes­

sages sent in layer k are linear combinations of data in layers 1, 2, · · · , k. Therefore, 
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network coding is actually applied across data layers, exhibiting the inter-layer char­

acteristic of our network coding-based layered multicast technique. Another notable 

difference versus prior work is that the amount of flow delivered to different sinks in 

a single multicast layer is not necessarily the same in the new inter-layer framework. 

In other words, each multicast layer is not unirate. Moreover, we allow flow to trans­

fer from one multicLst layer to a higher multicast layer. Due to all the relaxations 

mentioned above, the proposed scheme has greater flexibility in optimizing the data 

flow compared to pr2vious methods, and thus achieves higher throughput. At a first 

glance all these rela:mtions seemingly make it difficult to ensure the decodability of 

messages received a; each sink. Indeed, the decodability is not guaranteed in each 

multicast layer sepa:·ately, not even cumulatively over all lower multicast layers. But 

it is ensured over al multicast layers assigned to that node, and this is all that is 

needed. 

5.1 Intra-layer Network Coding Solutions Revis­

ited 

As pointed out in the above discussion, previous layered multicast formulations using 

network coding perform intra-layer network coding only. Specifically, each layer of 

data is transmitted to the sinks in a multicast layer. Network coding is applied only 

inside each layer, not across layers. Data flow in different multicast layers cannot be 

encoded together, i.e. the messages transmitted in multicast layer k can only be the 

linear combination of source segments in data layer k. In order to understand the 

drawback of the in;ra-layer technique and to provide some insight on our proposed 
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Figure 5.1: Optimal layered multicast solution for the given network. 

inter-layer scheme we analyze the example shown in Figure 5.1. The network illus-

trated in the figure is a unit capacity network with 4 sinks t 1 , t 2 , t3 , t4 . The max-flows 

of the sinks are 2, 2, 2, 1, respectively. In order to achieve the max-flow rates at all 

sinks, the source data have to be divided into two layers x1 and x2 . x1 has to be 

delivered to all sinks in the first multicast layer and x2 must be delivered to sinks t 1 , 

t 2 , t3 in the second multicast layer. Since cooperation across layers is not allowed, no 

edge can transmit the combination of x1 and x2 . Thus, the optimal layered multicast 

solution shown in Figure 5.1 (which in this case is the optimal multirate multicast 

solution as well) cannot be achieved. 

The above example was first used in [40] when discussing the multilevel diversity 

coding problem. The author proved that the optimal rate cannot be achieved if 

network coding across layers was not allowed. 

By carefully examining the optimal solution we observe that the flow can indeed 

be divided into two multicast layers, but using different criteria than in the intra-

layer formulations. Consider the first multicast layer to consist of edges depicted 
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m Figure 5.1 with f:olid lines and the second multicast layer to consist of dotted 

lines edges. It can be seen that the second multicast layer carries data in both data 

layers, not just in data layer 2. Precisely, edges (s,u2 ), (u2 ,ti), (u2 ,t3 ) transmit a 

combination of x 1 a1d x2 . Moreover, note that sink t 1 does not receive any unit of 

flow in the first multicast layer, while in the intra-layer schemes it would receive one 

unit of flow. But then in order to compensate, t 1 receives two units of flow in the 

second multicast layer, while under the intra-layer framework it would receive only 

one. The above obsErvations could be interpreted in the following way: for some sinks 

part of the data in t 1e first layer is "delayed" and transmitted together with the data 

in the second layer. 

This thought leLds to our novel layered multicast technique based on inter-layer 

network coding. Af usual the transmission is divided into multicast layers, but the 

concept of a multichst layer in our framework is significantly different from the intra­

layer network coding formulations. Precisely, the flow in the k-th multicast layer is 

not confined to carry only combinations of data in data layer k. Instead, it is allowed 

to transport combinations of all data in the first k data layers. This is how network 

coding across data layers is performed. Another notable difference versus prior work 

is that the amount of flow delivered to different sinks during a single multicast layer 

is not necessarily the same. In other words, each multicast layer is not unirate. The 

number of data layers received by each sink is decided by the sink partition. Sinks in 

subset Tk will receive k layers of data. Moreover, we allow flow to transfer from one 

layer to a higher la:ver. The transfer of flow at the source node could be explained in 

the following way. Jn the first multicast layer the source node s has available R1 units 

of flow (i.e., data layer 1) for transmission to any sink. If only R 1 - 1 units of flow 

53 



Ph.D. Thesis- Mingkai Shao McMaster - Electrical Engineering 

are transmitted to some sink t E Tk, then the remaining unit of flow is available for 

transmission to sink tin the second multicast layer together with the new R2 - R1 flow 

units corresponding to data layer 2. This unit of flow could be used in multicast layer 

2 (i.e., transmitted tot), in which case we say that it is "delayed" and transferred 

to layer 2, or it can be further "delayed" and transmitted to t in a higher layer. 

However, by the "end" of multicast layer k all "delayed" flow must reach sink t in 

order to ensure that t receives all data in the first k data layers. Flow transfer from 

a lower multicast layer to a higher layer is admitted at intermediate nodes as well. 

Similar to the previously mentioned schemes, the inter-layer network coding so-

lution also consists of two major steps. First, a flow optimization problem is solved 

to maximize the overall received flow among all the receivers. Next, a single network 

code is constructed to achieve the optimal rates for all sinks. 

5.2 Flow Optimization for Inter-layer Network Cod-

. 
1ng 

5.2.1 Inter-layer Flow Optimization Formulation 

For every node v E V, let In( v) denote the set of incoming links to v and let Out( v) 

denote the set of outgoing links from v. Ci,j is the capacity of edge (i,j), measured 

in number of source segments during a transmission slot of fixed duration 8, and s is 

the source node. Recall that the size of a source segment is fixed. Moreover, a source 

segment represents an indivisible unit of flow. 

We divide the flow into N layers. Any sink t E Tk. for some k, may receive flow in 

the first k layers with the requirement that the total amount of flow received over the 
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first k layers equals Rk· Let x~:~ be the flow on edge (i,j) for sink tin layer l. Define 

b~,l to be the potential of node j for sink tin layer l, which is defined as the difference 

between the incoming flow and the outgoing flow. Negative node potential indicates 

a supplying node, while positive node potential indicates a demanding node. Let yf,1 

be the actual flow on edge (i,j) in layer k (over all sinks). For each sink node t, let 

L(t) denote the number of data layers that sink t will receive (i.e., L(t) = k if and 

only if t E Tk)· The1, the flow optimization problem can be formulated as shown in 

Figure 5.2. 

Constraint (5.1ci follows from the definition of node potential. (5.1d), (5.1e) are 

the potential constraints at the source node. The total flow sent out from source s 

to sink t over the first L(t) layers should equal RL(t)· But the flow sent tot over the 

first j layers, j < L(t), can be less than R1 because some part of the flow in lower 

layers can be "delayed" and transmitted in higher layers. 

Constraints ( 5.1f), ( 5.1g) concern the potential of sink nodes. Since flow in lower 

layers can transfer ;o higher layers, the total flow received by sink t over the first j 

layers, j < L(t), ca.1 be less than the total flow sent out tot by sources over those 

layers. But the total flow received over the first L(t) layers should equal the total 

flow sent by the source over those layers. 

(5.1h), (5.1i) are the constraints for the potentials at the intermediate nodes. Note 

that the potential of some intermediate node l can be negative for some layers. For 

example, negative potential in layer j means that some flow in layer 1, · · · , j - 1, 

transfers to layer J at the current node. Since the transfer of flow is allowed only 

from a lower to a higher layer, the total incoming flow (designated to sink t) at 

intermediate node,:, over the first j layers, cannot be smaller than the total outgoing 
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flow. Moreover if j = L(t) the two quantities have to be equal. 

Since the amount of flow which transfers from layer 1, · · · , j- 1 to layer j should 

be less or equal to the sum of flow in layer 1, · · · , j - 1, the sum of potentials in first 

j layers must be non-negative. 

Constraint (5.1j) is the network coding constraint, meaning that the flow for 

different sinks in the same layer can be combined together. Constraint (5.1k) confines 

that the actual flow in each edge cannot exceed the edge capacity. 

Finally, notice that inequality (5.1b) follows from (5.1e) since the sink potentials 

are nonnegative, thus ( 5.1 b) can be removed. 

5.2.2 Example 

The following example illustrates a solution to the above flow optimization problem 

and the proposed inter-layer network code. To better illustrate the idea, we use 

a linear cost function ¢(R) = R. Consider the unit capacity network shown in 

Figure 5.3. sis the source node and t 1 , t 2 , t3 are the sinks. The max-flow to t 1 , t 2 , t3 

are 2, 2, 1 respectively, and therefore sinks are divided into 2 two subsets: T1 = { t3 }, 

T2 = { t 1 , t 2 }. The flow paths found by the flow optimization algorithm (indicated by 

the values yf,j) are shown in Figure 5.4. Edges in the first layer are shown as solid 

lines, while edges in the second layer are shown as dashed lines. 

Note that under the proposed intra-layer NC framework in order to achieve the 

optimal solution, we would need two multicast layers as shown in Figure 5.5. Edge 

( u4, u 5 ) should be included in both multicast layers in order to carry x 1 to t 2 and x2 

to t 1 . This is not possible since the edge is a unit capacity edge. On the other side, 

in the inter-layer network coding framework edge (u4 , u5 ) is included in the second 
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multicast layer and carries x1 + x2 . Then the information about x2 reaches sink t 1 via 

the path s- u2 - u4 -· u5 - t 1 , which is completely included in layer 2. The information 

about data x1 reach~s sink t 2 via the path s - u1 - u4 - u5 - t 2 , which has the first 

two edges in the fimt layer and the next two edges in the second layer. This path 

illustrates the conce)t of transfer of flow between layers. At node u4 one unit of flow 

directed to sink t 2 transfers from layer 1 to layer 2. 

5.2.3 Observations 

An important observation is that the solution of the inter-layer network coding flow 

optimization problem, when the sinks partition is lmax-flow, is guaranteed to be at 

least as good as that of intra-layer network coding flow optimization schemes shown 

in Chapter 3. This LS due to the fact that the intra-layered optimization formulation 

is included in the rroposed inter-layered formulation as a special case. Precisely, if 

we change the inequalities in constraints (5.1d), (5.1f), (5.1h) into equalities, we will 

obtain the exact formulation of layered multicast in Chapter 3. 

Another notablE observation is that the solution of problem in Figure 5.2 improves 

as the partition T becomes finer. In order to justify this claim consider two partitions 

Ti = { T1 , · · · , TN} .md T{ = { T{, · · · , TJy,}, such that Ti is finer than T{. Then there 

. 1 N 1 h h T' mk+ 1 -
1T are mtegers = m 1 < m 2 < · · · < mN' < mN'+l = + sue t at k = Uj=mk j, 

1 ~ k ~ N'. Then any feasible solution of flow optimization problem corresponding 

to T{ can be conve ·ted to a feasible solution corresponding to Ti, by letting the flow 

in multicast layer r'Lk (on each edge and for each sink) for the latter case to be equal 

with the flow in multicast layer k for the former case, 1 ~ k ~ N', and by assigning 

zero flow in any other multicast layer for Ti. Therefore, in order to improve the 
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performance of the proposed layered multicast scheme we will consider an ITI-size 

sinks partition in Problem 2, in other word a partition where each subset consists of 

only one sink. Since this partition is finer than the partition proposed in [41 J, it is 

expected that we can achieve better performance than in [41]. 

5.2.4 Optimization with Convex Cost Function 

A simple choice for the fidelity function is ¢(R) = R. Then the problem of Figure 

5.2 is an integer linear program, for which heuristic algorithms are widely available. 

However, there are other more meaningful fidelity measures for multimedia appli-

cations (e. g. PSNR, SNR, negative mean squared error), and the solution which 

maximizes the overall received flow is not necessarily the solution with the highest 

overall reconstruction fidelity. Thus, in order to improve the performance of the lay­

ered multicast scheme, the real fidelity function (which is not linear) is more suitable. 

To handle such a case, we will convert the flow optimization problem into a linear 

integer program. 

Let the fidelity function be a non-decreasing function ¢( R), defined for any integer 

R, 1 :::; R :::; M. Recall that M is the number of source segments available at source 

node s, for transmission during a time unit. Because function ¢(-) is non-decreasing, 

it follows that there are non-negative real numbers c1 , 1 :::; j :::; M, such that 

R M 

<P(R) = ¢(0) + L Cj X 1 + L Cj X 0, (5.2) 
j=l j=R+l 

for any integer R with 1 :::; R :::; M. To linearize the flow optimization problem we 

introduce additional binary variables rk,j E {0, 1 }, 1 :::; k :S: N, 1 :::; j :S: M. The 
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value of rk,j indicat(~S whether or not the data segment x1 is included in the first k 

data layers. Precisely, rk,j = 1 if j :::; Rk and rk,j = 0 otherwise. Then 

M 

<P(Rk) = <P(O) + L cjrk,j 
j=l 

(5.3) 

and the optimizatio1 problem can be recast as in Figure 5.6. Notice that condition 

(5.4c) enforces the fELCt that, if rk,j = 1 then rk,j' = 1 for all1 :::; j':::; j, in other words, 

if data segment x1 iE included in the first k data layers then all previous segments are 

also part of the first k data layers. 

5.3 Network Code Construction 

In this section, we present a polynomial time algorithm which constructs a linear 

network code for the given network, such that the optimized flow rates for all the 

sinks are achieved. 

5.3.1 Algorithm Description 

Given the optimized rates R1 , · · · , RN, and the flow in each multicast layer, we want 

to construct a layued multicast code which achieves the rate Rk at each sink in 

We choose the maximum rate RN as the message dimension, i.e. the source trans­

mits RN source se~;ments (or messages) in a unit time. Our framework guarantees 

that any sink in subset Tk receives Rk messages, which are the linear combinations 

of the first Rk source segments. Moreover, these messages are linearly independent, 

thus ensuring the decodability of all first Rk source segments. 
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Note that any network G can be converted to an equivalent unit-capacity network 

G' and the solution to the data flow optimization problem for network G can be 

transformed to an equivalent solution for network G'. For this purpose, any edge 

( i, j) with capacity n of G is replaced by n parallel unit-capacity links of G'. These 

n links are further partitioned into N sets such that the l-th set contains YL edges, 

for 1 ::;; l ::;; N. Note that the total number of links in these N sets equals ""2:~1 yL, 
which can be less than the total number of parallel links between i and j. The edges 

in the l-th set will carry only flow in layer l. Notice that such a partition is possible 

due to relation (5.1k). Moreover, some of these sets may be empty. In particular, the 

l-th set is empty if YI,j = 0. 

Upon this conversion we construct for each sink t E T a set of RL(t) edge-disjoint 

paths Qi, · · · , Q~L(t) from s tot in the graph G'. If an edge e carries flow in layer l, 

we say that edge e is in layer l and use the notation L( e) = l. Notice that such an 

edge transports only one unit of flow. Then the edge-disjoint paths Qi, · · · , Q~L(t) 

are constructed such that the following conditions are satisfied. 

C1) All the paths contain only edges in layers 1 through L(t). 

C2) For any path Q and any two consecutive edges e1 and e2 of Q, edge e1 is in a 

lower or the same layer as e2 , i.e., L(el) ::;; L(e2 ). 

C3) For any i, 1 ::;; i ::;; RL(t)- 1, the first edge of Q~ is in a lower or the same layer 

as the first edge in Q~+l. 

The existence of such paths satisfying the above requirements is ensured by the con­

straints imposed on the node potentials (5.1d-5.1i). Further, for an edge e in a path 

from s totE T, let c/Yt(e) denote the predecessor edge on the path. Let T(e) denote 

60 



Ph.D. Thesis- Mingkai Shao 

for each e E E do 
I Set f(e) = [ORN]; 

end 
for each t E T do 

McMaster - Electrical Engineering 

I 
Construct RL(t) edge-disjoint paths { Q~, · · · , Q~L(t)} from s to t such that conditions 
Cl-C3 are satisCied; 

end 
Insert a super source s' into V 
for each t E T do 

end 

Add RL(t) parallel imaginary edges { e~, · · · , e~L(t)} from s' to s into E; 

Set f(eD = [oi-· 1 ,1,0RN-i]; 
Assign e~ to a path QL 
S C { 1 RL(t)} et t = et , · · · , et ; -(*) 

for each node t' E 11\ { s'} in topological order do 

end 

for each edge e E Out(t') do 

end 

Choose a global coding vector f(e) such that fj(e) = 0 for all j, RL(e) + 1:::; j:::; RN, 

and 
\::It E T(e), f(e) is linearly independent of {f(c): c E Ct \ {1Pt(e)}}; -(**) 
for each t :: T(e) do 
I Ct = (Ct\{<Pt(e)}) U {e}; 

end 

Algorithm 1: Construction of inter-layer linear network code. The objective is to 
construct an Rwdimensional F-valued linear network code achieving the rate RL(t) 

for each sink node t E T, when IF\ > \T\. 

the set of sinks using e in the flow paths. 

Algorithm 1, which is inspired by the LIF algorithm [ 10], constructs a linear 

network code such that the optimized flow rates are achieved. 

The algorithm constructs an RN-dimensional global encoding vector over a finite 

field F with \F\ > \T\, f(e) = (JI(e), h(e), · · · fRN(e)), for each edge e which carries 

flow to some sink. 
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The key idea in order to ensure the algorithm correctness is to maintain an invari­

ant that for each sink t there is a set Ct of RL(t) edges such that the global encoding 

vectors in the set {f(c) : c E Ct} are linearly independent and, moreover, fj(c) = 0 

for all j, RL(c) + 1 ::::; j ::::; RN. The meaning of the latter condition is that since edge c 

is in layer L( c), the message passed along this edge can only be a function of source 

segments x 1 , · · · , x RL(c). Furthermore, the set Ct must contain an edge from each 

path QL 1 ::::; i::::; RL(t), and at the end of the algorithm we must have Ct ~ In(t). 

5.3.2 Proof of Correctness 

The correctness of Algorithm 1 follows from the following lemmas. 

Lemma 1. Assign each imaginary edge e~ to a layer as follows. Let L( eD = k if and 

only if Rk-l < i ::::; Rk. Then, after assigning the imaginary edges to the s- t paths, 

condition C2 is still satisfied for all flow paths. Moreover, the invariant holds at the 

initialization step. 

Proof The fact that the invariant holds at the initialization step is obvious. It 

remains to prove the first claim. For any sink t, and any k, 1 ::::; k::::; RL(t), let n(t, k) 

denote the number of s - t paths for which the first edge (before the inclusion of 

imaginary edges) is in layer k. According to the source potential constraints (5.1d) 
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and (5.1e), we have 

j 

L n(t, i) :::; Rj, 1 :::; j < L(t) (5.5a) 
i=l 

j 

L n(t, i) = Rj, j = L(t) (5.5b) 
i=l 

The above cond tions together with C3 imply that the first edge in the path Q~ 

(before the inclusion of the imaginary edge e~ in the path) is in at least k-th layer, 

where Rk-l < n:::; Rk· Since L(eD = k the conclusion of the lemma follows.D 

Lemma 2. The glcbal coding kernel f(e) in step(**) can be found, when IFI > ITI. 

Proof. This pr•)of closely follows the proof of Lemma 4 in [10]. Let P( e) = 

{<Pt(e) : t E T(e)} denote the set of predecessor edges of e in some flow paths. The 

global encoding ve•::tor f (e) is constructed by finding first a local encoding vector 

( ke ( e') : e' E P( e)) .:tnd setting 

f(e) = L ke(e')f(e'). (5.6) 
e'EP(e) 

Since all flow paths satisfy conditions C2 it follows that L( e') :::; L( e) for all e' E P( e). 

By the invariant, we have fi(e') = 0 for all j, RL(e') + 1 :::; j :::; RN. Hence, (5.6) will 

further ensure that fj(e) = 0 for all j, RL(e) + 1:::; j:::; RN. 

It remains to s .. 1ow that there exists a local encoding vector ( ke ( e') : e' E P( e)) 

such that f(e) is linearly independent of {f(c): c E Ct \ {<Pt(e)}} for any t E T(e). 

By condition C1, we have L(c) :::; L(t) for all c E Ct, hence the last RN - RL(t) 
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components of f(c) are zeros. Then, for each t E T(e) and c E Ct, let f'(c) denote 

the RL(t)-dimensional vector obtained from f (c) after removing the last RN - RL(t) 

components. Define f'(e) in the same manner. Clearly, relation (5.6) still holds iff 

is replaced by f', i.e. 

f'(e) = L ke(e')f'(e'). (5.7) 
e'EP(e) 

Note that due to the invariant, the set of vectors { f' (c) : c E Ct} forms a basis 

of FRL(t). Then when writing f' (e) as a linear combination of the vectors in this 

basis, the coefficient assigned to basis vector f'(¢t(e)) must be ke(cPt(e)) +a for some 

uniquely determined a which does not depend on ke ( cPt (e)). 

It follows that for any choice of { ke ( e') : e' E P( e)\ { cPt (e)}}, there is one and only 

one ke(cPt(e)) to make f(e) linearly dependent of {f(c) : c E Ct \ {¢t(e)}}, namely, 

ke(cPt(e)) = -a. So there are IFIIP(e)l-l invalid local coding vectors for a receiver 

t E T(e), and the total number of invalid local coding vectors is N::; ITI·IFIIP(e)f-l < 

IFIIP(eJI. Therefore, there must exist at least one valid local coding vector.D 

Remark 2. The new algorithm does not require a larger field size compared to previ-

ous layered multicast scheme. 

Lemma 3. Any sink t E T, is guaranteed to receive RL(t) messages which are linear 

combinations of the source messages x1 , · · · , xRL(t)' Moreover, these RL(t) messages 

are linearly independent, thus ensuring the recovering of the first RL(t) data messages. 

Proof. By Lemmas 1 and 2 the invariant holds at the end of the algorithm. Hence 
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t receives RL(t) mesfages, carried along the edges in Ct. Furthermore, due to condi­

tion Cl, all edges ir Ct are in layer L(t) or lower layers. Therefore, these messages 

are necessarily lineac- combinations of the data in the first L(t) layers, x1 , · · · , XRL(t)' 

They are also linear independent by the invariant. Thus the proof is complete. 0 

Remark 3. For sone sink t it is not guaranteed that the messages received over 

the edges in some multicast layer k are decodable. Moreover the decodability is not 

guaranteed either for all messages received over the first k multicast layers, but the 

decodability of mesHages received over the first L(t) multicast layers is ensured, and 

this is all that matters. This concept is illustrated in Figure 5. 7. The example in 

Figure 5. 7 shows the source segment allocation for some sink tin T3 . The vertical axis 

denotes the flow m:;eived by the sink, while the horizontal axis denotes the source 

segments. Each ro\r of the matrix can be considered as the global coding vector of 

a messages received at the sink. The shadowed blocks indicate non-zero coefficients 

and blank blocks indicate zero coefficients. Note that, given the flow over the first 

2 layers, sink t cannot decode the first R2 source segments. However, it can decode 

the first R3 source segments received over the first three layers because the sink is 

guaranteed to receive R3 units of flow. 

5.3.3 Complexity Analysis 

Initializing the imaginary links takes O(R'Jv) time. Finding a flow augmenting path 

takes O(E) time. Hence constructing RL(t) disjoint path for each t E T takes 

O(IEIITIRN) time. The global coding vector f(e) can be found in O(ITI 2RN) time, 

65 



Ph.D. Thesis- Mingkai Shao McMaster - Electrical Engineering 

similarly to the deterministic implementation in LIF. Combining all the parts, the to­

tal running time of Algorithm 1 is O(IEIITI 2RN), which is the same as in the previous 

intra-layer network coding schemes. 
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max 

subject to 

""'"" xt,l _ ""'"" t,l L ~.J L xj,h 
(i,j)Eln(j) (j,h)EOut(j) 

j 

Rj 2: - L b~·i, 'it E T, 1::; j < L(t) 
i=l 

j 

R1 =-Lb~·i, VtET,j=L(t) 
i=l 

j j 

""'""bt,i < - ""'"" bt,i \ft E T 1 < J. < L(t) Lt- Ls' ,_ 
i=l i=l 

j j 

Lb~,i =- Lb~,i' 'it E T,j = L(t) 
i=l i=l 

j 

Lb~i 2: 0, 'it E T, 1::; j < L(t),n fj. {s, t} 
i=l 

j 

Lb~i = 0, 'it E T,j = L(t),n fj. {s,t} 
i=l 

(5.1a) 

(5.1b) 

(5.1c) 

(5.1d) 

(5.1e) 

(5.1£) 

(5.1g) 

(5.1h) 

(5.1i) 

Yi 1· =max { x;'
1

1 
}, Vl 1 ::; l ::; N (5.1j) 

' tET ' 

N 

LYL ::; Ci,j, V(i,j) E E (5.1k) 
l=l 

x~:; is non-negative integer, Vt E T, V(i,j) E E (5.11) 

Figure 5.2: Inter-layer flow optimization. 
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s 

U4 
/ 

Figure 5.3: Example network with 3 sinks. 

Figure 5.4: Solution produced by the inter-layer network coding scheme. This is the 
optimal layered multicast solution for the given network. 
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(a) Layer 1 (b) Layer 2 

Figure 5.5: Optimal layered multicast solution for network in Figure 5.3 cannot be 
achieved with the intra-layer network coding technique unless edge (u4 , u5 ) has ca­
pacity 2. 

max 

such that 

N M 

~~crk· LL J ,J 

k=l j=l 

M 

Lrk,j = Rk, 1::; k::; N 
j=l 

Tk,l 2: Tk,2 2: ... 2: Tk,M' 1 ::; k ::; N 

rk,j E {0, 1}, 1::; k::; N, 1::; j::; M 

conditions (5.1b)-(5.11) hold 

Figure 5.6: Linearization of the flow optimization problem. 
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I 
Layer 1 ~ ~774777-%+---t---+--t----+---t 

R1 ~~~~~~~~~~r-_,--~ 

Layer 21 ~~~~~~~--t---1 
I ~~~~~~~~~h7~//7~ 

Figure 5. 7: Example of data allocation among layers for a sink in layer 3. 
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Chapter 6 

Simulati~on Results 

This section contains some simulation results of the proposed network coding based 

scalable multicast schemes, as well as the previous non network coding based solu­

tions. 

6.1 Simulation Setup 

In the simulations, vre consider a family of networks which were first introduced in [10]. 

In this network model, all the sinks are connected to a central source node through 

a group of intermediate nodes (as the network shown in Figure 6.1). This network 

model mimics the practical multimedia distribution system with several distributed 

servers. All of the distributed servers in U connect to a central server s, and each 

client in T connectf to several distributed servers. 

The networks used in simulations are randomly generated as follows. We start 

with the source node s and add intermediate nodes and sink nodes sequentially. We 

set the number of intermediate nodes to be Nu, and each intermediate node connects 
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Figure 6.1: Network model used in simulations. 

directly to the source s. The total number of sinks is Nr, and each sink randomly 

connects to P percent of the intermediate nodes. Once the network is constructed, 

we assign a random capacity between 0 to C1 (kbits/s) to the edges between sand U, 

and assign a random integer capacity between 0 to C2 (kbits/s) to the edges between 

U and T. 

We will compare the performance of the scalable multicast with intra-layer net-

work coding as proposed in Chapter 3, the scalable multicast scheme with inter-layer 

network coding discussed in Chapter 5 and a layered multicast scheme without net-

work coding. We will also test the impact of refining the sink partition T, as discussed 

in Chapter 5. We consider two cases for the inter-layer network coding scheme: 1) 

T = Tmax-flow, i.e. the sink partition correspond to the max flow value of sink nodes; 

2) Tis a refinement of Tmax-flow where each subset contains only one sink. We refer to 

the above two cases as scheme A and B, respectively. According to the observations 

in Subsection 5.2.3, we expect for scheme B to achieve a higher performance than 

scheme A, and both to outperform the other two methods. 
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Figure 6.2: Avere.ge normalized rates of four different layered multicast schemes. 

6.2 Performance Comparison of Rate-maximized 

Layered Multicast Schemes 

We first compare the performance of all candidate schemes using the received flow 

as fidelity function in the flow optimization problem (i.e. the fidelity function is 

linear to the received flow). In other words we compare the solutions which maximize 

the overall receivec_ flow. The comparison is with respect to a performance measure 

called Average Normalized Rate (ANR), which is defined as the ratio between the 

total rate received by all sinks and the sum of the max-flow values of all sinks. Clearly, 
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the larger the ANR, the better the scheme. Although the optimal ANR value for a 

certain network is generally unknown, an obvious upper bound of ANR is 1. Since 

there does not necessarily exist a network code that achieves the individual max-flow 

of all the sinks, the upper bound 1 is not tight for all the networks, even for the 

optimal solution of multirate multicast. 

The performance of the four schemes is evaluated for different network sizes, and 

the results are plotted in Figure 6.2. In Figure 6.2(a), C1 and C2 are both set 

to be 320kbit/s, while each sink node connects to 50% of the intermediate nodes. 

In Figure 6.2(b), C1 is changed to 640 kbit/s, twice the value of C2, while the 

connectivity remains 50%. In Figure 6.2(c), C1 and C2 remain 640 kbit/s and 320 

kbit/s respectively, but each sink connects to 25% of the intermediate nodes. The 

duration of a transmission slot is J = 1 second, the size S of a source segment is 

30 kbits, and Nu = 10 in cases (a-c) while Nu = 20 in cases (d). We can see from 

the figure that the proposed inter-layer techniques always outperforms the other two 

opponents. Moreover, scheme B outperforms scheme A as predicted in theory, and 

the improvement is generally larger than the improvement exhibited by scheme A 

over the intra-layer scheme. As the network size increases, the gap to the upper 

bound of 1 increases for all the schemes. We believe that is due to the fact that 

as the number of sinks increases, intuitively, the upper bound of 1 becomes looser 

since it is more difficult to satisfy the max-flow value for all the sinks. Comparing 

Figure 6.2(a) and Figure 6.2(d), we find that although each sink connects to the 

same number of intermediate nodes, the overall throughput will be larger in the 

cases with more intermediate nodes. This can be explained as fewer intermediate 

nodes means relatively more sink nodes rely on each intermediate node, thus increases 
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the probability of the conflict that different sinks request the same link to transmit 

different data. 

The performance comparison also shows the huge advantage of network coding 

based multicast schemes over the scheme without network coding, which reinforces 

the merit of using network coding in practical system. 

6.3 Perforrnance Comparison of PSNR-maximized 

Layered Multicast Schemes 

In this section, we compare the performance of all candidate schemes for multicasting 

a H.264 SVC [42, 4~1] confined scalable video stream, generated by the JSVM 9.15 

codec [44]. A simpl~~ IPPP coding structure is used in the experiments. We encode 

the "Foreman" vide) sequence ( CIF) with 300 frames at a frame rate of 30fps. The 

video sequence is transmitted during a single transmission slot of duration 8 = 10 

seconds. By enabling the median grain scalability (MGS) [45] feature in JSVM, we 

can get a scalable video stream with fine quality scalability. Notice that H.264 SVC 

supports the divisio 1 of the bitstream into scalable data layers only at certain points. 

Out of the whole set of possible division points we have selected a subset such that the 

size of each scalable data layer to be approximately 300 kbits (i.e., 30 kbitsjsecond). 

The average rate-PSNR curve of the scalable codestream is shown in Figure 6.3. 

The points mar ked with a diamond correspond to ( r ,PSNR( r)) pairs for the selected 

division points in the scalable bitstream, where r x fJ is the length in kbits of the 

prefix up to the division point. To generate the source segments x 1 , x2 , · · · , x M, the 

scalable bitstream is divided into equal sized segments of S kbits each. The value of 
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Figure 6.3: Rate-PSNR curve used in the experiments. 

the fidelity function ¢( R) used in the optimization problem is computed as the PSNR 

achieved after decoding all scalable data layers wholly included in the prefix of size 

S x R kbits. Precisely, if r 1 < r 2 < · · · < rQ are the rates in kbits/second of the 

division points, then ¢(R) = PSN R(rq0 ), where r 0 = max{qJrqS::; SR}. 

We first compare the rate-maximized solution (i.e., where ¢(R) = R) with the 

PSNR-maximized solution (where the fidelity function is PSNR) of the proposed 

layered multicast scheme. In both cases the one sink-per subset partition is used 

(i.e., scheme B). The performance measure is the average PSNR at the sink nodes. 

Figure 6.4 plots the average PSNR for the PSNR-maximized solution and for the rate­

maximized solution, when Nu=IO, C1 =320 kbit/s, C2=320 kbit/s, P=50% and S = 

300 kbits. The comparison results in Figure 6.4 show that maximizing PSNR directly 

always outperforms the rate maximization approach in terms of reconstruction fidelity. 

Next, we compare the PSNR-maximized solutions for all candidate schemes in the 

same network configuration (Nu=IO, C1 =320 kbit/s, C2 =320 kbit/s, P=50%) and 

for the same source size (S = 300 kbits). The results in Figure 6.5, show that the 

relative performance between the candidate schemes is similar to that exhibited by 
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Figure 6.4: PSNR comparison between the PSNR-optimized and rate-optimized so­
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Figure 6.5: Average PSNR of different layered multicast schemes. 

the rate-maximized solutions. Precisely, the proposed inter-layer schemes are always 

superior to the intra-layer scheme, and the network coding based schemes greatly 

outperform the scheme without network coding. Moreover, inter-layer scheme B is 

always superior to scheme A. As the network size increases, the achieved average 

PSNR of all schemes decreases. On the other hand, the inter-layer scheme B has the 

lowest decrease rat<3. 

Figure 6.6 presents the performance of Inter-layer scheme B for different source 

segment sizes S == 150,300,450 kbits. The network is configured with Nu=lO, 
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Figure 6.6: Performance of Inter-layer scheme B for different source segment sizes. 

C1 =480 kbit/s, C2=480 kbit/s, P=50%. The test results show that increasing the 

source segment size S above the approximate size of scalable data layer may lead 

to significant performance degradation. This was expected since in such a case the 

transmission scheme does not take full advantage of the bitstream scalability. On the 

other hand, reducing the source segment size below the size of the scalable data layer 

improves the performance since the capacity constraints in the optimization problem 

become more relaxed, but the improvement is very slim. 
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Chapter 7 

Conclusions 

Network coding, the new promising paradigm of network communication, is shown to 

be able to greatly improve throughput over traditional routing. In this work, we have 

studied the scalable multicast problem in the network coding scenario. We showed 

that those traditioral routing methods reduce to a special case in the new network 

coding context. 

We have proved that the scalable multicast problem is NP-hard, even with the 

ability to perform network coding at the network nodes. Several approximation prob­

lems are derived based on different heuristics, and systematic approaches have been 

devised to solve those problem. 

Two important frameworks usually found in traditional scalable multicast solu­

tions, i.e. layered multicast and rainbow multicast, are studied and extended to the 

network coding scenario. Solutions based on these two frameworks are also presented 

and compared. Surprisingly, these two distinctive approaches in the traditional sense 

become connected and share a similar essence of data mixing in the light of net­

work coding. Case~ are presented where these two approaches become equivalent and 
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achieve the same performance. 

We have made significant advances in constructing good solutions to the scalable 

multicast problem by solving various optimization problems that formulated in our 

approaches. 

In the layered multicast framework, we started with a straight-forward extension 

of the traditional layered multicast to the network coding context. The proposed 

method features an intra-layer network coding technique which is applied on different 

optimized multicast graphs. Later on, we further improved this method by introduc­

ing the inter-layer network coding concept. By allowing the network coding among 

data from different data layers, more leverage is gained when optimizing the network 

flow, thus higher performance is achieved. 

In the rainbow multicast framework, we choose uneven erasure protection (UEP) 

technique as a practical way of constructing balanced MDC, and optimize this MDC 

design using the max-flow information of receivers. After the MDC design is final­

ized, a single linear network broadcast code is employed to deliver MDC encoded data 

to receivers while satisfying the individual max-flow of all the receivers. Although 

this rainbow multicast based solution may sacrifice the performance in some cases, it 

greatly simplifies the rate allocation problem raised in the layered multicast frame­

work. The use of one single network code also makes the network code construction 

process a lot clearer. 

Simulation results show that the network coding based scalable multicast solutions 

can significantly outperform those traditional routing based solutions. In additional 

to the imaginary linear objective function used in the simulation, the practical convex 

objective function and real video data are also used to verify the effectiveness of the 
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proposed solutions. The role of different parameters in the proposed approaches are 

analyzed, which givt~S us more guidelines on how to fine-tune the system. 

However, the sc2lable multicast problem is still open. Some of the possible future 

directions include: 

• In the layered multicast framework, find better initial orderings among sinks, 

which do not llecessarily agree with their max-flow value. Besides, our current 

approach perbrms network coding across different data layers but still within 

each multicast layer. Further relaxing this constraint and allowing network 

coding among different multicast layers is expected to have greater potential to 

increase the performance. 

• In the rainbow multicast framework, we only discussed UEP approach as a 

way to construct balanced MDC in this dissertation. Finding a systematic way 

to design more sophisticated MDC (i.e. unbalanced MDC) according to the 

network structure is also a promising direction. 
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