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I INTRODUCTION

In recent years the computer has become a very
valuable business and research tool, However, its application
to mechanism design has not been as widespread as it should
be. The primary stumbling block to such applications has
been the lack of easy to use programs to deal with the
complexities of mechanisms. An efficient, reliable, and
sufficiently comprehensive program dealing with mechanisms
is not an overnight undertaking; thus it has been spurned
by practicing Engineers in favor of existing intuition-
based trial-and-error methods which oft-times lead to many
unacceptable prototypes before a sub-optimum creation is
deemed acceptable for current needs., This thesis presents
a complete and tested technique for synthesizing, balancing,
and analyzing the particular mechanisms included ((namely the
planar four-bar (R-R-R-R*), planar slider-crank (R-R-R-P),

and spatial four-bar (R-G-G-R) linkages)).

* R~R-R-R is the symbolic name given to a linkage with
four pin-connected (revolute) joints. The order of naming is
clockwise around the linkage from the crank-frame joint.
Other joint symbols are P for a parallel-sliding (prismatic)

joint and G for a ball-and-socket (globular) joint.



The technique requires that the designer need only
specify the particular design requirements as program input,
select the appropriate method for the problem, and relax for
a period of about two minutes while the computer determines
the optimum mechanism design parameters for his problem and
displays, through different plots, how his optimum mechanism
will behave. He may then indicate his desire to see how his
optimum mechanism parameters compare with other possible
mechanism parameters as a check on their optimality -~ forty
seconds will pass as a meaningful graphical contour plot is
displayed. After examining one or more such contour plots,
the designer may either reject the "optimum” design and
redefine the problem conditions as a result of the
enlightenment provided by the computer output, or he may
accept the parameters and ask the computer to do a complete
velocity and acceleration analysis of his optimum mechanism.
Almost instantly appropriate tables and plots of his
mechanism's performance will be displayed. If this data is
acceptable, then the designer can "finish off" his mechanism
by asking the computer to determine the optimum counterweights
and their positions required to balance his mechanism with
respect to the horizontal and vertical shaking forces, and
the shaking moment about the crankshaft axis. Within seconds
the optimum counterweight parameters and appropriate tables
and plots showing the before and after effect of the balancing

will be displayed. As in the synthesis optimization, a



contour map showing the effect of the design parameter
changes can bé displayed‘if desired. The analysis and
balancing procedures are not restricted to the computer
synthesized mechanism, but may be applied to any mechanism
parameters the designer may conceive. Thus the program is
designed to have complete flexibility with respect to a

designer's needs,

But what does this éll mean in terms of time and
money. The total synthesis, analysis and balancing usually
requires about three minutes of computer time (on the medium-
sized CDC 6400 computer) which, at the computer rate of
$600./hour, means a cost of about $30. for the average
mechanism design problem. However, what is more important
is that the designer has been released from the arduous
task of trial-and-error synthesis - a very expensive
procedure which has been eliminated. The designer mah—nours
consist only of those required to think up and specify the

problem conditions and examine the computer output.

Thus, in comparison with present mechanism design
techniques, the user-orientated computer program which has
been developed using the techniques embodied in this thesis,
many of which are new to the field of mechanism design, not
only provides a better design, but also produces this design

in less time and at a reduced overall cost.



IT GENERAL THEORY OF OPTIMIZATION AS APPLIED TO MECHANISMS

In engineering work it is often necessary to determine
the optimum dimensions of the independent design variables in
order to minimize a particular dependent design variable such
as cost or weight. There are numerous well-developed
techniques for accomplishing such a task. OPTIPAC [4] is an
. attempt to provide a user-orientated system for such general
optimization problems. A number of people [5] [6]1 [7] (8]

[9] [10] [11] [12] have dealt with the problem of optimizing
the independent mechanism design variables to minimize the
mechanism structural error (the difference between the

desired and actual positions of the mechanism output)
evaluated for given values of an operating variable such as
time or the crank angle. However, as is explained in Chapter
III, in mechanism design it is paramount to consider more than
a single factor in a meaningful optimization; thus a multi-

factor optimization technique is required.

A survey of available techniques for multifactor
optimization.shows that the most meaningful way to tackle the
simultaneous optimization of more than one dependent design
variable is to use what are termed in the literature as
utility functions. The utility functions are merely functions
which convert ﬁhe dissimilar units of different dependent
variables into general units of utility which may be directly

4



combined together. The magnitude of these units indicates
the relative importance of the particular dependent variables.
As an example, for a particular design, a cost of one dollar
may have a utility value of two utility units, and a weight
of one pound a utility value of four utility units; thus,

if maximum utility is the optimization criterion, a weight

of one pound is twice as desirable as a cost of one dollar.
Therefore, utility functions convert noncompatible units such
as dollars aﬁd pounds weight into universal utility units
which can then be combined to form a total desirability
function which is to be maximized by optimizing the indepen<

dent design variables.

Siddall [13] gives a summary of the available
techniques for developing utility function relationships.
Unfortunately, none of these techniques are appropriate for
the multifactor optimization problem developed in this thesis.
Therefore a meaningful, general, and easy-to-use technique
for establishing utility function relationships for multi-

factor optimization problems has been developed.

This new technique involves the use of "inverse
utility functions". Inverse utility, as its name may indicate,
can be defined as the reciprocal of the conventional utility
value previously described. That is to say, a dependent
variable's inverse utility is the reciprocal of its relative

desirability for a particular design.



The use of a graph of the dependent design variable

(horizontal axis) versus its inverse utility (vertical axis)

clearly depicts the functional relationship in graphical

form - henceforth the graph will be referred to as an inverse

utility curve. This inverse utility curve is developed by

using the following five-step procedure.

l.

An inverse utility of zero is assigned to the
most desirable or ideal value of the dependent
design variable (e.g. a value of zero would be
assigned to a manufacturing coét of zero dollars).
An inverse utility of positive infinity is
assigned to the least desirable value of the
dependent design variable (e.g. a value of
positive infinity would be assigned to a
manufacturing cost of infinite dollars).

An inverse utility of plus one is assigned to the
dependent design variable value which approxi-
mately defines the line between acceptable and
unacceptable dependent design variable values
(e.g. a manufacturing cost of two thousand
dollars for a compact automobile).

An inverse utility curve is sketched to satisfy
steps 1, 2, and 3, and also the optional require-
ment that the slope of the curve for an inverse
utility of zero be zero (see Figure 2.1 for the

compact automobile example).



5. A simple mathematical relationship which best

fits the curve sketched in step 4 is derived.

Note that step 3 is the key step in establishing
the proper scaling of the utility functions. It is essential,
for these inverse utility functions to work properly, that,
for a given problem, all the dependent design variable values
(which are to be combined into the objective function for
minimization) have values of equal importance to the designer
corresponding to inverse utilities of one. The values which
mark the border between unacceptable and acceptable values
of the dependent design variables usually provide values of
equal desirability to the designer - thus these values are
all assigned an inverse utility of one for a particular
problem. However, a designer is not restricted to using
these unacceptable - acceptable values to provide the relative
scaling for the dependent design variables. If, for a given
problem, the designer knows of another complete set of
variable values, all of which are of equal desirability,
then he is free to give each member of this set of variable
values an inverse utility of one. Thus, step 3 is just a
reasonable step to provide the relative scaling for the
component dependent design variables which are included in

the objective function for minimization.

The first advantage of this inverse utility technique

is that after the above five steps have been done once, if



the number decided on in step 3 is left as a variable,vx,
then a whole family of inverse utility curves is defined
(Figure 2.2), each particular curve identified with a
particular x value. Thus the curve derived for the compact
automobile in the example could also be used for a medium-
sized automobile if X were changed to a higher value, say

$2500.

The second advantage of the inverse utility technique
is apparent when the utilities of the various dependent
design variabies being considered in the optimization proce-
dure are combined to form the total desirability function.
Using conventional utility curves there is some question
as to whether the utilities should be added, multiplied, or
combined in some more complicated way, and also whether the
utilities should be weighted. However, using the inverse
utility concept, simple addition of the component utilities
is meaningful and certainly superior to their multiplication.
Addition of inverse utilities appears to have the advantages
of both the addition and multiplication of conventional
utilities without their inherent disadvantages. For example,
in the addition of conventional utilities, if one of the
utilities is zero (implying a very undesirable variable
value), the total desirability function is still high if
the other utility values are high. However, the inverse
utility corresponding to a conventional utility of zero is

infinity, and infinity plus any positive number is infinity.
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Thus, a high'value of the inverse utility total desirability
function (which corresponds to a low value of the conven-
tional utility total desirability function) is calculated

no matter what the other utility values are. (This is one
of the desirable features of the multiplication of conven-

tional utilities.)

Unfortunately not all the conditions affecting an
optimization problem can be handled using the inverse utility
concept. These are usually explicit constraints on one or
more of the independent design variables (e.g. the thickness
of a door cannot be negative) and implicit constraints
which are functions of the independent design variables
(e.g. the frequency of lateral vibration of a beam cannot
be negative). Explicit constraints are best handled using
variable transformations, and implicit constraints are
usually best handled using some type of penalty function

transformation.

To handle explicit constraints variables may be

transformed* using the following methods.

* The transformation is applied before the variable
is used in the objective function. Thus a nonacceptable

variable value is never evaluated in the objective function.
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Let x be a constrained independent deéign variable,
X;* be the transformed unconstrained variable

corresponding to X, and L and U be scalar constants.

1. For constraint X > L,

let X =1 + Ky— Ll k&K
2. For constraint x < L,
let x =1L - |[x¢- L|
3. For constraint L < X < U, where U > L,

let x =L + ( (U-L) /7 ) ARCCOS(COS
(7 (xe=L)/ (U-L) ))

where O < ARCCOS (...)< T

Transformations 1 and 2 (above) work well, but
transformation 3 can cause some difficulties. The difficul-
ties arise from the necessary periodicity of the optimization
surface with respect to the untransformed variable x. If
the minimization routine used develops a step size in the

direction of variable % which has a magnitude approximately

* % In practice Xt is not distinguished from X,

Hence transformation 1 would be X=1L + lx-Ll .

*** Single vertical lines on each side of an
expression indicate that the absolute value of that expres-

sion is to be used.
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equal to a multiple of (U-L)/m, and is also a type of
minimization routine which will accelerate in a particular
direction, then there is a chance of an unnecessary large
number of useless steps being taken. This situation seems
unlikely, but it is aggravated by a relatively flat optimi-
zation surface, and has occurred in practice. Thus it is
necessary to place some form of weak constraint on the
Variable to prevent such cases from causing troubles.

(Note that this constraint is only necessary for certain
minimization techniques, many being satisfied completely
with only transformation 3.) For the minimization technique
developed in Chapter V this constraint, C, takes the
following form:

C=M(U-L) /2= |x- (U-L) / 2|

Where M is an odd integer between 1 and 45, and C 2O
in the feasible region and C < O in the infeasible

region with respect to constraint C.

M indicates the degree of constrictiveness of the constraint -
1 the most constrictive and 45 the least. Eleven is a
suitable value for M. Constraint C is then considered as one
of the implicit constraints discussed in the following

paragraphs.

Direct variable transformation is the most efficient
technique for handling constraints when it can be used.

However, implicit constraints can usually not be handled in
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this way. The penalty function technigque is the most
general technique available which handles constraints which
cannot be eliminated through direct variable transformations.

Fiacco and McCormick [14] provide a complete description of

e
7

various exterior-point and interior-point transformations

which they rigorously prove to be mathematically valid.

The basis of the penalty transformation is the
addition of a function of the constraint function to the
original constrained objective function to form a new
unconstrained objective function which can be minimized
using one of the many efficient techniques available for

minimizing an unconstrained objective function.

An interior-point transformation requires an initially
feasible starting point for the minimization sequence. The
transformation is such that as a constraint boundary is
approached from the interior-feasible region, the constraint
function term of the objective function increases smoothly
towards infinity at the constraint boundary. Thus the
optimization surface of the original constrained objective
function is disturbed so as to form a bowl of infinite sides
which the minimization technique can theoretically not
escape from. Interior-point transformation methods rely on
successive decreases of a perturbation parameter to effec-
tively reduce the bottom of the bowl to the original

constrained optimization surface except at points very close
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to the constraint boundaries where the "high sides" are

retained.

Exterior-point transformation methods, unlike
interior-point transformation methods, do not require a
feasible starting point and do not disturb the optimization
surface in the feasible region. The constraint function
term merely adds infinitely long upward-sloping "sides" to
the constrained objective function starting from the
constraint boundaries, much like the sides of a gold pan
extended to infinity. Conventional methods either start
with a very small slope to the sides and successively
increase it or they use one very large fixed slope through-

out the minimization sequence.

It so happens that the optimization surface for the
mechanism synthesis problem already has a bowl shape with

10 utility units high at the boundary

sides approximately 10
of the constraint which insures mechanism closure at all
points in the desired range of motion. Thus there is no
sense in using an interior-point transformation since the
constrained problem, as originally posed, already restricts
any minimization method to the feasible region once it gets
there. However, initially identifying the feasible region

for a given problem may be difficult, so that the use of an

exterior-point transformation, which enables a minimization

method to reach a feasible region from an infeasible region,

is desirable.

/
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Figures 2.3 to 2.5 illustrate the importance of the
proper formation of the magnitude of the constraint function
term of the objective function. Thus it is apparent that
one must either devise a scheme for proper scaling of the
constraint function term for the general case, or rely on
the time wasting procedure of starting with a very small
term and successively increasing it. (Starting with an
originally very large term is generally unacceptable due to
the unnecessary stalling it causes most minimization

techniques.)

Thus the following exterior-point transformation has
been devised to provide a general transformation technigue

which accounts for scaling of the constraint term.

m
S(X, e, t) = f(X) - et % min(o, C; (X))
i=1
where e = a if [f (X)]| < a
= |f (R)]| @ if £ (%) | 2 a,

a and t are positive nonzero scalar parameters,
m is the number of constraints Ci of the form
C; (%) 2 o,

f is the original constrained function,

X is the vector of independent design variables, and

S is the new transformed objective function.
Appendix A shows that it is necessary that scalar a be
greater than zero, and that a minimum of S is equal to a

local (feasible) minimum of f for a sufficiently large value
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of the parameter t.

The multiplier product et is the key to the scaling
problem, Parameter e insures that the constraint term is
of the same order of magnitude as the constrained objective
function, £. Thus, for the case f(X) > a, which is the
most common one encountered in the minimization problems of
this thesis,

m

S = f(x) [1 -tz
i=1

min (o, C, (®) | .

From the above relation it becomes apparent that the amount
thét the objective function S is increased as a constraint
is violated is proportional to the size of the constrained
objective function. Thus, if the constrained objective
function, £, is of magnitude 1010, then the unconstrained
transformed objective function, S, will have increases

which are significant with respect to 1010 if one of the
constraints, C, is violated. Similarly, if f is of
magnitude 10, then S will have increases which are signifi-
cant with respect to 10 if one of the constraints is
vioclated. The value of parameter t also affects the
magnitude of the constraint term. In fact, parameter t can
be considered to be the fine scaling value for a particular
problem, e being the parameter that gets the constraint term
in the magnitude ballpark. In some problems, the value of t

required to produce a reasonably shaped optimization surface

also introduces a false optimum in the infeasible zone.
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When a minimization method converges to this false optimum,
it is desirable to be able to increase t, and start a new
minimization sequence from this point. If a method has this
restarting feature, then it can use an initially low value
of t (between .1 and 10.), which is all that is necessary
for most methods, without worrying about the exceptions

where an infeasible optimum is created.

The general minimization sequence now takes the

following form.

1. Introduce the necessary direct independent
variable transformations into the constrained
objective function £f.

2. Choose suitable values for a and t, and perform
transformation S (values of 1 and 10 for a and
t respectively have worked well in practice).

3. Minimize the transformed function S.

4. Check for negative values of Ci:

(a) if any C; are negative, then increase t
(multiplying by 10000. has worked well in
practice) and go back to step 3;

(b) 1if all Ci 2 o, then optimization is

completed.

In this chapter the tools necessary to optimize the
independent mechanism design variables with respect to one

or more dependent mechanism design variables have been



developed. 1In the following chapters it will be shown how

these tools can be effectively put to use.

21



ITTI MECHANISM SYNTHESIS

Chapter II deals with the development of a technique
for including the effect of one or more dependent design
variables to establish a suitable objective function for
minimization. The optimum values of the independent design
variables which are used in the objective function are
those values which make the objective function a minimum.
Thus, if all the significant independent design variables
are included in an objective function which properly
assesses the relative values of the important dependent
design variables (using the inverse utility curves of
Chapter II), then the optimum values of the independent
design variables can be obtained by minimization of the
objective function. It is the purpose of this Chapter to
develop the appropriate objective functions for the
following five general synthesis problems:

(1) planar four-bar function generation;

(2) planar four-bar coupler-point curve generation;

(3) planar slider-crank function generation;

(4) planar slider-crank coupler-point curve

generation; and

(5) spatial (RGGR) four-bar function generation.
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Freudenstein [1l] is the developer of the traditional
analytical precision-point method based on the evaluation of
only the theoretical sﬁructural error term determined at
precision points with Chebychev spacing. In his work the
theoretical structural error is made equal to zero at these
precision points* (input values for which the output values
are evaluated); however, the number of such precision
points is limited to the number of independent design
variables in a particular linkage synthesis. Thus
Freudenstein relies on the optimality of Chebychev spacing,
or modifications thereof [2] [3], to control the magnitude
of the structural error in between the precision points.

The answers obtained using this traditional precision point
technique are difficult to improve on from a theoretical
structural error standpoint. However, the inclusion of
mechanism constraints (such as the actual existence of the
mechanism between precision points) and additional dependent
design variables (such as the transmission angle) in the
objective function are not possible. Thus the technique
developed in this thesis is not an alternate technique for

minimizing the structural error of a linkage (such as those

* Strictly speaking, the precision points used in
this thesis are not true precision points, since the
structural error need not necessarily be zero at such

points.
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in references [6] [7] [8] [9] [10] [11] [12]), but is a
new technique which is intended to aid in the design of

linkages which will be truly optimum for a given purpose.

In order to determine the optimum link lengths for
a given linkage one must stipulate the input to the linkage
and what sort of output is desired. (A linkage is only a
contrivance for transferring motion, being a passive object
with no source of energy unto itself.)} The structural error
is then, for a given input motion, the difference between

the desired output motion and the actual output motion.

It is often desirable for control instruments and
mechanical calculators used in industry to have a device
that converts motion from one form to another with the
scales of both motions being linear. For example, for a
certain automatically controlled water acidity control
system, it is necessary to add cupric chloride at a rate
proportional to the common logarithm of the water pH. If a
mechanical link connects a pH indicator machine to a hopper
of cupric chloride, the linkage output must be linearly
proportional to the common logarithm of the linkage input.
Thus we have an example of the classic four-bar function

generator problem.

To obtain a linear scale for both the crank and

follower links of a planar four-bar linkage (Figure 3.1)
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for a particular desired output, the following relation-
ships are used:

x = x_ + (xg=x) (o=¢.) / (¢f—¢s) , and

Ya = ¥s + (ye=yg) (W-vg) 7/ (pe=yg) N T |

where x is the functional input variable,

Y. is the actual linkage functional output,

a
¢ is the crank angle,

y is the follower angle,
s is the subscript referring to the starting
position, and
f is the subscript referring to the finishing
position.
The maximum structural error, (max' is given by
(max = max (|ya - vq4l) ceeesa3.2
where Yqr the desired functional output, and y, are

evaluated over the input variable range.

Minimizing expression 3.2 will minimize the theore-
tical structural error of the linkage in producing the
desired relationship between the input and output links of
a four-bar linkage (both R-R-R-R and R-G-G-R types). The
required expressions for a slider-crank functional synthesis
are identical except that y is replaced by the linear

distance, s, moved by the slider (Figure 3.2).
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The mathematical equations which express the
follower angle as a function of the crank angle for the
plénar and spatial four-bar linkages are derived in
Appendices B-1 and B-5 respectively. The equations which
express the slider distance as é function of the crank angle

are derived in Appendix B-3.

In a computer simulation of a linkage, the values
of (ya-yd) cannot be evaluated continuously from bg to g,
but must be evaluated at discrete positions of the crank in
the input range of motion. Freudenstein [1] [2] shows that
Chebychev spacing of the precision points provides near
optimum spacing for minimizing the maximum structural error
from both rigorous mathematical and purely intuitive points
of view. The precision points, X;, separated by Chebychev
spacing are the following:

Xy = a - h cos ( (2i-1) ™ /2n ), i=1l,...,n,

where a = (xg + x¢) /2,

h = (xf - xs) /2, and

n number of precision points required.
Thus the expression for maximum structural error, 3.2,
becomes,

eIna}{={ max(lyai—ydil ’ i=1'."ln)} 00-0.303

where Y, and yq, are evaluated at each of the n precision
i i
points with Chebychev spacing.
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The expression for the structural error for the

problem of coupler-point curve synthesis is not treated

in the same manner as for the functional synthesis. The
strict precision-point method (namely, specifying successive
desired horizontal and vertical coupler-point curve compo-
nents at specified input (crank) angles is too restrictive

a problem, especially if more than five precision points

are selected. That is to say, it is very easy to specify
coupler curve conditions that simply cannot be satisfac=-
torily met using a planar slider-crank or planar four-bar

linkage.

The problem with the strict precision point method
is that an implicit time factor is involved - namely, the
linkage must not only produce a specified coupler curve,
but also must lie on that curve at specified positions for
given crank angles. (The input (crank) angle is assumed
to be directly proportional to the time function.) There
are many examples, such as synthesizing a straight-line
mechanism, where such restrictive specifications are not
required. Thus a more general method for coupler curve
synthesis is required which must have the strict precision-

point method as a particular case.

Such a method has been developed for this thesis.
The method depends on the designer specifying acceptable

bilateral tolerances on both the horizontal and vertical
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co-ordinates of each desired coupler point position
associated with a specified crank angle. These bilateral
tolerances are used to define elliptical zones of accepta-
bility (symmetrical with respect to the horizontal and
vertical axes) which are defined by the following relation:
(2 - (xai-xdi)z / xioli + (yai-ydi)2 /¥igr, ilresesm
cesssesl.4
where X, 1is the actual mechanism coupler point horizontal
component, X3, is the desired mechanism coupler point
horizontal co;ponent, Ya. is the actual mechanism coupler
. i

point vertical component, Y4 is the desired mechanism
i .

coupler point vertical component, x is the largest

tol.

i

acceptable bilateral tolerance in the horizontal direction,

Yiol is the largest acceptable bilateral tolerance in the
i

vertical direction, é.

i is the magnitude of the "transformed"

structural error, and the subscript i refers to a given

crank angle.

If the magnitude of the transformed or scaled
structural error, (i' is evaluated at the crank angle
(precision points) specified by the designer, then the
appropriate structural error term for minimization is

¢

max = {max((i ’ i=1rovorn)} ceesse3ed

The mathematical equations which express the
horizontal and vertical co-ordinates of a given coupler as

a function of the crank angle for the planar four-bar and
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planar slider-crank linkages are derived in Appendices

B-2 and B-4 respectively.

Garrett and Hall [15], in their statistical analysis
of the function generating properties of four-bar linkages,
taking into account possible manufacturing tolerances in
the link lengths and clearances in the link connections
(i.e. accounting for sources of mechanical error), indicate
that mechanism design from the standpoint of minimizing the
theoretical structural error only, may, in fact, not be
optimum in minimizing structural error from a statistical
point of view. The statistical point of view is the
realistic point of view; therefore the additional factors
required to determine the truly optimum linkage must be
established. Essentially, what Garrett and Hall show is
that some linkage designs are more sensitive to statistical
changes in their independent variables than other linkage
designs. Hartenberg and Denavit [16], in their excellent
text on mechanism synthesis, indicate that the key parameter
in determining a linkage's sensitivity to mechanical error

is the transmission angle (Figure 3.3)%*.

* The transmission angle of a planar four-bar
linkage is defined as the smallest angle between the coupler

link (or its extension) and the follower link (or itgextension).
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They show that the mechanical error of a four-bar
linkage is directly proportional to the cosecant of the
transmission angle. Thus, if the minimum transmission
angle is reduced from thirty degrees to five degrees, with
all other things being held constant, the maximum mechanical
error increases almost six times. A preliminary analysis
of Garrett and Hall's work indicates that the maximum
sensitivities to mechanical error that they establish can
be almost wholly attributed to variances in the value of the
minimum transmission angle from one linkage design to the
next. It then follows that the minimum value of the trans-
mission angle* should be maximized to obtain a linkage which

is least sensitive to mechanical errors.

Unfortunately the present definition of transmission
angle cannot be extended with any meaning from planar
linkages to spatial linkages. In fact, the spatial angle
between the follower and coupler of a general spatial R-G-G-R
mechanism can be ninety degrees (the most desirable angle
for the planar condition) while the mechanism is at a "dead

point"in follower motion (the case of poorest static force

* The transmission angle is also an indicator of the
aptness of the static force transmission from the coupler
(driving) link to the follower (driven) link - ninety degrees

being the optimum value for good static force transmission.
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transmission corresponding to theoretically infinite
mechanical error). Thus a new indicator of force trans-
missibility, which is general in its application to both

planar and spatial mechanisms, is required.

Just such an index, called the transmissibility
index (TI), is developed in this thesis. The TI is the
ratio of the force being transmitted from the coupler to
the follower which does useful work to the total force in
the coupler. Physically this index reduces to the absolute
value of the cosine of the spatial angle, Y, between the
coupler link (or the coupler force vector) and the direction
of motion of the follower (i.e. the follower velocity
vector) (see Figure 3.4). It can be obtained by taking
the absolute value of the scalar product of the unit vector
in the direction of the total coupler force (inertia
forces not included since it is not desirable that they
be transmitted) and the unit vector in the direction of
the follower motion. Hence, for the general case, one
must obtain the following three expressions:

(1) a general vector expression for the position

of the coupler link;

(2) a general vector expression for the position of

the follower link; and

(3) a general vector expression for the instanta-

neous axis of rotation of the follower link
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(i.e. the direction of the follower angular

velocity vector).

The direction of the follower velocity vector must
then be perpendicular to expressions (2) and (3) above,
and is thus uniquely defined (except for its sign which is
unimportant since the absolute value of the cosine of the

angle y is used).

A general expression of the transmissibility index
for only the most simple planar and spatial mechanisms
can be obtained using simple trigonometric analysis. The
techniques of general vector analysis and rigid-body
mechanics must be used for the more complex spatial cases.
In Appendices B-6, B-7, and B-8 the general transmissibility
index expression is derived for the planar four-bar (RRRR),
planar slider-crank (RRRP), and spatial four-bar (RGGR)
mechanisms respectively. The spatial four-bar TI is derived
using both a short-cut trigonometric analysis and a rigid-
body mechanics vector analysis in order to illustrate both

techniques on the same problem.

Harrisberger [17] presents a more complicated
expression than the TI to indicate the force transmission
characteristics of a special case of the RGGR mechanism
with two of the independent design variables fixed at zero.
His more complex expression is really only a special case

of the general expression presented here.
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Thus the general mechanism force transmission and
mechanical error characteristics are taken into account by
using a single index, the TI. A value of 1 is the
gfeatest and most desirable value that this index can
obtain; a value of 0 is the smallest and least desirable.
Therefore some value between 0 and 1 indicates the smallest
acceptable value of TI for a particular design problem.
Since the linkage mechanical error is directly proportional
to the reciprocal of TI, as is shown in Appendix C, the de-
signer can easily see the effect of lowering the acceptable

value of TI on the reliability of his design.

The structural error and TI expressions are not
enough in themselves to completely define the total
constrained mechanism synthesis objective function. Some
control over the link lengths is required in order to
limit the link masses and moments of inertia, which are
proportional to the link lengths and the cube of the link
lengths respectively. This control is required to reduce
the inertia forces and torques on the mechanism as much
as possible as is consistent with satisfactory maximum
structural error and minimum TI requirements. It is also
a well known rule of thumb that linkages in which the ratio
of the longest to shortest link is high do not generally
make satisfactory linkages. Thus an expression restricting
the link lengths would be a valuable addition to the pre-

viously derived expressions for the structural error and
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transmissibility index in forming the total objective function.

Three factors, the maximum structural error, ( the

max’

min’ and the maximum link

minimum transmissibility index, TI
length, Lmax’ are now designated as the significant factors to
be included in the objective function for minimization. Figures
3.5, 3.6, and 3.7 illustrate the inverse utility curves derived
for each factor according to the procedure developed in

Chapter II. For the planar four-bar function generation problem,
the ratio of the longest link to the frame length is used for
Lmax7 for the spatial four-bar function generation problem the
ratio of the longest link to the coupler link is used for Liax®
The longest link length is used for Laax for the other three
general problems. Note that the contribution of the maximum
link length term is zero if Lmax is less than one. This is
sensible since for function generation one link is fixed at

one - therefore it would not be meaningful to penalize the

particular linkage design if Lmax were less than one.

The utility functions, Uy, U2, and U associated with

3’
the utility curves shown in figures 3.5, 3.6, and 3.7 respec-

tively are

= (2 2 :
Ul - max / €all -0'-..3.6
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for function generation synthesis* where all is the largest

acceptable structural error and is given by equation 3.3;

max

Uy = { (1-TT,;,) (TIgqq=E) / (TIp;~8) (1-TI_ )32 ....3.7

where TIa is the lowest acceptable TI, and § is a parameter

11
which is zero for the planar and spatial four-bar linkages and
is u/(l+u2)1/2**, where u is the coefficient of friction between

the slider and its sleeve, for the planar slider-crank linkage;

and
U3 = 0 if Lmax < 1
= _1y2 _1v2
- (Lmax 1 / (Lall 1) if Lmax > 1 eecsese3.B
where Lall is the largest acceptable link length or link

length ratio.

* Note that for coupler curve synthesis no scaling

is given by equation 3.5.

is required and U, = (iax' where Gmax

** This expression is derived from the fact that the
slider-crank linkage will "lock up" at a TI greater than zero
as a result of the friction force between the slider and its
sleeve (friction forces in the revolute joints being ignored).
The friction force in the slider is uF sin vy, and the compo-
nent of the coupler force, F, in the direction of sliding is
F cos y(see Figure 3.8). When the linkage locks up
(tan vy = 1/u)

2)1/2 -

TI = cos vy = u sin vy = u/(1+u g .

Thus the worst (lowest) possible value of TI where motion is

impending is £, not zero.
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Therefore the total constrained objective function for
minimization, U, to optimize the linkage independent design
variables can be expressed as

U = U1 + U2 + U3 G

and U, are as defined above.

where Ul' U2, 3

In this chapter a suitable expression for the constrained
objective function required for the realistic evaluation of a
mechanism's performance has been developed. This expression
does not represent the complete function for minimization
because, as is explained in Chapter II, the effects of various
mechanism constraints must be added in the transformation of
this constrained objective function into an unconstrained

objective function.

The only constraint which is common to all the linkage
synthesis problems, that which ensures linkage closure at all
the precision points, is evaluated in Appendix B for the three
types of linkages discussed. Thus the basic unconstrained
objective function for the linkage synthesis problem is

{ U1+U2+U3+et [min(0,C)]1} ceees3.10

where Ul’ U,, and U, are respectively given by equations 3.6,

3
3.7, and 3.8, e and t are the scaled exterior-point transfor-
mation parameters discussed in Chapter II and Appendix A, and
C is the mechanism closure constraint given in Appendix B.

This unconstrained objective function is the quantity to be



minimized by the minimization technique developed in

Chapter V.
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IV MECHANISM ANALYSIS AND BALANCING

Forces in mechanisms arise from various sources.
There are forces due to the weight of parts, forces of
assembly, forces from applied loads, forces from energy
transmitted, friction forces, spring forces, impact forces,
and forces due to change in temperature. However, the forces
which are usually undesirable, and most often the source of
problems, are inertia forces. The purpose of the dynamic
balancing of mechanisms, and of machinery in general, is the
reduction of these unwanted time varying inertia forces

by the addition of suitable counterweights.

The shaking force of a mechanism is defined as the
resultant of all the inertia forces acting on the frame of the
mechanism, A consideration of this force is important because
the frame must be strong enough to withstand it. Also the time
varying shaking force may set up troublesome vibrations in the
frame, and, if the mechanism is placed in a building, this
force will be transmitted to the floor, and may have disturbing

effects.

Although the shaking force may be zero, a shaking
moment (or couple) may exist. Proper dynamic balancing of a

mechanism consists of reducing both the shaking force and the

43



44

shaking moment. The reduction of the shaking moment is impor-
tant because the individual frame bearing stresses are directly
related to the magnitude of this moment. Current technigques do
not account for this shaking moment. For example, an elegant
analytical procedure has been recently developed [18] using the
"method of linearly independent vectors" to add counterweights
to two mechanism links to make the total centre of mass of a
planar four-bar mechanism stationary. This technique completely
eliminates the mechanism shaking force, but does not take into
account the shaking moment. As a result the individual bearing
forces on the frame are as high, if not higher, than they were
before balancing. Thus, not only would a large, alternating,
vibration inducing shaking moment be applied to the frame, but
also the critical bearing stresses might be exceeded. There-
fore a dynamic balancing technique is required which will take

into account both the shaking forces and shaking moments.

In Appendix D the mathematical relationships are
derived (using complex number vector analysis techniques) which
express the link angular accelerations and link mass centre
linear accelerations in terms of the crank angular velocity
and acceleration, link lengths, and the position of each link's
centre of mass with respect to the link joint axes. Thus, if
the mass and polar moment of inertia of each link about its
centre of mass are known, then the inertia forces on each link

(and thus the total inertia force or shaking force), and the
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shaking moment about the crankshaft axis can be directly cal-
culated. Hence, we can now calculate the shaking force and
shaking moment of an unbalanced mechanism for a given crank

velocity and acceleration.

It is common industrial practice to only add counter-
weights to mechanism links which are pin (R) connected to the
frame [19]. Thus a practical mechanism balancing technique
should rely on only adding a counterweight to the crank link
of a planar slider-crank mechanism, and to both the crank and

follower links of a planar four-bar mechanism.

The new balancing technique developed in this thesis
calculates the optimum mass, the moment of inertia about the
centre of mass, and the position of the centre of mass of the
counterweight(s) to be added to the crank (for both the four-
bar and slider crank) and the follower (for the four-bar only)
links to minimize the total shaking force and shaking moment
resulting from the inertia forces and torques due to the
counterweights and the original links. The total shaking force
is broken down into its horizontal and vertical compoaents,
and, along with the total shaking moment, make up three
dependent variables which can be combined into a constrained
objective function for minimization using the inverse utility

function technique developed in Chapter II.

From Appendix D-3 we obtain the relations required to

evaluate the total horizontal shaking force (TSFh), vertical
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shaking force (TSFV), and shaking moment about the crankshaft
axis (TSM). These relations make up the following equations

for the planar four-bar linkage (see Figure 4.1).

i TSFh = SFH - x7 ah - X3 ah 0000.4.1
1 3
1 3

F )\ _ .

+' TSM = SMO + X, a, (X; sin 6; + X, cos 61)

1

- x7 aVl (X1 cos 61 - X2 sin 61) - X8 oy

+ X3 ah (X5 sin 93 + X

cos 6.,)
3 3

6

- X3 a (f + Xg cos 63 - X6 sin 63) - X4 05 eesd.3

V3

where SFH, SFV, and SMO are given in Appendix D-3, ahl and aVl
are, respectively, the horizontal and vertical components of
acceleration of the centre of mass of the crank counterweight,
ah3 and aV3 are, respectively, the horizontal and vertical
components of acceleration of the centre of mass of the follower
counterweight, oq is the crank angular acceleration, O is the
follower angular acceleration, X, and X2 are the co-ordinates

of the crank counterweight centre of mass as shown in Figure
4.1, X, is the follower counterweight mass, X4 is the follower
counterweight polar moment of inertia about its centre of mass,
Xg and X, are the follower counterweight centre of mass
components as shown in Figure 4.1, X is the crank counterweight

mass, and x8 is the crank counterweight polar moment of inertia

about its centre of mass. For the planar slider-crank
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balancing equations only the first two terms of equations 4.1

and 4.2 and the first four terms of equation 4.3 are required.

The appropriate inverse utility curves are illustrated
in Figures 4.2, 4.3, and 4.4. The corresponding inverse utility

functions are

U, = TSFf  / TSF] cee. 4.4
max all
where TSFy is the largest allowable value for the maximum
all
horizontal shaking force, and
TSFp = { max(TSF, , i=l,...,n)},
max i
where TSFh is the horizontal shaking force for a given crank

i
angle, and n is the total number of points at which TSFh is

calculated;
2
U2 = TSF2 / TSF .I..04.5
Vmax Vall
where TSFv is the largest allowable value for the maximum
all
vertical shaking force, and
TSF, = { max (TSF_ i=1l,...,n)},
max i

where TSFV is the vertical shaking force for a given crank
i
angle, and n is the total number of points at which TSFV is

calculated; and

— 2 2
U3 = TSMmax / TSMall cesesd.6

where TSMa is the largest allowable value for the maximum

11
shaking moment about the crankshaft axis, and

TSMmax = { max(TSMi , i=l,...,n)} ,
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where TSMi is the shaking moment about the crankshaft axis for
a given crank angle, and n is the total number of points
evaluated. The points i are at equal intervals of crank
rotation within the range of crank motion. The total con-
strained objective function for minimization is then

U=U, +U, + U P

1 2 3
where Ul’ Uy, and U3 are as defined above.

All the constraints inherently contained in the
dynamic balancing problem are of the explicit type - namely
that the counterweight masses and moments of inertia cannot
be negative. Thus, for the general case, equation 4.7
represents the unconstrained objective functiorn ready for
minimization by the techniques of Chapter V, if the counter-
weight masses and moments of inertia variables are transformed
according to transformation type number 1 in Chapter II.
However, the balancing method used in the balancing computer
program developed does allow for the addition of implicit
constraints and additonal explicit constraints, if an indi-
vidual balancing problem requires such constraints. (This

option is also available for the mechanism synthesis problems.)

Thus a balancing technique has been developed which
accounts for both shaking forces and shaking moments (as well as
additional constraining factors if necessary) in the balancing
of mechanisms. This method is completely general and could

easily be extended to spatial mechanisms and multi-planar
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mechanisms (e.g. multi-cylinder automobile engines) using the
vector analysis techniques of general rigid-body vector

mechanics.



V ~ OPTIMIZATION TECHNIQUE

Kowalik and Osborne [20] give an excellent descriptidn
of the most important unconstrained optimization techniques
currently available. These methods may be broken down into
three categories - zeroth order methods which require no
functional derivatives, first order methods which require the
first derivative of the objective function, and second order
methods which require both the first and second derivatives of
the objective function. The second order methods are probably
the most efficient methods when they can be used. However, they
require not only that the second derivative of the objective
function be known, but that it be a continuous function at all
points. This differentiability requirement rules out not only
the second order methods, but also the first order methods
for the mechanism synthesis problem because, for the reasons
stated in Chapter II, an exterior-point transformation technique
is employed. The exterior-point transformation used introduges
first and second derivative discontinuities at the constraint
boundaries which can cause both first and second order methods
considerable difficulties. Thus the choice of minimization

technique is among those available zeroth order methods.

The method of successive linear approximations using
truncated-to-linear Taylor series expansions of the nonlinear
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objective function and constraints as inputs to Dantzig's
classical linear simplex method modified for use in OPTIPAC
[4], fails to give solutions for mechanism synthesis problems.
Its failure is probably due to the highly non-linear and
discontinuous (at constraint boundaries) optimization surface

of the mechanism synthesis problem.

The method of Hooke and Jeeves using a conventional
exterior-point transformation (SEEK1l in OPTIPAC) works
occasionally, depending much on the starting point, but tends
to "hang up" easily or give poor answers. The same method
using an interior-point transformation (SEEK3 in OPTIPAC) is
more reliable than SEEK1l, but still tends to give poor answers
and takes up to three hundred per cent longer than SEEK1l when

SEEK1l works.

A random-direction method developed by the author,
which uses the scaled exterior-point transformation developed
in Chapter II, works on all the synthesis problems it has been
tried on, and obtains better answers than SEEK3 when SEEK3
works. However, a modified version of Powell's conjugate
direction method without derivatives [21] has been found to
be superior to this random method in all respects, and is thus
the technique choosen for the minimization requirements of this
thesis.

Powell's technique, as originally stated in 1964, takes

the following form for the general case of an n variable
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minimization problem.

Initially choose El ,...,E to be the n co-ordinate
n ,
directions, and 50 to be the starting point.
Step (1) For r=1,2,...,n calculate A, to minimize
£(p._q *+ Ar gr) and set I Ar Er
Step (2) For r=1,2,...,n-1 replace Er by €r+l’ and

replace En by (§n - B.)

Step (3) Choose )\ to minimize f{ﬁn + (pp + x(ﬁn - ﬁoﬂ ’
replace 50 by B, + A(ﬁn - Py), and start the

next iteration from Step (1).

In general terms, the idea of the method is to calculate
51,...,§n by successive minimization in the directions
El,...,én. Then a new set of directions is defined by deleting

the old El' letting the new Er be the old Er+ for r=1,...,n-1,

1
and finally defining the new En by £n=pn—po. Then the new pO

is found by minimizing from ﬁn using the new En direction. The
entire cycle from one 50 to the next Eo comprises one iteration,

the new En direction being theoretically conjugate to the other

(n-1) directions.

The definitions, theorems, and advantages of conjugate
directions for minimization are developed in [20]. The chief
advantage of a method using conjugate directions is that the

minimum of a quadratic objective function can always be reached
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in a finite number of steps, thus indicating the probably

efficiency of the method on functions of higher degree.

In his.1964 paper [21], Powell introduces a modification
to his method which he claims increases his method's efficiency
for problems of dimensionality five or greater. However, in a
1968 paper [22], Zangwill shows that Powell's modification is
not just a nice refinement, but is necessary for problems of
any dimensionality. Zangwill's proofs are quite satisfying,
his paper providing considerable insight into Powell's

modified algorithm for function minimization.

Powell's modified algorithm takes the following step-

by-step form.

1

n

-1 - -
Let the co—-ordinate directions gl, Eé,...,i

1

o and a scalar €, 1< € < 0 be given. Also

initial point p
assume the directions are normalized to unit length, so that
-1
e, 1l

k=1.

1

1*, r=1,...,n. Set 61=1. Go to iteration k with

* Double bars on each side of an expression indicate

that the Euclidian norm of its components is to be taken.
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Iteration k:

Step (1) For r=1,2,...,n calculate At to minimize

=k k ¥k .=k _ =k k 7k
f(pr__1 + xr €r), and define P, = pr_l+>\r Er
. - - -k -k -k k
Step (2) Define ok = ]]pg - pg || and gn+l = (b -p) /o .
Calculate Ak to minimize f(§k+Ak Ek )
n+1l n ntl°n+l
-ktl _ -k _ =k k k
and set po =P ., TP, * Ay &
' k k
Step (3) Let As = { max(xr , r=1,...,n)}
k _k+l -k
case (a) If A 85 /o> €, 1et B =E
s = r r
—kt+1 k
for r # s, s = €n+l' and set
+1 k k
Gk = Xk § / o
S
k
Case (b) If A: Gk /o < €, let
-k+1 =k
gr = gr 14 r=1)goo,n r and Set
k+1 k
) =4

Go to iteration k with (k+1) replacing k.

In the above procedure Gk is the determinant of the

matrix in which the column vectors are the set of directions

Ei r T=1,...,n. (Zangwill [22] uses a neat inductive proof to

k k k
show this fact.) Thus the expression AS § / a 1is the

determinant of the matrix of the new set of directions
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~k+1
3

r
knowledge [23][24] that if the determinant is non-zero of a

-k =k
r r=1,...,n, where En+l has replaced £ . It is common
s

matrix in which the columns represent given vectors, then these
vectors are linearly independent. Also, if these vectors are
all normalized with respect to one, then the magnitude of the
determinant of the matrix reaches its maximum of one when all
the vectors are mutually orthogonal. Thus the magnitude of the
determinant of the matrix made up of any general set of linearly
independent normalized vectors will lie between zero and one.
Step (3) of the above procedure is then a test to insure a

certain amount of linear independency (or nearness to ortho-

. . . . -k+1 .
gonality) in the directions Er y r=1,...,n. Note that if
-k+1
two directions, Er , were allowed to become linearly

dependent, then it would be quite possible that the full
optimization hyperspace could not be spanned in a minimization
sequence; hence, the optimum point would not be reached even

in an infinite number of steps.

In general it is an advantage to be able to search for

a minimum in both the negative and positive gt directions.
However, the admission of negative values of ki, which
correspond to minimums in the negative Et directions, will
cause step (3) in the Powell-Zangwill algorithm to be unsatis-
factory, since the maximum of Ai y r=1,...,n, will not
necessarily maximize the magnitude of the determinant of the

-k+1
Er directions. Thus the method's efficiency is significantly



‘reduced unless the following modification is introduced:
replace the first statement of Step (3) by

Az = {max(lk¥| , r=1,...,n)}

where |A§| is the absolute value of Xt. (Note that in checking
for linear dependancy, the negative of a direction has the same

meaning as the direction itself.)

This modification creates an efficient minimization
routine which uses both the positive and negative Et directions.
This decreases the computation time for convergence by a
minimum at ten per cent, and can even mean the difference between
convergence and non-convergence for many problems. Thus xt

k - . .
has been replaced by ]Arl in the minimization technique used

in the computer program of Appendix G.

As a result of experimentation with the minimization
method, a value of .5/n'5 for €, where n is the number of

independent design variables, has been found to be efficient.

A very important part of the modified Powell-Zangwill
=k
method is the minimization along a vector, Er’ procedure.
The following procedure is presented as an efficient method to

accomplish this.

Let .5 < o < 1.5, w > 1, and 60 > 0 be given.



Step (1)

Step (2)
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-k
Set p:po and 5:60 and let n= max (“pr H' 1).

- _ =k -k .

where a; is a random number between -3 and +3.

. -k - .
Then £, = {mln[g<pr), (g(t,) , i=1,2,3)1}

where g is the objective function to be
minimized. Let X be the vector corresponding
to fl.

Case (a) 1If fl > g+ 26 E?), then g is

k

evaluated at X + 4 § Et , R+ 8 Sr’

ey X + 2% Ek until g(® + 2(i-1)g Et) <
r
- . =k
gix + 21 5 £.) .

case (b) If f; > g(X - 236 z? , then g is

r

k
r

until g(& - 2171 5 £ < g(x - 27 5 EN)
Case (c¢) If g(x -2 & Et) > fl < gX+ 2 68 &

Case (i) If 2 8 / 8§ < u go back to

the start of Step (2) with p

Case (ii) If 2 60 / 8 > u set f2 = fl'
_ = =k
£ = g(®-268E),
f, =g(x + 2 ) = d
3 = 9(x § €)s a = 0, an



Step (3)

Step (4)

K = 2 6§

Step (4).

Set k = 2i'2 Y

For Case (a) of Step (2): Let

£.=g®+ 38 2172 XKy ang
r
i — =k
£ =g+ 2171 s
4 g(x Er)
Case (i) 1If f3 > f4, then f2= f4,
- s _ -k
f. = g(x + 21 2 § £ ), and
1 r
a = 21-1 §
Case (ii) If f3 < f4, then fl = f4, £

£y = g(x + 21 5 Et), and o

For Case (b) of Step (2): Let

- i-2 =k
f1 =gx ~-33 212 gr) and
s L oi-1 o 3K
f4 = g(x - 2 S Er)
Case (i) 1If fl > f4, f2 = f4,
_ = _ oi-2 =k
f1 = g(x 2 ) Er) and o
Case (ii) If f1 < f4, then f2 = fl' f
f. = g(x - 21 5 Ek) and o =
1 r
Let
B = o = (k/2) (f3—fl) / (f3+f1 -2 f2

Then Ek =

- k
X + B
r+1 P Er

3

)

60

, and go directly to

i-1

= - 2 §

= f4,

- 3§ 212
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The above procedure is, roughly speaking, a bracketing
procedure which ultimately uses a quadratic approximation to
locate the minimum. Step (1) starts from point ﬁg and generates
random steps along the direction Ei in order to avoid isolated
local optimums and to save computation time if the initial
point 55 is a long distance from the minimum along E:. Step (2)
involves accelerated steps in the positive (Case (a)) and nega-
tive (Case (b)) Ei direction to evaluate three points (the
last three points calculated) which bracket the minimum.

Case (c) of Step (2) occurs when steps of magnitude plus and
minus 28 bracket the minimum. In this case the relaxation
multiplier p is set equal to 1 and the initial step interval,
§, is halved and the method returns to the evaluation of

Cases (a) and (b) unless 2 60/6 already exceeds the specified
number y, in which case the method goes directly to Step (4).
Step (3) is a combination of reducing the size of the bracket
and equalizing the intervals between the three points in the
bracket. (Note that if i=2, then the intervals are already of
equal size 28 and Step (3) is not necessary.) Step (4) is an
application of a quadratic interpolating polynomial to the
three equally spaced bracketing points to determine the
approximate minimum point within the bracket which will be the
starting point for the next directional search in the §t+l
direction. Note that Step (4) locates the minimum only if

p = 1., Setting Por the initially relaxation multiplier, 1less

than one corresponds to underrelaxing, and greater than one to



62

overrelaxing. The advantage of the successive halving of §
in Case (c) of Step (2) is that an initially large value of
$, 60, can be used to speed up convergence to the minimum
without losing accuracy when the minimum is reached. Thus a
"minimization along a line" technique has been developed
which has many features not available in other existing

techniques.

The minimization stopping criterion is a combination
relative error-absolute error test on the variable with the
largest change from one minimization iteration to the next.
The procedure takes the following form.

Set g > o

Step (1) Calculate d; = | pﬁil - pg_l

i
where n is the number of independent design

7 i=l,o.o’n

variables.

Step (2) Calculate s; = { di/max(i,pk+l
o

i

)} f i=l]-¢.'n

Step (3) T = {max(Si , i=1,...,n)}

Step (4) If T < g, then convergence is assumed;
If T > q, then a new minimization iteration
is required.

This procedure gives a precision of approximately loglo(.l/q)
k+1

i
significant figures if p

decimal places if p is less than one, and loglo(.l/q)

k+l

o3

is greater than one.



63

Examination of the contour plots of the optimization
hypersurface for many mechanism synthesis problems reveals
_that the surface is irregular, and that there are many regions
with local optimums isolated completely by zones of infeasi-
bility from regions with local optimums of lower value. Thus
it is quite possible that the optimum point determined by the
minimization technique from a given starting point does not
represeht the local optimum of lowest value, the global
optimum. Hence, a valuable feature in any minimization
technique would be the self generation of new starting points,
and comparing the minimums obtained from these starting points
to determine the lowest local optimum., The optimization
technique developed for this thesis does just that; it keeps
generating new random starting points (which are based on
perturbed values of the previous minimum point) until the
minimum corresponding to the last starting point exceeds or
equals the lowest previous minimum. This procedure is an
attempt to give the designer greater confidence in the
optimality of the computer chosen optimum values for the

independent design variables.

Thus, a procedure has been developed for efficiently
minimizing an objective function which expresses, using inverse
utility curves, the design requirements of a given mechanism.
The independent design variables corresponding to the local

minimum value of the objective function may, or may not,
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actually represent the true optimum values, depending on

whether the local minimum obtained is a global minimum or not.
However, the method presented does do a good job at trying to
obtain the global minimum of an unconstrained objective function

for a mechanism synthesis problem.



VI USER~ORIENTED MECHANISM DESIGN PROGRAM

It is basic human nature that the easier to use

something is, the more it will be used. Hence, in designing

a computer program which embodies the principles developed in

the previous five chapters, an attempt has been made to

reduce as much as possible the basic input requirements of

the program, as well as trying to present the output in its

most meaningful form,

The program, which consists of seventeen FORTRAN
source subroutines which are interrelated, but may be called

separately if desired, requires approximately 7700 storage

locations in the central memory of the CDC 6400 computer.

Since the program can be easily segmented into its synthesis,
analysis, balancing, and output plotting routines, the program
can be run efficiently with overlays on even small computers
like the IBM 1130 (which is a common small computer in business

and industry).

There are basically sixteen things that this program

can do. It can

1. synthesize a planar four-bar linkage for function
generation;
2. synthesize a planar four-bar linkage for coupler-

point curve generation;
3. synthesize a planar slider-crank mechanism for
function generation;

65
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synthesize a planar slider-crank mechanism for
coupler-point curve generation;

synthesize a spatial four-bar linkage for

function generation;

determine the angular velocities and accelerations
of a planar four-bar's coupler and follower links
for up to thirty-six positions of the crank link;
determine the linear velocities and accelerations
of any four-bar coupler-point, and the linear
acceleration of any four-bar crank-point or
follower-point at up to thirty-six positions of
the crank link;

determine the linear velocities and accelerations
of any planar slider-crank coupler-point (including
the slider) or crank-point at up to thirty-six
positions of the crank link;

determine the angular velocities and accelerations
of a planar slider-crank coupler link at up to
thirty-six positions of the crank link;

determine the optimum crank and follower counter-
weights to dynamically balance a planar four-bar
linkage;

determine the optimum crank counterweight to
balance a planar slider-crank linkage;

determine the feasibility of any planar four-bar,

planar slider crank, or spatial four-bar linkage;
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13. plot the structural error versus the crank angle
for any planar four-bar, planar slider-crank, or
spatial four-bar linkage;

14, plot the coupler curve for any planar four-bar
or planar slider-crank coupler-point;

15. plot the horizontal shaking force, vertical
shaking force, and shaking moment about the
crankshaft axis versus the crank angle for the
planar four-bar and planar slider-crank mechanisms;
and

16. produce a two-dimensional contour map of the
optimization hypersurface (including the inter-
sections of constraint surfaces) with respect to
any two independent design variables for the

mechanism synthesis and balancing problems.,

The number of input computer cards required for any
given problem should rarely exceed ten. Thus many problems
can be solved with a minimum of input using this completely

self-sufficient computer program.

A complete program documentation, the required pro-
cedures for making up program input and interpreting program
output, and a program FORTRAN source listing are included in

Appendices E and F.
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The prime considerations in the development of this
computer program have been the simplification of input and the
completeness of output. Unfortunately this has meant the
sacrifice of computer'time and space in some of the subroutines,
especially with respect to providing data for the output
plotting routines. However, considerable time has been spent
trying to avoid such wastes as much as possible, so that the
program produced is as efficient as possible while consistent

with the primary aims stated above.



VII SAMPLE PROBLEMS

In this chapter three sample problems which can be
handled by the computer program developed for this thesis are
discussed*., These problems are designed to illustrate some
of the capabilities and advantages of the concepts developed
in this thesis rather than illustrate short run times or
dramatic convergence from a given starting point. Thus,
though the run times are longer than normal and the improve-
ments quite small in some cases, the results are interesting,
and show the importance of the new ideas presented in this

thesis.

PROBLEM NUMBER 1 - Slider-Crank Linkage as a Function

Generator

This test problem is designed to specifically show the
interplay of two of the factors which make up the objective
function for minimization. The problem also shows up some of
the special features in the optimization routine which take

over if an extremely poor starting point is given or generated.

* See Appendices E and F for an explanation of the

required input and output variables and format.

69
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The problem is that of generating the cosine function
from zero to 27 for a range of crank motion of 360 degrees and
a range of slider motion of 4, ¢ .1 inches using a slider-
crank linkage where the upper sign (see Appendix D) in the
expression for the link angles is used (ICASE equals +1).

This problem can be satisfied exactly from a structural error
standpoint by using a crank length (Xl) of 1.95 inches, a
coupler length (X,) of infinite length, a slider eccentricity
(X3) of zero, and a mid-range crank angle¥* (X4) of m radions
(see Figure 7.1l). However, for the multifactor synthesis
program, if an output function structural error scaling

factor (SCAL2) of .01 in the cosine function and a link length
scaling factor (SCAL3) of 10. inches are used, it is interesting
to see the interplay of the structural error and link length
factors in the objective function. (The transmissibility index
has little effect on the problem except to provide a slight
bias towards increasing the coupler length.) The FORTRAN

input cards required for this problem are shown in Figure 7.2.

* The mid-range crank angle is defined as the crank
starting angle plus one half the crank range of motion. Note
that the crank starting angle is printed out at the bottom of
Figure 7.4; the range of crank motion is fixed by the user in

the program input.
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FIG. 7.1 PLANAR SLIDER~CRANK

INPUT FOR SLIDER-CRANK FUNCTIUN SYNTHESIS
PROGRAM MAIN (QUTPUTsTAPEG=0OUTPUT)
COMMON /STRTPT/STRTPT(1U)
COMMON /NUMBERS/NPPsMETHOU» ICASEsNsNCo IEXCC
COMMON /SCLFAC/SCAL1T »5CALZ29SCALS
COMMON /SYNIN/XMINsXMAX9IRNGI sRNGOsTITEsCFRICISYM
DATA RNGI/36ue/ sRNGO/ 4o/ sETHUD/ 3/ s ICASE/ L/ sNPP/ L5/ s TITE/ i/ s
LIEXCO/ L1/ o XvIN/ U/ 9 XMAX/ 6028318530727/ 9CFRIC/ ¢3/91SYM/IU/
2S5CALL/ 46426/ 9SCAL2/aUL/9SCALS3/ 11U/ s5TRTPT/2¢31lUesCer3eltsiny/
CALL LINK(1lseUUU391e92e5300ul)
STOP
END
FUNCTION FUNSYN(X)
FUNSYN=COS(X)
RETURN
END

FIG. 7.2



The actual computer output is shown in Figures 7.3
to 7.5. Figures 7.3 and 7.4 show the results of the optimi-
zation procedure. Since three-figure accuracy is requested
in the input (PREC = .0001), the optimum crank length, coupler
length, slider eccentricity, and mid-range crank angle are
respectively 1.95 inches, 29.0 inches, 0. inches, and 3.14
are exactly the expected

radians. The values of X and X

17 X3 4
optimum values; the value of X3 represents the optimum com-
promise (to three significant figures) between the maximum
acceptable structural error and the maximum acceptable link

length, if a structural error of .0l and a link length of 10.

represent equal utility values of 1.

Note that the minimization routine has considerable
difficulty in starting from the new randomly generated starting
point, which is a poor starting point since both the mechanism
closure (Cl) and range of output motion (C3) constraints are
violated at this point. The method then unfortunately hangs
up in the infeasible region and, after a couple of trials at
increasing the constraint term multiplier (t in Appendix A),
decides that a new starting point should be generated. The
minimization then proceeds smoothly from this new point, and
finds a local optimum of higher objective function value than
the previous local optimum determined. This then terminates

the minimization process.
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SYNEHESIS UF A PLANAR SLINER=-CRANK FUNCTION VENERATOR MECHANISM

31416

_LOocAaL OPTIMUM VALUE OF 0BJECTIVE FUNCTYION IS 19,388 . . .

DESIGN VARI?ULE VALUES ARFE

501 28.962 «6¢l5806F =05

THE CONSTRAINT VALUES ARE

B, 35291E.05 942.48 1.08516Ew04

THE NEW STARIIMg DESIGN VARIABtE VALUES ARE
3020

THF OPTIMUM VALUE UtTERMINhD IS INFEASIRLF
ONSTRA&NT NUMBER 3 HAV NG THE VALUE 3.0

1.89796F=05

361416

4-20375F'02

EREFORE IH NALTY MULTIPLIER HA EEN MUL% & ED RY 10q0
mAND~A_N£u_Ml§LMEZAilﬂN_SEQ!ENCE_ERQm_EHE_GURBENIEéQELMUMWggkaleuu,,

THE NEW STARTINb DESIGN VARIASBLE VALUES ARE
«11035 T.0004 0 £9267

44,1794]1E=02

 THF OPTIMUM VALUE DETERMINED IS IN*&ASIRL
%S”S{RSéNT‘JU”HER 3Y nﬁvr?g THE VALU o3 E7aq .
FREF T LT N MULTIP
AND A New MI&IM?Q TION SEQUEN EE OM ?EE (URHE&TLngIMUMlSQOSTFU

THE NEW STARTIMG CESIGN VARIABLE VALUES ARE
“ellV 979 e €9262

MINIMIZATION WUUTIN HAS HUNG UP TN AN INFEASIBLE REGION
INDIS#TIgN:EAZE TH¢§ THE COQSLQA§¢ISOARE ’
ANN t3 - ACHE TH E LOCATIN
?HEREFORE A NEW‘gTA ING EOINT HAS aEEﬁ éENERATED
_THE NEW STaRTING DE RIA}
-.25516 ~4,8972 «87304

LOCAL OPTIMUM VALLE OF OBJECTIVE FUNCTION IS 231449

DESIGN VAHLABLE VALUES ARE ,
~-149359 643625 /7114

THE . CONSIRAluJ VALUES ARE

33297 1243,9 4.95230E~04

TRANSMISSIBILITY INDEX FUNCTIUN IS 8.69760E=06

FIG. 7-3

4. 179415 08

SUCH THAT A FEASIBLE REGION
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STRUCTURAL ERROR FUNCTION IS 9.7352
LINK LENGTH FUNCTION IS  9.6529
FINAL OPTIMUM VALUE OF OBJECTIVE FUNCTIYN IS 19,388

DESIGN VARIARLE VALUES ARE
149201 28,962 ~6¢15806E=05 3.1416

NUMBER OF FUNCTION CALLS WwAS 1408
TOTAL EXpCUTION TIME FOR METHOD 3 IS 12940 SECONDS

FIG. 7-4
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STRUCTURAL ERROK PLOT FUR PLANAR SLIDER=CRANK FUNCTION SYNTHESIS
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A preliminary analysis of the optimum mechanism 1is
then automatically done, the results being shown in Figure 7.5.
Note that the structural error shown is relative to the
mid-range point (X=m) being exact. If, in setting up the
actual mechanism, the one-eighth range point (X=m/4) were
made exact, then the structural error plot would be equally
disposed on both sides of the horizontal axis. This simple
change in the scale base point enables a halving of the struc-
tural error in this example. Thus a similar investigation
should always be made in the setting up of the scales of any

actual function generating mechanism.

PROBLEM NUMBER 2 - Symmetrical Function Generation

This is a problem to show the advantages of the spatial
four-bar linkage over the planar four-bar linkage for the
generation of a symmetrical function (y=x2) where x varies
from -1 to +1). It also shows what improvements can be made
in the linkage design by including the maximum link length
and transmissibility index factors, as well as the structural

error factor, in the optimization objective function.

Figure 7.6 shows the FORTRAN input cards required for
both the planar and spatial four-bar optimizations. Figure 7.7
shows the preliminary computer analysis results for the planar
four-bar function generator using the optimum linkage parameters

determined by Freudenstein [2] using only the structural error
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INPUT FOR SPATIAL FOUR-BAR FUNCTION SYNTHESIS
PROGRAN MAIN (CUTPUTsTAFEG6=0UIPUT)
COMMON /ZSTRTIPT/ZSTRTPT(1UL)
COMMUN /NUMBERS/NPPsMmETHUU s TCASE siNoNC e TEXCU
COMMON /SCLFAC/SCALLsSCALesSCALS
COMMON /SYHNINZ/XMINs XMAXsRNGI s RNGU s TITEsCFRIC1SY
DATA METHUD/S5/ s ICASE/~1/ 9sNPP/ 9/ TEXCU/ L/ s1SYM/U/ s ‘
IXMIN/=1le/ o XMAX/1a/ SRNGI/2UUe/ s RNGU/1QU/ s TITE/30Ce/ suCRLL/ 0D/
2SCALZ/ eUl/ s5CAL3/1lUe/ sSTRTPT/—ab49 9609700090094 [ises (Yis—eiicc i/
CALL LINK{(lseUUUBsles2ebseulul)
STGP
END
FUNCTION FUNSYN(X)
FUNSYN=X#X
RETURN
END

INPUT FOR PLANAR FOUR-BAR FUNCTION SYNTHESIS
PROGRAM MAIN (OUTPUTsTAPE6=0UTPUT)
COMMON ZSTRIPT/STRTPT(1UW)
COMMON /NUFBERS/NPP s METHOU » ICASE siNsINCe TEXCO
COMMON /75CLrAC/OCALLsoCALLsSCALS
COMMON /SYNIN/XMINsXMAX sRNGI s RINGOs TITEsCFRICsISY
DATA METHOD/ 1/ s ICASE/~1/siNPP/ 9/ s EXCU/L/s1SYM/U/
IXMIN/=1a/ s XIAX/ 1e/ sRNGI/9Ua/sRNGU/ 66U/ sl 1T /Ue/ s SCALL 0D/ s
2S5CALZ2/ 01/ 85CAL3/10a/ sSTRTPT/=a601029e969609e38U%9ce (HB/
CALL LINK(lseUUU391le92e5540L0UL)
STOP
END
FUNCTION FUNSYNITX)
FUNSYiN=X#X
RETURN
END

FIG. 7-6
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SYNTHESIS OF A PLANAR 4-BAR FUNCTICN GENERATOR MECHANISM
WHERE ICASE= =1
MAXIMUM STRUCTURAL ERROR (YA=-YD) IS 3.44t48E-02
MINIMUM STRUCTURAL ERROR IS -7.66839E-02
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factor., Figures 7.8 to 7.10 show the results of the program
synthesis and preliminary analysis of the computer synthesized
optimum linkage. Amazingly, not only does the program increase
the minimum transmissibility index from .225 to .471 (effectively
more than halving the mechanical error - see Appendix C), but
also reduces the maximum structural error in the output

function, x2, from .077 to .037 (i.e. approximately by one half).
Thus considerable imprévement is made on Freudenstein's

"optimum" linkage parameters for this problem. (See Appendix

F for the meanings of the variables in the computer output

listing.)

However, for the spatial four-bar the optimum linkage
parameters determined by Hartenberg [16] (preliminary analysis
shown in Figure 7.11), using extensive hand calculations,
cannot be significantly improved by the computer program. In
fact, because the maximum allowable structural error scaling
factor (SCAL2) is set at only .01 for this problem, and the
minimum allowable transmissibility index scaling factor
(sCALl) is set at .5, the maximum structural error is increased
from .0013 to .0023 in order to effect an improvement in the
transmissibility index from .586 to .608 (see Figures 7.12 to
7.14). (If SCAL2 were set equali to .001, then the minimum
transmissibility index would probably decrease in order to
effect a lowering in the maximum structural error.) Thus,

for this spatial four-bar example little improvement can be
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STRUCTURAL ERROR FUNCTION IS 8.9718
LINK LENGTH FUNCTION IS U
FINAL OPTIMUM VALUEF OF OBJECTIVE FUNCTION IS 10.238

PESICN VARIABLE VALUES ARE
54228 +57659 « 37849 247671

NUMBER OF FUNCTION CALLS WAS 13448
TOTAL EXECUTIOM TIME FOR METHOUO 1 IS 124,768 SECONDS

FIG. 7-9
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made to optimum parameters determined considering only the
structural error. However, through use of this program
considerably more information is revealed about this linkage
than can be possibly attained through the synthesis technique

employed by Hartenberg.

Why little improvement can be made on Hartenberg's
values becomes clearer when the two-dimensional contour-
constraint plot of the optimization hypersurface shown in
Figure 7.15 is examined. (A detailed explanation of how to
interpret such plots is contained in Appendix E.) However,
for present purposes, it is enough to know that the blank
region in the centre of the plot represents the only feasible
region in the two-dimensional subspace of variables X3
(quotient of parameters d over b in Figure B-6 of Appendix B)
and X4 (the crank mid-~range angle), all other parameters being
fixed at their optimum values. It is clear that there is
little range for movement in the feasible region, and since
no minus signs are printed, the local optimum in this region,

with respect to variables X. and X4, has been reached.

3

This example thus shows that the inclusion of more than
one factor in the optimization objective function can usually,
but not always, provide a better basis for optimization. Note
also that for this example, not only is the maximum structural
error for the spatial four-bar symmetrical function generator

a magnitude less than for its planar counterpart, but also the
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minimum transmissibility index is significantly greater for

the spatial four-bar.

PROBLEM NUMBER 3 - Planar Four-Bar Coupler-Point Curve

Synthesis and Balancing

Figure 7.16 shows to full scale an actual four-bar
linkage used in a motion picture projector [19] to give the
film intermittent motion. Point P on the coupler link traces
the coupler curve shown. As the driving crank rotates, the
catcher moves down into a film slot, pulls the film across
'one frame, moves up out of the slot, and then moves back across
preparatory to engaging the film again. The original design
has been obtained using a combination of Hrone's and Nelson's
atlas of four-bar coupler-point curves [26] and trial-and-

error synthesis.

The problem is to use the computer program developed
to confirm the shape of the curve for coupler-point P (on the
film catcher) for the linkage dimensions listed in Figure
7.16; use these same dimensions as a starting point for the
computer program to see if the design can be improved; and
balance the resulting optimum mechanism assuming a constant

crank angular velocity of 24 rps.

In order to use the computer program as a coupler-

point curve synthesis tool, the desired coupler-point curve
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co-ordinates and associated bilateral tolerances and crank
angles must be defined. To accomplish this the problem is
further specified as follows. The desired coupler point, P,
moves horizontally for .65 inches (the catcher moving the
film over one frame) while the crank link rotates through

140 degrees; the point then moves straight up for .15 inches
(enabling the catcher to clear the film), moves back over the
film clearing it by at least .15 inches, and moves down
(vertical for the last .15 inches) to the starting point (to
re-engage the film catcher) while the crank rotates through
the remaining 220 degrees of its motion. To meet these basic
requirements the values shown in Table 7.1 are assumed. (Note
that nine precision points are used.) These numbers are
included in the program input in SUBROUTINE COUPLER as shown
in Figure 7.17. The rest of the required input is included

in PROGRAM MAIN, also shown in Figure 7.17.

To illustrate the use of a direct variable transformation
as an additional explicit constraint, transformation type 2 of
Chapter II is used to limit variable X7 to values less than

three inches. Thus the variable transformation

X, = 3. -] %X, - 3. ]
7t 7

is used in SUBROUTINE EXCON (see Figure 7.17). Note that
since IEXCO is set equal to zero to initiate the call to
EXCON, NC, the number of implicit constraints (three is the

number of basic implicit constraints for this problem - see
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TABLE 7.1 - DESIRED COUPLER-POINT CO-ORDINATES WITH THEIR

ASSOCIATED TOLERANCES

POINT CRANK ANGLE H-CO-ORD. V-CO-ORD. H-TOL. V-TOL.

NO. (radians) (inches) (inches) (inches) (inches)
1 0.00 2.20 .20 .01 .05
2 0.61 2.04 .20 .10 .05
3 l.22 1.87 .20 .20 .05
4 1.83 1.71 «20 .10 .05
5 2.44 1.55 .20 .01 .05
6 2.79 1.55 .35 .05 .05
7 4,19 1.75 .70 .20 .40
8 5.24 2.00 .70 .20 .40

9 5.93 2.20 .35 .05 .05
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INPUT FUR PLANAK FUOUR=-BAR COUFLER=PUINT CURVE SYNTHESIS
PROGRAM MAIN (QUTPUTsTAPEG=UUITPUT)
COMMON /STRTPT/STRTPT(1U)
COMMON /NUMBERS/NPPsMETHODL s ICASE s NesNCo 1 EXCO
COMMON /SCLFAC/Z/SCALLsSCALZYSCALS
COMMON /SYNIN/XMINsXMAX o RNGI sRNGUo TITE sCFRICeISYI
DATA METHOL/ 2/ s TEXCU/ U/ sNC/ 3/ 9snNPP/9/ s ICASE/ 1/ 9SCALL/ a9/ s
1SCAL3/2e5/ 9kNGI/36Ua/ 951 RIPT/ 0390909624300 =e98slalyslatiYsUerler
2¢6/
CALL LINK(l’oUUU3910’2059000Ul)
STOP
END

SUBROUTINE COUPLER

COMMON /DESIRKE/X(21)sY(81)sANG(81) s XTOUL(21)sYTOL(21)

DATA X/202920U491a87’l.7l’lobb’l-Db’lo?b’Zo’202/’

1Y/ e2%e2%e2%02%02%053596 7967335/ 9XTUL/a0Llselse23el9e¢UlselUbsedsecs
2eUS/aYTUL/O6%*4UD9049e49eUb/9ANG/Ue9eb1l91 02291 a8392eb4b0 e P 9G0lss
35.2495.93/

RETURN

END

SUBROUTINE EXCON(XsCaNC)

DIMENSION X(1)

X{(7)=3e~ABS(X(T7)=34)

RETURN

END

FIG. 7-17
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comments cards for FUNCTION G of Appendix F), must be defined

in PROGRAM MAIN.

The coupler-point co-ordinates of the original mechanism
for the nine precision point crank angles are shown in Figure
7.i8 (as *'s). The coupler curve that these co-ordinate points
outline is similar to that shown in Figure 7.16; thus the
original mechanism performs the job expected of it. (Also the
computer program appears to be working properly!) The desired
coupler-point co-ordinates defined by the data in Table 7.1 are
also shown in Figure 7.18 (as O's)* for comparison. The
magnitude of the difference between these desired and actual

coupler points versus the crank angle is shown in Figure 7.19.

* The double O's and *'s directly above each other,
which occur in the plots from time to.time, indicate that the
actual point lies between one quarter and three quarters of
a line~space between the lines that the two symbols are
printed on. If only one symbol is printed, then the actual
point lies within one quarter of a line-space above or below
the line that the symbol is printed on. This technique in-
creases the accuracy with which the vertical co-ordinate of
a plotted point can be read. (See Figure 7.11 for a good

example.)
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The results of the linkage synthesis are shown in
Figures 7.20 to 7.22. Note that Figure 7.22 is a plot of the
actual structural error, not the scaled structural error
discussed in Chapter III (which is used in the objective
function for minimization). Thus, though the magnitude of the
actual maximum structural error is not reduced, the scaled
structural error, which is based on the bilateral tolerances at
each precision point given in Table 7.1, is reduced since the
synthesized points which deviate_greatest, points 7 and 8, are
those for which the tolerances are largest. Also the
minimum transmissibility index is increased from .724 to .752.
Therefore, if the data contained in Table 7.1 truly represents
the designer's problem requirements, then the given four-bar

projector mechanism has been improved by the computer program,

The mechanism should also be balanced. In order to
do this the masses, polar moments of inertia about the mass
centre, and positions of the mass centre of each link must be
known. These values are determined assuming that the links
are made of uniform 1/4 inch diameter solid steel rods
(density .283 lb/in3) and are listed in Table 7.2. For lack
of better information, the scaling factors for the horizontal
shaking force, vertical shaking force, and shaking moments
utility curves are assumed equal to .01 1b., .01 1b., and

.01 in.-1b., respectively.
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SYNTHESIS OF A PLANAR 4-BAR MECHANISM TO PRODUCE A GIVEN COUPLER CURV

WHERE TICASE= 1
THE STARTING DFSIGN VARTABLE VALUES ARE
«30830 +395000 «54000 .60000
-.58000 1.10900 1.83900 .
Ne .60000
LOCAL NPTTMUM VALUE OF OBJECTIVE FUNCTION IS 1.4996
DESTGN VARPIAPLE VALUES ARE
« 3382F .« 36894 «56852 «51518
-.593258 1.0640 1 850 ~5.46849FE-023
1.,93029F-03 60278
THE CONSTPATMT VALUES APE
288,97 1205,.1 1197 .4
THE NFW STAPTTING DESIGN VARIABLE VALUES ARE
BeQ02h1E~92 1,4328 « 33830 ~e 39447
-1.,2249 -6.59062F-02 3.9072 -6,18700E-03
2.LUBLBEF=-N4 67099
LocaL OPTIMUM VALUE OF OBJECTIVE FUNCTION IS 14,975
RESIGN VAPIARLE VALUES ARE
~2«.1044 2.1329 8389 2.69725E-C2
-1.223? 34857 1249 be 7UBLOE~-DC
1.7992 +16400
THE CONSTRAIMT VALUES ARE '
486.14 1256.4 1134.3
TRAMSMISSIBILITY INDEX FUNCTION IS »10845
STRUCTURPAL ERPOR FUNCTION IS 1.9430
LINK LENGTH FUNCTION IS «34809
FINAL OPTIMUM VALUF OF OBJECTIVE FUNCTION IS 1.4996
DESIGN VARTARLF VALUES APRE
332 «9h89L .56852 «51518
qq?"b 1.0640 1.8850 -5,46849E-03
1 9xN29¢-n3 «60278
NUMREP OF FUNCTICN CALLS WAS Lerv
TOTAL EXFCUTION TIME FOR METHOD 2 IS 71.866 SECONDS

FIG. 7-20
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TABLE 7.2 - PROJECTOR LINKAGE PARAMETERS
LINK NAME MASS POLAR M.I. Rel. Co=-ord.* of C.M.
RM 5 RJ CM
(1bf-sec®/in) (1bf-sec?-in) (in,in)
Crank (1) .0000122 .000000163 (.169,0.)
Coupler (2) .0000679 .0000205 (.943,0.)
Follower (3) .0000205 .000000634 (.284,0.)

* relative to each link - see Appendix D for

explanation.
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Figure 7.23 shows the computer input cards required
for balancing. Figures 7.24 to 7.28 show the computer output
obtained (where the design variables correspond to those Xi
discussed at the end of Chapter IV). Note that the maximum
and minimum values printed in the headings for each plot
(Figures 7.26 to 7.28) are for both the balanced and unbalanced
values, and are thus used to establish the scales for the
plots. The exact balanced and unbalanced shaking forces and
moments at the eighteen crank positions are shown in Figure

7.25.

The‘optimum counterweight parameters are shown in
Figure 7.29, Note that since the crank link rotates at a
constant angular velocity, the crank counterweight's polar
moment of inertia does not enter into the balancing equations.
Also only the product of the crank counterweight mass and the
distance from its centre of mass to the crankshaft axis is
important for this problem. Since NOAl is set equal to zero,
the computer program accounts for these facts by not including
the crank counterweight polar moment of inertia, X8' in the
optimization, and by leaving the crank counterweight mass, x7,
fixed at the user designated starting value (.0001 lbf—secz/in

for this example).

The optimum counterweight parameters may be difficult
to obtain in practice; thus the closest available counterweight

prarmeters can be checked before using by calling BALANCE (O)
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with these available parameters in COMMON / SAVOPT /,

(See Appendix E for further details.)
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PRUGRAM MAIN (UUTPUT s TAPEO=LUIPUT)

COMMON /STRIPT/STRTPIT(1U)

COMMON /SCLFAC/SCLSFHsSCLSFVeS5CLSMO

COMMON /NUABERS/NPP o viIETHUL o ICASE sNsINCo [ EXCO

COMMOUN /BALIN/WL(36)9A1(36) sPAR(6) sSTRTAIRNGAINCALICH(E])
IRM(3)sRJI(3) -

DATA FMETHOD/ Lu/ sNnPP/ 1B/ s TCASE/+1/7 9 TEXCUZ L1/ sRNGA/36Ue/
JSTRTA/Ve/ sFPAIK/ a2338 9009699050734 199=eDY30 16064/ eNUAL/O/
ZWl/la*Zbolﬁ/QAl/lb*Uo/QClVl/olbg’Ut9.9439\).’02849U./’
3RM/ Llel22b=590e /95920l =0/9RkJ/ 1083 =~T92eUDE~VsGe34E~T/
L4SCLOSFH/eU1/s5CLSFV/aUl/9SCLSMU/ UL/ 9SG TRTHFT/ —al29Ceslab—%
5leE=59~e3sUesleb=49]lebl~5/

CALL BALANCE(1sleE=~5)

STOP

END

FIG. 7-23 FOUR-BAR BALANCING INPUT



BAL ANCING UF A PLANAR 4-BaK MECHANLISM
WHERE ICARbt= |

THE STARTING DESIGN VARIABLE VALUES ARE
=-.30000 Ue

LOocaL OPTIMUM vaLLE OF OBUkCTIVE FUNCTION IS 5.,0355
DESIGN VARIADLE VALULES ARF

-2,21UV0E=y2 e
~Teia94E=r2 S

1.L0000F~=086

Hed)413F=04

THE NEW 572“4§T94ELS§G“ VARIQ?LgovuLUES ARE ;33 “
C o Q4E=Q T P?e42332F =0
3.94080F=~3 1.452355-02

LOCAL OPTT®uUmM VALLE OF ORJLCTIVE FUNCTINON IS 44285

DESIGN VARLABLE VALUES ARF
=le42iD2F=(2 3-;
[ ]

3,93922F=03
«lo1]1199F=n2 2

0077
H283E=03

THE NEW STaRIING CESIGN vaKIAHLE VALUES ARE
=lel19g4E=~y2 4.95Y7bt-0' 3¢47342F=03
1, U3G904F="2 6e73140E=0
LOCAL OPTIMUM VALLE OF OB ECTIVE FUNCTInNn IS 13.2R7

DESIGN vapriasle VALUES ARF

~0 BHOBHEE=(02 =eP6472 1e€1953F=0N4
-.3642( «2283V
HORJZUNTAL SHAKING FORCE FUNCTION IS 52685
VERTICAL SHAKING FORck FUNCTIUN IS 1.3311
SHAKTING MOMENT FUNCTIUN IS 244271

FINAL Vabiik CF BALANCING ONJECTIVE FUNCTION TS

BALANCING VARLABLE vakUES ARE
=le4el52F~ye . 0377 ]
“lolllb9F=r2 JeTH2B83E=03

NUMBER OF FUNCTLION CALLS wAS Ho30b

3.73922F=03

TOTAL EXpcUTLON TIME FOR meTH0D 1o IS 241943 SECONDS

FIG. 7-24
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1e000V0F =0

2e3RB3BF «y

Je2T4BOF=-0Y
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xl = ,0142 in.

X, = .1008 in.

X3 = Follower Couaterweight Mass
= ,0039 lb-sec“/in.

X4 = Follower Counterweight

Polar M.I.

= .0000 lb-in-sec?
Xg = .0111 in.
x6 = ,0038 in.

Crank Counterweight Mags =
' .0001 lb-sec“/in.

[

CRANK
COUNTERWEIGHT

.
H
FOLLOWER
COUNTERWEIGHT -
FIG. 7-29 OPTIMUM COUNTERWEIGHT PARAMETER§ FOR

FOUR-BAR PROJECTOR MECHANISM



VIII CONCLUSIONS

The éoncept of the minimization of the structural errof
of a mechanism to produce a desired result is not new. However,
the concept of simultaneously minimizing the maximum structural
‘error, maximizing the minimum transmissibility index, and
minimizing the maximum link length to produce an optimum
mechanism is a new concept. Examples 1 and 2 of Chapter VII
illustrate the need for all these three factors in a general

mechanism synthesis objective function.

The general transmissibility index for planar and
spatial mechanisms, as stated in this thesis, is also a new
concept. The transmissibility index (which varies from 0 to
1) indicates the fraction of the coupler force which is doing
useful work (i.e. causing the follower to move). However,
its more useful purpose is that of being an indicator of the
general sensitivity of the mechanism to changes in any of the
link dimensions. In fact, the TI is inversely proportional
to the linkage mechanical error, as is shown in Appendix C.
Hence, the size of a linkage's minimum transmissibility index
is a good indicator of the mechanism's inherent reliability

in producing a desired output.

The planar four-bar function generating problems for

111
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which Freudenstein has published the optimgm link lengths
based on his five precision-point computerized synthesis
technique [21, which accounts for only the theoretical
structural error, have been tried using the computer program
developed for this thesis. In general, Freudenstein's
dimensions represent the optimal dimensions considering
theoretical structural error only (example 2 of Chapter VII
being one of the exceptions). However, because the linkage
dimensions obtained using Freudenstein's technique do not
necessarily produce a linkage with a high transmissibility
index, some of these linkage dimensions are quite sensitive
to small changes, and thus must require extremely small
tolerances (as small as t ,0001) in order to achieve reasonable
statistical output accuracy. The cost of prdducing a linkage
is inversely proportional to the size of the tolerances
required, and the tolerances required are proportional to the
minimum transmissibility index. Thus, as can be seen from
sample problem 2, equal or better structural accuracy with
larger required manufacturing tolerances (and thus lower
production cost) can be obtained from a linkage synthesized
with respect to bothvthe TI and structural error, than with

a linkage synthesized with respect to only the structural error.

The inclusion of the shaking moment in the calculations
for the optimum balancing counterweights represents an important

improvement over current non-cut-and-try methods of mechanism
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balancing. Accurate non-experimental methods for balancing
have been previously limited to only the simplest slider-crank
configurations. Now an unusually shaped complex machanism

can be balanced just as easily as a uniform linked non-eccentric
slider-crank linkage. Example 3 of Chapter VII clearly illus-
trates how effective this balancing procedure is in simulta-
neously reducing both the shaking forces and moments for a
particular mechanism. Thus, one need not have to reduce the
shaking force at the expense of increasing the shaking moment,
but can significantly reduce both by adding the proper counter-

weights (determined by the computer program).

The balancing and synthesis techniques could not have
been properly developed were it not for the prior conception
of the inverse utility technique for the combining of more than
one factor into an objective function for minimization. The
inverse utility technique is designed specifically for computer
minimization routines, but is not limited to the field of
mechanism design (the automobile example in Chapter I1

illustrating this point).

The constraint transformations presented in Chapter II,
and the minimization algorithms presented in Chapter V, are
- completely general, not specifically relating to mechanism
design problems. Thus these algorithms can be used without

modification for any minimization problem.
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The new ideas presented in this thesis -~ the inverse
utility curve, the scaled exterior-point transformation, the
transmissibility index, the minimization-along—-a-line technique,
the multifactor linkage synthesis technique, and the multi-
factor mechanism balancing technique - are all employed in the
general computer program listed in Appendix F. Though these
ideas have been developed for this program, many of them are

general, and can be easily applied to other fields.



IX - APPENDICES

APPENDIX A - PROOF OF CONVERGENCE OF SCALED EXTERIOR-POINT TRANSFORMATION

Theorem I

If given a continuous single-valued objective function £(x) sub-
ject to continuous single-valued constraints Ci(§) >0, 1=1, ..., ﬁ
(where m is the total number of constraints), scalar a > 0, and scalar
t > t0 , then a value of to can always be chosen such that the uncon-

strained transformed function,

m
S(x, e, t) = f(x) ~et ] min (0, C.(®)... A.l
1=1

a if lf(;)] <a

]

where e

[f&)| if [£&)] >a ,
will converge, in a given minimization sequence, to a local minimum of

f(x) .

Corollary of Theorem I

If only one local constrained minimum of f(x) exists, then for
a>0and t > to’ the transformed function, S, will converge to the con-

strained global minimum of f(x) .

Proof of Theorem I*

If all ci(§) >0 ,1i=1, ..., m, then S(x, e, t) is identically
equal to f(x) . Thus for any point satisfying the condition that all

Ci(§) > 0, convergence of S to a local minimum of f is guaranteed.



However, in order to fully prove Theorem I it must be shown to be
valid for the case of any Ci(§)<0, i=1l, ..., m. Thus it must be shown
that

S(SEB +€, e, t) - f(;:B) >0 . . . A.2

for all € such that any Ci(}—cB + €) <0, i=1, ..., m, where §B is the value
of x at a boundary of the infeasible region. (The feasible region is
defined as that region where any Ci(;) <0, i=1, ..., m.)

Relation A.2 must be proven for two distinct cases: (1), when

]f(iB + E)lia, and (2), when |f(:—<B + E)iza .

* This proof is not flawless, but does provide considerable mathe~

matical justification for the confident usage of transformation S.
Case (1):

Replacing x by EB + € in A.1 and substituting in A.2, we get

m
f(xa +€)-at ) min (0, C,(xz +€)) - £(x ) >0 .
B ic1 i*’8
m —-— —
Replacing Z min (O, Ci(XB + a)) by G, where G<0 , we get
i=1
f(:‘cB +€)-até- f(:‘cB) >0 A.3

From inspection of A.3, it is clear that the relation will be the
most difficult to satisfy if f(;cB + €) = -a and f(;B) is some arbitrarily
large number L. A.3 then becomes

-a-atG-1L>0 ’
or t >(L + a)/alG]

to satisfy A.2. The t0 which is required by Theorem I for Case (1) is



therefore
(L + a)/a|G|
Case (2):
Replacing X by EB + € in A.1 and substituting in A.2, we get
- -~ - - m - — -
+ - |f + R .+ - >
£(xg + €) - |£(xg S)Itizl min (0 c; (xg €)) £(xg) >0

or f(§B +€) - |[fxg + €|t 6 - £(xg) >0
Dividing by If(§8 + E)I we get
1(seN(£GRg + ©))) - £ 6 - £/ £y + D) >0 ... A.4

From inspection of A.4, it>is clear that the relation is the most
difficult to satisfy if f(;:B +€) = -a and f(EB) is some large positive
number L. A.4 then becomes

| -1-tG-~-1L/a> |,
or t >(L + a)/a|G|
to satisfy A.2.

Thus the value of »

e, = L+ a)/a|G| A.5
satisfies relation A.2 for both cases. Since L, a, and G are finite
numbers, a value of t>to can always be chosen that will satisfy A.2.
Thus Theorem I is proven.

Note that if a = 0 in A.5, then Theorem I would not be valid
since to would be‘infinityw Hence itiis:imperative tha'ax*0, not a>0,

be used in the transformation A.l,



APPENDIX B — MECHANISM SYNTHESIS EQUATIONS

B-1 Follower Angle as a Function of the Crank Angle for a Planar Four-

bar Linkage

Let the following parameters be defined (see Figure B-1):

a crank link length

b = coupler link length

¢ = follower link length

e = frame link length

¢ = crank starting angle
¢. = crank angle relative to ¢S

Y = follower angle

€ = angle between coupler and follower
Y = angle between coupler and direction

of follower motion.

" Using plane trigonometry the following relations are derived:

b= o, + 0,
U = arctan (a sin ¢/(e - a cos ¢))

d = (a2 + e2 - 2 ae cos ¢)l/2

n = arccos ((c2 +d? - b2)/2 c d)
W+ =T - (U+n)or¥_ =7-u+n B.1

Note that there are two distinct values of ¥ (W+ and ¥_) for any set of
values for a, b, ¢, e, and ¢ .
The constraint. to insure mechanism closure for any given value

of ¢ is
|(02+d2—b2)/2cd]<_l . B.2

4



FOUR-BAR LINKAGE PARAMETERS



B-2 Coupler Point Position as a Function of Crank Angle for a Planar

Four-bar Linkage

Let the following parameters be defined (see Figure B-2):

h, £

X,y

Using plane

¢

M

€

= horizontal and vertical components,
respectively, at the crankshaft axis
with respect to the arbitrary H-V
coordinates

= angle counterclockwise from horizontal
that frame link e is oriented

= horizontal and vertical components,
respectively, of an afbitrary coupler-
point with respect to the H-V coordinates

= horizontal and vertical coﬁponents,
respectively, of a coupler~point a distance
f along the coupler link from the crankpin
(with respect to the H-V coordinates)

= perpendicular distance from coupler link
b to coupler-point (x, y)

= distance along coupler link from crankpin
to intersection with g

trigonometry the following relations are derived:

cbs + ¢i
e cos § - a cos (¢ +§) + c(cos(W + E))

e sin £ + C sin (¥ +£) - a sin(d + &)

= h+ acos(dp + &)+ £ Mb
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p=2L%+asin (¢ +E&) + £ N/b

By similar triangles (see Figure B-3)

x=¢€ - g N/b, and B.3

p+gMb . B.4

y

B-3 Slider Distance as a Function of the Crank Angle for a Planar

Slider-crank Linkage

Let the following parameters be defined (see Figure B-4):

a crank link length
b = coupler link length
¢ = distance from a line parallel to the
slider motion through the crankshaft
axis to the slider axis
¢ = crank starting angle
¢i = crank angle relative to ¢S
-8 = distance from the crankshaft axis to
the slider axis measured parallel to
the slider motion
o = angle between coupler link and direction

of slider motion.

Using plane trigonometry the following relations are derived:

o =0, +9,
M= a cos ¢

N =b2 - (asin ¢ - €)°

s+ =M+ N]'/2 s, B_ =M - Nl/2 (2 possibilities) B.5



FIG. B-3 - SIMILAR TRIANGLES FOR COUPLER POINT

FIG. B-4 SLIDER-CRANK PARAMETERS
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The constraint to ensure mechanism closure for any given value

of ¢ is
N>0 B.6

B-4 Coupler Point Coordinates as a Function of the Crank Angle for a

Planar Slider-crank Linkage

The parameters (see Figure B~5) have the same meanings as in
Sections B-2 and B-3.

Using plane trigonometry the following expressions are derived:

b= 6, + b
M=s5cos £ -acos(p+E)-csink
N=s sin £ + c(cos £) - a sin (¢ + )
€=h+a cos(d+E) + £ M/b

o =2 +a sin(¢ + £) + £ N/b

Using similar triangles (see Figure B-3)

x=¢€ - gN/b B.7

]

y=p+gMb B.8

B~5 Follower Angle as a Function of the Crank Angle for a Spatial (RGGR)

Linkage

Let the‘following parameters be defined (see Figure B-6):

a crank link length

b = coupler link length
¢ = follower link length
Z = crankshaft axis

Z"= followershaft axis

X = coordinate axis perpendicular to Z and Z~ axes
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Y = coordinate axis perpendicular to X and Z
axes so as to form a righthanded triad

£ = angle between Z and Z~ axes looking in
at the X axis measured clockwise from
the Z axis

d = distance from X axis to followershaft
axis measured along Z° axis

e = distance from Z axis to Z~ axis measured
along X axis

f = distance from X axis to crankshaft axis
measured along Z axis

¢ = crank starting angle

¢, = crank angle relative to ¢S

follower angle
Both ¢ = ¢S + ¢i and Y are measured counterclockwise about the Z axis
from the X axis looking in at the Z axis. The positioning of the spatial
four-bar linkage as shown in Figure B-6 is attributed to Hunt [25].

The required equations are derived using vectors identified by
the small numbers (Figure B-6) at the linkage joints. For example, 01
means a vector from point Q0 to point 1. {, 5 and k are the unit vectors

in the X, Y, and Z coordinate directions respectively.

01l = f k
12 = a cos ¢ i + a sin ¢ 5
. 02 =acos ¢ 1 + a sin ¢ F+fk
05=e 1
56 =dsin& j+dcos £k



FIG. B-6

SPATIAL FOUR-BAR PARAMETERS

13
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43 = c(cos ¥) 1 + ¢ sin ¥(cos £ j - sin £ k)

03 = (e + c(cos W)) i+ (dsin & + ¢ sin Y cos £) 3
+ (d cos £ - ¢ sin ¥ sin &) k

|23] = J0o3 -02] = b

23 = (e + c(cos ¥) - a cos ¢) i
+ (dsin &+ csin V¥ cos £ - a sin ¢) J
+ (d cos £ - ¢ sin ¥ sin £ - f) k

b2 = |23|2 = (e + c(cos ¥) - a cos ¢)2
+ (d sin £ + ¢ sin ¥ cos £ - a sin ¢)2
+ (dcos £ - ¢ sin ¥ sin £ - f)2

which reduces to
b2 = a2 + c2 + d2 + e2 + f2 —‘2 a e cos ¢

+2cos ¥ (ce-cacos ¢$) -2 ad sin ¢ sin §
+ 2 s5in ¥ (¢c £ sin § - a ¢ sin ¢ cos §)
-24d f cos & B.9
Rewriting B.9 by separating the follower angle terms from the
other linkage iﬁdependent variables we obtain
F1 (¢) + F2 (¢) cos ¥ -sin¥ =0 B.10

where

F1 ()] P1 + P2 cos ¢ + P, sin (b)/(P6 + P7 sin ¢),

3

+xj
[\
~
S
~
L]

(P4 + P_ cos ¢)/(P6 + P7 sin ¢)

5
P1 =d f cos £ - 1/2 (a2 + c2 + d2 + e2 + f2 - b2)
P2 = ae
P3 = a d sin £
P, =~-ce
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P5 =ac

P6 =c¢ f sin

p7 = - PS cos §
Substituting

2

: b4
sin ¥ = 2 tan 6;)/(1 + tan (59)- and

(1 - tan?(¥/2))/ (1 + tan? (¥/2))

cos Y
in equation B.10, and solving the resulting quadratic in tan (¥/2), we get
tan ) = (1+ A+ B @) - 2N /(F, ) - Fy()
. ¥=2arctan {(1+ (1+Fa(0) - 2@)Y/F ) - F,0)} B
Thg constraint to ensure mechanism closure for any given value of

¢ is
14 F§(¢) - Fi(¢) >0 B.12

B-6 Transmissibility Index for a Planar Four-bar Linkage

See Section B-1l and Figure B-1 for parameter definitions. The
following relations are derived using plane trigonometry:
Y = |e - w/2]
from the sine law
sin € = d sin n/b
but cos Yy = sin €

TI = |cos Y| = |d sin n/b]| B.13

B-7 Transmissibility Index for a Planar Slider-crank Linkage

See Section B-3 and Figure B-4 for parameter definitions. The
following relation is derived using plane trigonometry

TI = |cos Y| = |(s - a cos ¢)/b] B.1l4
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B-8 Transmissibility Index for Spatial Four-bar Linkage

See Section B-5 and Figure B-6 for parameter definitions;

As is explained in Section III of this thesis, the transmissibility
index is the absolute value of the cosine of the angle between the coup-
ler and the direction of follower motion. For this linkage the coupler is
represented by the vector (see Section B-5)

32 = (a cos ¢ - e - c(cos W))I

+ (asin ¢ - d sin £ - ¢ sin ¥ cos §)j
+ (f + ¢ sin ¥ sin £ - d cos &) kK .

Since the magnitude of the follower velocity vector, ﬁ, is

unimportant, only its direction being required, let

R

(Vl/v3) i+ (vz/v3) j+k

R1 i+ R2 j+k

Vector V is perpendicular to both the follower link, 43, and the follower

axis, 54;
L R*43=0 , and
R *54=0 .

Thus using the expressions for 43 and 54 derived in Section B-5,

R1 c cos ¥ + R2 c sin Y cos £ - ¢ sin ¥ sin £ = 0... B.15

and R,dsin§ +dcos £ =0 B.16
From equation B.16,
R, = -cos &/sin & .

Substituting the above expreésion for R2 in equation B-15, we get

R, = (1/cos ¥)(sin ¥ sin & + sin ¥ cos2 &/sin &)

1

= gin ¥/cos ¥ sin £
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. R = (sin ¥/cos ¥ sin £) I - (cos &/sin £) j + k
= tan ¥ i - cos & 5 + sin § k
|R] = (tan2 Y + cos2 g + sin2 5)1/2
= sec Y
R *
Let U=—
|R|

-sin ¥ i + cos £ cos ¥ j - sin & cos ¥ k

U is the unit vector along the line defined by the follower velocity vector.

The unit vector U can also be derived by using plane trigonometric
inspection of Figure B-6 by expressing 43 initially in the X Y~ 2~
coordinate system as follows:

unit vector in 43 direction is

cos ¥ i’ + sin ¥ 3’ B.17
."« a unit vector perpendicular to k”and expression B-5 is

- sin ¥ {’ + cos ¥ 5‘ B.18
Transforming B-18 into the XYZ coordinate system, we get

U=-sin Y1+ cos £ cos ¥ § - sin £ cos ¥ k
which is identical to the previous expression for U. Thus the inspection
method is much quicker for this problem, but can be very difficult for
problems where the follower-frame joint is a globular (ball-and-socket)
joint. 1In such a case the vector mechanical technique described earlier

is the best means of obtaining the required expressions to evaluate the

transmissibility index.

* Sign change is for later comparisons, and does not affect the

results, since the absolute value of the cosine is used for the TI.



Taking the scalar product of 32 and U to obtain TI,

TI = |(32:0)/b]

!(—a cos ¢ sin VY + e sin ¥+ c¢c sin ¥ cos ¥
+ a sin ¢ cos &£ cos ¥ - d sin & cos & cos V¥
- ¢ sin ¥ cos2 £Ecos ¥ -f sin § cos V¥

- c sin ¥ sin2 € cos ¥+ d cos & sin & cos ¥)/b|

l(sin Y(e - a cos ¢) + cos ¥(a sin ¢ cos &

- f sin E))/b|

18
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APPENDIX C - RELATION BETWEEN TI AND MECHANICAL ERROR

Hartenberg [16] shows that the mechanical error in the output
angle ¥ of a planar four-bar linkage due to small perturbations of one or
more of the link lengths (which result, in practice, from manufacturing
tolerances) yields an expression the denominator of which is (see Section
B-1 and Figure B-1 for meanings of parameters).

2acsin¢cos¥~-~sin¥Y¥ (2ce+2accos $) .

Hartenberg also shows that the above expression can be equated to
+2bcsine
where € is the transmission angle previously defined.

For the planar four-bar linkage the transmissibility index is
equivalent to the cosine of the complement of the transmission angle, or

TI = cos (T/2 - €) = sin € c.1

Therefore, the mechanical error of a planar four-bar linkage is
proportional to 1/TI. (The same relation can be also shown for the

Planar slider-crank and spatial four-bar linkages.)
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APPENDIX D - BALANCING AND ANALYSIS EQUATIONS

D~1 Velocity and Acceleration Equations for the Planar Four-bar

The appropriate parameters to be used in the development of the
required equations are illustrated in figure D-1.

The following relations are derived using plane trigonometry:

z _ 2 a f cos 61)1/2

2

d= (a% + £
2 2
0. = arccos ((b +d° -c%)/20b d)

B = arctan (a sin 61/(f - a cos 61))

A = arccos ((c2 +a% - v2y/2 ¢ d)
62 = - +a
63 =2m-BF }
94 =T
Expressing the links as complex number vectors,
if i6 i i@, -
ae 1 + b e 2 +ce 3 + f e 4. 0
i0: i6 i6
or ae 1 + be 2 +ce 3. f D.1
do
Taking the derivative of D.1 w.r.t. time, t, setting e T Wy ve get
iel i6 163
ia wy e +1ib w2 e +1ic w3 e =0 D.2

Noting that eiei = cos Gi + i sin Gi, and that both real and imaginary

parts of both sides of a complex number equation must be equivalent, we

get,
Re: - a wl sin 61 - b wz sin 62 -c w3 sin 63 = 0, and
Im: a wl cos 61 +b w, cos 62 + c w3 cos 63 =0
Solving the two above equations for wl and w, we get

w, = w, asin (61 - 83)/b sin (62 - 63), and

20



FIG. D-1

FOUR-BAR PARAMETERS
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wy = &, a sin (91 - 62)/c sin ‘62 f 63) "
Taking the derivative of D.2 w.r.t. time, t, and setting EEE'= oy
we get
i6 v io io
ol _ s -1 2 . 2 2 _ . 3 _
Gwl i al) ae + (w2 i az) be + (w3 i a3) ce =0

from whence

Re: a wi cos 61 + a oy sin 61 +b wg cos 62 + b a, sin 62
+ c w§ cos 63 + c a3 sin 63 = 0, and
Im: a wi sin 61 - aa, cos 61 +b wi sin 62 -b a, cos 62
+ c wg sin 63 - ¢ o, cos 93 =0 .
Solving the two above equations for az and a3 we get
a, = w, al/wl - (a wi cos (61‘- 63) + b w§ cos (62 - 63)
+cul)/bsin (8, - 6,) , and
Oy = W, al/wl + (a mi cos (61 - 92) +b wg
+ ¢ w] cos (8, - 8))/c sin (8, - 0,)

Expressing the position of point p as a complex number vector, P >
i6 i6 if
5 = ae 1 +ge 2 +1ihe .2

Taking the derivative of p w.r.t. time we get,

= i6 i6 i6

dp _ 5 = . 1 2 _
at Vp ai wl e + g i wz e h wz e s
from whence,
Re (Vp) = - a wl sin 91 -g w2 sin 92 - h w2 cos 92 (horizontal

component), and

Im (Vp) =aw cos B, +guw, cos 6, - h w, sin 6, (vertical

1 2 2

component).

Therefore

= - 2 - 2571
71 = (@e@))? + (1m(@ )) %)/

, and
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8-~ = arctan (Im(v )/Re (V ))
v P P
P

Taking the derivative of VP w.r.t. time we get
av_ 16

_P_ I - (- 2 .
3t ap (-a wl +ai al) e

1
i62

+gi az) e
i6;

. 2 2

2
+(-g w2

from whence,

2
-a al sin 61 - a wl

Re (;p) cos 61 -g az sin 92

2 2
- +
g W, cos 62 h w

cos 92 - h a 2

2 sin 62 (horizontal component),

and

2 .
a o, cos 61 - a w; sin 61 + g 0, cos 62

Im (Ep) 1

-g wg sin 62 - h o, sin 62 -~ h w§ cos 62 (vertical component).

Therefore,

3] = (e (ap))2 + (m @)

63

g arctan (Im (EP)/Re (Ep))

D-2 " Velocity and Acceleration Equations for the Planar Slider-crank

The appropriate parameters to be used in the development of the
required equations are illustrated in Figure D.2

The following relations are derived using plane trigonometry:

0, = arctan ((c - a sin 61)/ + (b2 - (c - a sin 61)2 )1f2)
6, =3 w/2
64 =T

Expressing the links in complex number notation,
i6 ié i6 i6
ae 1 +be 2 +ce 3 +s e 42 0
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FIG. D-2

SLIDER-CRANK PARAMETERS
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de

Differentiating the above with respect to time, and setting wy = EEL s
we get

i6 if if

, . 2 ds 4
ai wl e +b i wz e + ac © =0 D.3

from whence

. ds _
Re: - a wl sin 61 b w2 sin 62 + 4 cos 64 =0 , and
Im: aw, cos 6. + b w, cos 6, + £1-§-sin 6, =0

' 1 1 2 2 dt 4

Solving the above two equations for wz we get

w, = = aw (cos 61 cos 64 + sin 61 sin 64)/b (cos 62 cos 64
+ sin 62 sin 64)
Since 64 =T LW, reduces to
w, = - aw cos 01/b cos 62 H
also
ds . _ aw, sin 8, - b w, sin 6
dt 1 1 2 2 dw
Differentiating D.3 w.r.t. time, t, and setting a; = EEE" we get
i i6 i6 i6
2 1 . 1 2 2 : 2
- a wl e +ia al e -b w2 e +1ib a2 e
2 ib
+ Q_%_ e g o ,
: dt
from whence
Re: -a w2 cos 6, — aa, sin 6, - b wz cos 6, -~ b o, sin 6
1 1 1 1 2 2 2 2
dzs
f-——i cos 64 =0 , and
dt
2 . 2 .
Im: - a Ql sin 61 + a al cos 61 -b w2 sin 62 + b az cos 62
2
+ ds sin 64 =0 .
dt

Substituting 64 = 1 into the above imaginary equation we get

_ 2 2 .
o, = (a wy sin 91 - a o, cos 61 + b w, sin 62)/b cos 62

2 1
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but
- a cos Gl/h cos 92 = wz/w1 .
Therefore
o, /w, + (a wz sin 6. + b w2
1°71 1 1

o, = W sin 92)/b cos 92

2 2 2
d2s
— can be obtained by substituting 94 = T and o, into the real
dt

expression above, but it is more convenient to obtain it by considering a

coupler point with g = b and h = 0. The resulting expression for Ep is

2
then equivalent to-i%; .
dt
The expressions for val and GV » and |5‘| and 65 for a planar

p P
slider~crank coupler point p are identical to those for the planar four-

bar coupler point except that 92 is defined differently.

D-3 Balancing Equations

As shown in Figure D-3, any point t on the crank link can be
expressed in terms of an m and n, and similarly, any point u on the
follower link can be expressed in terms of a q and r.

The horizontal and vertical components of acceleration of a point
t on the crank link (derived in a manner similar to that for point p on
the coupler link in Section D-1) are respectively

2 . 2 _
sin 91>+ n wl“sinﬂﬁln

Iat'h = - m W cos 91 - WOy
- nao, COS»el s.and
la ], =~-m w2 sin 6, + ma, cos 6, - n w? cos 6
t'v 1 1 1 1 1 1
- na, sin 61

Similarly the horizontal and vertical components of the-
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FIG. D-3 FOUR-BAR LINK POINTS
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acceleration of a point u on the follower link of a planar four-bar

linkage are respectively

2 - - 2 .
- q wy cos 33 - qay sin 6, + r wy sin O,

Iau,h -
-r a3 cos 63 , and
la | =-g4 wz sin 8 + q o, cos 6. -1 w2 cos 9’
u'v 3 3 3 3 3 3
- T G5 sin 63 .

Thus the linear accelerations of any points t, p, and u on the crank,
coupler, and follower links respectively can .be analytically determined in
terms of the angular displacement, velocity, and acceleration of the crank
link.

If t, p, and u are the locations of the centres of mass of the
crank, coupler, and follower links of masses and moments of inertia Mi
' and Ji, i=1, 2, 3, respectively, then the horizontal shaking force (SFH),
vertical shaking force (SFV), and the counterclockwise shaking moment (SMO)

about the crankshaft axis can be calculated as follows:

¥ s=- M, 2 - M, 2 M, S
+4+ SFV = -~ M1 a, - M2 ap - M3 a, , and
v v v
SMO = + MI ath (m sin 61 + n cos 61) - M1 atv.(m cos 61 - n sin 61)
+ M2 aph (a sin 91 + g sin 62 + h cos 62)
- M2 apv (a cos 61 + g cos 62 -~ h sin 62)

+ M3 auh (q sin 93 + r cos 63) - M3 auV(f + q cosze3 - r sin 93)

Jp 0 7y 0y = Jdg0g
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The above expressions represent the unbalanced shaking forces
and moments for a given crank angle, crank angular velocity and crank
angular acceleration of a completely defined planar four-bar linkage.
The expressions for a planar slider-crank are similar except that the
vertical inertia force and inertia torque of the slider are nomexistent.
Thus the horizontal inertia force of the slider is the only additional
term to the inertia forces and torques of the crank and coupler links.

‘The expressions for the inertia force and moment effects of the
counterweights are identical to those for the crank and follower links

except that Ml’ J,, m, n, M3, J3, q> and r have the values corresponding

1

to the crank and follower counterweight design variables which are being

optimized.
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l. PURPOSE

A generalized (system) FORTRAN computer program has
been created to handle an assortment of common linkage analysis,
dimensional synthesis, and balancing problems. The linkage
types used are the planar four-bar (RRRR), planar slider-crank
(RRRP) , and spatial four-bar (RGGR). The problem types that
can be solved using this system program are discussed under

their respective headings in Section 3.

The system program is arranged so that a designer can
solve both easy and complex linkage design problems with a
minimum understanding of the methods of solution used and a

minimum computer programming knowledge.

The computer output, which consists of both plots and
tabulated values, is printed out at key stages of the design
process so that a designer obtains considerable insight into
the actual performance of his linkage as it relates to his

design requirements.

The method used for the dimensional synthesis of the
linkages for coupler-pcint curve and function generating problems

simultaneously minimizes the maximum structural error¥*,

* See Chapter III for an explanation of the structural

error.
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maximizes the minimum transmissibility index?*, and minimizes
the maximum link length. For such problems the method also
ensures that linkage closure is possible at all points within

the designated range of linkage motion.

The linkage analysis method used is an exact one based
on complex number vector analysis techniques - the only limit

on accuracy being that of the particular computer used.

The linkage balancing method used adds optimum counter-
weights to the crank and follower links of the planar four-bar
linkage, and to the crank link only of the planar slider-crank
linkage. The size and position of these optimum counterweights
are optimized by simultaneously minimizing the total horizontal
shaking force**, the total vertical shaking force, and the
total counterclockwise shaking moment about the crankshaft

axis.

2. HOW TO USE

The input required for all the problems which can be

handled by this program is minimal. This input is contained in

* See Chapter III for an explanation of the
transmissibility index.
** See Chapter IV for definitions of the shaking forces

and moments, and for reasons for their use.
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a small user defined MAIN program and up to two small addi-
tional (service) subroutines. The particular format of the
main program and the service subroutines is described for

each problem type in Section 3.

The objective function and the basic required constraints
for each synthesis problem are completely defined within the
system program except for the scaling factors (see Section 4)
and any additional constraints required for a specific problem

(see Section 7).

The meanings of the particular independent design vari-
ables and the basic constraints for optimization are explained

under each problem type heading in Section 3.

After defining the required input parameters in the
main program, which is most easily done by using a FORTRAN*
DATA statement, the user need only make the appropriate call

to the required subroutine as outlined in Section 3.

The required program input parameter values are
transferred from the user's main program to the system program

through labelled COMMON blocks which must be included in the

* The user supplied main program and service sub-
routines must be written in the FORTRAN II, FORTRAN IV, or

FORTRAN VI programming language.
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main program and service subroutines exactly as shown in the
examples shown in Section 3. (The meanings of all the variables
in the labelled COMMON blocks are listed in Section 9.) It is
suggested that the user duplicate a number of these labelled
COMMON blocks using the correct formats shown in Figure 9-1

to avoid simple, but costly, mistakes in future use.

3. PROBLEM TYPES

‘3.1 Planar Four-bar Function Synthesis (METHOD=1)
Purpose
The system program determines the optimum linkage
dimensions and starting position to generate a particular
functional relation (FUNSYN) between the crank (input) angle
and the follower (output) angle within a designated range of

crank rotation (RNGI).

Input Parameters (see Section 9 for meanings)
METHOD, ICASE, NPP, IEXCO, ISYM, XMIN, XMAX, RNGI,

RNGO, TITE, SCALl, SCAL2, SCAL3, STRTPT

Input COMMON Blocks

STRTPT, SCLFAC, NUMBERS, SYNIN

Input Routines

MAIN, FUNSYN
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Program Set-up

Figure 3-1 shows a typical input for this problem type.
The main program consists of the required input COMMON blocks,
the input parameters defined in a DATA sfatement, and a call to
subroutine LINK. Function subprogram FUNSYN contains the
desired functional relation between the input and output link

angles,

Basic Output*

Optimum independent design variables (see Figure 3-2):

X (1) - the crank length divided by the frame
length**;

X(2) - the coupler length divided by the frame
length;

X(3) - the follower length divided by the frame
length; and

X(4) - the mid-point angle of the crank range of

rotation (in radians counterclockwise

positive).

* If user added constraints are employed in subroutine
EXCON (see Section 7), then these constraint values at the
optimum are printed out following the basic constraints.

** The frame length is thus always equal to one; this
is because only thé link angles are required to determine the

linkage input/output functional relations.
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F1Ge 3=1 PLANAR FOUR=BAR FUNCTION SYNTHESIS INPUT

PROGRAM MAIN (OUTPUT»TAPE6sSOUTPUT)

COMMON /STRTPT/STRTPT(10)

COMMON /NUMBERS/NPP oMETHOD » ICASEsNoNCo IEXCO

COMMON /SCLFAC/SCAL1+SCAL2+SCALY

COMMON /SYNIN/XMINsXMAX sRNGI sRNGOSTITESCFRICoISYM

DATA METHOD/1/+ICASE/=1/esNPP/ 9/+1EXCO/1/91SYM/0/
1IXMIN/=1a/9XMAX/10/9RNG1/90e/9RNGO/60e/9TITE/200/9¢SCALL/ 65/
2SCAL2/7e01/79SCALD/106/sSTRTPT/=eb102+08686903804924768/
CALL LINK(19e00019169265440001)

STOP

END

FUNCTION FUNSYN(X)
FUNSYN=X#X

RETURN

END
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Basic constraints*:

C(l) - ensures linkage closure;

C(2) - prevents X(4) from‘increasing to
infinity; and

C(3) - keeps the actual range of output motion
within the desired range of putput motion

(RNGO * TITE).

Typical output includes a minimization from at least
two starting points, the optimum independent design variable
parameters, the minimum value of the objective function with
its contributing factors itemized, the constraint values at
the optimum point, the total number of objective function
calls, and the total execution time. A preliminary analysis
is automatically done on the optimum linkage; the output
from this analysis includes a structural error plot, the
optimum crank starting angle, the corresponding follower
starting angle, the actual range of output (follower) motion,

and the minimum transmissibility index.

* All constraint values should be positive at the

optimum point for a feasible solution,
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3.2 Planar Four-bar Coupler-point Curve Synthesis (METHOD=2)
Purpose

The system program determines the optimum linkage
dimensions and position to generate a given coupler-point curve
as a function of the crank (input) angle. The coupler-point
curve is defined relative to a given co~ordinate system by
specifying particular desired positions (with tolerances)
on the curve for given crank angles. (See COUPLER in Section
10 and DESIRE in Section 9 for more details on specifying the
desired coupler curve.,) The optimum position of the four-bar
linkage is determined relative to the same (H-V in Figure 3-4)
co-ordinate system that is used to define the desired coupler-

point positions.

Input Parameters (see Section 9 for meanings)
METHOD, IEXCO, NPP, ICASE, SCALl, SCAL3, RNGI, STRTPT,

XD, YD, ANG, XTOL, YTOL

Input COMMON Blocks

STRTPT, NUMBERS, SCLFAC, SYNIN, DESIRE

Input Routines

MAIN, COUPLER

Program Set-up
Figure 3-3 shows a typical input for this problem type.
The first eight input parameters listed above are defined in

MAIN along with the first four COMMON blocks listed above.
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The last five input parameters are defined, along with COMMON
block DESIRE, in COUPLER. A call to subroutine LINK initiates

the system program.

Basic Output
Optimum independent design variables (see Figure 3-4):

X(1l) - crank link length;

X(2) - coupler link length;

X(3) - follower link length;

X(4) - crank link mid-range angle relative to
the frame (in radians counterclockwise
positive);

X(5) =~ frame link angle relative to the horizontal
(in radians counterclockwise positive);

X(6) - frame link length;

X(7) and

X(8) = co-ordinates of the desired coupler point
relative to the coupler link; and

X(9) and

X(10)~- co-ordinates of the crankshaft axis relative

to the H-V co-ordinate system.

Basic constraints:
C(l) - ensures linkage closure;
C(2) =~ prevents X(4) from going to infinity; and

C(3) - prevents X(5) from going to infinity.
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F1Ge 3=3 PLANAR FOUR=BAR COUPLER=POINT CURVE SYNTHMESLS INPUT

PROGRAM MAIN (OUTPUT+TAPESG=OUTPUT)

COMMON /STRTPT/STRTPT(10)

COMMON /NUMBERS/NPP ¢4METHOD » ICASE sNsNCoIEXCO

COMMON /SCLFAC/SCAL1+SCAL2¢SCALS

COMMON /SYNIN/XMINsXMAX sRNGTI sRNGOsTITEsCFRICHISYM
DATA METHOD/2/+1EXCO/1/79NPP/9/+ICASE/+1/¢SCALL1/ 65/
1SCAL3/2e5/9RNGI/3606/9oSTRTPT/639009600540069=¢589100991¢89906904
26/

CALL LINK{19¢000191092¢5+940001)

STOP

END

SUBROUTINE COUPLER

COMMON /DESIRE/X(21)9Y{(81)sANG(81) eXTOL(21)9YTOL(21)
NOTE THAT X 1S USED INSTEAD OF XD AND Y INSTEAD OF YD
THIS IS OeKe SINCE THERE 1S CONSISTENCY BETWEEN DATA AND COMMON
STATEMENTS 1eEe A GIVEN VARIABLE NAME CAN BE CHANGED FROM THAT
SUGGESTED BUT THE ORDER OF THE VARIABLES IN THE COMMON BLOCKS
CANNOT BE CHANGED ‘

DATA X/20202¢0491e8791671416455916559107502¢102e2/
1Y/020029029029623035007 9006790635/ XT0L70010619002001900019005942042»
2005/9YTOL/6%0050040040005/9ANG/0090610162201083902044102e7904019
3542415493/

RETURN

END
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The rest of the output is similar to that for Section
3-1 except that the desired and actual coupler point positions,
as well as the differences between them (the structural

errors), are plotted.

3.3 Planar Slider-crank Function Synthesis (METHOD=3)

Purpose
The system program determines the optimum linkage
dimensions and starting position to generate a given functional
relation (FUNSYN) between the crank (input) angle and the
slider (output) position within a designated range of crank

rotation.

Input Parameters (see Section 9 for meanings)
METHOD, ICASE, NPP, RNGI, RNGO, TITE, IEXCO, XMIN,

XMAX, CFRIC, ISYM, SCALl, SCAL2, SCAL3, STRTPT

Input COMMON Blocks

STRTPT, SCLFAC, NUMBERS, SYNIN

Input Routines

MAIN, FUNSYN

Program Set-up
See Figure 3-5 for a sample input. All the input
parameters are defined in MAIN; the desired functional relation

is defined in function subprogram FUNSYN, A call to subroutine
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FIGe 3=5 PLANAR SLIDER=CRANK FUNCTION SYNTHESIS INPUT

PROGRAM MAIN (OUTPUTsTAPES=OUTPUT)

COMMON /STRTPT/STRTPT(10)

COMMON /NUMBERS/NPP.METHOD.ICASE.N0NC9IEXCO

COMMON /SCLFAC/SCAL19SCAL29SCAL3

COMMON /SYNIN/XMINsXMAXsRNGI sRNGOSsTITEsCFRICSISYM

DATA RNGI/360¢/9RNGO/4e/ sMETHOD/3/ 9 1CASE/L1/sNPP/15/9TITE/el/»
1IEXCO/1/9XMIN/Oe/ 9 XMAX/642831853072/9CFRIC/e3/91SYM/0/
2SCAL1/46428/9SCAL2/401/9SCAL3/10e/9STRTPT/20910090693e14159/
CALL LINK(194000191692¢5940001)

STOP

END

FUNCTION FUNSYN(X)
FUNSYN=COS (X!}
RETURN

END
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LINK initiates the system program.

Basic Output
Optimum independent design variables (see Figure 3-6):

X(1l) = crank link length;

X(2) ~ follower link length;
X(3) - slider eccentricity (upwards positive); and
X{4) -~ crank mid-range angle (in radians positive

counterclockwise) .

Basic constraints:

c(1) ensures linkage closure;

C(2) ~ prevents X(4) from going to infinity; and

C(3) keeps the actual range of output motion
within the desired range of output motion

(RNGO * TITE)

The rest of the computer output is similar to that for

Section 3-1.

3.4 Planar Slider-crank Coupler-point Curve Synthesis

(METHOD=4)

Purpose
The system program determines the optimum linkage
dimensions and position to generate a given coupler-point curve
as a function of the crank (input) angle. (The comments in

the Purpose for Section 3-2 also apply to this section.)
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Input Parameters (see Section 9 for meanings)
METHOD, ICASE, NPP, IEXCO, RNGI, SCALl, SCAL3, CFRIC,

STRTPT, XD, YD, ANG, XTOL, YTOL

Input COMMON Blocks

STRTPT, SCLFAC, NUMBERS, SYNIN, DESIRE

Input Routines

MAIN, COUPLER

Program Set-up

Figure 3-7 shows a typical input for this problem
type. The first nine input parameters listed above are
defined in MAIN along with the first four COMMON blocks listed
above. The last five input parameters are defined, along
with COMMON block DESIRE, in COUPLER. A call to subroutine

LINK initiates the system program.

Basic Output
Optimum independent design variables (see Figure 3-8)

X(1l) - crank link length;

X(2) - coupler link length;

2(3) ~ slider ecentricity;

X(4) - crank mid-range angle (in radians counter-
clockwise positive);

X(5) = frame link angle (in radians counter-

clockwise positive);
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F1Ge 3=7 PLANAR SLIDER=CRANK COUPLER=POINT CURVE SYNTMESIS INPUT

PROGRAM MAIN (OUTPUT+TAPES=QOUTPUT)

COMMON /STRTPT/STRTPT(10)}

COMMON /NUMBERS/NPPIMETHOD » ICASEsNoNCIEXCO

COMMON /SCLFAC/SCAL1sSCAL2+S5CALA

COMMON /SYNIN/XMINsXMAXsRNGIIRNGOSTITESCFRIC»ISYM

DATA RNGI1/2T0e/s1EXCO/L/ sNPP/4L/ sMETHOD/4/91CASE/1/9SCALY1/e5/
15CAL3/2°0/9CFR1C/03/05TRTPT/ZQ08000003014000050!00000’20/
CALL LINK{(13¢000191e¢92¢5540001)

sSTOP

END

SUBROUT INE COUPLER

COMMON /DESIRE/X(21)oY(81)sANG(B1)oXTOL(21)sYTOL(21)
NOTE THAT X 1S USED INSTEAD OF XD AND Y INSTEAD OF YD

THIS IS OsKe SINCE THERE 18 CONSISTENCY BETWEEN DATA AND COMMON
STATEMENTS 1¢€¢ A GIVEN VARIABLE NAME CAN BE CHANGED FROM THAT
SUGGESTED BUT THE ORDER OF THE VARIABLES IN THE COMMON BLOCKS
CANNOT BE CMHANGED

DATA X/10903e986936/9Y/26910020934/
IANG/0601e5707963293¢14159260447123889/

2XTOL /A% 31 /0YTOL/neY/

RETURN

END
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X(6) and

X(7) - co-ordinates of the desired coupler point
relative to the coupler link; and

X(8) and

X(9) - co-ordinates of the crankshaft axis

relative to the H-V co-ordinate system.

Basic constraints:
C(l) - ensures linkage closure;
C(2) - prevents X(4) from going to infinity; and

C(3) - prevents X(5) from going to infinity

The rest of the computer output is similar to that for

Section 3-2.

3.5 Spatial Four-bar Function Generation (METHOD=5)

Purpose
The system program determines the optimum linkage
dimensions and starting position to generate a particular
functional relation (FUNSYN) between the crank (input) angle
and the follower (output) angle within a designated range of

crank rotation (RNGI).

Input Parameters (see Section 9 for meanings)
METHOD, ICASE, NPP, IEXCO, ISYM, XMIN, XMAX, RNGI,

RNGO, TITE, SCALl1l, SCAL2, SCAL3, STRTPT
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Input COMMON Blocks

STRTPT, SCLFAC, NUMBERS, SYNIN

Input Routines

MAIN, FUNSYN

Program Set-up

See Figure 3-9 for a sample input. All the input
parameters are defined in MAIN; the desired functional relation
is defined in function subprogram FUNSYN. A call to subroutine

LINK initiates the system program.

Basic Output

Optimum independent design variables (see Figure 3-10):

X(1l) - the crank length divided by the coupler
length¥*;
X(2) - the follower length divided by the coupler

length;

X(3) - the distance along the follower shaft axis
from the X-axis to the follower pin divided
by the coupler length;

X(4) - the crank mid-range angle (in radians

counterclockwise positive);

* The coupler length is thus always equal to one; this
is because only the link angles are required to determine the

linkage input/output functional relations.
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FIGe 3=9 SPATIAL FOUR=BAR FUNCTION SYNTHESIS INPUT

PROGRAM MAIN (OQUTPUT»TAPES=OUTPUT)

COMMON /STRTPT/STRTPT(10)

COMMON /NUMBERS/NPP sMETHOD s ICASEsNsNCIEXCO

COMMON /SCLFAC/SCALL9+SCAL29SCAL3

COMMON /SYNIN/XMINsXMAXsRNGI sRNGOSTITESCFRICHISYM

DATA METHOD/S5/+ICASE/=1/sNPP/ 9/¢1EXCO/1/91SYM/0O/
1XMIN/=1e/9XMAX/1e/sRNGI/2004/9RNGO/100e/sTITE/304/9SCALL1/ 45/
2SCAL2/401/9SCAL3/10e¢/+sSTRTPT/=e44990092990¢90e94¢719e17979-08227/
CALL LINK(1+40001+109265+40001)

STOP

END

FUNCTION FUNSYN(X)
FUNSYN=X#X

RETURN

END
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X(5) - the angle from the crankshaft axis to the
followershaft axis measured clockwise
positive looking in at the X-axis;

X(6) - the perpendicular distance from the
crankshaft axis to the followershaft axis
divided by the coupler length (this distance
vector establishes the X-axis in Figure
3-10);

X(7) - the distance from the X-axis to the crank
pin measured along the crankshaft axis

divided by the coupler length

Basic constraints:

C(1l) - ensures linkage closure;
C(2) - prevents X(4) from increasing to infinity;
C(3) - keeps the actual range of output motion

within the desired range of output motion

(RNGO + TITE); and

c(4) prevents X(5) from increasing to infinity.

The rest of the computer output is similar to that for

Section 3-1,.

3.6 Preliminary Linkage Analysis

The analysis output, including the plots, obtained
for each synthesis problem (METHOD=1 to 5) can be obtained

for any set of independent design variables. The set of
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independent linkage design variables (SV) for which an analysis
is desired is defined in MAIN along with the identical input
for the corresponding synthesis problem except that COMMON
block SAVOPT (where the SV are contained) replaces COMMON
block STRTPT in MAIN, and the statement

CALL PLTERR(0)
for METHOD equal to 1, 3, or 5, or the statement

CALL PLTCUP(0)
for METHOD equal to 2 or 4, replaces the CALL LINK statement.
See Figure 3-11 for a sample four-bar coupler-point curve

analysis (METHOD=2) input.

3.7 . Acceleration and Velocity Analysis (METHOD=6 to 9)

Purpose

The system program determines the angular velocities
and accelerations of a planar four-bar's coupler and follower
links (METHOD=6), the linear velocities and accelerations of
a given planar four-bar coupler point (METHOD=7), the angular
velocities and accelerations of a planar slider-crank's coupler
link (METHOD=8), and the linear velocities and accelerations of
a given planar slider-crank's coupler point (METHOD=9) for
NPP equispaced positions of the crank link in the designated
range of crank motion (RNGA degrees). The first evaluations

are for a crank angle of STRTA degrees.
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F1Ge 3=11 PLANAR FOUR=BAR COUPLER=POINT CURVE ANALYSIS INPUT

PROGRAM MAIN (QUTPUT+TAPES=0UTPUT)

COMMON /NUMBERS/NPP sMETHOD ¢ ICASEsNoNCoIEXCO

COMMON /SCLFAC/SCALL1+SCAL2+SCALS

COMMON /SYNIN/XMINsXMAX sRNGISRNGOSTITESCFRICoISYM

COMMON /SAVOPT/SVI10)

DATA METHOD/2/91EXCO/Y/sNPP/9/ o ICASE/+1/35CALL/ 45/
1SCAL3/2e5/RNGTI/360¢/9S5TRTPT/63969696549¢69=6589160931689904904
266/

DATA SV/ 430963569069 =e¢5831¢099148930090094¢65/

CALL PLTCUP(O)

STOP

END

SUBROUT INE COUPLER

COMMON /DESIRE/X(21)sY(B1)oANG(BY) oXTOL(21)sYTOL(2))

NOTE THAT X 1S USED INSTEAD OF XD AND ¥ INSTEAD OF YD

THIS IS OekKe SINCE THERE IS CONSISTENCY BETWEEN DATA AND COMMON
STATEMENTS IeEe A GIVEN VARIABLE NAME CAN BE CHANGED FROM THAT
SUGGESTED BUT THE ORDER OF THE VARIABLES IN THE COMMON BLOCKS
CANNOT BE CHANGED

DATA X/72¢292e0491e8791e¢T7190165591e553167502082e2/
1Y/7e7200200230230236350079079e35/9XTOL/e013010025e194019405902942
2¢08/eYTOL/76%005004350640005/9ANG/00206191622916830204449247594019,
3542405493/

RETURN

END
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Input Parameters (see Section 9 for meanings)

METHOD, NPP, ICASE, STRTA, RNGA, PAR, W1, Al

Input COMMON Blocks

NUMBERS, BALIN

Input Routines

MAIN

Program Set-up

Figure 3~12 shows a typical input for METHOD=9. A
call to LINCUP initiates the system program for METHOD=7 and 9;
a call to FBANG initiates the system program for METHOD=6; and
a call to SCANG initiates the system program for METHOD=8.
Note that AR(NPP) and AI(NPP) must be put in a DIMENSION

statement if PLTCUP is called in MAIN.

Basic Output

The program output consists of a table and plots of
the designated velocities and accelerations. Note that the
coupler point linear velocity and acceleration vector angles
(for METHOD=7 and 9) are given relative to the horizontal

as defined by PAR(5)* (see Figures 3-4 and 3-8).

* This parameter corresponds to independent design

variable X(5) in Sections 3.2 and 3.4
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FIGe 3=12 PLANAR SLIDER=CRANK COUPLER=POINT VELOCITY AND
ACCELERATION ANALYSIS INPUT

PROGRAM MAIN (OUTPUTs»TAPEG=OUTPUT)

DIMENSION AR(13)9sA1(13)

*x% NOTE THAT AR AND Al MUST BE DIMENSIONED IN MAIN WHEN
PLTCUP 1S CALLED THIS ALSO IS TRUE IF PLTCUP IS CALLED
8Y EXCON

COMMON /NUMBERS/NPP sMETHOD s ICASEsNoNC s IEXCO

COMMON /BALIN/W1(36)2A1(38)sPAR{E) sSTRTASRNGAINOJILICMI(E) s
1IRM(3)sRIL3)

DATA PAR/20360300300804/9STRTA/0e/sRNGA/360e/esNPP/13/iN0J1/0/
IW1/13%642831853/9A1/713%#04/9I1CASE/ 17/ ¢METHOD/9/9CR/64/9CT/06/
CALL LINCUP(1s1sCReCTARIAL)

STOP

END
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3.8 Planar Four-bar Balancing Synthesis (METHOD=10)

Purpose
The system program determines the optimum crank and
follower counterwéights for a given four-bar linkage to
minimize the maximum shaking force and moment on the linkage
due to inertia forces and torques on the links and counter-

weights,

Input Parameters (see Section 9 for meanings)
METHOD, ICASE, NPP, IEXCO, RNGA, STRTA, PAR, NOAl,

wl, Al, CM, RM, RJ, SCLSFH, SCLSFV, SCLSMO, STRTPT

Input COMMON Blocks

STRTPT, SCLFAC, NUMBERS, BALIN

Input Routines

MAIN

Program Set-up

Figure 3-13 shows a typical input.

If NOAl equals zero (meaning that the crank angular
velocity is constant), then there are only six independent
design variables: X(7) is fixed at the value given to
STRTPT (7) by the user in MAIN, and X(8) is ignored by the
optimization routine. Thus only the starting points (STRTPT)
for the first seven independent design variables need be

specified in MAIN if NOAl equals zero.
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FIGe 3-~13 PLANAR FOUR=-BAR BALANCING SYNTHESIS INPUT

PROGRAM MAIN (OUTPUT»TAPES&=0UTPUT)

COMMON /STRTPT/STRTPT(10)

COMMON /SCLFAC/SCLSFH»SCLSFVsSCLSMO

COMMON /NUMBERS/NPP ¢METHOD » ICASEsNsNCH»IEXCO

COMMON /BALIN/W1(36)sA1(36)9sPAR(E)sSTRTAIRNGAINOALICM(6)
IRM(3)sRJI(3)

DATA METHOD/10/sNPP/18/91CASE/+1/91EXCO/1/9RNGA/3604/
1STRTA/0e/ 9PAR/e338969699¢5699¢5159=659391¢064/9NOAL/O/ s
2W1/18%25413/9A1/18%0e/9CM/ 016990696943+ 009e284904/
3RM/1622E=596eT9E=592¢05E=5/9RJ/1e63E=T92¢05E~596634E=T/>
4SCLSFH/e01/9SCLSFV/ 401/ 9SCLSMO/ 401/ sSTRTPT/=e230691eE=4
51eE=59=639009leE=4s)oE=5/

CALL BALANCE(1414E=5)

STOP

END
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Basic Output

Optimum independent design variables (Figure 3-14):

X(1) and

X(2) - co-ordinates of the crank counterweight centre
of mass relative to the crank 1link:;

X(3) - follower counterweight mass;

X(4) - follower counterweight polar moment of inertia
about its centre of mass

X(5) and

X(6) —‘co—ordinates of the follower counterweight
centre of mass relative to the follower link;

X(7) - crank counterweight mass; and

X(8) - crank counterweight polar moment of inertia

about its centre of mass.

Basic constraints:

none

The rest of the output is in the same form as the
basic synthesis output for the linkage dimensional synthesis
problems. However, instead of the preliminary analysis plots
obtained for the linkage synthesis problems, the balancing
synthesis output routines produce a table of values and plots
of the balanced and unbalanced horizontal and vertical shaking
forces and counterclockwise shaking moments about the
crankshaft axis at the NPP equispaced precision points

specified.
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3.9 Planar Slider-crank Balancing Synthesis (METHOD=11)
Purpose
The system program determines the optimum crank
counterweight, for a given slider-crank linkage, required to
minimize the maximum shaking force and moment on the linkage
due to inertia forces and torques on the links, the slider,

and the counterweight.

Input Parameters (see Section 9 for meanings)
METHOD, ICASE, NPP, IEXCO, RNGA, STRTA, PAR, NOAl,

Wl, Al, CM, RM, RJ, SCLSFH, SCLSFV, SCLSMO, STRTPT

Input COMMON Blocks

STRTPT, SCLFAC, NUMBERS, BALIN

Input Routines

MAIN

Program Set-up

Figure 3-~15 shows a typical input for this problem

type.

If NOAl equals zero, then there are only two inde-
pendent design variables: X(3) is fixed at the value given to
SRTRPT (3) in MAIN, and X(4) is ignored by the optimization
routine. Thus, if NOAl equals zero, then only the first
three starting point wvalues (STRTPT) for the independent

design variables need to be specified in MAIN,
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Basic Output
Optimum independent design variables (Figure 3-16):
X (1) and
X(2).- co-ordinates of the crank counterweight centre
of mass relative to the crank link;
X(3) - crank counterweight mass; and
X(4) - crank counterweight polar moment of inertia

about its centre of mass.

Basic constraints:

none

The rest of the computer output is similar to that

for Section 3.8.

3.10 Balancing Analysis

The effectiveness of any given set of independent
counterweight design variables for balancing can be evaluated
by using the same input as for Section 3.8 for the four-bar
linkage and Section 3.9 for the slider-crankage with the
independent design variable values (SV) placed in COMMON
block SAVOPT. If NOAl is zero, then STRTPT (3), for the
slider-crank balancing analysis, and STRTPT (7), for the
four-bar balancing analysis, must be set equal to SV (3)
and SV (7) respectively in MAIN; otherwise the vector STRTPT
need not be defined. The statement

CALL BALANCE (0)



66

FIGe 3=15 PLANAR SLIDER=CRANK BALANCING SYNTHESIS INPUT

PROGRAM MAIN (OUTPUT»TAPEE=0UTPUT)

COMMON /STRTPT/ STRTPT(10)

COMMON /NUMBERS/NPP sMETHOD » ICASEsNsNC» IEXCO

COMMON /SCLFAC/SCLSFHsSCLSFVsSCLSMO

COMMON /BALIN/W1(36)9A1(36)9sPAR(6)ISTRTAIRNGASNOALICMIE)
1RM(3)sRJI(3)

DATA NOA1/0/sSTRTA/Oe/sRNGA/360e/9CM/ 01259 00933333904/
1RM/431056+1605599662112/9RI/e002889611977/9W1/18%#1040e6/
2A1/18%0¢/9PAR/433333914166790e/sSTRTPT/=625906905/
3NPP/18/sICASE/1/sMETHOD/11/9SCLSFH/10004/9SCLSFV/10004/
4SCLSM0O/1000./

CALL BALANCE(1440001)

STOP

END
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replaces
CALL BALANCE (1, PREC)

in MAIN,

The computer output table and plots obtained for
this problem type are similar to those for the corresponding

balancing synthesis problems.

3.11 Optimization Surface Plotting
Purpose

The system program produces a contour plot of a two-
dimensional subspace of an optimization hypersurface with
respect to two of the independent design variables used to
calculate the optimization hypersurface. This plot can be
interpreted to show the sensitivity of the objective
function to changes in given independent design variables.
Since the intersections of the optimization problem constraint
surfaces with the optimization hypersurface are also shown
on the plot, the linkage dimensional synthesis optimization

surface plots can be interpreted to show the mobility ranges¥*

* These are ranges of values for a set of independent
linkage design variables for which the linkage is continuously
closed (mobile) for a certain range of input and output

motion.,
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of a given linkage with respect to two of the.independent

linkage design variables.

Input and Output
For balancing synthesis optimization surface plotting,
the input is identical to that for Section 3.10 except that
CALL OPTSURF (NX, NY, GMAX, GMIN, XMAX, XMIN, YMAX,
YMIN, ISKIP)
replaces
CALL BALANCE (0)

in MAIN,

For linkage synthesis optimization surface plotting
the input is identical to that for Section 3.6 except‘that
the call to OPTSURF replaces

CALL PLTCUP (0)
or

CALL PLTERR (0)

in MAIN.

The subroutine input parameters for’OPTSURF have the

following meanings:

NX - the number of the variable to be varied along
the horizontal axis of the plot (i.e. SV (NX)
is varied);

NY - the number of the variable to be varied along
the vertical axis of the plot (i.e. SV(NY) is

varied);
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GMAX - the maximum value of the unconstrained objective
function to be included in the calculation of
the contour lines:

GMIN - the smallest value of the unconstrained
objective function to be included in the
calculation of the contour lines;

XMAX - the largest value of SV (NX) for plotting;

XMIN ~ the smallest value of SV(NX) for plotting;

YMAX - the largest value of SV(NY) for plotting:;

YMIN the smallest value of SV(NY) for plotting; and
ISKIP- set equal to one if this is the first call to
OPTSURF, LINK, or BALANCE in MAIN, or
set equal to zero if OPTSURF, LINK, or

BALANCE are previously called in MAIN.

Thus, if we want a plot of the contour lines of the
unconstrained objective function, G, between the values of
.l and 5. with respect to variable number one and variable
number three, which are varied from -l. to +1. and -5. to
+10. respectively, then the following statement in MAIN is
used:

CALL OPTSURF (1, 3, 5.' ol, 1., —'l., 10., "5., 1)

Contour lines are represented by numbers from one to
nine. These lines indicate equal increments in the function

G from GMIN to GMAX. For exampke, the value of G along
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contour line number four is

GMIN + 4/9 (GMAX-GMIN).

The interseétions of the optimization surface with
the implicit constraint surfaces are also plotted. These
intersections are printed as letters starting with the letter
A representing the first constraint. For example, the
intersection of the unconstrained optimization surface with

constraint C(2) is plotted as a series of B's.

If the unconstrained objective function evaluated for
a given set of variable values* is greater than GMAX, then a
+ is printed; if the function value is less than GMIN, then a
- is printed. If a function value is neither greater than
GMAX, nor less than GMIN, nor on a contour line, then a
blank space appears in the plot corresponding to the particular
horizontal (NX) and vertical (NY) axis variable values for

which it has been evaluated.

* Note that only number NX and NY variables are
varied in the plot; the other variable values remaining fixed

at their values specified in COMMON block SAVOPT.
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4. SCALING FACTORS

The three scaling factors contained in COMMON block
SCLFAC have a great effect on the magnitude of the objective
function for minimization. It thus is important that these

values be properly defined.

The dependent design variable value corresponding to
each particular scaling factor is given an inverse utility of
one (zero being the lowest and most desirable inverse utility,
and positive infinity the highest and least desirable inverse
utility). Hence the dependent design variable value which each
scaling factor represents, each has the same amount of
desirability as far as the program is concerned. Thus it is
imperative that the user make sure that SCALl, SCAL2, and
SCAL3 for linkage synthesis, and SCLSFH, SCLSFV, and SCLSMO
for linkage balancing, each have the same importance to him.

It is suggested that each scaling value represent the dependent
design variable value corresponding to the line between
acceptability and unacceptability of the besign based on that
variable alone; however, any other workable scheme can be

used if desired.

5. OPTIMIZATION ROUTINE PARAMETERS

The input parameters which directly affect the optimi-
zation routine are SM, RF, RAT, and PREC. The meanings of
these parameters are found in the documentation for subroutines

LINK and UNIMIN in Section 10.



73

The expression loglo(.l/PREC) gives the number of
significant figures or decimal places (depending on the size
of the variable - see LINK in Section 10) expected from the
optimization routine. SM and RAT should be chosen such that
SM/RAT approximately’equals PREC/2 for problems for which the
average variable magnitude, AV, is of the order one of less,
and approximately equals one half PREC times AV for problems
for which AV is greater than one. For example, for a given
four-bar function generating problem in which three significant
figure precision is required, the expected independent design
variable values might be 2, 10, 7 and 1. Thus

PREC = .1/10° = .0001

AV = (2 + 10 + 7 + 1)/4 = 5, and therefore

SM/RAT = (5 x .0001)/2 = ,00025 5.1
The minimization procedure works best if SM is within an
order of magnitude of PREC. Thus, for the above example, an
SM of .0005 and a RAT of 2.5 should work well. Note that .5
has been added to the expected RAT from equation 5.1; this is
to ensure that a reduction ratio of two in SC is made by the
program, The addition of .5 to the desired reduction ratio

to obtain RAT should be done for all problems.

The relaxation factor, RF, should be set to 1. for
all problems on the first trial. If convergence to a solution
cannot be made, or a solution is suspect, then values of RF

between .5 and 1.5 can be tried. However, using an RF other
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than one is an emergency measure, and should only be used as

a last resort.

If the user has no idea of the expected size of the
optimum independent design variables, then the following values

for the optimization routine parameters can be used:

SM .0003,
RF = 1. ’
RAT = 2.5 , and

PREC = ,0001.

6. STARTING POINTS

The initial starting point, STRTPT, for all optimiza-
tion problems must be defined by the user in MAIN. It is not
necessary that this starting point be feasible, but a reason-
able starting point will reduce the computer execution time
and thus the'design cost. Using the results of a simple three
precision point geometric or algebraic synthesis, as outlined
by Hartenberg in_reference [16], will provide a reasonable
starting point for the function generating problems. For
four-bar coupler-point curve problems, Hrones'and Nelson's

atlas {26. provides a good source for reasonable starting

J
points. Slider-crank coupler-point curve reasonable starting
points can be easily estimated by inspection. For the

balancing problems, the starting counterweights should have

about the same mass and moment of inertia as the links they
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are attached to. However, the starting point position of the
centre of each link counterweight mass should be the reflected
position of the link centre of mass with respect to the

linkshaft axis.

7. ADDING EXTRA CONSTRAINTS

The user has complete freedom to add an unlimited
number of explicit constraints (which require direct variable
transformations), and up to twenty implicit (C) constraints.
To do this, he must set IEXCO equal to zero (it should
otherwise be set equal to one), and set NC equal to the number
of basic implicit constraints (see NC in Section 9) plus the
number of implicit constraints to be added. The direct
variable transformations* and/or implicit constraints must be
defined in subroutine EXCON. Note that the implicit constraints
added in EXCON must be numbered starting from one plus the

number of basic constraints (see Figure 7-1).

Though the added implicit constraints, C, are of the
form
c(r) > o, 1=M,...,NC 7.1

where M is the number of basic constraints, they are written

* See Chapter ITI for transformation formats.
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in EXCON in the form
C(I) = expression
where "expression" is the FORTRAN expression for C(I) in

relation 7.1.

All the analysis subroutines - SCANG, FBANG, LUNCUP,
and LINIO - are available to subroutine EXCON in order to form
an implicit constraint using a link angular velocity or
acceleration or é link point velocity or acceleration. The
output and input for each subroutine is passed through the
appropriate labelled COMMON blocks and subroutine argument
lists which are found in the FORTRAN program listing*. The
input parameters required are the same as that for the direct
linkage analysis in Section 3.7. METHOD is not to be
changed when calling these analysis routines from EXCON, but is

to be left at its synthesis value (1, 2, 3, 4, 5, 10, or 11).

8. SYMMETRIC FUNCTION GENERATION

The computer program operates slightly differently for
symmetric function generation between input limits which are
symmetrically placed about the functional axis of symmetry:
for example, generating the function y=(x—5)2 for x varying

from 3 to 7 (the axis of symmetry lying at x=5). For such

* See Appendix F for the listing.
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symmetric problems ISYM must be set equal to zero (otherwise
it must be set equal to one). Since the function is symmetric,
the follower link will end up at its starting point; thus the
value for RNGO will be for half the functional output range
(the second half being the negative of the first half), rather
than for the full functional output range as it is for other

types of function generating problems.

9. COMMON BLOCK VARIABLES

Most of the program and internal variables are con-
tained in the blank and labelled COMMON blocks listed at the
beginning of each program subroutine*. Knowing the meanings
of the variables in each of these blocks is essential to the
detailed understanding of the program. Thus these variable
names and meanings are now listed as they appear in each
COMMON block**, (See Figure 9-1 for a summary list of the

labelled COMMON blocks.)

* See Appendix F for the program listing.
** The number of storage locations required by the
CDC 6400 computer for each block is in parentheses after the

block name.
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FIGe 9=1 LABELLED COMMON BLOCKS

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMMON

/STRTPT/STRTPT(10}

/SCLFAC/SCAL19SCAL2+SCAL3

/NUMBERS /NPP ¢METHOD s ICASE s NoNC o IEXCO
/SYNIN/XMINsXMAXsRNGI9RNGO S TITESCFRICHISYM
/SAVOPT/ SV(10)
/DESIRE/XD(21)+YD(8L)sPH(B1) s XTOL{21)sYTOL(21)

/INTERN/RPSI 9CGoC(20) sULloUZoUBsPMs ICOUNT#PS(81)9CXA(21)

1CYA(21)9ERRMAX(21) s TRIVZERO

COMMON

COMMON

/MODULO/IMD s IHELP

/BALIN/W1(36)9A1(36)9sPAR(E) sSTRTASRNGAINOAL sCM(6)»

1RM(3) sRJ(3)

COMMON

/BALVAL/TL1(36)sT1D(36)9T2(36)9T3(36)9W2{36)sW3(36)sA2(36)

1A3(36) sANY(36) 9AVI(36)9AH3(36) sAVI(36)»SFH(36)9SFV(36)9SMO(36)
2TSFH(36) 9 TSFVI(36) 9 TSMOL36)sVR(36)sVI(36)
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Blank COMMON (1795)
For Subroutines LINK and UNIMIN

P - a 10 x 12 array for which each column represents a set
of independent design variable values.
XI - a 10 x 11 array for which each column represents a

vector search direction.

DIR a 10 element multipurpose vector for subroutine LINK.

X - a 10 element dummy vector for subroutine UNIMIN.

For Subroutine OPTSURF and PLOTCN

X - a vector for which the elements represent the independent

design variable values.

FUNC or F - a vector of unconstrained objective function values
for plotting; each element corresponds to a dif-
ferent set of independent design variable values.

CONS or C - an array for which each column element represents
an implicit constraint value corresponding to an
element of F; each column (up to 20) represents
a set of values for a different implicit constraint.

FILL - a dummy vector in subroutine PLOTCN.

STRTPT* (10)

* GSee Section 6 for details on defining the starting

points.
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STRTPT - a vector of input starting point values for the

independent design variables.

SCLFAC* (3)

For Linkage Synthesis

SCAL1l - the scaling value for minimum transmissibility index**
control; it can vary from .0175 to .9998.

SCAL2 - the scaling value for theoretical maximum structural
error control; it can vary from 1077 to positive
infinity.

SCAL3 - the scaling value for maximum link length control; it

can vary from 1.1 to positive infinity.
For Balancing Synthesis

SCLSFH - the scaling value for maximum horizontal shaking

7 to

force magnitude control; it can vary from 10~
positive infinity.
SCLSFV ~ the scaling value for maximum vertical shaking

force magnitude control; it can vary from 1077 to

positive infinity.

* See Section 4 for details on establishing the
scaling factors.
** See Chapter III for the meaning of "transmissibility

index".
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SCLSMO - the scaling value for maximum counterclockwise

shaking moment about the crankshaft axis magnitude

control; it can vary from 10”7 to positive infinity.

NUMBERS (6)

NPP - the number of precision points (positions at which

METHOD -

the linkage is evaluated) for the synthesis, analysis,

and balancing problems; it must be less than 22 for

METHOD=2 or 4, less than 82 for METHOD=1, 3, or 5, and

less than 37
METHOD=1, 3,
should be at
equals 1 for
equals 2 for
generation;

equals 3 for
equals 4 for
generation;

equals 5 for

equals 6 for

for METHOD=6 to 1ll; also, for

or 5 NPP must be an odd number. NPP
least 5 for most problems.

planar four-bar function generation;

planar four-bar coupler-point curve

planar slider-crank function generation;

planar slider-crank coupler-point curve

spatial four-bar function generation;

planar four-bar link angular velocity

and acceleration analysis;

equals 7 for
velocity and

equals 8 for

planar four-bar coupler-point linear
acceleration analysis;

planar slider-crank link angular velocity

and acceleration analysis;
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equals 9 for planar slider-crank coupler-point
linear velocity and acceleration analysis;
equals 10 for planar four-bar balancing; and
equals 11 for planar slider-crank balancing.

ICASE = equals plus or minus one depending on which of two
possible ways the linkage is to be closed*.

N - the number of independent design variables (defined
internally by the program).

NC - the number of implicit constraints; it is defined
internally if IEXCO is not equal to zero, otherwise
it is user defined, where NC equals the number of
basic implicit constraints (see Table 9-1) plus

the number of user added implicit constraints.

* +]1 corresponds to the subscript + cases in Appendix
B, and the upper signs, where two signs are given in Appendix
D; -1 corresponds to the subscript - cases in Appendix B, and

the lower signs, where two signs are given, in Appendix D.
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Table 9-1: NUMBER OF BASIC CONSTRAINTS

METHOD Number of Basic Constraints
1 3
2 3
3 3
4 3
5 4
10 0
11 0
IEXCO - set equal to zero if the user adds implicit or explicit

constraints in subroutine EXCON.

SYNIN (7) For METHOD=1l to 5

XMIN - the starting (smallest) value of the function input
variable for function generation (METHOD=1l, 3, and 5).

XMAX - the finishing (largest) value of the function input
variable for function generation.

RNGI ~ the range of the desired crank (input) rotation in
degrees for linkage synthesis (METHOD=1 to 5).

RNGO - the range of the desired follower (output) rotation
in degrees (for METHOD=1l and 5), or slider (output)
motion (for METHOD=3).

TITE - the bilateral tolerance, in degrees for METHOD=1 and

5 or in linear units (same units as for RNGO) for

METHOD=3, allowed for RNGO.
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CFRIC =~ the coefficient of friction between the slider and
its sleeve for slider-crénk synthesis (METHOD=3 and 4)
ISYM - set equal to zero if the funetion to be generated
(for METHOD=1, 3, and 5) is symmetrical and the input
limits (XMIN and XMAX) are symmetrically placed with
respect to the function. (See Section 8 for further

details.)
SAVOPT (10)

sv - a vector of the optimum or final independent design

variable values,
DESIRE (225)

XD - a vector of the desired horizontal coupler-point
co-ordinates at the precision points (for METHOD=2
and 4); also referred to as X.

YD - a vector of the desired vertical coupler-point
co-ordinates at the precision points (for METHOD=2
and 4); or a vector of the desired functional values
at the precision points (for METHOD=1l, 3, and 5); also
referred to as Y.

PH - a vector of the crank angles at the precision points;
also referred to as ANG.

XTOL - a vector of the horizontal bilateral tolerances at
the precision points (for METHOD=2 and 4).

YTOL - a vector of the vertical bilateral tolerances at the
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precision points (for METHOD=2 and 4).

INTERN (173)

RPSI - the desired range of functional output for function
generation

CG - the constrained objective function for minimization

C - a vector of the implicit constraint values (up to
20 implicit constraints allowed).

Ul - the transmissibility index factor in CG for linkage
synthesis; or the horizontal shaking force factor in
CG for linkage balancing.

U2 - the structural error factor in CG for linkage synthesis;
or the vertical shaking force factor in CG for linkage
balancing.

U3 - the link length control factor in CG for linkage
synthesis; or the shaking moment factor in CG for
linkage balancing.

PM - the constraint term scalar multiplier in the scaled
exterior-point objective function transformation*.

ICOUNT -~ the counter index which contains the current number of
objective function evaluations.

PS - a vector of the actual follower angles at the

precision points for METHOD-1, 2, and 5, and the

* PM corresponds to parameter t in Appendix A.
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actual slider distances at the precision points for
METHOD=3 and 4.

CXA - a vector of the actual coupler-point horizontal
co-ordinates at the precision points (for METHOD=2
and 4).

CYA - a vector of the actual coupler-point vertical

co-ordinates at the precision points (for METHOD=2

and 4).

ERRMAX - a vector of the distances between the desired and
actual coupler-point positions at the precision
points (for METHOD=2 and 4).

TRI -~ the minimum transmissibility index* in the range
of linkage motion.

ZERO - the minimum possible transmissibility index for a
given problem: equals 0 for METHOD=1l, 2, and 5, and
equals

CFRIC/(liCFRICz)l/Z
for METHOD=3 or 4.

MODULO (2)

IMD - an index which equals zero if METHOD=2, 4, or 5.

IHELP - an index which equals zero if two consecutive

unsuccessful starting points are generated by sub-

routine LINK.

* See Chapter III for the meaning of "transmissibility
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BALIN (93) For METHOD=6 to 11

Wl

Al

PAR

STRTA

RNGA

NOA1l

CM

a vector of the crank angular velocities at the
precision points.

a vector of the crank angular accelerations at the
precision points.

a vector of the required linkage parameter values
corresponding to the independent design variable
values discussed in Section 3.4 for the slider-crank
and in Section 3.2 for the four-bar: the first three
independent design variables are required for the
slider~crank for balancing and the first six
independent design variable values are required for
the four-~bar for balancing and analysis. The first
five parameters are required for the slider-crank
for analysis.

the crank starting angle in degress for the range
of crank motion.

the range of crank motion in degrees. (Note that
the precision points are spaced at RNGA/ (NPP-1)
degree intervals starting at STRTA degrees.)

an index set equal to zero if all the Al are zero
(i.e. for constant crank angular velocity).

a vector of the link centre of mass positions rela-
tive to each link (Figure 9-2); for the slider-crank
CM(5) and CM(6) are assumed to be zero - thus placing

the slider centre of mass at its connection with the
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coupler link.

RM - a vector of the link masses.

RJ - a vector of the link polar moments of inertia about
their centres of mass. (Note that CM, RM, and RJ
must have compatible units with W1, Al, and PAR since
the units for the shaking forces and moments are

derived from these units.)
v BALVAL (720) For METHOD=6 to 11

T1 - a vector of the crank angles* in radians at the
precision points.

T1D - a vector of the crank angles in degrees at the
precision points.

T2 - a vector of the coupler angles* in degrees at the
precision points.

T3 - a vector of the follower angles* in radians at the
precision points for the four-bar only.

w2 - a vector of the coupler angular velocities in radians
per second at the precision points.

W3 ~ a vector of the follower angular velocities in radians
per second at the precision points (for the four-bar

only).

* See Appendix D for the definitions of these angles.
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A3

AH1

AVl

AH3

AV3

SFH

SFV

SMO

TSFH

TSFV

TSMO
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a vector of the coupler angular accelerations in
radians/sec/sec at the precision points.

a vector of the follower angular accelerations in
rad/sec/sec at the precision points (for the four-bar
only).

a vector of the horizontal acceleration components
of a given crank point at the precision points.

a vector of the vertical acceleration components

of a given crank point at the precision points.

a vector of the horizontal acceleration components
of a given follower point at the precision points.
a vector of the vertical acceleration components

of a given follower point at the precision points.
a vector of the unbalanced horizontal shaking forces
at the precision points

a vector of the unbalanced vertical shaking forces
at the precision points,

a vector of the unbalanced shaking moments at the
precision points.

a vector of the balanced horizontal shaking forces
at the precision points.

a vector of the balanced vertical shaking forces at
the precision points.

a vector of the balanced shaking moments at the

precision points.
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VI

- a vector of the horizontal velocity components of
a given coupler point at the precision points.
- a vector of the vertical velocity components of a

given coupler point at the precision points.

91
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10. SUBROUTINE DESCRIPTIONS

Now that the COMMON block variables have been
identified, a brief description of each FORTRAN subroutine
is presented. The subroutine arguments are in parentheses
after the subroutine name. The number of storage locations
required for the instructions in each subroutine is enclosed

in brackets after the subroutine argument list.

MAIN [variable]
This is the user supplied main program which initiates
the calls to the proper subroutines and defines the necessary

input data. See Section 3 for further details.

FUNSYN (X) [variable]

This user supplied function subprogram evaluates the
desired output function (for METHOD=1, 3, and 5) for input
values of X at the computer determined precision points. No

COMMON or DIMENSION statements are required.

COUPLER [variable]

This user supplied subroutine (for METHOD=2 and 4)
defines the horizontal (XD) and vertical (YD) co-ordinates
of up to 21 desired coupler point positions corresponding to
the crank angles (PH) which also must be specified. The
bilateral horizontal (XTOL) and vertical (YTOL) tolerances of
the co~ordinates of each desired coupler point must be specified.

Labelled COMMON block DESIRE, which includes the necessary
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variable dimensioning, must be included.

EXCON* (X, C, NC) [variable] |

This user supplied subroutine evaluates any additional
implicit or explicit constraints that the user may want to
include in a given problem. IEXCO must be set equal to zero
in MAIN for this subroutine to be called. X(1) and/or C(1)
must be placed in a DIMENSION statement if X (for explicit
constraints) and/or C (for implicit constraints) are used in
this subroutine. NC must also be defined in MAIN if this

subroutine is used. See Figure 1l0-1 for an example.

CHEBSP [53]

This subroutine spaces the precision points at
Chebychev spacing** of the input function variable values for
function generation (METHOD=1, 3, and 5). It also determines
the crank angle (PH) and the desired function output value
(YD) at the precision points. The midpoint of the crank
rotation is used as a base point for establishing the scales
for the input and output motions. Thus the crank angle varies

from -RNGI/2 to +RNGI/2 relative to this base angle.

* See Section 7 for further details on adding
constraints.,

** See Chapter III for the meaning of Chebychev spacing.
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FIGe 10~1 SAMPLE ADDED CONSTRAINTS IN EXCON

EXCON(XoCoINC)

NOTE USE OF VARIABLE DIMENSIONING

DIMENSION X(1)eCl1)
METHOD=39 THEREFORE NUMBER OF BASIC IMPLICIT CONSTRAINTS=3
THUS THE FIRST ADDED IMPLICIT CONSTRAINT MUST BE Cl4)
EXPLICIT CONSTRAINT RESTRICTING VARIABLE X{3) TO LIE
BETWEEN =1 AND +1 IS REQUIRED

THEREFORE DIRECT VARIABLE TRANSFORMATION 3

IN CHAPTER 11 IS USED

PI=3,14189265

ARG=COS(PI®(X{3)+1,41/24)

X(3)a=le+2,/PI#ACOS (ARG]

SINCE TRANSFORMATION 3 CAN CAUSE TROUBLESH

THE IMPLICIT CONSTRAINT INDICATED IN CHAPTER Il IS ADDED
NOTE THAT M IN THE CONSTRAINT IS SET 70 11
Cla)m]1],=ABS(X(3)=1,)

RETURN

END
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LINK (ISURF, SM, RF, RAT, PREC)* [706]

This is the basic subroutine for the modified
Powell-Zangwill minimization process**, It is also the
organizational subroutine for the linkage synthesis problems
(METHOD=1 to 5), making the appropriate calls to the precision
point set-up subroutines (CHEBSP for function generation and
COUPLER for coupler-point curve generation) and the output
plotting subroutines (PLTERR for function generation and

PLTCUP for coupler-point curve generation).

If ISURF equals zero, meaning only a linkage analysis
is being done, then the subroutine only calls the appropriate
precision-point set-up routine (CHEBSP or COUPLER), makes
some elementary checks for input data errors, and sets up
the scaling factors. If ISURF is not equal to zero, then an
objective function minimization problem is assumed. The
input variables SM, RF, and RAT are input parameters for
subroutine UNIMIN and are discussed under that heading. PREC
is the parameter which determines the precision of the optimum

independent design variables. If the optimum variable value is

greater than one, then its precision is approximately

* See Section 5 for further details on the input
parameters.

** See Chapter V for a detailed explanation of this

process.
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loglo(.l/PREC) significant figures; if the variable value is
less than one, then its precision is approximately

log;o(.1/PREC) decimal places.

This subroutine also determines the number of indepen-
dent design variables (N) for METHOD=1l to 5, and the number of

basic implicit constraints (NC) if IEXCO is not equal to zero.

The user supplied starting point is iteratively
improved using the modified Powell-Zangwill minimization
technique until the greatest variable change* (for a variable
value less than one) or the greatest variable relative change*
(for a variable value greater than one) is less than PREC.

An iteration consists of successive minimizations along N
distinct directions (corresponding to each column vector of
XI), and then a minimization along a direction which is
conjugate to the previous N directions. The minimization
along the directions is done by subroutine UNIMIN. The
technique defines this (N+1l)th (conjugate) direction and
checks the degree of its linear dependency with respect to

the other directions as follows. If the magnitude of the

* - - .
change Py Pi_q i
relative change = (p, - p;_;)/p;
where p; is the variable value at the end of the current
minimization iteration, and p;_; is the variable value at the

end of the previous minimization iteration.
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determinant (TST1l) of the matrix for which the columns are

the vector search directions - the new direction (XI(I,Mtl),
I=1,...,N) replacing the old direction along which the
maximum independent design variable changes occurred
(XI(1,Js), I=1,...,N) - is greater than EPS(=.5/N°>), then
this new direction replaces the JSth direction for the next
minimization iteration. Otherwise, the same set of directions

is used for the next minimization iteration.

The "optimum" point is checked to see if it violates
any constraints. If it does, then a new minimization seguence
(a set of minimization iterations starting with the co-ordinate
directions as the initial search vectors) is started from this
point with the constraint term multiplier (PM) multiplied by
10000, This is done until either PM is greater than -106/C
(a hang-up), where C is the violated (less than zero) constraint
value, or C becomes positive. If the first case occurs, then
a new starting point is generated which is a random perturba-
tion of the "optimum" point. If the second case occurs, then
the optimun independent design variables are put in COMMON
block SAVOPT, and the optimum values for CG (OPTNEW), Ul, U2,
and U3 are set equal to CGBST, UlBST, U2BST, and U3BST
respectively. A random starting point is then generated for
a new minimization sequence unless OPTNEW is greater than the
previous value for OPTNEW (OPTOLD), where OPTOLD is initially
set to 1050, in which case the optimum point is assumed to be

reached and the output routines are set into action.
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If two consecutive hang-ups occur IHELP is set equal
to zero. This causes CG in FUNCTION G(X) to be set to 1020
and only the constraint terms allowed to vary until all the
implicit constraints (C) are satisfied, in which case CG is
again allowed to assume its actual value evaluated in sub-
routine CONFUNC, FBBAL, or SCBAL. This procedure should
drive the variable values into the feasible region if it is
possible. If, after this procedure is invoked, two more
consecutive hang-ups occur (making four consecutive hang-ups),

then the problem is abandoned by the subroutine and an

appropriate diagnostic is printed.

The minimization execution time (TIME), and the
number of function calls (ICOUNT), are printed out after the

optimization is completed.

PLTERR (ICK) {137]

This subroutine initiates the plotting of the struc-
tural error in the output function (Y) versus the function
input (X) for function generation. The actual value of the
function generated (YA) minus the desired value (YD) is
evaluated at 81 equally spaced precision points in the range
of crank motion (RNGI). The linkage closure constraint
(C(l)) is checked at all 81 crank positions. If it is
violated, then the plotting is not done, and an appropriate
diagnostic is printed. The minimum transmissibility index and

the actual range of output motion are printed out after the
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plotting is done.

For a function synthesis problem ICK is set equal
to one. However, for a direct analysis of a given linkage
ICK is set equal to zero, and PLTERR is called directly from
program MAIN, the linkage parameters (SV) being put in
labelled COMMON block SAVOPT, as they also are for function
synthesis problems, except by subroutine LINK instead of

" manually by the user.

Essentially, PLTERR sets up the required input for

the general plotting subroutine, COMPARE,

PLTCUP (ICK) [130]

This subroutine initiates the plotting of the desired
(XD, ¥D) and actual (CXA, CYA) coupler points, as well as the
structural error (ERRMAX) versus the crank angle (PH) for
coupler-point curve generation. This subroutine plays the

same role as PLTERR does for the function generation problems.

COMPARE (N, YA, YD, XA, XD, YMAX,UYMIN, XMAX, XMIN, IFLG3)
23]

This subroutine plots one (IFLG3=0) or two (IFLG3=1)
functions given by pairs of points ( (XA,YA), (XD,¥D) ) to the
same scale. The (XA,YA) pairs are the ones printed if
IFLG3=0. The (XA,YA) points are represented by *'s and the

(XD,YD) points are represented by 0O's.
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The meanings of the input variables are as follows:

N

YA

YD

XD

YMAX

YMIN

XMAX

XMIN

IFLG3

the number of pairs of points.

a vector (of length N) of the vertical

components of the first set of points to be

plotted;

a vector (of length N) of the vertical

components of the second set of points to

be plotted;

a vector (of length N) of the horizontal

components of the first set of points to

be plotted;

a vector (of length N) of the horizontal

components of the second set of points to

be plotted;

the greatest
the smallest
the greatest

the smallest

and

value
value
value

value

of YA
of YA
of XA

of XA

and YD to be plotted;
and YD to be plotted;
and XD to be plotted;

and XD to be plotted;

equals 0 if one set of points is to be

plotted, or

equals 1 if two sets of points are to be

plotted.

The subroutine sorts the pairs according to their Y

values - the largest values being first - after converting

MEMASTER LINIVERSITY LIBRARY
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the X and Y values to integers corresponding to their position
in the plot (which is of size 81 columns by 41 rows), indexed
with respect to the top left-hand corner of the plot. This
process destroys the original values contained in XA, XD, YA,
and YD. The horizontal (Y=0) and vertical (X=0) axes are
printed using 1's and -'s respectively. Grid points represented
by +'s are printed every eight horizontal and vertical positions
from the vertical and horizontal axes respectively. A function-
pair point takes precedence over all other symbols; however,
points from the two different sets of points being plotted

(a * and an 0 can be printed over top of each other.
UNIM (NS, NF, RMAX, JS, N, SC, RF, RAT) [399]

This subroutine finds the minimum of an unconstrained
objective function (G) along a series of directions (XI) for
the modified Powell-Zangwill minimization method in subroutine
LINK. The meanings of the subroutine arguments are as follows:

NS - the value of index J for the first search

direction (XI1(I1,J), I=1l,...,N);

NF - the value of index J for the last search

direction;

RMAX -~ the magnitude of the vector change along the
search direction in which the largest variable
changes occurred;

JS - the value of index J for the search direction

yielding RMAX;
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N - the number of independent design variables for
optimization;
SC - one half the initial step-size for the search for
a minimum in a search direction (XI);
RF - the initial value: for the relaxation factor;
RAT - the final reduction ratio for SC (plus .5) for
the bracketing of a minimum point in a search

direction.

Initially a random step size search is made in the
search direction in order to locate a point giving a lower
function value. Then the method systematically searches in
the positive and then the negative, if necessary, XI direction
by successively doubling the step size until three consecutive
points bracket the minimum. Three equally spaced points in
this bracket are then determined in order to form a quadratic
approximation of the function for which the distance (RMIN)
from the starting point to the minimum function value is

determined.

If the starting point is bracketed within 2 SC of the
minimum point, SM (which is initially set equal to SC) is
halved unless SC/SM is greater than RAT, in which case the
quadratic approximation is immediately made. If SM is halved,
then a new search to bracket the minimum is made from the

current starting point.
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If desired, the relaxation factor can be set less
than one (underrelaxing) or greater than one (overrelaxing).
The starting péint for the next directional search is then
set at RF x RMIN (instead of at the distance from the
minimum, RMIN) from the current starting point. However,
if the current starting point is within 4 SC of the minimum
point, then RF is set temporarily equal to one to ensure
proper convergence. This relaxation procedure may be

advantageous in avoiding hang-ups for certain problems,

G(x) [61)

This function subprogram transforms, using the scaled
exterior-point transformation*, the constrained objective
function (CG) subject to the basic mechanism implicit con-
straints (C) evaluated in CONFUNC (for METHOD=1 to 5), or
FBBAL (for METHOD=10) or SCBAL (for METHOD=1l), as well as
any user added constraints evaluated in EXCON, into the total

unconstrained objective function for minimization (G).

For the special case when IHELP equals zero, CG is set
to lO20 if any C¢(I1), I=1,...,NC, is negative, and C(3) (the
basic mechanism constraint to ensure the desired range of

output motion for METHOD=1, 3, and 5) is multiplied by 1000

* See Chapter II for an explanation of this trans-

formation.
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to normalize it with respect to the other constraints
(especially the mechanism closure constraint, C(l), which is
always multiplied by 1000 in subroutine CONFUNC). The scaled
exterior-point transformation is then applied to this special

case.

For the balancing synthesis (METHOD=10 or 11), if
IEXCO is not equal to zero, then no transformation is required,

since there are no implicit constraints; thus G equals CG.
CONFUNC [634]

This subroutine evaluates the constrained objective
function (CG) and the basic mechanism constraints (C(I),
I=1,...,3 or 4 - see NC in Section 9) for the linkage synthesis

problems (METHOD=1 to 5).

CG is the sum of inverse utility Ul, which accounts
for the minimum transmissibility index, TRI, inverse utility
U2, which accounts for the maximum structural error, EM, and
inverse utility U3, which accounts for the maximum link
length, RAL. Scaling factors SCALl, SCAL2, and SCAL3, which
are defined in LINK from the user input in MAIN, are used to

define the inverse utilities Ul, U2, and U3 respectively.

Constraint C(l) is common to all five linkage
synthesis problems. If C(1l) is negative, then the linkage
cannot be closed (i.e. all the links do not touch each other)

at one or more precision points.
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Constraint C(3) is used to ensure that the linkage
has the desired range of output motion for function generation.
Essentially C(3) is a "loose" equality constraint defined
from the user input RNGO and TITE, which havé been converted
from degrees to radians in subroutine LINK for METHOD=1 and 5.
This constraint takes the form

C(3) = TITE - |RGABS - RNGO|
where RGABS is the absolute value of the actual range of
output motion. It is thus possible to have a feasible range

of output motion of plus or minus RNGO * TITE.

The other basic implicit constraints (C(2) for
METHOD=1 to 5, C(3) for METHOD=2 and 4, and C(4) for METHOD=5)
directly depend on the independent design variable values and

are thus explained in Section 3.

A direct variable transformation €for an explicit
constraint) restricts the coupler link length (independent
design variable number two) to be positive for METHOD equal

to 2, 3, and 4.

BALANCE (ICWAN) [356]

- This subroutine calculates the unbalanced horizontal
(SFH) and vertical (SFV) shaking forces and the unbalanced
counterclockwise shaking moment (SMO) about the crankshaft
axis at NPP equispaced positions of the crank link for a given
planar four-bar (METHOD=10) or planar slider-crank (METHOD=11)

linkage.
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If ICWAN equals =1, then only the unbalanced forces
and moments are calculated. This is required by subroutine
OPTSURF for setting up the contour plotting. If ICWAN equals
0, then the balancing counterweight independent design
variables are not optimized, and the current variable values
(SV) in COMMON block SAVOPT are used to calculate the
balanced shaking forces and moments. If ICWAN equals 1, then
the balancing.counterweight independent design variables

are optimized by calling subroutine LINK.

For ICWAN equal to 0 and 1, a table and plots of the
unbalanced and balanced shaking forces and moments are

automatically printed out.

PREC retains the same meaning it had for subroutine
LINK. PREC also doubles as the value for SC in the call to
subroutine LINK. The other subroutine LINK input parameters,

ISURF, RF, and RAT, are fixed at 1, 1., and 2.5 respectively.

The number of independent design variables (N) for
the balancing synthesis problems are defined in subroutine

BALANCE.

SCBAL (X, ICWAN) [79]
This subroutine determines the additional inertia
forces and moments due to the added counterweight to the

crank link for slider-crank balancing (METHOD=11l) for up to
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36 equispaced positions of the crank link. It also adds the
unbalanced shaking forces and moments (SFH, SFV, and SMO)
calculated in subroutine BALANCE to the counterweight forces
and moments (FCWH, FCWC, and FCWM) to form the total balanced
shaking forces and moments (TSFH, TSFV, and TSMO) for a
particular set of counterweight independent design variables,
X. The maximum values of TSFH, TSFV, and TSMO at the precision
point, and the scaling factors SCLSFH, SCLSFV, and SCLSMO
determined in subroutine BALANCE from the user input, are then
used to form the inverse utilities Ul, U2, and U3. These
inverse utilities are summed to form the constrained objective

function CG.

This subroutine also applies a direct variable
transformation to independent design variables X(3) (the crank
counterweight mass) and X(4) (the crank counterweight polar

moment of inertia) to prevent them from becoming negative.

If ICWAN equals zero, then the subroutine skips
evaluating the objective function CG. If ICWAN is not equal to

zero, then CG is calculated.

FBBAL (X, ICWAN) [113]

This subroutine is the equivalent of subroutine SCBAL
for the planar four-bar balancing problem (METHOD=10). 1In
addition to the inertia forces resulting from the crank

counterweight (FCWH1l and FCWV1), the inertia forces from the
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follower counterweight (FCWH3 and FCWV3) are calculated.
Also the total inertia torque resulting from both the crank and

follower counterweights (FCWM) is calculated. Thus,

TSFH = SFH + FCWH1 + FCWH3
TSFV = SFV + FCWV1l + FCWV3, and
TSMO = SMO + FCWM,

In a way similar to that for SCBAL, the calculations
are based on a particular set of independent counterweight
design variables, X. This subroutine applies a direct
variable transformation to variables X(3) (the follower
counterweight mass), X(4) (the follower counterweight polar
moment of inertia), X(7) (the crank counterweight mass),
and X(8) (the crank counterweight polar moment of inertia) to

prevent these variables from becoming negative.

If ICWAN equals zero, then FBBAL skips the evaluation

of CG.

SCANG (JFLAGl, JFLAG2) [195]

This subroutine calculates the angular velocities
(W2) and accelerations (A2) of the coupler link of a planar
slider~crank linkage for NPP equispaced positions of the
crank link. This subroutine can be called directly by the

user (METHOD=8), or by other subroutines (see Section 11).

If JFLAGl equals zero, then a table of the coupler

link angular velocities and accelerations at the precision-
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point crank angles is printed out. If JFLAG2 is equal to

zero, then plots of the tabulated values are produced.

FBANG (JFLAGl, JFLAG2) [296]

This subroutine calculates the angular velocities
(W2 and W3) and accelerations (A2 and A3) of the coupler and
follower links respectively of a planar four-bar linkage for
NPP equispaced positions of the crank link. This subroutine
can be called directly by the user (METHOD=6), or by other

subroutines (see Section 11).

JFLAG 1 and JFLAG 2 have the same meanings as for

subroutine SCANG.,

LINCUP (IPLOT, ISKIP, CR, CT, AR, AI) ([385]

This subroutine determines the horizontal (VR and AR)
and vertical (VI and AI) velocities and accelerations of a
point on the coupler link of a planar four-bar or slider-crank
linkage for NPP equispaced positions of the crank link. This
subroutine can be called directly by the user (with METHOD=7
for the planar four-bar or METHOD=9 for the planar slider-

crank), or by other subroutines (see Section 11).

For METHOD equal to 7 or 9 a table of the magnitudes
and angles of the velocities and accelerations is automati-
cally printed out. If IPLOT equals zero, then subroutine

COMPARE is called to make plots of the tabulated values.
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This subroutine calls SCANG (for METHOD=9) or FBANG
(for METHOD=7) to obtain the angular velocities and accelera-
tions of the links unless ISKIP equals zero, in which case the
subroutine assumes that these feeder subroutines have been
previously called by the user, and thus need not be called

again.

CR and CT (Figure 10-2) are the parameters which
define the coupler-point position relative to the coupler

link.

LINIO (X) [86]

This subroutine calculates the acceleration of given
points on the crank and follower links for NPP positions of the
crank link. Vector X contains the parameters which determine
the position of the crank (X(l) and X(2)) and the follower
(X(5) and X(6)) points relative to their respective links
and corresponds to the balancing independent design vector
(Figure 3-14). This subroutine is used for balancing problems,

but can be called by the user in subroutine EXCON if desired.

OPTSURF (NX, NY, GMAX, GMIN, XMAX, XMIN, YMAX, YMIN, ISKIP)
(128]
This subroutine, which is called directly by the user
in MAIN, sets up values for subroutine PLOTCN to produce a
contour plot of a two dimensional subspace of an optimization

hypersurface with respect to the independent design variables
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of index NX and NY. The intersections of the implicit con-
straint hypersurfaces with the optimization hypersurface are
also plotted. Details on the input and output of this

subroutine are found in Section 3-11.

PLOTCN (FMAX, FMIN, NC) [89]

This is the subroutine which plots the values set
up in subroutine OPTSURF. FMAX and FMIN correspond to GMAX
and GMIN respectively in OPTSURF. NC is the number of

implicit constraints to be included in the plotting.

11. SYSTEM FLOWCHARTS

Figures 11-1 to 11-14 show the subroutine relationships
(in flowchart form) for the problems which can be handled by

the computer program.,
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SUBROUTINE CHEBSP
COMMON VERBOT(1798)
COMMON /NUMBERS/NPPyMETHOD s ICASEsNsNCs1EXCO
COMMON /SYNIN/XMINeXMAXsRNGIsRNGOSTITESCFRICHISYM
COMMON /DESIRE/XD(21)eYD(BL) oPH(B81)sXTOL(21)oYTOL(21)
COMMON /INTERN/RPSIoCGoC(20)9sULlsU29U3sPMe ICOUNTIPSIB8L1)sCXALI21)
1CYA(21)9ERRMAX(21) s TRIS2ZERO
SUBROUTINE TO DETERMINE THE PRECISION POINTS WITH CHEBYCHEV SPACING
TO MINIMIZE THE STRUCTURAL ERROR FOR FUNCTION GENERATION
ALSO DETERMINES THE INPUT ANGLESs PH{I)y AT THE PRECISION POINTS AND
THE DESIRED OUTPUT FUNCTIONs YD(1)s AT THE PRECISION POINTS
NOTE=~ THE MIDPOINT OF THE INPUT RANGE IS ALWAYS AN EXACT PRECISION
POINT
THE OTHER POINTS ARE ONLY PSEUDO PRECISION POINTS
PM(1) AND PH(NPP+2) ARE NOT AT PSEUDO PRECISION POINTSs BUT ARE
USED ONLY TO OBTAIN THE ACTUAL OUTPUT RANGE OF MOTION IN CONFUNC
PHl1)=2=RNG1/2.
PHINPP4+2)=~PH(]1)
IF(XMAXeLE«XMIN} GOTO 3
A= { XMAX+XMIN) /24
Ha ( XMAX=XMIN) /24
TR=1:5707963268/FLOAT(NPP)
SCAL=RNGI/{24#H)
DO 1 I=1oNPP '
DEFINING FIXED VALUES OF INPUYT VARIABLE FOR PRECISION POINTS
X= «H#COS(FLOAT(2#]=1)%#TN)
PH{1+1)=X#SCAL
FILL=X+A
DEFINING DESIRED VALUES OF SCALED OUTPUT VARIABLE AT PRECISION POINTS
1 YO(T)=sFUNSYNIFILL)
DETERMINING RANGE OF DESIRED FUNCTION OUTPUT
FXMaFUNSYN{XMIN)
IF{ISYM.EQeO) GOTO 2
RPSI=FUNSYN{XMAX ) =FXM
RETURN
2 RPSI=YD(NPP/2+1)=FXM
RETURN
3 WRITE(6+100)
STOP :
100 FORMAT(1HO 910X o#IMPOSSIBLE SITUATION= XMIN o+GEe XMAX/
111X s *PROGRAM HAS BEEN ABORTED®*)
END
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SUBROUT INE LINK{ISURFsSMyRFIRAT PREC)
SUBROUTINE TO FIND THE MINIMUM OF A FUNCTION SUBJECT TO INEQUALITY
CONSTRAINTS
EQUALITY CONSTRAINTS CAN BE USED IF THEY ARE PUT IN THE FORM OF
A SUITABLE INEQUALITY CONSTRAINT
THE BASIS OF THIS PROGRAM 1S POWELL'S CONJUGATE DIRECTION METHOD
WITHOUT DERIVATIVES leEe THIS PROGRAM USES A ZEROTH ORDER METHOD
THE TEST FOR EFFIENCY OF NEW CONJUGATE DIRECTIONS IS BASED ON A
MODIFICATION OF POWELL'S EFFICIENCY TEST BY ZANGWILL IN 1968
THE MINIMIZATION ALONG A LINE AND TRANSFORMATION OF THE CONSTRAINED
PROBLEM INTO AN UNCONSTRAINED PROBLEM ARE NEW FEATURES DESIGNED
ESPECIALLY FOR THIS PROGRAM
SET ISURF=0 1F ONLY DESIRING SET=UP FOR CALLING FOR SURFACE
OPTIMIZATION PLOT
COMMON P(10912)9X1(10s11)9DIR(10)
COMMON /STRYPT/STRTPT(10)
COMMON /SCLFAC/SCAL19SCAL29SCAL3
COMMON /SAVOPT/ SvI(10)
COMMON /MODULO/IMD s IHELP
COMMON /SYNIN/XMINsXMAX ¢RNGIsRNGOSTITESCFRIC
COMMON /NUMBERS/NPP sMETHOD ¢ ICASEsNsNCoI1EXCO
COMMON /INTERN/RPSI sCGoC(20) 90Ul oU2sUBsPMsICOUNTIPS(BL)sCXA(2]1)
1ICYA(21)+sERRMAX(21)9sTRIWZ2ERD
. COMMON /DESIRE/XD(21)oYD(81)9PH(81)oXTOL(21)sYTOL(21)
CALLING CDC CLOCK TO GET STARTING TIME
CALL SECONDI(TIME)
MAKING SURE ICASE = + OR = 1}
ICASE=ISIGN(1+ICASE)
IFI(METHODeGTe9) GOTO 16
IMD=2
IF(METHODeNE o1 s ANDeMETHODsNE«3) IMD=0
CONVERTING INPUT RANGE OF MOTION TO RADIANS FROM DEGREES
RNGI=RNGI#,0174533
IF(METHOD ¢ NEe 34 ANDsMETHODsNEo4) CFRIC=0,
NNC=3
GOTO(798999s10011) yMETHOD
DETERMINE PRECISION POINTS AND OUTPUT FUNCTION AT THESE POINTS
AND DEFINE NUMBER OF DESIGN VARIABLES AND CONSTRAINTS
7 CALL CHEBSP
N=4
WRITE(6+99)
GOTO 82
8 CALL COUPLER
N=10
WRITE(69100)
GOTO 18
9 CALL CHEBSP
N=4
WRITE(69110)
GOYO 18
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10 CALL COUPLER
N=9
WRITE(69111)
GOTO 18
11 CALL CHEBSP
N=7?
NNC=4
WRITE(69118)
CONVERTING OUTPUT RANGE OF MOTION TO RADIANS FROM DEGREES
62 RNGO=RNGO%*#40174533
INSURING A POSITIVE RANGE OF OUTPUT MOTION
CHECKING FOR INPUT DATA ERRORS
IF(RNGO«LTe0) WRITE(69128)
RNGO=ABS (RNGO)
TITE=TITE#,0174533
GOTO 18
16 IFI{METHOD«EQs10) WRITE(69119)
IF(METHOD+EQel11l) WRITE(69120)
18 WRITE(6998) ICASE
IF(METHOD«GT4+9) GOTO 17
SET NOe OF CONSTRAINTS (NC) EQUAL TO NNC DEFINED ABOVE IF USER
1S NOT ADDING ANY CONSTRAINTS (IEXCO eNEe 0)
IF(IEXCOeNEO) NCaNNC
CONVERTING SCALING PARAMETERS TO A SUITABLE FORM
ZERO=CFRIC/SQRT(1+CFRIC#CFRIC)
CHECKING FOR INPUT DATA ERRORS
IF(SCAL1¢GTee9998) WRITE!69122)
IF(SCAL1eLTee0175) WRITE(69123)
SCAL1=AMIN1(SCAL1+49998)
SCAL1=AMAX1(SCAL1900175)
IF(ZERO+GE+SCALY) GOTO 51
SCAL1=(SCAL1=ZERO)/(1s=SCAL1)
IF{MOD(METHOD»2)) 12913512
ROUTE FOR FUNCTION GENERATION
CHECKING FOR INPUT DATA ERRORS
12 IF(SCAL24LTe1e0E=07) WRITE(69124)
SCAL2=AMAX1(SCAL2+140E=07])
SCAL2=1,4/(SCAL2#SCAL2)
GOTO 14
ROUTE FOR COUPLER CURVE SYNTHES!S
13 DO 15 I=14NPP
XTOL(I)=sXTOL(I)%XTOL(I)
15 YTOL(I)=YTOL(I)#YTOL(])
CHECKING FOR INPUT DATA ERRORS
14 IF(SCAL3eLTelel) WRITE(69125)
SCAL3=AMAX]1 (SCAL3s1,1)
SCAL3=(SCAL3=1,)#(SCAL3=1,)
INITIALIZE COUNTER
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17 ICOUNT=0
DEFINE INITIAL PENALTY MULTIPLIERIPM
PM=10,
TESTING TO SEE t1F ONLY SCALING VALUES WANTED FOR A HYPER=SURFACE
EXPLORATION
IF{ISURF(EQe0) RETURN
INITIALIZING STARTING POINT
DO 35 I=m]lsN
35 P(Ie1)aSTRTPT(])
PRINT OUT THE STARTING POINT
WRITE(64103)(P(Is1)el=m]lsN)
IVIOL=0
INITIALIZE SPECIAL INDEX FOR FUNCTION LEVELER IN INFEASIBLE REGION
IHELP=2
DEFINING LINEAR DEPENDANCY PARAMETER
EPS=e5/SQRT(FLOATI(N))
SEEDING RANDOM NUMBER GENERATOR FOR PERTURBATION OF OPTIMUM
SEED=RANF( 4123456789)
NlsN+1
N2=aN+2
INITIATING OPTOLD COMPARISON VARIABLE FOR LOCAL OPTIMUM CHECK
OPTOLD=1,0E+50
SET CONJUGATE DIRECTION VECTORS INITIALLY TO COORDINATE DIRECTIONS
30 DO 1 I=1N
DO 2 J=1leN
2 X1{lesJ)=m0Oo
1 XI(Isl)ml,
SET EFFICIENCY PARAMETERs DELs INITIALLY TO 1.
DEL=1,
24 A=0,
CALL SUBROUTINE UNIMIN TO FIND THE MINIMUM OF THE UNCONSTRAINED
FUNCTION ALONG FACH OF THE N CONJUGATE DIRECTIONS AND DETERMINE THE
LARGEST SCALAR MULTIPLIERsA (AND ITS INDEXs»JS)s OF THE N SCALAR
MULTIPLIERS OF THE CONJUGATE DIRECTIONS
CALL UNIMIN(1oNsAsJSINISMeRFIRAT)
DEFINING A NEW CONJUGATE DIRECTION
AND DEFINING THE NORMALIZ2ING CONSTANTs ALP» FOR THE EFFICIENCY TEST
OF THE NEW CONJUGATE DIRECTION
DIR(1)=2P(1sN1)=P(19l)
TST1=DIR(1)*DIR(L)
DO 19 1=:2¢N
DIR(I)=P(IsN1)I=P(1s1)
19 TST1=TST1+4DIR(IINDIR(I)
ALP=SQRT(TST1)
NORMALIZING THE NEW CONJUGATE DIRECTION VECTOR
DO 21 f=1)N
XI(IsN1)SsDIRII)/ALP
21 CONTINUE
8s=0,
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FINDING THME MINIMUM OF THE FUNCTION ALONG THE NEW CONJUGATE DIRECTION
VECTOR
CALL UNIMININLIoN1sBoloNosSMoRFIRAT)
COM:INATION ABSOLUTE=RELATIVE ERROR TEST ON VARIABLE WITH LARGEST
CHANGE
ABSOLUTE TEST IF VARIABLE +LEes 19 RELATIVE TEST IF VARIABLE +GT.1
TST"O.
DO 5 1=1sN
TST5=ABS(P(IsN2)=P(101))
CKSZ=ABRS(P{IsN2)}
IF(CKS2eGTele) TSTE=TSTH/CKSZ
DEFINING THE STARTING POINT FOR THE NEXT MINIMIZATION SEQUENCE
P(lel)=P(lsN2)
5 TST4aAMAX1(TST4sTSTS)
1FITST4eLToPREC) GOTO 20
TESTING TO SEE IF NEW CONJUGATE DIRECTION IS EFFICIENT
ALL OLD DIRECTIONS RETAINED IF NEW CONJUGATE DIRECTION IS NOT
EFFICIENT
INEFFIENCY IS A SIGN THAT THE NEW CONJUGATE DIRECTION 1S NOT LINEARLY
INDEPENDENT AND THUS NOT REALLY CONJUGATE TO THE OTHER DIRECTIONS
HOPEFULLY A NEW SEQUENCE WILL PRODUCE A MORE EFFICIENT DIRECTION
TST1=A#DEL/ALP
IF{TST1+LTEPS) GOTO 24
ROUTE IF NEW DIRECTION 1S EFFICIENT
THE DIRECTION WITH THE MULTPLIER OF HIGHEST MODULUS 1S REPLACED WITH
THE NEW CONJUGATE DIRECTION
DO 25 1=1sN
X1(19JS)uXI(IsN1)
25 CONTINUE
DEFINING A NEW EFFIENCY PARAMETER
DEL=TSTL
GOTO 24
ROUTE WHEN CONVERGENCE TO A SOLUTION HMAS BEEN REACMHED
OBTAINING FINAL VALUES OF THE CONSTRAINED OBJECTIVE FUNCTION AND THE
CONSTRAINTS THROUGH LABELLED COMMON
20 OPTNEW=G(P)
CHECKING TO SEE IF PERTURBED STARTING POINT HAS LED TO A LOWER LOCAL
UNCONSTRAINED OPTIMUM OBJECTIVE FUNCTION VALUE
ON FIRST RUN OPTOLD=1,0E+50
IF(OPTNEW=OPTOLD) 289294529
PRINT LOCAL OPTIMUM
28 WRITE(60106) CGo(P(1sl)elImloN)
IFINCeEQeO) GOTO 60
WRITE(69102) (C(I)sI=1leNC)
CHECKING FOR NEGATIVE CONSTRAINT VALUES AT FINAL OPTIMUM
DO 3 I=1lsNC
IF(C(1)) 32+343
3 CONTINUE
SAVE PARAMETER VALUES FOR BEST POINT
60 CGBST=CG
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Ul1B8sT=uU1
U28ST=U2
U3IBST=Y3
SETTING OPTOLD FOR NEXT COMPARISON
OPTOLD=OPTNEW
PM=10,
IHELP=2
IViOoL=0
DO 47 I=1»N
47 SV(l)l=P(1s1)
38 DO 27 I=1sN

RANDOM PERTURBATION OF OPTIMUM POINT DESIGN VARIABLES TO START A NEW

MINIMIZATION SEQUENCE
27 P(1s1)=P(l91)#(3e=bo#RANF(04))
PRINT OUT STARTING VALUES FOR MINIMIZATION IN THE NEXT SEQUENCE
WRITE(69104) (P(Isl)el=1sN)
GOTO 30

ROUTE IF METHOD HAS TERMINATED AT A SUPPOSED OPTIMUM AFTER AT LEAST

ONE PERTURBATION OF THE DESIGN VARIABLES
CHECKING FOR CONSTRAINT VIOLATIONS
29 IF(NC4EQeO) GOTO 33
DO 31 I=1sNC
IF(C(I)) 32431431
31 CONTINUE
GOTO 33
ROUTE IF OPTIMUM DETERMINED IS INFEASIBLE
CHECK TO SEE IF AN INFEASIBLE HANG=UP HAS OCCURRED
32 IF(PMeLTal=140E+06/C(1))) GOTO 37
INCREASING UNSUCCESSFUL STARTING POINT COUNTER
IVIOL=1VIOL+1
PROGRAM ABORTED IF 4 CONSECUTIVE UNSUCCESSFUL STARTING POINTS
GENERATED
IF{IVIOLsEQe4) GOTO 39
IF 2 CONSECUTIVE UNSUCCESSFUL STARTING POINTS GENERATED
SET INDEX FOR FUNCTION LEVELING
IF(IVIOLeEQe2) IHMELP=0
WRITE(6+126)
GOTO 38
37 WRITE(6+107) [sCLD)
WRITE(69104) (P(lsl)el=1yN)
INCREASING PENALTY MULTIPLIER FOR NEXT LOOP
PM=pM#10000.
GOTO 30
CALCULATING TOTAL EXECUTION TIME
33 CALL SECONDI(TF)
TIMEsTF=TIME
PRINTING FINAL VALUES OF CONSTRAINED OBJECTIVE FUNCTIONs DESIGN
VARIABLESs AND THE CONSTRAINTS
WRITE(6+106) CGo(P(Isl)elm1eN)
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IFINCeEQeO) GOTO 45
WRITE(6+102) (ClJI)eJmleNC)
IFI(METHOD«GT49) GOTO 45
PRINTING PARAMETERS AT BEST POINT
WRITE(6+109) ULIBSTsU2BST yU3BSTCGBSTo(SV(1)eI=1eN)
GOTO 46
4% WRITE(69121) UIBSTeU2BSTyUIBSTeCGBST(SVI(I)sIms1leN)
PRINTING NUMBER OF FUNCTION EVALUATIONS
46 WRITE(65108) ICOUNT
PRINTING OUT TOTAL EXECUTION TIME
WRITE(69105) METHOD TIME
I1F(METHOD«GT+9) RETURN
DETERMINING WHICH PLOTTING ROUTINE TO USE
THE ROUTINE TO BE USED DEPENDS ON METHOD
GOTO(40941040041940) sMETHOD
40 CALL PLTERRI(1)
RETURN
41 CALL PLTCUP(1)
RETURN
81 WRITE(6+117)
sSTOP
39 WRITE(6s127)
STOP
98 FORMAT(11Xo#WHERE ICASEs#413)
99 FORMAT(1H1+10Xe#SYNTHESIS OF A PLANAR 4=BAR FUNCTION GENERATOR MEC
1HAN] SM#)
100 FORMAT(1H1 910X y%#SYNTHESIS OF A PLANAR &4=~BAR MECHANISM TO PRODUCE A
1 GIVEN COUPLER CURVE#)
102 FORMAT(1HOs10Xs#THE CONSTRAINT VALUES ARE#/(16X94G16e5))
103 FORMAT(1HO»10Xs#THE STARTING DESIGN VARIABLE VALUES ARE#®*/
1(16X94G1l645))

104 FORMAT(1HO//11Xe#THE NEW STARTING DESIGN VARIABLE VALUES ARE#*/

1{16X94G1645))

105 FORMAT(1HO 10X #TOTAL EXECUTION TIME FOR METHOD#*s13s% [S¥,
1F10e39% SECONDSH)

106 FORMAT(1HOs10Xs#LOCAL OPTIMUM VALUE OF OBJECTIVE FUNCTION 1S%,
1G1345//11Xe#DESIGN VARIABLE VALUES ARE*/(16X94Gl6e5))

107 FORMAT(1HO»10Xs*#THE OPTIMUM VALUE DETERMINED IS INFEASIBLE®*/
111X *CONSTRAINTY NUMBER#9139% HAVING THE VALUE#*+Gl4e5/
211X *THEREFORE THE PENALTY MULTIPLIER HAS BEEN MULTIPLIED BY 10000
3#/11Xs#AND A NEW MINIMIZATION SEQUENCE FROM THE CURRENT OPTIMUM ST
4ARTED®)

108 FORMAT(1HO s 1OX#NUMBER OF FUNCTION CALLS WAS#,17)

109 FORMAT(1HO//16Xs*TRANSMISSIBILITY INDEX FUNCTION [S#9G13e5//
116X #STRUCTURAL ERROR FUNCTION 1S#4G13¢5//16Xs
2#LINK LENGTH FUNCTION IS#%
34G13¢5//716Xe#FINAL OPTIMUM VALUE OF OBJECTIVE FUNCTION IS5%,
4G1345//16Xs#DESIGN VARIABLE VALUES ARE®*#/(16X94Glé6e5))

110 FORMAT(1H1+10Xy*SYNTHESIS OF A PLANAR SLIDER=CRANK FUNCTION GENERA
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1TOR MECHANISM#*)

111 FORMAT(1M1 910X s#SYNTHESIS OF A PLANAR SLIDER=CRANK MECHANISM TO PR
100UCE A GIVEN COUPLER CURVE®#)

117 FORMAT(1HO»10Xs#THE OPTIMIZATION FUNCTION IS ILL=FORMED SINCE THE
1WORST POSSIBLE CASE (2ERO)/11Xe#FOR THE INDEX OF TRANSMISSIBILITY
2EXCEEDS ITS SMALLEST ACCEPTABLE VALUE (SCAL1)#/11Xs#THEREFORE INCR
3EASE SCAL1 AND/ORs IF DOING A SLIDER=CRANK SYNTHESISs» DECREASE CFR
41C*/11Xs#CURRENT RUN HAS BEEN ABORTED#*)

118 FORMAT(1H1s10Xo#SYNTHESIS OF A SPATIAL 4-BAR (RGGR) FUNCTION GENER
1ATOR MECHANISM#)

119 FORMAT(1H1+10Xs*BALANCING OF A PLANAR 4=BAR MECHANISM#*)

120 FORMAT(1H1910X¢#BALANCING OF A PLANAR SLIDER=CRANK MECHANISM#*)

121 FORMAT(1HO//16Xs*#HORIZONTAL SHAKING FORCE FUNCTION 1S%#9Gl445//
116Xy #*VERTICAL SHAKING FORCE FUNCTION IS#+Gl445//16Xy
2#SHAKING MOMENT FUNCTION 1S%4Gl4e5//
316X+ #FINAL VALUE OF BALANCING OBJECTIVE FUNCTION [S#9G14e5//16Xs
4#BALANCING VARIABLE VALUES ARE#/(16X94G16e5)}

122 FORMAT(1HO o #*WARNINGs SCAL1 GREATER THAN 9998 WAS DETECTED BY LINK
1 AND WAS SET EQUAL TO +9998#%)

123 FORMAT(1HO »#WARNINGs SCALY LESS THAN 40175 WAS DETECTED BY LINK AN
1D WAS SET EQUAL TO +0175%)

124 FORMAT(1HO s *WARNINGs SCAL2 LESS THAN 1le0E=07 WAS DETECTED BY LINK
1AND WAS SET EQUAL TO 1.0E=07#)

125 FORMAT(1HO »*WARNINGs SCAL3 LESS THAN 1le¢1 WAS DETECTED BY LINK AND
1IWAS SET EQUAL TO 1.1%)

126 FORMAT(1HO+10Xs#MINIMIZATION ROUTINE HAS HUNG UP IN AN INFEASIBLE
IREGION#/11Xs#INDICATIONS ARE THAT THE CONSTRAINTS ARE SUCH THAT A
2FEASIBLE REGION#/11X ¢#CANNOT BE REACHED FROM THE CURRENT LOCATION#
3/711Xs*THEREFORE A NEW STARTING POINT HAS BEEN GENERATED#*)

127 FORMAT(1HO»10Xs*INDICATIONS ARE THAT NO FEASIBLE SOLUTION EXISTS#/
111X s *RECHECK CONSTRAINTS IN SUBROUTINE EXCONs AND METHOD INPUT DAT
2A*/11Xs*PROGRAM HAS BEEN ABORTED#*)

128 FORMAT(1HO 10X s #RNGO MUST BE POSITIVE#/11Xs#THEREFORE THE ABSOLUTE
1 VALUE OF THE RNGO GIVEN HAS BEEN USED¥*/11Xs#]F THE OUTPUT RANGE O
2F MOTION OBTAINED IS UNSATISFACTORY CHANGE ICASE OR VECTOR STRPT#)

END
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SUBROUT INE PLTERR(1CK)
SUBPROGRAM TO INITIATE PLOTTING OF THE STRUCTURAL ERROR OF PLANAR
4=BARy PLANAR SLIDER=CRANKs AND SPATIAL 4=BAR MECHANISMS FOR FUNCTION
GENERATION (METHOD=1+395)
THE VALUE OF THE ACTUAL FUNCTION GENERATED MINUS THE DESIRED FUNCTION
IS EVALUATED AT 81 POINTS WITHIN THE RANGE OF THE INPUT VARIABLE
AND PLOTTED AS THE ORDINATE
THE ACTUAL FUNCTION INPUTsXs 1S REPRESENTED BY THE ABSCISSA
THE MINIMUM TRANSMISSION ANGLEs ACTUAL RANGE OF FOLLOWER MOTIONe AND
THE INPUT STARTING ANGLE ARE ALSO CALCULATED
THE MECHANISM PRODUCED 1S ALSO CHECKED FOR CLOSURE AT ALL POSITIONS
WITHIN THE DESIGNATED RANGES OF MOTION
DIMENSION Y(81)sX(81)
COMMON /SAVOPT/ Sv(10)
COMMON /INTERN/RPSI +CGoC(20)9ULsU29U39PMyICOUNTIPS(8L)9sCXA(21)
1CYA(21)sERRMAX(21) 9 TRI»ZERO
COMMON /NUMBERS /NPP sMETHOD
COMMON /SYNIN/XMINsXMAXsRNGIIRNGOSTITESsCFRICH1ISYM
COMMON /DESIRE/XD(21)sYD(BL)sPH{B1)sXTOL(21)YTOL(21)
OBTAINING SET=UP VALUES IF NECESSARY (]1CK=0)
IF(ICKsEQeO) CALL LINK(O)
PRINTING TITLES
IF(METHODEQel) WRITE(6+112)
IF(METHODoEQe3) WRITE(69114)
IF(METHOD EQeS) WRITE(60116)
PH{1)==RNGI /24
YO(1)=FUNSYN(XMINY
X{1)=XMIN
ADD=RNGI/80.
RNGDIV={ XMAX=XMIN) /80
DO 4 [=2,81
X{(I1)sX(1=1)+RNGDIV
PH{1)=PH(1=1}+ADD
4 YDU1)sFUNSYN(X(I))
OBTAINING ACTUAL OUTPUT USING OPTIMUM VARIABLES
CALL CONFUNC(SV981+0)
CHECKING FOR CLOSURE OF THE MECHANISM AT ALL POSITIONS
NON=CLOSURE IF CONSTRAINT C(1) IS VIOLATED
IF(C(1)) 24393
3 YMAX==1,0E+50
YMIN=1,0E+50
IF(ISYMeEQ.O) GOTO 6
ROUTE FOR NON=SYMMETRIC FUNCTIONS
RNGOA=PS(81)=PS(1)
RPSI=({YD(81)=YD(1)} /RNGOA
GOTO0 7
ROUTE FOR SYMMETRIC FUNCTIONS (ISYM=0)
6 RNGOA=PS(41)=PS(1)
RPSI=(YD(41)=YD(1}))/RNGOA
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7 DO 1 I=1,81
YASYD(41)+RPSI#(PS(1)=PS(41))
Y1) aYA=YD(T)
DETERMINING THE MAXIMUM AND MINIMUM VALUES OF THE STRUCTURAL ERROR
YMAX=AMAX1 LYMAX Y (1))
1 YMINSAMINL (YMINSY (1))
DETERMINING THE INPUT STARTING ANGLE AND THE RANGE OF OUTPUT MOTION
IN DEGREES
STAR®S74295T795%(SV(4)+PH(1))
WRITE(65100) YMAXsYMIN
CALL COMPARE(B1sYsYeXsXsYMAXsYMINSXMAXSXMINSO)
IF(METHOD+EQe3) GOTO &
ROUTE FOR 4=BAR LINKAGES
FINA=PS (1) #5742957795
RNGPR=RNGOA#57,2987795%
PRINTING CRANK STARTING ANGLEs FOLLOWER STARTING ANGLE
AND RANGE OF OUTPUT MOTION
WRITE(6+102) STARsFINASRNGPR
GOTO 8
ROUTE FOR SLIDER=CRANK LINKAGE
5 WRITE(6+103) STARsPS{1)sRNGOA
GOTO 8
ROUTE IF Ct1) VIOLATED
2 WRITE(6+101)
8 WRITE(69104) TRI
RETURN
100 FORMAT (1HO +5X s #MAXIMUM STRUCTURAL ERROR (YA=YD) I1S#9Glée5/
16X o #MINIMUM STRUCTURAL ERROR 1S#¢Glée5//)
101 FORMAT(1HO 10X+ *WARNINGs MECHANISM SYNTHESIZED DOES NOT CLOSE AT €
1ERTAIN POSITIONS#/11Xs#IN THE DESIGNATED RANGE OF MOTION#/
2 11Xs*#SUGGEST INCREASING THE NUMBER OF PRECISION POINTS OR DECREA
3SING*/11X9#THE DESIRED RANGE OF MOTION#)
102 FORMAT (1HO»10Xs#THE CRANK STARTING ANGLE 15#,Gl4e5,% DEGREES*//
111Xy #THE FOLLOWER STARTING ANGLE I1S#4Glée5+% DEGREES*//11X,
2#THE RANGE OF FOLLOWER MOTION 1S#9Gl4e5¢% ODEGREES#H)
103 FORMAT(1HO»10X¢#THE CRANK STARTING ANGLE IS#4Gl4e5s* DEGREESH*//
111X s #THE SLIDER STARTING POSITION 15%#9Gl4e5//11X>
2#THE RANGE OF SLIDER MOTION 1S%9Gl64e5)
104 FORMAT(1HO»10Xs#THE MINIMUM TRANSMISSIBILITY INDEX 1S#+Gl4e5)
112 FORMAT(1H1+5X+#STRUCTURAL ERROR PLOT FOR PLANAR 4=BAR FUNCTION GEN
1ERAT ION*)
114 FORMAT(1H1s5Xs#STRUCTURAL ERROR PLOT FOR PLANAR SLIDER=CRANK FUNCT
110N GENERATION®)
116 FORMAT(1H1s5Xs#STRUCTURAL ERROR PLOT FOR SPATIAL FOUR=BAR (RGGR) F
1UNCTION GENERATION®*)
END
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SUBROUTINE PLTCUP(ICK)
SUBROUTINE SUBPROGRAM TO INITIATE PLOTTING OF THE DESIRED AND ACTUAL
SYNTHESIZED COUPLER CURVES FOR THE PLANAR 4~BAR AND SLIDER=CRANK
MECHANISMS (METHOD=2+4)
THE MAGNITUDE OF THE STRUCTURAL ERROR OF TME COUPLER CURVE AT THE
PRECISION=POINTS IS ALSO PLOTTED VSe THE CRANK ANGLE IN THE RANGE OF
DESIRED MOTION
COMMON /SAVOPT/ SV(10)
COMMON /NUMBERS/NPP ¢yMETHOD
COMMON /INTERN/RPSIsCGoC(20)9ULlsU20U39PMeICOUNTIPS(81)9CXA(21)
1CYA(21)sERRMAX(21) o TRI92ERO
COMMON /SYNIN/XMINsXMAXsRNGI»RNGOSTITE
COMMON /DESIRE/CXD(21)sCYD(8L1)oPH(B81) s XTOL(21)sYTOL(21)
OBTAINING SET=UP VALUES
IF(ICKeEQeO) CALL LINK(O)}
OBTAING COUPLER POINTS AND STRUCTURAL ERROR FOR
OPTIMUM VARIABLE VALUES
CALL CONFUNC(SVINPP0)
PRINTING PLOT TITLES
IF(METHOD+EQe2) WRITE(69113)
IF(METHOD¢EQe4) WRITE(G60115)
DETERMINING MAXIMUM AND MINIMUM X AND Y VALUES FOR COUPLER CURVE PLOT
YMAX®m=}40E+50
XMAX==140E+50
YMIN=1,0E+50
XMIN=1,0E+50
DO & I=1sNPP
YMAX=AMAX1(YMAXsCYA(I) sCYD(]))
YMINSAMINI(YMINSCYALT)sCYD(I))
XMAX=AMAX]1 ( XMAX9CXA(L)sCXD({1))
6 XMIN=AMINL(XMINSCXA{I)sCXD(I))
PRINTING TITLES FOR COUPLER=POINT PLOT
WRITE(69104) XMINsXMAXsYMINsYMAX
CALL COMPARE (NPPsCYAICYDICXAsCXDoYMAX s YMINS XMAX s XMIN» 1)
DETERMINING MAXIMUM AND MINIMUM Y VALUES FOR STRUCTURAL ERROR PLOT
YMIN®=]l,0E+50
YMAX==],0E+50
PMAX=RNGI#57,2957795
STARA=BSV(4)%#57 42957795
DO 1 I=]1sNPP
CYA(1)=SQRT(ERRMAX(T1))
: YMINSAMINL (YMIN®CYA(I))
1 YMAX=AMAX1(YMAXsCYA(L))
PRINTING TITLES FOR STRUCTURAL ERROR PLOT
WRITE(60103) PMAXsSTARAPYMINeYMAX
XMAX=sAMAX1(0esRNGT)
XMINSAMINL (Oe oRNGTI)
CALL COMPARE (NPPsCYAICYAIPHsPHIYMAX s YMIN s XMAX s XMINO)
WRITE(69101) TR!
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RETURN

101 FORMAT(1HO 10X o #THE MINIMUM TRANSMISSIBILITY INDEX [S*#9Glé4e5)

103 FORMAT({1H1+s5Xe#PLOT OF COUPLER CURVE ERROR VSe CRANK ANGLE CHANGE
1FROM STARTING ANGLE#/86Xs#CRANK ANGLE CHANGE 1S#9¢Gl4e59% DEGREESH*/
26X s #CRANK STARTING ANGLE 1S#9GlaeS5e% DEGREESH/
36X0’M!N§MUM VALUE OF ERROR IS*#9Gl4es59%s MAXIMUM VALUE OF ERROR 1S#
4+Gl4e5/

104 FORMAT(1MO oSXe#MINIMUM X VALUE 1IS#9G1l4s5 9 #MAXIMUM X VALUE [S¥*,
1G1445/6 X9 #MINIMUM Y VALUE 1S#9G14e5+#MAXIMUM Y VALUE [S*9Gl4e5/)
113 FORMAT (1M1 95X s#PLOT OF DESIRED (O) AND ACTUAL (#e1H#e*) COUPLER PO

1INTS FOR THE PLANAR FOUR=BAR#H)

115 FORMAT(1H195Xe#PLOT OF DESIRED (0O) AND ACTUAL (#91H%e#) COUPLER PO
1INTS FOR THE PLANAR SLIDER=CRANK®*)

END
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SUBROUT INE COMPARE(NeYAsYDsXAsXDs YMAX s YMINs XMAX o XMIN IFLG3)
SUBROUTINE SUBPROGRAM TO PLOT ONE (IFLG3=0) OR TWO (IFLG3=1) FUNCTIONS
GIVEN BY PAIRS OF POINTYS TO THE SAME SCALE
X AND Y VALUES ARE CONVERTED TO INTEGERS CORRESPONDING TO THEIR
POSITION IN THE PLOT (THUS DESTROYING THEIR ORIGINAL VALUES)
THE PAIRS OF POINTS ARE SORTED ACCORDING TO THEIR Y VALUES BEFORE
PLOTTING (EVEN FURTHER DESTROYING THEIR ORIGINAL VALUES)

THE FIRST FUNCTION IS PLOTTED WITH # SYMBOLS

THE SECOND FUNCTION IS PLOTTED WITH O SYMBOLS
DIMENSION YDIN)sYA(IN)oXD(N)oXA(N)sK(81)eKB(S)
DATA KB/lHlslHeplH+olH ¢1H#s1HO/

DETERMINING SCALING FACTORS

XFAC=280¢/{ XMAX=XMIN)

YFAC=40,/{ YMAX=YMIN)

DETERMINING FACTORS TO DETERMINE COORDINATE AXES AND GRID POINTS

KX=1eB34+YMAX®YFAC

KY=]leSaXMIN#XFAC

L1=MOD(KY*8)

IF(L1¢EQeO) L1=8

LL={81l=L1)/8
INCREASING PRECISION OF Y RANGE

YFAC=3 #YFAC ,

GETTING YA VALUES IN DECREASING ORDER

DO 10 1=1sN
NOTE YA(1) ARE PUT IN REVERSE ORDER
THIS 1S SO INDEXING CAN BE DONE FROM THE PLOT
TOP LEFT=HMAND CORNER

YA(1)=)eS+YFACH({YMAX=YA{I))

10 XA(l)=m]e5+XFACH{XA(] )=XMIN)

ILO=2

INI=N

19 INDs=O
SORTING FORWARDS

DO 20 I=1LOsIHI

IF(YA(I)oeGEeYA(I=1)) GOTO 20

IND=l
SWITCHING ELEMENTS

T=YA(L)

YA(I)=YA({]=1)

YA(l=1)=T

TeXA(])

XA(l)=xXA(]=1)

XA(l=1l)=T

20 CONTINUE

IF(IND.EQsO) GOTO 40

IHI=IND

11=1MHI4ILO

IND=O
SORTING BACKWARDS
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DO 30 J=1LO9 1M
I=fl=J
IFIYA(I)eGEeYA(1=1)) GOTO 30
C SWITCHING ELEMENTS
IND=!
TeYA(L)
YA(l)=sYA({l=1)
YA(l=1)s=T
TaXA(])
XA(l)=XA(1=1)
XAl[=1)=T
30 CONTINUE
1LO=IND _
TESTING TO SEE IF SORTING OF YA IS COMPLETED
IF{INDeNE«O) GOTO 19
TESTING TO SEE IF YD YO BE USED ALSO
40 IF(IFLG3¢EQeD) GOTO 41 _
LOOP TO SORT YD VALUES IN ORDER OF DECREASING VALUES
SORTING FORWARDS
DO 11 1=14N
NOTE YD(1) ARE PUT IN REVERSE ORDER
YD(1)=1o85+YFACR(YMAX~YD(I))
11 XD(1)=1e8+XFACH(XD(I)=XMIN)
1L0=2
IHI=N
18 IND=O
C SORTING BACKWARDS
DO 21 I=ILOsIHI
IF(YD{1)eGELYD(I=1)) GOTO 21
C SWITCHING ELEMENTS
IND=l
T=YD(1I)
YD(I)=yYD(]=]1)
YO(1=1)=T
T=XD(1}
XD(1)=sxD(I=1)
XD{(I=1)=T
21 CONTINUE
IF(INDJEQeO) GOTO 41
IHI=IND
11=IMI«ILO
IND=O
DO 31 J=sILOs»INM!
In]l=y
IF(YD(1)eGEWYD(I~1)) GOTO 31
C SWITCHING ELEMENTS
IND=1
T=YD(1)
YD(1)=yYD{1~-1)

N NN N N
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YD(1=1)=T
T=XD(1)
XD(1)=xXD(1=1)
XD{l=1l)=T
31 CONTINUE
1LO=IND
"TESTING TO SEE IF SORTING OF YD IS COMPLETE
IF{INDeNECO} GOTO 18
41 IND=2
GETTING THE FIRST VALUE OF YA WITHIN THE PRINTING RANGE
KQA=0
4% IF(YAIKQA+1)4GTe0) GOTO 47
KQA=KQA+1}
GOTO 48
47 IFUIFLG34EQeD) GOTO 48
GETTING THE FIRST VALUE OF YD WITHIN THE PRINTING RANGE
KQD=0
46 IFIYD(KQD+1)+GTe0Q) GOTO 48
KQD=KQD+}
GOTO 46
48 CONTINUE
LOOP TO PRINT ONE LINE OF THE PLOT AT A TIME
DO 50 =141
SETTING ALL ELEMENTS TO BLANK OR MINUS FOR THE X=AXIS
11=1=KX
Ki{l)=KB(4)
IF(114EQe0) K{1)=KB(2)
DO 55 JU=2+81
55 K(J)=K(J=1)
IFtMOD(I198) eNEeOD) GOTO 58
SETTING UP GRID=POINT ELEMENTS
K{tL1)=xB(3)
L2=L1
DO 57 J=lsll
(2= 2+8
57 K(L2)=KBLl3)
6GO0TO 5¢
CHECKING TO SEE IF Y=AX!S (ONES) CAN BE PRINTED
88 IF(KYeGEeYsANDOKY LEWB1) K{KY)=KB{1)
DETERMINING YA POSITIONS
59 KR=KQA+1
65 IF{KReGTeN) GOTO 62
IY=IFIX{YA(KR))
IF(IY=IND) 60961062
60 KQA=KR
61 IX=TFIX(XA(KR)}
IF{IXeGEel e ANDGIXeLESBL) K({IX)=KB(5)
KR=KR+1
GOTO 65
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WRITE(60100) K
IF(IFLG24EQe0}) GOTO 51

C DETERMINING YD POSITIONS
C RESETTING ALL ELEMENTS TO BLANKS

ao

75

70
71

72
51
50

100
101

DO 80 LOOPal,81
K{LooP)=KB(4)
KR=KQD+1
IF(KReGTeN) GOTO 72
IYsIFIX{YDIKR))
IF(IY=IND} 70¢71972
KQD=KR
IX=IFIX(XD{KR))
IF(IXeGEeLleANDeIXeLEe8Y) KIIX)=KB(6)
KR=KR+1

GOTO 75
WRITE(6+101) K
IND=IND+3

CONTINVE

RETURN
FORMAT(1Xs81A1)
FORMAT{ 1H+,81A1)
END
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SUBROUTINE UNIMIN(NS sNFosRMAX3sJSeNsSCsRFIRAT)

DIMENSION F(48)

COMMON P(10912)9X1(20911)9X(10)

COMMON /MODULO/ IMD
SUBROUTINE TO MINIMIZE A FUNCTION ALONG ONE CONJUGATE DIRECTION AT A
TIME BY VARYING A SCALAR MULTIPLIERs RMIN
THE FUNCTION IS MINIMIZED ALONG EACH VECTOR IN SUCCESSION USING THE
LAST MINIMUM POINT AS A STARTING POINT FOR THE EACH MINIMIZATION
FIRST A REGION IN WHICH THE FUNCTION HAS A MINIMUM 1S BRACKETED BY
USING AN ACCELERATED UNIVARIATE SEARCH TECHNIQUE
THEN THREE EQUALLY SPACED POINTS WITHIN THE BRACKET ARE USED TO DEFINE
QUADRATIC INTERPOLATING FORMULA FOR WHICH THE MINIMUM IS OBTAINED 8Y
SETTING ITS FIRST DETIVATIVE EQUAL TO ZERO
INSTRUCTIONS USE 517 (OCTAL) STORAGE LOCATIONS IN CeMs
LIST OF INPUT PARAMETERS

NS INDEX OF FIRST MINIMUM POINT TO BE DETERMINED

NF INDEX OF LAST MINIMUM POINT TO BE DETERMINED
(NF=NS= NO, OF LOOPS THROUGH SUBROUTINE REQUIRED)

G EXTERNAL FUNCTION SUBPROGRAM WHICH EVALUATES THE

UNCONSTRAINED OBJECTIVE FUNCTION AT A PARTICULAR
POINTs Pe ANY CONSTRAINT CONSIDERATIONS MUST BE
INCLUDED IN G

RMAX LARGEST SCALAR MULTIPLIER USED IN THE MINIMIZATION
ALONG ALL DIRECTIONS

JS INDEXs Jo» OF THE CONJUGATE DIRECTION ASSOCIATED
WITH RMAX

N NUMBER OF DESIGN VARIABLES TO BE OPTIMIZED

SC INITIAL MAGNITUDE PARAMETER FOR SCALAR MULTIPLIER

RF INITIAL VALUE OF RELAXATION FACTOR

RAT FINAL REDUCTION RATIO (+e5) FOR SYMMETRICAL
BRACKETING OF THE MINIMUM
APPROPRIATE VALUES FOR SCs RFs AND RAT ARE 00019 les AND 2¢5 RESPECT.
DO 20 J=aNSoNF
RESETTING RELAXATION FACTOR
RFF=RF
DEFINING MULTIPLIERS
SM=SC
S2=SM#2,
S3=S5M*3,
JlzJ+l
DO 26 I=1N
26 X{1)=P(1+J)
OBTAINING FUNCTION VALUE AT INITIAL POINT
F(1)=G(X)
PNORM=0,
DO 1 I=1sN
P{IsJ)ax(l)
1 PNORM=PNORM+P (1o J)nP(1pJ)
PNORM=SQRT (PNORM)
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PNORM=AMAX1 (PNORMolo)
ATTEMPT TO AVOID LOCAL MINIMUM
INITIAL SCALAR MULTIPLIERs RINTs USED FOR MINIMIZATION ALONG A LINE IS
SET EQUAL TO NORM Of POSITION VECTORs PNORMs TIMES A RANDOM NUMBER
BETWEEN =34 AND <43,
IF NEW PONT ALOMG THE LINE » A DISTANCE RINT#XI(1sJ) FROM THE INITIAL
STARTING POINTs YIELDS A LOWER VALUE THEN THIS NEW POINT BECOMES THE
INITIAL STARTING POINT FOR UNIMIN
NOTE THAT CONJ STILL THINKS P({lsJd) 1S THE STARTING POINT
DO &4 LO=1+3
. RINT=PNORMR (3, =54 #RANF (O )}
DO 3 I=14N
XUI)=PlloJ)4XTI(1oJ)RRINT
3 CONTINUE
B=G(X)
IF(B=F({1)) 1991994
4 CONTINUE
ROUTE IF ORIGINAL STARTING POINT ACCEPTED
RINT=0,
GOTO 2
ROUTE IF A NEW STARTING POINT GENERATED
19 F(1l)=B
DO 22 i=19N
22 P{led)=eX(])
INITIAL TEST SECTION
2 K=0
6 K=K+l
LOOP TO DEFINE TEST POINTS IN POSITIVE DIRECTION
NOTEs X IS A OUMMY POSITION VECTOR USED THROUGHOUT SUBROUTINE
TEST FOR UNBOUNDED OPTIMUM
IF(KeGTe&7y GOTO 21
DO 5 1=1uN
XCI)=P (o) +SMR(200K)#XT(1sJ)
5 CONTINUE
FIK+1)=G(X)
TEST TO SEE IF LIMIT IN POSITIVE DIRECTION HAS BEEN REACHED
IF(F(K+1)eLESF(K)) GOTO 6
TESTS TO CHECK ON SPECIAL CASES WHEN LIMIT IN POSITIVE DIRECTION HAS
BEEN REACHED
IF(KeEQel) GOTO 7
IF(KeEQe2! GOTO 17
DEFINING A NEW TEST POINT TO GIVE EQUAL SPACING
FQ=513 (28R (K=2))
DO 8 I=1,yN
X{1)=P(loJ)+EQ¥XI {1 sJ)
8 CONTINUE
Fa=sG({X)
FINDING A COMBINATION OF 3 EQUALLY SPACED POINTS TO EVALUATE THE
FUNCTION TO DEFINE THE QUADRATIC INTERPOLATING FORMULA FOR THE
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POSITIVE CASE
DEFINE TME QUADRATIC INTERPOLATING FORMULA FOR THE POSITIVE CASE
TWO COMBINATIONS ARE POSSIBLE
RL 1S THE MIDOLE POINT
IF({F3eLEeF(K)) GOTO 9
FIRST POSSIBLE COMBINATION
FlaF(K=l)
F2=F{K)
RL=SM #(2#0{K=1))
GOTO 10
SECOND POSSIBLE COMBINATION
9 Fla=F(K)
F2=F3
FasF{K+1)
RL=EQ
GOTO 10
CASE WHERE ONLY FIRST THREE POSITIVE POINTS ARE EVALUATED
17 Fl=sF (1)
F2aF(2)
F3=F(3)
RL=S2
RINC=S2
RFF=le
GOTO 16
NEGATIVE DIRECTION BRACKETING SECTION
7 F3=F(2)
K=0
11 K=K+1
LOOP TO DEFINE TEST POINTS IN NEGATIVE DIRECTION
TEST FOR UNBOUNDED OPTIMUM
IF{KeGTok7) GOTO 21
DO 12 1=1sN
X{1)2P(loJ)=SMu (208K )X (1sJ)
12 CONTINUE
FIK+1)aG(X)
TEST TO CHECK IF BRACKET HAS BEEN REACHED IN NEGATIVE DIRECTION
IF{F(K+1)eLEGF(K})) GOTO 11
TESTS FOR SPECIAL CASES WHEN LIMIT IN NEGATIVE DIRECTION HAS BEEN
REACHED
IF(KeEQel) GOTO 123
IF(KeEQe2) GOTO 18
ROUTE FOR NORMAL TERMINATION IN NEGATIVE DIRECTION
A FOURTH EQUIDISTANT POINT WITHIN THE BRACKET 1S DETERMINED AND THE
BEST OF TWO POSSIBLE COMBINATIONS OF THREE POINTS IS PICKED
EQ=S13 #(2%0(K=2))
DO 14 I=}lsN
X{(1)=P(loJ)=EQuXI(I»J)
14 CONTINUE
Fl=G({X)
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IF (FleLEoF(K}}) GOTO 15
FIRST POSSIBLE COMBINATION
F2=F(K)
F3efF(K=l)
RL==SM #(28%(K=1))
GOTO 10
SECOND pOSSIBLE COMBINATION
15 F2=F1
Fl=F({K+1)
F3afF (K)
RL==EQ
GOTO 10
SPECIAL CASE WHEN LIMITS SYMMETRICAL ABOUT STARTING POINT
REDUCE MAGNITUDE PARAMETER FOR SCALAR MULTIPLIER BY 1/2
13 S52=SM
SM=S52/2,
S3=SM¥*3,
SETTING RELAXATION FACTOR TO 1s FOR ACCURACY
RFF=l,
TEST TO SEE IF RESTARTING 1S5 NECESSARY
IF((SC/SM) eLTeRAT ) GOTO 2
ROUTE IF SYMMETRICAL LIMITS MUST BE USED
F2=F (1)
FilsF {2}
RL=0.
RINC=S2%#2,
GOTO 16
SPECTAL CASE WHEN ONLY FIRST 3 NEGATIVE POINTS DEFINE THE BRACKET
18 Fl=sfF(3)
F2=F{2)
Fa=F(1l)
RL==S52
RINC=S2
RFF=al,
GOTO 16
NORMAL ROUTE INTO QUADRATIC MINIMIZING STATEMENT
10 RINC=EQ/3,
ROUTE FOR SPECIAL CASES WHERE RINC MAS BEEN DEFINED PREVIOUSLY
16 DENaF34F1=2,%F2
RMIN=RL=(RINC/2¢ ) #(F3=F1)/DEN
APPLY ING RELAXATION FACTOR TO SCALAR MULTIPLIER
RMIN=RFFR#RMIN
CHECKING FOR THE LARGEST SCALAR MULTIPLIER AND ITS INDEX
CKMAX=ABS (RMIN)
IF(CKMAX LT oRMAX) GOTO 23
JS=J
RMAX=CKMAX
DEFINING A NEW POINT FOR THE START OF THME NEXT LOCAL MINIMIZATION
SEQUENCE
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23 DO 24 I=19N
24 P(IoJ1)=P(lsJI+RMIN®XTI(I9J)
IF(METHOD«GT+9) GOTO 20
Pl4sJl)=mAMODI(P(49J1)+6042831853072)
IF(IMDJEQeO) P(S5+J1)=sAMOD(P(59J1)9642831853072)
20 CONTINUE
RETURN
C ROUTE IF AN UNBOUNDED OPTIMUM HAS BEEN DETECTED
21 WRITE(69100)
STOP
100 FORMAT({1HO 910X s *#UNIMIN HAS DETECTED AN UNBOUNDED OPTIMUM*/11X)
1*THEREFORE THE PROGRAM MAS BEEN ABORTEDs RECHECK ALL INPUT PARAMET
2ERS AND RELATIONSHIPS#)
END
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FUNCTION G(X)

FUNCTION SUBPROGRAM TO EVALUATE UNCONSTRAINED OBJECTIVE FUNCTION FOR
ALL METHODS (192+39495910011) WHICH REQUIRE OPTIMIZATION OF DESIGN
VARTIABLES (UP TO 10}
UP TO 20 CONSTRAINTS CAN BE HANDLED
FOR ALL OPTIMIZING METHODS UP TO 16 CONSTRAINTS CAN BE ADDED THROUGH
SUBROUTINE EXCON(CoNC) WHERE C IS THE CONSTRAINT VECTOR OF SIZE NC
WHERE NC IS THE TOTAL NUMBER OF CONSTRAINTS INCLUDING THOSE BASIC
CONSTRAINTS DEFINED IN SUBROUTINE CONFUNC (SEE FOLLOWING TABLE)
METHOD NOe OF BASIC CONSTRAINTS

1 3

2 3

3 3

4 3

5 4

10 0

11 0

DIMENSION X(10)
COMMON /INTERN/RPSICGIC120)9UL o293 9oPMsICOUNTIPS(BL)sCXAL21)
1ICYA(21)9ERRMAX(21) s TRIZEROD
COMMON /SYNIN/XMINsXMAXsRNGIsRNGOSTITESCFRIC
COMMON /NUMBERS/NPP sMETHOD » ICASEsNoNCHIEXCO
COMMON /MODULO/IMDs IHELP
INCREMENT FUNCTION COUNTER
ICOUNT=ICOUNT+1
CALLING FOR ADDITIONAL USER ADDED CONSTRAINTS 1f NECESSARY
{IEXCO=(0)
IF{IEXCOLEQe Q) CALL EXCON(XoC’NC’
CALL SUBROUTINE TO EVALUATE CONSTRAINED OBJECTIVE FUNCTION AND
APPROPRIATE CONSTRAINTS FOR METHODS 1 T0O 8
IF(METHODeLESS) CALL CONFUNCI{XsNPPs1l)
CALL SUBROUTINE TO EVALUATE CONSTRAINED OBJECTIVE FUNCTION AND
APPROPRAIATE CONSTRAINTS FOR PLANAR FOUR~BAR BALANCING (METHOD=10}
IFIMETHODWEQe10) CALL FBBALIX»1)
CALL SUBROUTINE TO EVALUATE CONSTRAINED OBJECTIVE FUNCTION AND
APPROPRAIATE CONSTRAINTS FOR PLANAR SLIDER=CRANK BALANCING (METHOD=11)
IFIMETHODeEQell) CALL SCBALIXs1l)
CHECK FOR NO CONSTRAINTS
IFINCeEQe0) GOTO 13
TRANSFORMING A CONSTRAINED OBJECTIVE FUNCTION INTO AN UNCONSTRAINED
RELATIONSHIP WHICH WILL CONVERGE TO A LOCAL MINIMUM OF THE CONSTRAINED
FUNCTION GIVEN A SUFFICIENTLY LARGE PM
THE TRANSFORMATION IS OF A SCALED EXTERIOR=POINT FORM USING THE
PENALTY FUNCTION CONCEPT
SF 1S THE SCALING FACTOR
PEN=Q,
NORMALIZING QUTPUT MOTION RANGE CONSTRAINT
IF{METHOD s LT e 6 e ANDOIHELP+EQeO) C(3)=C(3)%#1000,
DO 1 Is=1sNC
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PEN=PEN=AMINI(C(I)s0,)
1 CONTINUE
IF(IHELP+NELO) GOTO 2
IF(PENeLEel1e0E=13) GOTD 2
C LEVELING CONSTRAINED OBJECTIVE FUNCTION AT IOOE*ZO IN THE
C INFEASIBLE REGION IF TROUBLES ENCOUNTERED (IMELP=()
Gal1,0E+20%(1,+PEN)
RETURN
C NORMAL ROUTE FOR CONSTRAINED PROBLEMS
2 SF=ABS(CG)
IF{SFelTele) SF=l,
GuCG+PM*SF#PEN
RETURN ,
C NORMAL ROUTE FOR UNCONSTRAINED PROBLEMS
3 G=CG
RETURN
END
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SUBROUTINE CONFUNC(XsNPPsIFLGL)

DIMENSION X(10)

COMMON /NUMBERS/NOOSMETHOD» ICASE

COMMON /INTERN/RPSIsCGoC(20)9ULloU2+U3sPMsICOUNT oPS(8L)sCXAL21),
1CYA(21)9ERRMAX(21) s TRI»2ERO

COMMON /SCLFAC/SCAL1+SCAL29SCALSR

COMMON /DESIRE/XC(21)sYD(8L)sPH(BL)WXTOLI21)»YTOLI(21)

COMMON /SYNIN/XMINsXMAXsRNGIsRNGOSTITEICFRICHISYM

SUBROUTINE SUBPROGRAM TO EVALUATE CONSTRAINED OBJECTIVE FUNCTION

FOR PLANAR 4=BAR FUNCTION SYNTHESIS (METHOD=1) AND COUPLER=CURVE

SYNTHESIS (METHOD=2)s PLANAR SLIDER=CRANK FUNCTION SYNTHESIS

(METHOD=3} AND COUPLER CURVE SYNTHESIS (METHOD=4)s AND SPATIAL 4=BAR

(R=G~G=R)} FUNCTION SYNTHESIS (METHOD=5)

THE ESSENTIAL MECHANISM CONSTRAINTS ARE ALSO EVALUATED

THE OBJECTIVE FUNCTION 1S THE SUM OF THE INVERSE UTILITY FUNCTIONS

ASSOCIATED WITH THE MAXIMUM TRANSMISSION ANGLEs MINIMUM STRUCTURAL

ERRORs AND MINIMUM MASS AND MASS MOMENTS OF INERTIA REQUIREMENTS

{IeEs LINK LENGTH CONTROL)

EM=0.
Clli=1,0E+10

CONSTRAINT TO PREVENT INFINITE ANGLE CHANGES
Cl2)=2(12e5664=ABS(X{(4)))*100,

TRI=1,

INSURING MINIMUM REASONABLE VALUES FOR VARIABLES
IF(ABS(X(1))elTela0FE=20) X(1)=nSIGN{1,0E=200X(1})
IF(ABS(X{2)) el TeleO0E=20) X(2)=SIGN(140E=200X(2))
IFLABS(X(3)) eLTeleOFE=20) X(3)=SIGN{(1e0E=200X(3))

MAKING X{(2) POSITIVE FOR METHODS 2 TO & TO GIVE A REFLECTED

OPTIMIZATION SURFACE IN THE INFEASIBLE REGION
IF(METHODeNE o 1o ANDeMETHODGNESS) X(2)=2ABS(X(2))}

DETERMINING MAXIMUM LENGTM OF LINKS COMMON TO ALL METHODS
RAL=AMAXYI (ABS(X({1))9ABS(X(2})})

IF{METHODeLTe5) RAL=AMAX1{RALIABS(XI(3}})
X25Q=X(2)%x(2)

LOOP=NPP+2
IF(IFLGleEQeOsORMETHODsEQe24ORIMETHODsEQe4) LOOP=NPP
IF(METHOD e GTe 24 ANDJMETHODJNESS) GOTO 3

X1SQeX({1)#X(1)

X3SQ=X(3)#X(3)

IF(METHOD4EQel) Xi6)=1,

X&6SQ=X(6)%X(6)

IF{METHOD4EQeS) GOTO 8

C LOOP TO DETERMINE ACTUAL MECHANISM FOLLOWER ANGLEs PSs AT EACH PSEUDO
C ACCURACY POINT

DO & I=1,LO0P
ANG=PH(I)+X(4)
SAV=aX{1)%#COS(ANG)
D2=X15Q+X6SQ=2+#X(6)#SAV

C D IS LINKAGE DIAGONAL
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D=sSQRT(D2)

T=aX3SQ+D2=X25Q

DENm2 4 #D#X (3)

IFIABS(DEN) oL To1e0E=50) DENRSIGN{1+40E=509DEN)
ARG=T/DEN

CK=1e=ARGH*ARG

CHECK TO PREVENT AN IMPOSSIBLE MECHANISM POSITION
Ci1)=AMINLI(C(L1)oCK)

SET ARG=1e AS A DEFAULT VALUE TO PREVENT BEING OUT OF RANGE
IF{CKel.TeOu) ARG=SIGN(149ARG)

B=ACOS(ARG)
A=ATAN2(X{1}%#SIN{ANG) s X(6)=SAV)

CHECK TO INSURE CONTINUOUS VALUES OF VARIABLE A

leEs NO DISCONTINUITY AT A=180 DEGREES
IF{1eEQel) GOTO 7
IF({ISIGN(LIsINTI(ALAST) )oNEoISIGN(LIsINT(A)))eAND

1(ABS(ALAST ) eGTo1e5708)) A=aSIGN(65428318530T72+ALAST)+A
7 ALAST=A
DETERMINING MINIMUM TRANSMISSIBILITY INDEXsTRI
TRT=D#SIN(B)/X(2)
TRI=AMINI(ARS{TRT)s»TRI)
VALUE OF ICASE DETERMINES WHETHER B 1S ADDED OR SUBTRACTED
5 PS{1)1=23,41415926535898=A=FLOAT{ICASE)}*B
GOTO(20s21 ) s METHOD
ROUTE FOR DETERMINING STRUCTURAL ERROR FOR METHOD=19395
RETURN IF ONLY DETERMINING POINTS FOR STRUCTURAL ERROR PLOT
20 IFIIFLGl.EQs0) RETURN

SUBSCRIPT FOR MIDPOINT OF INPUT RANGE
MIDPPaNPP/2+2
IF(ISYM(NELD) GOTO 10

ROUTE FOR SYMMETRICAL CASE
RNGOA=PS({MIDPP)=PS(1)

GOTO 11
DETERMINING ACTUAL RANGE OF OUTPUT MOTION
10 RNGOA=PS{LOOP)=PS{])
CONSTRAINT ON OUTPUT RANGE OF MOTION=RANGE + OR = TITE DEGREES
11 RGABS=ABS (RNGOA)
Ci3)=TITE=~ABS(RGABS=RNGO)

STRUCTURAL ERROR IS DETERMINED USING THE ACTUAL OUTPUT RANGE OF MOTION
IFI(RGARSeLTele0E~10) RNGOA=SIGN{(140E~10sRNGOA)
DMSC=RPS! /RNGOA
MIDPL=MIDPP=1

LOOP TO DETERMINE STRUCTURAL ERRORS AT PSEUDO PRECISION POINTS
DO 12 I=1sNPP
YA=YD(MIDPL)+DMSCH(PS{1+1)=PS(MIDPP))

ERROR=YA=YD(1)
THIS TERM OF THE OBJECTIVE FUNCTION IS THE SUM OF THE SQUARES OF THE
STRUCTURAL ERRORS AT EACH PRECISION POINT
12 EM=sAMAX1(EMyERROR#ERROR)
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GOTO 2
ROUTE IF SYNTHESIZING PLANAR FOUR=BAR COUPLER CURVE (METHOD=2)
gg;ﬁ?MINING THE COORDINATES OF THE COUPLER POINT AT EACH PRECISION
THE COORDINATES ARE OBTAINED USING PLANE GEOMETRIC TECHNIQUES

21 RA=X(T)/X(2)

CONSTRAINT TO PREVENT INFINITE ANGLE CHANGES

C(3)=(12,5664=ABS(X(5)))*#100,

RSM=X(8)/X(2)

SVTM=X(6)*#SINIX(5))

CVTM=X(6)*#COS(X(5))

DO 1 I=1sNPP

ANG2=X(4)+PH(1)+X(5)

ANG3=PS(1)+X(5)

CANG=X(1)#COS(ANG2)

SANG=X(1)*#SIN(ANG2)

DEL=SVTM+X (3)#SIN({ANG3)=SANG

SI=CVTM=CANG+X(3)#COS(ANG3)
EPS AND RHO ARE THE COORDINATES OF THE PERPENDICULAR PROJECTION OF
THE COUPLER POINT ON THE COUPLER LINK

EPS=X(9)+CANG+RA*S!]

RHO=X(10) +SANG+RA#DEL

CXA(1)=EPS=RSM*DEL

CYA(]1)=RHO+RSM#S1

ERRX=CXA(I1)=XD{(I)

ERRY=CYA(1)=YD(I)

ERRX=ERRX*ERRX

ERRY=ERRY#ERRY
OBTAINING ACTUAL STRUCTURAL ERROR SQUARED AT EACH PRECISION POINT FOR
PLOTTING

ERRMAX (1) =ERRX+ERRY
OBTAINING THE SCALED STRUCTURAL ERROR AT EACH PRECISION POINT FOR
MINIMIZATION

ERROR=ERRX/XTOL(I)+ERRY/YTOL(I)
EVALUATING THE SUM OF THE SQUARES OF THE STRUCTURAL ERRORS AT EACH
PRECISION POINT

1 EM=AMAX1(EMJERROR)

DETERMINING MAXIMUM LINK LENGTH

RAL=AMAX]1 (RALIABS(X(7))sABS(X(8))})

GOTO 2
ROUTE FOR SLIDER CRANK SYNTHESIS (METHODS 3 AND 4)

3 DO &4 I=14LO0P

ANG=X(4)+PH(T)

SANG=X (1) *#SIN(ANG)=X{3)

A=X(1)*#COS(ANG)

ARG=X2SQ=(SANG##2)
TEST TO PREVENT ATTEMPTING TO TAKE THE SQRT OF A NEGATIVE NUMBER
WHICH WOULD INDICATE MECHANISM NONCLOSURE FOR A PARTICULAR CRANK
POSITION
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Cl1l)=AMIN1{(C(1)9ARG)
SET ARG=0 AS A DEFAULT VALUE FOR MECHANSIM NONCLOSURE
IF(ARGeLTeOe¢) ARG=0,
DETERMINING ACTUAL SLIDER POSITION FOR A GIVEN INPUT CRANK ANGLE
ICASE DETERMINES WHICH WAY THE MECHANISM 1S CLOSED
PS{1)=A+ICASE#SQRT (ARG)
DETERMINING MINIMUM TRANSMISSIBILITY INDEXs»TRI
TRT=ABS((PS(I}=A)/X(2))}
4 TRI=AMIN1{TRTsTRI)
IF(METHOD«EQe3) GOTO 20
ROUTE IF SLIDER CRANK COUPLER POINT CURVE SYNTHESIS 1S DESIRED
{METHOD=4)
DEFINING TIME SAVING CONSTANTS
RA=X({&)/X(2)
RSM=X{T)/X(2)
CANG=COS(X({58))
SANG=SIN(X(5))
CONSTRAINT TO PREVENT INFINITE ANGLE CHANGES
Cl3)=({12e5664=ABS(X{(5)))#100,
LOOP TO DETERMINE ACTUAL COUPLER POINT COORDINATES AT PSEUDO
PRECISION POINTS
DO 6 I=14NPP
ANG=PH(I)+X(4)+X(5)
FILL1=X(1)%COS{ANG)
FILL2=X(1)#SIN{ANG)
SI=PS(1)#CANG=FILL1=X(3)®SANG
DEL=PS(1)%*SANG+X (3 ) #CANG=FILL2
EPS=X(8)+FILLI+RA%S]
RHO=X(9)+FILL2+RA%#DEL
CXA(1)=EPS=RSM#DEL
CYA(1)=RHO+RSM%S]
ERRX=CXA(1)=XD(1)
ERRY=CYA(I)=YD(I1)
ERRX=ERRX*ERRX
ERRY=ERRY*ERRY
OBTAINING ACTUAL STRUCTURAL ERROR SQUARED AT EACH PRECISION POINT FOR
PLOTTING
ERRMAX (1) =ERRX+ERRY
OBTAINING THE SCALFED STRUCTURAL ERROR AT EACH PRECISION POINT FOR
MINIMIZATION
ERROR=ERRX/XTOL(1)+ERRY/YTOL(I)
EVALUATING THE SUM OF THE SQUARES OF THE STRUCTURAL ERRORS AT EACH
PRECISION POINT
6 EM=AMAX1(EMsERROR)
DETERMINING MAXIMUM LINK LENGTH
RAL=AMAX1 (RALABS(X(6))sABSI{X{T)))
GOTO 2
ROUTE FOR SPATIAL FOUR BAR FUNCTION GENERATION (METHOD=S)
DEFINING TIME SAVING PARAMETERS
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8 XT7SQ=X(T)%#X(7)
C PENALIZING X(8) FOR EXCEEDING + OR = 720 DEGREES
Cla)=m(12.85664~ABS(X(5)))%#100,
$S=X7SQ+X1SQ+X65Q+X35Q+X25Q=1,
SNX5=SIN(X(5))
CSX5=COS(X(58))
PlsX{T7)%#X{3)#CSX5m8%SS
pax{liex(e6)
PasX(1)#X(3)#SNXS
P4am=X(2)0X(6)
P5aXt2)#X (1)
POsX(T)%SNXS
Po=x(2)8p9
PTe=pP58CSXS
PB=aX(1)#CSXS
C LOOP TO DEFINE OUTPUT ANGLE AND THE TRANSMISSIBILITY INDEX FOR
C EACH VALUE OF PH
DO 9 1=1,LO00P
ANG=X(4)+PH(T)
CANG=COS (ANG)
SANG=SIN(ANG)
P2C=P2%CANG
P3S=P3IRSANG
PT7S=PT#SANG
PSC=P5#CANG
DENsP&+P7?S
Fls{Pl1+P2C+P3S) /DEN
F2=(P44+P5C)/DEN
CHECKING TO INSURE ARGUMENT OF SQRT FUNCTION !S POSITIVE
A NEGATIVE ARGUMENTY MEANS THAT THE MECHANISM WILL NOT CLOSE
IN ITS CURRENT POSITION
CONSTRAINT C(1) PREVENTS CONTINUALLY PRODUCING SUCH IMAGINARY
MECHANISMS
ARG=] ¢ +F2#F2=F1%#F}
Cl1)=AMIN1I(C(1)9ARG)

SET ARG=0 AS A DEFAULT VALUE FOR AN IMAGINARY MECHANISM
IF{ARGeLTe0s) ARG=0,

C DEFINING A PARTICULAR OUTPUT ANGLE

C I1TS POSITION DEPENDS ON ICASE
PS{I)=2#ATAN( {1+ ICASE#SQRT(ARG) )/ (Fl=F2))

IF(TsEQsl) GOTO 16

C CHECK TO INSURE CONTINUOUS VALUES OF OUTPUT ANGLE AT + OR = 180 DEGREE

IFCCISIGN(LIoINT(PLAST) ) eNESISIGN(L1oINTI(PS(I)I)})eAND
1(ABS(PLAST) eGT61e8708)IPS(I)I=SIGN(6:2831853072sPLAST)I+PS(I)
16 PLAST=pPS(1])

C DETERMINING MINIMUM TRANSMISSIBILITY INDEXs»TR!

CPS=COS(PS(1))
SPS=SIN(PS{I))
TRT=SPS#{X(6)=X(1)#CANG) +CPS#(PB#SANG=P9)

a¥aNaRaka
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TRT=ABS(TRT)
9 TRI=AMIN1(TRI»TRY)
GOTO 20
2 TRI=AMAX1((ZERO+140E=10)sTRI)
MINIMUM TRANSMISSION INDEX CONTROL FUNCTION
Ul=(1le=TRI)*#SCALL1/(TRI=ZERO)
Ul=yul#*yl
SCALING CONSTRAINT C{1) TO BE COMPARABLE TO OTHER CONSTRAINTS
C(l)=C(1)%#1000,
MAXIMUM STRUCTURAL ERROR CONTROL FUNCTION
IF(MOD(METHOD»2)) 13414913
13 U2=SCAL2%EM
GOTO 15
14 U2=EM
MAXIMUM LINK LENGTH CONTROL FUNCTION
15 U3=0,
IF(RALeGToela) U3=(RAL=1¢)#(RAL=1s)/SCAL3
TOTAL CONSTRAINED OBJECTIVE FUNCTION
CG=Ul+U24U3
RETURN
END
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SUBROUTINE BALANCE!{ICWANSPREC)
SUBROUTINE TO CALCULATE THE VERTICAL AND HORIZONTAL SHAKING FORCES
AND THE SHAKING MOMENT ABOUT THE CRANKSHAFT AXIS FOR THE PLANAR 4~BAR
AND SLIDER=CRANK MECHANISMS
IT THEN CALLS SUBROUTINE CONJ TO CALCULATE THE OPTIMUM POSITION
(OF THME CoeMe OF THE CeWe) AND SIZE (MASS AND Mel. ABOUT THE CeMe OF
THE CeWe) OF THE BALANCING COUNTERWEIGHTS, K REQUIRED
FOR THE PLANAR 4=BAR (METHOD=10) COUNTERWEIGHTS ARE ADDED TO BOTH
THE CRANK AND FOLLOWER LINKS (LINKS 1 AND 3)
FOR THE PLANAR SLIDER=CRANK (METHOD=11) A COUNTERWEIGHT IS ADDED
TO THE CRANK LINK ONLY
THE COUNTERWEIGHT PARAMETERS {(POSITIONs MASSs AND Mele) ARE DETERMINED
TO0 GIVE AN OPTIMUM COMPROMISE (ACCORDING TO THE SCALING FACTORS
SCLSFHs SCLSFVs AND SCLSMO) BETWEEN COMPLETELY BALANCING THE
VERTICAL SHAKING FORCESs THE HORIZONTAL SHAKING FORCES» AND THE
SHAKING MOMENTS ABOUT THE CRANKSHAFT AXIS
THE DESIGNER MUST INPUT THE FOLLOWING PARAMETERS
NPP NUMBER OF CHECK POINTS AT WHICH SHAKING FORCES AND
SHAKING MOMENTS ARE TO 8E EVALUATED
1CASE EQUALS + OR = ONE DEPENDING ON MECHANISM CONFIGURATXON
METHOD =10 FOR PLANAR 4=BAR BALANCING»
=11 FOR PLANAR SLIDER=CRANK BALANCING
STRTPT VECTOR OF STARTING VALUES FOR BALANCING PARAMETERS
1 AND 2 CRANK CeWe CeMe POSITION (RADIAL AND TANGe RESP)
3 CRANK CeWe MASS FOR SeCe OR FOLLOWER CeWe MASS FOR FeBoe
& FOLLOWER CoeWe Moeleo FOR FeBe BALe OR CRANK CeWe Mol
FOR SeCe BALANCE
S AND 6 FOLLOWER CeWe CoeMe POSITION FOR FeBe BAL
T CRANK CoWe MASS FOR FeBs BAL
8 CRANK CoeWe Moele FOR FoeBoe BAL
NOA1l SET EQUAL TO O IF ALL Al(I)=0.
STRTA STARTING ANGLEs IN DEGREESs OF CRANK LINK (CeCsWe WeReTo
"MECHANISM HORIZONTAL REFERENCE LINE)

RNGA CRANK ANGLE MOTION RANGEs IN DEGREESs OVER WHICH
BALANCING IS TO BE DONE

™M VECTOR OF LOCATIONS OF CeMe OF EACH MOVING LINK WeReTe
THAT LINK

RM VECTOR OF MAGNITUDES OF MASSES OF EACH MOVING LINK

RJ VECTOR OF MAGNITUDES OF Mele OF EACH MOVING LINK ABOUT
ITS CoMe

W1 VECTOR OF MAGNITUDES OF CRANK ANGULAR VELOCITY (RAD/SEC
CeCoeWe +VE) AT EACH OF NPP CHECK POINTS

Al VECTOR OF MAGNITUDES OF CRANK ANGULAR ACCELERATION
{RAD/SEC/SEC CeCeWe +VE) AT EACH OF NPP CHECK POINTS

PAR LINKAGE PARAMETERS SAME AS FOR SYNTHESIS (FIRST 3 REQD

FOR SLIDER=CRANKs FIRST 6 REQD FOR 4=BAR)
SCLSFH SCALING FACTOR FOR HORIZONTAL SHAKING FORCES
SCLSFV SCALING FACTOR FOR VERTICAL SHAKING FORCES
SCLSMO SCALING FACTOR FOR SHAKING MOMENTS ABOUT CRANKSHAFT AXIS
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IEXCO SET=0 IF EXTRA CONSTRAINTS ARE ADDED THROUGH EXCON
ICWAN SET=1 FOR BALANCING SYNTHESIS
SET=0 FOR BALANCING ANALYSIS
SET==1 FOR SEPARATE PLOTTING ANALYSIS PRELIMINARIES
10/PREC IS THE NOe« OF SIG FIG DESIRED IF VARIABLE GREATER THAN 1
10/PREC IS THE NOe OF SIGNIFICANT DECIMAL PLACES REQUIRED IF VARIABLE
LESS THAN 1

DIMENSION AH2(36)9sAV2(36)

COMMON /BALIN/W1(36)9A1(36)9PAR(6)+STRTAIRNGASNOALICM(6) s
1RM{3) sRJ(3)

COMMON /BALVAL/T1(36)eT1D(36)9T2(36)9T3(36)sW2(36)9sW3(36)9A2(36)
1A3(36) sAH1(36) sAV1(36)9AH3(36) 9AV3(36)9SFH(36)9sSFV(36)9SMO(36)
2TSFH{36) s TSFV(36)sTSMO(36) sVR(36)sVI(36)

COMMON /SCLFAC/SCLSFHsSCLSFVeSCLSMO

COMMON /NUMBERS/NPP sMETHOD » ICASEsNsNC s IEXCO

COMMON /SAVOPT/ SVv(10)

SETTING NC=0 IF NO CONSTRAINTS ADDED (IEXCO oNEs O)

IF(IEXCOeNE«O) NC=0

CALCULATING SHAKING FORCES AND MOMENTS WITHOUT CeW'S
GETTING ACCELERATIONS OF CeMs OF COUPLER LINK

CALL LINCUP({191sCM(3)9sCM(4)9AH29AV2)

GETTING ACCELERATIONS OF SLIDER FOR SeCe BALANCING

IFI(METHODWEQo11) CALL LINCUP(1+09PAR(2)30e9AH3sAV3)

GETTING ACCELERATIONS OF CeMse OF CRANK LINK FOR BOTH SC AND FB
AND THE FOLLOWER LINK FOR THE FeBe
CALL LINIOtCM)
LOOP TO CALCULATE SF AND SMO AT EACH POSITION
DO 1 I=1sNPP
CALCULATING INERTIA FORCES

RMAV1==RM(1)#AV1(])

RMAH1==RM(1)#AH1(T)

RMAV2==RM(2)#AV2(1)

RMAH2==RM(2) #AH2(1)

RMAV3=«RM(3)*AV3(1)

RMAH3=«RM(3) *#AN3 (1)

CALCULATING INERTIA MOMENTS

RJAL1==RJ(1)%A1(1])

RJA2==RJ(2)%A2(1)

CALCULATING SHAKING FORCES (SFV AND SFH) AND SHAKING MOMENTS (SMO)

ST1aSIN(TI(I))

CT1=COS(T1(1))

ST2=SINtT2(1))

CT2=COS(T2(I))

IF(METHOD.EQs1l1) GOTO 5

ST3=SIN(T3(I))

CT3=COS(T3(1))

5 SFV{1)=RMAV1+RMAV2+RMAV3

SFH{I)=RMAH1+RMAH2+RMAH3

SMO(1)==RMAH1#(ST1#CM(1)+CT1#CM(2))
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1+RMAVI#{CT1#CM(1)=ST1#CM(2))
2=RMAMH2#{PAR(1)#ST1+ST2#CM(3)+CT2#CM(4))
3+RMAV2# (PAR( 1) #CTI+CT2#CM(3)=ST2#CM{4))
IF(METHODEQe10) SMO(I)=SMO(1)=RMAM3#(STIRCM(5)+CTINCM(6))
1+RMAV3#{PAR(6)4CT3#CM(5)=ST3#CM(6) ) +RJAL+RIA2=RJI(3)#A3(])
1 IF(METHODeEQell) SMO(I)aSMO(I)=RMAH3*#PARI(3)+RJAL+RJIA2
SKIPPING IF DOING ANALYSIS
IF{ICWANCEQsO) GOTO 11
CHECK ON SCALING FACTORS
SCLSFH=AMAX1(ABS(SCLSFH) +140E=07)
SCLSFV=AMAX1 (ABS(SCLSFV) 9140E=07)
SCLSMO=AMAX1 (ABS(SCLSMO) 9140E=07)
SETTING SCALE FACTORS
SCLSFH=1e/(SCLSFH*SCLSFH)
SCLSFV=1l,e/(SCLSFV#SCLSFV)
SCLSMO=1¢/ (SCLSMO#SCLSMO)
11 IF(METHOD«EQs10) GOTO 2
ROUTE FOR SeCe BALANCING
N=4
IF{NOALleEQ4Q) N=2
IF{ICWANSEQe=1) RETURN
SKIP OPTIMIZATION PROCEDURE IF CeWe ANALYSIS ONLY IS DESIRED (ICWAN=0)
IF(ICWANLEQ.O) GOTO 9
CALL LINK TO OBTAIN OPTIMUM SeCe CoWe BALANCING PARAMETERSs SVII)
CALL LINK({19PREC11492459PREC)
CALL SCBAL TO OBTAIN TOTAL SHAKING FORCES AND MOMENTS FOR THE SeCe
MECHANISM WITH ITS OPTIMUM CeWe
9 CALL SCBAL(SVs0!}
GOTO 3
ROUTE FOR 4=BAR BALANCING
2 N=8
IF(NOCA1.,EQ4Q0}) N=6
IF{ICWANsEQe=1} RETURN
SKIP OPTIMIZATION PROCEDURE IF CeWe ANALYSIS ONLY 1S DESIRED (ICWAN=0)
IF(ICWANSEQJO) GOTO 10
CALL LINK TO OBTAIN OPTIMUM FeBe CeWe BALANCING PARAMETERSs Svi(I)
CALL LINK(1sPRECs1e92459PREC)
CALL FBBAL TO OBTAIN TOTAL SHAKING FORCES AND MOMENTS FOR THE FeBe
MECHANISM WITH ITS OPTIMUM CeWe'S
10 CALL FBBAL(SVsO)
OBTAINING PLOTS OF BALANCED AND UNBALANCED SHAKING FORCES AND MOMENTS
3 VMIN=]1,0E+50
VMAX==1,0E+50
HMIN=1,0E+50
HMAX==1,0E+50
SMIN=],0E+50
SMAX==1,0E+50
OBTAINING LARGEST AND SMALLEST VALUES FOR PLOTS
DO 4 1=1sNPP
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VMIN=AMINL (VMINSsTSFV(I)sSFV(I))
VMAX=AMAXL (VMAX s TSFV (1} sSFV(T))
MMINSAMINY (HMINS TSFHUT) o SFH(T))
HMAX=AMAX 1 (HMAX s TSFH(T) 9 SFH(T))
SMIN=AMINL (SMINsTSMO(I) »SMO(T))
4 SMAX=AMAX1(SMAXsTSMO(I)9sSMO(I))
PRINTING OUT TABLE OF UNBALANCED AND BALANCED SHAKING FORCES AND
MOMENTS
WRITE(69100) ((TIDII)sSFHIT)sTSFHIT)»SFVITI)sTSFVII)oSMOLI) »TSMO(T )
1)sI=1sNPP)
XMAX=T1D(NPP)
XMIN=T1D(1)
PRINTING TITLES FOR HORIZONTAL SHAKING FORCE PLOT
WRITE(69101) MMINoHMAX s XMIN ¢ XMAX
REINITIALIZING PRINTING VARIABLES SINCE COMPARE DESTROYS ITS INPUT
ARRAYS
DO 6 I=1sNPP
A2(1)=SFH(T)
T2(1)=T1D(1)
6 W2(1)=T1D(1)
CALL COMPARE(NPPsTSFHsA2 sW29T29HMAX s HMIN s XMAX s XMIN» 1)
PRINTING TITLES FOR VERTICAL SHAKING FORCE PLOT
WRITE(69102) VMINgVMAX s XMINsXMAX
DO 7 I=lsNPP
A2(1)=SFV(])
T2(1)=T1D(1)
T W2(1)=T1D(1)
CALL COMPARE(NPPsTSFVsA2 sW29T29VMAXsVMIN s XMAX s XMINs 1)
PRINTING TITLES FOR SHAKING MOMENT PLOT
WRITE(6+103)SMINsSMAX s XMIN s XMAX
DO 8 IslyNPP
A2(1)=SMOLT)
8 W2(I)=T10(1)
CALL COMPARE(NPPsTSMOsA2 sT1DoW2 »SMAXsSMINsXMAXsXMINs1)
RETURN
100 FORMAT(1H1s5Xs#TABLE OF UNBALANCED (UB) AND BALANCED(B) SHAKING FO
1RCES AND MOMENTS*/6Xs#VS, CRANK ANGLE IN DEGREES#//3Xs#CRANK ANG#*s
27X s #UBSFH* 99X s #BSFH# s 9X s KUBSFV# 9 9X o #BSFV# 9
310X #UBSMO%* 9 10X s #BSMO*// (7614 6))
101 FORMAT (1H195Xs#PLOT OF BALANCED(#s1H*s#) AND UNBALANCED (0) HORI1ZO
INTAL SHAKING FORCES#/6Xs#VSe CRANK ANGLE IN DEGREESH/
26X 9 #THE PLOTTING SCALES ARE DETERMINED FROM THE FOLLOWING DATA®/
26X s#MINIMUM SHAKING FORCE IS#sG15¢6s%s MAXIMUM SHAKING FORCE 1S#.
3 G15¢6/6Xs#CRANK ANGLE VARIES FROM#3G1l5463% TO#sG1l5e69% DEGREES*/!
102 FORMAT (1M1 s5Xs#PLOT OF BALANCED (#,1M#s%) AND UNBALANCED (0) VERTI
1CAL SHAKING FORCES#/6X»#VSs CRANK ANGLE IN DEGREESH/
26Xs#THE PLOTTING SCALES ARE DETERMINED FROM THE FOLLOWING DATA%*/
26X 9 #MINIMUM SHAKING FORCE IS#sG15.69%s MAXIMUM SHAKING FORCE I1S*»
3 G1546/6Xs#CRANK ANGLE VARIES FROM#9Gl5.69s% TO¥3Gl5e69% DEGREESH/)
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103 FORMAT(1H1 o5X o #PLOT OF BALANCED (#,1H#9%) AND UNBALANCED (0) SHAKI
ING MOMENTS#/6X+#VSe CRANK ANGLE IN DEGREESH/
26X #THE PLOTTING SCALES ARE DETERMINED FROM THE FOLLOWING DATA#/
26X #MINIMUM SHAKING MOMENT IS#9G15669%9 MAXIMUM SHAKING MOMENT [S#*
31G15.6/76X9#CRANK ANGLE VARIES FROM#9G185e¢60%* TO#9Gl5469% DEGREESH*/)

END



aNaNalaNalaleaNaRa¥a¥ala!

160

SUBROUTINE SCBAL (XsICWAN)
SUBROUTINE SUBPROGRAM TO DETERMINE ADDITIONAL INERTIA FORCES AND
MOMENTS DUE TO THE ADDED COUNTERWEIGHT ON THE CRANK LINK FOR THE
PLANAR SLIDER=CRANK MECHANISM
THE SUBPROGRAM ALSO ADDS IN THE ORIGINAL UNBALANCED SHAKING FORCES
AND MOMENTS TO GET THE TOTAL HMORIZONTAL (TSFH) AND VERTICAL (TSFV)
SHAKING FORCES AND TOTAL SHAKING MOMENT (TSMO) ABOUT THE CRANK=
SHAFT AXIS AT ALL NPP POSITIONS OF THE CRANK LINK
IT THEN COMBINES THESE FORCES AND MOMENTS TOGETHER ACCORDING TO
THE SCALING FACTORS (SCLSFHs SCLSFVs AND SCLSMO) TO OBTAIN THE
CONSTRAINED OBJECTIVE FUNCTIONy CGs WHICH 1S RETURNED TO FUNCTION
SUBPROGRAM G TO BE COMBINED WITH THE CONSTRAINTSs C(I)e TO FORM
THE TOTAL UNCONSTRAINED OBJECTIVE FUNCTION TO BE MINIMIZED
DIMENSION X(1)
COMMON /INTERN/RPSI oCGoC(20)sULlsU20U39PMIICOUNTIPS(81)9CXAL21)
1CYA(21)sERRMAX{21) 9 TR 92ERO
COMMON /BALIN/W1(36)+A1(36)9sPAR(6)sSTRTAIRNGASNCALICM(6) s
IRM(3)sRJ(3)
COMMON /SCLFAC/SCLSFHeSCLSFVSCLSMO
COMMON /STRTPT/STRTPTI(10)
COMMON /NUMBERS/NPP
COMMON /BALVAL/T1{(36)sT1ID(26)9T2(36)9T3(36)eW2{36)sW3(36)9A2(36)
1A3(36)sAH1(36)9AV1{36) sAH3(36)9AV3I(36)sSFHI(36)sSFV(36)9SMO(36)
2TSFH(36) s TSFV(36) 9TSMO(36)
Ul=0e
U2=0,
U3=0.,
DEFINING FIXED CoeWe MASS FOR SPECIAL 2=VARIABLE CASE
IFINDALEQeO) X(3)=STRTPT(3)
INSURING POSITIVE CeWe MASS AND Msloe
X(3)=ABS(X(3))
IF(NOAL1eNELO) X(4)=ABS(X(4))
OBTAINING ACCELERATIONS OF CeMes OF CoWe
CALL LINIO(X)
DO 1 I=1lsNPP
DETERMINING INERTIA FORCES AND INERTIA TORQUES DUE TO CeWe
FCWH==X(3)#AMY(1)
FCWY==X{3)#AV1(])
ST1=SIN(TI(I}))
CT1=COS(T1(1))
FCWMaaFCWH* (X (1) %ST1+X{2)#CTI)+FCWVRH(X(1)I#CT1aX{2)#S5T1)
IFINOAL oNEQO) FCWMuFCWM=X{4)%#A1(1)
CALCULATING TOTAL SHAKING FORCES AND MOMENTS
TSFH(I)=SFH{I)+FCwH
TSFV(I1)=SFV{1)+FCWV
TSMO(1)aSMO(])+FCWM
PRELIMINARY CALCULATIONS IN DETERMINING OBJECTIVE FUNCTION
(MAXTMUM UNBALANCED SHAKING FORCES AND MOMENT SQUARED)
UlsAMAXI(ULsTSFH{T)®#TSFH(L))
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U2sAMAX1(U29TSFV(]1)#TSFV(I
1 U3sAMAX1(U3sTSMO(]I)#TSMO(I
C RETURN IF DOING AN ANALYSIS
IF(ICWANSEQsO} RETURN
C OBTAINING CONSTRAINED OBJECTIVE FUNCTION IN FINAL FORM
UlsUl#SCLSFH
U2=u2#SCLSFV
U3=y3#SCLSMO
CG=Ul+U2+U3
RETURN
END

)
)

-



162 °

SUBROUTINE FBBAL(XsICWAN)
C COMMENTS SIMILAR TO SUBROUTINE SCBAL EXCEPT CeWe IS ADDED TO THE
C FOLLOWER LINK AS WELL AS THE CRANK LINK
DIMENSION X(1)
COMMON /NUMBERS/NPP
COMMON /STRTPT/STRTPTI(10) _
COMMON /BALIN/W1(36)9sA1(36)sPAR(6E) sSTRTAIRNGAINOAL 9yCM(6) s
IRM{3)sRJ(3)
COMMON /INTERN/RPSI sCGoC(20)sULoU29U3sPMyICOUNTIPS{B1)9CXAL211)
ICYA(21) sERRMAX(21)9TRISZERO
COMMON /SCLFAC/SCLSFHSCLSFVeSCLSMO
COMMON /BALVAL/T1(36)sT1ID(36)sT2(36)9T3(36)sW2(36)9W3(36)9sA2(36)
1A3(36) sAHYI(36) sAVII36) sAH3(36) sAV3I{(36)sSFHI36)sSFVI36)9SMO(36)
2TSFHI36)9TSFV(36) s TSMO(36)
Ul=0.
U2=0.
U3=0,
DEFINING FIXED CRANK CeWe MASS FOR SPECIAL &§=VARIABLE CASE
IFINOALGEQ4O) X(T7)=STRTPT(T)
INSURING POSITIVE VALUES FOR CeWe MASSES AND Ml
X{3)=ABS(X(3})
X{4)=ABS(X(4))
X{T)=ABSIX(7))
IF{NOALWNELO) X(8)=ABS(X(8))
C OBTAINING ACCELERATIONS OF CaMe OF CoWe
CALL LINIO(X)
DO 1 I=1¢NPP
C OBTAINING INERTIA FORCES AND TORQUES OF CeWe
FCWH1==X{TI*AHLI(1])
FCWHIa=X(3)#AHA(])
FCWVl==X{T)2AV1({I])
FCWV3zaX{3)®#AV3Ll1)
ST1=SIN(TI(1))
CT1=COS(T1(I))
ST3=SIN(T3(1))
CT3=CO0SITA(I))
FCWM==FCWHI* (X (1) %STL1+X(2)#CT1)
+FCWVIHIX{1)I#CTI=X(2)%#S5T1)
«FCWHAR (X {5 )%S5TI+X (6} #(T3)
+FCWVAR(PAR(B6)+X (51 #CTA=X(6)#5T3)
-X{4)*A3(1)
C INCLUDING EFFECT OF INERTIA TORQUE OF CRANK CeWe IF AT LEAST ONE
C A1(1) IS eNEe O
IF{NOAYL4NELO) FCWMaFCWM=X(8)#A1(1)
C OBTAINING TOTAL SHAKING FORCES AND MOMENTS
TSEVIT)eSFV(I)+FCWV1+FCWV3
TSFHITI)aSFH(I)+FCWH1+FCWH3
TSMO(1)=SMO(]1}4FCWM
OBTAINING MAXIMUM VALUE OF UNBALANCED FORCES AND MOMENTS SQUARED

N o0

2 W N

(g}
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Ul=AMAXI(ULsTSFH(T)I#TSFH(T))
U2=AMAXL(U2sTSFVIT)#TSFVI(L))
1 U3=AMAX1(U39TSMO(1)#TSMO(]))
C RETURNING 1F DOING ANALYSIS
IF(ICWANCEQeO) RETURN
C OBTAINING CONSTRAINED OBJECTIVE FUNCTION IN FINAL FORM
Ul=sU1l#SCLSFH
U2=y2#SCLSFV
U3sU3#SCLSMO
CG=U1+U2+U3
RETURN
END
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SUBROUTINE SCANG(JFLAGLs JFLAG2)

SUBROUTINE TO CALCULATE ANGULAR VELOCITIES AND ACCELERATIONS OF THE
COUPLER LINK OF A PLANAR SLIDER=CRANK MECHANISM

THIS SUBROUTINE MAY BE CALLED DIRECTLY BY THE USER SETTING METHOD=8
INTRODUCTORY COMMENTS FOR FBANG ALSO APPLY TO SCANG

COMMON /NUMBERS/NPP sMETHOD 9 ICASE

COMMON /BALIN/W1(236)9sA1(36)sX(6)s STRTAIRNGAINOJLsCM(6)
1IRM{3) eRJI(3)

COMMON /BALVAL/T1(36)9sT1D(38)9T2(36)19T3(36)sW2(36)9W3(36)9A2(36)
1A3(36) sAH1(36)sAV1I(36) sAHB(36) 9AVI(36)9SFH(36)9SFV(36)9sSMO(36)
2TSFHI36) s TSFV(36) 9 TSMO(36) sVR(36)9VII(36)

X2SQ=X(2)%#X(2)

ADD=401T74533%#RNGA/FLOAT (NPP=1)

Ti(1)=oa01745334#STRTA

DO 1 I=1sNPP

IF{1.EQel) GOTO 3

CALCULATING CRANK ANGLE IN RADIANS

T1(1)=T1(1=1)+ADD

CALCULATING CRANK ANGLE IN DEGREES FOR OUTPUT
3 TID(!)=T1(1)%57,29587795

X1S=X(1)I#SIN(TI(I))

X1C=X(1)%#COS(T1I(1))

S1=X({3)=X1S

S2=FLOAT({ICASE ) #SQRT{X25Q=S1%s1)

CALCULATING COUPLER ANGLE

T2(1)=ATAN2(S1s52)

X2S=X{2)*#SIN(T2(1I))

X2CxX{2)#COS(T2(1))

CALCULATING COUPLER ANGULAR VELOCITY

W2(l)=aWl (1) %X1C/X2C

S3A=Wl(1)#Wl(1)#X1S

S4uW2(])#W2(1)%X28

CALCULATING COUPLER ANGULAR ACCELERATION
1 A2(1)=W2(13#A1(1)/W1(1)+(53+54)/X2C
TESTING TO SEE IF TABLE PRINT OUT IS DESIRED (JFLAGl=0)
IF(JFLAGLeEQeO) WRITE(69100) ((TID(I)sWI(I)9sALLE)oW2(L)9A2(1) )
11=19NPP)
TESTING TO SEE IF PLOTS ARE DESIRED (JFLAG2=0)
IFLJFLAG2eNESQO) RETURN
OBTAINING MAXIMUM AND MINIMUM VALUES OF VELOCITY AND ACCELERATION

WMIN=W2(1)

WMAX=W2(1)

AMIN=A2(1)

AMAX=A2 (1)

DO 2 I=x24NPP

WMIN=AMINL (WMINsW2(1))

WMAX®AMAX 1 (WMAXsW2(I))

AMIN=AMINYI {AMIN2A2(I))

2 AMAX=AMAX1(AMAX2A2(T))
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XMAX=T1D{NPP)
XMIN=TID(1)
PRINTING TITLES FOR ANGULAR VELOCITY PLOT
WRITE(69101) WMAX WMINSXMINXMAX
REINITIALIZING PRINTING VARIABLES SINCE COMPARE DESTROYS ITS INPUT
ARRAYS
DO 4 I=19NPP
VItI)=T1D(])
4 VR(1)=w2(1)
CALL COMPARE (NPPsVRIVRIVIIV]IsWMAX s WMINIXMAX s XMINeQ)

PRINTING TITLES FOR ANGULAR ACCELERATION PLOT

WRITE(59102) AMAXsAMINsXMIN ¢ XMAX
DO & I=1sNPP
VI(I)=TiD( 1)

5 VR(I)=A2(1)
CQLLR§OMPARE(N990VRoVROVIoVI9AMAX0AMIN-XMAX0XMIN00)
RETU

100 FORMAT(1M1+1Xeo»TABLE OF ANGULAR VELOCITIES AND ACCELERATIONS OF PL
1ANAR SLIDER CRANK LINKS#//3Xs#CRANK ANGH# 9 TX s #CRANK Wiy
27X 9 #CRANK A#98X o #COUPLER WHe6X 9 #COUPLER A¥/3Xo* (DEGREES)*96X
3# (RAD/SEC) #94X s # (RAD/SEC/SEC)I# 94X o # (RAD/SEC)# 95X o # (RAD/SEC/SECINH//
4(5G1546))

101 FORMAT (1M1 »S5Xe#PLOT OF THE ANGULAR VELOCITY OF THE COUPLER LINK [N
1 RAD/SEC*/6Xs#YSs THE CRANK ANGLE IN DEGREES FOR THE PLANAR SLIDER
2=CRANK MECHANISM#*/6X s #MAXIMUM ANGULAR VELOCITY I[S*#4Gl4e5
I#RAD/SECH/6X s #MINIMUM ANGULAR VELOCITY 1S5#9GlaeSs#RAD/SECH/
46X o #CRANK ANGLE VARIES FROM#9Glé4eSe# TO*sGlieS5e® DEGREESH//)

102 FORMAT(1H195Xs#PLOT OF THE ANGULAR ACCELERATION OF THE COUPLER LIN
1K IN RAD/SEC*/6Xs%VSe THE CRANK ANGLE IN DEGREES FOR THE PLANAR SL
2ZIDER=CRANK MECHANISM#/6X s #MAXIMUM ANGULAR ACCELERATION 1S5#%,
3G1l4e59%#RAD/SEC/SECH/6X o *MINIMUM ANGULAR ACCELERATION [S*,
4Gl 4S9 ¥RAD/SEC/SECH/

S6X s #CRANK ANGLE VARIES FROM#9Glé4e59% TOH9GlaeSe# DEGREESH*//)
END
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SUBROUT INE FBANG(JUFLAG1 e JFLAG2)

SUBROUTINE SUBPROGRAM TO CALCULATE ANGULAR VELOCITIES AND ACCELERATION
COUPLER AND FOLLOWER LINKS OF A PLANAR FOUR=BAR LINKAGE

AT NPP POSITIONS OF THE CRANK

THE FIRST POSITION IS AT STRTA DEGREESs THE FOLLOWING POSITIONS AT
RNGA/ (NPP=1) DEGREE INTERVALS FOR RNGA DEGREES

THE ANGULAR VELOCITYsW1(I)s AND ACCELERATIONsAl{l)s OF THE CRANK LINK
MUST BE DEFINED BY THE USER AT EACH OF NPP POSITIONS

THE FIRST 6 LINKAGE PARAMETERSs PARI(I) (X(!l) IN THIS SUBROUTINE)s» MUST
BE USER DEFINED

THIS SUBROUTINE MAY BE CALLED DIRECTLY BY THE USER SETTING METHOD=6
SET JFLAGl=0 IF A TABLE PRINT=OUT OF THE ANGULAR VELOCITIES AND
ACCELERATIONS VSe THE CRANK ANGLE IN DEGREES ARE DESIRED

SET JFLAG2=0 IF PLOTS OF TABULAR VALUES ARE DESIRED

COMMON /NUMBERS/NPP ¢METHOD » ICASE

COMMON /BALIN/W1(36)sA1(36)eX(6)9 STRTAIRNGAINOJLICM(6)
IRM(3)sRJIL3)

COMMON /BALVAL/T1(36)sT1D(36)9T2(36)sT3(36)sW2(36)sW3(36)9A2(361)
1A3(36) 9AH1(36)9AV1I(36)9AHI(36)9AV3(36)sSFHI36)9SFV(36)9SMOL36])
2TSFH(36)9TSFV(36)»TSMO(36)

Sl=X{6)#X(6)+X(1)#X (1)

S232%X(6) %X (1)

53=X(2)1#X(2)=X(3)#X(3)

S4=2.%X(2)

S5224#X(3)

ADD=RNGA%#,0174533/FLOAT(NPP=1)

T1(1)=STRTA%,0174533

DO 1 I=1s9NPP

IF(1eEQel}) GOTO 2

DEFINING CRANK ANGLE IN RADIANS

T1(I)=T1(1=1)+ADD

CONVERTING CRANK ANGLE TO DEGREES FOR PRINTOUTS
2 TID(1)=T1(1)%5742957795

DSQ=S1=52#COS{T1(1))}

D=SQRT(DSQ)

RAM=ACOS( (DSQ+S3)/(S4nD))

AzATAN2 (X(L)I®SIN(TItI) ) oX(6)=X{1)%COS(T1(1)))

B=ACOS((DSQ=53)/(S5#D))

DEFINING COUPLER ANGLE

T2(1)=aFLOAT{ICASE ) #*RAM=A

DEFINING FOLLOWER ANGLE

T3(112642831853=A=FLOAT(ICASE)*B

DEL=T1(1)=T3(1)

EPS=T2(1)=T3(1)

GAM=T1(1)=T2(1)

CEPS=COS(EPS)

SEPSsSIN(EPS)

TOP=X(1)#wW1l(I)

DEN=X(3)*#SEPS
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DEFINING COUPLER ANGULAR VELOCITY
W2(1)=aTOP#SIN(DEL) /DEN
DEFINING FOLLOWER ANGULAR VELOCITY
W3(1)=TOP#SIN(GAM) /DEN
W1SQ=X(1)#W1(I)#W1l(1])
W2S5Q=X(2)#W2(1)#W2( 1)
W3SQsX(3)#W3l1)#W3(!)
DEFINING COUPLER ANGULAR ACCELERATION
A2(T)=W2(I)#AL(I) /W] )=({W1SQ*COS(DEL)+W2SQ#CEPS+WISQ) /(X 2)#SEPS)
DEFINING FOLLOWER ANGULAR ACCELERATION
A3(I)=W3(T)*AT(I)/WI(LI+{W1SQO#COS(GAM)+W2SQ+WISQ*#CEPS) /DEN
REDEFINING T3 FOR CONVENIENCE IN BALANCING ROUTINES
1 TA3{I1=T3(I)=3+14159265
PRINTING TABLE OF VALUES IF DESIRED :
IF{JFLAG14EQe0) WRITE(64100) ((TID(I)sWLII)9AL(I)sW2(1)9A2(1)>
1 W3(1)sA3(1))sl=loNPP)
TEST YO SEE IF PLOTTING DESIRED
IF(JFLAG2eNECQ) RETURN
ROUTE IF PLOTTING DESIRED
WMIN=1,0E+50
WMAX==140E+50
AMIN=1,0E+50
AMAX==]40E+50
DETERMINING MAXIMUM AND MINIMUM VALUES FOR PLOTTING
DO 3 1l=1sNPP
WMIN=AMINLI (W2(1)sW3 (1) sWMIN)
WMAX=AMAX1 (W2(T1)sW3 (1) sWMAX)
AMIN=AMINLI(A2(T1)9A3(I)+sAMIN)
3 AMAX=AMAX1(A2(1)sA3(1)sAMAX]
XMAX=T1D(NPP)
XMIN=T1ID(1)
PRINTING TITLES FOR ANGULAR VELOCITY PLOTS
WRITE(69101) WMAXsWMINsXMINXMAX
REINITIALIZING PRINTING VARIABLES SINCE COMPARE DESTROYS ITS INPUTY
ARRAYS
DO 4 I=1oNPP
AV1(I)=T1D(1)
AV3(1)=W2(1)
AH3(1)=W3(1)
4 AML{I)=T1D(1)
CALL COMPARE (NPPsAVIsAHASAHLIAVIsWMAX sWMIN s XMAX s XMIN»1)
PRINTING TITLES FOR ANGULAR ACCELERATION PLOTS
WRITE(69102) AMAXsAMINSXMIN 9 XMAX
DO 5 1=21sNPP
AV1{1})=T1ID(1)
AV3(1)1=A2(1)
AH3(T)=A3( 1)
5 AH1(1)=T1D(1)
CALL COMPARE INPPsAVIsAHI9AHLIAV]I sAMAX)AMIN I XMAX s XMINs 1)
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RETURN

100 FORMAT(1H1 85X 9 #TABLE OF ANGULAR VELOCITIES AND ACCELERATIONS OF PL
1ANAR FOUR=BAR LINKS#*#//3Xs#CRANK ANG#97TX s #CRANK Wiy
2TX o #CRANK A* 48X 9 ¥COUPLER WH*98X 9 ¥*COURPLER A% 45X ¥FOLLOWER W,
35X s #FOLLOWER A#/3Xs#(DEGREES)# 96X 9% (RAD/SEC) #24Xs#(RAD/SEC/SEC) %,
L4aX s # (RAD/SEC)*# 94X o# (RAD/SEC/SEC)# 94X o % (RAD/SEC)I % 94X
5#(RAD/SEC/SECI#//({7G1546))

101 FORMAT(1H1+5Xs#PLOT OF THE ANGULAR VELOCITIES OF THE COUPLER (%)
11H*y%) AND FOLLOWER (0QO) IN RAD/SEC#/6Xs#VSe CRANK ANGLE IN DEGREES
2 FOR THE PLANAR FOUR=BAR LINKAGE*/6Xs#MAXIMUM ANGULAR VELOCITY ]S%
39Glb4e59# RAD/SECH/E6X s #MINIMUM ANGULAR VELOCITY IS*#9Gl4e59% RAD/SEC
4%/6X 9 #CRANK ANGLE VARIES FROM®9GléeSe% TO#9GléeSe* DEGREES*//)

102 FORMAT(1H195Xs#PLOT OF ANGULAR ACCELERATIONS OF THE COUPLERI( %,
11H*o %) AND FOLLOWER IN RAD/SEC/SEC*/6Xs#VSe THE CRANK ANGLE IN DEG
2REES FOR THE PLANAR FOUR=BAR LINKAGE#/6Xs»*MAXIMUM ANGULAR ACCELERA
3TION IS%#9Gl4e5e% RAD/SEC/SECH/6X s #MINIMUM ANGULAR ACCELERATION IS
4%#9Gl4e59% RAD/SEC/SECH/
56X 9 #CRANK ANGLE VARIES FROM#3Gl4e59% TOH9Glbe5e% DEGREESH//)

END



2 XaNaNaRaNaNaNaNaNakaXaNaYa¥aXaXaXe XXX N2 22222 Xa X!

169

SUBROQUTINE LINCUP(IPLOTHISKIPsCRsCT1ARSAL)

SUBROUTINE SUBPROGRAM TO DETERMINE THE ACCELERATION OF POINTS

ON THE COUPLER LINK FOR THE PLANAR FOUR=BAR AND SLIDER=CRANK
MECHANISMS

THE VELOCITIES OF COUPLER POINTS ARE ALSO DETERMINED

THIS SUBROUTINE IS AVAILABLE FOR GENERAL USE AS WELL AS FOR

PART OF THE BALANCING SYSTEM

FOR GENERAL USE METHOD MUST BE EITHER 7 FOR A 4=BAR COUPLER=POINT
OR 9 FOR A SLIDER=CRANK COUPLER=POINT

FOR METHMOD EQUAL TO 7 OR 94+ A TABLE OF VELOCITIES AND ACCELERATIONS
OF THE COUPLER=POINT AT NPP POSITIONS OF THE CRANK LINK IS GIVEN
IF IPLOT +EQe0 PLOTS OF THE ACCELERATIONS AND VELOCITIES VSe

CRANK ANGLE IN THE RANGE OF MOTIONs RNGA DEGREESs STARTING FROM
STRTA DEGREESs ARE GIVEN (OTHERWISE SET IPLOT o4EQel)

UNLESS LINCUP HAS BEEN PREVIOULSY CALLED USING THE SAME LINKAGE
PARAMETERS SET 1SKIP=)1 (IF LINCUP HAS BEEN PREVIOULSY CALLED SET ISKIP
=0 TO SAVE COMPUTER TIME « RESULTS WILL BE IDENTICAL TO THOSE WITH
ISKIP=1)

IF JFLG2 WAS SET EQUAL TO 0 IN A PREVIOUS CALL TO FBANG OR SCANG
ISKIP MUST BE SET=1 ON THE FIRST CALL TO LINCUP

CR AND CT GIVE THE X AND Y COMPONENTS OF THE COUPLER=POINT WeReTo
THE CENTRAL AXIS OF THE COUPLER LINK MEASURED FROM ITS CRANK END

( THESE MUST BE DEFINED BY THE USER)

AR AND Al MERELY HAVE TO BE DIMENSIONED OF SIZE NPP IN THE CALLING
PROGRAM (PLEASE REMEMBER TMIS)

FIRST 6 LINKAGE PARAMETERS MUST BE DEFINED FOR METHO=7

FIRST 5 LINKAGE PARAMETERS MUST BE DEFINED FOR METHOD=9

NOTE= AS FOR ALL BALANCING=ANALYS!S SUBROUTINESs PAR(4) NEED NOY
BE DEFINED

DIMENSION AR(1)9AI(1)sVM(36)9VANG(36) 9AM(36) 9AANG(36)

COMMON /NUMBERS/NPPIMETHOD

COMMON /BALIN/W1(36)9A1(36)sPAR{6) sSTRTASRNGAINOJLICM(6)
IRM(319RU(3)

COMMON /BALVAL/T1(36)sT1D(36)9T2(36)9T3(36)9W2(36)9sW3(36)9A2(36)>
1A3(36) sAH1(36)9sAV1I(36) sAH3(36) 9AV3I(36)9SFH(36)9SFV(36)9SMO(36)
2TSFH(36) 9 TSFV(36) 9 TSMO(36)sVR(36)sVI{36)

SKIPPING CALLS IF LINCUP PREVIOUSLY CALLED

IF(ISKIP4EQsO) GOTO 1

OBTAINING ANGULAR VELOCITIES AND ACCELERATIONS FOR 4=BAR

IF(METHODeEQe 7eOReMETHOD«FQe10) CALL FBANGI(191)

OBTAINING ANGULAR VELOCITIES AND ACCELERATIONS FOR SLIDER=CRANK

IF(METHOD«EQe9sORJMETHODsEQe1l) CALL SCANG(1sl)

1 DO 2 l=lsNPP
W1SQ=W1(I)#Wl(1)
W2S5Q=W2(1)#W2(1)
ST2=SIN(T2(I))
CT2=C0S(T2(1))
X1S=PAR(1)I#SINITI(I})
X1C=PAR(1)#COSIT1(1))
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XRS=CR#ST2
XRC=CR®CT2
XTS=CT#S§T2
XTC=CT#CT2
C OBTAINING HORIZONTAL COMPONENT OF VELOCITY
VR(I)==X1S#W1(])=XRS*W2(1)=XTCHW2(1)
C OBTAINING VERTICAL COMPONENT OF VELOCITY
VI(I)=X1C#WL{I)+XRCHW2 (] )=XTS*W2(1)
C OBTAINING HORIZONTAL COMPONENT OF ACCELERATION
AR(I)m=X1S#AL(])=X1CH*W1SQ=XRS*A2(])=XRC*W25Q
1 =XTC#A2(1)+XTS*W25Q
C OBTAINING VERTICAL COMPONENT OF ACCELERATION
2 AT(1)=X1C*AL(1)=X1S*W]1SQ+XRCHA2(])=XRS*W2SQ
1 =XTS*#A2(1)=XTC*#W2SQ
C RETURN IF DOING A SYNTHESIS
IFIMETHOD oL Te64OReMETHOD«GTe9) RETURN
C DETERMINING MAGNITUDE AND ANGLE OF VELOCITIES AND ACCELERATIONS
C FOR TABLES AND PLOTTING
DO 3 I=1sNPP
VMIT)=SQRT(VRITI#VRITI+VI(TI)#VI{I))
VANG(I)=(ATAN2(VI(I)sVR(I))I4+PAR(5))#57¢2957795
AM{T)=SQRT(AR(I)*AR(I)I+AT(I)I®AI(]))
3 AANG(I)=(ATAN2(AI(1)sAR(1)}I+PAR(5))#57,2957795
C PRINTING TABLES
WRITE(69100) ((T1ID(I)sVM(TI)oVANG(I) sAMIT)2sAANG(I))sI=1sNPP)
C TEST TO SEE IF PLOTTING REQUIRED
IF(IPLOTeNESO) RETURN
C OBTAINING MAXIMUM AND MINIMUM VALUES FOR PLOTTING
VMIN=VM(1)
VMAX=yM(1)
VAMIN=VANG (1)
VAMAX=VANG(1)
AMIN=AM(1)
AMAX=AM(1)
AAMIN=AANG (1}
AAMAX=AANG (1)
DO 4 1=2yNPP
VMIN=AMIN]I (VMINsVM(I))
VMAX=AMAX 1 (VMAXsVM{1))
VAMIN=AMINLI (VAMINVANG(1)
VAMAX=AMAX1 (VAMAX s VANG( 1)
AMINSAMINL (AMINSAM(I))
AMAX=AMAX1 (AMAXsAM(T))
AAMIN=AMIN] (AAMINSAANG (1
4 AAMAX=AMAX1 (AAMAXAANG (I
XMAX=T1D(NPP)
XMIN=T1D(1)
C PRINTING VELOCITY PLOTS
WRITE(69101) VMAXsVMINsXMIN 9 XMAX

)
)

))
)}
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C REINITIALIZING PRINTING VARIABLES SINCE COMPARE DESTROYS ITS INPUT
C ARRAYS
DO 5 I=1sNPP
5 AH1(1)=T1D(1)
CALL COMPARE(NPPOVM!VM!AHIOAHIOVMAX’VMIN’XMAX’XMIN’O)
WRITE(69102) VAMAX9sVAMIN s XMIN9s XMAX
DO 6 I=1y4NPP
6 AH1(I)=T1D(1)
CALL COMPARE (NPPsVANGIVANG9sAHL1 s AH1 s VAMAX s VAMIN 9 XMAX 0 XMIN 90 )
C PRINTING ACCELERATION PLOTS
WRITE(69103) AMAXsAMINXMINsXMAX
DO 7 I=14NPP
7 AH1(1)=T1ID(1)
CALL COMPARE(NPPosAMsAMIAHL s AH1 s AMAX sAMIN s XMAX 9 XMIN 0 )
WRITE(69104) AAMAXsAAMIN 9o XMIN9 XMAX
DO 8 I=1yNPP
8 AH1(1)=T1D(1)
CALL COMPARE (NPPsAANGIAANGrAH19AH1 sAAMAX s AAMIN 9 XMAX 9 XMIN»0O)
RETURN

100 FORMAT(1H1s1Xs#TABLE OF COUPLER POINT LINEAR VELOCITIES AND ACCELE
1RATIONS= MAGNITUDES AND ANGLES#*//3X o #CRANK ANG#*»7X o #VEL MAG*+8X»
2*VEL ANG*#98Xs#ACC MAGH# 38X 9 #ACC ANGH*/3Xs# (DEGREES)* 95X #(UNITS/SEC)
2*95X¢*(?EGREES)*QSXo*(UNITS/SEC/SEC)*03Xv*‘DEGREES)*//

(5G1546))

101 FORMAT(1H19+5Xs#PLOT OF COUPLER POINT VELOCITY MAGNITUDE IN UNITS/S
1EC*#/6X9*#VSe THE CRANK ANGLE IN DEGREES#/6Xy#THE MAXIMUM VELOCITY 1
25%9GlaeSe%y THE MINIMUM VELOCITY [S5%9Gl4e5/
36X s #CRANK ANGLE VARIES FROM#3G1l4459% TO*9Glbe5e% DEGREESH//)

102 FORMAT(1H1+5Xs#PLOT OF COUPLER POINT VELOCITY ANGLE IN DEGREES#/
16Xs%#VSe THE CRANK ANGLE IN DEGREES#/6Xs#THE MAXIMUM ANGLE 1S%)»
2Gl4e59%9 THE MINIMUM ANGLE IS %#9Gl4e5/
36Xs#CRANK ANGLE VARIES FROM#9Glé4eSe% TO®#9Glae59% DEGREESH*//)

103 FORMAT(1H19+5Xs#PLOT OF THE COUPLER«POINT ACCELERATION MAGNITUDE IN
1 UNITS/SEC/SEC#/6X9s#VSe THE CRANK ANGLE IN DEGREES*/6X»
2%#THE MAXIMUM ACCELERATION I1S%#4G1l4e59e%9 THE MINIMUM ACCELERATION I
3S*#9Gl4be5/
46X 9 #CRANK ANGLE VARIES FROM®*9Gl4eS59e% TO®9Glae59* DEGREES*//)

104 FORMAT(1H1 95X +#PLOT OF THE COUPLER=POINT ACCELERATION ANGLE IN DEG
1IREES* /6X9%#VSe THE CRANK ANGLE IN DEGREES*/6Xs#THE MAXIMUM ANGLE !
3S5#9G1l4eS59%y THE MINIMUM ANGLE 1S%#4Glé4e58/

“gﬁé*CRANK ANGLE VARIES FROM*9Gl4eSs% TO®9Gl4eS 9% DEGREESH//)
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SUBROUTINE LINIO(X)

SUBROUTINE SUBPROGRAM TO CALCULATE THE ACCELERATIONS OF POINTS ON
THE CRANK AND FOLLOWER LINKSs THEIR POSITIONS GIVEN BY VECTOR X
THE ACCELERATIONS ARE GIVEN IN TERMS OF THEIR HORIZONTAL AND
VERTICAL COMPONENTS

DIMENSTION X(1)

COMMON /NUMBERS/NPP sMETHOD

COMMON /BALIN/W1(36)9sA1(36)9sPAR{6) 1STRTAIRNGAINQULICM(6)
1RM(3) 9RJIL )

COMMON /BALVAL/T1(36)9T1D(36)9sT2(36)9T3(36)9W2(36)eW3136)9A2(36)
1A3(36) 9AN1(36)sAV1(36)9sAHI(36) 9sAVI(36)sSFH(36)9sSFV(36)9SMO(36)
2TSFH{36) 9 TSFV(36)9TSMO(36)

DO 1 I=1yNPP

STLl=SIN(T1(I))

CT1=COS{(T1I(I))

W1SQ=W1 (1) ®#W1l(I)

W1S=W1SQ#ST1

WiCaW1SQ#CT1

AlS=Al(1)#ST1

AlC=Al1(1)#CT1 :

DEFINING HORIZONTAL COMPONENT OF ACCELERATION ON CRANK LINK

AHL{1)2=X{1)#(WIC+ALS)+X(2)#(W1S=A1Q)

DEFINING VERTICAL COMPONENT OF ACCELERATION ON CRANK LINK
1 AVI(I)=X(1)#{A1C=W1S)=X{2)#(W1C+A1S)
RETURN IF ONLY ACCELERATION OF POINT ON CRANK LINK DESIRED
(METHOD=11)
IF(METHODEQel1) RETURN
ROUTE FOR FOLLOWER POINT ACCELERATIONS

DO 2 I=1sNPP

ST3=SIN(T3(1)})}

CTa=sCOS(T3(I})

W3SQ=wW3(])#w3ll)

W3S=W35Q#ST3

WAC=W3SQ#CT3

A3S=sA3(1)#ST3

A3C=A3 (1) #CT3

DEFINING HORIZONTAL COMPONENT
AH3 (1) ==X (5)#(W3C+A3S)+X(6 )} #{W3S=A3C)
DEFINING VERTICAL COMPONENT
2 AVI(1)=X(5)#(A3C=W3S)=X(6)#(WIC+A2S)
RETURN
END
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SUBROUTINE OPTSURF(NXSNY sGMAX s GMIN s XMAX s XMINs YMAX s YMIN ISKIP)
SUBROUTINE SUBPROGRAM TO PLOT THE INTERSECTION OF A N DIMENSIONAL
HYPER=PLANE WITH THE (N+l) DIMENSIONAL OPTIMIZATION HYPER=SURFACE
THE RESULT 1S A CONTOUR PLOT WITH X(NX) REPRESENTING THE
HORIZONTAL AXIS AND XINY) REPRESENTING THE VERTICAL AX1S
9 CONTOUR LINES OF THE TOTAL UNCONSTRAINED OBJECTIVE FUNCTION
G ARE PLOTTED AT EQUAL INCREMENTS OF G EQUAL TO (GMAX=GMIN)}/9,
BETWEEN THE GIVEN VALUES OF GMAX AND GMIN
EeGs NOs 3 CONTOUR LINE MAS FUNCTION VALUE OF GMIN+3,%#(GMAX=GMIN) /9,
THE INTERSECTION OF THE CONSTRAINT HYPER=SURFACES WITH THE
INTERSECTING HMYPER=PLANE ARE ALSO PLOTTED AS LETTERS =~ A REPRESENTING
THE INTERSECTION WITH CONSTRAINT 19 B8 WITH CONSTRAINT 29 ETCe
{UP TO 20 CONSTRAINTS)

+ 1S PRINTED WHERE THE G VALUE EXCEEDS GMAX
= 1S PRINTED WHERE THE G VALUE IS LESS THAN GMIN

DIMENSION LABELI(10)

COMMON X(10)sFUNC(85) 9CONS(85920)

COMMON /NUMBERS/NPP ' METHOD s ICASEsNINCs IEXCO

COMMON /SAVOPT/SV(10)

COMMON /INTERN/RPSIsCGoC(20)oULsU20UBsPMIICOUNTIPS(BL)sCXA(21)

1CYA(21)+oERRMAX{(21)9sTRI»2ERO

DATA LABEL/Z4HX{L1) s4HX(2) s4HX(I) s4HX (4 ) 04HX(5) sHXLE) 04HX(T)

14HX(8) s4HX(9) 95HX(10)/
INITIALIZE DESIGN VARIABLES TO FINAL OPTIMUM VALUES
SKIPPING IF PREVIOUSLY CALLED

IF{ISKIP.EQe0) GOTO 4
CALLING DATA INITIALIZATION PROGRAMS

IFIMETHODLTe6) CALL LINK{O)

IFIMETHOD«GTe9) CALL BALANCE(=1)

4 DO 1 I=lsN
1 X{I)=sSv(t)
PRINTING TITLES FOR CONTOUR PLOT
WRITE(69100) LABELINX)sLABELINY ) oGMAX sCMINOILABEL(NX) sXMIN9XMAX Y
ILABELINY) s YMIN»YMAX
OBTAINING VARIABLE INCREMENTS FOR PLOTTING
YINC=(YMAX=YMIN)#*,02
XINC= ( XMAX=XMIN) /84,
LOOP TO CALCULATE FUNCTION VALUES AND CONSTRAINT VALUES
AND CALL PLOTYTING ROUTINE WHICH PRINTS ONE LINE AT A TIME

DO 2 I=1,451

X(NY)=YMIN®FLOAT(I=1)#YINC

DO 3 J=l,y88%

X{NX)2XMIN+FLOAT (J=1 ) 8XINC

FUNC(J)=sG{X)

DO 3 L=14NC

3 CONS(JeL)=CLlL)
2 CALL PLOTCN(GMAX sGMININC)

RETURN
100 FORMAT (1N195X9#PARTIAL CONTOUR PLOT OF FINAL OPTIMIZATION HYPER=SU
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IRFACE#/6X9A6o#1S THE HORIZONTAL AX1S VARIABLEs #9A6
2%#1S THE VERTICAL AXIS VARIABLE®/6Xs#+ 1S PRINTED WMERE FUNCTION VA

BLUES EXCEED#9GlaeB8/6Xon= IS PRINTED WHEN FUNCTION VALUES ARE LESS
HTHAN®9G1l4e5/6X A6 9 #VARIES FROM#9GlheSe® TO#9GlheSe¥%y *9Abs*VARIES
SFROM#9Gl4e59% TO*9Gl465/)

END
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SUBROUTINE PLOTCN(FMAX»FMININC)

SUBROUTINE SUBPROGRAM TO PLOT ONE LINE OF A FUNCTION CONTOUR AND
CONSTRAINT PLOT

DIMENSION K(B85)sKB(5)+sICMP1(20)91CMP2(20)
COMMON FILL{10)sF(85)9C(85920)
DATA KB/55B+33B346B+458+01B/

DETERMINING INCREMENT FOR FUNCTION CONTOURS

A= (FMAX=FMIN) /9,

00 1 I=1sNC
ICMP1(1)=SIGN{1e19C(101})
DO 2 1=1485
LNOW={({F(1)=FMIN)/A)+1,
K{l)=KB8(1)

IF(1.EQel) GOTO 3

TESTING IF A CONTOUR HAS BEEN REACHED AND PRINTING THE APPROPRIATE
NUMBER

3

IF(LNOWONELAST) K(1)=MINO(LNOWILAST)+KB(2)
IF(K(TI)eLECKB(2)) K(1)=KB(1)

IF(LNOWeGTe9) K(1)=KB(4)

IF(LNOWLELO) K(1)=KB(3)

TESTING TO SEE IF A CONSTRAINT SURFACE HAS BEEN INTERSECTED AND
PRINTING THE APPROPRIATE LETTER

100

DO 4 JslgNC

ICMP2( ) =SIGN{1a1sC(Iou))
IF(ICMPL(J)I+ICMP2(J)) 49546
K{1)=KB(S)+J=1
ICMPL(J)=sICMP2(J)

GOTO 2

CONTINUE

LAST=LNOW ‘
WRITE(6+100) K

RETURN

FORMAT (5X 9 85R1)

END
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