
COMPETING CAUSES OF FAILURE FOR 
WEIBULL LIFETIMES UNDER PROGRESSIVE 

TYPE II CENSORING 



COMPETING CAUSES OF FAILURE FOR WEIBULL 

LIFETIMES UNDER TYPE II PROGRESSIVE 

CENSORING 

By 

MALLIKARJUNA RAO RETTIGANTI, M.Sc. 

A Project 

Submitted to the School of Graduate Studies 

in Partial Fulfillment of the Requirements 

for the Degree 

Master of Science 

McMaster University 

© Copyright by Mallikarjuna Rao Rettiganti, 2005 



MASTER OF SCIENCE (2005) 

(Statistics) 

McMaster University 

Hamilton, Ontario 

TITLE: Competing Causes of Failure for Weibull Lifetimes under 

Type II Progressive Censoring 

AUTHOR: Mallikarjuna Rao Rettiganti 

SUPERVISOR: Professor Narayanaswami Balakrishnan 

NUMBER OF PAGES: xi, 63 

11 



To Amma, Nanna, Akka and Ramu: 

All this would not have been possible 

without your love and support. 

To K. N. Rao Taatagaru: 

I did it!! 

lll 



Table of Contents 

Table of Contents 

List of Tables 

Acknowledgements 

Abstract 

1 Introduction 
1.1 Introduction to Competing Risks 
1.2 The Need for Progressive Censoring 
1.3 The Model .... . 

1.3.1 Notations ......... . 
1.3.2 Description ........ . 

1.4 Algorithm for Generating Progressively 
Type II Censored Data under competing risks 
for Weibull Lifetimes . . . . . . . . . . . . . . 

2 Maximum Likelihood Estimation under Competing Risks 
2.1 Maximum Likelihood Estimation . . . . . . . . 
2.2 MLE for Weibull Distribution with Equal Shape 

Parameters . . . . . . . . 
2.2.1 Relative Risk ......... . 
2.2.2 Finding the MLEs ...... . 
2.2.3 Algorithm for finding the MLEs 

3 Confidence Intervals 
3.1 Asymptotic Confidence Intervals . 

v 

v 

vii 

ix 

xi 

1 
1 
2 
4 
5 
5 

6 

9 
9 

11 
11 
12 
14 

15 
15 



302 Bootstrap-p Confidence Intervals 0 0 0 
303 Studentized or Bootstrap-t Confidence 

Intervals 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 

18 

4 Simulation Study 21 
401 Probability Coverages and Average Coverage Lengths (ACLs) 21 
402 Performance and Comparison of Confidence Intervals 0 0 0 0 0 22 

40201 Comparisons based on Probability Coverages and ACLs 0 23 
40202 Comparison based on Asymptotic Bias, MSE and 

Others 24 
403 The Results 0 0 0 26 

5 Numerical Example 37 
501 Results for Each Censoring Scheme 37 

501.1 Censoring Scheme - C1 38 
501.2 Censoring Scheme - C2 39 
501.3 Censoring Scheme- C3 40 
501.4 Censoring Scheme - C4 41 

6 Conclusion 
601 Extensions 0 

A R Functions Used in this Project 
Ao1 Functions used for Simulation 0 0 0 0 0 0 0 0 
Ao2 Functions Used for the Numerical Example 0 

Bibliography 

Vl 

43 
44 

45 
45 
55 

60 



List of Tables 

4.1 Probability Coverages and ACLs for: n = 200, m = 80 . 

4.2 Probability Coverages and ACLs for: n = 100, m = 40 . 

4.3 Probability Coverages and ACLs for: n = 50, m = 20 

4.4 Probability Coverages and ACLs for: n = 30, m = 15 

4.5 Probability Coverages and ACLs for: n = 30, m = 10 

4.6 Bias, MSE, Mean and Variance for: n = 200, m = 80 

4. 7 Bias, MSE, Mean and Variance for: n = 100, m = 40 

4.8 Bias, MSE, Mean and Variance for: n = 50, m = 20 

4.9 Bias, MSE, Mean and Variance for: n = 30, m = 15 

4.10 Bias, MSE, Mean and Variance for: n = 30, m = 10 

5.1 Autopsy data for 99 RFM conventional male mice which received a 

radiation dose of 300r at age 5-6 weeks . . . . . . . . . . . 

5.2 Confidence intervals and lengths for censoring scheme C1 .. 

5.3 Confidence intervals and lengths for censoring scheme C2 .. 

5.4 Confidence intervals and lengths for censoring scheme C3 .. 

5.5 Confidence intervals and lengths for censoring scheme C4 .. 

vii 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

38 

39 

40 

41 

42 



Acknowledgements 

There are great many people who have been responsible for the succesful completion 

of this project among many other things. I am glad to be able to thank them at this 

time. 

First and foremost, I would like to thank my supervisor, Dr. N. Balakrishnan, 

for his wonderful help and suggestions provided throughtout the course of not only 

my project, but also my entire M.Sc. here at McMaster. Without his help, this 

project would not have been possible. I would like to thank all my professors here at 

McMaster and Loyola College, Chennai, India. Teaching is a highly noble profession 

and you all have inspired me to adopt it at some point in my future. 

I am grateful to all my friends that I have made after coming to McMaster, whose 

association I will always cherish. I have always relied on Enayet's help for almost 

everything, and I am thankful to him. I would also like to thank Dharmesh, who 

made me believe in myself. Binod, Shah, Nilesh, Sanjay and Yuvraj: you all have 

been really great. I hope to continue my association with you. 

My father, mother, sister and brother: you all have been responsible for my every 

effort until now and I do not think I can give you enough thanks. I would like to 

thank my grand father, Dr. K. N. Rao, for everything he has done. His contagious 

love for reading and writing has infected me. 

Last, but not the least, my heartful thanks to all those whom I have not men

tioned!! 

IX 



Abstract 

In life-testing experiments, specimens may fail due to more than one cause. Usually, 

the researcher who is interested in the primary cause of failure, treats the other causes 

of failure as censored data. In recent times, however, analysis is being done in the 

presence of competing causes of failure. Also, censoring becomes inevitable since it 

saves time and resources. In this project, we discuss inference for competing risks 

under Type II progressive censoring for Weibull lifetimes. We have considered a 

simple model where we assume equal shape parameters. 

This report is organized into six chapters. In Chapter 1, the concepts of progres

sive censoring and competing risks are introduced. The model is presented and then 

described. Notations used throughout the project are also given. Maximum likeli

hood equations are derived in Chapter 2 and the algorithm for solving them is also 

presented. Different confidence intervals for the parameters are discussed in Chap

ter 3 and the simulation results comparing the probability coverages and the lengths 

of the different confidence intervals are provided in Chapter 4. The performance of 

these different intervals is illustrated using a real dataset in Chapter 5. Finally, in 

Chapter 6, we provide a summary of the results and some extensions that may be 

carried out in the future. 

xi 



Chapter 1 

Introduction 

1.1 Introduction to Competing Risks 

In the analysis of reliability data, the failure of items may be due to more than 

one cause. Such cases give rise to the analysis of competing risks. There are many 

examples available where items or individuals can fail due to one of several causes. 

For example, Hoel (1972) gave data based on a laboratory experiment in which mice 

were given a dose of radiation at 6 weeks of age. The causes of death were recorded 

as Thymic Lymphoma, Reticulum Cell Sarcoma, or other. Another example is the 

very famous Beag's data (Boag 1949), where, in a study of breast cancer patients, the 

cause of death were recorded as "cancer" or "others". Traditionally, the researcher 

who is interested in the primary cause of failure, treats the other causes of failure as 

censored data. In recent years, however, lifetimes have been modelled in the presence 

of other competing risk factors. The data consists of a failure time and an indicator 

variable indicating the cause corresponding to that failure. The causes of failure may 

be assumed to be either independent or dependent. Usually the causes are assumed 

to act independently of each other, even though the the assumption of dependence 

may be more realistic. The identifiability of the model is a major concern in assuming 

dependent lifetimes. According to Kalbfleisch and Prentice (1980), Crowder (2001) 

and several other authors, without information on covariates, it is not possible using 
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data, to test the assumption of independent failure times. The reader can refer to 

Crowder (2001) and the monograph by David and Moeschberger (1978) who have 

discussed the different competing risks models in an exhaustive manner. 

In this project, we shall develop inference for the competing risk model under a 

general type of censoring. Censoring is unavoidable in life-testing experiments since 

it is not always possible to collect the data for each individual. For example, the 

individual may withdraw from a study which may result in loss of data. Also, the 

test facilities may be needed for other purposes or it may not be possible to test all 

individuals due to cost constraints. In such cases, censoring becomes inevitable. The 

two most common types of censoring are Type I and Type II censoring. Consider n 

items in a life-testing experiment. In Type I censoring, the experiment is continued up 

to a specified timeT. Failures that occur after T are not observed. This termination 

point T is assumed to be independent of the failure times. However, in Type II 

censoring, the experiment is continued until a specified number of units, say m :::; n, 

have failed. That is, only the smallest m lifetimes are observed. In Type I censoring, 

the number of failures is random and the end point of the experiment is fixed, whereas 

in Type II censoring the number of failures is fixed and the end point of the experiment 

is random. 

Conventional Type I and Type II censoring have been discussed in much detail by 

numerous authors including Harter (1992), Mann, Schafer and Singpurwalla (1974), 

Bain (1978), Lawless (1982), Nelson (1982), Balakrishnan and Cohen (1991) and Bain 

and Engelhardt (1991). 

1.2 The Need for Progressive Censoring 

Conventional Type I and II censoring (discussed above), though useful, does not have 

a lot of flexibility because all the items have to be censored at the terminal point of 

the experiment only. This was a major drawback of censoring studies until Cohen 

(1963) and Cohen (1966) first studied a more general type of censoring. He allowed 
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for items to be censored at different time points during the experiment. Such stages 

arise naturally when removals of test specimens are required for various reasons, such 

as to collect degradation-related information from live specimen or to release scarce 

test facilities for other use. Fix m censoring times T1 , ... , Tm. At time point Ti, 

remove /4 of the remaining units (uncensored and units that have not yet failed) 

randomly. The experiment terminates at time T m with Rm units still surviving. This 

is called Progressive Type I censoring. A more detailed view of this mode of censoring 

is discussed by Cohen (1991). 

In this project, we are interested in a different type of censoring called progressive 

Type II censoring. This allows for items to be removed at different points during the 

experiment. Also, we accomodate competing risks here. The censoring scheme is as 

follows: Consider n individuals in a life-testing experiment and let us assume there 

are K causes of failure competing against each other independently. At the time of 

each failure, the failure time and the cause of failure is noted and one or more of the 

surviving units may be removed from the experiment at random. Thus, the data from 

the progressively Type II censored sample under competing risks can be denoted as 

follows: 

where X1:m:n < · · · < Xm:m:n denote them observed failure times, <h, ... , 8m denote 

the causes of failure and R1 , ... , Rm denote the number of items removed from the 

study at the failure times X 1:m:n, ... , Xm:m:n· At the time of the mth failure, the 

remaining units in the study are censored. This implies R1 + ... + Rm = n- m. This 

censoring scheme can be pictorially depicted as follows. 
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Remove R1 Remove Ra 

Remove R2 Remove Rm 

Xl:m:n 

Experiment Begins 
X2:m:n Xa:m:n Xm:m:n 

Experiment Ends 

Progressive Type II censoring has been discussed exhaustively in the book by Bal

akrishnan and Aggarwala (2000). We shall concentrate on the analysis of competing 

risks under such a progressive Type II censoring. 

1.3 The Model 

We shall now discuss the model for lifetimes for competing risks under progressive 

Type II censoring in detail. We shall also assume that the lifetimes under the com

peting risks have independent Weibull distributions with the same shape parameter. 

We consider a very simple model where we assume equal shape parameters for both 

causes of failure. Note that Kundu, Kannan and Balakrishnan (2004) have already 

done the analysis for competing risks under progressive Type II censoring for expo

nential lifetimes. 

Without loss of generality we shall assume that there are only two causes of failure, 
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i.e., K = 2. The results can be easily extended for K > 2. We shall now introduce 

the following notations. 

1.3.1 Notations 

1. X 1i: lifetime of the ith individual under Cause j, j = 1, 2; 

2. F(-): cumulative distribution function of Xi; 

3. FJ ( ·): cumulative distribution function of XJi; 

4. PJ(·): survival function of xji; 

5. 6i: the indicator variable denoting the cause of failure of the ith individual; 

6. m: number of complete failures before the experiment is terminated; 

7. Xi:m:n: ith observed failure time, i = 1, ... , m; 

8. ~: number of units removed at the time of the ith failure with Ri ~ 0 and 
m 

LRi+m=n; 
i=l 

9. C1 - C4 : The four major types of censoring schemes discussed later. 

10. Weibull(a, {3): Weibull distribution with shape parameter a and scale parameter 

{3. 

1.3.2 Description 

We assume here that (X1i, X 2i), i = 1, ... , n, are n independent and identically 

distributed Weibull random variables with parameters (a, {31 ) and (a, {32 ) respectively. 

Here, we shall assume equal shape parameters. Xi= min{X1i, X2i} and the observed 

sample is thus denoted: 

(1.3.1) 
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We also assume that all the causes of failure are known and act independently to each 

other. The density function of Xji is given by 

fxi;(x) = ;xa-1exp {-(~)a}, x > 0, a, f3j > 0, j = 1,2, (1.3.2) 

and the corresponding distribution function is given by 

(1.3.3) 

which implies 

Fxi;(x) = P(Xji > x) = exp {-(~)a}, j = 1,2. (1.3.4) 

Note here that Xi:m:n is not the same as Xi:n, the ith usual order statistic from a 

sample of size n, for i 2:: 2. This can be easily seen since there is a possibility that 

Xi:n may be censored by the time Xi:m:n is observed. However, X1:m:n = X1:n since 

no items have been censored prior to the first failure. 

1.4 Algorithm for Generating Progressively 
Type II Censored Data under competing risks 
for Weibull Lifetimes 

Since we now have the model, we can see how to generate a dataset from this model. 

Again, we assume K = 2. To generate a progressively Type II censored dataset under 

two competing causes of failure for Weibulllifetimes, we use the following algorithm: 

1. Generate two i. i. d samples of size n for each cause of failure as follows: 

iid 
(Xu, ... ,Xln) rv Weibull(a,/31) and 

iid 
(Xz1, ... , Xzn) rv Weibull(a, f3z). 
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2. For each i = 1, ... , n, 

else, if xli > x2i, 

3. We now have the data as follows. 

set 8i = 1 and xi= xli, 

set 8i = 2 and xi= x2i· 

7 

(1.4.1) 

This is now ordered irrespective of the cause of failure, but without losing track 

of the corresponding cause of failure. Thus we now have the n usual order 

statistics 

(1.4.2) 

We introduce the notation * since 8;'s are concomitants of the order statistics. 

Thus, 8i may not be equal to 8i. 

4. We now have to progressively censor this sample. First we fix m < n and 

the censoring scheme (R1 , ... , Rm) so that 2:;:1 ~ = n- m. That is, we will 

observe m failures and the rest are progressively censored. 

5. To begin with X1:n is observed as the first failure and thus X1:m:n = X1:n· Then 

R1 of the remaining surviving n- 1 units are randomly selected and dropped 

from the study. At this stage the next smallest lifetime of the remaining units 

is observed as the second failure, i.e., (X2:m:n), so that R2 of the remaining 

n- R1 - 2 units are randomly censored from the study. This process is continued 

until, at the time of the mth observed failure (Xm:m:n), the remaining Rm = 

n- R1 - R2 - ... - Rm-l- m units are all censored. 

This leads to the progressively censored competing risk sample given by (1.3.1). 

They are also the progressively Type II censored order statistics from the distribution 

Fx; (xi). 1 Note that, we have dropped the *'s for simplicity but it is understood that 

1 Derived later in the next chapter. 
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they are still concomitants of the original lifetimes given in (1.4.1). The function to 

generate the data (datagen), written in R (R Development Core Team 2004), is given 

in Appendix A.l. After the data is progressively censored, we calculate n 1 and n2 . 

If either of them is equal to zero, then we drop the dataset from consideration and 

generate a new one. This is because, we need n 1 and n2 to be strictly greater than 

zero to be able to solve for MLEs (as we see in the next chapter). 



Chapter 2 

Maximum Likelihood Estimation 
under Competing Risks 

In this chapter we construct the general likelihood function for a competing risk 

model under progressive Type II censoring. We then use this to find the likelihood 

for weibull lifetimes with equal shape parameters. The required components of the 

likelihood is derived. We present the likelihood equations to be solved to get the 

MLEs of the parameters. Finally we present an algorithm to derive the MLEs. 

2.1 Maximum Likelihood Estimation 

First, we shall look at likelihood function for a progressively Type II censored random 

sample from a continuous distribution and then proceed to incorporate the competing 

risk factor into it. We now note that the observed lifetimes under progressive Type 

II censoring are denoted by 

9 
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The joint probability density function of all the above m progressive Type II censored 

order statistics is as follows (see Balakrishnan and Aggarwala (2000), p. 8): 

m 

fxl:m:n, ... ,Xm:m:n (x1, · · ·, Xm) = C II J(xi)[1- F(xi)]R;, 
i=1 

0 < X1 < ... < Xm < 00, 

(2.1.1) 

where c = n(n- R1 - 1)(n- R1 - R2 - 2) ... (n- R1 - R2 - ... - Rm_1 - m + 1). 

This is also the likelihood function. 

Notice that immediately preceding the first observed failure, n items are still on 

test; immediately preceding the second observed failure, n- R1- 1 items are still on 

test, and so on; immediately preceding the mth observed failure, n- R1 - R2 - ... -

Rm-1 - m + 1 are still on test. Thus the constant c, in addition to being simply the 

normalizing constant to make the joint pdf integrate to one, is also the number of 

ways in which the m progressive Type II censored order statistics may occur if the 

observed failure times are x1, ... ,xm. 

Now, if we take competing risks into consideration, as seen in the previous section, 

the observed sample is denoted by 

Here, we know that Xi = min{X1i, X2i}· Let us denote 1r1 = P(X1i ::; X2i) and 

1r2 = P(X2i < X1i); that is, 1r1 is the relative risk due to Cause 1 and 1r2 is the relative 

risk due to Cause 2. Then the likelihood of them progressively Type II censored order 

statistics under these two competing risks becomes 

m 

fxl:m:n, ... ,Xm:m:n (x1, o o 0 , Xm) = c IJ fx; (xi) [1 - Fx; (xi)]R; (1r1t1 (1r2t\ 
i=1 

0 < X1 < o • o < Xm < 00 (201.2) 

where n1 and n2 are the number of failures due to Cause 1 and Cause 2 respectively, 

and Xi= min{X1i, X2i}o This is because each of them observed failures could have 

occurred due to Cause 1 with probability 1r1 and Cause 2 with probability 1r2o 
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2.2 MLE for Weibull Distribution with Equal Shape 
Parameters 

In this section, we shall find the likelihood discussed in the previous chapter assuming 

Weibull lifetimes. First we need to find Fx; (xi), fx; (xi), 1r1 and 1r2. The distribution 

function F X; (xi) can be found as follows: 

Fx; (xi) = P(Xi ~ xi) - P(min{Xli, x2i} ~Xi) 

- 1- P(min{Xli, x2i} >Xi) 

= 1- P(Xli >xi, X2i >xi) 

= 1- P(Xli > xi)P(X2i >xi) 

= 1 - exp {- (;:)a} exp {- (;:)a} 
(follows easily from (1.3.4)) 

= 1 - exp {-xf { ;! + ; 2 } } . (2.2.1) 

Clearly, from (1.3.3), this is again a Weibull distribution with shape a and scale 
1 

(~r:Jfl) <>. Thus, the probability density function of the observed data (obtained by 

differentiating the above cdf) is given by 

Xi> 0. (2.2.2) 

2.2.1 Relative Risk 

We now have to find 1r1 . This can be found using integration of the joint pdf of X 1i 

and X2i. Since X 1i and X 2i are independent, their joint pdf is equal to the product 
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of the marginal pdf of X 1i and X 2i. Thus, from (1.3.2) we have 

f3'2 (2.2.3) 
f31 + (3:{ 

This implies 
f31 

1r2 = P(X2i < Xli) = 1 - 1r1 = fJ! + f3'2 (2.2.4) 

Thus, likelihood equation given in (2.1.2) now becomes 

2. 2. 2 Finding the MLEs 

Now that we have the likelihood function, we can obtain the maximum likelihood 

estimates of the three parameters a, (31 and (32 . Taking the logarithm of (2.2.5), we 

obtain 

(2.2.6) 
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Differentiating1 (2.2.6) with respect to a, (31 and (32 and simplifying the expres

sions, we get 

0 ~: L = : - n1 ln (31 - n2 ln (32 + (f3!a ln (31 + f32a ln (32) t ( ~ + 1) X~ 
m 

i=1 

and 

m 

i=1 

olnL n1a a ~ a 
--a-(3 = --(3 + (3a+l L..)~ + 1)xi 

1 1 1 i=1 

olnL n2a a ~ a 
--a-(3 = --(3 + (3a+1 L..)~ + 1)xi. 

2 2 2 i=1 

i=1 

(2.2.7) 

(2.2.8) 

(2.2.9) 

The maximum likelihood estimates of a, (31 and (32 , namely &, ;31 and ;32 , can be 

obtained by equating the above three equations (2.2.7), (2.2.8) and (2.2.9) to 0 and 

then solving them iteratively. This yields the following three equations: 

m m 

m + Llnxi- (f31a + f32a) L)~ + 1)x~lnxi = 0, 
a i=1 i=1 

(2.2.10) 

(2.2.11) 

and 

(2.2.12) 

We can see clearly that explicit expressions can be derived for ;31 and ;32 . From 

equations (2.2.11) and (2.2.12), it is evident that for the MLEs of (31 and (32 to exist, 
A A 

n1 and n2 have to be greater than 0, respectively. Thus we can say that (31 and (32 

are the conditional MLEs. 
1 Note: The first order derivatives and the second order derivatives that we are about to see in 

the next section were verified using Maple (2003). 
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2.2.3 Algorithm for finding the MLEs 

From the three equations (2.2.10), (2.2.11) and (2.2.12) we can clearly see that they 

can be solved only iteratively. Explicit expressions for ~1 and ~2 makes our job easier. 

The algorithm is as follows: 

1. Give an initial estimate foro: say o:0 , which can be any reasonable value chosen 

from previous experience. 

2. Using o:0 , find ~p) and ~~1 ) from equations (2.2.11) and (2.2.12) respectively. 

3. Use these two values and solve (2.2.10) for o:. Again, this equation cannot be 

solved directly. Another iterative method has to be employed to solve for the 

value of o: from this. One way of solving this equation is to minimize the square 

of that function using standard optimization packages (for example, function 

'optimize' can be used in R). This should give the solution for o: say &(1). Use 

this updated value of & and proceed to Step 2 to find ~?) and ~~2). 

This process is to be repeated until a desired level of accuracy is reached. The function 

( mleweibull) to find the MLEs, written in R, has been provided in Appendix A.l. 



Chapter 3 

Confidence Intervals 

In this chapter, we look at three different types of confidence intervals for the param

eters. The first method is the asymptotic confidence interval based on the asymptotic 

distributions of the MLEs. The next two methods are the bootstrap percentile method 

and the bootstrap-t method. We shall look at these methods in detail. These three 

methods will be compared using a simulation study in the next chapter. 

3.1 Asymptotic Confidence Intervals 

In this section, we shall construct asymptotic confidence intervals based on the Fisher 

information matrix. Let X = (X1 , ... ,Xn) be a random sample, and let J(XIO) 

denote the probability density function of X from a distribution with parametric 

vector(}= (81 , ... , Bk)· Then the Fisher information matrix In(O) of sample size n is 

based on the expected values of the second order partial derivatives, and is given by 

1 ((J) ··=-E[8
2

lnf(XIO)] ( ) 
n ~,J aeiaej . 3·1. 1 

Strictly, this definition corresponds to the expected Fisher information. If taking 

the expectation is not possible or very complicated, we can obtain a data-dependent 

quantity that is called the observed Fisher information. 

For this model, the second order partial derivatives (obtained by differentiating 

equations (2.2.7), (2.2.8) and (2.2.9) again with respect to the three parameters o:, {31 

15 
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and /32 respectively) are presented below: 

fJ2log L m (/3-a (3-a) ~(R ) a 2 O 2 = -2 - 1 + 2 L...t i + 1 Xi log Xi a a 
i=1 

m 

i=1 
m 

-(/31° log2 
fJ1 + /32° log2 

fJ2 L(~ + 1)x? (3.1.2) 
i=l 

(3.1.3) 

(3.1.4) 

(3.1.5) 

(3.1.6) 

(3.1.7) 

We use here the observed Fisher information matrix, since obtaining the expected 

Fisher information matrix for this model is not feasible. The observed Fisher in

formation matrix is given by the negative of matrix of the second order derivatives 

evaluated at the MLEs as follows: 

(3.1.8) 
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The inverse of the observed Fisher information matrix gives the variance-covariance 

matrix of the MLEs which can be used to construct asymptotic confidence intervals 

for the parameters. We shall make use of the asymptotic normality property of the 

MLEs to obtain this confidence interval. 

Thus if 

V(a,,81,,82) = I;;b! = ((vij(a,,81,,82))), i,j = 1,2,3 

is the variance-covariance matrix, the 100(1- 2~)% confidence intervals for a, ,81, ,82 
can be given by, 

a ± zeJVi! 
,81 ± zeJV22 (3.1.9) 

,82 ± zeJV33, 

where ze is the upper eh percentile point of the standard normal distribution. As the 

name itself suggests, this holds good only when n is large. The asymptotic confidence 

intervals cannot be relied upon for small sample sizes. This will be shown in the next 

section with the help of some simulation work. 

3.2 Bootstrap-p Confidence Intervals 

In this section, we construct bootstrap percentile confidence intervals. This method 

was first proposed by Efron (1982). We shall illustrate the procedure for the parameter 

a. Intervals for the parameters ,81 and ,82 can be obtained in the same manner. 

To obtain the percentile bootstrap (bootstrap-p) confidence interval for a, we use 

the following algorithm: 

(1) Determine&, ~1, and ~2 from the sample {(x1:m:n, 61, R1), ... , (xm:m:n, 6m, Rm)} 
as discussed in Chapter 2. 

(2) Generate a progressively Type II censored competing risks data set using the 
A A 

MLEs &, ,81 and ,82. For this data, compute the bootstrap estimates of a, ,81 
and ,82, namely &*, ~~ and ~~. 
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(3) Repeat Step 2 R times. This gives R estimates for each of the parameters a, (31 

and (32 . 

(4) Then, a 100(1- 2~)% confidence interval for a is given by 

(3.2.1) 

That is, we sort the R &*'s in ascending order and take the (R + 1)eh and 

(R+ 1)(1-~)th values. In other words, we take the ~th and (1-~)th percentile 

point of the distribution of &*. Percentile bootstrap confidence intervals for (31 

and (32 are obtained in an analogous manner. 

3.3 Studentized or Bootstrap-t Confidence 
Intervals 

In this section, we shall construct Bootstrap-t confidence intervals for the parameters 

a, (31 and (32 . This method was first proposed by Hall (1988). Again, we shall con

struct confidence interval for the parameter a and the intervals for other parameters 

can be obtained in a similar manner. The algorithm is as follows: 

(1) Determine&, ~1, and ~2 from the sample {(x1:m:n, 61, R1), ... , (xm:m:n, 6m, Rm)} 

as discussed in Chapter 2. Also calculate the variance of&, say v using the Fisher 

information as discussed in Section 3.1. 

(2) Generate a progressively Type II censored competing risks data set using the 

MLEs &, ~1 and ~2 . For this data, compute the bootstrap estimates of a, (31 

and (32 namely &*, ~i and ~2. For this sample again, calculate the variance 

estimate of &*, say v*, again using Section 3.1. 

(3) Now we use the form of the normal approximation confidence limit, but replace 

the N(O, 1) approximation for Z = (&- a)/Jv by a bootstrap approximation. 



Chapter 3: Confidence Intervals 19 

Thus we calculate the bootstrap statistic 

&*- & 
z* = --=,...... 

vV* 

( 4) Repeat Steps 2 and 3 R times. This gives R bootstrap versions of z*. 

(5) Order the R simulated values of z* and the pth quantile of Z is estimated by 

the (R + 1)pth of these ordered z*'s. 

Then, a 100(1 - 2e)% confidence interval for a is given by 

(3.3.1) 

These we refer to as studentized bootstrap confidence limits. They are also known as 

bootstrap-t limits, by analogy with the Student-t confidence limits for the mean of a 

normal distribution, to which they are equal under infinite simulation in that prob

lem. A more detailed description of various types of parametric bootstrap confidence 

intervals can be found in the book of Davison and Hinkley (1997). 



Chapter 4 

Simulation Study 

A simulation study was conducted to compare the coverage probabilities and the 

coverage lengths of the three types of confidence intervals discussed in the previous 

chapter. The results for different values of n, m and different censoring schemes are 

presented in tables below. 

The coverage probability for an interval estimator J(X) for a parameter (} is the 

probability that the random interval contains the true parameter value, i.e. 

Po((} E J(X)). 

We shall first see how these are calculated for the three confidence intervals discussed 

in Chapter 3 before we take a look at the results. 

4.1 Probability Coverages and Average Coverage 
Lengths (ACLs) 

The concept of computing probability coverages and average coverage lengths is quite 

simple. We present here the procedure for finding the probability coverage and aver

age coverage lengths for asymptotic confidence intervals. Probability coverages and 

average lengths for the other two types of confidence intervals are computed in an 

analogous manner. 

21 
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1. We first generate N datasets from a specified set of parameters. In the tables 

given below, we have chosen to generate N=lOOO datsets from a = 2, {31 = 3, 

and {32 = 5. 

2. Then we compute the asymptotic confidence intervals for each of the parameters 

as discussed in Section 3.1. 

3. Once we have N confidence intervals for each of the parameters, we then calcu

late the proportion of these confidence intervals that contain the true parameter 

value. For example, if we wish to find the probability coverage for the parameter 

a above, we shall compute the proportion of confidence intervals that contain 

the true parameter value of 2. 

4. To compute average coverage lengths, we calculate the lengths for each of the N 

confidence intervals and then take the average of those. So, for the asymptotic 

confidence coverage lengths, say for parameter a, we just compute the average 

of 2 x zey'Vil, where v11 is the asymptotic variance of & and ze is the upper 

eh percentile point of the standard normal distribution as seen in the previous 

chapter. 

4.2 Performance and Comparison of Confidence 
Intervals 

In this section, we shall discuss the performance of the three confidence intervals 

first and then compare them. The results were obtained for the following four major 

censoring schemes: 

1. C1 - Drop some units after each failure (not necessarily all same). 

2. C2 - Drop units equally (as far as possible) after the first and last failure. 

3. C3 - Drop all the n - m units after the first failure. 
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4. 0 4 - Drop all the n - m units after the last failure. This is the conventional 

Type -II censoring. 

We present the results for n = 200, 100, 50 and 30. For n = 30, we have used 

two different cases, one where m = 15 and the other where m = 10. The tables are 

presented at the end of this Chapter. We shall analyze and compare the performance 

of these confidence intervals first based on probability coverages and coverage lengths 

and then based on the bias and MSE. 

4.2.1 Comparisons based on Probability Coverages and ACLs 

The following were observed from the Tables 4.1 - 4.5: 

1. We can clearly see from Tables 4.1 and 4.2 that the probability coverages for 

parameters (31 and (32 are pretty close to the nominal level of 95%. But as 

we reduce the sample size (Tables 4.3- 4.5), as expected, we can see that the 

coverages are not even satisfactory. 

2. The intervals for the common shape parameter a perform well even for small 

sample sizes for asymptotic and bootstrap-t confidence intervals. This is natural 

since we use the same shape parameter for both causes of failure. Had we used 

different shape parameters, this would not necessarily have been the case. 

3. Surprisingly, the probability coverages for the shape parameter a reduce with 

sample size for the percentile boostrap confidence intervals. 

4. We also observe that the average lengths of the confidence intervals increases 

as we decrease m. This is clearly evident from Tables 4.4 and 4.5. In Table 4.4 

we have considered n = 30 and m = 15 and in Table 4.5 we have considered 

n = 30 and m = 10. We can clearly see that even for the same sample size n, 

if we reduce m the performance of the intervals goes down dramatically. This 

is evident very clearly, not so much in terms of the probability coverages but in 
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terms of the coverage lengths. This is again true for all three types of confidence 

intervals. 

5. We also note that the confidence intervals for /32 perform not as good as the 

confidence intervals for /31 for asymptotic and bootstrap-t confidence intervals. 

This is because we simulated the data using /32 = 5 and /31 = 3. Surprisingly 

again, for bootstrap-p, intervals for /32 seem to perform better than for a and 

/31 for all sample sizes. 

6. The confidence intervals seem to perform better for the censoring scheme C3 

and worst for censoring scheme 0 4 . This is reflected in the probability coverages 

and the average coverage lengths for all sample sizes. 

7. The performance of all three confidence intervals are comparable for large sam

ple sizes when compared using probability coverages. When it comes to small 

samples, the bootstrap-t confidence intervals seem to perform better than the 

other two. We observe from Tables 4.3-4.5 that though the confidence intervals 

for the parameters a and /32 are comparable between asymptotic and bootstrap-t 

methods, the latter always performs better for parameter /31 . 

8. When we compare using coverage lengths, however, the asymptotic confidence 

intervals perform better than the other two for all sample sizes and for all 

censoring schemes. 

4.2.2 Comparison based on Asymptotic Bias, MSE and 
Others 

The bias and the MSE provide a measure of how close the estimator is to the true 

value of the parameter. In this section, we shall take a look at the bias, MSE and 

the mean and variances of the estimators, the average of the asymptotic variance 

and the relative risk due to Cause 1. The results are presented in Tables 4.6- 4.10. 
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These results were also obtained using 1000 replications. The following points were 

observed: 

1. For large sample sizes (n = 200, 100) we can see that the bias is relatively close 

to zero. But as the sample size reduces the bias moves away from zero. Also, 

the bias increases as m is decreased. This is quite evident from Tables 4.9 and 

4.10 where we have presented the results for the same value of n = 30 but for 

different number of failures, i.e., m = 15 and m = 10. The same is true for 

the MSE for all sample sizes and for all censoring schemes. This should explain 

why the probability coverages are very good for large sample sizes and not so 

good for small sample sizes. 

2. We observe a negative bias for the parameter (31 for all sample sizes and for all 

censoring schemes. This means that we are underestimating (31 . However, this 

is not true for parameters a and (32 . 

3. The mean and variances of the estimates of the parameters over 1000 simulations 

have also been computed. We can easily see that, for large sample sizes, the 

means of the estimates of the parameters a, (31 and (32 are very close to the 

true values i.e., 2, 3 and 5 respectively. However, this is not the case for smaller 

sample sizes. 

4. Finally, we take the variances of the MLEs of a, (31 and (32 and compare them 

with the average asymptotic variance. Here again, the variances are comparable 

for large values of n and m but not quite close for smaller sample sizes. 

5. Here again, a closer look at the results for the four censoring schemes suggests 

that the censoring scheme C3 might be better than the other three. 
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4.3 The Results 

The following Tables 4.1 - 4.5 present the probability coverages and average coverage 

lengths (ACL) for 100(1 - 0.05)% confidence intervals. The data sets have been 

simulated using a = 2, {31 = 3, and {32 = 5. The bias and mean square errors of 

the estimators for different sample sizes and censoring schemes are also presented in 

Tables 4.6- 4.10. The R functions for computing Tables 4.1- 4.10 are presented in 

Appendix A.l. 
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Table 401: Probability Coverages and ACLs for: n = 200, m = 80 

Censoring Scheme Methods Parameters Coverage Coverage 
Lengths Probabilities 

2, 0 0 0 '2, 1, 0 0 0' 1 Asymptotic a 0066785 00953 
{31 0083090 00933 
{32 2060607 00927 

Bootstrap-p a 0069228 00922 
{31 0083707 00933 
{32 2081785 00925 

Bootstrap-t a 0066784 00951 
{31 0087320 00949 
{32 2080637 00921 

60,0,00 0,0,60 Asymptotic a 0079204 00958 
{31 0086830 00940 
{32 2078715 00930 

Bootstrap-p a 0082466 00956 
{31 0086670 00944 
{32 2099292 00956 

Bootstrap-t a 0079359 00962 
{31 0090685 00955 
{32 2099292 00939 

120,0,ooo,o Asymptotic a 0065955 00945 
{31 0076324 00938 
{32 2029992 00926 

Bootstrap-p a 0067797 00942 
{31 0077014 00953 
{32 2049798 00943 

Bootstrap-t a 0065798 00955 
{31 0078595 00953 
{32 2.41769 00931 

o,ooo,0,120 Asymptotic a 0084555 00936 
{31 1.02354 00922 

f32 3016026 00921 
Bootstrap-p a 0088207 00929 

{31 1003902 00939 
{32 3033657 00943 

Bootstrap-t a 0084231 00936 
{31 1.10442 00938 
f32 3041220 00940 
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Table 4.2: Probability Coverages and ACLs for: n = 100, m = 40 

Censoring Scheme Methods Parameters Coverage Coverage 
Lengths Probabilities 

2, ... '2, 1, ... '1 Asymptotic 0: 0.95939 0.950 
(31 1.16251 0.920 
(32 3.99758 0.913 

Bootstrap-p 0: 1.03483 0.902 
(31 1.18249 0.916 
/32 4.31628 0.940 

Bootstrap-t 0: 0.96435 0.948 
(31 1.29083 0.943 

!32 4.19841 0.928 
30,0, ... ,0,30 Asymptotic 0: 1.12324 0.948 

(31 1.23046 0.917 

!32 4.13918 0.903 
Bootstrap-p 0: 1.20846 0.916 

!31 1.24226 0.917 

!32 4.71525 0.938 
Bootstrap-t 0: 1.12274 0.958 

(31 1.35772 0.938 
/32 4.59081 0.915 

60,0, ... ,0 Asymptotic 0: 0.92007 0.963 
(31 1.08316 0.948 

!32 3.49499 0.928 
Bootstrap-p 0: 0.97231 0.943 

!31 1.08926 0.934 

!32 3.98826 0.947 
Bootstrap-t 0: 0.91661 0.957 

(31 1.13464 0.936 
(32 3.66439 0.920 

0, ... ,0,60 Asymptotic 0: 1.23194 0.948 
(31 1.42446 0.905 

!32 4.52260 0.906 
Bootstrap-p 0: 1.32796 0.913 

(31 1.46778 0.916 
(32 5.19191 0.947 

Bootstrap-t 0: 1.20982 0.945 
(31 1.65245 0.948 
(32 5.33766 0.941 
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Table 4.3: Probability Coverages and ACLs for: n = 50, m = 20 

Censoring Scheme Methods Parameters Coverage Coverage I 
Lengths Pro ba bili ties 

2, ... 2, 1, ... , 1 Asymptotic a 1.41045 0.949 
{31 1.63647 0.900 
{32 5.94362 0.880 

Bootstrap-p a 1.64209 0.881 
{31 1.64912 0.896 
{32 6.82765 0.939 

Bootstrap-t a 1.41253 0.949 
{31 1.95292 0.929 
{32 7.51082 0.871 

15, 0, ... , 0, 15 Asymptotic a 1.64607 0.946 
{31 1.69688 0.889 
{32 6.19892 0.882 

Bootstrap-p a 1.87051 0.888 

!31 1.77429 0.910 
{32 7.42411 0.934 

Bootstrap-t a 1.61129 0.955 
{31 2.10801 0.946 
{32 8.18001 0.877 

30,0, ... ,0 Asymptotic a 1.31926 0.947 
{31 1.48714 0.918 
{32 5.36563 0.906 

Bootstrap-p a 1.42579 0.911 

!31 1.58030 0.937 
{32 6.32928 0.933 

Bootstrap-t a 1.28351 0.956 
{31 1.70434 0.941 
{32 6.42113 0.866 

0, ... ,0,30 Asymptotic a 1.82845 0.955 
{31 1.97489 0.883 
{32 7.08252 0.865 

Bootstrap-p a 2.13484 0.888 
{31 2.12633 0.900 
{32 8.55059 0.922 

Bootstrap-t a 1.76260 0.947 
{31 2.70017 0.944 
{32 10.31887 0.870 
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Table 4.4: Probability Coverages and ACLs for: n = 30, m = 15 

Censoring Scheme Methods Parameters Coverage Coverage 
Lengths Probabilities 

1, ... , 1 Asymptotic a 1.76345 0.937 
/31 1.85314 0.889 
/32 7.04248 0.854 

Bootstrap-p a 2.18543 0.855 

!31 1.90484 0.880 
/32 7.27211 0.923 

Bootstrap-t a 1.75464 0.947 
/31 2.35553 0.924 

!32 10.10409 0.849 
8,0, ... ,0, 7 Asymptotic a 1.91445 0.951 

!31 1.84573 0.896 
/32 7.15659 0.859 

Bootstrap-p a 2.28819 0.882 
/31 1.92499 0.904 
!32 7.53835 0.926 

Bootstrap-t a 1.86179 0.951 

!31 2.34496 0.930 
/32 9.96274 0.858 

15, 0, ... , 0 Asymptotic a 1.57852 0.959 
/31 1.74166 0.922 
/32 6.26151 0.900 

Bootstrap-p a 1.83311 0.872 

!31 1.79699 0.904 
!32 6.38686 0.951 

Bootstrap-t a 1.57142 0.954 

!31 1.99154 0.919 
!32 7.40166 0.859 

0, ... ,0, 15 Asymptotic a 2.11672 0.974 
/31 2.06551 0.874 

!32 8.02907 0.842 
Bootstrap-p a 2.66759 0.850 

!31 2.14919 0.895 
!32 8.50245 0.913 

Bootstrap-t a 2.07017 0.944 
/31 2.82347 0.932 
/32 12.27736 0.868 
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Table 4.5: Probability Coverages and ACLs for: n = 30, m = 10 

Censoring Scheme Methods Parameters Coverage Coverage 
Lengths Probabilities 

2, ... ) 2 Asymptotic a 2.32210 0.964 

!31 2.54982 0.847 
!32 8.64345 0.827 

Bootstrap-p a 3.13171 0.838 
!31 2.70349 0.854 

!32 8.57585 0.871 
Bootstrap-t a 2.23531 0.946 

!31 4.03219 0.938 
!32 18.62305 0.842 

10, 0, ... ) 0, 10 Asymptotic a 2.51655 0.962 
{31 2.55154 0.853 
!32 9.52874 0.823 

Bootstrap-p a 3.26937 0.844 
{31 2.86809 0.863 

!32 9.07476 0.874 
Bootstrap-t a 2.40373 0.954 

{31 4.07523 0.912 
{32 18.36085 0.846 

20,0, ... ,0 Asymptotic a 1.84073 0.958 
{31 2.20369 0.900 
!32 7.65283 0.871 

Bootstrap-p a 2.20501 0.895 

!31 2.31266 0.917 

!32 6.41350 0.922 
Bootstrap-t a 1.83360 0.960 

{31 2.65071 0.908 
!32 10.58682 0.803 

0, ... ) 0, 20 Asymptotic a 2.87804 0.949 
{31 3.14303 0.816 
!32 11.48173 0.789 

Bootstrap-p a 4.14486 0.818 
{31 3.26263 0.851 
{32 10.92282 0.856 

Bootstrap-t a 2.76066 0.949 

!31 5.26677 0.916 
!32 25.91460 0.840 



Censoring 
Scheme 

2, ... '2, 1, ... ' 1 

60' 0' ... ' 0' 60 

120,0, ... ,0 

0, 0, ... ' 120 

Table 4.6: Bias, MSE, Mean and Variance for: n = 200, m = 80 

1r1 Parameters Bias MSE Mean Variance 
1["1 = 0.73529 

a 0.03945 0.03057 2.03945 0.02904 
0.73504 /31 -0.01775 0.04605 2.98224 0.04578 

!32 0.01032 0.47331 5.01032 0.47367 
a 0.03756 0.04217 2.03755 0.04079 

0.73441 /31 -0.00571 0.04731 2.99428 0.04732 
/32 0.03204 0.52164 5.03204 0.52113 
a 0.03442 0.03092 2.03442 0.02976 

0.73318 /31 -0.00152 0.04028 2.99847 0.04031 
!32 0.00825 0.35418 5.00824 0.35446 
a 0.04547 0.05200 2.04547 0.04998 

0.73560 /31 -0.01631 0.07147 2.98369 0.07127 

!32 0.03613 0.71273 5.03613 0.71213 

Asymptotic 
Variance 

0.02924 
0.04590 
0.47558 
0.04123 
0.05037 
0.54834 
0.02857 
0.03845 
0.36664 
0.04708 
0.07084 
0.71735 

~ 
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Table 4. 7: Bias, MSE, Mean and Variance for: n = 100, m = 40 

Censoring rr1 Parameters Bias MSE Mean Variance 
Scheme 1f1 = 0. 73529 

2, ... '2, 1, ... ' 1 a 0.06516 0.07097 2.06516 0.06679 
0.74085 {31 -0.04198 0.08582 2.95802 0.08414 

{32 0.14399 1.52425 5.14399 1.50502 
30,0, ... ,0,30 a 0.06585 0.09072 2.06585 0.08647 

0.73530 {31 -0.01854 0.10869 2.98146 0.10845 
{32 0.10394 1.29493 5.10394 1.28541 

60,0, ... ,0 a 0.03947 0.05603 2.03947 0.05452 
0.73580 {31 -0.00252 0.07154 2.99747 0.07160 

{32 0.13623 0.95314 5.13623 0.93551 
0,0, ... ,60 a 0.10740 0.12490 2.10740 0.11348 

0.73587 {31 -0.04026 0.13914 2.95973 0.13766 
{32 0.02949 1.41868 5.02949 1.41923 

Asymptotic 
Variance 

0.06090 
0.09186 
1.37792 
0.08382 
0.10482 
1.34359 
0.05601 
0.07828 
0.93091 
0.10128 
0.14241 
1.60785 
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Table 4.8: Bias, MSE, Mean and Variance for: n = 50, m = 20 

Censoring 1r1 Parameters Bias MSE Mean Variance 
Scheme 1r1 = 0. 73529 

2, ... '2, 1, ... ' 1 0: 0.13629 0.17475 2.13629 0.15633 
0.73635 !31 -0.06094 0.17546 2.93905 0.17191 

!32 0.16826 2.83819 5.16826 2.81269 
15,0, ... ,0, 15 0: 0.16891 0.24120 2.16891 0.21288 

0.73510 /31 -0.05716 0.19126 2.94283 0.18818 
/32 0.14707 3.03746 5.14707 3.01885 

30,0, ... ,0 0: 0.12240 0.14113 2.12240 0.12627 
0.74085 !31 -0.02976 0.16498 2.97023 0.16426 

!32 0.23670 2.18304 5.23671 2.12914 
0,0, ... ,30 0: 0.21028 0.28249 2.21028 0.23851 

0.73775 /31 -0.06804 0.25960 2.93195 0.25523 

!32 0.17963 4.02357 5.17963 3.99530 
--

Asymptotic 
Variance 

0.13424 
0.19166 
3.60833 
0.18460 
0.20913 
3.90477 
0.11733 
0.15341 
2.72633 
0.22814 
0.29307 
5.41318 

w ..,.. 



Table 4.9: Bias, MSE, Mean and Variance for: n = 30, m = 15 

Censoring 1!"1 Parameters Bias MSE Mean Variance 
Scheme 1!"1 = 0.73529 

1, ... ' 1 0: 0.20501 0.31244 2.20501 0.27068 
0.73120 (31 -0.04683 0.25153 2.95316 0.24959 

(32 0.20995 4.17684 5.20995 4.13689 
8,0, ... ,0, 7 0: 0.22609 0.33462 2.22609 0.28378 

0.73087 (31 -0.03106 0.23706 2.96893 0.23633 
(32 0.22225 4.30610 5.22226 4.26096 

15,0, ... ,0 0: 0.15754 0.20195 2.15754 0.17731 
0.73247 (31 -0.00328 0.20918 2.99671 0.20938 

f32 0.22147 2.88982 5.22147 2.84362 
0,0, ... '15 0: 0.25751 0.39247 2.25751 0.32648 

0.73373 (31 -0.06204 0.32050 2.93795 0.31697 

f32 0.23463 5.56654 5.23463 5.51700 

Asymptotic 
Variance 

0.21426 
0.25365 
5.73031 
0.25284 
0.25488 
6.16741 
0.16940 
0.21537 
4.11519 
0.31023 
0.33963 
8.53191 
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Table 4.10: Bias, MSE, Mean and Variance for: n = 30, m = 10 

Censoring 11"1 Parameters Bias MSE Mean Variance 
Scheme 11"1 = 0. 73529 

2, ... ,2 a 0.34611 0.58091 2.34611 0.46157 
0.72160 !31 -0.07125 0.49340 2.92874 0.48881 

/32 -0.01876 5.02178 4.98123 5.02645 
10,0, ... ,0,10 a 0.36278 0.71184 2.36278 0.58080 

0.72360 /31 -0.07303 0.45782 2.92696 0.45294 
/32 0.13415 7.41573 5.13415 7.40514 

20,0, ... ,0 a 0.18791 0.29776 2.18791 0.26271 
0.71760 /31 -0.00227 0.36475 2.99773 0.36511 

/32 0.13173 3.72488 5.13173 3.71124 
0,0, ... ,20 a 0.43348 1.00959 2.43348 0.82250 

0.72630 !31 -0.07506 0.70456 2.92493 0.69963 
/32 0.26950 9.68316 5.26950 9.62015 

- L_ __ - --

Asymptotic I 

Variance 

0.38196 
0.54876 
9.14268 
0.45627 I 

0.55302 
15.0254 
0.23570 
0.37172 
6.49764 
0.61401 
0.90356 
20.0416 

w 
o;, 



Chapter 5 

Numerical Example 

In this chapter, we shall illustrate the methods considered in the previous section 

with the help of a real-life dataset. We consider a dataset first considered by Hoel 

(1972). This is a mortality data provided by Dr. H. E. Walburg, Jr., of the Oak 

Ridge National Laboratory. The data (Table 5.1) came from a laboratory experiment 

performed on RFM strain male mice which had received a radiation dose of 300r at 

an age of 5-6 weeks. Hoel considered two major causes of deaths, namely, thymic 

lymphoma and reticulum cell sarcoma and combined all the other causes into a single 

group. However, for the purpose of analysis we consider reticulum cell sarcoma as 

Cause 1 and combine the others as Cause 2. Biologists believe that both of these 

two diseases are lethal and act independently of each other. Thus, the assumption of 

independence of the causes of failure is satisfied. The data is presented in Table 5.1. 

5.1 Results for Each Censoring Scheme 

There were n = 99 mice and we used m = 35 for four different censoring schemes 

again based largely on the schemes discussed in the previous chapter. For each of 

these censoring schemes, we calculate the MLEs of the parameters, the relative risk 

due to Cause 1 and all three types of confidence intervals and lengths for the three 
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Table 5.1: Autopsy data for 99 RFM conventional male mice which received a radia
tion dose of 300r at age 5-6 weeks 

Thymic Lymphoma (22%) 159, 189, 191, 198, 200, 207, 220, 235, 245, 
250, 256, 261, 265, 266, 280, 343, 356, 383, 
403, 414, 428, 432 

Reticulum Cell Sarcoma (38%) 317, 318, 399, 495, 525, 536, 549, 552, 554, 
557, 558, 571, 586, 594, 596, 605, 612, 621, 
628, 631, 636, 643, 647, 648, 649, 661, 663, 
666, 670, 695, 697, 700, 705, 712, 713, 738, 
748, 753 

Other Causes (39%) 40, 42, 51, 62, 163, 179, 206, 222, 228, 252, 
249, 282, 324, 333, 341, 366, 385, 407, 420, 
431, 441, 461, 462, 482, 517, 517, 524, 564, 
567, 586, 619, 620, 621, 622, 647, 651, 686, 
761, 763 

parameters. We shall present the results for each censoring scheme. We also con

structed 95% confidence intervals based on the three methods discussed in Chapter 3. 

They are presented in the form of four tables, one for each censoring scheme. The R 

functions used to calculate these results are presented in Appendix A.2. 

5.1.1 Censoring Scheme- C1 

We used the censoring scheme R1 = 2, R2 = 2, ... , R31 = 2, R32 = 1, R33 = 0, R34 = 

1, R35 = 0. After the censoring is done, we get n1 = 5 and n2 = 30. The MLEs were 

computed numerically as described in Chapter 2. They are 

& = 2.17606, rJl = 1240.057, {12 = 544.316. 

The variance covariance matrix of the MLEs is 

[ 

0.08294103 

V(&, rJ1, rJ2) = -55.28550518 

-7.18502772 

-55.2855 

101798.1246 

4789.2810 

-7.185028 ] 
4789.280950 

2707.997690 
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Table 5.2: Confidence intervals and lengths for censoring scheme C1 . 

Method Parameters Lower Limit Upper Limit Length 
Asymptotic a 1.61164 2.74056 1.12892 

(31 614.71470 1865.40000 1250.68500 
(32 442.32260 646.30940 203.98690 

Bootstrap-p a 1.74101 2.97268 1.23167 
(31 783.04460 2394.46700 1611.42200 
(32 439.18860 637.82560 198.63700 

Bootstrap-t a 1.57495 2.74004 1.16509 
(31 886.29970 2345.71800 1459.41800 
(32 469.72480 698.51350 228.78880 

The relative risk due to Cause 1 is 

5.1.2 Censoring Scheme- C2 

Here, we censored 32 observations after the first failure and the remaining 32 after 

the last failure. There is no censoring done for failures that occur inbetween the first 

and the last. i.e., R1 = 32, R2 = 0, ... , R34 = 0, R35 = 32. Here we get n1 = 3 

and n2 = 32. Here we observed n1 = 17 and n2 = 18. The MLEs obtained for this 

censoring scheme are 

& = 1.86530, ~1 = 2155.581, ~2 = 605.9378. 

The variance covariance matrix of the MLEs is 

[ 

0.07516 -138.62740 

V(&, ~1, ~2) = -138.62742 700828.27330 

-7.98173 14720.66090 

-7.98173 ] 

14720.66090 

4145.28772 
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Table 5.3: Confidence intervals and lengths for censoring scheme C2 . 

Method Parameters Lower Limit Upper Limit Length 
Asymptotic a 1.32794 2.40264 1.07470 

(31 514.78730 3796.37400 3281.58700 

!32 479.74770 732.12800 252.38030 
Bootstrap-p a 1.43332 2.63938 1.20606 

(31 1127.07800 5166.92100 4039.84300 

!32 479.82300 738.21870 258.39580 
Bootstrap-t a 1.32957 2.44520 1.11562 

(31 1428.51400 5402.94200 3974.42800 

!32 509.83370 799.25630 289.42260 

The relative risk due to Cause 1 is 

11-1 = 0.08571 

5.1.3 Censoring Scheme - C3 

For this censoring scheme, we censored all the n - m, i.e., 64 observations after the 

first failure. i.e., R1 = 64, R2 = 0, ... , R35 = 0. The MLEs obtained thus are 

& = 2.42692, {31 = 688.2123, {32 = 672.193. 

The variance covariance matrix of the MLEs is 

[ 

0.11475 

V(&, J1, J2) = -5.68505 

-4.80416 

The relative risk due to Cause 1 is 

-5.68505 

5011.91406 

238.00582 

11-1 = 0.48571 

-4.80415] 
238.00582 

4463.04658 
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Table 5.4: Confidence intervals and lengths for censoring scheme C3 . 

Method Parameters Lower Limit Upper Limit Length 
Asymptotic a 1.76298 3.09086 1.32788 

(31 549.45690 826.96770 277.51080 
/32 541.25560 803.13040 261.87490 

Bootstrap-p a 1.94040 3.19122 1.25083 
(31 561.87020 855.42760 293.55750 

!32 547.25770 822.25570 274.99790 
Bootstrap-t a 1.77179 3.09607 1.32428 

(31 578.06500 870.16390 292.09880 
(32 562.73600 855.81630 293.08020 

5.1.4 Censoring Scheme- C4 

For this censoring scheme we censored all the n - m, i.e., 64 observations after the 

last or the mth failure. i.e., R1 = 0, ... , R34 = 0, R35 = 64. This is exactly the 

conventional Type II censoring where the remaining units in the study are censored 

after a paricular nuber of failures have been observed. Here, we get n 1 = 2 and 

n2 = 33. The MLEs obtained for this censoring scheme are 

A A 

& = 1.93957, /31 = 2454.446, !32 = 578.4216. 

The variance covariance matrix of the MLEs is 

[ 

0.09768 

V(&, rJ1, rJ2) = -242.67213 

-15.08662 

The relative risk due to Cause 1 is 

-242.6721 

1403600.7307 

37481.8504 

?T-1 = 0.05714 

-15.08662 ] 

37481.85039 

5025.23995 

Comparing the interval lengths we observe that there is not much difference be

tween the three methods. This is true for each censoring scheme. However, when 
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Table 5.5: Confidence intervals and lengths for censoring scheme C4 . 

Method Parameters Lower Limit Upper Limit Length 
Asymptotic a 1.32702 2.55212 1.22511 

{31 132.40540 4776.48700 4644.08200 
{32 439.48190 717.36140 277.87950 

Bootstrap-p a 1.44317 2.77218 1.32901 
{31 1096.66100 5971.04100 4874.38000 
{32 448.22160 730.67190 282.45020 

Bootstrap-t a 1.35592 2.60524 1.24933 
{31 1533.12200 7750.88100 6217.75900 
{32 476.73410 790.07730 313.34330 

we compare the confidence interval for each censoring scheme, the lengths for the 

censoring scheme C3 are lesser than those for the other censoring schemes as also 

observed from the simulation study done in Chapter 4. 

Remark 1: For censoring scheme C3 , the relative risk due to Cause 1 is 0.48571. 

This is significantly higher than those for the other three censoring schemes because 

when we drop all the n-m objects after the first failure, there is a greater chance that 

a lot of the observations due to Cause 2 get censored, thus resulting in more failures 

due to Cause 1. For censoring scheme C3 , the number of failures due to Cause 1 

is n 1 = 17 which is significantly higher than those for the other censoring schemes. 

Also, a closer look at the data tells us that the lifetimes of the rats are significantly 

higher when subjected to Cause 1 than the other causes. This should explain why 

the relative risk is high for censoring scheme 0 3 and not so much for other censoring 

schemes. 



Chapter 6 

Conclusion 

In this report, we have considered the competing risks model when the data is pro

gressively Type II censored. We have also assumed that the lifetimes under the two 

different causes of failures have independent weibull distributions with equal shape 

parameters. The MLEs are obtained for the three parameters. Three different types 

of confidence intervals are constructed and compared using probability coverages and 

average coverage lengths. A numerical example has also been considered to illustrate 

the methods discussed in this project. 

The aymptotic intervals seem to perform better in the case of large sample sizes. 

The average coverage lengths also seem to decrease as m increases. The same is true 

for even bootstrap intervals. The bootstrap probability coverages also seem to be 

affected by sample size. The bootstrap studentized intervals seem to perform better 

than the percentile intervals in terms of coverage probabilities. The simulation results 

show that the censoring scheme C3 may be better than the other three. This can be 

seen interms of probability coverages and ACLs. Also, the bias and MSE are lower for 

this type of censoring scheme. This is true for almost all the sample sizes considered 

in this project. 
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6.1 Extensions 

A natural extension of this model would be to consider the more general case by using 

different shape parameters. That is, we can assume that the distribution correspond

ing to Cause 1 as Wei bull( a 1 , ,81) and the distribution corresponding to Cause 2 as 

Weibull(a2 ,,82 ). In this case, the relative risk due to Cause 1 is given by: 

1r1 P(X1i ::; X2i) 

- 1oo1y fxli,X 2;(x,y) dx dy 
0 x=O 1: ;;2 ya2-

1
exp {- (%

2
) a

2
} 1:

0 
;f1 ya1

-
1
exp {- (;

1
) a

1

} dx dy 

1
00 

a [ (y01.2 ya1 )] 
- 1- y=O ,8;2 ya2-lexp - ,822 + ,Bfl dy (6.1.1) 

Computation of the integral given in (6.1.1) is not straightforward. It has to be 

expressed as an infinite series involving gamma functions. The derivatives of the 

likelihood function will get quite complicated because it involves the derivatives of 

gamma function. For this reason, we have not carried out any implementation of this 

more general model. However, this may be pursued in the future. Gamma life-times 

may also be considered in the future. 

We can also consider dependent causes of failure although identifiability is a con

cern as explained in Chapter 1. If there is any evidence that the causes of failure are 

dependent, we could use models such as bivariate exponential model (among others) 

suggested by Marshall and Olkin (see Kotz, Balakrishnan and Johnson (2000)). 



Appendix A 

R Functions Used in this Project 

A.l Functions used for Simulation 

datagen<-
function (n=18,m=6,r=c(2,1,3,1,3,2),ini=c(1,0.8,0.7), ... ) 
{ 

#program to generate progressive competing risks data 
#generate data until you get a dataset which has n1!=0 and n2!=0 
alpha<-ini[1] 
beta1 <-ini [2] 
beta2<-ini [3] 

#p<-beta2-alpha/(beta1-alpha+beta2-alpha) 
#validate the inputs 
if (m!=length(r)) 
{ 

} 

stop( 11 The total number of failures should be equal 
to the number of stages of censoring 11

) 

#function to generate progressive censoring data 
#create arrays to store the generated values first 
repeat 
{ 
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x<-array(dim=c(n,2)) 
x1i<-rweibull(n,shape=alpha,scale=beta1) 
x2i<-rweibull(n,shape=alpha,scale=beta2) 
z<-matrix(cbind(x1i,x2i),nrow=n) 
#function to return the min of two values in a 2-d array 
mini<-function(a) if (a[1]<=a[2]) {return(c(a[1],1))} 
else {return(c(a[2],2))} 
x<-apply(z,1,mini) 
xd<-data.frame(t(x)) 

#ordering the data without losing the concomitants 
xdo<-xd[order(xd[,1]),] 

#create a data frame to store the index, the data, 
the concomitants and censoring 
data<-data.frame(index=c(1:n),x=xdo$X1,cause=xdo$X2,cen=c(rep(O,n))) 

# the data has to be progressively type II censored now .. 

for(i in 1:m) 
{ 

if (r[i] != 0) 
{ 

#first to check if there are enough observations to 
take the random sample from 
check<-data$x[data$cen==O] [i] 
#print(data$index[data$x>check & data$cen==O]) 
if(length(data$index[(data$x>check)&(data$cen==O)])>=r[i]) 
{ 

if ((length(data$index[data$x>check & 
data$cen==0]))>1) 
{ 

c<-sample(data$index[(data$x>check) 
&(data$cen==O)],r[i]) 
for(j in 1:length(c)) 
{ 

data$cen[data$index==c[j]]<-1 
} 
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} 

else if ((length(data$index[data$x>check & 
data$cen==0]))==1) 
{ 
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data$cen[data$index 
& data$cen==0]]<-1 

data$index[data$x>check 

} 

} 

else break 
} 

} 

n1<-length(data$x[data$cen==O & data$cause==1]) 
m<-length(data$x[data$cen==O]) 
if (n1!=0 & n1!=m) break 
} 

return(data) 
} 

mleweibull<-
function (ini=c(1,2,3),data=data,m=6,n=18,r=c(2,1,3,1,3,2), ... ) 
{ 

#get the data from the Type II progressively censored sample .. 

data<-datagen(m=m,n=n,r=r,p=p,ini=ini, ... ) 
observed<-data$x[data$cen==O] 
m<-length(observed) 
n1<-length(data$x[data$cen==O & data$cause==1]) 
#n2<-length(data$x[data$cen==O & data$cause==2]) 
n2<-m-n1 

if (n1==0 I n2==0) 
{ 

print (data) 
stop( 11 n1 or n2 or both is 0. cannot find mle .. 11

) 

} 
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#my code 
a.old<-ini[1] 
b1.old<-ini[2] 
b2.old<-ini[3] 
repeat 
{ 

} 

a<-a.old 
sumxa<-sum((r+1)*observedAa) 
sumxalogx<-sum((r+1)*observedAa*log(observed)) 

b1<-(sumxa/n1)A(1/a) 
b2<-(sumxa/n2)A(1/a) 
doealpha<-function(x) (m/x -n1*log(b1)-n2*log(b2) + 
sum(log(observed))-(b1A(-x)+b2A(-x))*sum((r+1)* 
observedAx*log(observed))+(b1A(-x)*log(b1)+b2A(-x)*log(b2)) 
*sum((r+1)*observedAx))A2 
a.object<-optimize(doealpha,lower=a-0.05,upper=a+0.05) 
a.old<-a.object$minimum 
if ((abs(a.old-a)<ie-10) & (abs(b1.old-b1)<1e-10) 
& (abs(b2.old-b2)<1e-10)) 
{ 

break 
} 
b1.old<-b1 
b2.old<-b2 

sumxa<-sum((r+1)*observedAa) 
sumxalogx<-sum((r+1)*observedAa*log(observed)) 
sumxalogx2<-sum((r+1)*observedAa*(log(observed))A2) 
hessian<-matrix(c(rep(0,12)),nrow=3) 
#record the mles in the first column 
hessian[1,1]<-a 
hessian[2,1]<-b1 
hessian[3,1]<-b2 
#record the hessian matrix in the columns 2,3,4 of the matrix 'hessian' 

hessian[1,2]<- -m/(aA2) - (b1A(-a)+b2A(-a))*sumxalogx2 + 
2*(b1A(-a)*log(b1)+b2A(-a)*log(b2))*sumxalogx-
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hessian[1,3]<- -(n1/b1) + a/b1~(a+1)*sumxalogx + 
((1-a*log(b1))/b1~(a+1))*sumxa 

hessian[1,4]<- -(n2/b2) + a/b2~(a+1)*sumxalogx + 
((1-a*log(b2))/b2~(a+1))*sumxa 

hessian[2,3]<- a*n1/b1~2- (a*(a+1)/b1~(a+2))*sumxa 

hessian[3,4]<- a*n2/b2~2 - (a*(a+1)/b2~(a+2))*sumxa 

hessian[2,2]<-hessian[1,3] 
hessian[3,2]<-hessian[1,4] 
return(hessian) 
} 

simulation<-
function (ini=c(1,2,2),R=999,n=18, 
m=6,r=c(2,1,3,1,3,2), ... ) 
{ 

#function to do the simulation 
mle<-data.frame(index=1:R,a=O,b1=0,b2=0,a.var=1, 
b1.var=1,b2.var=1,a.pivot=O,b1.pivot=O,b2.pivot=O,n1=0) 
for (i in 1:R) 
{ 

} 

data<-datagen(m=m,n=n,r=r,p=p,alpha=ini[1], 
beta1=ini[2],beta2=ini[3] , ... ) 
mle$n1[i]<-length(data$x[data$cause==1 & data$cen==O]) 
mle.object<-mleweibull(ini=ini,data=data,n=n,m=m,r=r) 
mle$a[i]<-mle.object[1,1] 
mle$b1[i]<-mle.object[2,1] 
mle$b2[i]<-mle.object[3,1] 

hessian<-mle.object[,-1] 
varcov<-solve(-hessian) 
mle$a.var[i]<-varcov[1,1] 
mle$b1.var[i]<-varcov[2,2] 
mle$b2.var[i]<-varcov[3,3] 
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mle$a.pivot<-(mle$a-ini[1])/sqrt(mle$a.var) 
mle$b1.pivot<-(mle$b1-ini[2])/sqrt(mle$b1.var) 
mle$b2.pivot<-(mle$b2-ini[3])/sqrt(mle$b2.var) 

p95.alpha<-round(length(mle$a.pivot[(mle$a.pivot>-qnorm(0.975)) 
& (mle$a.pivot<qnorm(0.975))])/R,3) 

p95.beta1<-round(length(mle$b1.pivot[(mle$b1.pivot>-qnorm(0.975)) 
& (mle$b1.pivot<qnorm(0.975))])/R,3) 

p95.beta2<-round(length(mle$b2.pivot[(mle$b2.pivot>-qnorm(0.975)) 
& (mle$b2.pivot<qnorm(0.975))])/R,3) 

} 

bootstrap<-
function (ini=c(2,3,5),N=1000,n=100,m=40,r=c(rep(2,20), 
rep(1,20)),al=0.025,R=999) 
{ 
#function to do the bootstrap confidence intervals and probabilities 
main.m<-matrix(data=NA,nrow=N,ncol=6) 
basic.boot<-data.frame(a.l=main.m[,1],a.u=main.m[,2],b1.l=main.m[,3], 
b1.u=main.m[,4] ,b2.l=main.m[,5],b2.u=main.m[,6], 
a.count=O,b1.count=O,b2.count=O) 

stud.boot<-data.frame(a.l=main.m[,1] ,a.u=main.m[,2] ,b1.l=main.m[,3], 
b1.u=main.m[,4],b2.l=main.m[,5] ,b2.u=main.m[,6], 
a.count=O,b1.count=O,b2.count=O) 
perc.boot<-data.frame(a.l=main.m(,1],a.u=main.m[,2],b1.l=main.m[,3], 
b1.u=main.m[,4] ,b2.l=main.m[,5] ,b2.u=main.m[,6], 
a.count=O,b1.count=O,b2.count=O) 

for(i in 1:N) 
{ 

data<-datagen(ini=ini,n=n,m=m,r=r) 
mle.boot<-mleweibull(data=data,ini=ini,n=n,m=m,r=r) 
a.hat<-mle.boot[1,1] 
b1.hat<-mle.boot[2,1] 
b2.hat<-mle.boot[3,1] 
hessian<-mle.boot[,-1] 
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varcov<-solve(-hessian) 
a.var<-varcov[1,1] 
b1.var<-varcov[2,2] 
b2.var<-varcov[3,3] 
sim.boot<-simulation(ini=c(a.hat,b1.hat,b2.hat),n=n,m=m,r=r) 

#basic boot strap intervals 
basic.boot$a.l[i]<-2*a.hat- sort(sim.boot$a)[(R+1)*(1-al)] 
basic.boot$a.u[i]<-2*a.hat- sort(sim.boot$a)[(R+1)*(al)] 
if (basic.boot$a.l[i]<ini[1] & basic.boot$a.u[i]>ini[1]) 

basic.boot$a.count[i]<-1 
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basic.boot$b1.l[i]<-2*b1.hat- sort(sim.boot$b1)[(R+1)*(1-al)] 
basic.boot$b1.u[i]<-2*b1.hat- sort(sim.boot$b1)[(R+1)*(al)] 
if (basic.boot$b1.l[i]<ini[2] & basic.boot$b1.u[i]>ini[2]) 

basic.boot$b1.count[i]<-1 

basic.boot$b2.l[i]<-2*b2.hat- sort(sim.boot$b2)[(R+1)*(1-al)] 
basic.boot$b2.u[i]<-2*b2.hat- sort(sim.boot$b2)[(R+1)*(al)] 
if (basic.boot$b2.l[i]<ini[3] & basic.boot$b2.u[i]>ini[3]) 

basic.boot$b2.count[i]<-1 

#studentized bootstrap intervals 
stud.boot$a.l[i]<-a.hat - sqrt(a.var)*sort(sim.boot$a.pivot) 
[(R+1)*(1-al)] 
stud.boot$a.u[i]<-a.hat - sqrt(a.var)*sort(sim.boot$a.pivot) 
[(R+1)*(al)] 
if (stud.boot$a.l[i]<ini[1] & stud.boot$a.u[i]>ini[1]) 

stud.boot$a.count[i]<-1 

stud.boot$b1.l[i]<-b1.hat - sqrt(b1.var)*sort(sim.boot$b1.pivot) 
[(R+1)*C1-al)] 
stud.boot$b1.u[i]<-b1.hat - sqrt(b1.var)*sort(sim.boot$b1.pivot) 
[(R+1)*(al)] 
if (stud.boot$b1.l[i]<ini[2] & stud.boot$b1.u[i]>ini[2]) 

stud.boot$b1.count[i]<-1 
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} 

stud.boot$b2.l[i]<-b2.hat - sqrt(b2.var)*sort(sim.boot$b2.pivot) 
[(R+1)*(1-al)] 
stud.boot$b2.u[i]<-b2.hat - sqrt(b2.var)*sort(sim.boot$b2.pivot) 
[(R+1)*(al)] 
if (stud.boot$b2.l[i]<ini[3] & stud.boot$b2.u[i]>ini[3]) 
stud.boot$b2.count[i]<-1 

#percentile bootstrap intervals 
perc.boot$a.l[i]<-sort(sim.boot$a)[(R+1)*(al)] 
perc.boot$a.u[i]<-sort(sim.boot$a)[(R+1)*(1-al)] 
if (perc.boot$a.l[i]<ini[1] & perc.boot$a.u[i]>ini[1]) 

perc.boot$a.count[i]<-1 

perc.boot$b1.l[i]<-sort(sim.boot$b1)[(R+1)*(al)] 
perc.boot$b1.u[i]<-sort(sim.boot$b1)[(R+1)*(1-al)] 
if (perc.boot$b1.l[i]<ini[2] & perc.boot$b1.u[i]>ini[2]) 

perc.boot$b1.count[i]<-1 

perc.boot$b2.l[i]<-sort(sim.boot$b2)[(R+1)*(al)] 
perc.boot$b2.u[i]<-sort(sim.boot$b2)[(R+1)*(1-al)] 
if (perc.boot$b2.l[i]<ini[3] & perc.boot$b2.u[i]>ini[3]) 

perc.boot$b2.count[i]<-1 

# to calculate the pr coverages 
pr.cov<-matrix(data=NA,nrow=3,ncol=6) 
boot.pr.cov<-data.frame(par=c( 11 alpha 11

,
11 beta1 11

,
11 beta2 11

), 

basic=pr.cov[,1],stud=pr.cov[,2],perc=pr.cov[,3], 
basic.length=pr.cov[,4],stud.length=pr.cov[,5], 
perc.length=pr.cov[,6]) 

boot.pr.cov$basic[1]<-sum(basic.boot$a.count)/N 
boot.pr.cov$stud[1]<-sum(stud.boot$a.count)/N 
boot.pr.cov$perc[1]<-sum(perc.boot$a.count)/N 

#coverage lengths for alpha 
boot.pr.cov$basic.length[1]<-mean(basic.boot$a.u-basic.boot$a.l) 
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boot.pr.cov$stud.length[1]<-mean(stud.boot$a.u-stud.boot$a.l) 
boot.pr.cov$perc.length[1]<-mean(perc.boot$a.u-perc.boot$a.l) 

boot.pr.cov$basic[2]<-sum(basic.boot$b1.count)/N 
boot.pr.cov$stud[2]<-sum(stud.boot$b1.count)/N 
boot.pr.cov$perc[2]<-sum(perc.boot$b1.count)/N 

#coverage lengths for beta1 
boot.pr.cov$basic.length[2]<-mean(basic.boot$b1.u-basic.boot$b1.1) 
boot.pr.cov$stud.length[2]<-mean(stud.boot$b1.u-stud.boot$b1.1) 
boot.pr.cov$perc.length[2]<-mean(perc.boot$b1.u-perc.boot$b1.1) 

boot.pr.cov$basic[3]<-sum(basic.boot$b2.count)/N 
boot.pr.cov$stud[3]<-sum(stud.boot$b2.count)/N 
boot.pr.cov$perc[3]<-sum(perc.boot$b2.count)/N 

#coverage lengths for beta2 
boot.pr.cov$basic.length[3]<-mean(basic.boot$b2.u-basic.boot$b2.1) 
boot.pr.cov$stud.length[3]<-mean(stud.boot$b2.u-stud.boot$b2.1) 
boot.pr.cov$perc.length[3]<-mean(perc.boot$b2.u-perc.boot$b2.1) 

#print(boot.pr.cov) 
return(boot.pr.cov) 
} 

bias.simulation<-
function (ini=c(1,2,2),R=999,n=18,m=6,r=c(2,1,3,1,3,2), ... ) 
{ 

#function to do the simulation 
mle<-data.frame(index=1:R,a=O,b1=0,b2=0,a.var=1,b1.var=1,b2.var=1, 
a.pivot=O,b1.pivot=O,b2.pivot=O,n1=0) 
for (i in 1:R) 
{ 

data<-datagen(m=m,n=n,r=r,p=p,alpha=ini[1],beta1=ini[2], 
beta2=ini[3] , ... ) 
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} 

mle$n1[i]<-length(data$x[data$cause==1 & data$cen==O]) 
mle.object<-mleweibull(ini=ini,data=data,n=n,m=m,r=r) 
mle$a[i]<-mle.object[1,1] 
mle$b1[i]<-mle.object[2,1] 
mle$b2[i]<-mle.object[3,1] 

hessian<-mle.object[,-1] 
varcov<-solve(-hessian) 
mle$a.var[i]<-varcov[1,1] 
mle$b1.var[i]<-varcov[2,2] 
mle$b2.var[i]<-varcov[3,3] 

mle$a.pivot<-(mle$a-ini[1])/sqrt(mle$a.var) 
mle$b1.pivot<-(mle$b1-ini[2])/sqrt(mle$b1.var) 
mle$b2.pivot<-(mle$b2-ini[3])/sqrt(mle$b2.var) 

p95.alpha<-round(length(mle$a.pivot[(mle$a.pivot>-qnorm(0.975)) & 
(mle$a.pivot<qnorm(0.975))])/R,3) 

p95.beta1<-round(length(mle$b1.pivot[(mle$b1.pivot>-qnorm(0.975)) & 
(mle$b1.pivot<qnorm(0.975))])/R,3) 

p95.beta2<-round(length(mle$b2.pivot[(mle$b2.pivot>-qnorm(0.975)) & 
(mle$b2.pivot<qnorm(0.975))])/R,3) 

alpha.length<-mean(2*qnorm(0.975)*sqrt(mle$a.var)) 
beta1.1ength<-mean(2*qnorm(0.975)*sqrt(mle$b1.var)) 
beta2.length<-mean(2*qnorm(0.975)*sqrt(mle$b2.var)) 

a.bias<-(mean(mle$a)-ini[1]) 
b1.bias<-(mean(mle$b1)-ini[2]) 
b2.bias<-(mean(mle$b2)-ini[3]) 
a.mse<-mean((mle$a-ini[1])A2) 
b1.mse<-mean((mle$b1-ini[2])A2) 
b2.mse<-mean((mle$b2-ini[3])A2) 
coverage<-data.frame(p95.alpha=p95.alpha,p95.beta1=p95.beta1, 
p95.beta2=p95.beta2) 
print(coverage) 
covLength<-data.frame(alpha.length=alpha.length, 
beta1.length=beta1.length,beta2.length=beta2.length) 
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print(covLength) 
bias<-data.frame(a.bias=a.bias,b1.bias=b1.bias,b2.bias=b2.bias) 
print(bias) 
mse<-data.frame(a.mse=a.mse,b1.mse=b1.mse,b2.mse=b2.mse) 
print(mse) 
probX1X2<-data.frame(probX1X2=mean(mle$b2-mle$a/ 
(mle$b1-mle$a+mle$b2-mle$a))) 
print(probX1X2) 
var.mle<-var(matrix(c(mle$a,mle$b1,mle$b2),nrow=R)) 
print(var.mle) 
mle.mean<-data.frame(a.mean=mean(mle$a),b1.mean=mean(mle$b1), 
b2.mean=mean(mle$b2)) 
print(mle.mean) 
mle.var<-data.frame(a.var=mean(mle$a.var),b1.var=mean(mle$b1.var), 
b2.var=mean(mle$b2.var)) 
print(mle.var) 
} 

A.2 Functions Used for the Numerical Example 

numerical.datagen<-
function (n=99,m=35,r=c(rep(2,31),1,0,1,0)) 
{ 

xd<-hoel 
xdo<-xd[order(xd[,1]),] 
#create a data frame to store the index, the data, 
the concomitants and censoring 
data<-data.frame(index=c(1:n),x=xdo$X1,cause=xdo$X2,cen=c(rep(O,n))) 
for(i in 1:m) 
{ 

if (r[i] != 0) 
{ 

#first to check if there are enough observations to 
take the random sample from 
check<-data$x[data$cen==O] [i] 
if(length(data$index[(data$x>check)&(data$cen==O)])>=r[i]) 
{ 
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if ((length(data$index[data$x>check & data$cen==0]))>1) 
{ 

} 

c<-sample(data$index[(data$x>check)& 
(data$cen==O)],r[i]) 
for(j in 1:length(c)) 
{ 

data$cen[data$index==c[j]]<-1 
} 

else if ((length(data$index[data$x>check & 
data$cen==0]))==1) 
{ 

} 
} 
else break 
} 

} 
return(data) 
} 

numerical.simulation<-

data$cen[data$index 
& data$cen==0]]<-1 

data$index[data$x>check 

function (n=99,m=35,r=c(rep(2,31),1,0,1,0),R=999,al=0.05) 
{ 
#function for simulating for the numerical example 

#get the mle and the hessian matrix from the dataset using 
numerical.mleweibull (almost same as mleweibull) 
mle.main<-numerical.mleweibull(n=n,m=m,r=r) 
hessian.main<-mle.main[,-1] 
mle.a<-mle.main[1,1] 
mle.b1<-mle.main[2,1] 
mle.b2<-mle.main[3,1] 

#function to do the simulation 
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mle<-data.frame(index=1:R,a=O,b1=0,b2=0,a.var=1, 
b1.var=1,b2.var=1,a.pivot=O,b1.pivot=O,b2.pivot=O,n1=0) 
for (i in 1:R) 
{ 
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data<-datagen(m=m,n=n,r=r,alpha=mle.a,beta1=mle.b1,beta2=mle.b2) 
mle$n1[i]<-length(data$x[data$cause==1 & data$cen==O]) 
mle.object<-mleweibull(ini=c(mle.a,mle.b1,mle.b2), 
data=data,n=n,m=m,r=r) 

} 

mle$a[i]<-mle.object[1,1] 
mle$b1[i]<-mle.object[2,1] 
mle$b2[i]<-mle.object[3,1] 

hessian<-mle.object[,-1] 
varcov<-solve(-hessian) 
mle$a.var[i]<-varcov[1,1] 
mle$b1.var[i]<-varcov[2,2] 
mle$b2.var[i]<-varcov[3,3] 

mle$a.pivot<-(mle$a-mle.a)/sqrt(mle$a.var) 
mle$b1.pivot<-(mle$b1-mle.b1)/sqrt(mle$b1.var) 
mle$b2.pivot<-(mle$b2-mle.b2)/sqrt(mle$b2.var) 

#Now to calculate the Asymptotic Confidence intervals ... 
varcov.main<-solve(-hessian.main) 

asy.a.l<-mle.a-qnorm(l-al/2)* sqrt(varcov.main[1,1]) 
asy.a.u<-mle.a+qnorm(l-al/2)* sqrt(varcov.main[1,1]) 
asy.a.len<-asy.a.u-asy.a.l 

asy.b1.1<-mle.b1-qnorm(1-al/2)* sqrt(varcov.main[2,2]) 
asy.b1.u<-mle.b1+qnorm(1-al/2)* sqrt(varcov.main[2,2]) 
asy.b1.len<-asy.b1.u-asy.b1.1 

asy.b2.1<-mle.b2-qnorm(1-al/2)* sqrt(varcov.main[3,3]) 
asy.b2.u<-mle.b2+qnorm(1-al/2)* sqrt(varcov.main[3,3]) 
asy.b2.len<-asy.b2.u-asy.b2.1 

#Now to calculate the percentile bootstrap Confidence intervals .. 
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per.a.l<-sort(mle$a)[(R+1)*(al/2)] 
per.a.u<-sort(mle$a)[(R+1)*(1-al/2)] 
per.a.len<-per.a.u-per.a.l 
per.b1.1<-sort(mle$b1)[(R+1)*(al/2)] 
per.b1.u<-sort(mle$b1)[(R+1)*(1-al/2)] 
per.b1.len<-per.b1.u-per.b1.1 

per.b2.1<-sort(mle$b2)[(R+1)*(al/2)] 
per.b2.u<-sort(mle$b2)[(R+1)*(1-al/2)] 
per.b2.len<-per.b2.u-per.b2.1 

#Now to calculate the Studentized bootstrap Confidence intervals .. 
stu.a.l<-mle.a- sqrt(varcov.main[1,1])*sort(mle$a.pivot) 
[(R+1)*(1-al/2)] 
stu.a.u<-mle.a- sqrt(varcov.main[1,1])*sort(mle$a.pivot) 
[(R+1)*(al/2)] 
stu.a.len<-stu.a.u-stu.a.l 

stu.b1.1<-mle.b1 - sqrt(varcov.main[2,2])*sort(mle$b1.pivot) 
[(R+1)*(1-al/2)] 
stu.b1.u<-mle.b1 - sqrt(varcov.main[2,2])*sort(mle$b1.pivot) 
[(R+1)*(al/2)] 
stu.b1.len<-stu.b1.u-stu.b1.1 

stu.b2.1<-mle.b2 - sqrt(varcov.main[3,3])*sort(mle$b2.pivot) 
[(R+1)*(1-al/2)] 
stu.b2.u<-mle.b2 - sqrt(varcov.main[3,3])*sort(mle$b2.pivot) 
[(R+1)*(al/2)] 
stu.b2.len<-stu.b2.u-stu.b2.1 

#to present the results in a dataframe .. 
asy.a<-data.frame(lower=asy.a.l,upper=asy.a.u,length=asy.a.len) 
asy.b1<-data.frame(lower=asy.b1.l,upper=asy.b1.u,length=asy.b1.len) 
asy.b2<-data.frame(lower=asy.b2.l,upper=asy.b2.u,length=asy.b2.len) 

per.a<-data.frame(lower=per.a.l,upper=per.a.u,length=per.a.len) 
per.b1<-data.frame(lower=per.b1.l,upper=per.b1.u,length=per.b1.len) 
per.b2<-data.frame(lower=per.b2.l,upper=per.b2.u,length=per.b2.len) 
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stu.a<-data.frame(lower=stu.a.l,upper=stu.a.u,length=stu.a.len) 
stu.b1<-data.frame(lower=stu.b1.l,upper=stu.b1.u,length=stu.b1.len) 
stu.b2<-data.frame(lower=stu.b2.l,upper=stu.b2.u,length=stu.b2.len) 

#to calculate the relative risk due to cause #1 

pi1<-mle.b2-mle.a/(mle.b1-mle.a+mle.b2-mle.a) 

#printing the results 

59 

list(mle.a=mle.a,mle.b1=mle.b1,mle.b2=mle.b2,varcov.main=varcov.main, 
asy.a=asy.a,asy.b1=asy.b1,asy.b2=asy.b2,per.a=per.a,per.b1=per.b1, 
per.b2=per.b2,stu.a=stu.a,stu.b1=stu.b1,stu.b2=stu.b2,pi1=pi1) 

} 
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