
JAVA ERROR CORRECTION ALGORITHM

A JAVA ERROR CORRECTION ALGORITHM IN THE FRAMEWORK OF AN

INTELLIGENT TUTORING SYSTEM

By

EDWARD R. SYKES, M.Ed., B.Ed., B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the degree

Master of Science

McMaster University

© Copyright by Edward R. Sykes, April 2005

M.Sc. Thesis - E. R. Sykes, McMaster University - Computing and Software

MASTER OF SCIENCE (2005) McMaster University

(Computer Science) Hamilton, Ontario

TITLE: A Java Error Correction Algorithm in the Framework of an Intelligent

Tutoring System

AUTHOR: Edward R. Sykes, M.Ed. (Brock University), B.Ed. (The University of

Western Ontario), B.Sc. (McMaster University)

SUPERVISOR: Professor Frantisek Franek

NUMBER OF PAGES: vi, 91

Sections of this thesis have been previously published in the lASTED International

Conference on Advances in Computer Science and Technology conference proceedings:

Sykes, E. R., & Franek, F. (2004). Presenting JECA: A Java Error Correcting
Algorithm for the Java Intelligent Tutoring System, Proceedings of the lASTED
International Conference on Advances in Computer Science and Technology, St.
Thomas, Virgin Islands, USA (pp. 151-156).

ii

M.Sc. Thesis - E. R. Sykes, McMaster University - Computing and Software

Abstract

Intelligent Tutoring Systems (ITS) are, in many respects, very similar to human
tutors. Based on cognitive science and Artificial Intelligence (AI), ITS have proven their
significance in many disciplines. Currently, ITS can be found in core Mathematics,
Physics, and Language courses in hundreds of schools across Canada, the United States,
and various countries in Europe. ITS are growing in acceptance and popularity for
reasons including: i) increased student performance, ii) deepened cognitive development,
and iii) reduced time for student to acquire skills and knowledge.

Bloom (1984) showed that one-on-one human tutors could increase the average
student's performance to the ninety-eighth percentile in a standard classroom.
Furthermore, in order for students to reach their potential, individualized tutoring is a
necessity. Intelligent Tutoring Systems have demonstrated that student achievement is
1.0 standard deviation higher than typical classroom environments. Another benefit ITS
have is the speed of knowledge acquisition. Students learning from an ITS have
completed problems in one-third of the time compared to students in the control group.

This thesis focuses on the design and implementation of an error correction
algorithm in the specific context for use in an ITS for the Java programming language.
The Java Error Correction Algorithm (JECA) was designed to be used by first year
College and University students with little or no programming experience. JECA
attempts to determine the "intent" of the student's submission by rigorously analyzing the
student's code. Behind the scenes, JECA makes changes to the student's submission in
order to facilitate this analysis. However, once JECA determines the most reasonable
intent of the student, these changes are made known to the student. The results from
JECA are passed to the Java Intelligent Tutoring System (JITS) in the form of hints and
suggestions, which are then used for instructional purposes.

This thesis focuses on JECA, however, to ensure contextual relevance and
significance, the Java Intelligent Tutoring System is included. JITS is implemented using
advanced e-learning technologies and its multi-threaded distributed architecture makes
JITS scalable, robust and easy to maintain. JITS supports personalized student
development by tracking and modeling every student in the system. JITS is an online
website always available for students and requires only a browser and an internet
connection.

iii

M.Sc. Thesis - E. R. Sykes, McMaster University- Computing and Software

Table of Contents
Page

Abstract .. iii

CHAPTER ONE: THE PROBLEM .. 7

CONTEXT ... ?
INTRODUCTION•.......•••......•.•.....•.•••...........••....•....................•...•••.......................•.••.........••••..••.............. 8
PROBLEM STATEMENT .. 9
RATIONALE ... 11
OUTLINE OF REMAINDER OF DOCUMENT .. 12

CHAPTER TWO: LITERATURE REVIEW .. 14

PARSING 0VERVIEW .. 17
CUP VERSUS JAVACC ... 23
ERROR RECOVERY STRATEGIES .. 24
ERROR RECOVERY IN CUP .. 25
ERROR RECOVERY IN JAVACC .. 28
CURRENT STATE OF INTELLIGENT TuTORING SYSTEMS .. 31
ACT -R COGNITIVE THEORY FOR DEVELOPING TuTORS ... 33

CHAPTER THREE: DESIGN ... 36

MOTIVATION FOR THE DESIGN OF THE JAVA ERROR CORRECTION ALGORITHM .. 36
JAVA ERROR CORRECTION ALGORITHM DESIGN ... 43

JAVA INTELLIGENT TuTORING SYSTEM DESIGN49
Student Perspective .. 49
Instructor Perspective .. 50

CHAPTER FOUR: IMPLEMENTATION .. 52

JAVA ERROR CORRECTION ALGORITHM (JECA) IMPLEMENTATION ... 52
First Component of JECA: Error Recovery in the Scanner (Lexical Analyzer) 52
Second Component of JECA: Error Recovery in the Parser .. 58

JAVA INTELLIGENT TuTORING SYSTEM IMPLEMENTATION ... 64
HUMAN-COMPUTER INTERACTION ...•••.....................•..............................•.........•......•.••...........•.............•... 66
HINT GENERATION .. 72
USER MODELING ... 77

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 84

SUMMARY••...............•.......•..........................•................••.....•....•...................................•.............•.....• 84
CONCLUSIONS •••.............••.•....•....................•.•..........................•..•• 85
RECOMMENDATIONS•..•.................•...•......................................•••••... 87

References ... 89

iv

TABLE 1

TABLE2

TABLE3

TABLE4

TABLE5

TABLE6

M.Sc. Thesis - E. R. Sykes, McMaster University- Computing and Software

List of Tables

Page

TYPES OF PARSERS- AoV ANT AGES AND DISADVANTAGES 22

INITIAL DESIGN ISSUES FOR JECA ... 36

SCENARIOS REPRESENTING THE VARIOUS TYPES OF CODE SUBMISSIONS TO THE

ARITHMETIC SUM PROGRAMMING PROBLEM ... 42

JAVA RESERVED WORDS AND KEYWORDS .. 46

EXTENDED JAVA RESERVED WORDS AND KEYWORDS* 46

INTERNAL JECA PARSE TREE PERMUTATIONS AND COMPETITION FOR THE

SELECTION OF THE BEST TREES .. 63

TABLE 7 "VIEW SOLUTION" PRESENTING SOLUTIONS FOR THE CURRENT PROBLEM 69

TABLE 8 llTS RESULTS FROM STUDENT PRESSING THE "MY PERFORMANCE" BUTTON ... 70

TABLE 9 llTS ORACLE SCHEMA TABLES .. 71
TABLE 10 HINT OBJECTS UTILIZATION AND TYPICAL DIALOGUE BETWEEN llTS AND THE

STUDENT•..••..•...............•...••.........••..••..•.••..••..• 76

TABLE 11 SAMPLE DATABASE STUDENT TRACKING INFORMATION INDICATING NUMBER OF

ATTEMPTS, SOLVED (TRUE/FALSE), AND STUDENT'S SOLUTIONS 79

TABLE 12 SAMPLE DATABASE STUDENT TRACKING INFORMATION INDICATING CURRENT

PROBLEM SET, PROBLEM ID, PERFORMANCE RATING, SKILL LEVEL, NUMBER OF

TIMES CONNECTED TO JITS, AND THE DATE OF LAST CONNECTION 80

v

M.Sc. Thesis - E. R. Sykes, McMaster University- Computing and Software

List of Figures

FIGURE 1. LEXICAL ANALYZER AND PARSER COMMUNICATION••••........•...........••.••.. 15

FIGURE 2. TOKEN MANAGER CONSUMING THE INPUT STREAM AND PRODUCING TOKENS •. 16

FIGURE 3. THE PARSER ANALYZES THE SEQUENCE OF TOKENS RECEIVED FROM THE

LEXICAL ANALYZER .•........•..•......•........•...•.....•...•........•••........••.•........•...•......••• 17

FIGURE 4. SUB-SECTIONS OF EXPERT MODEL SOLUTION••.........••........•.••..•......••••••.... 38

FIGURE 5. HIGH-LEVEL FUNCTIONAL DECOMPOSITION TREE•...........•..........••.•.........• 38

FIGURE 6. JITS SEMANTIC_DECISION_TREE (SECTIONS A AND B FROM FIGURE 4 ONLY) .• 39

FIGURE 7. llTS PRODUCTION RULES (SEMANTIC_DECISION_TREE; SECTION C FROM FIGURE

40NLY) .•.........•..................•............................••...........••........•..........•.....•........ 40

FIGURE 8. JITS PRODUCTION RULES (SEMANTIC_DECISION_TREE; SECTIONS D FROM

FIGURE 4 ONLY) •........•.......••.........•........•.........••.......•...•......•.•.......•.......•......•.• 41

FIGURE 9. FIRST COMPONENT OF JECA- SCANNER CORRECTION ACTIVITIES•••..... 47

FIGURE 10. SECOND COMPONENT OF JECA- PARSER CORRECTION ACTIVITIES .•...••....... 48

FIGURE 11. llTS TUTORING FRAMEWORK••.................•.•.........•••.......•..••.......•.••.•.•.... 51

FIGURE 12. KEYWORD OBJECT AND _KEYWORD DATA STRUCTURE 55

FIGURE 13. BESTMATCH OBJECT- USED FOR THE REFINEMENT PROCESS IN DETERMINING

AN IDENTIFIER OR A KEYWORD ...••..................•..•........••.........•..•..••.......•.....•. 57

FIGURE 14. BESTMATCH MEMBER CONTAINS THE TRANSFORMATION STRING FROM

EDIT_DISTANCE ALGORITHM•.•...........•........•..•..........••............. 58

FIGURE 15. BURKE-FISHER ERROR CORRECTION ALGORITHM WITH A 4-TOKEN QUEUE IN

THE MIDDLE OF PROCESSING A STATEMENT PRODUCTION••..........• 59

FIGURE 16. BURKE-FISHER ERROR CORRECTION ALGORITHM WITH A 4-TOKEN QUEUE

COMPLETING THE PROCESSING OF A STATEMENT PRODUCTION AND

COMMENCING A NEW PRODUCTION ..•...... 60

FIGURE 17. llTS MULTI-THREADED DISTRIBUTED WEB-BASED INFRASTRUCTURE•.• 65

FIGURE 18. llTS STUDENT MODEL AND RELATED MODULES•..........................••.......... 66

FIGURE 19. JITS LOGIN SCREEN ...•..........•.......•..•.........•.......................••..........•............... 67

FIGURE20. JITS USER INTERFACE.··· 68
FIGURE 22. HINT CATEGORIES •......•...................•..........•.•....................••.......•••..•••.•..•....•. 72

FIGURE 23. A JECA HINT OBJECT REPRESENTING A GRAMMATICAL ERROR•..•...•..... 74

FIGURE 24. ARITHMETIC SUM JAVA PROGRAM WITH GRAMMATICAL ERRORS AND SYNTAX

ERRORS•...................•.........•.....................................•.............. 75

FIGURE 25. INTERNALLY CORRECTED JECA SOURCE PROGRAM FOR THE ARITHMETIC SUM

PROBLEM ..•.................••.......•..•......••.....................•.........•.•.........•..•.•...........•• 75

FIGURE 26. JAVA INTELLIGENT TuTORING SYSTEM HELP WINDOW•...... 81

FIGURE 27. JAVA INTELLIGENT TUTORING SYSTEM TUTORIAL WINDOW ...•...............••..•• 82

FIGURE 28. JAVA INTELLIGENT TUTORING SYSTEM IMAGE VIEWER WINDOW .•••............. 83

vi

CHAPTER ONE: THE PROBLEM

Context

Java has grown into a very popular programming language. In fact, it is one of

the most popular programming languages in the world for internet applications (Chen,

2004). At numerous educational institutions, Java is now the core lan~age used in

Computer Science and Software Engineering programs. For instance, at the Sheridan

Institute of Technology and Advanced Learning over 3000 students now use Java. I have

been a member of the School of Applied Computing and Engineering Sciences at

Sheridan for over a decade and have gained a lot of experience in teaching programming

to students from first year to fmal year to graduate level students. During the last several

years, I became interested in Intelligent Tutoring Systems (ITS) and began to conduct

research. I discovered a number of key issues that give rise to this thesis research. There

currently is no ITS for the Java programming language. Secondly, there is no ITS that

analyses the student's submitted code in such rigor as the system developed in this thesis.

Third, no other ITS actually modifies the student's submission in numerous ways in an

attempt to determine the intent of the student. Fourth, the system developed is a multi

threaded distributed internet-based application that is always available and to use requires

only a simple browser and an internet connection.

The net result of this research is intended to be extremely practical. The system is

being field-tested by fust year programming students at the Sheridan Institute of

Technology and Advanced Learning. It is my hope that many educational institutions

will use the system including high-schools, Colleges and Universities.

7

Introduction

The system proposed in this thesis is entitled the "Java Error Correction

Algorithm" (JECA) for the Java Intelligent Tutoring System. The JECA module is a

major component of this thesis for various reasons. JECA "reasons" over the submitted

code and makes intelligent changes to the code in an attempt to bring the submitted code

closer to a state of successful compilation. As a result, a great deal of effort was placed

on the topic of compilers and error recovery strategies. Error recovery in compiler design

and construction has traditionally been focused on analyzing the input source code and

identifying as many errors as possible in as short a period of time (Aho, Sethi, & Ullman,

1988; Fischer & LeBlanc, 1991). Most compilers of today do not afford the luxury of

sophisticated error diagnosis or recovery. There are many reasons that justify this

approach. One, the speed of compilation is very important and the user is now more than

ever unwilling to wait patiently for the output of compilation. Second, complex error

correction strategies take time and are generally not efficient for medium to large size

programs. Third, the compiler's output is designed to be used by a professional

programmer who understands programming, and knows how to interpret the compiler's

output without difficulty. These reasons and others push the designers and maintainers of

compilers in different directions other than error correction.

However, there are certain circumstances where a sophisticated error correction

strategy is very fitting and beneficial to the target audience. For beginner programmers

an "intelligent" error correction strategy is very helpful and advantageous. Typically, the

role of the compiler, when errors are encountered, is to identify all possible errors in one

8

pass of the source code (Aho et al., 1988; Fischer & LeBlanc, 1991). The compiler

generates error messages that are often quite cryptic making them difficult to understand

and troubleshoot for the beginner programmer. Additionally, cascading error messages

and false errors may also be generated. These factors gave the motivation and

justification for the design and development of the systems in this thesis.

The Java Error Correction Algorithm presented in this thesis was designed for the

Java Intelligent Tutoring System to be used by beginner Java programmers. Since the

size of the code that will be analyzed by the system will be very small, the speed of

compilation is not an issue. As a result, additional processing and analysis may take

place to better understand the intent of the beginner programmer and to offer clear and

meaningful feedback to the programmer.

Problem Statement

Today's compilers perform error recovery but maintain a high level of terse error

messages as feedback. These error recovery mechanisms act in much the same way as

traditional systems in that they attempt to identify as many of the errors in the program as

possible in the shortest amount of time. For instance, the default philosophy for error

recovery implemented in many compilers (e.g., C, C++, Java, Pascal, Turing, etc.) is to:

i) report the presence of errors accurately;

ii) recover from each error quickly in order to detect subsequent errors; and

iii) not significantly slow down the processing of correct programs.

9

In contrast to today's compilers, in certain circumstances, as in learning to

program, it is more desirable to have the compiler act "intelligently" and make

"intelligent" changes to the source program. This thesis research examined error

correction in a specific context involving small Java programs. A review of various tools

is presented including JFlex, CUP, and JavaCC (Hudson, 1999; Klein, 2004; Norvell,

2004; Sreenivasa, 2004).

This thesis presents JECA and llTS. JECA is a practical algorithm for a compiler

that error corrects by intelligently changing code and identifies errors more clearly than

other error recovery/correction systems. The goals of the proposed system are to:

i) analyze the student's code submission;

ii) intelligently recognize the "intent" of the student;

iii) "auto-correct" where appropriate (e.g., converting "forr'' into "for", etc.);

iv) learn individual student's misconceptions, and categorizes the types of errors

s/he makes;

v) produce a "modified code" that will compile (or bring the code closer to a state

of successful compilation); and

vi) prompt the student programmer for information when necessary via well

defmed hint support structures.

The ultimate goal of JECA is to give clear and helpful messages so that the Java

Intelligent Tutoring System may provide valuable feedback for the student similar to

human-tutoring dialogue sessions. In this way, the student will be able to learn

10

programming better and more enjoyably. The following is the underlying research

question addressed in this thesis: "Is the proposed solution involving JECA a suitable

approach for intent recognition for the Java Intelligent Tutoring System?"

Rationale

Traditionally, it was extremely beneficial to the programmer for the compiler to

carefully go through all of the source code until the end and ascertain the 'correct'

meaning ofthe code (Aho et al., 1988; Bennett, 1996; Fischer & LeBlanc, 1991). As a

result, the compiler often produced many erroneous messages (Aho et al., 1988; Bennett,

1996). Unfortunately, times have not changed. Compilers of today still produce the

same type of output and attempt to recover from errors in much the same way as

compilers of the past.

By changing code and identifying errors more clearly than other current-day

compilers, JECA will be beneficial for the target audience - beginner programmers

(Aleven & Ashley, 1997; Sykes, 2003). The first part of this thesis presents the Java

Error Correction Algorithm- a practical algorithm for small Java programs to be error

corrected in an intelligent way. JECA is different from standard compilers in that JECA:

i) produces one main error message;

ii) stops parsing if the current production cannot be parsed;

iii) encourages the student to address the main problem and to correct it;

iv) reduces student anxiety from getting overwhelmed with numerous error

messages; and

11

v) focuses the student on the problem at hand.

The goal of this research is to determine if JECA is a suitable core component for

the intelligence behind the Java Intelligent Tutoring System. The second part of this

thesis is the design and development of llTS.

Outline of Remainder of Document

Chapter Two focuses on reviewing appropriate tools used in the research and

development of JECA and llTS. The tools investigated for JECA were: JFlex with CUP

and JavaCC. An overview oflexical analysis and parsing is presented. Additionally, the

specifics of JFlex, CUP, and JavaCC are discussed in relation to error recovery

capabilities, and potential to implement specific error recovery algorithms. The last

section of this chapter presents a summary of the current state of Intelligent Tutoring

System research.

Chapter Three describes the design of the Java Error Correction Algorithm. The

scanner and parser components of JECA are presented in detail. The last section of this

chapter describes the design layout for the Java Intelligent Tutoring System with JECA

being the core module.

Chapter Four presents the implementation of JECA and the Java Intelligent

Tutoring System. Human-Computer Interaction mechanisms, Hint Generation and User

Modeling techniques are discussed in this chapter.

12

The last chapter of this document summarizes the results and discusses the

implications of the analysis. In this chapter the proposed research question is addressed.

That is, "Is the proposed system involving JECA a suitable approach for intent

recognition for the Java Intelligent Tutoring System to be effective?" The

recommendations section of this chapter offers a critical review of JECA and the Java

Intelligent Tutoring System and provides direction for future research.

13

CHAPTER TWO: LITERATURE REVIEW

This chapter presents a review of appropriate tools and current state of research in

the area of error recovery, error correction and Intelligent Tutoring Systems. This

literature review was important in order to design and develop JECA. The tools

investigated for the design and construction of JECA were: JFlex, CUP and JavaCC.

These tools were selected for analysis because they are the equivalent to the standard

LEX and Y ACC tools traditionally used in compiler research. JFlex, CUP and JavaCC

were significant tools in this research because they generate Java compliant code and

offer full support for Java code integration. An overview of lexical analysis, and parsing

is discussed in this Chapter. Additionally, the specifics of JFlex, CUP and JavaCC are

presented in relation to error recovery and correction capabilities and the potential each

of these tools offer to implement specific error recovery algorithms.

A thorough literature review was conducted on the topic of error correction in

compilers. At the time of this thesis, there were no publications available in this specific

area of Computer Science for the Java programming language. However, there were

theoretical designs and implementation in other languages which proved to be helpful for

determining how to best conduct this thesis' research. The comparison between the

proposed Java Error Correction Algorithm and other error correction designs is quite

technical and relies heavily on implementation details. As a result, these details may be

found in Chapter 4 - the implementation chapter of this thesis.

The last section of this chapter summarizes the current state of research in the

field of Intelligent Tutoring Systems since JECA is intended to be 'plugged-in' to an ITS.

14

Lexical Analysis Overview

Lexical analysis is the first phase in the process of compilation. The main task for

the lexical analyzer, often referred to as a lexer, or scanner, is to read the input characters

and produce as output a sequence of tokens that the parser uses for syntax analysis. A

token is a segment of text, regardess whether it be readable or comprised of symbols.

Tokens are generally defmed abstractly in a context free grammar, which is fed into a

program such as JavaCC which checks the stream of tokens for conformity to this

grammar. In order for the parser and scanner to understand the tokens a symbol table is

used. Figure 1 depicts a typical schema for the lexical analyzer. With reference to Figure

1, the arrows indicate the flow of data and/or method invocation. For instance, the Parser

issues the message 'getToken' to the Lexical Analyzer which in turn sends a token to be

consumed by the Parser. The double arrow line between the Symbol table and the Parser

indicates that the Symbol table is updated during the parse operation but it is also

referenced by the Parser during the operation.

Token
Source code

---~ Lexical Analyzer

getToken

Symbol table

Figure 1. Lexical Analyzer and Parser communication.

15

Parser
Output

Given the following simple method in the Java programming language:

public String getName() {

}
return _name;

the Lexical Analyzer would perform a series of actions to produce tokens for the parser.

Figure 2 depicts another view of the Lexical Analyzer using terminology of the

developer, users and maintainers of JavaCC.

"~"'"-'r"i"n"g" "g"e''t"N"a"m"e"(")'' "{' 'r"e"t''u"r''n" "_"n''a' 'm"e";"}'

rce ro
p
::;:,
:a.

\ I

LPAR
"("

Lexical Analyzer

Tokens headed to the parser

Figure 2. Token Manager consuming the input stream and producing tokens.

16

Parsing Overview

The parser's responsibility is to consume the sequence of tokens, analyze its

structure, and produce something via a generator. The 'something' that the generator

produces is up to the developer. It could be three-address code, an XML document, an

abstract syntax tree, or many other forms of output. Figure 3 describes the relationship

between the token and the parser.

Tokens headed to the parser

Parser

"_name"

Figure 3. The Parser analyzes the sequence of Tokens received from the lexical analyzer.

17

A review of parsing is necessary to appreciate the complexities involved in

addressing the problem of error correction. The following list includes the types of

parsers and the corresponding grammars they can accommodate.

Recursive Descent: A recursive descent parser is a top-down parser built from a set of

mutually-recursive procedures or a non-recursive equivalent where each such method

usually implements one of the production rules of the grammar. The structure of the

resulting program closely mirrors that of the grammar it recognises. For example,

consider the following grammar in Backus Naur Form (BNF):

<expr_l> ::=NOT I() I TRUE I FALSE
<expr_2> ::=AND I OR

The following functions parse the input stream.

function parse expr 1() {
if inp = 'N' then (read('N'); read('O'); read('T'); parse expr 2());
if inp =. (' then (read('('); parse expr 1(); parse expr 2(); read(')'));
if inp = 'T' then (read('T'); read(0R');-read('U');-read('E'));
if inp = ' F ' then (read (' F') ; read ('A') ; read (' L ') ; read (' S ') ; read ('E ')) ;

function parse expr 2() {
if inp = 'A' then (read('A'); read('N'); read('D'); parse_expr_1());
if inp = '0' then (read('O'); read('R'); parse_expr_1());

These procedures use a global variable inp that contains the current character in the input

stream. The procedure read (inp) reads in a character from the input stream.

LL Parsers: An LL parser is a table-based top-down parser for a subset of the context-

free grammars. It parses the input from Left to right, and constructs a Leftmost

derivation of the sentence. The class of grammars which may be parsed in this fashion is

known as the LL grammars.

18

LL(k): LL(k) parsers uses k tokens for look-ahead when parsing the input stream. LL(1)

grammars, although fairly restrictive, are very popular because they only need to look at

the next token to make their parsing decisions. LL{k) parsers, on the other hand, must be

able to recognize the use of a production after seeing the first k symbols of its right hand

side. LL(k) parsers where k> 1 are rare because of the additional complexities involved in

the implementation of such parsers (Aho et al., 1988).

LR(k): These types of parsers are sometimes referred to as "bottom-up parsers". Unlike

LL(k) parsers, LR(k) parsers are implemented using a bottom-up design. LR parsers read

their input from Left to right and produce a Rightmost derivation; k refers to the number

of unconsumed "look ahead" input symbols that are used in making parsing decisions.

An LR parser has an input buffer, a stack on which it keeps a list of states it has been in,

an action table, and a goto table. The goto table indicates what new state the parser

should move or which grammar rule it should use given the state it is currently in and the

terminal or nonterminal it has just read from the input stream. All bottom up parsers

have a similar algorithm:

loop
1) try to find the leftmost node of the parse tree which has not been

constructed (but all of its children have been constructed - the
sequence of children is called the handle)

2) construct a new parse tree node (this is called reducing)
end loop

The parsing process in bottom-up parsers can be thought of as "handle pruning". During

parsing conflicts can arise if the grammar is written in a manner that two or more

productions may match a specific kind of input. Left recursion is also supported by LR

19

parsers which can lead to conflicts as well. LR parsers use a "parse stack" which is a

stack used in the parsing operation containing elements of symbols with a corresponding

state. Reduction is the action of replacing the handle on the top of the parse stack with its

corresponding left-hand side. Shifting is the action of moving the next token to the top of

the parse stack. A model of an LR parser is shown below:

Input

LR Parser Output

Parsing table

si :state
Parse stack xi : grammar symbol

For an example, consider the following grammar

(1) E .. - E * N
(2) E .. - E + N
(3) E .. - N
(4) N .. - 1
(5) N .. - 2

Given an input stream of"2 + 2", the LR parser would use the action and goto tables to

shift and reduce the input. At the end of the processing, the rule numbers that will be

used are: [2, 5, 3, 5] which is a rightmost derivation of the string "2 + 2".

20

The following is another example of the operation of an LR(k) parser. Given the

following grammar:

Sentence
Subject
Object
Noun
Verb

Subject Verb Object .
I I a Noun I the Noun
me I a Noun I the Noun
duck I bird turtle
like is I see I sees

and the input stream: "The duck sees a turtle . ", the parse tree grows from the

bottom (i.e., leaves) up to the top (i.e., root). The input stream is read left to right and the

right-derivations are read backwards as follows. First, the word "The" is matched but no

production rule is executed yet. Next, the word "duck" is matched causing the

production "Noun::= duck" to be executed. The "Subject::= The duck" production is

executed next. The parser then receives the token "sees", which matches the production

"Verb::= sees". The parser next receives the "a" and then the ''turtle" tokens. Upon

reading the "turtle" the following production is fired: "Noun::= turtle", which causes the

higher level production: "Object::= a turtle" to be executed. Lastly, the period token

(i.e.,".") is read, resulting in the desired match for a sentence: "Sentence ::=Subject

Verb Object."

Despite the advantages of LR parsers being able to recognize a larger number of

possible grammars than LL parsers, there are specific problems associated with LR

algorithms. LR parsers can encounter shift-reduce and reduce-reduce conflicts. A shift-

reduce conflict arises when the algorithm cannot decide between a shift action or a reduce

action. A reduce-reduce conflict occurs when the algorithm cannot decide between two

(or more) reductions (for different production rules).

21

LALR(k): A Look-ahead LR (left to right) parser is a specific type ofLR parser. These

types of parsers are very popular type because they give a good trade-off between the

number of grammars they can deal with and the size of the parsing tables it requires. It is

these types of parsers that are generated by compiler-compilers such as Y ACC and GNU

Bison.

There are many advantages and disadvantages when considering the various types

of mechanisms for parsing an input stream. Table 1 depicts these advantages and

disadvantages.

Table 1 Types of Parsers- Advantages and Disadvantages (sources: (Aho et al., 1988;
Fischer & LeBlanc, 1991))

Type Advantaees Disadvantaees
Top-down - Fast - often hand-coded
recursive - locality - maintenance
decent (a form - simplicity - no left-recursion
ofLL(l)) - error detection
LL(l) - simple method - LL(l) is a subset ofLR(l)

- fast - no left-recursion
- automatable
- error detection

LR(l) - fast - table size
- automatable - error recovery

LALR(l) - large number of - table size
grammars - error recovery

- fast
- automatable

22

CUP versus JavaCC

The Java Based Constructor of Useful Parsers (CUP) is a system for generating

LALR parsers from simple specifications. It serves the same role as the widely used

program YACC. CUP offers most ofthe features ofYACC (Hudson, 1999). However,

CUP is written in Java, uses semantic actions including embedded Java code, and

produces parsers that are implemented in Java.

JavaCC is a Java parser generator written in the Java programming language

(Norvell, 2004). The community of JavaCC users have developed a collection of

grammars including Java 1.0 through to the current version 1.5 specifications

(Sreenivasa, 2004). It is similar to CUP but has the following distinct features:

Top-Down: JavaCC generates top-down (recursive descent) parsers as opposed to

bottom-up LALR parsers generated by Y ACC, CUP and similar tools. Top-down parsers

have a numerous advantages such as being easier to debug, having the ability to parse to

any non-terminal in the grammar and having the ability to pass values up, as well as,

down the parse tree during parsing.

Large User Community: JavaCC is by far the most popular parser generator

used with Java applications. There are many thousands of participants using JavaCC.

Lexical and Grammar Specifications: The lexical specifications such as regular

expressions, strings, and the grammar specifications are both written together in the same

file. This is quite different from JFlex and CUP where there is a distinct separation of

responsibilities for the scanner and parser. In JavaCC there is only one file for the

scanner and parser which makes grammars easier to read. Furthermore, since it is

23

possible to use regular expressions inline in the grammar specifications in the form of

attributed productions, it makes it easier to maintain.

Syntactic and Semantic Lookahead Specifications: By default, JavaCC

generates an LL(l) parser. However, there may be portions of the grammar that are not

LL(l). JavaCC offers the capabilities of syntactic and semantic lookahead to resolve

shift-shift ambiguities locally at these points. For example, the parser is LL(k) only at

such points, but remains LL(1) everywhere else for better performance.

Consequently, LL(l) parsers (including top-down parsers) do not encounter shift

reduce and reduce-reduce conflicts because the grammar does not have ambiguities (i.e.,

the production rules have been re-written to eliminated ambiguities from the grammar).

CUP, an LALR parser generator, on the other hand, will have problems if shift-reduce

and reduce-reduce conflicts are encountered.

Bearing in mind the differences between JFlex, CUP and JavaCC, the following

section presents additional considerations associated with error recovery.

Error Recovery Strategies

The following section describes the types of error recovery strategies. A review

of these strategies is significant since they influence the design considerations for the

proposed Java Error Correction Algorithm discussed in this thesis. For example, most

compilers implement an error recovery mechanism. However, they do not provide any

error correction abilities. The focus of this research is error correction not error recovery.

Panic mode recovery: On discovering an error the input symbols are discarded

one at a time until one of a designated set of synchronizing tokens normally delimiters

24

such as semicolon or the end of the statement is found. This approach is simple,

however, it may skip a considerable amount of input.

Phrase level recovery: Perform a local correction by modifying the input stream.

These algorithms replace a prefix of the remaining input by some string that allows the

parse to continue. For example, replacing a comma by a semicolon, deleting an extra

semicolon, or inserting a missed semicolon is the philosophy embedded in these types of

recovery algorithms (Burke & Fisher, 1987).

Error productions: Use the language grammar augmented by some error

production rules to detect common errors. These extra rules generate erroneous

constructs which aid in the recovery process.

Global correction: Still perform a local correction but with global knowledge

leading to smallest replacements in order to satisfy the production that failed.

Error recovery in CUP

The error recovery mechanism in CUP is very similar to that ofYACC. Both

CUP andY ACC parser generators support a special error symbol (i.e., denoted as

error) (Hudson, 1999).

The error symbol:

i) plays the role of a special non-terminal which, instead of being defined by

productions, matches an erroneous input sequence;

ii) only comes into play if a syntax error is detected; and

25

iii) is used replace some portion of the input token stream with error if a syntax

error is detected and then continue parsing.

For example, we might have productions such as:

stmt ::= expr SEMI
while stmt SEMI
if stmt SEMI

error SEMI

This indicates that if none of the normal productions for s tmt can be matched by

the input, then a syntax error should be declared, and recovery should be made by

skipping erroneous tokens. This is equivalent to matching and replacing them with error

up to a point at which the parse can be continued with a semicolon.

An error is considered to be recovered if a sufficient number of tokens past the

error symbol can be successfully parsed. (The number of tokens required is determined

by the error Jync_sizeO method of the parser and defaults to 3).

The parser first looks for the closest state to the top of the parse stack that has an

outgoing transition under error. This generally corresponds to working from productions

that represent more detailed constructs (e.g., a specific kind of statement) up to

productions that represent more general or enclosing constructs (e.g., the general

production for all statements or a production representing a whole section of declarations)

until a place is reached where an error recovery production has been provided.

Once the parser is placed into a configuration that has an immediate error

recovery by popping the stack to the first such state, the parser begins skipping tokens to

find a point at which the parse can be continued. After discarding each token, the parser

26

attempts to parse ahead in the input. It does this without executing any embedded

semantic actions. If the parser can successfully parse past the required number of tokens,

then the input is backed up to the point of recovery and the parse is resumed normally

and will execute all actions. If the parse cannot be continued far enough, then another

token is discarded and th~ parser again tries to parse ahead. If the end of input is reached

without making a successful recovery or there was no suitable error recovery state found

on the parse stack to begin with, then error recovery fails.

CUP Error Methods

public void report_error(String message, Object info)

This method is called whenever an error message is to be issued. The default

implementation provides a message which is printed to System.err. Typically, this

method is overriden in order to provide a more sophisticated error reporting mechanism.

public void report_fatal_error(String message, Object info)

This method is called whenever a non-recoverable error occurs. It responds by

calling report_errorO, then stops parsing by calling the parser method done_parsingO,

and then throws an exception.

public void syntax_error(Symbol cur_token)

This method is called by the parser as soon as a syntax error is detected but before

error recovery is attempted. It is invoked automatically by the parser when a production

involving the error symbol is executed.

27

public void unrecovered_syntax_error(Sy.mbol cur_token)

This method is called by the parser if it cannot recover from a syntax error. In the

default implementation it calls: reportJatal_error("Couldn 't repair and continue parse",

null);.

protected int error_sync_size()

This method is called by the parser to determine how many tokens it must

successfully parse in order to consider error recovery successful. The default

implementation returns 3 which is the same for Y ACC and other parser generators.

Error recovery in JavaCC

JavaCC offers the design of the lexical analyzer and parser in a single file. As a

result, code that raises errors and exceptions are placed in this file (Norvell, 2004).

Whenever the token manager detects a problem, it throws the exception

TokenMgrError. Whenever the parser detects a problem, it throws the exception

ParseExcept ion. JavaCC supports two default forms of error recovery: Shallow

and Deep.

Shallow Error Recovery: Consider the following example:

void Stmnt() : p
DoWhileStmnt ()

WhileStmnt ()

28

Assume DoWhileStmnts start with the keyword "do" and WhileStmnts start

starts with the keyword "while". Suppose the desired error recovery scheme is to

recover by skip over all tokens until a semicolon is found when neither DoWhileStmnt

nor WhileStmnt can be matched by the next input token (assuming a lookahead of 1).

In other words, the next token is neither "do" nor "while". The following code will

perform this form of Shallow Error Recovery:

void Stmnt() :

p
DoWhileStmnt ()

WhileStmnt ()

error_skip_until(SEMICOLON)

where "error_skip_until" is defmed as follows:

JAVACODE
void error_skip_until(int kind) {

ParseException e = generateParseException();
System.out.println(e.toString());
Token t;
do {

t = getNextToken();
} while (t.kind != kind);

"error_skip_until" is no different from other non-terminals in the grammar.

Deep Error Recovery: Consider the same example as used for Shallow recovery:

void Stmnt() :

p
DoWhileStmnt ()

WhileStmnt ()

Deep Error Recovery is needed when recovery is required when there is an error deeper

into the parse. For example, suppose the next token was "while". As a result, the choice

29

"WhileStmnt (}"was taken. However, suppose that during the parse ofwhileStmnt (}

an error is encountered. For example, while (i<lO { i++; } that is, the')' is

not present. Unfortunately, Shallow recovery will not suffice in these situations -- Deep

recovery is required. JavaCC provides deep recovery via the the try-catch-fmally

construct. A rewrite of the above example for deep error recovery follows:

void Stmnt (} p
try {

(
DoWhileStmnt (}

WhileStmnt (}
}

catch (ParseException e) {
error skip until(SEMICOLON};

} - -

If there are any unrecovered errors during the parse of Do WhileStmnt or WhileStmnt,

then the catch block takes over. Any number of catch blocks may be specified and

optionally a fmally block Gust as with Java errors). What goes into the catch blocks is

100% Java code.

30

Current State of Intelligent Tutoring Systems

This section presents a review of the current research in Intelligent Tutoring

Systems. The review was important as it guided the design and development of the Java

Intelligent Tutoring System. The framework for the construction of JITS was based on

the widely accepted ACT -R theory of skill acquisition which was developed by a group

of computer and cognitive scientists at University of Pittsburg, and Carnegie-Mellon

University (Anderson, 1998; Anderson et al., 1995 2). This theory identifies a set of

cognitive principles for the development of tutors (Anderson, Boyle, Corbett, & Lewis,

1990; Anderson et al., 1995).

Intelligent Tutoring Systems have undergone significant changes over the years

and can be classified into three main categories. The first generation of ITS were basic

Computer Aided Instruction (CAl) systems. They presented text or graphics and

depending on the student's response, different pages would be shown. Model-tracing ITS

were second generation tutors that allow the tutor to follow the student's actions as they

work through a problem. The current level of research and development for Intelligent

Tutoring Systems is the third generation. These tutors engage in dialog with the student

to allow students to construct their own knowledge of the domain. For third generation

tutors, interaction with the student is the key element in the design since it is essential to

keep the student's attention on-task and as close as possible to the solution path. This has

the benefit of minimizing student frustration and reducing off-task activities that do not

yield in increased learning (Anderson & Pelletier, 1991).

31

Heffernan and Koedinger, 2001, state: "We think that if you want to build a good

[third generation] ITS for a domain you need to:

i) study what makes that domain difficult, including discovering any hidden

skills, as well as determining what types of errors students make;

ii) construct a theory of how students solve these problems (We instantiated that

theory in a cognitive model); and

iii) observe experienced human tutors to fmd out what pedagogical content

knowledge they have and then build a tutor model that, with the help of the

theory of domain skills, can capture and reproduce some of that knowledge."

(p. 24).

Item i) and iii) are well covered by my experience in programming for over 20

years and being a Professor of Computer Science for 10 years at the Sheridan Institute of

Technology and Advanced Learning. I was the coordinator of the Computer Science

Technology program for several years so I have frrst-hand knowledge of the curriculum

implemented. I have learned and taught over 10 different programming languages at the

post-secondary level. I understand Java very well and know the fundamental skills

required by students to solve programming problems, and am very aware of the types of

errors students make.

Item ii) is supported by ACT -R theory which can be summarized by four

principles. ACT -R theory is described in the following section.

32

ACT -R Cognitive Theory for Developing Tutors

The first principle derived from ACT -R is that it is essential to defme the target

cognitive model as a set of production rules (Anderson, 1998; Anderson & Pelletier,

1991). Production rules are a set ofiF- THEN- ELSE constructs which outline discrete

knowledge components which collectively represent the steps required for a student to

reach a solution for a problem. A typical ITS may have several hundred production rules

to effectively cover the dom.a,in and the various states a student may be in within a realm

of feasibility and predictability. Heffernan & Koedinger, 2001, reinforce this principle:

"Without this [principle] one does not have a well-defmed educational goal." (Koedinger,

2001).

The second principle concerns how these production rules are to be

communicated to the student (Anderson, 1998). According to ACT-R theory, one cannot

directly tell students the underlying rules (Anderson, 1998; Graesser, Person, & Harter,

2001). The goal for ITS is to provide a vehicle by which students construct knowledge

for themselves as opposed to having the information told to them (Woolf, Beck, Eliot, &

Stem, 2001). ITS need to communicate the production rules to students by providing

them with examples that illustrate the rules. As a result, the most effective way for

students to construct knowledge is to acquire these rules as a byproduct of problem

solving. TITS is designed to provide various opportunities for students to engage in

problem-solving activities for the beginner programmer. This form of experiential

learning is an effective way for students to construct knowledge and increase their

cognitive abilities (O'Reilly & Munakata, 2000).

33

The third principle of ACT -R theory is that one wants to maximize the rate at

which students have opportunities to form and practice these production rules (Anderson,

1993). Based on other research by ITS researchers, it was shown that what predicts

students fmal achievement is how much practice they have had of these rules and not

how that practice occurs (Anderson et al., 1995; Anderson & Pelletier, 1991). Associated

with the concept that "practice makes perfect" is the corollary to minimize floundering

which is incorporated into many leading-edge Intelligent Tutoring Systems. The basic

idea is to reduce student frustration during the problem-solving session and select

problems that offer practice on those production rules where students most need practice

(Anderson et al., 1995).

The fourth principle of ACT-R cognitive theory for tutoring deals with how to

treat errors in student problem solving (Anderson, 1998). Anderson et al. bases this

principle on an earlier work in 1990, which states, "people learn best when they generate

the answer for themselves rather than are told" (Anderson et al., 1990). However, the

consequence of letting people generate their own knowledge is that errors are inevitable.

Fortunately, there are four considerations outlined in ACT-R theory that deal with error

remediation (Anderson, 1998). First, many errors do not reflect misunderstandings or

lack of knowledge; rather the errors are simply unintentional slips. The second

consideration is that people learn best when they construct the knowledge themselves.

This is analogous to hands-on training as opposed to lecture-based teaching. The third

consideration is that a lot of time can be wasted when the student is floundering while

trying to solve a problem. This state is called an error state and is not beneficial for

34

learning. The fourth consideration is that when students have problems with their

knowledge it is more effective to provide another opportunity to learn the correct

production. Since the student does not need a deep appreciation of their error, it is not

effective for the ITS to expound on it (Heffernan & Koedinger, 2001).

The ACT -R Theory for the development of tutors has led to a standard framework

for the design and construction of Intelligent Tutoring Systems. The goal of this

framework is to ensure that Intelligent Tutoring Systems will provide rich learning

environments for students that will support his/her cognitive development in the specific

domain of study in as effective means possible. Many researchers in the area of ITS

support the following steps to design and construct an Intelligent Tutoring System.

1) construct the interface;

2) define the production rules;

3) create the declarative instruction;

4) set up the pedagogical agent to knowledge trace, manage the curriculum and

engage the student through rich-interaction (Anderson, 1998; Anderson et al.,

1990; Heffernan & Koedinger, 2001).

35

CHAPTER THREE: DESIGN

This chapter presents the design of the Java Error Correction Algorithm in the

framework of the design of the Java Intelligent Tutoring System. The design approach

for JECA evolved from research in the field of error recovery and the tools available for

compiler design. JITS evolved from a collection of work in the field of computer

science, cognitive science and AI.

Motivation for the design of the Java Error Correction Algorithm

The initial design of JECA arose from a significant amount of research in the area

of knowledge engineering, decision trees and expert systems. For instance, initial

research focused on how to identify and correct an error given a simple programming

problem using the "for" loop construct to calculate the arithmetic sum from 1 to a

specified number. Table 2 presents some ofthe issues with this problem.

Table 2 Initial design issues for JECA

Problem:
Write a program called "Summer" which adds all the integer numbers from 1 to a
specified number (N). For example, ifN were assigned the value 10, then the sum of the
numbers from 1 to 10 is 55.

Program specifications:
This program requires the use of a for-loop structure. A skeleton structure ofthe solution
is given. Fill in the code to complete this program.

Required Output:
Sum = 55

36

Skeleton Program (given to student in Source Code area):

Solution (one of many):
public class Summer {

public static void main(String[] args) {
int sum = 0;
int i;
for (i = 1; i <= 10; i++)

sum += i;

System.out.println("Sum ="+sum);

Using the arithmetic sum problem described in Table 2, Figure 4 depicts how the expert

model's solution may be divided into discrete sections. Based on this, Figure 5

represents the high-level functional decomposition tree for this problem. Figure 6, 7 and

8 present the semantic_decision_tree for this problem. Two methods were proposed to

supportthefeedbackmechanism: general_hint (int context, String

snippet) andspecific_hint(int context, String snippet).

Although the decision trees isolate the specific area of error within the student's code,

additional fme-grained analysis may occur within these methods. These methods are

37

passed an integer representing the context in which the current programming issue has

been identified. The second argument, snippet, represents the small portion of code

associated with the given context.

~ T T 1
for (i = 0; i <= 10; i++)

sum += i;

~
Figure 4. Sub-sections of expert model solution.

Solve for-loop
programming
problem #1

+
+ +

Step 1: Step2:
Investigate correctness Investigate correctness
of for-loop statement of body of for-loop

+ + + +
Step 1.1:

step 1.2: step 1.3:

Investigate for-
Investigate for- Investigate for-

loop: init section
loop: conditional loop: update

section section

Figure 5. High-level functional decomposition tree.

38

Is the 'for' keyword
present?

yes

Investigate which section of the for
loop is incorrect fonnat then issue

general_hint(context, snippet)

Issue
specific_hint(context, snippet)

no

no

no

Figure 6. llTS semantic_decision_tree (sections A and B from Figure 4 only).

39

Issue
specific_hint(context, snippet)

Issue
specific_hint(context, snippet)

no

no

Is C of generic
format:

variable op. literal?

Is C of format:
variable < literal or
variable <= literal?

no

yes

Is C of format:
i <literal or
i <=literal?

yes

Issue
specific_hint(context, snippet)

Is C of format:
i<11ori<=10?

Issue
specific_hint(context, snippet)

no

InvestigateD section
of for-loop

Figure 7. llTS production rules (semantic_decision_tree; section C from Figure 4 only).

40

Issue
specific_hint(context, snippet)

no

Issue
specific_hint(context, snippet)

Is D of generic format:
variable++ or
++variable or

variable = variable + 1 or
variable += 1 ?

no

Is D of format:
i++ or
++i or

i=i+1or
i += 1?

yes

Investigate E section

Figure 8. JITS production rules (semantic_decision_tree; sections D from Figure 4 only).

Unfortunately, this representation of the various errors that may occur in such a

programming problem requires a huge decision tree. Such a decision tree would still not

cover all of the possibilities. To illustrate this issue, Table 3 presents some scenarios of

the types of submissions that may be encountered in solving the arithmetic programming

problem described in Table 2.

41

Table 3 Scenarios representing the various types of code submissions to the arithmetic
sum programming problem

Incorrect response #1 (student response area):
(redeclaration ofvariable 'i')

for (int i = 1; i <= 10; i++) {
sum += i;

Incorrect response #2:
(sum does not include last integer (i.e., '10')

for (i = 1; i < 10; i++) {
sum += i;

Incorrect response #3:
(sum is 0, as the body of the loop is never executed)

for (i = 1; i > 10; i++) {
sum += i;

Incorrect response #4:
(adding 1 instead of variable 'i': results in sum being lower than expected)

for (i = 1; i <= 10; i++) {
sum += 1;

Incorrect response #5:
(incorrect formula)

for (i = 1; i <= 10; i++) {
sum = i + i;

Incorrect response #6:
(correct formula, but incorrect incrementing of i)

for (i = 1; i <= 10; i=i+i) {
sum = sum + i;

etc.

42

There are limitless possibilities for student responses and the system cannot simply list

incorrect responses coupled with error correction feedback messages. Testing the

correctness of a program is not an easy task and cannot be achieved just by giving a set of

fixed responses. As a result, attention was turned to various tools as described in the

literature review, namely JFlex, CUP and JavaCC as described in the literature review.

The researcher had two goals in mind: one, to parse the student's submission more

rigorously, and two, to construct an error correction mechanism that would error-correct

across all of the Java language. In other words, it would offer meaningful error

correction feedback messages not just for the "for" loop construct previously described.

The design strategy is presented in the following section.

Java Error Correction Algorithm Design

This section describes the design of the Java Error Correction Algorithm. The

design arose from research involving decision trees, expert systems, and compiler tools.

It became clear after preliminary research that JavaCC provided the best features for the

development of an error correction algorithm. JECA is designed to consider three

distinct cases:

CASE 1: student enters perfect code and it compiles and runs;

CASE 2: student enters code that needs modification but with JECA changes will

compile and run; and

43

CASE 3: student enters code that needs modification but will not compile regardless of

all corrections employed by JECA, however, suggestions are presented to the

student to bring the code to a closer state for compilation.

The algorithm used by JECA is presented below.

1. Create a copy of the student's submission (i.e., "modified_source").

2. The scanner examines the student's code and attempts to extract a token. LetS be the

stream of characters to be validated as a token.

3. A validation process ensues in which comparisons are done using the reserved words

and keywords of Java (Table 4), extended keywords (Table 5), and previously

declared identifiers.

4. For a given identifier, if the scanner discovers, within a certain threshold, that Scan

undergo transformations to convert S into a valid token (i.e., a reserved word or

keyword, an extended keyword, or as a previously defmed identifier) then it will do

so. However, if the scanner determines that Sis sufficiently different from all of the

items previously compared to then it will be left unchanged (i.e., it will remain as a

new identifier).

5. Update the modified_source code to reflect these changes and the newly constructed

token is submitted to the parser.

44

6. Repeat 1 through 4 until all input from the student's source code has been processed

and the parser has completed the construction of the parse tree representing the

modified_source code.

7. Try to parse and compile the modified_source code. If the compilation succeeds then

relay the modifications performed to the student in order for them to correct their

code and stop processing.

8. If the previous step fails then extract information regarding why it failed and set up a

competition of permutated parse trees containing insertions, deletions and

replacements at the problem area.

9. Run these permutated trees through the parser. The goal of this stage is to determine

if the specific problem where the parse failed has been corrected.

10. Select the "best tree(s)" and compile these. The "best tree" is defmed as the tree that

allowed the parser to successfully consume the largest number of tokens compared to

the other trees in the competition.

11. If one or more of these trees successfully compiles then present this information to

the user indicating the changes made to the student's source code.

12. If none of the trees successfully compile then present the information to the student

regarding the selection of the best tree.

13. Let the student respond/make corrections to the source code.

14. Repeat the process from 1 to 13.

The algorithm employed by JECA is presented in flowchart form in Figure 9 and

Figure 10.

45

Table 4 Java Reserved Words and Keywords

abstract else interface super
boolean extends long switch
break false *** native synchronized
byte final new this
case finally null *** throw
catch float package throws
char for private transient
class goto * protected true ***
canst * if public try
continue implements return void
default import short volatile
do instanceof static while
double int strictfp **

Note:
* indicates a keyword that is not currently used
**indicates a keyword that was added for Java 2
*** true, false, and null are reserved words.

Table 5 Extended Java Reserved Words and Keywords

Boolean
Character
Number
Byte
Double
Float
Integer
Long
Short
String
StringBuffer

Note:
this list is a subset of the objects defmed in java .lang.

46

yes

yes

yes

Update
modified_source

code

Pass to parser
"keyword" token

Pass to parser
the correct token

Pass to parser
"identifier" token

Update
modifed_source

code

Update
modifed_source

code

Update
modifed_source

code

Figure 9. First Component of JECA- scanner correction activities.

47

no

no

Setup a competition of
permuted parse trees
containing insertions/

deletions/replacements

Run them through parser

yes

Relay appropriate
message to student (i.e.,

grammar correction)

Relay appropriate
message to student (i.e.,
identifier correction(s))

Relay appropriate
message to student (i.e.,
identifier correction(s))

Relay appropriate
message to student (i.e.,

all corrections made to the
"best trees")

Figure 10. Second Component of JECA - parser correction activities.

48

Java Intelligent Tutoring System Design

The design of the Java Intelligent Tutoring System heavily relies on JECA to

provide the necessary information in order to offer suitable feedback to the student

programmer. However, there were a number of factors that were considered in the design

of JITS beyond what JECA offered. The two main perspectives that were considered in

the design of llTS were both the student's and the instructor's perspective. In order for

an ITS to be successful in today's e-learning society, JITS was designed with the

following qualities.

Student Perspective

The following qualities were deemed important in the design to satisfy students,

were part of the desired list of criteria in the design of llTS:

1. provide an easily understood student-friendly user interface that provides all the

necessary features for effective ITS tutoring;

ii. provide access via an ordinary browser;

iii. will not need a high-speed internet connection (i.e., dial-up connection will work

fine, thus, students in remote locations have full access to this resource);

iv. process student's code submission and respond quickly to the student;

v. support many students concurrently working with the ITS;

vi. effect interactive, clear and concise with error messages and hints;

vii. track student performance in a database (e.g., ORACLE); and

vm. model the user as s/he works through a problem;

49

Instructor Perspective

The design of JITS also considered the instructor perspective. The following

factors were important in meeting the needs ofteachers using this ITS.

i. requires the author of the problem to provide minimal information (e.g., problem

statement, program requirements and required output);

ii. the author of the problem does not specify any solutions (this is based on the

premise that for a given programming problem there may in fact be numerous

solutions);

iii. JITS must be able to recognize a very large number of possible solutions for a

particular programming problem;

iv. student performance information should be easily accessible;

v. an instructor-friendly web-based user interface to author problems (i.e., Authoring

Tool);

steps:

The design of JITS employed the ACT-R theory by following these recommended

1) construct the interface;

2) define the production rules;

3) create the declarative instruction;

4) set up the pedagogical agent to knowledge trace, manage the curriculum

and engage the student through rich-interaction (Anderson, 1998;

Anderson et al., 1990; Heffernan & Koedinger, 2001).

From a pedagogical perspective, the framework depicted in Figure 11 was used.

50

Figure 11. JITS Tutoring Framework.

51

CHAPTER FOUR: IMPLEMENTATION

Java Error Correction Algorithm (JECA) Implementation

The core module of the Java Intelligent Tutoring System is the Java Error

Correction Algorithm (JECA). The first component of JECA involves scrutinizing the

identifiers that the scanner has tokenized by comparing them to keywords, reserved

words, extended keywords, and to currently validated identifiers. The second component

has the parser perform a rigorous deep level error recovery technique implemented by a

variation on the Burke-Fisher Error Recovery algorithm (Burke & Fisher, 1987). This

algorithm is explained in greater depth in the following sections.

First Component of JECA: Error Recovery in the Scanner (Lexical Analyzer)

It is sometimes desirable to change what the scanner has interpreted to a single

Java keyword. The reserved words and keywords in the Java programming language is

presented in Table 4. As an example, suppose the beginner programmer submitted the

following code:

public class Test {
public static void main() {

Int sum = 0;
For (iint i=O; i<=lO; i++)

sum = sum + i;
System.out.println("Sum is:"+ sum);

There are 3 distinct syntax errors. The "Int sum=O;" statement, the "For", and the

"iint". It is desirable to present the appropriate information to the student programmer

in a way that is both supportive and direct. In this example, the student mistakes the

52

"Int" and "For" for the keywords "int" and "for" respectively. A typical compiler

will produce the following:

Test.java:5: ')' expected
For (iint i=O; i <=10;

Test.java:5: not a statement
For (iint i=O; .i <=10;

1\

Test.java:5: ';' expected

i++)

i++)

For (iint i=O; i <=10; i++
1\

3 errors

The proposed error recovery algorithm, JECA, attempts to understand the "intent"

behind the student's program and by prompting the student, and behind-the-scenes

modifies the submitted program as follows:

public class Test {
public static void main(String args []){

int sum = 0;

}
}

for (int i=O; i <=10; i++
sum = sum + i;

System. out. println (11 Sum is: 11 + sum);

generating the anticipated result:
Sum is:SS

The student will receive prompts for each "assumption" the JECA intent

recognition module is performing. For example, on encountering the "Int" in line 3, a

message such as "I found an 'Int'. Would you like to replace it with 'int'? (y/n)" In

this fashion, the student of the system is fully aware of all changes that are taking place

on the submitted code. In other words, all changes are made explicitly known to the user.

This philosophy is different from other compiler designs that make changes to the source

program without notifying the user (Fischer & LeBlanc, 1991; Sykes & Franek, 2003).

53

For example, an analogy is found in the C programming language. Given a simple

program like:

main() {
return 0;

}

may be interpreted by a compiler as:

int main() {
return 0;

}

The compiler implicitly puts in the default type 'in t' during compilation. Such

implicit changes can be misleading to the user (Fischer & LeBlanc, 1991). JECA, on the

other hand, does not do any implicit changes to the code. All code changes are overt. A

supporting mechanism used to do this is depicted in Figure 12.

54

Figure 12. Keyword object and _keyword data structure.

A Keyword object houses all attributes and functionality associated with a

keyword in the language. It contains the name of the keyword (i.e., String _name),

the symbol table ID for the keyword (i.e., int id), dynamically learned variations on

the keyword (i.e., String _variation []),the number oftimes these

corresponding variations have occurred (i.e., in t count []), and the total number

55

ofvariations learned at this time (i.e., int _variation_ count). The Keyword

object contains useful information that can be used for statistical analysis and capturing a

representative model of the student of the system. By keeping track of the types of errors

the student makes and the number of times these types of errors occur, the system is in a

good state to offer meaningful feedback to assist the student to program better. Similar .
data structures are implemented for Extended_Keywords, and Identifiers in order to

record information regarding these types of data. This information is gathered during the

lexical analysis phase by JECA.

Given a lexeme that has currently been classified as an identifier token, the

objective is to analyze this lexeme and determine if it should remain as an identifier or be

classified as a different type of token. The algorithm includes a reference to the

Edit_Distance object that has a method to determine the edit distance between two

strings. For example, given the strings, "while" and "wiles", the edit distance is 2 (i.e., a

count of 1 for the missing character 'h', and 1 for the additional character's'). The

algorithm for this identifier-classification process is presented below:

loop
i = 0
go through the keyword array
extract the keyword name at position i
d = Edit_Distance (lexeme to keyword)
if (d <= THRESHOLD)

add it to a refinement collection
i++

end loop

perform refinement on the refinement collection and determine if it
should be considered a keyword, extended_keyword, or as a new
identifier

56

JECA uses an additional object called 'BestMatch' to assist in refining the search

for appropriate potential keyword matches. The refmement collection is a Java

Collection of BestMatch objects which represents the best matches of all the keywords

that are similar to the identifier in question. The refinement process proceeds and applies

additional rules and constraints to narrow the number of BestMatches until it is

determined that the identifier is indeed a valid identifier or should be converted into a

keyword. Once this is determined, the lexical analyzer (i.e., TokenManager in JavaCC)

returns the appropriate Token to the parser. A figure of the BestMatch object is presented

in Figure 13.

Figure 13. BestMatch object- used for the refinement process in determining an
identifier or a keyword.

A member of the BestMatch object is _transformation_string. This member

receives this value from the Edit_Distance algorithm. The Edit_Distance algorithm

accepts two strings for comparison and determines the closeness of these strings by

performing insertions, deletions, and character replacements (Sykes & Franek, 2003).

57

The cost for an insertion, deletion, transposition, or character change is 1. Figure 14

depicts a transformation string given two strings "Forr" and "for". The algorithm is

quite flexible and can be easily modified to accommodate various scenarios. For

example, the edit distance in Figure 14 could be 2 (i.e., case-mismatch 'F' and an

additional 'r'). It could also configured to produce an edit distance of 1.5 (i.e., case-

mismatch = 0.5 and 1 for the additional 'r') or any other cost depending on setting some

switches. The rationale behind this is based on the premise that the algorithm should

draw close relationships between strings that have the correct sequence of characters but

may not have the correct case. Researchers in the area of education and psychology

believe this concept is pedagogically sound (O'Reilly & Munakata, 2000). A student who

uses "For" instead of"for" has a clearer conceptual understanding of the "for loop"

construct than a student who uses "Fore" for instance. These different cognitive models

are reflected in the algorithm.

Forr
-1 I
fo-r

Figure 14. BestMatch member contains the Transformation string from Edit_Distance
algorithm.

Second Component of JECA: Error Recovery in the Parser

JECA's parser component algorithm implementation is loosely based on the

Burke-Fisher Error Recovery algorithm (Burke & Fisher, 1987; Fischer & LeBlanc,

1991). This algorithm exhaustively tries single token insertion, deletion or replacement

at every point within k tokens before where the error occurs. In other words, k represents

58

a window of tokens where the problem resides. Given N, representing the total number

of tokens in the language, there are k+kN+kN possible deletions, insertions and

substitutions within the k token window (Burke & Fisher, 1987). The k token window is

kept on a queue. In this algorithm, all semantic actions must be delayed to prevent

unwanted side effects until parse is validated (Burke & Fisher, 1987).

The Burke-Fisher Error Recovery algorithm uses 2 stacks, current and old, and a

queue of k tokens (Burke & Fisher, 1987). old stack contains all successfully parsed

tokens so far. current stack contains potential tokens covering a window of the next k

tokens. old stack and queue are used together to reparse string after replacement, deletion

or insertion of single token into queue. Figure 15 and Figure 16 depict an example using

the Burke-Fisher error recovery algorithm.

old stack new stack
INT_LTR ...__ Top of stack Top of stack ___. INT_LTR

= =
ID ID

I

Input stream = 22 5 EOF

Figure 15. Burke-Fisher error correction algorithm with a 4-token queue in the middle of
processing a statement production.

59

old stack

~Top of stack

4

Input stream =

e

new stack

Top of stack ____., *

INT_LTR

=
10

.... EOF

Figure 16. Burke-Fisher error correction algorithm with a 4-token queue completing the
processing of a statement production and commencing a new production.

60

The proposed parser error recovery algorithm for JECA is similar in nature to the

Burke-Fisher algorithm. However, there are some significant differences. First, since

JECA is aimed at the beginner Java programmer, the size of the source program will

always be very small (i.e., 50 lines of code or less). As a result, a Vector (i.e.,

java.lang.Vector) Abstract Data Type (ADT) is used to store the entire source program in

memory. In this fashion, the tokens can be easily traversed and manipulated thus

providing opportunities for greater analysis on the input program. Second, the Burke

Fisher algorithm delays semantic actions to prevent unwanted side effects. In JECA there

are no semantic actions as would be expected in a typical compiler. In other words,

unlike other compilers that generally produce assembler code, or intermediate code, the

proposed algorithm's goal is to correct errors so that the parse will be as valid as possible.

It does not have extensive semantic actions like other compilers. The output of the

proposed algorithm is a modified source code that is intended to successfully parse by the

standard "javac" executable (i.e., Java compiler). The standard Java compiler will be

invoked next to perform the translation from the modified source program to byte code.

The third main difference between Burke-Fisher's algorithm and JECA's is that the

student programmer will be asked for clarification during the error recovery session.

Instead of using Burke-Fisher's approach to exhaustively insert, replace, or delete tokens

in a k-window token list, only the most probable tokens will be presented to the student

programmer. As a result, the student has a significant degree of control over the error

correction process. This is supported by an inner module which generates parse tree

variations which are then tested against the parser and Java compiler. These variations

61

are based on a number of considerations involving token replacement, deletion,

insertions, and transpositions. A competition is arranged such that the parse tree(s) that

succeed in recognizing the most tokens in the source code are selected for further

scrutiny. It then becomes a competition among the best trees to determine the

appropriate course of action in terms of determining the specific hints issued for the

student. Table 6 depicts this internal JECA functionality. Please note the student does

not see any of these computations.

The fourth difference between the Burke-Fisher algorithm and JECA is that the

parsing stops when it encounters a situation that it cannot satisfy the current production.

The justification for this stems from the philosophy behind teaching beginning

programmers (Anderson et al., 1995; Sykes, 2003). It is important that the student

programmer does not become overwhelmed by the number of error messages produced

by compilers when errors occur (Graesser et al., 2001; Koedinger, 2001). Rather, it is

more helpful to:

i) extract detailed information regarding the single error message and stop parsing;

ii) provide one clear and meaningful error message to the student; and

iii) encourage the student to make the correction (O'Reilly & Munakata, 2000).

62

Table 6 Internal JECA parse tree permutations and competition for the selection of the
best trees

Given the following program:
1 public class Test {
2 public static void main(String args []) {
3 iint sum = 0 ;
4 FOR (Int i=O; i<lO i++) //missing
5 sum = smu + i;
7
8

' . ' '

and submitting it to JECA will yield a ParserException stating:
Line 4 Column 30
Offending token: kind=>identifier, image=> "i"
Previous to Offending token: kind=>integer_literal, image ==> "10"

The ParserException contains a list of expected tokens:
Expected ...

>
<

<=
>=

etc.

JECA takes this "expected" list, creates permutations on the base parse tree involving
insertions, deletions, replacements, and transpositions, and then sets up the competition
to determine the best tree ...
Nothing compiled successfully ... but here is the best tree ...

public class Test {
public static void main(String args []) {

int sum = 0 ;
for (int i = 0; i < 10; i++

sum = smu + i;

63

Java Intelligent Tutoring System Implementation

The JITS infrastructure supports the student via a browser accessing information

from the tutor via an HTTP request/response process model. The processing is

accomplished by JavaBeans™ within a servlet engine web server. The presentation layer

uses JavaServer Pages ™ technology which communicates to the bean representing the

student and creates an XHTML page for the student's browser. During processing the

bean gathers all the information about the student's code and submits it to JECA for

processing. The infrastructure architecture uses a JDBC connection from the

JavaBeans™ to an external database which stores and retrieves specific information

about the student including student history and performance statistics.

The implemented architecture has numerous benefits (Pawlan, 2004). It is

scalable, platform-independent, and lightweight (Pawlan, 2004). The student will never

need to install software on his/her machine and will not need a high-speed network

connection to use JITS. Other benefits include fast execution as all processing is done on

the middle-tier web server, currently equipped with 4GB RAM and 2 Pentium-IV

processors. The net result is a product that increases the accessibility for llTS to many

students - a vital requirement for an equitable and successful educational product in

today's Internet-ready community. Figure 17 presents a pictorial view of the llTS multi

threaded distributed Web-based Infrastructure.

64

Cllent1
bro-

+
Javalleena
(bualnauloglc)

JDBCSQL

JDBC RuultSet

'
1) Information

(I.e., student history, atatlatlca,
problema solved, lumlng style, etc.)

2) Problem uta (-nt,
specification, solution, etc.)

Figure 17. llTS multi-threaded distributed web-based infrastructure.

65

AI Module

_student__name \:=:::::;-----'
_skiiUevel [3!]

_probl.na_attarnptedl Problems: 1, 3, 4, 7 ...

problema solved I Problernl: 1, 4, 7,.

_next_pn>blem I """"""'-'" I
_performance_ratlng [2[]
_performance_histoty c==J

_timea_comec:l8d c==J
_dala_laat_conneclion c:==:J

Figure 18. JITS student model and related modules.

Human-Computer Interaction

The interface for computer-based programming tutors was given careful

consideration during the design of the Java Intelligent Tutoring System (llTS). The user

interface is based on a presentation format implemented in many popular Integrated

Development Environments used by professional programmers (e.g., Visual Cafe,

66

JDeveloper, JBuilder, etc.). The JITS login screen and user interface is shown in Figure

19 and Figure 20 respectively.

U!i18P!&!I8 : lsyke$
password : ;;;.;(••;..;..•_ .. -... -, "'-r~--"".....,

Figure 19. JITS login screen.

Students are presented with a problem, the problem specification, the skeleton

code, the code editor, and a number of buttons with which to interact with the tutor. The

student types in his/her solution in the Source Code Area (see Figure 20) and presses

"Submit". This invokes a call to the corresponding JavaBean™ representing the student.

The code is then dispatched to JECA, which processes the submission and generates a set

of appropriate hint objects. The student, at any time, may explicitly request a hint from

JITS by pressing "View Top Hint" or "View All Hints". The hints are dynamically

generated based on the problem details and the student's submission.

67

Problem: (I of 4) in Problem Sat# 4 (Topic: fo,.IDDp:s)
Write a program called Summer wbich adds Ill the intl:ger numbers from 1 to a specified number (N). For
example, ifN were assigned the value 10, then the sum of the numbers from 1 to 10 is 55.

Provam Specifications:
This program requires the use of a for-loop structure. A skeleton strw:ture of the solution is ~en. Fill in the
code to complete this program.

Required Output:
Sum=55

public clcss Summer {
public stctic void mcin(String [] ergs) {

int sum • 0;

System.out.println("Sum • "+sum);

Figure 20. TITS User Interface.

In the Java Intelligent Tutoring System teachers are not required to submit

I.

solutions during problem authoring. This is based on the premise that given virtually all

programming problems there are potentially limitless solutions. Supplying only one

solution for a given programming problem is not an acceptable approach. As a result, a

Collective_Student_Model representing the sum knowledge of all students was designed

68

and developed. This Collective_Student_Model analyses all student's submissions and

extracts those which are solutions to the particular problem the student is currently

working on. The AI_Module uses the information in Collective_Student_Model to

determine appropriate feedback. Table 7 shows a small example illustrating this

additional functionality. At any time, the student can see their performance by pressing

the "My Performance" button. The results are displaying indicating the Problem Set,

Problem #, Solved, Solution Viewed, and for comparison, the Average Student

Performance. Table 8 depicts the output from the "My Performance" button.

Table 7 "View Solution" presenting solutions for the current problem

Solution 1:
for (int i=O; i<=lO; i++ {

sum = sum + i;
}

Solution 2:
for (int i = 1; i<ll;i++)
{

sum = sum + i;
}

Solution 3:
for (int i l;i <= lO;i++)

sum = sum + i;

69

Table 8 JITS results from student pressing the "My Performance" button.

My Performance:

Pr~~~em ~~ Solved Average Student

mm mml [',~-, ,-, ,-.. ~-.. ~-:.4-... -att_e_m_p_ts_s_o-far-.... -.... -~-~·...,· L Yes. 2 attempts to solve.

2 i I. No. 2 attempts so far. ' r[_1'4_e_s. __ 2 attempts to solve.

3J L No.4 attempts so far. l Yes. ,...---2-a_tt_em_pt-s-to_s_o_lv-e-. -

l I No. 1 attempt so far. [. No • 1 attempt to solve.

.------~ No. 1 attempt so far. .---------, 1 attempt to solve.
,...-------- r----------,

2 attempts to solve.

4 2 No.3 attempts so far. No. 3 attempts to solve.

4 3 No.2 attempts so far. No. 6 attempts to solve.

TITS contains the following programming topics:

i) Java Basics;
ii) Java Statements;
iii) if statement;
iv) for loops;
v) do while loops;
vi) while loops;
vii) Arrays

Each programming topic corresponds to "Problem Sets" which contain many

"Problems". All of the information on the web page is dynamically constructed using

70

Java ServerPages™ technology. Information is extracted via JDBC, from an ORACLE

database schema and embedded into the JITS web page. The schema is presented in

Table 9.

Table 9 JITS ORACLE schema tables

CREATE TABLE PROBLEM SETS
problem_set_id
problem_set_title
problem_set_desc

NUMBER(3) I

VARCHAR2 (30) I

VARCHAR2(400),
) ;

CREATE TABLE PROBLEMS
problem_set_id
problem_id

) ;

problem_desc
problem_spec
problem_output
template_top_section
template_bottom_section
problem_difficulty
problem_keywords
picture

CREATE TABLE STUDENTS (

) ;

student name
student _password
problem_set_id
problem_id
skill level
performance_rating
performance_history
times connected
date last connection
picture

CREATE TABLE STUDENT PROBLEMS
student name
problem_set_id
problem_id
number_of_attempts
solved

) ;

students solution
solution date

NUMBER(3),
NUMBER(3),
VARCHAR2(400) NOT NULL,
VARCHAR2(400) NOT NULL,
VARCHAR2 (50) I

VARCHAR2 (400) I

VARCHAR2 (400) I

VARCHAR2 (2 0) I

VARCHAR2 (200) I

LONG RAW,

VARCHAR2(30),
VARCHAR2 (15) I

NUMBER(3) I

NUMBER(3) I

NUMBER(3) I

NUMBER(3) I

VARCHAR2 (2000) I

NUMBER(S),
VARCHAR2(30),
LONG RAW,

VARCHAR2(30),
NUMBER(3) I

NUMBER(3),
NUMBER(3),
CHAR(l) I

VARCHAR2(500),
VARCHAR2 (30) I

71

Hint Generation

An additional design consideration is the categories of hints that are generated by

JECA for llTS. There are a number of different categories of hints that may be created as

a result of the student's code submission. They are presented in Figure 21.

KEYWORD REPLACEMENT HINT = 1; - -
EXTENDED TYPE REPLACEMENT HINT 2;
IDENTIFIER REPLACEMENT HINT = 3;
GRAMMATICAL HINT = 4;
CLOSE_BUT_LOGIC_ERROR = 5;
SUCCESSFULLY SOLVED PROBLEM 6;
GENERAL HINT= 7;
OTHER TYPE OF HINT = 8;

Figure 21. Hint categories.

A KEYWORD REPLACEMENT HINT arises from a situation where the student

typed in a suitably close representation to a Java keyword. For instance, if the student

typed in 'Wh i 1 e s ', this would be interpreted as the keyword 'whi 1 e '. An

EXTENDED_ TYPE_ REPLACEMENT_ HINT is when the student wrote 'Sting' which

will interpreted as 'String'- the java .lang. String class. An

IDENTIFIER_ REPLACEMENT_HINT is used in the situation where a suitably close

match to an existing identifier has been found. For example, consider the following

snippet of code:

int my_int = 0;
my_it = my_intt + 1;

II declaration
II and use

There would be two IDENTIFIER REPLACEMENT_ HINTs generated for this piece of

code:

Identifier Replacement Hint: Would you like me to replace "my_it" with "my_int"?
Identifier Replacement Hint: Would you like me to replace "my_intt" with "my_int"?

72

A GRAMMATICAL_ HINT is generated when the parser fails on a particular

production in the Java grammar. Specific information regarding the error is recorded in

the Hint object depicted. The last two types of hints are GENERAL_ HINT and

OTHER TYPE OF HINT. GENERAL HINT is used in the situation when the student is

far from the solution path and needs to be realigned with the program statement and

program specifications for the posed problem. If the student's code compiles but

produces output that is not the same as the required output, as specified in the problem

statement, the CLOSE _BUT_ LOGIC_ ERROR is used. When the student solves the

problem the SUCCESSFULLY_ SOLVED_ PROBLEM hint is used. Lastly,

OTHER TYPE OF HINT is reserved for future research.

There are a number of important pieces of information represented in a Hint

object. The Hint object is depicted in Figure 22. The _type member corresponds with

one ofthe six types of categories of Hints currently supported in JECA. The col and

_1 ine members specify where the error occurred. The _1 ine _of_ code and

_error _pointer represent the source code and the exact location of where the error

occurred. There are two tokens to assist in identifying where the error occurred in terms

of the tokens. _offending_ token represents the precise token the parser failed on,

and _previous_ to_ offending_ token represents the last successfully parsed

token during parsing. The _hint member is a String summarizing the actual hint relying

on the values of other data members in this object. It is intended to be used during the

feedback process during student tutoring. The last member of the Hint class is the

_confidence, which will be assigned an integer from 1 to 10. A confidence value of

73

1 indicates a high level of certainty indicating the suggested hint is correct and will bring

the student closer to a compiled program. On the other hand, a confidence value of 10,

indicates uncertainty on behalf of the hint generated. In these situations, the student will

have to use their own judgment based on the detailed information provided to them by

the Hint objects, namely the data members,_ type,_ col, _line, _line_ of_ code,

_error_pointer,_offending_Token,and

_previous_to_offending_Token.

I GRAMMATICAL HINT

_col QIJ
_line m
_une_ot_code '""I t=-or....,(,.....int.,..,i...,=o=-: .,...i <-=....,.1 o"'";-,-i+-+ __,

_error_pointer I A I
offending Token I sum I
previous to_ offending_ Token EJ
_corrected_line_of code '""I f,...or-:(:-int::-:i-:=0::-; :-i <-=....,.10"'";-,-i+-:-+ ~) I

hint Grammatical hint: Look near line: 8 column:
- 10. Look between the "++" and the "sum"

_confidence ~

Figure 22. A JECA Hint object representing a grammatical error.

An example follows to illustrate these design aspects of the proposed error

correction algorithm.

74

Given the source program depicted below:

public class Test {
public static void main() {

Int sum = 0;

}
}

For (iint i=O; i<=lO; i++
sum = sum + i;

System.out.println("Sum is:"+ sum);

Figure 23. Arithmetic sum Java program with grammatical errors and syntax errors.

JECA would modify the program to:

public class Test {
public static void main(String args []) {

int sum = 0;

}
}

for (int i=O; i <=10; i++)
sum = sum + i ;

System.out.println("Sum is:"+ sum);

Figure 24. Internally corrected JECA source program for the arithmetic sum problem.

As a result, the following Hint objects would be created by JECA:

1) Keyword replacement hint: Would you like me to replace "lnt" with "int"?
2) Keyword replacement hint: Would you like me to replace "FOR" with "for"?
3) Keyword replacement hint: Would you like me to replace "iint" with "int"?
4) Grammatical hint: Look near line: 8 column: 10. Look between the "++" and

the "sum"

The following section depicts how the Hint objects are used in a typical dialog

between JITS (via the supporting JECA module) and the student programmer. Using the

example presented in Figure 23 , focusing only on the area where the student enters code

in the "source code area" (see Figure 20).

Table 10 presents the dialogue between JITS and the student.

75

Table 10 Hint objects utilization and typical dialogue between JITS and the student

Student's submission:
For (intt i = 1; i <= 10; i++ {

sum = smu + i;
}

nTS: Would you like to replace "For" with "for"? (Keyword replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (intt i = 1; i <= 10; i++ {

sum = smu + i;
}

nTS: Would you like to replace "lot" with "int"? (Keyword replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (int i = 1; i <= 10; i++ {

sum = smu + i;

JITS: Look near line: 4 column: 37.
Look between the"++" and the"{" (Grammatical hint)

nTS elaborates:
HINT STRING :
for (int i=O; i<10; i++

CORRECTED CODE:
for (int i=O; i<10; i++)

Confidence •.• : 1 (high certainty)
Student: Makes the appropriate changes to the code.
Resulting code:
for (int i = 1; i <= 10; i++) {

sum = smu + i;
}

Missing")"

nTS: Would you like to replace "smu" with "sum"? (Identifier replacement hint)
Student: Clicks Yes, or changes the code manually.
Resulting code:
for (int i = 1; i <= 10; i++) {

sum = sum + i;

76

The tutoring process is dynamic. At any time, the student is able to interject,

disagree with JITS' suggestions, or modify the source code. JECA is designed to be

invoked many times to support the TITS tutoring process.

JECA is significantly different from other standard Java compilers. Given the

source program in Figure 13, an ordinary java compiler would produce the following:

Test.java:5: ')' expected
Forr (Int i=O; i <=10; i++

Test.java:5: not a statement
Forr (Int i=O; i <=10; i++

A

Test.java:5: ';' expected
Forr (Int i=O; i <=10; i++

3 errors

The embedded JECA system in JITS is much clearer and more helpful than

standard Java error systems. JECA has been designed for the beginner Java programmer

and intelligently recognizes the intent behind the student's code submissions.

User Modeling

JITS tracks a great deal of information about the student as s/he works on

programming problems in the system. The ultimate goal of gathering this information is

to more closely model the student and to more effectively assist the student during the

tutoring process. The following list describes the information tracked by JITS:

1. time and date when a student logs onto JITS;

2. the number of times the student has connected to TITS;

3. every code submission the student makes on a problem;

77

4. the number of attempts for each problem the student has tried;

5. the student's solution to a problem;

6. the number and type of misconceptions involving keywords, extended

keywords, and identifiers are recorded (e.g., "For", "fro" instead of"for",

etc.);

7. whether or not the student pressed the "View Solution" button for a

problem;

8. student movement through each Problem Sets;

9. student movement to a different topic (i.e., the types and difficulty of

problems the student attempts is recorded);

Collectively, this information allows llTS to model the student and effectively

engage the student in the tutoring process. When a student exits the system, the next time

the student starts JITS, the system brings the student back to the exact state when slhe

left. That is, the problem and code the student was working on is presented to the

student. Table 11 and Table 12 depict some of the student tracking information.

78

Table 1 Sample database student tracking information indicating number of attempts, solved (true/false), and student's solutions

~

STUDENT NAME

dav_sem3_studentl0
dav_sem3_studentl6

dav sem3 studentl6
dav-sem3-student20
dav sem3 student3

dav sem3 student3

dav_sem3 student3

\0 dav sem3 studentS
dav_sem3_student6

dav_sem3_student6

dav sem3 student6

dav_sem3_student7

dav sem3 student?

e

PROBLEM SET ID PROBLEM ID NUMBER OF ATTEMPTS SOLVED

4 1 6 F
4 1 8 T

4 2 0 F
4 1 2 F
4 1 3 T

4 2 1 T

4 3 16 F

4 1 0 F
4 1 1 T

4 2 1 T

4 3 10 F

4 1 1 T

4 2 1 T

4 1 4 T

STUDENTS SOLUTION

for (int i = l;i <= lO;i++}
sum = sum + i;

fdsf
for (int i = 0; i <= 10; i++}

sum = sum + i;

for (int i = 4; i > 1; i--}
fact = fact * i;

for (int i = 1; i = 500; i = i + 2}
total = total + i;

for (int i=l; i<=lO; i++}
sum += i;

for (int i=l; i<=4; i++}
fact *=i;

for (int i=O; i<=500; i=i+l}
total +=i-1;

for (int i=l; i<=lO; i++}
sum +=i;

for(int i=l; i<=4; i++}
fact *=i;

for (int i=O; i<=lO; i++ }
sum = sum +i;

~
0

Table 2 Sample database student tracking information indicating current problem set, problem id, performance rating, skill level,
number of times connected to JITS, and the date of last connection.

STUDENT NAME PROBLEM_SET_ID PROBLEM_ID SKILL_LEVEL PERFORMANCE_RATING PERFORMANCE TIMES CONNECTED DATE_LAST_CONNECTION
-------------------- -------------- ---------- ----------- ------------------ ------------ --------------- ---------------------
e 4 1 1 81 null 12 Fri Jun 04 15:56:56 EDT 2004
dav sem3 student! 4 1 1 1 0
dav sem3 studentlO 4 1 1 1 null 2 Wed Jun 02 12:54:26 EDT 2004
dav sem3 studentll 4 1 1 1 0
dav sem3 student12 4 1 1 1 0
dav sem3 student13 4 1 1 1 0
dav sem3 student14 4 1 1 1 0
dav sem3 student15 4 1 1 1 0
dav=sem3=student16 4 1 1 1 null 1 Wed Jun 02 13:03:10 EDT 2004
dav_sem3_student17 4 1 1 1 0
dav sem3 student18 4 1 1 1 0
dav sem3 student19 4 1 1 1 0
dav-sem3-student2 4 1 1 1 0
dav sem3 student20 4 1 1 1 null 2 Fri Jun 04 15:54:40 EDT 2004
dav-sem3-student21 4 1 1 1 0
dav sem3 student22 4 1 1 1 0
dav_sem3_student23 4 1 1 1 0
dav sem3 student24 4 1 1 1 0
dav sem3 student25 4 1 1 1 0
dav-sem3-student26 4 1 1 1 0
dav-sem3-student27 4 1 1 1 0
dav=sem3=student28 4 1 1 1 0
dav_sem3_student29 4 1 1 1 0
dav sem3 student3 4 1 1 83 null 1 Wed Jun 02 12:56:44 EDT 2004
dav sem3 student30 4 1 1 1 0
dav-sem3-student31 4 1 1 1 0
dav-sem3-student32 4 1 1 1 0
dav-sem3-student33 4 1 1 1 0

There are other structures in llTS that support the student as s/he work through

the problems. A Help window is available that displays the organization of llTS from a

user interface perspective. It shows the various sections of llTS including the "Code

Area", the various interactive buttons, and the "Output" area. Figure 25 depicts the Help

window.

Help with tbe Java Intellipnt Tutorin& System (JITS)

The Jan.r-JI@em~Sym!mio-.dedto be used bybqjomer Janproar.....,;,g IIO.Ideou. The Uoerlnmfoceil divid<diDto arunberof
set1iom u seen below .

...... ,..::::-_, -a""'"-"'''tr'fk--

Tills Qu1>ul ,.., .. d...,.)IS 1119
~ut ol yoor program, tmta,
ondelhet-.

Important Notes:

wn.t.FHJAGc••t-.w., .. .a..aea.u.r.......,.h•'•'~_...¢/ah
~lNwwt~4--"". Jl> ... tw-.,._"**"tttt-1,.1hSi --ltrit....-.~--ilf'·,.., A~a--.....t.-,.~•..-. filii .. ~-~-J!Aif ..

Nlllligalo lllrough 1M problom 101 by "''r1wiouo" and
_. __ -.su~eloCIIclt"VVew

Hll'll&' """"'yau"""""ntor~•-lfyau gol
raaly stud< yoo can did< lt1a "VIOW SoitJilon" l>uttoo.

You C*\,.. yout indi>Aa~n~l

per1<>mlance by """'h'V:
"'U>j Performane8•

R..ad each question corolillly. Your projpm murt "" the correct c0011%UctJ md produce enctly what the required projpm output rtate1.
Remember to"" the "V~<Wifmr' butlolll for ,IUidmce from JITS. If you get reilly IIUclt use the "VIeW Solutioo' button.

Figure 25. Java Intelligent Tutoring System Help window.

81

A Tutorial was developed that presents important aspects for all of the programming

topics. The description of programming constructs, syntax, and examples are included in

this concise tutorial window. Figure 26 depicts this information.

Java Basics

This section describes some of the basic features of Java. Java syntax is loosely based on the programmirlg
languages C and C++_ So, if you know C or C++ you will find Java quite straight forward to learn If you
have programmed in another language you will be able to draw from your experiences and learn Java quite
easily_ All beginners learn to write a program which displays 'Hello World' to the screen:

1 //Hello world program in java
2 public class Hello_world
3 I
4 public static void main(String[] args)
5 I
6 System.out.println("Hello World");
7

Figure 26. Java Intelligent Tutoring System Tutorial window.

Additionally, consideration for visually-oriented students resulted in the development of

the Image Viewer window. Every problem has the option of containing a picture to

elucidate the problem description. Like all the information displayed in the user

interface, JITS extracts the details from the database and dynamically inserts it in the web

pages via Java ServerPage™ technology. Figure 27 depicts the JITS Image Viewer.

82

Volume:

Close t:he Image Vtewer.

Figure 27. Java Intelligent Tutoring System Image Viewer window.

83

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

This thesis focused on the design and development of an error correction

algorithm in the specific context for use in the Java Intelligent Tutoring System. The

Java Error Correction Algorithm was designed for small Java programs created by first

year College and University students with little or no programming experience. JECA

attempts to determine the "intent" of the student's program by carefully analyzing the

student's code. JECA makes "intelligent" changes to the student's code during lexical

analysis and parsing. During lexical analysis, identifiers are carefully scrutinized and

reclassified as keywords, extended keywords, or previously declared identifiers, if

appropriate. During the second phase, JECA performs error corrections if the student's

modified code does not compile. During this phase, a collection of parse trees are

constructed containing permutations including insertions, deletions, and replacements. A

competition is arranged and the best tree(s) are selected for further analysis with the

objective to bring the students' code closer to a state of successful compilation. Behind

the scenes, JECA compiles and runs these trees to gather more information about the

changes that have been made to the student's program. Unlike other error recovery

strategies, JECA does not hide any changes that have been made to the student's code.

On the contrary, JECA makes all the changes known to the student. As a result, JECA

produces a significant amount of information that is relayed to the Java Intelligent

Tutoring System that are used in the tutoring process. This has many benefits in terms of

knowledge and skill development for students the nTS system.

84

This thesis focused on JECA, however, to ensure contextual relevance and

significance, the Java Intelligent Tutoring System was included. JITS is implemented

using advanced e-learning technologies and its multi-threaded distributed architecture

makes JITS scalable, robust and easy to maintain. Through the use of Java

ServerPages™, and JavaBeans™, all processing is done at the middle-tier level. The

Model-View-Controller (MVC) design pattern was used to implement JITS. All content

is dynamically extracted from an ORACLE database via JDBC and placed into the

appropriate Java ServerPage™. From a pedagogical perspective, JITS supports

personalized student development by modeling every student in the system. JITS also

enhances the learning experience by providing an interactively-rich environment where

every student receives personalized tutoring. JITS is an online website always available

for students and requires only a browser and an internet connection. JITS was designed

to be accessible from remote locations and can be effectively used for distance education.

Conclusions

JECA demonstrates a Proof of Concept that can be effectively used to assist

beginner Java programmers. JECA was originally implemented in JFlex and CUP,

however, it became clear that JavaCC offered the greatest control and flexibility over

error recovery and error correction; thus, JavaCC was used as the core lexical

analyzer/parser generator tool.

85

JECA error corrects by intelligently learning and changing source program code

and identifies errors clearly. The goals achieved by JECA include:

i) intelligently recognizing the 'intent' of the student;

ii) analyzing the student's code submission;

iii) 'auto-correcting', where appropriate (e.g., converting "While" into the keyword

"while", "forr'' into "for", etc.);

iv) learning individual student's misconceptions, and categorizes the types of errors

s/hemakes;

v) producing a 'modified code' that will compile (or bring the code closer to a state of

successful compilation); and

vi) prompting the student programmer for more information when necessary via well

defined hint support structures.

The ultimate goal of JECA is to give clear and helpful feedback to the student. In

this research project, a Proof of Concept (i.e., JECA), was developed that fulfils the

intended goals and assists the student in learning to better program in a more enjoyable

way in the Java Intelligent Tutoring System.

JITS was designed and developed to provide rich interaction with students thus

reducing the off-task time and student frustration. ITS researchers believe these are

important issues when designing Intelligent Tutoring Systems (Anderson, 1998;

Heffernan & Koedinger, 2001). Furthermore, the Java Intelligent Tutoring System was

designed with efficient error remediation not to burden the student. JITS simply points

86

out an error without elaboration to a student when a mistake occurs. This is the

recommended line of action as described in ACT -R theory (Anderson, 1998; Anderson et

al., 1990).

JITS is being field-tested at the Sheridan Institute of Technology and Advanced

Learning by students in the School of Applied Computing and Engineering Sciences,

Ontario, Canada. It is hoped that the Java Intelligent Tutoring System will provide an

interactively-rich learning environment for students that will result in increased

achievement.

Recommendations

This research project focused on JECA and llTS. Although aspects of the field of

Artificial Intelligence (AI) were included, more research on this area could raise some

interesting fmdings. The following list presents some of the features that could be

incorporated into JECA and llTS that implement AI strategies:

1. conduct the same activities that JECA performs but using AI techniques;

2. learn each student's unique learning style (e.g., visual vs. text based); and use this

information to refme the tutoring process so that each student receives maximum

benefit from llTS (see Figure 11);

87

3. determine traits among all (or many) of the students; this information could be

used to address sections of specific types of problems or programming constructs

that students fmd too difficult or too easy, etc.

Additional recommendations regarding JECA and JITS would be to conduct

extensive field-tests with students and teachers to determine how the system could be

improved. By encouraging numerous users with various levels of programming

background to try out the system, information could be gathered and result in enhancing

and optimizing specific aspects of JITS.

88

References

Aho, V. A., Sethi, R., & Ullman, D. J. (1988). Compilers: Principles, Techniques, and

Tools. Menlo Park, CA: Addison-Wesley.

Aleven, V., & Ashley, D. K. (1997). Case-Based Argumentation Through a Model and

Examples: Empirical Evaluation of an Intelligent Learning Environment. In B. Du

Boulay & R. Mizoguchi (Eds.), International Journal of Artificial Intelligence in

Education (pp. 87-94). Amsterdam: lOS Press.

Anderson, J. R. (1998). Production Systems and the ACT-R Theory. In P. Thagard (Ed.),

Mind readings: Introductory selections on cognitive science (pp. 59-76).

Cambridge, MA: MIT Press.

Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990). Cognitive

Modelling and Intelligent Tutoring. Artificial Intelligence, 42, 7-49.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill Acquisition and the Lisp

Tutor. Cognitive Science, 13(4), 467-505.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive

Tutors: Lessons learned. The Journal of the Learning Sciences, 4, 167-207.

Anderson, J. R., & Pelletier, R. (1991). A Development System for Model-Tracing Tutors.

Paper presented at the The Intemation Conference on the Learning Sciences,

Northwester University, Evanson, Illinois, USA.

Bennett, J.P. (1996). Introduction to Compiling Techniques, A First Course using ANSI

C, LEX, and YACC. Berkshire, England: McGraw-Hill.

89

Burke, M.G., & Fisher, G. A. (1987). A practical method for LR and LI syntactic error

diagnosis and recovery. ACM Transactions on Programming Languages and

Systems, 9(2), 164-197.

Chen, E. (2004). Java: A False Sense of Security? Retrieved Nov 10,2004, from

http://www.trendmicro.com/en/about/news/coverage/eva-chen.htm

Fischer, C., & LeBlanc, R. J. (1991). Crafting a compiler with C. Redwood City, CA:

Benjamin Cummings Publishing.

Graesser, A. C., Person, N. K., & Harter, D. (2001). Teaching tactics and dialog in

autotutor. International Journal of Artificial Intelligence in Education, 12, 12-23.

Heffernan, N. T., & Koedinger, K. R. (2001). The Design and Formative Analysis of a

Dialog-Based Tutor. Paper presented at the AI in Education 2000 Workshop on

Building Dialogue Systems.

Hudson, S. (1999). CUP User Manual. Retrieved September 29,2004,2004, from

http://www.cs.princeton.edu/-appellmodern/java!CUP/

Klein, G. (2004). JFlex User Manual. Retrieved September 29,2004,2004, from

http://www.jflex.de/

Koedinger, K. R. (2001). Cognitive tutors. InK. D. Forbus & P. J. Feltovich (Eds.),

Smart machines in education (pp. 145-167). Cambridge, MA: MIT Press.

Norvell, T. S. (2004). The JavaCC FAQ. Retrieved September 29, 2004, 2004, from

http://www.engr.mun.ca/-theo/JavaCC-FAQ

O'Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive

Neuroscience. London, England: MIT Press.

90

Pawlan, M. (2004). J2EE Tutorial. Retrieved October 15,2004, from

http://java.sun.com/j2ee/1.3/docs/

Regian, F. D. (1997).1ncreased performance gains in individualized human tutoring.

IEEE: Intelligent Systems, 4, 14-29.

Sreenivasa, V. (2004). JavaCC User Manual. Retrieved September 29,2004,2004, from

https://javacc.dev.java.netl

Sykes, E. R. (2003). Java Intelligent Tutoring System Model and Architecture.

Proceedings of American Association of Artificial Intelligence Spring Symposium

on Human Interaction with Autonomous Systems in Complex Environments, 187-

193.

Sykes, E. R., & Franek, F. (2003). A Prototype for an Intelligent Tutoring System for

Students Learning to Program in Java. Proceedings of the lASTED International

Conference on Computers and Advanced Technology in Education, 78-83.

Woolf, Beck, Eliot, & Stem. (2001). Growth and maturity of intelligent tutoring systems:

A status report. InK. D. Forbus & P. J. Feltovich (Eds.), Smart machines in

education (pp. 100-144). Cambridge, MA: MIT Press.

Woolf, B. P., Beck, J., Eliot, C., & Stem, M. (2001). Growth and maturity of intelligent

tutoring systems: A status report. InK. D. Forbus & P. J. Feltovich (Eds.), Smart

machines in education (pp. 100-144). Cambridge, MA: MIT Press.

91

	Skyes_Edward_R_2005_04_master0001
	Skyes_Edward_R_2005_04_master0002
	Skyes_Edward_R_2005_04_master0003
	Skyes_Edward_R_2005_04_master0004
	Skyes_Edward_R_2005_04_master0005
	Skyes_Edward_R_2005_04_master0006
	Skyes_Edward_R_2005_04_master0007
	Skyes_Edward_R_2005_04_master0008
	Skyes_Edward_R_2005_04_master0009
	Skyes_Edward_R_2005_04_master0010
	Skyes_Edward_R_2005_04_master0011
	Skyes_Edward_R_2005_04_master0012
	Skyes_Edward_R_2005_04_master0013
	Skyes_Edward_R_2005_04_master0014
	Skyes_Edward_R_2005_04_master0015
	Skyes_Edward_R_2005_04_master0016
	Skyes_Edward_R_2005_04_master0017
	Skyes_Edward_R_2005_04_master0018
	Skyes_Edward_R_2005_04_master0019
	Skyes_Edward_R_2005_04_master0020
	Skyes_Edward_R_2005_04_master0021
	Skyes_Edward_R_2005_04_master0022
	Skyes_Edward_R_2005_04_master0023
	Skyes_Edward_R_2005_04_master0024
	Skyes_Edward_R_2005_04_master0025
	Skyes_Edward_R_2005_04_master0026
	Skyes_Edward_R_2005_04_master0027
	Skyes_Edward_R_2005_04_master0028
	Skyes_Edward_R_2005_04_master0029
	Skyes_Edward_R_2005_04_master0030
	Skyes_Edward_R_2005_04_master0031
	Skyes_Edward_R_2005_04_master0032
	Skyes_Edward_R_2005_04_master0033
	Skyes_Edward_R_2005_04_master0034
	Skyes_Edward_R_2005_04_master0035
	Skyes_Edward_R_2005_04_master0036
	Skyes_Edward_R_2005_04_master0037
	Skyes_Edward_R_2005_04_master0038
	Skyes_Edward_R_2005_04_master0039
	Skyes_Edward_R_2005_04_master0040
	Skyes_Edward_R_2005_04_master0041
	Skyes_Edward_R_2005_04_master0042
	Skyes_Edward_R_2005_04_master0043
	Skyes_Edward_R_2005_04_master0044
	Skyes_Edward_R_2005_04_master0045
	Skyes_Edward_R_2005_04_master0046
	Skyes_Edward_R_2005_04_master0047
	Skyes_Edward_R_2005_04_master0048
	Skyes_Edward_R_2005_04_master0049
	Skyes_Edward_R_2005_04_master0050
	Skyes_Edward_R_2005_04_master0051
	Skyes_Edward_R_2005_04_master0052
	Skyes_Edward_R_2005_04_master0053
	Skyes_Edward_R_2005_04_master0054
	Skyes_Edward_R_2005_04_master0055
	Skyes_Edward_R_2005_04_master0056
	Skyes_Edward_R_2005_04_master0057
	Skyes_Edward_R_2005_04_master0058
	Skyes_Edward_R_2005_04_master0059
	Skyes_Edward_R_2005_04_master0060
	Skyes_Edward_R_2005_04_master0061
	Skyes_Edward_R_2005_04_master0062
	Skyes_Edward_R_2005_04_master0063
	Skyes_Edward_R_2005_04_master0064
	Skyes_Edward_R_2005_04_master0065
	Skyes_Edward_R_2005_04_master0066
	Skyes_Edward_R_2005_04_master0067
	Skyes_Edward_R_2005_04_master0068
	Skyes_Edward_R_2005_04_master0069
	Skyes_Edward_R_2005_04_master0070
	Skyes_Edward_R_2005_04_master0071
	Skyes_Edward_R_2005_04_master0072
	Skyes_Edward_R_2005_04_master0073
	Skyes_Edward_R_2005_04_master0074
	Skyes_Edward_R_2005_04_master0075
	Skyes_Edward_R_2005_04_master0076
	Skyes_Edward_R_2005_04_master0077
	Skyes_Edward_R_2005_04_master0078
	Skyes_Edward_R_2005_04_master0079
	Skyes_Edward_R_2005_04_master0080
	Skyes_Edward_R_2005_04_master0081
	Skyes_Edward_R_2005_04_master0082
	Skyes_Edward_R_2005_04_master0083
	Skyes_Edward_R_2005_04_master0084
	Skyes_Edward_R_2005_04_master0085
	Skyes_Edward_R_2005_04_master0086
	Skyes_Edward_R_2005_04_master0087
	Skyes_Edward_R_2005_04_master0088
	Skyes_Edward_R_2005_04_master0089
	Skyes_Edward_R_2005_04_master0090
	Skyes_Edward_R_2005_04_master0091
	Skyes_Edward_R_2005_04_master0092

