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Abstract

This thesis deals with the problems of design and operation of process supply chains.

Process supply chains face many challenges due to volatile market conditions, production

and transportation delays, and stiff market competition, which ultimately affect their

profitability. Supply chain management (SCM) is the process of managing the flow of

materials and information within supply chain to optimize the SC performance. SCM is

carried out using a hierarchical decision-making framework, where the top most layer

looks at network design and the bottom-most layer deals with scheduling day-to-day

activities. In this research, the systems engineering principles are applied to devise an

improved methodology for supply chain optimization (SCO).

First we consider, the design of supply chain in the presence of demand uncertainty.

The representation of network topology plays an important role in deriving the optimal

network design. In real practice, the shipping cost for transferring goods from one

location to another is determined based on service time and quantity. More importantly,

the cost associated for establishing a transportation linkage is relatively small for existing

transportation infrastructure, and can be changed if beneficial. The flexibility of changing

the transportation routes is included in the network topology representation by the explicit

inclusion of time limited transportation contract agreements. Further, the customer

demand is volatile and it is very difficult to predict accurately. To handle the demand

uncertainty, a two-stage stochastic programming formulation is applied in the SC design

approach.

Next, we consider the problem of handling uncertainty in SC planning by applying a system

engineering control principle, robust model predictive control (MPC). The uncertainty

in model parameters (yield) and demand are captured by stochastic programming. In

this approach, the planning activities are represented by a hybrid model with decisions

governed by logical conditions/rulesets. An MPC based rolling horizon control framework

is used to schedule the planning activities, where the SC performance is expressed using

a multi-criterion objective comprising customer service and economics. The uncertainty

in demand and yield are propagated by two mechanisms - an open-loop approach, and an

approximate closed-loop strategy.

Finally, we consider the problem of integration of SC planning and scheduling. Due to
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the use of different time scale models for planning and scheduling, the decision derived

at the planning layer may result in infeasibility when those targets are implemented at

the scheduling level, which ultimately affects the supply chain efficiency. To address this

issue, we model tactical and operational planning activities using an integrated hybrid

time modeling approach in which the first few planning periods are formulated using an

operational planning model and the remaining time periods are modeled with a tactical

planning model. The main rationale for formulating an integrated model is that customer

demand forecast becomes less accurate for a future time, therefore making a detailed

planning model unnecessary. A key benefit of using a hybrid modeling approach is that it

avoids the problem of infeasibility encountered in the hierarchical decision framework, as

well as the computational burden associated with the use of a detailed planning model

over a long time horizon. We employ an MPC based rolling horizon framework as a tactical

decision policy where the integrated model is used to predict the system behaviour.
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CHAPTER 1
Introduction

In this chapter, we provide a brief overview of supply chain systems and supply chain

optimization, which forms the basis of our research work. Next, we give the thesis outline.

1.1 SUPPLY CHAIN SYSTEM

A supply chain (SC) system is a network of suppliers, manufacturing facilities, distribution

centers, and retailers and/or customers. The main goal is to achieve high customer

satisfaction at low cost. In order to achieve this goal, SC systems perform various

functions. The retailer senses customer demand which is transferred to the manufacturing

facility via distribution centers. Upon receiving order information, the manufacturer places

orders for raw material to suppliers. After receiving raw materials, the manufacturer

produces and delivers products to customers through a distribution channel. Thus, the

material flows from supplier to customer and demand information flows in the opposite

direction. The tighter integration of the flows of material and information can help

to optimize the SC system performance (Beamon, 1998). Figure 1.1 shows the basic

activities performed in supply chain management (SCM). These activities can be grouped

into three processes: (1) production scheduling and inventory management, (2) production

planning, and (3) distribution & logistic management. The production scheduling and

inventory management comprises the management activities for production scheduling,

raw material purchase, and material storage and handling within production network.

The production planning handles the activities for production and storage facility like

production allotment to site, material transfer between the production network and

storage facilities, and inventory management. The distribution and logistic management

1
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manages the material transportation activities from storage facility (e.g. warehouse) to

customer.

Storage Facility

RetailerSupplier

Manufacturing 
facility

Production 
Scheduling

Production Planning

Distribution & Logistic Management

Supply Chain Planning
Material Flow

Information flow

Customer

Figure 1.1: A process supply chain. The schematic shows the activities performed in
supply chain management.

To achieve the best performance from the system, the material and information flows

should be passed efficiently, ideally instantaneously. The material can not flow instan-

taneously but the information can be passed with negligible delay theoretically (Naylor,

Naim, and Berry, 1999). Although it appears that the information can flow instantaneously,

sometimes it is not possible to achieve due to inherent characteristics of a process system.

Another way to achieve higher customer satisfaction is to ensure product availability at

all time (Christopher and Towill, 2001). Knowing the customer demand a priori, arrange-

ments can be made to hold sufficient inventory to fulfill customer demand. However

the main impeding factor is the demand forecast. Demand prediction is a very involved

process because of several reasons, such as market competition, new product introduction,

varying product life cycle etc. Therefore in practice, the goal of a SC system is to produce

the finished product and deliver it to the customer in minimum time and cost. Thus, the

performance of the SC system is generally measured in terms of customer satisfaction,

operational cost and lead time, the time duration between when the raw material enters

the system and leaves as product from the system.

2
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1.2 SUPPLY CHAIN OPTIMIZATION

The process industry plays an important role in the world industrial economy. In the

last decade, the sales of chemicals more than doubled and hit a record 5.4 trillion USD

in 2014. In U.S. alone, the chemical process industry had an output of 800 billion USD

(America Chemistry Council Inc, 2016). Emerging economies are driving a major share

of this growth. In other words, the market has become global and companies must act

globally to remain in business. Such global manufacturing and distribution supply chains

are constantly seeking to improve efficiency (in terms of lowering operation cost and

increasing customer satisfaction). For achieving the best performance in such a global

market, industries need to change their strategic thinking to, (1) re-define their business

model and (2) re-structure manufacturing and transportation activities. The very first step

is to identify their supply chain, who the stackholders are and stages of operation (nodes);

the goal of achieving a greater efficiency can be fulfilled by effective coordination among

stakeholders, optimal use of infrastructure and resources allocation. Towards achieving

this goal, the concept of supply chain optimization (SCO) has been developed (Grossmann,

2005; Shah, 2005).

The mathematical structure of a supply chain optimization problem considered in this

research work can be represented by following general form,

min
x,y

f(x, y)

s.t. h(x, y) = 0

g(x, y) ≤ 0

(1.1)

where x ∈ Rp is vector of continuous variables and y ∈ Rq denotes a vector of integer

variables. f(x, y) is the objective function written in terms of continuous and integer

variables. g(x, y) = 0 are equality constraints and h(x, y) ≤ 0 are inequality constraints. In

supply chain optimization, the objective function typically consists of an economic term,

reflecting the infrastructure and operating cost and sales. The equality constraints are

comprised of a system of governing equations such as material balances, while system

feasibility and specifications are written in the form of inequality constraints. Depending

on the presence of integer variables and type of equality and inequality constraints,

the formulation (1.1) yields a linear programming (LP), non-linear programming (NLP),

mixed-integer LP, or mixed-integer NLP problem.

SCO activities are traditionally carried out in a hierarchical decision framework (as shown

3
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in Figure 1.2). The top most layer takes care of managing long term activities like supply

chain network design and strategic planning. The term network design is very broad

and it refers to any strategic activities which involve decisions such as deciding the

location of facilities (manufacturing and storage), retrofitting of existing facilities, and

allocation decisions (the products to be produced at each location, allocating suppliers

for each manufacturing location). A typical time frame involved here is of the scale of

months to years. The models are employed to evaluate trade-offs that exist in (1) regional

production costs, (2) tax structure and custom duties, (3) complexity of manufacturing

processes and transportation, and (4) network structure. The supply chain planning (SCP)

comes beneath the design layer. It mostly concerns setting up the medium to long term

activities (time frame of a few weeks to months) such as the amount of product produced

at each manufacturing plant, the inventory level of each material, level of safety stock,

and transportation amount across network nodes. The inputs at this layer comprise of

long term demand forecast, long term plant maintenance schedule, production capacity

of manufacturing plant(s), the storage and transportation capacity of each network node

and node linkages. These decisions are then forwarded to production scheduling layer

which refines these decisions considering real time availability of resources and optimally

allocates resources to adhere to the production policy decided at the upper layer. The

production scheduler works on a time scale of few hours to days.

For supply chain design, many mathematical models have been proposed in the literature

with their implementation often relying on the concept of a rigid node structure, having

certain restrictions on material flow between SC echelons, partly to build tractable

optimization problems for a real time application. However, the use of such a rigid

structure in the design stage results in a lower net present value (NPV) mainly due to

limited number of choices given to an optimization problem to explore the profitable space.

The problem becomes identifying the optimal location of facilities (manufacturing and

storage) and deciding the optimal connectivity between adjacent network nodes. A key

contribution of this research is to accommodate time-limited transportation contracts in

a SC network design problem to search for a better design and therefore improving the

economic performance.

System uncertainty is one of the main important aspects to be considered in SCO. Cus-

tomer demand and other system parameters (e.g. process yield, machine downtime,

transportation time) can not be predicted accurately. Satisfying customer demand is one

of the main goals of any supply chain system and thus it should be handled efficiently and

appropriately. Many optimization formulations have been discussed in the literature to

handle the uncertain parameters in SCO. Among them, two-stage stochastic programming
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Figure 1.2: Hierarchical decision framework for supply chain optimization

is the most commonly used method to represent demand uncertainty. A scenario based

two-stage stochastic programming formulation is used to handle demand uncertainty in

the SC design problem. Further, we combine two-stage stochastic programming with a

Model Predictive Control (MPC) framework to devise a novel robust-MPC formulation to in-

clude the effect of uncertainty in the supply chain planning. A multi-objective optimization

problem is formulated for production scheduling of a hybrid supply chain system.

Another problem faced in SC optimization is the coordination among different layers.

As discussed previously, a SCO framework considers manufacturing and distribution

activities with ranges from hours to years. Each level concentrates on a different time

range and therefore it demands use of a different time scale model at each level. However,

consideration of different time scale models introduces model inconsistency and therefore

decisions derived at upper layer may become sub-optimal or infeasible at the lower layer.

While there has been significant work on coordinating these layers, incorporating schedul-

ing information back to the planning level has not gathered much research attention.
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Feedback control commonly used in systems engineering, can be utilized to address some

of these problems. In this work, we combine two different time scale models, a coarse

time-scale tactical planning model and a fine time-scale operational planning model, in an

integrated model to address the issue of coordination between planning and scheduling

layers, and apply an MPC based rolling horizon decision framework to schedule detailed

production and shipment activities.

1.3 THESIS OUTLINE

This thesis is organized in the following chapters.

Chapter 2 – Fundamental concepts:Chapter 2 – Fundamental concepts: The important concepts and techniques used in sup-

ply chain optimization are outlined. We also provide a brief review of each of the aspects,

such as supply chain modelling, model predictive control, uncertainty handling.

Chapter 3 – Supply chain design:Chapter 3 – Supply chain design: An approach is presented to design a flexible supply

chain network in the presence of demand uncertainty. A network superstructure, i.e. a

topology which defines the network nodes and their connectivity, is created where all

possible network nodes and their connections are included. A mathematical characteriza-

tion of a SC design and planning system is developed where time-limited transportation

contracts are explicitly included using a novel formulation. Uncertainty in the demand

prediction is captured with the use of a scenario representation and two-stage stochastic

programming applied to handle the uncertainty. An integrated optimization based ap-

proach is formulated for a dynamic discrete time multi-period stochastic MILP model to

design a flexible SC network and applied to an industrial case study.

Chapter 4 – Robust control framework for SC Planning:Chapter 4 – Robust control framework for SC Planning: An optimization-based decision

support tool is presented for SC planning using a robust MPC strategy. The proposed

formulation: (i) captures uncertainty in model parameters and demand by stochastic

programming, (ii) accommodates hybrid process systems with decisions governed by

logical conditions/rulesets, and (iii) addresses multiple supply chain performance metrics

including customer service and economics, within an integrated optimization framework.

A nuance in this work is the application of a stochastic forecasting model for generating

scenarios to capture demand uncertainty in the optimization formulation. The developed

robust framework is applied for the control of a multi-echelon, multi-product supply

chain. Additionally, an approach is proposed to reduce the conservativeness of open loop

decision making under uncertainty, by approximating the future closed loop prediction of
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uncertainty propagation with two- and multi-stage stochastic programming.

Chapter 5 – Integrated supply chain planning & scheduling:Chapter 5 – Integrated supply chain planning & scheduling: An integrated hybrid time

modeling approach is proposed to characterize tactical and operational planning ac-

tivities in one mathematical model. The first few planning periods are formulated using an

operational planning model and the remaining time periods are modeled with a tactical

planning model. A benefit of using a hybrid modeling approach is that it avoids the

problem of infeasibility encountered in the hierarchical decision framework, as well the

computational burden associated with the use of a detailed planning model over a long

time horizon. Further, we employed a model predictive control (MPC) based framework

for decision making where the integrated hybrid time model is used to predict the system

behaviour and the decisions are implemented in a rolling horizon fashion.

Chapter 6 – Conclusions and Recommendations:Chapter 6 – Conclusions and Recommendations: The contributions of the research work

are summarized and future extensions are presented.
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CHAPTER 2
Fundamental Concepts

in Supply Chain Design and Operation

The intent of this chapter is to provide a brief introduction to fundamental concepts used

in the research work.

2.1 SUPPLY CHAIN DECISIONS

The problem of supply chain design and operation involves decision variables pertaining

to network topology and its operation. The decision variables are those variables which

can be adjusted to alter the system behavior in order to achieve desired performance.

Thus, the SC performance is constrained by a range of decision variables where they can

be changed. Supply chain design and operation decisions can be mainly categorized in

two main groups, (1) network decisions, and (2) operational decisions.

1. Network decisions (static): location of facilities (production plants, warehouses,

etc.), changes to existing infrastructure (expansion or closure of existing facilities),

supplier selection etc.

2. Operational decisions (dynamic) : Production allocation (what products to be pro-

duced at each manufacturing location, transportation network selection, production

or transportation capacity of each facility, production planning and scheduling,
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inventory level of materials across network, transportation amount within supply

chain.

The first set of decisions can be changed but not that frequently and thus referred as static

decisions. The operational decisions are dynamic and updated at regular time intervals.

As process supply chains become global, many trade-offs exist which can be exploited

to take advantage in cost reduction. These can be; (1) differences in production and

transportation cost, (2) differences in raw materials and product cost, (3) different income

tax structure, (4) network flexibility for producing different products etc.

2.2 PERFORMANCE MEASURES

Formation of a performance measure is an essential part in supply chain design and

analysis. A performance measure provides a basis to determine the system performance

and identifies the best practice. Further it provides a comparison between alternative

systems. The performance measured, described here, can be categorized as a qualitative

or qualitative measure1. The performance of a supply chain can be represented by a single

indicator (single-objective SCO) or combination of them (multi-objective).

Cost measure:Cost measure: It is the most commonly used objective in supply chain optimization. It can

be presented in various ways; cost minimization, profit maximization, net present value

(NPV) maximization, revenue maximization.

Customer satisfaction:Customer satisfaction: It is a qualitative measure by nature and it can not be accurately

quantified. However, some of its aspects can be defined and measured (Perea et al., 2000).

Typically in supply chains, customer satisfaction is defined as the percentage of orders

filled on time.

Flexibility:Flexibility: Flexibility is the ability of the system to withstand demand fluctuation and

other parameter variation. Various indices and mathematical expressions are proposed

in the literature to represent the SC flexibility (Slack, 1987; Das and Abdel-Malek, 2003;

Wang, Mastragostino, and Swartz, 2016).

Responsiveness:Responsiveness: SC responsiveness is a measure of how rapidly a process supply chain

adapts to a changed condition (typically customer demand). The responsiveness objectives

are typically presented as lead time minimization or make-span minimization. The lead

1A thorough classification of supply chain performance measures is provided in Beamon (1998)

10



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

time is the time difference between when a material enters a supply chain and leaves as a

product from a warehouse to satisfy customer demand (Christopher, 2000). A SC with

long lead time indicates low responsiveness and vice-versa. The bullwhip effect is one

of the well-known phenomena seen in supply chains and is generated due to information

delay, and is related to how responsive a supply chain is.

Environmental measures:Environmental measures: Chemical production systems have a high impact on the environ-

ment and, due to tightened regulation it has become important to include environmental

concerns in supply chain design (Hugo and Pistikopoulos, 2005). Cano-Ruiz, and McRae

(1998) have provided a thorough review on including environmental damage in process

design objectives and have shown that, inserting environmental considerations in the de-

sign approach yields design alternatives having improved environmental and economical

performance. The objective here is to balance the environmental damage against cost

saving to design a green supply chain which has a low impact on the environment.

2.3 SUPPLY CHAIN MODELING

Supply chain modeling is an activity to represent the structure and operation of a sup-

ply chain in a mathematical form. Essentially, it is the set of mathematical equations

describing the underlying relationships (e.g., equalities, inequalities, logical conditions)

between system variables. These relationships are an abstraction of the real system. The

mathematical relationships are mostly algebraic due to a discrete time analysis and can

be linear or nonlinear. Based on the type of relationships, the resulting model becomes

linear programming (LP), or non-linear programming (NLP) and the presence of integer

variables makes them mixed-integer models.

Considering various modeling attributes, supply chain models can be categorized in many

different ways (see Figure 2.1). Based on the time attribute, they can be categorized

as, (1) steady state models, and (2) dynamic (multi-period) models. The steady state

model assumes steady-state behavior (state of equilibrium) and activities are defined

using algebraic equations. For example, the inventory balance equation for a warehouse

can be written as the difference between the total mass of material entering a warehouse

and leaving it remaining constant and is given by the inventory level. The dynamic model

considers process dynamics over time and is referred as multi-period models in supply

chain literature. Here, the total time horizon is partitioned into several intervals and each

time interval is modeled using steady state models. The time intervals (or time periods)

may have demand due dates at future times.
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Figure 2.1: Classification of supply chain models

The individual time periods are then connected by formulating dynamic time balance

constraints, hence constitutes dynamic models. In multi-period modelling, the most

important aspect is time representation. Depending on whether the activity (task) can

start at some predefined time or at any moment during the time horizon, modeling

approaches can be classified into discrete and continuous time formulations. In the

discrete time formulation, the time horizon is divided into a finite number of intervals

of equal or unequal time duration. The task can start or end at beginning or ending of

these time periods. Therefore, various activities have to be aligned only at predefined

time points.

The fixed time grid formulation makes it simple to represent time dependent activities

without changing the structure of the system model. The formulation converts the original

problem into pure allocation problem which makes the model structure simpler and

easier to handle and thus results in a less complex optimization problem. The number

of optimization variables is dependent on the number of time intervals. For a more

accurate representation, ideally the length of time intervals should be small so that it

can capture required details of the system. However, a small time interval leads to a

high number of time periods and eventually generates an optimization problem with

a large number of decision variables. The large size makes the problem difficult to

solve. Larger time intervals lead to a coarser representation of the system and may

lead to sub-optimal or even infeasible solutions. In other words, the size of problem and

computational efficiency strongly depend on the number of time intervals. In order to

12



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

keep the computational complexity low, generally a smaller number of time intervals is

used in problem formulations.

In continuous time representations, which are more typical of scheduling than SC for-

mulations, timing decisions are expressed in the form of events. Additional constraints

are introduced to define the relationships between these events i.e. when an event can

start and end. The variable duration of events can help to generate more flexible models.

However, the declaration of activities at these variable time duration events requires more

complicated constraints, which makes the model definition relatively hard and leads to

complex optimization problems. Moreover, it also requires one to declare the number of

time events for given time horizon, which may not be intuitive. The declaration can be

avoided by treating it as an additional optimization problem. In this case, the problem has

to be solved many times for different values of event points which will again increase the

computation load.

Based on the events arrangement, continuous time formulations can be again classified

into four classes (Méndez et al., 2006): (1) global time events formulation defines a

common time grid across all resources, (2) unit specific time events defines a variable time

grid for all resources, (3) time slot formulation sets predefined time events with unknown

durations, and (4) precedence rule based formulation employs sequence dependent rules

to define the system.

In another classification, the models can be categorized as a deterministic or stochastic.

Deterministic models are built on the assumption that all model parameters and inputs

are known, whereas stochastic models consider the uncertainty. Depending on the way

of incorporating uncertainty in the model, different solution techniques are used. This is

discussed further in Section 2.5.

Having presented the general classification of SC modelling approaches, here we discuss

the modelling of some of the specific aspects of SC systems.

Network node connections:Network node connections: The node connections define the structure of a supply chain.

The mathematical definition of node connections decides the structure of the resulting

mathematical problem, which ultimately has a direct impact on solution techniques used

to solve an optimization problem. In a supply chain design problem, the facility allocation

decisions are defined using binary decision variables, with 1 representing the allocation

of a facility (such as a plant, warehouse or retailer) at a given location. Similarly, the

connection structure is also formulated using binary variables in most cases. However,

the node connectivity can be defined based on facility allocation variables, and in that
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case the model does not need explicit definition of node connections. Nonetheless, both

cases contain binary as well as continuous variables, hence the resulting model structure

becomes mixed integer linear program (MILP) or mixed-integer non-linear program

(MINLP) depending on the type of system constraints. The presence of binary variables

makes the problem non-convex, and therefore far more difficult to solve. The complexity

of a mixed-integer programming problem is NP-hard as a large number of possible

combinations of integer variables need to be explored to prove optimality. However,

careful formulation of the model can result in a tight formulation which significantly

decreases solution times. Moreover, recent advancement in computational resources has

also contributed solving mixed-integer programming problem in a reasonable time (Lima,

and Grossmann, 2011).

Inventory management:Inventory management: Managing inventory plays a crucial role in optimizing the SC

performance. Forrester (1961) proposed an inventory control structure based on system

dynamics. Inventory is generally kept in two forms, (1) working inventory and (2) safety

stock. The safety stock is the buffer amount which is stored in the network to offset the

effect of demand uncertainty and increases the SC responsiveness. The working inventory

is the amount that is being processed in the system.

In periodic review based stock policy, the inventory level is reviewed at the start of each

review period and an order is placed for the material to maintain the base stock. In a

risk pooling policy, the safety stock is decided for given service level for all retailers and

a single quantity is ordered. A guaranteed service approach is used for multi-echelon

inventory systems2 and works on the concept of service time3. The inventory level is

calculated based on guaranteed service time of the network and orders are placed to

manage the inventory4. In other approaches, inventory balance constraints are formulated

using mass balance equations and optimum inventory levels are calculated from an

optimization problem. The mass balance equations can be written as steady state or

dynamic time balances. In a dynamic inventory balance, the inventory levels of two time

periods are correlated. In the static case, the inventory level is individually optimized at

each time period.

Operational (scheduling) activity representation:Operational (scheduling) activity representation: The supply chain operation activities

are formulated using basic governing equations, such as mass balances, capacity con-

straints, etc. These relationships are written for each node of a network.

2A system where the inventory stored at more than one location
3The time by which the demand will be fulfilled
4A detailed review on inventory management policy is provided in You and Grossmann (2010)
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For production nodes, the operation (scheduling) constraints5 are formulated using two

main categories. In the first category, the production scheduling activities are defined

using production environments of single-stage, multi-stage, or multi-purpose production.

In single-stage production systems, materials go through a single stage production unit

and mass balance, production allocation, unit allocations constraints are defined. In multi-

stage production, materials are converted to final products through a set of intermediate

products, however all material passes through each stage. In multi-purpose production

systems, materials pass through only specific stages.

In the second category, the production system is represented either by the state-task

network (STN) (Kondili, Pantelides, and Sargent, 1993) or the resource-task network (RTN)

(Pantelides, 1994) concept. STN is a directed graph that consists of three key elements:

(1) state nodes representing feed, intermediates, and final products; (2) task nodes

representing the process operation which transforms material from one or more input

states into one or more output states; and (3) arcs, that link states and tasks, indicating

the flow of material. It assumes that a processing task produces or consumes states

(materials). State and task nodes are represented by circles and rectangles respectively

while arcs are represented by arrows. In contrast, the RTN representation gives uniform

treatment to all resources (materials and manufacturing resources). The concept is that

both processing and storage tasks can consume and produce resources at their beginning

and ending times respectively. Thus circles are not only states but they also represent

other manufacturing resources (e.g. storage tank).

2.4 MODEL PREDICTIVE CONTROL

Supply chain systems are constantly impacted by disturbances and therefore continuous

adjustments should be made to alleviate the effects of disturbances. These effects can be

long-term or short-term and require updating strategic, tactical, or operational decisions.

Close observation reveals that the problems faced in systems engineering and supply

chains are similar in nature. Hence, the theory of optimal control can be applied to harness

the benefits of optimal control in supply chain systems. Control theory provides insight

to formulating the supply chain problem in mathematical language and helps to design

a control structure to circumvent the problems faced by the supply chain system. Due

to development of control theory and availability of advanced computational resources,

application of many advanced control technologies to supply chain systems becomes more

5Harjunkoski et al. (2014) have provided a through review on production planning models
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manageable, making it possible to solve the high dimensional supply chain problem in

real time. Therefore the interest of the process systems engineering community in supply

chain systems is growing rapidly (Perea-López, Ydstie, and Grossmann, 2003; Braun

et al., 2003; Bose and Pekny, 2000; Li and Marlin, 2009). The unique hybrid nature

(presence of discrete decisions) of supply chain systems makes it a distinct case from

general system engineering processes and hence needs special attention, like tailored

optimization techniques and solvers for handling mixed-integer programming problem,

and model representation to make it suitable for applying advanced control algorithms. In

addition, a supply chain system is impacted by unknown disturbances in terms of demand

uncertainty. Model predictive control (MPC) is a widely used technology to implement

advanced control in process industries and can be used to improve SC planning. The SC

decisions can be revised in a rolling horizon fashion using the most recent state of the SC

system.

Due to its inherent multivariate nature, ability to handle system constraints, and rolling

horizon formulation, MPC has become a preferred advanced control technique in the

process industries (Qin and Badgwell, 2003). In MPC, the calculation steps described

below, are repeated at each time period once a new measurement (or information) becomes

available.

Past

Prediction Horizon

Future

Time

Figure 2.2: Schematic shows the MPC control calculation steps.

1. Initialization: The system model is initialized using the system’s initial condition

(denoted as xk in Figure 2.2).

2. Trajectory calculation: A dynamic optimization problem is solved at each time
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period to compute optimal trajectories of control variables by optimizing an objective

function while satisfying process constraints. The system model is used to predict

the system behavior over a prediction horizon (P ). Common examples of process

constraints are those that arise from the physical description of system. Any objective

function described earlier can be used in the optimization problem.

3. Implementation: Only the first control input (denoted by uk) is implemented and

the optimization problem is solved again at the end of the control interval for a new

horizon advanced by one time increment.

In supply chain applications, the process model may be linear or nonlinear, and contains

both binary and continuous variables or only continuous variables. The presence of mixed-

integer variables makes the optimization problem more complex and computationally

intensive. The objective function is largely economic and linear in terms of decision

variables, hence LP, NLP, MILP, or MINLP solution techniques need to be applied in solving

the MPC optimization problem.

2.5 OPTIMIZATION UNDER UNCERTAINTY

Optimality of the decisions derived from an optimization problem is highly dependent on

the accuracy of the system characterization used to predict its behavior and its parameters.

It is often difficult to accurately estimate or forecast process characteristics and process

parameters. In such scenarios, the best possible thing to do is to embrace the impact of

uncertainty in the decision making process. The presence of uncertainty affects optimality

and sometimes causes infeasibility issues. The aim here is to optimize the expected

value of the objective function value for an assumed level of uncertainty (Stochastic

Programming Community Home Page, 2016). The source of uncertainties can be classified

into four major classes, (1) process inherent uncertainty (such as processing time, yield);

(2) model uncertainty (such as mismatch in model parameters); (3) external uncertainty

(such as demand, prices); and (4) discrete uncertainty (such as equipment availability).

Uncertainty6 information can be included in the optimization problem as, (1) bounded

form describing uncertain parameters by an interval; (2) probability description using a

probabilistic model to represent parameter uncertainties; and (3) fuzzy description that

formulates uncertainties by fuzzy set theory. Based on how the uncertainty is described

6An overview on theory and methodology for formulating and solving optimization problem under uncer-
tainty is provided in Sahinidis (2004).
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in the optimization problem, the solution techniques can be classified into (1) stochastic

optimization, (2) robust optimization, (3) fuzzy programming, (4) sensitivity analysis, and

(5) parametric programming.

In stochastic optimization, a deterministic model is transformed into a stochastic model

by treating uncertain parameters as stochastic variables. In this type of approach, the

objective function is set as the expected value of a certain performance criterion with

respect to stochastic variables.

The stochastic variables are defined using discrete or continuous probability distribu-

tion functions. Based on the type of uncertainty representation, stochastic optimization

methods are classified into, (1) scenario based approach (two-stage or multi-stage program-

ming), and (2) probabilistic optimization. The first approach utilizes a discrete probability

distribution where the uncertainty space is discretized using sampling techniques, such

as Monte-Carlo sampling, to sample random instances of stochastic variables (scenarios).

In two-stage optimization, decisions are divided into first stage decisions (here-and-now)

and the second stage decisions (recourse actions). The first stage decisions are decided

before actual realization of uncertain parameters and recourse actions can then be made

in the second stage to compensate for the realized uncertainty. Mathematically, a linear

two-stage stochastic programming problem is written as follows (Birge and Louveaux,

1997),
min
x

cTx+ EP [Q(x, ξ)]

s.t. Ax = b

x ∈ X

(2.1)

where, Q(x, ξ) is the optimal value of the second-stage problem,

Q(x, ξ) := min
y

qT y

s.t. Wy = h− Tx

y ∈ Y

(2.2)

where, x and y denotes the first-stage and second-stage decisions respectively. ξ is the

vector formed by the components of qT , hT , and T . Both first and second stage decisions

include integer and continuous variables. The set X and Y include both real and integer

numbers. The problem (2.1) minimizes the first-stage cost (cTx) and the expected cost of

the second stage (EP [·]). In supply chain network design problems, second stage variables

are mostly operational decisions and hence continuous variables. Therefore problem (2.2)

involves minimizing convex objective function with mixed-integer constraints (Shapiro,
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Dentcheva, and Ruszczynski, 2014). A two-stage stochastic programming can be extended

to a multi-stage programming by considering more stages. At each stage, part of the

decisions are made based on the previous stage decisions and uncertain parameter

realization occurs at that stage. In a scenario-based approach, the computational load

increases substantially with the number of uncertain parameters. If the underlying

distribution of uncertain parameters is continuous and can not be approximated by

discrete scenarios with sufficient accuracy, the constraints with uncertain parameters

can be expressed as probability constraints; the probability of satisfying the constraint

is less than or equal to a specified confidence level. These probabilistic constraints are

then transformed into deterministic constraints with the use of a probability distribution

function (e.g. chance constrained programming). The approach maintains the model

size but it is often difficult to solve due to the numerical integration of the probability

distribution function which is typically nonlinear.

Robust optimization finds a solution which is robust to the given uncertainty. It describes

uncertain parameters through a bounded form formulation. The major distinction be-

tween robust optimization and stochastic programming is that in robust optimization no

assumption is made regarding the probability distribution of the uncertain parameters.

Worst case optimization is a class of methods which handles the parameter uncertainty by

considering worst-case values of the uncertain parameters.

Fuzzy programming methods are used when uncertain parameters are described based

on a fuzzy description. Constraint violations are allowed and the degree of satisfaction is

defined through a membership function. Sensitivity analysis is used to check the sensitivity

optimal decisions with respect to uncertain parameters. The main idea is to check the

robustness and reliability of optimal solutions derived from deterministic optimization for

a given uncertainty. Parametric programming is a technique for obtaining the objective

function and optimization decisions as a function of uncertain parameters. The analytical

solution can be calculated after actual realization of uncertainty.
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3.1 INTRODUCTION

A supply chain (SC) is a network of suppliers, manufacturing facilities, warehouses and

customers that involves tasks of raw material procurement, product manufacture and

delivery to final customers through a channel of distribution centers. A key objective in

SC management is to satisfy customer demand at minimal cost. SCs are characterized by

forward flow of materials from suppliers to customers, and backward flow of information in

the opposite direction. Increased competition in a global marketplace, rising raw material

and utility costs, tightening environmental constraints, and increased market volatility all

contribute to reduced profit margins in product manufacturing. In order for enterprises

to remain competitive, it is imperative that entire SC must be considered, rather than

only individual manufacturing processes. These considerations have been at the core

of significant research activity in SC design and operation within the process systems

engineering community over the past several years. Excellent reviews of the state of the

art and challenges in enterprise-wide planning, operation, and design are given in Shah

(2005), Grossmann (2005), and Papageorgiou (2009).

Supply chain decision making is typically categorized into three levels - strategic, tactical

and operational - based on the time scale under consideration (Papageorgiou, 2009). SC

models differ depending on the time scale of interest and the phenomena they are intended

to capture, with both steady-state and discrete-time dynamic models in common use. SC

studies within the process systems engineering literature are typically posed within an

optimization framework, and include objectives based on economics (Tsiakis, Shah, and

Pantelides, 2001; Laínez et al., 2009; Georgiadis et al., 2011), environmental impact (Hugo

and Pistikopoulos, 2005; Guillén-Gosálbez and Grossmann, 2010), and risk (Gebreslassie,

Yao, and You, 2012). The works cited in relation to the last two objectives utilize a

multiobjective optimization framework in which the trade-off between economics and

the other objective (environmental impact or risk) is evaluated. Recent studies have also

included consideration of SC responsiveness (You and Grossmann, 2008a; Mastragostino,

Patel, and Swartz, 2014) and flexibility (Mansoornejad, Pistikopoulos, and Stuart, 2011;

Wang, Mastragostino, and Swartz, 2016). The decision space may comprise the location

and capacities of manufacturing and warehouse facilities, the SC network structure,

material flows between the SC nodes, provision for capacity expansion over multiple time

periods, or a subset of the above. Inventories may be determined through node material

balances written at each time period (Georgiadis et al., 2011; Mastragostino, Patel, and

Swartz, 2014), or through empirical relationships, such as a linear relationship between

the rate of material leaving a warehouse and its inventory (You and Grossmann, 2008b).
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A key issue pertinent to this chapter is how the transportation links between SC nodes

are handled. In many SC models, material is restricted to flow from one echelon to the

next. However, some works provide for a more flexible arrangement whereby material

can move between facilities within an echelon and/or between non-contiguous echelons,

such as from a manufacturing site to a customer (You and Grossmann, 2008a; Laínez

et al., 2009). A further consideration is the modeling of the linkages themselves and the

implication thereof. Several studies include binary variables to indicate the existence of

a link between nodes, with constraints that allow for material flow only if a link exists

(Tsiakis, Shah, and Pantelides, 2001; Hugo and Pistikopoulos, 2005; You and Grossmann,

2008a; Guillén-Gosálbez and Grossmann, 2010; Georgiadis et al., 2011). As well, a

minimum flow may be imposed in order for the link to be established. Other studies

do not include binary variables for the transportation links (Guillén et al., 2005; Laínez

et al., 2009; Gebreslassie, Yao, and You, 2012); these cases provide more flexibility in

the optimization, but may also be unrealistic under circumstances in which there is an

appreciable cost associated with the establishment of a transportation link, or when the

link is subject to certain types of transportation contract. These considerations are at the

core of our study.

Uncertainty in SC operation and design is addressed in many studies. Two key approaches

that have been followed are the use of chance constraints and two-stage stochastic pro-

gramming. In the former, the uncertain parameter is considered to be a random variable,

with constraint satisfaction required to a specified probability level. Guillén-Gosálbez

and Grossmann (2009) consider uncertainty in the inventories used to compute the LCA-

based Eco-indicator 99 environmental metric within their SC design formulation. The

environmental impact is expressed as a probabilistic constraint, which is reformulated as a

deterministic constraint through use of a probability distribution function. In a subsequent

contribution, Guillén-Gosálbez and Grossmann (2010) assume perfect knowledge of the life

cycle inventories, but consider instead uncertainty in the damage factors used in the LCA

indicator, with environmental impact formulated as a joint chance constraint. In two-stage

stochastic programming, decisions are partitioned into first-stage decisions that are made

prior to knowledge of uncertainty realizations, and second-stage (recourse) decisions that

can be made in response to an uncertainty realization. This approach has been quite

widely adopted in SC planning, operation and design. The uncertainty space is typically

discretized, with a set of uncertain parameter realizations comprising a scenario. Tsiakis,

Shah, and Pantelides (2001) consider demand uncertainty in a SC design formulation in

which transportation links are considered as either first-stage (scenario independent) or

second-stage (scenario dependent) decisions. Guillén et al. (2005) also consider demand
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uncertainty in a two-state stochastic programming approach in a multiobjective SC design

formulation that considers objectives of NPV, demand satisfaction and financial risk. You,

Wassick, and Grossmann (2009) consider uncertainty in customer demand and freight

rates in SC planning. They apply a two-stage stochastic programming formulation in which

production, distribution and inventory decisions for the current time period comprise

the first-stage decisions, with the operating decisions for the remaining time periods

constituting second-stage decisions.

In this chapter, we consider SC design under time-limited transportation contracts in

which a transportation link, if selected, needs to be active for a specified minimum

duration. We consider a flexible network structure in terms of allowable movement of

material between nodes, and also account for demand uncertainty through a two-stage

stochastic programming framework. The remainder of the chapter is organized as follows.

The SC design formulation is presented in Section 3.2, which includes the handling of

time-limited transportation contracts. In Section 3.3, the design formulation is applied to

a case study, and the impact of different transportation link formulations on the optimal

solution is explored. Conclusions are presented in Section 3.4.

3.2 SUPPLY CHAIN DESIGN PROBLEM FORMULATION

3.2.1 Overview of SC Network, Assumptions and Definitions

Figure 3.1 shows the superstructure of a SC system considered in the present work. The

network consists of various nodes, such as suppliers (ls), production sites (k), distribution

centers (dc), and customers (l). Each production site (k) has multiple production plants (i)

to manufacture different products. These nodes are connected by transportation routes

which are represented by arcs. The head of an arc shows the direction of material flow. If

the material can flow in both directions, the nodes are connected by double headed arc.

The goal here is to determine the configuration of the SC network along with SC op-

erational decisions (long term planning activities) to maximize the net present value

(NPV) of the SC system. The decisions to be made are, (1) Network structural decisions :

location of each manufacturing and storage facility, material transportation links to be

set up and their service periods, production plants to be set up at production facilities,

and production and storage capacities, (2) Operational decisions : shipment capacity for

each transportation link, production rate of each product at production facilities, storage

quantity of materials at each storage facility, and quantity of raw material purchased. Key
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features of the formulation are the incorporation of time-limited transportation contracts,

use of a flexible network superstructure, and consideration of demand uncertainty through

a two-stage stochastic programming formulation.

Suppliers Plants Warehouses Customers

Figure 3.1: Flexible supply chain network superstructure

The production site k encloses several production plants i, which produce intermediate

or final product j. If plant i is installed at site k, the binary variable Y P
k,i takes the value

1. Similarly, Y DC
dc becomes 1, if distribution center dc is set up. The transportation link

between supplier ls and plant site k is established that is yspj,ls,k,t = 1, only if supplier ls

supplies material j to site k. Shipment lanes between other nodes (plants sites, distribution

centers, customers) are similarly defined to set up the material flow linkages within the

network. Qspj,ls,k,t represents the amount of raw material j dispatched to site k from

supplier ls in time period t. Wk,i,j,m,t units of raw material j is processed at plant i of

site k; IPj,k,t is the inventory of material j stored at site k in time period t. Qsdj,ls,dc,t is the

amount of material purchase from supplier ls and transferred to distribution center dc.

Qdpj,dc,k,t′ is the amount of material flow between distribution center dc to site k. If an

intermediate product j is used at another plant site k′, a quantity Qppj,k,k′,t of material j can

be transferred from site k to site k′. A quantity Qpdj,k,dc,t of intermediate or final product

j is shipped from plant site k to distribution center dc, and stored with an inventory of

IDCj,dc,t units. Dj,l,t is the customer demand of product j for customer l at time period t. If

sufficient inventory of product j is present at distribution center dc, a quantity Qdcj,dc,l,t
is withdrawn and shipped to customer l. If production site k has inventory of product

j, a quantity Qpcj,k,l,t of product j can be dispatched to customer l. If there is insufficient

inventory at a distribution center or production site to meet the customer demand, the

order is partially fulfilled, and remaining unfulfilled portion of the demand treated as a
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back order Bj,l,t. The back orders are considered as a business loss and discarded at a

specified cost; however there is a requirement of satisfying a certain minimum demand in

each time period.

The following assumptions are made:

1. The fixed cost of setting a transportation link is negligible in comparison to the

variable transportation cost.

2. The service time of a transportation link is an integer multiple of the sampling time

period.

3. The production and transportation delays are negligible in comparison to the sam-

pling time period and hence neglected.

First, we represent the SC design formulation as a discrete-time multiperiod MILP model,

and then it is converted to a stochastic MILP model. The formulation is described through

two types of constraints, (1) network structure constraints, and (2) operational planning

constraints. The network structure dictates the topology of a supply chain and is defined

by constraints (3.1) − (3.12). Operational planning activities are modeled by constraints

(3.13) − (3.26).

3.2.2 Network Structure Constraints

The SC network is represented by 4 sets of nodes: suppliers, manufacturing facilities,

warehouses (distribution centers), and customers. Selection of these nodes and trans-

portation links between these nodes are modeled by binary decision variables. Each

material has its own transportation set-up for all node connections. The network structure

constraints are adapted from You and Grossmann (2008a) to include time-dependent

transportation linkages and potential movement of material between a wider range of

nodes (such as between distribution center to plant, plant to customer).

Production sitesProduction sites

These constraints relate the existence of a plant to conditions governing the consumption

and production of chemicals.

If a plant i in site k that consumes chemical j is installed (Y P
k,i = 1), then there is another

plant i′ in same site that produces chemical j, or site k should be connected to one of the
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suppliers of chemical j (yspj,ls,k,t), or to another site k′ that produces chemical j (yppj,k′,k,t), or

to a distribution center dc (ydpj,dc,k,t) that can supply chemical j:

Y P
k,i ≤

∑
i′∈IP

j

Y P
k,i′ +

∑
ls∈LSj

∑
t

yspj,ls,k,t +
∑

k′∈K
i′:i′∈IP

j

∑
t

yppj,k′,k,t +
∑
dc

∑
t

ydpj,dc,k,t

∀ j ∈ JRi, k ∈ K, i ∈ ICj (3.1)

On the other hand, if a plant i in site k that produces chemical j is installed (Y P
k,i = 1),

then there is another plant i′ in same site that consumes chemical j, or there is at least

one transportation link to a distribution center dc (ypdj,k,dc,t), or to a customer l (ypcj,k,l,t), or

site k should be connected to another site k′ that consumes chemical j (yppj,k,k′,t):

Y P
k,i ≤

∑
i′∈IC

j

Y P
k,i′ +

∑
dc

∑
t

ypdj,k,dc,t +
∑
l

∑
t

ypcj,k,l,t +
∑

k′∈K
i′:i′∈IC

j

∑
t

yppj,k,k′,t

∀ j ∈ JPi, k ∈ K, i ∈ IPj (3.2)

Plant transportation linksPlant transportation links

A transportation link for raw material j from supplier ls to production site k exists

(yspj,ls,k,t = 1), only if at least one plant that consumes raw material j exists in site k (Y P
k,i):

yspj,ls,k,t ≤
∑
i∈IC

j

Y P
k,i ∀ j ∈ JR, ls ∈ LSj , k ∈ K, t ∈ T (3.3)

A transportation link for chemical j from distribution center dc to production site k exists

(ydpj,dc,k,t = 1), only if plant site k exists:

ydpj,dc,k,t ≤
∑
i∈Ik

Y P
k,i ∀ j ∈ J, dc ∈ DC, k ∈ K, t ∈ T (3.4)

An inter-site transportation link from site k to k′ is installed for chemical j (yppj,k,k′,t = 1),
only if both plant sites k and k′ exist, and at least one plant i in site k is installed that

produces chemical j:

yppj,k,k′,t ≤
∑

i∈IP
j ∩Ik

Y P
k,i ∀ j ∈ J, k, k′ ∈ K, t ∈ T (3.5a)

yppj,k,k′,t ≤
∑
i′∈Ik′

Y P
k′,i′ ∀ j ∈ J, k, k′ ∈ K, t ∈ T (3.5b)
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Any material can be transferred between plant sites, but to keep the computation com-

plexity at reasonable level, inter-site shipment may be restricted to a few chemicals.

A transportation link for chemical j from plant site k to distribution center dc exists

(ypdj,k,dc,t = 1), only if plant site k exists (Y P
k,i), and chemical j is a product of plant site k or

a final product JP :

ypdj,k,dc,t ≤
∑
i∈Ik

Y P
k,i ∀ k, j ∈ (JP ∪ JPk), dc ∈ DC, t ∈ T (3.6)

In principle, any chemical j can be transported from plant site k to distribution center dc.

However, to minimize the computation load we allow transfer of only final products and

products of a plant site k to distribution center dc.

A transportation link for final product j from plant site k to customer l exists (ypcj,k,l,t = 1),
only if plant site k exists (Y P

k,i):

ypcj,k,l,t ≤
∑
i∈Ik

Y P
k,i ∀ j ∈ JP , k ∈ K, l ∈ L, t ∈ T (3.7)

Distribution centerDistribution center

These constraints dictate the existence of a distribution center based on the existence of

the input and output material flows.

If a distribution center dc is set up (Y DC
dc = 1), at least one of the transportation links from

supplier ls (ysdj,ls,dc,t), or from plant site k (ypdj,k,dc,t), or from another distribution center dc′

to distribution center dc (yddj,dc′,dc,t) must exist, and a transportation link from distribution

center dc to customer l (ydcj,dc,l,t), or to plant site k (ydpj,dc,k,t), or to another distribution

center dc′ (yddj,dc,dc′,t) must exist:

Y DC
dc ≤

∑
j∈JR

∑
ls

∑
t

ysdj,ls,dc,t +
∑
j

∑
k

∑
t

ypdj,k,dc,t +
∑
j

∑
dc′

∑
t

yddj,dc′,dc,t ∀ dc ∈ DC (3.8a)

Y DC
dc ≤

∑
j∈JP

∑
l

∑
t

ydcj,dc,l,t +
∑
j

∑
k

∑
t

ydpj,dc,k,t +
∑
j

∑
dc′

∑
t

yddj,dc,dc′,t ∀ dc ∈ DC (3.8b)

It is worth mentioning that the transportation links ypdj,k,dc,t and ydpj,dc,k,t are not same

and considered to have separate transportation contracts. The first link represents the

material flow from a plant to a distribution center, while the second corresponds to the

opposite direction of flow.

30



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

Distribution center transportation linksDistribution center transportation links

A transportation link to distribution center dc for chemical j from supplier ls (ysdj,ls,dc,t),
or from plant site k (ypdj,k,dc,t), or from distribution center dc′ (yddj,dc′,dc,t) can exist only if

distribution center dc exists (Y DC
dc = 1). Similarly, a transportation link for chemical j

from distribution center dc to plant site k (ydpj,dc,k,t), or to customer l (ydcj,dc,l,t) can exist, only

if distribution center dc exists:

ysdj,ls,dc,t ≤ Y DC
dc ∀ j ∈ JR, ls ∈ LS, dc ∈ DC, t ∈ T (3.9a)

ypdj,k,dc,t ≤ Y
DC
dc ∀ j ∈ J, k ∈ K, dc ∈ DC, t ∈ T (3.9b)

yddj,dc′,dc,t ≤ Y DC
dc ∀ j ∈ JP , dc, dc′ ∈ DC, t ∈ T (3.9c)

ydpj,dc,k,t ≤ Y
DC
dc ∀ j ∈ J, dc ∈ DC, k ∈ K, t ∈ T (3.9d)

ydcj,dc,l,t ≤ Y DC
dc ∀ j ∈ JP , dc ∈ DC, l ∈ L, t ∈ T (3.9e)

A transportation link between distribution centers dc and dc′ exists for final product j

(yddj,dc,dc′,t = 1), only if distribution center dc receives chemical j from a plant site k (ypdj,k,dc,t)
and distribution center dc′ supplies chemical j to a plant site k′ (ydpj,dc′,k′,t), or to a customer

l (ydcj,dc′,l,t). These requirements can be mathematically represented by the inequalities,

yddj,dc,dc′,t ≤
∑
k

ypdj,k,dc,t ∀ j ∈ JP , dc, dc′ ∈ DC, t ∈ T (3.10a)

yddj,dc,dc′,t ≤
∑
k

ydpj,dc′,k,t +
∑
l

ydcj,dc′,l,t ∀ j ∈ JP , dc, dc′ ∈ DC, t ∈ T (3.10b)

To minimize computational complexity, we permit the establishment of inter-distribution

center transportation links only for the final product.

A transportation link from distribution center dc to plant site k exists for chemical j

(ydpj,dc,k,t = 1) only if distribution center dc receives chemical j from another plant site k′

(ypdj,k′,dc,t), or from supplier ls (ysdj,ls,dc,t), or from another distribution center dc′ (yddj,dc′,dc,t). In

addition, site k should supply chemical j to distribution center dc′ (ypdj,k,dc′,t), or to customer

l (ypcj,k,l,t), or to another site k′ (yppj,k,k′,t), or consume chemical j:

ydpj,dc,k,t ≤
∑
k′

ypdj,k′,dc,t +
∑

ls∈LSj

ysdj,ls,dc,t +
∑

dc′:dc′ 6=dc,j 6∈JR
k

yddj,dc′,dc,t

∀ k ∈ K, j ∈ (JP ∪ JRk), dc ∈ DC, t ∈ T (3.11a)

ydpj,dc,k,t ≤
∑

dc′:dc′ 6=dc
ypdj,k,dc′,t +

∑
k′:k′ 6=k

yppj,k,k′,t +
∑
l

ypcj,k,l,t +
∑
i∈IC

j

Y P
k,i

∀ k ∈ K, j ∈ (JP ∪ JRk), dc ∈ DC, t ∈ T (3.11b)
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We allow the shipment of only final product (JP ) or raw material for plant site k (JRk ) from

distribution center dc to plant site k.

A transportation link from distribution center dc to customer l exists for chemical j

(ydcj,dc,l,t = 1), only if distribution center dc receives chemical j from plant site k (ypdj,k,dc,t) or

from another distribution center dc′ (yddj,dc′,dc,t):

ydcj,dc,l,t ≤
∑
k

ypdj,k,dc,t +
∑

dc′:dc′ 6=dc
yddj,dc′,dc,t ∀ j ∈ JP , dc ∈ DC, l ∈ L, t ∈ T (3.12)

3.2.3 Operational Planning

The operation planning model includes constraints related to production, transportation,

and mass balance relationships. It also defines the production capacity of plants and

storage capacity of plants and distribution centers.

Production constraintsProduction constraints

Flow Wk,i,j,m,t of chemical j associated with production scheme m in plant i at site k is

calculated from the production amount of main product j∗ of scheme m, and is given by

the mass balance coefficient µi,j,m times the production flow of main product j∗:

Wk,i,j,m,t = µi,j,mWk,i,j∗,m,t ∀ k ∈ K, i ∈ Ik, j ∈ Jm, j∗ ∈ JMP
m ,m ∈Mi, t ∈ T (3.13)

The total production amount of main product j from all production schemes m installed at

plant i of site k should be within the production capacity of plant i (Qprodk,i ):

∑
m∈Mi

∑
j∈JMP

m

ηk,i,mWk,i,j,m,t ≤ Qprodk,i ∀ k ∈ K, i ∈ Ik, t ∈ T (3.14)

where ηk,i,m represents the relative production amount of main product j of production

scheme m in plant i in terms of plant capacity.

The design production capacity of plant i at site k (Qprodk,i ) is constrained by a specified

maximum allowable installation capacity Qprod,maxk,i :

Qprodk,i ≤ Q
prod,max
k,i ∀ k ∈ K, i ∈ I (3.15)
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Mass balance constraintsMass balance constraints

The mass balance for chemical j at plant site k during time period t is given by,

IPj,k,t = IPj,k,t−1 +
∑

ls∈LSj

Qspj,ls,k,t +
∑
k′

Qppj,k′,k,t +
∑
dc

Qdpj,dc,k,t +
∑
i∈IP

j

∑
m∈Mi

Wk,i,j,m,t

︸ ︷︷ ︸
production

−
∑
dc

Qpdj,k,dc,t −
∑
l

Qpcj,k,l,t −
∑
k′

Qppj,k,k′,t −
∑
i∈IC

j

∑
m∈Mi

Wk,i,j,m,t

︸ ︷︷ ︸
consumption

∀ k ∈ Ki, j ∈ J, t ∈ T (3.16)

where IPj,k,t is the inventory level of chemical j at plant site k, Qspj,ls,k,t is the purchase

amount, Qppj,k′,k,t and Qppj,k,k′,t are inter-site shipment quantities to plant site k from site

k′ and from plant site k to site k′ respectively, Qdpj,dc,k,t is the shipment amount from a

distribution center to plant site, Qpdj,k,dc,t is the shipment amount from a plant site to

distribution center, and Qpcj,k,l,t is the shipment amount to customer l.

The mass balance for chemical j at distribution center dc at time period t is given by,

IDCj,dc,t = IDCj,dc,t−1 +

 ∑
ls∈LSj

Qsdj,ls,dc,t +
∑
k

Qpdj,k,dc,t +
∑
dc′

Qddj,dc′,dc,t


−

∑
k

Qdpj,dc,k,t +
∑
l

Qdcj,dc,l,t +
∑
dc′

Qddj,dc,dc′,t

 ∀ dc ∈ DC, j ∈ J, t ∈ T (3.17)

where IDCj,dc,t is the inventory level of chemical j at distribution center dc, Qsdj,ls,dc,t is the

purchase amount from supplier ls, Qdcj,dc,l,t is shipment amount to customer l, and Qddj,dc′,dc,t
is the inter-distribution center shipment.

Inventory constraintsInventory constraints

The average inventory at distribution center dc (ILDCdc,t) during time period t is equal to the

outlet flow from distribution center dc divided by the residence time (TOR - turn over ratio),

with an analogous expression for the average inventory at plant site k (Guillén-Gosálbez

and Grossmann, 2010):

ILDCdc,t =

∑
j

∑
l

Qdcj,dc,l,t +
∑
j

∑
k

Qdpj,dc,k,t +
∑
j

∑
dc′

Qddj,dc,dc′,t

TORDCdc
∀ dc ∈ DC, t ∈ T (3.18a)
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ILPk,t =

∑
j

∑
dc

Qpdj,k,dc,t +
∑
j

∑
l

Qpcj,k,l,t +
∑
k′

Qppj,k,k′,t

TORPk
∀ k ∈ K, t ∈ T (3.18b)

where TORDCdc and TORPk are the turn over ratio of distribution center dc and plant k

respectively. The turn over ratio is defined as the number of times the total inventory is

replenished in one time period.

Equation (3.19) enforces the distribution center and plant site inventories at the end of

each time period, and the average inventories, to be maintained within capacity limits:

∑
j

IDCj,dc,t ≤ QDCdc ∀ dc ∈ DC, t ∈ T (3.19a)

ψ ILDCdc,t ≤ QDCdc ∀ dc ∈ DC, t ∈ T (3.19b)∑
j

IPj,k,t ≤ QPk ∀ k ∈ K, t ∈ T (3.19c)

ψ ILPk,t ≤ QPk ∀ k ∈ K, t ∈ T (3.19d)

where ψ (> 1) represents a storage capacity safety factor. QDCdc and QPk are the storage

capacities of distribution center dc and plant site k respectively.

Equation (3.20) imposes upper limits on the design storage capacities at the distribution

centers (QDCdc ) and plant sites (QPk ):

QPk ≤ Q
P,max
k ∀ k ∈ K (3.20a)

QDCdc ≤ Q
DC,max
dc ∀ dc ∈ DC (3.20b)

where QDC,maxdc and QP,maxk are the design capacity of distribution center and plant site

respectively.

The total shipment amount of chemical j to each customer ls at time period t is equal to the

amount shipped from plant site k (Qpcj,k,l,t) plus the shipment dispatched from distribution

center dc (Qdcj,dc,l,t):

SAj,l,t =
∑
k∈K

Qpcj,k,l,t +
∑

dc∈DC
Qdcj,dc,l,t ∀ j ∈ J, l ∈ L, t ∈ T (3.21)

The sale amount SA must be less than or equal to the demand D for any time period.

However, there is a requirement of satisfying a minimum customer satisfaction level ϕ for
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each product j at each time period:

ϕDj,l,t ≤ SAj,l,t ≤ Dj,l,t ∀ j ∈ J, l ∈ L, t ∈ T (3.22)

Any unsatisfied customer demand (back-order) will not be carried further and discarded

with some penalty cost. The back order quantity of product j at time period t is given by,

BOj,l,t = Dj,l,t − SAj,l,t ∀ j ∈ JP , l ∈ L, t ∈ T (3.23)

Transportation flow constraintsTransportation flow constraints

Transportation of chemical j between two locations takes place only if the transportation

link between them is set up. Moreover, there is usually a minimum flow rate of material

that is needed to justify the establishment of a transportation link between two locations.

These considerations can be modeled by,

yspj,ls,k,t Q
sp,L
ls,k ≤ Qspj,ls,k,t ≤ yspj,ls,k,tQ

sp,U
j,ls,k ∀ j ∈ JR, ls ∈ LS, k ∈ K, t ∈ T (3.24a)

ysdj,ls,dc,t Q
sd,L
ls,dc ≤ Qsdj,ls,dc,t ≤ ysdj,ls,dc,tQ

sd,U
j,ls,dc ∀ j ∈ JR, ls ∈ LS, dc ∈ DC, t ∈ T (3.24b)

ypj,k,k′,t Q
pp,L
k,k′ ≤ Qppj,k,k′,t ≤ yppj,k,k′,tQ

pp,U
j,k,k′ ∀ j ∈ J, k, k′ ∈ K, t ∈ T (3.24c)

ydpj,dc,k,t Q
dp,L
dc,k ≤ Qdpj,dc,k,t ≤ ydpj,dc,k,tQ

dp,U
j,dc,k ∀ j ∈ J, dc ∈ DC, k ∈ K, t ∈ T (3.24d)

ypdj,k,dc,t Q
pd,L
k,dc ≤ Qpdj,k,dc,t ≤ ypdj,k,dc,tQ

pd,U
j,k,dc ∀ j ∈ J, k ∈ K, dc ∈ DC, t ∈ T (3.24e)

yddj,dc,dc′,t Q
dd,L
dc,dc′ ≤ Qddj,dc,dc′,t ≤ yddj,dc,dc′,tQ

ddU

j,dc,dc′ ∀ j ∈ J, dc, dc′ ∈ DC, t ∈ T (3.24f)

ypcj,k,l,t Q
pc,L
k,l ≤ Qpcj,k,l,t ≤ ypcj,k,l,tQ

pc,U
j,k,l ∀ j ∈ JP , k ∈ K, l ∈ L, t ∈ T (3.24g)

ydcj,dc,l,t Q
dc,L
dc,l ≤ Qdcj,dc,l,t ≤ ydcj,dc,l,tQ

dc,U
j,dc,l ∀ j ∈ JP , dc ∈ DC, l ∈ L, t ∈ T (3.24h)

3.2.4 Contractual Agreement Constraints - Transportation Routes

The contractual agreement constraints track the transportation linkages’ service time

and restrict their minimum duration to a specified contract time. In order to check the

contract duration, the contract start and end time have to be recorded. The contract

starts (Cspdj,k,dc,t = 1) when the binary variable ypdj,k,dc,t changes value from 0 to 1 and ends

(Cepdj,k,dc,t = 1) when its value changes back to zero. In order to relate the contract start

and end times to the binary transportation linkage variables, we utilize a formulation

presented in Kelly and Zyngier (2007) for sequence-dependent switchovers in scheduling

problems that was also applied in Chong and Swartz (2016) to track plant unit shutdown

durations. For illustration purposes, the formulation is expressed for the link from a plant
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to a distribution center:

ypdj,k,dc,t − y
pd
j,k,dc,t−1 = Cspdj,k,dc,t − Ce

pd
j,k,dc,t ∀ j ∈ J, k ∈ K, dc ∈ DC, t ∈ T (3.25a)

ypdj,k,dc,t + ypdj,k,dc,t−1 = Cspdj,k,dc,t + Cepdj,k,dc,t + 2 Cdpdj,k,dc,t ∀ j ∈ J, k ∈ K, dc ∈ DC, t ∈ T (3.25b)

Cspdj,k,dc,t + Cepdj,k,dc,t + Cdpdj,k,dc,t ≤ 1 ∀ j ∈ J, k ∈ K, dc ∈ DC, t ∈ T (3.25c)

Here, Cspdj,k,dc,t ∈ [0, 1] is a contract start marker (1 when true, 0 otherwise); Cepdj,k,dc,t ∈
[0, 1] is an end marker; and Cdpdj,k,dc,t ∈ [0, 1] is an auxiliary variable. Equation (3.25) results

in

• Cspdj,k,dc,t = 1 and Cepdj,k,dc,t = 0 when the transportation link changes status from

inactive (ypdj,k,dc,t−1 = 0) to active (ypdj,k,dc,t = 1),

• Cspdj,k,dc,t = 0 and Cepdj,k,dc,t = 1 when the transportation link changes status from

active (ypdj,k,dc,t−1 = 1) to inactive (ypdj,k,dc,t = 0), and

• Cspdj,k,dc,t = 0 and Cepdj,k,dc,t = 0 when there is no change in transportation link status.

Equation (3.25) also preserves the integrality of the marker variables, which are treated

as continuous variables within the interval [0, 1]. Figure 3.2 provides a pictorial represen-

tation of the formulation (3.25).

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

Contract Period

Cs = 1
Ce = 0
Cd = 0

Cs = 0
Ce = 0
Cd = 1

Cs = 0
Ce = 1
Cd = 0

y

Figure 3.2: Transportation link contract period with marker variables.

Minimum contract service timeMinimum contract service time

When a transportation contract starts, it has to be in service for a specified minimum

contract period. Following the formulation presented in Chong and Swartz (2016) in the

context of plant shutdown durations, we model the contract service time requirement that

the shipment lane from plant site k to distribution center dc has a minimum service time
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of τpd time periods as

Ccpdj,k,dc,t =
t+τpd

k,dc
−1∑

t

ypdj,k,dc,t ∀ j ∈ J, k ∈ K, dc ∈ DC, t = 1, . . . , N − τpdk,dc + 1 (3.26a)

Ccpdj,k,dc,t ≥ τ
pd
k,dc Cs

pd
j,k,dc,t ∀ j, k, dc, t = 1, . . . , N − τpdk,dc + 1 (3.26b)

Here, N is the total number of time periods and Ccpdj,k,dc,t represents a τpd-step ahead sum-

mation of ypdj,k,dc,t. It is worth noting that the formulation does not require the introduction

of any new binary variables, hence does not appreciably increase the computation burden

of the MILP problem.

Constraint sets (3.25) and (3.26) are written for a plant site to distribution center trans-

portation link. Similar sets of constraints are written for other transportation links

(supplier to plant site, plant site to customer, etc.).

3.2.5 Economic Performance Metrics

In the SC design literature, net present value (NPV) is a widely used economic objective

for strategic decisions. In the present formulation, we also use NPV as an economic

performance measure, calculated from the total revenue generated from sales and the SC

cost. The cost can be classified into operating cost and investment cost.

Operating revenueOperating revenue

The operating revenue is calculated from the total sale of products.

Revenue =
∑
j

∑
l

∑
t

SAj,l,t γ
P
j,l,t (3.27)

where γP is the selling price of the product.

Operating costOperating cost

The cost for operating the SC is computed by summing (1) raw material purchasing cost

(Cpurchase), (2) production cost (Cprod), (3) transportation cost (Ctrans), (4) inventory cost

(Cinv), and (5) back order cost (Cboc). The purchasing cost is calculated from the total

quantity of raw material purchased from suppliers. The production cost is calculated from

the amount of product produced at each production facility. The inventory cost is reckoned
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based on the amount of material stored at plants and warehouses. The unmet demand

in each time period is discarded with a back order penalty cost and included in the SC

operating cost. The transportation cost is the cost incurred for moving materials across

SC nodes. The formulation assumes that the unit cost of transportation is independent

of amount of material transported and distance between locations. In practice, the cost

usually decreases with distance and transportation quantity, but for simplicity we assumed

constant unit transportation cost. Similarly, we considered constant unit cost for inventory

handling, and production process.

Cpurchase =
∑
j∈JR

∑
ls

∑
t

(∑
k

Qspj,ls,k,t +
∑
dc

Qsdj,ls,dc,t

)
γRj,ls,t (3.28a)

Cprod =
∑
k

∑
i∈Ik

∑
m∈Mi

∑
j∈JMP

m

∑
t

Wk,i,j,m,t πk,i,m,t (3.28b)

Ctrans =
∑
t

∑
j∈JR

∑
ls

∑
k

Qspj,ls,k,tλ
sp
j,ls,k,t +

∑
j∈JR

∑
ls

∑
dc

Qsdj,ls,dc,tλ
sd
j,ls,dc,t (3.28c)

+
∑
j

∑
k

∑
k′

Qppj,k,k′,tλ
pp
j,k,k′,t +

∑
j

∑
dc

∑
k

Qdpj,dc,k,tλ
dp
j,dc,k,t (3.28d)

+
∑
j

∑
k

∑
dc

Qpdj,k,dc,tλ
pd
j,k,dc,t +

∑
j

∑
dc

∑
dc′

Qddj,dc,dc′,tλ
dd
j,dc,dc′,t (3.28e)

+
∑
j

∑
k

∑
l

Qpcj,k,l,tλ
pc
j,k,l,t +

∑
j

∑
dc

∑
l

Qdcj,dc,l,tλ
dc
j,dc,l,t

 (3.28f)

Cinv =
∑
k

∑
t

ILPk,t ρ
P
k,t +

∑
dc

∑
t

ILDCdc,t ρ
DC
dc,t (3.28g)

Cboc =
∑
j∈JP

∑
l

∑
t

(Dj,l,t − SAj,l,t) νj,l,t (3.28h)

Investment costInvestment cost

The investment cost is determined from the installment cost of production and storage

facilities at candidate locations, and given by the sum of fixed (Cfinvst) and variable (Cvinvst)
costs as shown in Equation (3.29).

Cinvst = Cfinvst + Cvinvst (3.29)

The investment cost includes the infrastructure cost associated with the facility design

and construction, which is assumed to be equally distributed over total service time of

the facility. The depreciation of the investment capital (infrastructure cost) is determined

38



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

through Equation (3.30). We ignore any infrastructure cost associated with developing

customer zones.

Cfinvst = (1− ψ)×N
{∑

k

∑
i

Y P
k,i α

P
k,i

STk
+
∑
dc

Y DC
dc αDCdc
STdc

}
(3.30)

where ψ is the salvage value, ST is service life time of facility (plant and distribution

center), and N is the length of design horizon.

The variable investment cost is calculated based on the installed capacity of production

and storage facilities, and given by,

Cfinvst =
∑
k

∑
i∈Ik

Qprodk,i βPSk,i +
∑
k

QPk β
P
k +

∑
dc

QDCdc β
DC
dc (3.31)

The NPV of a supply chain is computed as,

NPV = Revenue−
(
Cinvst + Cpurchase + Cprod + Ctrans + Cinv + Cboc

)
(3.32)

The cost parameters pertaining to product sales, investment, and network operation (such

as raw material purchase, production, material storage, back-order) are discounted at a

specified interest rate (You and Grossmann, 2008a).

The deterministic flexible SC design problem is posed with an objective of maximizing

NPV subject to Equations (3.1) − (3.26).

3.2.6 Two-stage Stochastic Formulation

In this work, uncertainty in the customer demand is handled by a scenario based approach

using two-stage stochastic programming. The network structure decisions, such as

locations of facilities, and transportation routes between these facilities, are treated as

first stage decisions which retain the same values across all demand scenarios, while

the operational planning decisions, such as production and transportation amounts are

considered as second stage decisions.

Uncertainty information in the demand is captured by generating a number of discrete

realizations of uncertain demand, where each complete realization gives rise to a scenario.

In this work, we assume equal probability of occurrence of all scenarios. Ideally, a large

number of scenarios should be included in the optimization formulation to effectively

capture the uncertainty; however it results in a large-size problem which is not only
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complex to handle but difficult to solve. Monte Carlo sampling can be used to reduce the

number of scenarios required to achieve desired performance. The objective function is

set as the expected value of the NPV over all scenarios. The mathematical formulation 1

of a two-stage stochastic network design model is given by,

max E[NPV] =
∑
s

ξs NPVs

subject to: f(xt,s, zt, ut, dt,s, c1) ≤ 0 ∀ s, t

g(xt,s, zt, ut, dt,s, c2) = 0 ∀ s, t

xt,s ∈ R+nx ∀ s, t

ut ∈ R+nu ∀ t

zt ∈ {0, 1}nz ∀ t

(3.33)

where, objective function E[NPV] represents the expected value of NPV over all scenarios,

the index s ∈ S := {1, . . . , NS} represents the scenarios, NS is the total number of

scenarios, ξs is the probability of scenario s occurring. f(·) and g(·) represent the linear

inequality and equality constraints respectively of a dynamic supply chain model. zt are

the first stage discrete decisions, ut are the first stage continuous decisions, and xt,s are

the second stage decisions. dt,s is the demand profile realization for scenarios s, and c1 and

c2 are the set of parameters. nx, nu, and nz indicate the dimension of corresponding vector

x, u, and z. The definition of second stage stochastic variables are given by extending

their equivalent deterministic variables over a scenario index s. The variable sets x, z, u

and d are defined as,

x =
[
WK,I,J,M,T,S , I

P
J,K,T,S , I

DC
J,DC,T,S , IL

DC
DC,T,S , IL

P
K,T,S , SAJ,L,T,S , BOJ,L,T,S ,

QspJ,LS,K,T,S , Q
sd
J,LS,DC,T,S , Q

pp
J,K,K,T,S , Q

dp
J,DC,K,T,S , Q

pd
J,K,DC,T,S , Q

pc
J,K,L,T,S , Q

dc
J,DC,L,T,S ,

QddJ,DC,DC,T,S
]

z =
[
Y P
K,I , Y

DC
DC , y

sp
J,LS,K,T , y

sd
J,LS,DC,T , y

pp
J,K,K,T , y

dp
J,DC,K,T , y

pd
J,K,DC,T , y

pc
J,K,L,T , y

dc
J,DC,L,T ,

yddJ,DC,DC,T
]

u =
[
QprodK,I , Q

P
K , Q

DC
DC ,

CsspJ,LS,K,T , Cs
sd
J,LS,DC,T , Cs

pp
J,K,K,T , Cs

dp
J,DC,K,T , Cs

pd
J,K,DC,T , Cs

pc
J,K,L,T , Cs

dc
J,DC,L,T ,

CespJ,LS,K,T , Ce
sd
J,LS,DC,T , Ce

pp
J,K,K,T , Ce

dp
J,DC,K,T , Ce

pd
J,K,DC,T , Ce

pc
J,K,L,T , Ce

dc
J,DC,L,T ,

CdspJ,LS,K,T , Cd
sd
J,LS,DC,T , Cd

pp
J,K,K,T , Cd

dp
J,DC,K,T , Cd

pd
J,K,DC,T , Cd

pc
J,K,L,T , Cd

dc
J,DC,L,T ,

CcspJ,LS,K,T , Cc
sd
J,LS,DC,T , Cc

pp
J,K,K,T , Cc

dp
J,DC,K,T , Cc

pd
J,K,DC,T , Cc

pc
J,K,L,T , Cc

dc
J,DC,L,T ,

1Refer Birge and Louveaux (1997) for detailed explanation of stochastic programming methods.
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CsddJ,DC,DC,T , Ce
dd
J,DC,DC,T , Cd

dd
J,DC,DC,T , Cc

dd
J,DC,DC,T

]
d =

[
DJ,L,T,S

]
The variable indices shown above indicate their maximum dimensions and would be

defined over the sets described in the model formulation section using the notation,

WK,I,J,M,T,S :=
{
Wk,i,j,m,t,s, ∀ k ∈ K, i ∈ I, j ∈ J,m ∈M, t ∈ T, s ∈ S

}
Similarly other variables are defined on their corresponding sets.

In the above formulation, the time-dependent transportation linkages are treated as first

stage decisions. However, other alternatives are possible, such as choosing linkages for a

prescribed horizon as first-stage decisions and treating them as second-stage decisions

for the remainder of the horizon.

3.3 CASE STUDY

In order to demonstrate the applicability and benefits of the proposed SC design approach,

we consider a case study presented in Guillén-Gosálbez and Grossmann (2010), adapted

to incorporate characteristics of our flexible SC design problem. The original case study

represents the optimal retrofit design of an existing European supply chain. As the

problem in the present work addresses the new design of SC, we treat the location and

capacity of existing production and storage facility as decision variables in the design

problem, along with other potential new plant and storage facilities locations. Further,

in the present study, capacity expansion is not considered, upper and lower bounds on

material flows between suppliers and plant sites are included, and transportation contract

information is incorporated. The network superstructure of the case study is shown in

Figure 3.3

The case study involves the design of a European supply chain consisting of 2 raw material

suppliers, 2 production sites, 6 production plants, 2 distribution centers, and 4 customers

over a time horizon of 12 months with a discretization period of 1 month. There are 6

different production schemes (M1, . . . ,M6) available to produce 6 products: acetaldehyde,

acetone, acrylonitrile, cumene, isopropanol, and phenol from 9 raw materials: ammonia,

benzene, ethylene, hydrochloric acid, hydrogen cyanide, oxygen, propylene, sodium

hydroxide, and sulfuric acid. The production network structure is shown in Figure 3.4.

The number indicated on each arrow shows the mass balance coefficient of the material
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Plant 1 Plant 4
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Plant 3 Plant 6
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Figure 3.3: Network superstructure of the European supply chain case study

for the corresponding production scheme.

The potential location for raw material suppliers, production sites, and distribution

centers are Tarragona (Spain) and Neratovice (Czech Republic). The 4 final markets

are located at Leuna (Germany), Neratovice (Czech Republic), Sines (Portugal), and

Tarragona (Spain). The customer demand is treated as an uncertain parameter in the

optimization formulation. A minimum demand satisfaction target level is considered as

40%. The production capacities of the plants are considered as design variables with an

Table 3.1: Variable and fixed investment cost of production facilities for the European
supply chain

Plant/Site βP S
k,i ($/ton/month) αP

k,i (thousand $)

Neratovice Tarragona Neratovice Terragona

I1 48.68 91.28 4430.11 8306.45
I2 49.83 93.43 4534.83 8502.82
I3 125.76 235.81 11445.06 21459.49
I4 55.86 104.73 5083.10 9530.80
I5 24.71 46.34 2248.92 4216.72
I6 88.31 165.59 8036.80 15069.01

upper limit of 10 kton/month and no minimum production capacity specified. The fixed

and variable investment costs of opening a new plant and distribution center are given in
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M1
One step ethylene

oxidation
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Figure 3.4: Production network within production site of the European supply chain case
study

Tables 3.1 and 3.2. The safety factor for plant and distribution center storage capacity is

taken as 2.

The cost of on-site storage is set higher than the most costly warehouse storage; thus

the traditional network structure will be favored, and the more flexible options used only

if economically advantageous. Considering limited space availability at a plant site, the

storage capacity at plant sites is restricted to 4 kton, whereas a warehouse has a capacity

of 12 kton. The variable investment cost of building a storage facility at a plant site is

taken as 3 $/ton which is higher than the most costly option (2.38 $/ton) of building a

warehouse. Similarly, the inventory cost at the plant sites is taken as 0.3 and 0.5 $/ton at

Neratovice and Tarragona respectively, higher than cost at corresponding warehouses.

The total service time of each facility is taken as 4 years and salvage value is taken as 20%

of fixed cost. The production cost data are given in Table 3.3.

The minimum and maximum transportation quantities for each transportation link are

restricted to 0.15 and 11 kton/month respectively, except for the customer shipping lane

for which no minimum transportation quantity is enforced. The transportation cost of all

linkages are taken as 0.021 $/(ton-km). The turnover ratio (TOR) for the storage facilities

located at each plant site and distribution center is taken as 10. Table 3.4 provides the

distance between plants, warehouses, and markets. The purchase cost of raw materials

and the selling price of products are given in Tables 3.5 and 3.6 respectively.
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Table 3.2: Investment and operating costs of storage facilities for the European supply
chain

Warehouse or plant site βP
k βDC

dc αDC
dc ρP

k,t ρDC
dc,t

($/ton) ($/ton) (thousands $) ($/ton) ($/ton)

Neratovice 3 1.06 96.31 0.3 0.1

Tarragona 3 2.38 216.69 0.5 0.22

Note: The inventory costs are the same for each time period.

Table 3.3: Production costs for the European supply chain

Scheme/Plant πk,i,m,t ($/ton)

Neratovice Tarragona

M1 7.12 16.03
M2 19.43 43.71
M3 4.86 10.93
M4 12.30 27.68
M5 1.94 4.37
M6 12.30 27.68

Note: The production costs are same for
each time period.

Table 3.4: Inter-node distances for the European supply chain

Facilty / Facility or Market Distances (km)

Leuna Neratovice Sines Tarragona

Neratovice 295.45 0 2970.72 1855.47
Tarragona 1781.36 1855.47 1212.82 0

3.3.1 Results and Discussion

In order to demonstrate the proposed SC design approach and its impact, we present

three design cases initially: (1) Single transportation contract formulation (SCF): single

transportation contract over the entire time horizon (base case), (2) Fixed contract

formulation (FCF): transportation links with contractual agreement having a minimum

lock-in period of 4 months, and (3) No contract formulation (NCF): transportation links

with no contract agreement. A fourth case is introduced later. The design case FCF

represents the proposed SC design formulation. We treat design case SCF as the base

case against which we compare and analyze the performance of the proposed design

approach.
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Table 3.5: Price of raw materials for the European supply chain case study

Chemical/Plant γR
j,ls,t ($/ton)

Neratovice Tarragona

Ammonia 140.54 148.81
Benzene 200.51 212.30
Ethylene 233.68 247.42
Hydrochloric acid 116.18 123.02
Hydrogen cyanide 468.47 496.03
Oxygen 29.98 31.75
propylene 159.28 168.65
Sodium hydroxide 140.54 148.81
Sulfuric acid 42.16 44.64

Note: The raw materials cost are same for
each time period.

Table 3.6: Price of final products for the European supply chain case study

Chemical/Market γP
j,l,t ($/ton)

Leuna Neratovice Sines Tarragona

Acetaldehyde 509.26 487.43 491.07 500.17
Acetone 432.87 414.32 417.41 425.14
Acrylonitrile 36.40 34.84 35.10 35.75
Cumene 401.23 384.04 386.90 394.07
Isopropanol 401.23 384.04 386.90 394.07
Phenol 709.88 679.45 684.52 697.20

Note: The products selling cost are same for each time period.

Considering smaller storage facilities available at plant sites, it will deliver the part of

customer orders to the extent that it is cost-effective, while warehouses will deliver the

remaining orders. We expect that, in the absence of transportation link contractual

agreements (as in NCF case), the optimization should take advantage of switching the

transportation links whenever profitable. It provides an additional degree of freedom

within optimization formulation and thus represents the most flexible SC design. By

contrast, in the presence of link contracts (cases SCF and FCF), it is not possible to

change transportation links without satisfying minimum contract times and hence it will

result in a lower NPV value. For case SCF, the transportation links can not be changed

across time periods and hence represents the least flexible formulation. As explained

earlier, the uncertainty in demand is handled by a scenario-based, two-stage stochastic

optimization approach. We consider seasonal demand pattern for each product and
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Table 3.7: Nominal demand of products for the European supply chain case study

Chemical/Market Dj,l,t (kton/month)

Leuna Neratovice Sines Tarragona

Acetaldehyde 1.125 3.125 1.0 0.625
Acetone 0.9 2.5 0.8 0.5
Acrylonitrile 1.5 4.167 1.333 0.833
Cumene 1.125 3.125 1.0 0.625
Isopropanol 0.75 2.083 0.667 0.417
Phenol 1.050 2.917 0.933 0.583

assume that the seasonal characteristic remains same across customer zones. However,

the nominal demand of each product is different for different customer zones. Figure 3.5

shows representative demand profiles of all products, where zero shows the nominal

demand values. The demand of acetaldehyde shows peak during time periods 6 and 7,

whereas acetone shows peak demand in early time periods and acrylonitrile attains the

peak in the later time periods. Likewise, acetone demand increases in the first few time

periods and then it forms a peak. It creates another peak with lesser value in the later

time periods before it tapers off. Isopropanol and phenol show linear increase in demand.

We assume that the seasonal demand pattern for all product will repeat in each year,

and limit the design horizon to one year. However, to capture the demand uncertainty

over the entire design period, we generate demand scenarios by introducing variation

around mean demand profiles. 15 demand scenarios are selected using a Monte-Carlo

sampling technique assuming a uniform distribution with a variation of ±10% around

mean demand profile as a balance between capturing the uncertainty and generating

a computationally tractable optimization problem. The nominal demand values of each

product are tabulated in Table 3.7. The model is implemented in AMPL and solved with the

MILP solver CPLEX 12.5 to a 0.5% optimality gap. The optimization problems are solved

on a 3.00 GHz IntelrCoreTM i7 machine with 8 GB of RAM.

Table 3.8 summarizes the network design results. The 3rd and 4th column show the

problem size for each design case. The number of binary variables remains same for all

cases, however the number of continuous variables are different depending on transporta-

tion contract period, and NCF has the highest number of continuous variables. The NPV

comparison graph is shown in Figure 3.6. The design case NCF shows an NPV value

that is 10.37% greater than design case SCF, while case NCF has a 13.08% higher NPV

than case SCF. The NPV results falls in line of expectation as design cases, FCF and NCF,

both utilize the freedom of altering transportation links between facilities if it reduces the
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Figure 3.5: Nominal demand profile of each product with zero mean

Table 3.8: Comparison between three design formulations: SCF, FCF, and NCF

Design

Case
Contract
period

Continuous
Variables

Discrete

Variables
NPV

(million $)
% NPV

improvement
Revenue

(million $)

SCF 12 89007 3326 59.8857 − 144.0463

FCF 4 93423 3326 66.0939 10.37 144.2719

NCF − 95079 3326 67.7240 13.09 144.4278

FNF 4 80393 2928 57.2070 -4.47 135.9745

- The NPV improvement percentage is indicated in reference to base case SCF. A design
horizon of 12 months is considered for all design cases.

- In SCF, only single transportation contract is allowed, so contract period is equal to
design horizon.

operating cost, and thus result in a higher NPV value than the base case SCF.

The network structures obtained from design cases SCF, FCF and NCF are presented in

Figures 3.7 to 3.9 respectively. The number shown in a rectangular box (plant) indicates

the installed capacity of the corresponding production plant. A blank box indicates that

plant is not installed at the corresponding location. The design formulations, presented

here, consider a separate transportation link for each material between each pair of

echelons, however for brevity of representation, the design structures (Figures 3.7 to 3.9)

show one combined link between facilities if at least one link is set up between these

locations to transport material.
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Figure 3.7: Network structure of the SCF (single transportation contract) case - Base case

The number written beside each transportation link specifies the time period(s) for

which the link is active for some chemical. If no number is specified, that means the

transportation link is active for the entire time horizon.

Formulations FCF and NCF provide similar network structures with few exceptions but

differ largely in terms of selecting transportation links between network nodes. They both

chose to set up the production plants I4, I5 and I6 at the Neratovice production site and I1

and I5 at the Tarragona site. The case NCF also sets up a plant I1 at Neratovice location.

It is worth to mention that, for the same set of plants, both design cases choose to allocate

different production capacities. On the other hand, design case SCF chose to install I1,
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Figure 3.9: Network structure of the NCF (No transportation contract) case - Totally
flexible case

I3, I5 and I6 at Neratovice and I1, I4 and I5 at the Tarragona plant site. All design cases

propose to install warehouse at both locations with highest allowable capacity. Further,

all design cases take advantage of storing materials at plant site and directing them to

customers and therefore use the highest storage capacity that can be installed at both

plant sites. The design case FCF takes the advantage of flexible node connectivity and
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transports the raw materials to Tarragona plant through distribution center located at

Tarragona during design periods 1-11 to reduce the operating cost. It also uses a direct

shipment path to send raw materials to the Tarragona plant site during time periods

1-5. Design cases SCF and NCF propose to use suppliers located at the plant vicinity to

supply raw materials, however case FCF uses supplier located at Tarragona to provide

raw materials to both plant sites. Thus, the main distinction between these three design

networks lies in terms of material distribution channels.

The cost contribution of each component towards total network cost for design case

FCF is shown in pie chart 3.10. The purchase cost accounts for the most (68%) of the

total cost while the inventory holding cost accounts for the least (0.05%). The share of

transportation cost is 8.4% of the total cost, while the fixed and variable investment cost

contributions are 7.22% and 2.64% respectively. The back order cost accounts for 9.76%

which is even higher than the production cost 4.02%.

Back Order
9.76%

Purchase
67.93%

Production
4.02%

Inventory
0.05%

Transportation
8.40%

Fixed Investment
7.22%

Variable Investment
2.64%

Figure 3.10: Cost contribution chart for the design case FCF

Figure 3.11 shows a cost comparison chart between design cases. Notably, the fixed-

investment cost for SCF case is much higher than the rest of the cases. The fixed

investment cost is 41.88% lower in FCF case than SCF. The FCF case also managed to

slash its variable investment cost by 12.59% than the SCF. The Neratovice production

site offers a lower production cost for all production schemes and therefore the optimizer

chose to produce most of the products at the Neratovice production site in all design
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case. Because of having the freedom of selecting different transportation routes after

satisfying a specified minimum contractual service time, design case FCF and NCF make

better use of investment cost to generate extra revenue from higher sales and reduce

operating cost. However, the enforcement of a single contract agreement in design case

SCF does not favour this situation and yields lower NPV value. The extra freedom allowed

in case FCF results in savings of 14.23% in production cost. The design case NCF exploits

this flexibility even further and offers savings of 22.8% in production cost. Similarly,

the purchase cost is decreased by 2.61% and 4.86% for FCF and NCF respectively. On

the other hand, inventory and transportation cost is increased in FCF case by 3.42%

and 9.06% respectively, however NCF has managed to save 2.01% and 15.04% in the

corresponding cost components. The revenue generated from case NCF is $144.42 million,

$0.1558 million higher than case FCF and $0.3815 million higher than SCF.

While the design case NCF provides a more economically beneficial design in terms of

higher NPV, the SC performance of case NCF may worsen when executing the time-limited

contractual agreement on the resulting network configuration. To analyze the supply

chain performance in this scenario, we fixed the network design obtained in case NCF,

imposed a contractual agreement of 4 months, and re-optimizes SC performance. We

refer it as fixed network with contractual agreement enforcement formulation (FNF). As

the NCF network structure is fixed, the variables that define the structure; location of

storage facilities (Y DC
dc ), plants that are installed at plant site (Y P

k,i), production capacity

of installed plants (Qprodk,i ), storage capacities at plant site (QPk ), and storage capacity

at distribution center dc (QDCdc ) are considered as parameters in the FNF optimization

problem, and their values are fixed from the NCF case. The result for FNF case is shown

in Figure 3.6. Surprisingly, the FNF case generates an NPV value less than the base
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case SCF. The drop in NPV value is 4.47% from SCF and 14.84% from FCF case. The

network’s demand satisfaction level drops which results in an increase in backorder cost

by a factor of two in comparison with SCF case. The backorder cost accounts for 21% total

cost of running a supply chain. This clearly shows that the network structure designed

for no transportation contract is not able to handle them effectively if they have to be

implemented due to a business requirement. For the present case study, this translates

to losing an opportunity to improve the profit by $2.6787 million per year with respect

to the base case. This result emphasizes the importance of considering transportation

contractual agreements, if any, during SC network design phase.

3.4 CONCLUSIONS

In this work, we presented a novel SC design approach which provides flexibility by

allowing contiguous and non-contiguous node connections, and incorporates time-limited

transportation contracts. Uncertainty in the customer demand prediction was considered

in the optimization formulation using a scenario based two-stage stochastic programming

approach. The proposed approach is illustrated through application to an industrially-

based case study. The network structures and economics under different transportation

contracts were compared. The main inferences drawn from the case study are, (i) including

different transportation contracts yielded different network structures, (ii) transportation

link flexibility that satisfies contract periods gives a higher NPV than single-contract

case but lower than no contract restrictions, and (iii) no restriction on transportation

service time generated a higher NPV, however it may be unrealistic from a management

perspective, and if time-limited contracts are subsequently imposed on the resulting

network, lower economics are achieved than with a SC structure that considered time-

limited contracts in the design formulation.

NOMENCLATURE

IndicesIndices

dc distribution centers

i plants

j chemicals

k production sites
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l customers

ls suppliers

m production schemes

s demand scenarios

t time periods

SetsSets

I set of plant i

J set of chemical j

K set of production site k

L set of customer l

LS set of supplier ls

M set of production scheme m

S set of scenario s

T set of time period t

ICj set of plants that consume chemical j

IPj set of plants that produce chemical j

Ik set of plants that can install at site k

Jm set of materials for scheme m

JP set of final products

JPi set of products for plant i

JPk set of products that could potentially produced at site k

JMP
m set of main product for scheme m

JR set of main raw materials

JRi set of raw materials for plant i

JRk set of raw materials that can potentially use at site k

LSj set of suppliers that supply chemical j

Ki set of production sites that can set up plant i

Mi set of production schemes for plant i
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Binary VariablesBinary Variables

Y DC
dc 1 if warehouse dc is to be established

Y P
k,i 1 if plant i is to be established at site k

ydcj,dc,l,t 1 if a transportation link from warehouse dc to customer l for chemical

j is set up

yddj,dc,dc′,t 1 if an inter-warehouse transportation link from warehouse dc to ware-

house dc′ for chemical j is set up

ydpj,dc,k,t 1 if a transportation link from warehouse dc to site k for chemical j is

set up

ypcj,k,l,t 1 if a transportation link from site k to customer l for chemical j is set

up

ypdj,k,dc,t 1 if a transportation link from site k to warehouse dc for chemical j is

set up

yppj,k,k′,t 1 if an inter-site transportation link from site k to another site k′ for

chemical j is set up

ysdj,ls,dc,t 1 if a transportation link from supplier ls to warehouse dc for chemical j

is set up

yspj,ls,k,t 1 if a transportation link from supplier ls to site k for chemical j is set

up

Continuous VariablesContinuous Variables

BOj,l,t amount of back order (unsatisfied demand) of chemical j for customer l

accumulated at time period t

Ccpdj,k,dc,t 1 if site k sends chemical j to distribution center dc during time period t

Cepdj,k,dc,t 1 if site k stops supplying chemical j to warehouse dc at time period t

Cspdj,k,dc,t 1 if site k starts supplying chemical j to warehouse dc at time period t

IDCj,dc,t inventory level of chemical j at warehouse dc during time period t

IPj,k,t inventory level of chemical j at site k during time period t

ILDCdc,t average inventory of chemical j at warehouse dc during time period t

ILPk,t average inventory of chemical j at site site k during time period t

Qdcj,dc,l,t shipping amount of chemical j from distribution center dc to customer l

during time period t
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Qddj,dc,dc′,t shipping amount of chemical j from distribution center dc to distribution

center dc′ during time period t

Qdpj,dc,k,t shipping amount of chemical j from distribution center dc to site k

during time period t

QDCdc storage capacity of distribution center dc

Qpcj,k,l,t shipping amount of chemical j from site k to customer l during time

period t

Qpdj,k,dc,t shipping amount of chemical j from site k to distribution center dc

during time period t

Qppj,k,k′,t shipping amount of chemical j from site k to site k′ during time period t

Qprodk,i production capacity of plant i at site k

QPk storage capacity of plant site k

Qsdj,ls,dc,t shipping amount of chemical j from supplier ls to distribution center dc

during time period t

Qspj,ls,k,t shipping amount of chemical j from supplier ls to site dc during time

period t

SAj,l,t sale of chemical j to customer l during time period t

Wk,i,j,m,t amount of chemical j produced in plant i at site k for scheme m in time

period t

ParametersParameters

Dj,l,t nominal demand of chemical j for customer l during time period t

N total number of time periods

NS total number of demand scenarios

QDC,maxdc maximum allowable storage capacity of distribution center dc

Qdc,Ldc,l lower bound on total transportation quantity for warehouse dc to cus-

tomer l link

Qdd,Ldc,dc′ lower bound on total transportation quantity for warehouse dc to ware-

house dc′ link

Qdp,Ldc,k lower bound on total transportation quantity for warehouse dc to site k

link

Qpc,Lk,l lower bound on total transportation quantity for site k to customer l link
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Qpd,Lk,dc lower bound on total transportation quantity for site k to warehouse dc

link

Qpp,Lk,k′ lower bound on total transportation quantity for site k to site k′ link

Qsd,Lls,dc lower bound on total transportation quantity for supplier ls to warehouse

dc link

Qsp,Lls,k lower bound on total transportation quantity for supplier ls to site k link

Qdc,Uj,dc,l upper bound on transportation quantity of chemical j for warehouse dc

to customer l link

Qdd,Uj,dc,dc′ upper bound on transportation quantity of chemical j for warehouse dc

to warehouse dc′ link

Qdp,Uj,dc,k upper bound on transportation quantity of chemical j for warehouse dc

to site k link

Qpc,Uj,k,l upper bound on transportation quantity of chemical j for site k to

customer l link

Qpd,Uj,k,dc upper bound on transportation quantity of chemical j for site k to

warehouse dc link

Qpp,Uj,k,k′ upper bound on transportation quantity of chemical j for site k to site k′

link

Qsd,Uj,ls,dc upper bound on transportation quantity of chemical j for supplier ls to

warehouse dc link

Qsp,Uj,ls,k upper bound on transportation quantity of chemical j for supplier ls to

site k link

Qprod,maxk,i maximum allowable production capacity of site i at site k

QP,maxk maximum allowable storage capacity of site k

STk service time of production facility k in years

STdc service time of storage facility dc in years

TORDCdc turn over ratio of warehouse dc

TORPk turn over ratio of site k

αDCdc fixed cost of installation of distribution center dc

αPk,i fixed cost of installation of plant i in site k

βDCdc variable cost of installation of distribution center dc

βPSk variable cost of installation of building storage capacity at plant site k
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βPk,i operating cost of storage capacity of plant i at site k

γPj,l,t selling price of product j for customer l at time period t

γRj,ls,t purchase price of raw material j from supplier ls at time period t

ηk,i,m relative production amount of main product j of production scheme m

in site i in terms of plant capacity

λdcj,dc,l,t unit shipping cost of chemical j from warehouse dc to customer l during

time period t

λddj,dc,dc′,t unit shipping cost of chemical j from warehouse dc to dc′ during time

period t

λdpj,dc,k,t unit shipping cost of chemical j from warehouse dc to site k during time

period t

λpcj,k,l,t unit shipping cost of chemical j from site k to customer l during time

period t

λpdj,k,dc,t unit shipping cost of chemical j from site k to warehouse dc during time

period t

λppj,k,k′,t unit shipping cost of chemical j for inter-site shipping from site k to site

k′ during time period t

λsdj,ls,dc,t unit shipping cost of raw material j from supplier ls to warehouse dc

during time period t

λspj,ls,k,t unit shipping cost of raw material j from supplier ls to site k during

time period t

µi,j,m mass balance coefficient of chemical j in production scheme m of plant i

νj,l,t back order penalty cost of product j for customer l at time period t

ξs probability of demand scenario s

πk,i,m,t production cost of scheme m at plant i in site k at time period t

ρPk,t inventory cost of site k at time period t

ρDCdc,t inventory cost of warehouse dc at time period t

ψ salvage value

τpdk,dc contract period for transportation link from plant site k to warehouse dc

ϕ minimum customer satisfaction level

ψ safety factor for storage capacity located at plant site and distribution

center
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4.1 INTRODUCTION

A supply chain (SC) is a network of system nodes connected to each other to perform dif-

ferent undertakings with a target of fulfilling customer needs. The network nodes include

mainly raw material suppliers, production facilities, storage facilities, and product distri-

bution channels. The system works to attain its main goal by minimizing the operational

and production cost of running a supply chain. Industries forecast their customer demand

based on market surveys, and plan production activities to produce the right amount of

product such that the overall cost of production, inventory stock, and transportation is

minimized. For chemical supply chain systems, it is pertinent to remain competitive to

survive in today’s global marketplace and therefore chemical process industries strive to

reduce their operational cost by a lean management fashion by reduced working inventory

and lower production cost (Grossmann, 2012).

Supply chain management (SCM) can be seen as a set of activities that looks at the

various business activities carried out by a supply chain and attempts to achieve a

coordination across various business and operation functions, such as raw materials

purchase, production, material storage, and transportation across the network. The

primary objective is to minimize the total cost of running a supply chain while improving

customer service. Research shows that having a coordinated view on a supply chain rather

than looking each node as a separate entity yields greater benefits (Sousa, Shah, and

Papageorgiou, 2008) and therefore integration efforts between SC members should be

invested in optimizing process supply chain operations.

The efficiency of any SC system relies upon the level of integration within the system;

poor integration leads to sub-optimal performance and many times results in infeasible

operation. The “Bullwhip effect", which refers to an increased swing in inventory in

response to variation in customer demand when we move further right in the supply

chain (from distribution center to suppliers), is such a phenomenon that occurs due to

poor management. A tighter integration can smooth the Bullwhip effect and results

in substantial saving in cost (Lee, Padmanabhan, and Whang, 1997). From a systems

engineering point of view, a supply chain system can be viewed as a process having a

set of inputs, such as production and transportation amounts, and a set of outputs such

as inventory levels, customer service, and acted upon by set of disturbances in the form

customer demand. This transformational view makes it possible to apply optimal control

theory to supply chain systems to gain tighter control on SC operation. In a pioneering

work, Forrester (1961) applied an inventory control structure on a supply chain, and
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demonstrated the bullwhip phenomenon on a case study. Literature acknowledges that

a major cause of the occurrence of the phenomenon is the artificial shortage that is

created due to demand forecast handling, delays in transportation and production, and

a decentralized decision making process (Lee, Padmanabhan, and Whang, 1997; Geary,

Disney, and Towill, 2006). Applications of classical control theory for supply chain

management are cited in Towill (1982); Perea et al. (2000); Perea-López et al. (2001);

Lalwani, Disney, and Towill (2006) to reduce inefficiencies, where a feedback control law

is applied for inventory and production control for improving the demand satisfaction level.

In a review paper, Sarimveis et al. (2008) provide a comprehensive coverage on modelling

and control of supply chain systems, and discuss the limitation of classical control theory,

such as the inability to consider system constraints, that results in poor performance

of supply chain systems and can be improved by applying advanced control techniques

such as model predictive control (MPC). Because of inherent ability to handle system

constraints explictly and consideration of system dynamics, model predidctive control is

widely accepted within process industries applications (García, Prett, and Morari, 1989;

Qin and Badgwell, 2003).

An early application of an advanced process control technique to a SC system utilizing MPC

was carried out by Tzafestas, Kapsiotis, and Kyriannakis (1997). They use a production

planning model which comprises sales level and inventory level as states variables, and

advertising effort and production as decision variables. Bose and Pekny (2000) study three

different control configurations for production planning and scheduling, (1) centralized,

(2) de-centralized, and (3) distributed MPC framework, and use an integrated model to

derive a detailed production schedule for the first time period and capacity planning

for the rest of the time periods. Seferlis and Giannelos (2004) study a two layer MPC

- PID control framework for supply chain control, where a PID inventory controller is

embedded within an MPC framework and optimizes system economics. They investigate

the effects of transportation delays, move suppresion, and control horizon on controller

performance. Braun et al. (2003) develop a decentralized MPC framework where a

dedicated MPC is assigned for each node (production, warehouse, retailer), and study

the effect of model mismatch and demand forecast error for a semiconductor supply

chain. They further demonstrate that move suppression can be used as a means to hedge

against system uncertainty. The semiconductor manufacturing industry exhibits a high

stochasticity in demand and nonlinear process dynamics. Wang, Rivera, and Kempf (2007)

study the application of MPC to manage a semiconductor supply chain and show that

proper selection of move suppression parameters, MPC controller parameters (e.g. control

horizon, prediction horizon), and model parameters leads to desired system performance
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and achieves robustness. Wang and Rivera (2008) further extend the formulation by

including a multiple-degree-of-freedom observer to gain robustness and performance

in the presence of uncertain demand and model nonlinearity. Dunbar and Desa (2005)

implement a distributed nonlinear MPC to manage a supply chain involving only continuous

variables, and proved stability and feasibility of control actions if the system remains

within a neighbourhood. Further, they observe the bullwhip effect in their simulations.

Subramanian et al. (2012) propose a cooperative distributed MPC framework for supply

chain management and proved guaranteed closed-loop stability. Through a two-node

SC network simulation study, they compare the cooperative distributed MPC against

decentralized and noncooperative configurations, and show that the proposed framework

provides superior performance.

MPC uses a process model to predict the system response to determine optimal decisions.

Therefore accuracy of a process model plays an important role in MPC performance.

In SCM literature, various modelling approaches have been proposed, starting from a

simple model to capture inventory and production dynamics based on the transfer of

material between echelons to a rigorous model that addresses the hybrid nature of a

supply chain. An SC system exhibits hybrid dynamics due to existence of disjunctive

logical conditions/rulesets which governs decision making process (e.g. production

allocation, assignment of production task to a production unit). Hybrid dynamics are

generally formulated using integer variables and yield a mixed-integer programming (MIP)

formulation. Bemporad and Morari (1999a) present a mixed-integer predictive control

(MIPC) framework for hybrid systems, that describes both dynamics and logic conditions

denoted as mixed logical dynamical (MLD) systems. These MLD systems are depicted

by linear dynamic equations subject to linear inequalities including real and integer

variables. Perea-López, Ydstie, and Grossmann (2003) model supply chain members and

their interactions with a discrete time dynamic mixed-integer linear programming (MILP)

model, and develop a general dynamic optimization framework to update SC decision

variables in a rolling horizon fashion using an MPC strategy. The proposed framework

is shown to effectively control a gas supply system represented in MLD form. Mestan

et al. (2006) utilized a Mixed Logical Dynamical (MLD) model to describe an SC system

and optimize the SC operation using an MPC framework. They study centralized and

de-centralized MPC configurations, and conclude that lack of coordination causes the

bullwhip effect in a decentralized scheme. Bemporad and Giorgetti (2006) present a

logic-based solution methodology for optimal control of hybrid systems by combining

numerical optimization techniques with symbolic techniques for centralized supply chain

management. Liu, Shah, and Papageorgiou (2012) adopt an MPC approach for planning of

64



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

a multiechelon SC with sequence-dependent changeovers and price elasticity to tackle the

uncertainty present in demand and price. They consider an objective function consisting

of profit, inventory deviations, and price changes, and study the effect of control horizon,

price elasticity, and objective function weights on system performance.

Process disturbances, acting on the process, degrade MPC controller performance. Pro-

cess disturbances (uncertainty) form another important aspect to be considered within

an MPC optimization problem. For a SC system, the most common source of uncertainty

is product demand forecast. Maintaining a safety stock (excess inventory) is one of the

methods generally employed to hedge against demand uncertainty (Gupta and Maranas,

2003). To address the demand uncertainty for SC planning and scheduling, multi-stage

stochastic programming approaches have been utilized. In the multi-stage stochastic

approach, uncertainty evolution is depicted by a scenario tree. A scenario tree is one

of many plausible ways the uncertainty may evolve with time. In the approaches, the

decision variables are classified into two sets, (1) “here-and-now" decisions prior to the

uncertain event taking place, and (2) “wait-and-see" recourse actions postponed until

uncertainty information is resolved and more information becomes available. The objec-

tive is to optimize the cost of decisions and expected cost of recourse actions over all

scenarios. In the review paper, Grossmann (2012) mentions that stochastic programming

is best qualified when recourse actions can be adapted to the uncertainty evolution. As

SC planning problems are multi-period in nature, multistage stochastic programming

can be easily framed for SCM problems. However, problem complexity increases rapidly

with the number of stages and hence two-stage stochastic problems are usually used for

reasonable computation times.

You, Wassick, and Grossmann (2009) use a two-stage stochastic programming approach

for risk management within mid-term planning of a multi-product chemical SC under

demand and freight rate uncertainty. They further quantify the percentage savings

achieved by using a stochastic approach compared to deterministic optimization. If

real time uncertainty evolution can be perfectly modeled by a scenario tree, a multi-

stage programming model provides a more accurate solution than a two-stage model;

however the computational expense is much higher than the latter (Lucia, Finkler, and

Engell, 2013). Thus, a tradeoff exists between model complexity and solution accuracy.

Nonetheless, an efficient approximation strategy based on a two-stage programming or

decomposition strategy (Gupta and Grossmann, 2011) can be employed to solve large-

scale multi-stage programming models. Balasubramanian and Grossmann (2004) apply

multistage stochastic optimization for multiperiod multiproduct batch plant scheduling

under demand uncertainty. In order to reduce the computational cost in solving a complex
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multistage stochastic problem, they use an approximate strategy based on solving a

number of two-stage programming problem within a shrinking horizon framework and

obtain expected profit within a few percent of the multistage stochastic result. For sawmill

production planning, Masoumeh, Mustapha, and Daoud (2010) develop a multi-period,

multi-product production planning model with uncertain raw material quality, yield and

demand using multistage stochastic programming. They indicate that the multistage

solution significantly outperforms deterministic and two-stage solutions. Körpeoğlu,

Yaman, and Aktürk (2011) use a multi-stage stochastic programming approach for master

production scheduling and indicate that it generates higher profit than a deterministic

model.

In nominal MPC, the decisions are calculated using a process model under the assumption

that no disturbances are acting on the process and the controller model exhibits the true

dynamics of underlying process. Robust MPC is a class of methods that accounts for model

uncertainties and disturbances in designing the control law. MPC inherently incorporates

a feedback mechanism and therefore future control actions are different depending on the

uncertainty evolution i.e. they are non-deterministic. However, an open-loop robust MPC

neglects the feedback mechanism in generating the predicted response and computes

a single control trajectory rather than a set of different control trajectories. Because of

inadequate compensation of future controller actions against uncertainty, the open-loop

approach generates conservative decisions.

Bemporad and Morari (1999b) provide a thorough review of robust MPC literature and

discuss the closed-loop prediction within MPC in detail. Lee and Yu (1997) present min-

max based robust MPC approaches for time-varying state-space systems with uncertain

parameters using open-loop and closed-loop prediction. The closed-loop prediction is

achieved using dynamic programming, however it becomes numerically demanding as

number of states and time period increases. They further demonstrate that open-loop

control prediction yields poor performance in compare to closed-loop prediction. Kothare,

Balakrishnan, and Morari (1996) utilize a linear matrix inequalities (LMI) framework and

propose a robust MPC method that characterizes the uncertainty description in a state-

feedback control law calculation by minimizing an upper bound on a worst-case objective

function. To reduce the online computation for a closed-loop LMI based robust MPC,

Kouvaritakis, Rossiter, and Schuurmans (2000) use a fixed state-feedback control law but

an additional degree of freedom is introduced in the control law through a perturbation

term. The method shifts the major part of computations offline and therefore online

computation can be performed very quickly.
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Robust explicit MPC is an another class of methods to manage system uncertainty where

optimal control actions are calculated as a set of system state functions. It offloads

online computation with the use of multiparametric programming. Sakizlis et al. (2004)

handle input uncertainties as additive state disturbances with an explicit MPC framework.

Bemporad, Borrelli, and Morari (2003) use a dynamic programming based explicit robust

MPC to handle input disturbances and parametric uncertainties. Later, Pistikopoulos

et al. (2009) design a multiparametric robust feedback control law by combining robust

optimization and a dynamic programming, and avoid the need of global optimization in

the dynamic programming step. Nonetheless, while the multiparametric MPC lowers the

online computation, its offline computational effort is significant.

In order to include the effect of new measurements that become available at future times

on future control actions, Pena, Bempora, and Alamo (2005) investigate a multistage

stochastic programming based robust MPC formulation for a linear state space system

and compare its performance to nominal MPC and min-max MPC. On a similar thread,

Lucia, Finkler, and Engell (2013) use multistage stochastic programming within a robust

nonlinear MPC framework for a semi-batch polymerization reactor. The stage-wise evo-

lution of uncertainty is captured through a scenario tree, which helps to adapt future

control inputs and reduces the conservativeness of the computed control action. Through

a simulation case study, they shown that multi-stage nonlinear MPC (NMPC) performs

better than standard and min-max MPC. However, they noted that the resulting problem

size grows exponentially with number of stages and number of uncertain parameters,

and hence efficient computation techniques need to be devised to handle problem com-

plexity and to reduce computation time. To reduce the conservativeness of open-loop

robust MPC, Warren and Marlin (2003) devise a robust MPC approach where the future

closed-loop response is modeled with unconstrained nominal MPC and output constraints

are replaced by probabilistic constraints to model closed-loop propagation of uncertainty.

Simulation studies demonstrate that robust closed-loop MPC shows improved dynamic

constraint-handling performance against nominal MPC and robust open-loop MPC. Li and

Ierapetritou (2009) extend the prior work and include a constrained nominal MPC within

robust closed-loop MPC. They formulate the problem as a bi-level stochastic optimization

problem which translates into a single level problem by assuming that bounds on manip-

ulated variables are either active or inactive for all uncertainty realizations. They use

the “DMC" heuristic to decide active bounds on manipulated variables. The approach is

implemented for supply chain optimization and shown to achieve significant improvement

in performance in reducing back-orders against nominal MPC. However, the formulation

does not involve any integer variables which is typical in an SC system that is governed by
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logical conditions.

The main contribution of the present work is the application of MPC-based tools to address

system uncertainty explicitly for control of hybrid SC systems. The proposed approach

handles process disturbances and model uncertainty explicitly for supply chain systems

governed by hybrid process dynamics, and uses multiple SC performance measures within

the optimization framework. In this work, a scenario based approach is applied to describe

uncertainty and a stochastic forecasting model is used to generate demand scenarios.

Further, a multistage stochastic program is applied to predict the closed-loop response

and used within a robust MPC framework to compute control actions, which reduce the

conservativeness of the approach.

The part of the research discussed in this chapter has been published in Mastragostino,

Patel, and Swartz (2014). First author of the above paper developed a mixed-logical

dynamic process supply chain model. My contributions are as follows. The model was

entirely reformulated and recoded in order to accommodate a more complex case study,

and all case study results were generated using the new model formulation. In addition,

the multi-stage stochastic programming formulation is added within the robust MPC

framework.

The remainder of the chapter is organized as follows. Section 4.2 describes the supply

chain system and the general problem statement. Section 5.2 describes the mathematical

formulation of the dynamic model of the system. Section 5.2.5 presents the details of the

open-loop and closed-loop approach to robust MPC applied to SCM. Section 4.6 presents

a case study, where the developed robust MPC approaches are applied for controlling

a multi-product, multi-echelon supply chain. Finally, Section 4.7 concludes with some

remarks.

4.2 PROBLEM STATEMENT

We consider the supply chain system illustrated in Figure 5.1, which was adapted from

a case study originally presented in Li and Ierapetritou (2009) and extended to address

purchasing and manufacturing delays, production scheduling in the plant, and multiple

raw material suppliers, production schemes, and plant sites. An overview of the system

follows.

The box encompassing several echelons represents a plant site m. Each plant site includes

68



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

RS1

IR
j,m,t

IPM1

P I
ps,m,t

IPS1

I I
j,m,t

FPM1

P F
ps,m,t

WH1

I F
j,m,t

PS1

DS1

IS
j,d,t B j,d,t

DF
j,d,tS1

Oj,ls,m,t
F F

j,m,d,t

F IW
j,m,t

RS2 IPM2 IPS2 FPM2 WH2

PS2

DS2 DF
j,d,tS2

F P
j,e,e′,m,m′,t

S Supplier IPS Intermediate Product Storage
PS Plant Site FPM Final Product Manufacturing
RS Raw Material Storage WH Warehouse
IPM Intermediate Product Manufacturing DS Distribution Site

Figure 4.1: Schematic of a process supply chain system for robust MPC study.

the following echelons: raw material storage (RS), intermediate product manufacturing

(IPM) and storage (IPS), final product manufacturing (FPM), and a warehouse (WH) for

final product storage. A purchase of Oj,ls,m,t units of raw material j is made to supplier

ls from plant site m at time period t. The order arrives at the plant site after a delivery

delay of δRls,m days. Raw material is stored with inventory of IRj,m,t units. A quantity

of P Ips,m,t units of main raw material is withdrawn from inventory and processed into

intermediate product by the IPM echelon in plant site m via production scheme ps. The

conversion of raw material into intermediate product is a single stage batch process,

with a manufacturing delay of δMps days. Intermediate product j is stored with inventory

of IIj,m,t units. If material j acts as one of the raw materials at another plant site m′,

a quantity FPj,e,e′,m,m′,t units is transferred from inventory echelon e of plant site m to

echelon e′ of plant site m′. If material j is one of the final products, a quantity F IWj,m,t
units is transferred from the IPS to the warehouse in plant site m. A quantity of PFps,m,t
units of main raw material is withdrawn from the remaining inventory and processed

further into final product j by the FPM echelon in plant site m via production scheme

ps. The production of final product j from intermediate product is a single stage batch

process, with a manufacturing delay of δMps days. During the manufacturing duration of

final product j, the production of an alternate product cannot begin at the FPM echelon.

A similar restriction applies in the manufacture of intermediate products. Final product

j is stored with inventory of IFj,m,t units at the warehouse in plant site m. A quantity of

FFj,m,d,t units is withdrawn from inventory and shipped from plant site m to distribution

site d. The final product arrives at the distribution site after a delay of δSm,d days, which
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reflects the transportation and material handling delay. Product within the distribution

site which does not fulfill demand or accumulated back orders at time period t, is stored

as “safety stock” with inventory of ISj,d,t units. Safety stock is excess inventory held for

hedging against uncertainty. The customer demand of final product j at distribution site

d at time period t is DF
j,d,t. If sufficient inventory does not exist at the distribution site,

product shortfall occurs, and the unfulfilled portion of demand is accumulated as a back

order of Bj,d,t units. Back orders must be fulfilled before new demand requests can be

satisfied. The objective of the SCO problem to be solved at each execution of the model

predictive controller is to minimize system wide operating costs, while preventing back

orders in the presence of uncertain demand and process yield. The following system

assumptions are introduced:

(i) Raw materials are procured from the set of LS different suppliers.

(ii) The IPM and FPM echelons in plant site m represent batch process units, which

convert raw materials into intermediate products, and intermediate products into

final products j within the set JP .

(iii) Changeover times at manufacturing units are negligible in comparison to manufac-

turing times.

(iv) Procurement, production, and transportation decision making occur at equivalent

time intervals.

(v) Intermediate product can be transferred directly and stored at a warehouse if it is

one of the final products.

It is worth mentioning that the formulation is flexible with regard to the supply chain

system considered. Additionally, the supply chain model presented in the paper can be

readily revised to relax assumptions, or add additional details (if needed).

4.3 PROCESS SUPPLY CHAIN MODEL

A discrete-time supply chain model is presented to describe the dynamic behavior of

material and information flow within the supply chain. The discrete-time formulation

divides the horizon into equal length intervals, ∆T , where each time period is indexed

by t. A discrete-time representation facilitates the inclusion of time delays (lags), and

restricts decision-making to occur at the beginning of each time period. The model is

based on a material balance around each storage echelon in the supply chain.
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4.3.1 Raw Material Storage

The mass balance of raw material around the RS echelon in plant site m is given by

Equation (4.1). The delay of δRls,m reflects the time between when an order for raw material

j (Oj,ls,m,t) is made to a supplier and the corresponding delivery. The term FPj,e′,e,m′,m,t
represents the inter-plant shipment amount of chemical j from storage echelon e′ in plant

m′ to storage echelon e in plant m with time delay of δPm′,m. Product storage echelons

rs, ips, and fps designate the raw material, intermediate product and final product

storage echelons in inventory echelon set E. Constraint (4.2) represents the maximum

order which can be made to supplier ls for material j (λRls,m) during a time period. The

total inventory of all raw materials at plant site m is restricted to a maximum storage

capacity of ΩR
m, as given by constraint (4.3). The quantity of raw material j that begins

to be consumed in a production task ps in plant site m at time period t is expressed in

terms of the consumption amount of its main raw material and is given by µj,ps P Ips,m,t,

where µj,ps is the mass balance coefficient of chemical j. Similarly, the production amount

of intermediate product j in a production task ps in plant site m at time period t is

given by µj,ps β
P
ps P

I
ps,m,t, where βPps is the process yield of production scheme ps. The

binary variable uIm,ps,t is introduced to model a disjunction in the continuous variable

P Ips,m,t. Equations (4.4) and (4.5) restrict the consumption amount of main raw material

P Ips,m,t to lie between a lower (γM l

m,ps) and upper (γMu

m,ps) bound, if uIm,ps,t is 1. uIm,ps,t is

1 if the IPM process unit in plant site m begins a production task ps at time period t;

and 0 otherwise. The basic assignment constraints included in the model capture the

logical conditions/rulesets that regulate production scheduling in the plant site. Similar

constraints are proposed in Shah, Pantelides, and Sargent (1993), where the authors

reformulated the assignment constraint originally derived in Kondili, Pantelides, and

Sargent (1993) to improve computational performance. Equation (4.6) is the full backward

constraint that restricts the start of another production task ps at the IPM process unit at

time period t, if a task has already begun within the backward interval [t− (δMps /∆T ) + 1, t].

IRj,m,t+1 = IRj,m,t +
∑
ls

Oj,ls,m,t−(δR
ls,m

/∆T ) −
∑
ps

µj,ps P
I
ps,m,t

+
∑

m′:m′ 6=m

∑
e′

FPj,e′,rs,m′,m,t−(δP
m′,m/∆T ) −

∑
m′:m′ 6=m

∑
e′

FPj,rs,e′,m,m′,t

∀ j ∈ JRIm ,m, t (4.1)

Oj,ls,m,t ≤ λRls,m ∀ j ∈ JR, ls,m, t (4.2)∑
j:j∈JRI

m

IRj,m,t ≤ ΩR
m ∀ m, t (4.3)
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P Ips,m,t ≤ γM
u

m,ps u
I
m,ps,t ∀ m, ps ∈ PSIm, t (4.4)

P Ips,m,t ≥ γM
l

m,ps u
I
m,ps,t ∀ m, ps ∈ PSIm, t (4.5)

∑
ps

t−(δM
ps/∆T )+1∑
t′=t

uIm,ps,t′ ≤ 1 ∀ m, t (4.6)

4.3.2 Intermediate Product Storage

The mass balance of material j around the IPS echelon in plant site m is given by

Equation (4.7). The total inventory of materials at IPS unit is restricted to a maximum

storage capacity of ΩI
m as given by Equation (4.8). F IWj,m,t represents the amount of

material transferred from IPS to the warehouse in plant site m. The amount of chemical

j generated or consumed in the production task ps at FPM process unit in plant site m

at time period t is expressed in terms of the consumption amount PFps,m,t of its main raw

material. Equations (4.9) and (4.10) are required to model the disjunction in the variable

PFps,m,t. The binary variable uFm,ps,t is 1 if the FPM process unit in plant site m begins a

production task at time period t to produce final product through production scheme ps;

and 0 otherwise. Equation (4.11) is a full backward constraint for representing production

scheduling at the FPM process unit, that restricts the start of another production task

at the FPM unit at time period t, if another task has already begun within the backward

interval [t− (δMps /∆T ) + 1, t].

IIj,m,t+1 = IIj,m,t +
∑
ps

µj,ps β
P
ps P

I
ps,m,t−(δM

ps/∆T ) +
∑

m′:m6=m′

∑
e′

FPj,e′,ips,m′,m,t−(δP
m′,m/∆T )

−
∑

m′:m 6=m′

∑
e′

FPj,ips,e′,m,m′,t −
∑
ps

µj,ps P
F
ps,m,t − F IWj,m,t

∀ j ∈ JPIm ∪ JRFm ,m, t (4.7)∑
j

IIj,m,t ≤ ΩI
m ∀ j ∈ JPIm ∪ JRFm ,m, t (4.8)

PFps,m,t ≤ γM
u

m,ps u
F
m,ps,t ∀ m, ps ∈ PSFm, t (4.9)

PFps,m,t ≥ γM
l

m,ps u
F
m,ps,t ∀ m, ps ∈ PSFm, t (4.10)

∑
ps

t−(δM
ps/∆T )+1∑
t′=t

uFm,ps,t′ ≤ 1 ∀ m, t (4.11)
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4.3.3 Warehouse

The mass balance of final product j around the WH echelon within plant site m is given

by Equation (4.12). The shipment of products from plant site m to distribution site d is

restricted by a maximum transportation capacity of λFm,d during a time period as given by

Equation (4.13). The inter-plant shipment quantity is restricted to a maximum quantity of

λP during a time period [Equation (4.14)]. Equation (4.15) restricts the inventory of final

product j to a maximum storage capacity of ΩF
j,m.

IFj,m,t+1 = IFj,m,t +
∑
ps

βPps µj,ps P
F
j,ps,m,t−(δM

ps/∆T ) +
∑

m′:m′ 6=m

∑
e

FPj,e,fps,m′,m,t−(δP
m′,m/∆T )

+ F IWj,m,t −
∑

m′:m6=m′

∑
e

FPj,fps,e,m,m′,t −
∑
d

FFj,m,d,t

∀ j ∈ JPFm ,m, t (4.12)∑
j∈JP F

m

FFj,m,d,t ≤ λFm,d ∀ m, d, t (4.13)

∑
j

FPj,e,e′,m,m′,t ≤ λPm,m′ ∀ e, e′,m,m′, t (4.14)

IFj,m,t ≤ ΩF
j,m ∀ j ∈ JPFm , d, t (4.15)

4.3.4 Distribution Site

The mass balance of final product j in distribution site d is given by Equation (4.16), where

δSm,d is the transportation delay between plant site m and distribution site d, and FSj,d,t
is the quantity of final product j delivered from d at time period t to satisfy customer

demand and accumulated back orders. Equation (4.17) represents the back order balance

for final product j at distribution site d.

ISj,d,t+1 = ISj,d,t +
∑
m

FFj,m,d,t−(δS
m,d

/∆T ) − F
S
j,d,t ∀ j ∈ JP , d, t (4.16)

Bj,d,t+1 = Bj,d,t − FSj,d,t +DF
j,d,t ∀ j ∈ JP , d, t (4.17)

The distribution sites operate with a “best I can do" policy (Perea-López, Ydstie, and

Grossmann, 2003) indicated by Equation (4.18),

FSj,d,t =

 DF
j,d,t +Bj,d,t, if ISj,d,t ≥ DF

j,d,t +Bj,d,t

ISj,d,t, if ISj,d,t < DF
j,d,t +Bj,d,t

∀ j ∈ JP , d, t (4.18)

73



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

where all the demand and accumulated back orders at time period t are satisfied if

sufficient stock is available; otherwise the available stock will be shipped. To capture

this logical condition a binary variable is required; however, a construct was posed in Li

and Ierapetritou (2009) to avoid additional integer variables by eliminating FSj,d,t in the

model through the substitution, IS
∗

j,d,t = ISj,d,t −Bj,d,t. Equations (4.16) and (4.17) are then

transformed into Equation (4.19), where back orders exist for final product j at d if IS
∗

j,d,t

is negative, and inventory of final product j exists at d, if IS
∗

j,d,t is positive. We can now

impose an upper bound on IS
∗

j,d,t, which reflects the maximum storage capacity of final

product j at distribution site d, as given by Equation (4.20).

IS
∗

j,d,t+1 = IS
∗

j,d,t +
∑
m

FFj,m,d,t−(δS
m,d

/∆T ) −D
F
j,d,t ∀ j ∈ JP , d, t (4.19)

IS
∗

j,d,t ≤ ΩS
j,d ∀ j ∈ JP , d, t (4.20)

4.3.5 Variable Bounds

Inventory variables and back order variables are non-negative as given by Equation (4.21).

Equations (4.22) and (4.23) force the back order variable (Bj,d,t) to be non-zero when IS
∗

j,d,t

is negative and the variable representing inventory in the distribution site (ISj,d,t) to be

non-zero when IS
∗

j,d,t is positive.

IRj,m,t, I
I
j,m,t, I

F
j,m,t, I

S
j,d,t, Bj,d,t ≥ 0 ∀ j,m, d, t (4.21)

Bj,d,t ≥ −IS
∗

j,d,t ∀ j ∈ JP , d, t (4.22)

ISj,d,t ≥ IS
∗

j,d,t +Bj,d,t ∀ j ∈ JP , d, t (4.23)

Equations (4.22) and (4.23) are valid if ISj,d,t and Bj,d,t are minimized in the objective

function of the SCO problem, and have the effect of setting Bj,d,t = −IS∗j,d,t and ISj,d,t = 0 if

IS
∗

j,d,t is negative, and Bj,d,t = 0 and ISj,d,t = IS
∗

j,d,t if IS
∗

j,d,t is positive. The continuous decision

variables associated with ordering, production and shipment are non-negative as given by

Equation (4.24),

Oj,ls,m,t, P
I
ps,m,t, P

F
ps,m,t, F

P
j,e,e′,m,m′t, F

F
j,m,d,t, F

IW
j,m,t ≥ 0 ∀ j, ls, ps,m,m′, e, e′, d, t (4.24)

and binary decision variables can take a value of 1 or 0 as given by Equation (4.25),

uIm,ps,t, u
F
m,ps,t ∈ {0, 1} ∀ m, ps ∈ PSIm ∪ PSFm, t (4.25)
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4.3.6 System Representation

For brevity of representation and ease of explanation, the supply chain model presented

in above section can be equivalently represented in the following form.

f(xt, ut, ht, . . . , ht−q, dt, c1) ≤ 0 ∀ t (4.26a)

g(xt+1, xt, ut, . . . , ut−q, dt, c2) = 0 ∀ t (4.26b)

xt ∈ Rnx ∀ s, t (4.26c)

ut ∈ Rnu ∀ t (4.26d)

ht ∈ {0, 1} ∀ t (4.26e)

where inequality constraint set f(·) and equality constraint set g(·) constitute discretized

dynamic linear supply chain model and associated constraints. xt is the vector of state

variables, ut is the vector of continuous decision variables, ht is the vector of binary

decision variable, dt is the vector of uncertain disturbance parameter realizations, and c1

and c2 are the vectors of parameters. The state vector (x), decision vectors (u and h), and

disturbance parameter vector (d) are defined as,

x =[ IR1,1, . . . , IR|J |,|M |, I
I
1,1, . . . , I

I
|J |,|M |, I

F
1,1, . . . , I

F
|J |,|M |, I

S∗
1,1, . . . , I

S∗

|J |,|D|,

IS1,1, . . . , I
S
|J |,|D|, B1,1, . . . , B|J |,|D| ]T

u =[ O1,1,1, . . . , O|J |,|LS|,|M |, P
I
1,1, . . . , P

I
|PS|,|M |, P

F
1,1, . . . , P

F
|PS|,|M |,

FP1,1,1,1,1, . . . , F
P
|J |,|E|,|E|,|M |,|M |, F

F
1,1,1, . . . , F

F
|J |,|M |,|D|, F

IW
1,1 , . . . , F

IW
|J |,|M | ]

T

h =[ uI1,1, . . . , uI|M |,|PS|, u
F
1,1, . . . , u

F
|M |,|PS| ]

T

d =[ DF
1,1, . . . , D

F
|J |,|D| ]

T

The maximum dimension of the variables is indicated in the above. In practice, the

variables would be defined over the sets indicated in the SC problem formulation, which

in some cases are subsets of the full sets J , etc. In Equations (4.26a) and (4.26b), q

represents the longest delay associated with transportation and production, i.e.

q =
[
max {δM1 , . . . , δM|PS|, δ

R
1,1, . . . , δ

R
|LS|,|M |, δ

P
1,2, . . . , δ

P
|M |,|M |, δ

S
1,1, . . . , δ

S
|M |,|D| } − 1

]
Of particular importance is that some of the decisions variables (ut and ht) in Equa-

tion (4.26a) are not defined when the time period t is less than or equal to q, since they

reflect time periods in the past. When solving the SCO problem at the execution of the

model predictive controller, decisions made in previous time periods (i.e. procurement
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amount dispatched from supplier, to begin a production task or not) influence decisions

made at the current time period or in the future, so they are introduced as parameters in

the optimization, and are included in c1 and c2.

4.4 REPRESENTATION OF SCENARIOS

In this section, we discuss the demand forecast model and provide an overview of the

scenario tree representation within multi-stage stochastic programming.

4.4.1 Demand Forecast Model

Demand is considered as an input disturbance in the supply chain control model, and

therefore an accurate prediction of demand greatly increases the controller performance.

In the process supply chain literature, time series modeling is employed to predict the

demand (e.g., Seferlis and Giannelos, 2004; Wang, Rivera, and Kempf, 2007). In this work,

we use a nonstationary integrated moving average model, indicated by Equation (4.27),

to forecast the stochastic disturbance (demand) over the prediction horizon n. ∇ is a

backward difference operator, θj,d is a model parameter and aj,d,t is a white noise process

described by a normal distribution with zero mean and variance of σ2
j,d. It is worth

mentioning that the proposed multi-stage MPC is flexible enough to handle any kind

of time series model for demand prediction. Additionally, the accuracy of the demand

prediction depends on the identification of a correct model. Generally, historical data are

employed for finding correct order and parameters for the time-series model. However

that is beyond the scope of this work.

∇DF
j,d,t := DF

j,d,t −DF
j,d,t−1 = aj,d,t − θj,d aj,d,t−1 ∀ j ∈ JP , d, t (4.27)

4.4.2 Scenario Generation

In this work, uncertainty is characterized by discrete probability measures, which repre-

sents the uncertain parameter by scenario trees. The scenario-based approach has been

regularly applied in optimization for capturing uncertainty. Furthermore, scenario-based

approaches allow for flexible uncertainty representations, since the underlying structure

of the model is unchanged and independent of how scenarios are generated (Gupta and
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Maranas, 2003). Moreover, a discrete probability distribution permits the problem rep-

resentation as a large scale deterministic mathematical optimization program having

special structure which can be exploited to reduce the computation time (Lucia, Finkler,

and Engell, 2013). A Monte Carlo sampling method is applied for generating scenarios

(Hammersley and Handscomb, 1964). The Monte Carlo method entails generating a

discrete set of scenarios by sampling from the continuous probability distribution, where

the complete realization of all uncertain parameters in the model gives rise to a scenario.

Figure 4.2 shows a standard representation of scenario tree having one uncertain parame-

ter with three discrete values for two time periods. At each time period, the uncertain

parameter can take one of three possible discrete values, which generates a total of 9

scenarios. The root node of a tree represents the initial time period t = 1. The value of

uncertain parameters ξ1 and ξ2 is revealed at the end of first (t = 1) and second (t = 2)

time period respectively. In the scenario tree, each node branches off into several nodes

x11

x21 x22 x23

x31 x32 x33 x34 x35 x36 x37 x38 x39

ξ1 =
1

ξ1 = 2
ξ1 = 3

ξ 2
=

1

ξ2 = 2

ξ
2 =

3 ξ 2
=

1

ξ2 = 2

ξ
2 =

3 ξ 2
=

1

ξ2 = 2

ξ
2 =

3

t = 1

t = 2

t = 3

Figure 4.2: Scenario tree with three possible events for two time periods

depending on the number of discrete probability realizations. The nodes (e.g. x21, x22,

and x23) that branch from the same node (e.g. x11) are called child nodes of the corre-

sponding parent node. The arc depicts the probability transition from one time period

to the next time period of that state. A path that connects the root node to leaf node

constitute a scenario (e.g. {x11, x21, x31}). Figure 4.3 is an alternate representation

of scenario tree given in Figure 4.2. In this representation, each scenario has unique

nodes. The horizontal line connecting nodes at each time period indicate identical nodes

and have same amount of information. These horizontal lines represent non-anticipativity

constraints, which state that decisions that emerge from a same parent nodes are the

same (Lucia, Finkler, and Engell, 2013). The stage is defined as the set of time periods

which has same amount of information. A tree having more than two stages are termed as

multi-stage representation and consequently results in a multi-stage stochastic problem.

The forecasting model given by Equations (4.28) and (4.29) is used to generate demand
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x11 x11 x11 x11 x11 x11 x11 x11 x11

x21 x21 x21 x22 x22 x22 x23 x23 x23

x31 x32 x33 x34 x35 x36 x37 x38 x39

ξ1 = 1 ξ1 = 1 ξ1 = 1 ξ1 = 2 ξ1 = 2 ξ1 = 2 ξ1 = 3 ξ1 = 3 ξ1 = 3

ξ2 = 1 ξ2 = 2 ξ2 = 3 ξ2 = 1 ξ2 = 2 ξ2 = 3 ξ2 = 1 ξ2 = 2 ξ2 = 3

t = 1

t = 2

t = 3

Figure 4.3: An alternate representation of scenario tree with three possible events for
two time periods

scenarios,

DF
j,d,t∗+l,s = DF

j,d,t∗+l−1 + aj,d,t∗+l,s ∀ j ∈ JP , d, s, l = 0 (4.28)

DF
j,d,t∗+l,s = DF

j,d,t∗+l−1,s + aj,d,t∗+l,s − θj,d aj,d,t∗+l−1,s, ∀ j ∈ JP , d, s, l = 1, . . . , n− 1 (4.29)

where l is the forecast lead time, and the input aj,d,t∗+l,s is sampled from a normal

distribution, a ∼ N (µ, σ2). The demand forecast depends on the demand resolved at the

previous time period (t∗ − 1) as illustrated by Equation (4.28). This strategy addresses

the autocorrelation and moving average nature typically apparent with demand. This is

expected to lead to less conservative control action than assuming independent demand

uncertainty at each future time period. The process yield of intermediate and final product

j at each plant site m is approximated by a normal distribution. Independent process yield

scenarios are generated by sampling from the continuous distribution. Each scenario s

represents an outcome of both the demand trajectory and process yield parameters of

the model. Each scenario is then assigned an equivalent probability of occurrence, with

the summation of probabilities for all scenarios equal to 1, i.e. ρs = 1/ns, where ns is the

number of scenarios generated for capturing uncertainty.

4.5 CONTROL PROBLEM FORMULATION

4.5.1 Performance Function

A number of quantitative metrics exist for evaluating the performance of a supply chain, a

comprehensive review of which is given in Beamon (1999). Two key criteria considered

here are an evaluation of economics and customer service. Equation (4.30) represents the

total summation of back orders, denoting a measure of customer service. Equation (4.31)
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represents the total operating cost in terms of the variables defined in the state-space

model, where Cx is a vector of cost coefficients for the held inventory in the plant and

distribution site, and Cu is a vector of costs associated with the decision variables (i.e. raw

material procurement, production and transportation). Operating cost denotes a measure

of economic performance.

J1 :=
n−1∑
t=1

∑
j,d

Bj,d,t+1

 (4.30)

J2 :=
n−1∑
t=1

[
CT
x xt+1 + CT

u ut
]

(4.31)

The multi-objective optimization problem is solved by applying the weighted-sum method

indicated by Equation (5.66),

J∗ := ω1J1 + ω2J2 (4.32)

where ω1 and ω2 are the weighting parameters for performance metrics. The ratio of ω1

to ω2 is a tunning parameter in the optimization, defined here as κ := ω1/ω2. Finally, it

is important to mention that the performance function (J∗) is linear, thus giving rise to a

linear MPC framework.

4.5.2 Nominal MPC

The primary objective of MPC is to determine the trajectory of future inputs that optimizes

a performance criterion over a specific prediction horizon. Once the optimal input

trajectory is computed, only the first control action is implemented on the process at the

current time period. This reflects a key benefit over open-loop optimization, because at

the next sampling instance, new state information is available from the process, and the

optimal input trajectory is re-computed. In the presence of plant-model mismatch and

unmeasured disturbances, the current solution trajectory is likely no longer an optimal or

even feasible solution for subsequent time periods.

4.5.3 Open-loop Approach to Robust MPC

The open-loop approach denoted here as ROF (robust open-loop formulation), utilizes

a stochastic supply chain model and disturbance parameter to predict future system
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behavior. A scenario-based approach is applied to capture the uncertainty in product

demand and process yield. A control trajectory is computed that is robust for all scenarios,

and the entire control trajectory is computed before uncertainty is resolved (i.e. no

recourse action). The ROF is given by,

min
ut, ht

E[J∗] :=
∑
sρsJ

∗
s (4.33a)

s.t. f(xt,s, ut, ht, . . . , ht−q, dt,s, c1) ≤ 0 ∀ s, t (4.33b)

g(xt+1,s, xt,s, ut, , . . . , ut−q, dt,s, c2) = 0 ∀ s, t (4.33c)

x1,s = x̃ ∀ s (4.33d)

xt,s ∈ Rnx ∀ s, t (4.33e)

ut ∈ Rnu ∀ t (4.33f)

ht ∈ {0, 1} t (4.33g)

where, objective function, E[J∗] represents the expectation of the dynamic performance of

the supply chain system, which is a Monte Carlo estimator of the true expected value of J∗

(Liu and Sahinidis, 1996). Unlike min-max robust MPC where the worst-case performance

is optimized, the open-loop approach optimizes the expectation over all scenarios which

is less conservative. s refers to the scenario resolved, ρs is the probability of scenario s

occurring, n is the length of the prediction horizon, and x̃ represents the initial value of

the state variables. Optimizing the expectation of the dynamic performance is typically

less conservative than optimizing the worst-case performance (i.e. min-max) used in some

robust MPC formulations.

The uncertainty in customer demand is characterized by the uncertain elements within

the disturbance vector dt,s. Demand uncertainty is resolved after decisions in the current

time period are computed, i.e., after the execution of the model predictive controller.

Uncertainty in the intermediate and final product yield within the manufacturing sites (i.e

βPps) is captured by the model function g(·). The yield can be thought of as an end-point

quality of the batch (resolved after the batch operation is complete). The uncertainty in

yield is resolved after the batch is complete.

We consider the current time period for which control actions need to be computed

correspond to t = 1, with the prediction horizon extending to t = n. As discussed earlier,

the production constraints use a backward time formulation that involves binary variables

corresponding to a number of previous time periods. These discrete inputs, ht for t < 1, are

known and treated as parameters which are embedded within c1 and c2 in Equation (4.33c).

At the end of the control period, ∆T , the control horizon shifts relative to the actual time
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period, denoted by t∗, with the controller time periods again running from 1 to n.

4.5.4 Two-stage Stochastic Programming Robust MPC

The ROF proposed in Section 4.5.3 may result in overly conservative control action

causing excess safety stock, because in actual operation the effect of uncertainty is partly

mitigated by feedback. To rigorously model the future closed-loop behavior, a multi-stage

stochastic approach can be applied. The basic idea of a multi-stage approach is to make

a decision before an uncertain event occurs, and then to take some corrective actions

after uncertainty is resolved and more information is available by keeping previous stage

decisions unchanged. In SCM, where decisions are made over multiple time periods as

uncertainty is revealed over time, the decision-making procedure naturally lends to a

multi-stage stochastic formulation. In a multi-stage approach, future control actions are

taken in response to how the states have been evolved over time to resolve uncertainty

and hence tends to take more optimal realistic actions. As the name suggests, the decision-

maker takes corrective measures over a sequence of stages. If the process happens only

in two stages, then the problem corresponds to a two-stage stochastic program. Naturally,

multi-stage decision-making step demands a high computation burden, thus the resulting

problem becomes computationally expensive and intractable when the number of stages

and scenarios become large. In such cases, a two-stage framework can be employed to

approximate the multi-stage decision-making procedure. First, we present a two-stage

stochastic programming framework for clarity of model representation and then introduce

a multi-stage stochastic programming framework.

In two-stage stochastic programming, decision making for the first time period occurs

before uncertainty realization, and the decisions for the remaining time periods are

postponed until uncertainty resolved (i.e. second stage). As with MPC, only the first

time period decisions are implemented, it approximates a closed-loop approach though

decisions computed after the first time period no longer hedge against the possibility that

another scenario can resolve. The closed-loop approach to robust MPC, denoted here as

RCF (robust closed-loop formulation) is given by,

min
Γ

E[J∗] := J(1)∗ +
∑
sρsJ

(2)∗
s (4.34a)

s.t. f(x(1)
1,s, x

(2)
t,s , u

(1)
1 , u

(2)
t,s , h

(1)
1 , h

(2)
t,s , . . . , h

(2)
t−q,s, d

s
t′ , c1) ≤ 0 ∀ s, t′, t = 2, . . . , n (4.34b)

g(x(1)
1,s, x

(2)
t+1,s, x

(2)
t,s , u

(1)
1 , u

(2)
t,s , . . . , u

(2)
t−q,s, d

s
t′ , c2) = 0 ∀ s, t′, t = 2, . . . , n (4.34c)

x
(1)
1,s = x̃ ∀ s (4.34d)
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x
(1)
1,s ∈ Rnx ∀ s (4.34e)

u
(1)
1 ∈ Rnu ∀ s (4.34f)

x
(2)
t,s ∈ Rnx ∀ s, t = 2, . . . , n (4.34g)

u
(2)
t,s ∈ Rnu ∀ s, t = 2, . . . , n (4.34h)

h
(1)
1 ∈ {0, 1}nh (4.34i)

h
(2)
t,s ∈ {0, 1}nh ∀ s, t = 2, . . . , n (4.34j)

where superscript (1) denotes a first stage variable, and (2) denotes a second stage

variable. Γ represents the decision variables: u
(1)
1 , h

(1)
1 , u

(2)
t,s , and h

(2)
t,s for t = 2, . . . , n. J(1)∗

represents the first stage performance objective defined as,

J(1)∗ := ω2
[
CT
u u

(1)
1

]
(4.35)

and J
(2)∗
s represents the second stage performance objective for scenario s, defined as,

J(2)∗
s := ω1J1,s + ω2

[∑n−1
t=1 CT

x x
(2)
t+1,s +

∑n−1
t=2 CT

u u
(2)
t,s

]
(4.36)

with J1 as defined in Equation (4.30).

4.5.5 Multi-stage Stochastic Programming Robust MPC

The accuracy of closed-loop feed-back policy embedded within robust MPC depends on how

precise the uncertainty representation is. If the scenario tree describes the evolution of

the uncertainty perfectly, it computes an optimal feed-back policy; otherwise, it generates

an approximate closed-loop response and the approximation depends on its closeness

to actual uncertainty unfolding characteristic. For a better approximation of stagewise

uncertainty unfolding in the decision-making process, the two-stage stochastic formulation

can be extended to a multi-stage formulation. In multistage stochastic programming,

the decisions are segregated into multiple sets rather than being limited to only two

sets. The first-stage decisions are made before uncertainty is realized, and decisions

correspond to the rest of the stages (2 . . . n) are postponed until next round of uncertainty

realization (i.e., second stage) occurs. The process continues till it reaches the nth−stage.

Moreover, the control actions at the nodes which have same parent node need to be equal

because the real-time decisions can not anticipate the future realization of uncertainty

(non-anticipativity nature). The multi-stage stochastic robust MPC problem, denoted as
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RMF (robust multistage formulation), is given by,

min
Γ

E[J∗] :=
∑
s

ρsJ
∗
s (4.37a)

s.t. f(xopt, uopt, hopt, c1) ≤ 0 (4.37b)

g(xopt, uopt, c2) = 0 (4.37c)

Au u
opt = 0 (4.37d)

Ah h
opt = 0 (4.37e)

xl ≤ xopt ≤ xu (4.37f)

ul ≤ uopt ≤ uu (4.37g)

xopt ∈ Rnx×ns (4.37h)

uopt ∈ Rnu×ns (4.37i)

hopt ∈ {0, 1}nh×ns (4.37j)

For brevity of representation, xopt, uopt, and hopt denote the augmented vector of states,

continuous decisions, and binary decision variables respectively. That is,

xopt = [ x(1)
t,s , . . . , x

(n)
t,s ]; uopt = [ u(1)

t,s , . . . , u
(n)
t,s ]; hopt = [ h(1)

t,s , . . . , h
(n)
t,s ]

where superscript (n) denotes a nth stage variable. The non-anticipativity constraints

(4.37d) and (4.37e) force the decision variables to take the same value across stages that

have the same uncertainty output characterization. The constraints (4.37f) and (4.37g)

represent the upper and lower limits on state and control variables respectively. For

ease of explanation, it is assumed that the scenario tree is uniform, i.e., the tree has the

same number of branches at all nodes. However, it is apparent that the framework is

flexible enough to consider all possible kinds of uncertainty evolution structures. Consider

Figure 4.4, which depicts one of many possible non-uniform scenario tree structure, where

each branch takes varying values of uncertainty realizations and the number of branches

at each stage and/or at each parent node are different. The weights of each scenario can

also be changed to reflect the real-time uncertainty behavior.

It is evident that the number of scenarios quickly increases with the number of stages

and number of discrete realizations considered at each stage. For a uniform branching

structure, the number of scenarios is given by NNt
r , where Nr is the number discrete

realizations at each node and Nt is the number of stages. Therefore, the size of resulting

optimization problem grows exponentially with the number of stages (i.e. number of time

periods). The presence of binary decision variables further increases the computation
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Figure 4.4: Multistage scenario tree structure. One of many possible structures of a
multistage scenario tree with 6 time stages

time rapidly. With a specific end goal of reducing the computational burden, (Lucia,

Finkler, and Engell, 2013) consider tree branching only up to a certain stage, which they

termed as robust control horizon1, and thereafter a constant uncertainty characterization

is considered until the end of the prediction horizon (see Figure 4.5). The robust control

horizon concept follows a similar idea of using a control horizon shorter than the predic-

tion horizon in systems engineering applications for reducing the computation burden.

Nonetheless, multi-stage stochastic optimization problem has a very special structure that

can be exploited to devise decomposition methodologies to speed up the computation (see

Gupta and Maranas, 2003), but this not within the scope of the present work.

Interestingly, the multi-stage stochastic controller formulation given by Equations (4.37a)

to (4.37j) is a general framework and can be cast into nominal MPC, open-loop ROF, or

two-stage RCF approach. The multi-stage RMF controller translates to the two-stage

stochastic RCF controller by setting robust control horizon (rc) to 2. In this case, the tree

branching stops at time period t = 2, and scenarios become independent after second

stage (see Figure 4.6). In other words, the definition of non-anticipativity constrains

classifies decision sets into two, first and second stage decisions. ROF also uses same

scenario tree structure as in two-stage RCF approach (see Figure 4.6). Therefore, a

multistage stochastic formulation with rc equal to 2 and restricting decision variables

to take same values across different scenarios at each time period t transforms to an

open-loop ROF controller. In other words, the requirement of generating a single control

1Please refer Lucia, Finkler, and Engell (2013) for detailed discussion on robust control horizon.
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Figure 4.5: Illustration of robust control horizon concept for multi-stage stochastic robust
MPC. Robust control horizon is taken as 3 for prediction horizon of length 6

trajectory for each decision variables in ROF can be accomplished by writing extra non-

anticipativity constraints at each time period across all scenarios. On a similar note,

nominal MPC can be thought of as having a robust horizon equal to 1 for the multi-stage

stochastic controller. Since rc = 1, no branching will be performed which restricts the

number of scenarios to 1. If the future uncertainty characterization is represented by

the nominal value of the uncertain parameter for entire prediction horizon, it essentially

represents a nominal MPC controller.

4.5.6 Closed-Loop Implementation

Figure 4.7 shows the closed-loop implementation of the MPC framework on a supply chain

system. At the first stage, an uncertainty description is generated in the form of yield

and demand scenarios as discussed in Section 4.4 and applied within the SC optimizer.

At the second stage, an SCO problem is solved to calculate control moves, which are
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Figure 4.6: Scenario tree representation of uncertainty evolution for multi-stage stochastic
controller with robust control horizon of 2

then implemented on the process SC or simulation model. Finally, at next sampling

period, state information is updated using feedback information received from the process

(or simulation model) and, scenarios (demand and yield) are regenerated. The process

continues till it reaches at the end of simulation time horizon. In the implementation, we

have taken the sampling time of ∆T (i.e. the same as the model discretization) for the

MPC controller; however, this assumption can be readily relaxed.

Supply Chain Optimizer

Nominal (NOF) or
Robust (ROF, RCF, or RMF) controller

min
Γ

E[J∗] := ∑sρsJ
∗
s

Process Supply Chain
or Simulation Model

first control action
(ut∗ ,ht∗ )

uncertain parameters
realization

demand
scenarios

(dt∗ ,B1)

Uncertainty Description
Demand Forecast Model

new states
(xt∗+1)

Figure 4.7: Closed loop implementation of robust MPC strategy
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4.6 CASE STUDY

To analyze the robust stochastic MPC approaches presented in the previous section,

we consider a multi-echelon supply chain case study, and compare the performance of

nominal MPC and robust MPC formulations (ROF, RCF, and RMF). A Pareto analysis of

economics and customer service is also presented, and the effect of disturbance and model

uncertainty is explored. Further, the comparison of closed-loop performance between two

multi-stage stochastic formulations is presented.

Case Study Description

The case study illustrates the application of robust control approaches to a multi-product,

multi-echelon supply chain comprising of two suppliers (LS1,LS2), two plant sites (M1,M2),

and two distribution sites (DC1,DC2). There are total 4 production schemes (PS1, . . . ,PS4)

available to produce two final products E and G from two raw materials A and B. Materials

C, D, and F are intermediate products. Production schemes PS1 and PS3 are available at

the intermediate production facility while production schemes PS2 and PS4 are available

at the final production facility. An intermediate product E is a final product, and therefore

it is allowed to be shipped to the distribution center through the warehouse. Plant site M2

requires the intermediate product D as one of the raw materials for the production scheme

PS3, and thus it can not start the production until it receives the material D from plant

site M1. Case study data are summarized in Tables 4.1 to 4.7. The production schemes

installed at plant sites are presented in Figure 4.8 in which the stochiometry of the

reaction schemes is also represented. We restrict the inter-plant shipments to originate

from the intermediate product or final product storage locations, and to terminate at the

raw material or intermediate product storage locations.

Table 4.1: Simulation parameter values for robust MPC study

Parameter Value Parameter Value

n (days) 15 No. of scenarios 50

θ 0.1 Simulation length (days) 40

σ2 of a 9 Range of yield parameters 0.45 − 0.95

Range of DF 0 − 50 ∆T (days) 1

We compare the performance of the ROF and RCF schemes to the performance of a nominal

MPC implementation, denoted by NOF (nominal open-loop formulation), that does not
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Figure 4.8: Production network consists of total four production schemes. Schemes PS1
and PS2 are installed at plant site M1 and PS3 and PS4 are installed at plant
site M2

Table 4.2: Shipment and production cost parameters for the robust MPC case study

Shipment Cost

of FP in Cu

Shipment Cost

of FF in Cu

Production Cost
of P I in Cu

Production Cost
of PF in Cu

Plant site Plant site
Distribution

site Production Task

M1 M2 D1 D2 PS1 PS3 PS2 PS4

M1 − 4 2.7 2.8 1.25 1 − −
M2 4 − 2.8 2.5 − − 1.3 1.5

Note: The shipment costs are the same for all chemicals within each shipment
category.

Table 4.3: Material purchase cost for the
robust MPC case study ($/unit)

Raw material Suppliers

LS1 LS2

A 1 1.2

B 1.4 1.7

Table 4.4: Product back-order cost for the
robust MPC case study ($/unit)

Material

E G

Cost ($/unit) 1.4 1.7

explicitly account for uncertainty. In the NOF, uncertain model parameters are assigned

average values, and the demand forecast within the prediction horizon is conisdered

as the demand resolved at the previous time period. In the ROF and RCF algorithms,

uncertainties in customer demand and process yield are considered and characterized by

50 independent scenarios having an equal probability of occurrence. Demand scenarios
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Table 4.5: Inventory parameter values for the robust MPC case study

Parameter Plant site
Distribution

site

Cx M1 M2 D1 D2

Cost of IR 0.8 0.7 − −
Cost of II 0.9 1.1 − −
Cost of IF 1.4 1.1 − −
Cost of IS − − 1.5 1.25

storage capacity

ΩR/ ΩI / ΩF
E / ΩF

G/ ΩS
E / ΩS

E 500 500 − −

Note: The inventory costs are the same for each chemical within each
inventory category.

Table 4.6: Production parameter values for the robust MPC case study

Parameter Production Scheme

Plant site PS1 PS3 PS2 PS4

γMu

: production batch size
M1 120 300 − −
M2 − − 120 150

γMl

: production batch size
M1 25 60 − −
M2 − − 25 25

δM
ps : production delay (day) − 1 2 2 1

µ of βP
P S − 0.8 0.7 0.8 0.7

σ2 of βP
P S − 0.0025 0.0025 0.0025 0.0025

Table 4.7: Transportation parameter values for the robust MPC case study

Plant site Supplier
Distribution

site Plant site

LS1 LS2 D1 D2 M1 M2

transportation delay δR δS δP

M1 3 3 3 4 0 2

M2 2 2 4 2 2 0

transportation quantity λR λS λP

M1 120 120 100 100 0 100

M2 120 120 100 100 100 0
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are generated using the method presented in Section 4.4.1. The “actual” supply chain

system is represented by a simulation model that reflects a particular outcome of the

uncertain model parameters. Furthermore, a demand trajectory is computed from the

forecast model which represents the “actual” demand resolved. Each closed-loop case is

simulated, as depicted in Figure 4.7, for a 40 day period. The performance of the closed-

loop simulation is compared in terms of the supply chain metrics in the objective function

of the supply chain optimization (i.e. operating cost and summation of back orders), as

well as an alterative metric of customer service, which indicates the percentage of demand

filled immediately, denoted as fill rate (FR) (Beamon, 1999).

The SCO problem is modeled with AMPL and solved using CPLEX 12.5 to a 1% optimality

gap. Simulations are performed on a 3.4 GHz IntelrCoreTM i7 machine with 8 GB of

RAM, running Windows 7 Professional 64-bit. Table 4.8 summarizes the model size of

each optimization framework. It is evident from Table 4.8 that, number of continuous and

binary variables are significantly higher in RCF than in ROF and NOF, since second stage

decision variables are dependent on the number of scenarios considered.

Table 4.8: Size of supply chain optimization formulation for the robust MPC case study

Framework
Continuous
Variables

Discrete
Variables

NOF 956 58

ROF 16,789 58

RCF 38,321 2,753

4.6.1 Pareto Analysis

Because a tradeoff exists between customer satisfaction and economics, the optimal

solution generates a frontier denoted as a Pareto curve, which is shown in Figure 4.9 (o

: J1 vs. J2). The two-objectives are weighted by weighting parameters (ω1 and ω2), the

ratio κ := ω1/ω2 is been considered as a tuning parameter in the SC optimization problem.

Essentially, a high value of κ depicts a scenario with more weight on satisfying customer

orders against optimizing cost, while a low value translates to giving more weight to

optimizing operating cost. A number of ROF closed loop simulations are performed with

different values of κ. The values of objective function components J1 and J2 are calculated

and plotted in Figure 4.9. Each data point shows the average performance over 20

independent simulations runs, having a distinct realization of demand and process yield

uncertainty in each of the 20 simulation runs.
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The Pareto curve shows a decreasing exponential relationship between cost and customer

satisfaction. Lower customer satisfaction (high backorder cost) results in low cost as less

safety stock is held to hedge against uncertainty. The customer service increases (i.e back

order J1 decreases) rapidly with a minimal increase in cost until location (1). However, for

the region to the right of location (1) on the Pareto curve, the operating cost increases

rapidly with a minimal increase in the customer service (minimal decrease in back orders,

J1). Therefore, from the cost perspective, it is preferable to operate the supply chain at

the point (1) on the pareto curve than at (2). Thus, it is clear that κ has a strong influence

on the controller action and therefore it is considered as tuning parameter in the MPC

implementation.

(1) κ = 10

(2) κ = 200

3 4 5 6 7 8
·104

0

0.5

1

1.5
·104

(1)
(2)

J2

J
1

0.4

0.6

0.8

1

FR

J1
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Figure 4.9: Pareto relationship between operating cost (J2) and customer service (J1) with
ROF (Each data mark corresponds to average performance for 20 independent closed-loop

simulations)

The relation between fill rate (FR) and economics (J2) is shown by a blue dotted line (

• - FR vs. J2) in Figure 4.9. It shows that the fill rate improves with increase in cost,

in other words the trend of fill rate corresponds to the trend of customer service. The

points (1) and (2) indicate the increase in fill rate from 88% to 99% with the correspond

increment in the cost from 54473 to 73637 monetary units (an increment of 35%). In

conclusion, the Pareto curve provides an analytical tool to determine the optimal value of

tuning parameter κ in the optimization problem. The Pareto curve for different supply
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chain environments are different and controller tuning needs to be selected based on

operational preferences of a given supply chain.

4.6.2 Closed-Loop Performance Comparison with RCF, ROF, and NOF

Graphical comparison for single outcomeGraphical comparison for single outcome

Figures 4.10 to 4.12 show the performance of closed-loop simulations with the RCF, ROF,

and NOF control approaches for the same outcome of demand and yield uncertainties.

Due to space limitations, only representative trajectories are included. All the cases are

run with a κ value of 100. Figure 4.10 illustrates the closed-loop result with the NOF.

A large amount of product back orders occurs for product E after day 15 as shown by

the back order trajectories, B (DC1), in Figure 4.10. Inventory of final product E at both

distribution sites is driven to zero and thus results in insufficient stock to fulfill customer

demand. The back order amount for the product G is comparatively lower than product

E; however the inventory quickly vanishes to zero and therefore a back order situation

arises after day 12. In the plots, the terms in parentheses indicate one or a combination

of chemical, distribution center, manufacturing facility, production scheme, and demand.

For example, P I(A-PS1-M1) in subplot (2,2) in Figure 4.10 represents the consumption

amount of material A in production scheme PS1 at plant site M1.

Figure 4.11 shows the closed-loop result for the ROF approach. As it considers uncertainty

information at each controller execution, adequate safety stocks for all materials are

maintained throughout the supply chain to meet varying demand. We can observe from

Figure 4.11 that it does not create a stockout condition for either product throughout the

simulation run, shown by the trajectory of back orders (B), with the ROF, as compared to

the NOF.

Figure 4.12 illustrates the closed-loop result with the RCF. From the plot, it can be seen

that it generates less conservative actions as it includes the effect of future control actions.

The operating cost for the RCF is 8.5% less than the ROF approach with same customer

satisfaction level. Analogous to the ROF approach, it chooses to maintain safety stock

to hedge against uncertainty and therefore it does not show any back orders for the

entire simulation run. It should be noted that for certain demand uncertainty realizations,

the NOF simulation encounters a problem of insufficient storage capacity as it does not

consider the demand uncertainty. Therefore, the storage capacity constraints in the NOF

simulations are implemented as soft constraints with a large penalty.
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Figure 4.10: Representative inventory, production, and shipment profiles generated with
NOF controller
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Figure 4.11: Representative inventory, production, and shipment profiles generated with
ROF controller
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Figure 4.12: Representative inventory, production, and shipment profiles generated with
RCF controller
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Comparison between multiple simulationsComparison between multiple simulations

Table 4.9: Size of supply chain optimization formulation

Framework Case (κ)
Continuous
Variables

Discrete

Variables J1 J2 × 10−4 FR CPU (s)

NOF − (100) 956 58 948.9 5.619 0.665 0.14

ROF B (100) 16,789 58 8.3 6.972 0.992 6.8

RCF B (100) 38,321 2,753 38.9 6.292 0.980 73.7

Note: Results correspond to the average performance over 20 independent closed-loop
simulations.
B: Both uncertain demand and yield (50 scenarios applied to capture uncertainty in
robust MPC frameworks)

In order to check in-depth behavior of the system dynamics with implementing ROF, RCF,

and NOF, we performed a number of closed loop simulation runs. The performance is

reported with the average values obtained by running 20 independent simulation runs

with a κ value of 100. The simulation results are summarized in Table 4.9. The tabulated

result shows that a significant improvement in performance is achieved with robust

frameworks in compare with nominal framework. The amount of back orders for the RCF

and ROF approach is relatively low compared to NOF approach, which indicates a large

improvement in customer service level (J1). The average fill rate with the NOF is 0.65 as

compared to 0.98 with the RCF and 0.992 with the ROF.

The improvement in customer service for the RCF and ROF approaches are achieved at

the expense of higher operating cost. The ROF and RCF approach maintained sufficient

levels of safety stock of all materials in the supply chain to hedge against the demand and

yield uncertainty and therefore they give rise to a higher operating cost. However, the

robust frameworks maintain the right amount of safety stock to trade against the customer

service and therefore the increase in operating cost is lower in comparison to a sharp

improvement in the customer service level. As expected, RCF outperforms ROF in terms

of the operating cost. RCF achieved similar level of customer satisfaction (drop of only

1.2%) as ROF at lesser cost (10.82%) as the presence of predicted feedback information

in RCF helps it to not take overly conservative actions. Table 4.9 indicates the average

computation time for one controller execution. The average computation time for the RCF

and ROF is larger than the NOF but it still very modest considering the SCM sampling

time of one day.
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4.6.3 Effect of Fine Tuning Parameter κ

It should be noted from the previous simulation results (see Table 4.9) that κ has a

significant influence on performance and same value of κ generates different control

actions with the ROF and RCF. To further investigate the effect of fine tuning of parameter

κ, several simulations are run with ROF and RCF at different value of κ and pareto curves

are generated. The Pareto curves generated with the ROF and RCF are illustrated in

Figure 4.13.

The pareto curve generated with RCF lies left to the curve generated with the ROF which

indicates that an equivalent customer service level can be achieved with lower operating

cost in the case of RCF than in ROF. Similarly, the point (1) is generated with a κ value

of 3 with RCF while (2) is generated with a value of 5 with ROF, which illustrates that

comparable customer service level can be achieved in RCF and ROF using different values

of κ. In the case of points (1) and (2), the cost with ROF is 43991 monetary units, 16%

more than RCF case (37886 units), while the customer service level is 5% higher. The

spacing between two curves are not same at all levels and the percentage saving varies

across the length of pareto curve. At high levels of customer service, the Pareto curves

converge; however, a small percentage increment in economics results in a large dollar

value in the SC network case.

Next, we consider the sensitivity of changing the κ value on the supply chain performance.

Plot 4.14 depicts the sensitivity curve with the RCF and ROF. The acceptable customer

service level is illustrated by a shaded region. The region outside the acceptable region is

conservative (below) or non-robust (above). The “acceptable region" is depends on SC

operating procedure and management principles. The ROF curve takes an exponential

shape and is more sensitive to the ratio, while the RCF curve is linear and its performance

is therefore less sensitive than ROF. Consequently, the range of κ for the customer service

to stay in the acceptable region is significantly larger with RCF (ϕ1 > ϕ2), which in turn

can be used to adjust the performance on a longer range.

4.6.4 Comparing Closed-Loop Performance with RMF and RCF

In this section, we compare the performance of two robust closed loop frameworks,

multistage formulation (RMF) and two-stage formulation (RCF). In RMF, we consider

3-stage stochastic programming.
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Figure 4.13: Pareto curve generated with ROF and RCF (Each data mark corresponds to average

performance for 20 independent closed-loop simulations)

Graphical comparison for single outcomeGraphical comparison for single outcome

The closed-loop performance with RCF and a 3-stage RMF controller is shown in Fig-

ures 4.15 and 4.16 for the same outcome of demand and yield uncertainty. A κ value of 5

is used to generate the closed-loop trajectories. The RMF case systematically responds to

the demand uncertainty in three stages compared to only two stages in RCF and keeps

the optimal amount of inventory. Therefore it results in lower back order amount than

in RCF (please refer subplot (4,2) in Figures 4.15 and 4.16). The title of subplot (2,2)

P I(A-PS1-M1) can be read as the consumption amount of material A in production scheme

PS1 at plant site M1.

Comparison between multiple simulationsComparison between multiple simulations

A number of closed-loop simulations are performed with the RCF (2−stage) and 3-stage

RMF controller. The performance is reported with the average values obtained by running

30 independent simulation runs with a κ value of 5. We consider 6 possible events at
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Figure 4.14: Comparing the sensitivity of the ratio between weighting parameter (κ) to
the closed-loop customer service performance with ROF and RCF (× — ROF
; + - - RCF) (Each data mark corresponds to average performance for 20 independent

closed-loop simulations)

each stage (see Figure 4.2) to represent demand uncertainty that translates to 6 demand

scenarios for RCF and 36 demand scenarios for 3-stage RMF at each controller execution.

The simulation results are summarized in Table 4.10. The result indicates that the 3-stage

RMF controller yields low amount of back-orders compared to RCF, i.e. an improvement

in customer service level (J1). The average fill rate with the RCF is 0.937 as compared to

0.992 with the 3-stage RMF.

Table 4.10: Size of supply chain optimization formulation (6 uncertain events at each
stage in robust MPC frameworks)

Framework Case (κ) # scenarios
Continuous
Variables

Discrete

Variables J1 J2 × 10−4 FR

CPU time

(sec)

RCF B (5) 6 1980 330 108.6 5.9788 0.937 1.87

3-stage RMF B (5) 36 27577 4645 2.7 6.4375 0.994 77.26

Note: Results correspond to the average performance over 30 independent closed-loop simulations.
B: Both uncertain demand and yield
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Figure 4.15: Closed-loop result with RCF. 6 discrete realizations at each stage which is
equivalent to considering 6 demand scenarios at each controller execution.

It is interesting to note that unlike in ROF-RCF comparison, a higher customer satisfaction

is accompanied with a higher operating cost for 3-stage RMF. However, the increase in

operating cost is 7.67% which is considered relatively moderate against the improvement

in customer service from 93.7% to 99.2%. The average computation time for controller

execution is given in the last row (CPU time) of Table 4.10. The average computation time

for the 3-stage RMF is quite a bit larger than the RCF but it still considerably less than the

SCM sampling time. However, the computation time increases rapidly with the number of

uncertain event considered at each stage and hence efforts should be invested to reduce

the computation time.

4.6.5 Effect of Fine Tuning Parameter κ

To investigate the effect of the tuning parameter κ on RMF, several simulations were run

with RCF and 3-stage RMF at different values of κ and the Pareto curves are generated. 6

uncertain events are considered at each stage within robust MPC controller. The Pareto

curves generated with the RCF and 3-stage RMF are illustrated in Figure 4.17 and show

similar behavior observed in the case of ROF−RCF.
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Figure 4.16: Closed-loop result with RCF. 6 discrete realizations at each stage which is
equivalent to considering 6 demand scenarios at each controller execution.

The relative left placement of the 3-stage RMF curve to the RCF curve suggests that

multistage stochastic controller generates more optimal control actions compared to the

two-stage stochastic controller. The points (1) and (2) are generated with a κ value of 5.

The cost with RCF−point (2) is 45860 units, 2.69% more than 3-stage RMF (44659 units),

while the customer service level is 3.55% higher. The percentage spacing varies across

the length of the Pareto curve. The comparison results indicate that the increased number

of stages results in improved system performance with the Pareto curve shifting to the

left.

4.7 CONCLUSIONS

In this work, we presented a robust decision making tool for SCM, which addresses

uncertainty in demand and model parameters explicitly. Through closed-loop simulation, it

was shown that the robust formulation substantially reduces the occurrence of back orders,

as compared to a nominal MPC formulation, by maintaining a sufficient level of safety

stock within inventory echelons. Of significance is that the robust framework maintains an

appropriate level of safety stock dependent on the uncertainty characterization, which is
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Figure 4.17: Pareto curve generated with RCF and RMF. Each data mark corresponds to
average performance for 30 independent closed-loop simulations

a better technique than fixing safety stock levels on the basis of past data and experience.

In this paper, we consider both open-loop and closed-loop predictions of uncertainty

propagation. The closed-loop formulation explicitly considers the likelihood of responding

to the future uncertainty realizations, and it mitigates the overly conservative nature

of the open-loop robust MPC. Simulation results provide favorable evidence to suggest

that the robust closed-loop formulation provides an equivalent level of customer service

at a reduced operating cost. Furthermore, this approach provides performance which

is significantly less sensitive to the objective function weighting. In the closed-loop

multistage stochastic controller formulation, the system performance improves with the

number of stages because of its increased flexibility in responding to future realizations of

uncertainty. The main disadvantage of a multi-stage stochastic controller is that the size

of resulting problem grows rapidly with number of stages. In this chapter, uncertainty

in demand and process yield was considered. However, the method could be extended

to include uncertainty in transportation delay. This could be a useful avenue for further

study.
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Nomenclature

Indicies/SetsIndicies/Sets

d ∈ D distribution site

e, e′ ∈ E plant site inventory echelon

j ∈ J material (chemical)

ls ∈ LS raw material supplier

m,m′ ∈M plant site

ps ∈ PS production scheme

s ∈ S scenario

t, t′ ∈ T time period (in supply chain model)

t∗ ∈ T ∗ actual time period

JP set of final products

JP F
m set of products for FPM at plant site m

JP I
m set of products for IPM at plant site m

JR set of raw materials

JRF
m set of raw materials for FPM at plant site m

JRI
m set of raw materials for IPM at plant site m

PSI
m set of production schemes available at IPM at plant site m

PSF
m set of production schemes available at FPM at plant site m

Binary VariablesBinary Variables

uI
m,ps,t 1 if the IPM process unit in plant site m begins a production scheme ps at

time period t; and 0 otherwise

uF
m,ps,t 1 if the FPM process unit in plant site m begins a production scheme ps at

time period t; and 0 otherwise

Continuous VariablesContinuous Variables

Bj,d,t quantity of back orders of final product j in distribution site d at time period

t

FF
j,m,d,t quantity of final product j shipped from plant site m to distribution site d at

time period t

F IW
j,m,t quantity of material transferred from intermediate product storage facility to

warehouse in plant site m at time period t
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FP
j,e,e′,m,m′,t quantity of material shipped from storage echelon e at plant site m to storage

echelon e′ at plant site m′ in time period t

FS
j,d,t quantity of final product j shipped from distribution site d to fulfil customer

demand and back orders at time period t

IF
j,m,t inventory of final product j at warehouse in plant site m at time period t

II
j,m,t inventory of intermediate product j at intermediate product storage facility

in plant site m at time period t

IR
j,m,t inventory of raw material j at raw material storage facility in plant site m at

time period t

IS
j,d,t quantity of final product j inventory in distribution site d at time period t

PF
ps,m,t quantity of main raw material j which begins to undergo production to final

product in plant site m at time period t (batch size)

P I
ps,m,t quantity of main raw material j which begins to undergo production to

intermediate product in plant site m at time period t (batch size)

Oj,ls,m,t purchase quantity of raw material j to supplier ls from plant site m at time

period t

ParametersParameters

n length of prediction horizon (days)

rc length of robust control horizon

DF
j,d,t customer demand of final product j at distribution site d at time period t

βP
ps process yield of product produced per unit of raw material consumed in

production scheme ps

γMu

m,ps maximum batch size for production scheme ps in plant site m

γM l

m,ps minimum batch size for production scheme ps in plant site m

δM
ps manufacturing delay for production scheme ps (days)

δP
m,m′ shipping delay between plant site m and m′ (days)

δR
ls,m delivery delay of procured material between supplier ls and plant site m

(days)

δS
m,d shipping delay between plant site m and distribution site d (days)

κ ratio between weighting parameters (ω1/ω2)

λR
ls,m maximum quantity of raw material which can be ordered from supplier j

during a time period

λF
m,d maximum transportation capacity from plant site m to distribution site d

during a time period

λP
m,m′ maximum transportation capacity from plant site m to m′ during a time

period
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µj,ps mass balance coefficient of material j in production scheme ps

ρs probability of the occurrence of scenario s

ω1 weighting parameter attributed to customer service (J1)

ω2 weighting parameter attributed to operating cost (J2)

ΩR
m maximum storage capacity of raw material in plant site m

ΩI
m maximum storage capacity of intermediate product inventory in plant site m

ΩF
j,m maximum storage capacity of final product j in plant site m

ΩS
j,d maximum storage capacity of final product j in distribution site d (units)

∆T execution frequency of model predictive controller (days)
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5.1 INTRODUCTION

A supply chain (SC) system is a production and distribution network with an objective of

procuring the right quantity of raw materials from suppliers to process them into high-

value products in their manufacturing facilities and selling them to customers through a

distribution channel. In today’s fast and dynamic market, maintaining an efficient and

adaptable supply chain is very critical for survival, particularly given the uncertainties

in the business environment and shifting focus towards increasing customer satisfaction.

Each node performs a distinct role, and it is important to synchronize these node activities

to attain a resonance between different SC partners. Supply chain planning is a set of

activities to integrate production and distribution network in an optimized manner to

achieve desired customer satisfaction at minimum cost.

In chemical production networks, the manufacturing often spans over a large geographical

region to lower the operating cost by optimizing raw material, production and transporta-

tion cost. However, planning of such a global manufacturing network is a complex task,

making it difficult to estimate the true production and transportation capacity of the

network and utilize them efficiently. Accurate representation of system capacity helps to

improve financial aspects in terms of optimally using the production and transportation

capacity to reduce the operating cost and increase customer satisfaction. Being a complex

and involved procedure, supply chain planning (SCP) is carried out in a hierarchical frame-

work where increasingly detailed information are considered as it moves from the upper

to lower decision stage for scheduling production and transportation operations. This

exercise divides the modeling and computational complexity of the planning procedure

and makes it manageable. Based on the time frame of involved planning activities, it

can be partitioned into strategic (long-term), tactical (medium-term), and operational

(short-term) planning. Strategic or long-term planning aim to decide the location and

size of production and storage facilities, and shipment quantities within the network over

a relatively large time frame ranging from few months to several years. These are the

decisions which affect the long-term performance of a supply chain. The targets set by the

strategic planning are communicated to a lower decision-making layer, midterm tactical

planning. It refines the production levels, inventory levels and shipment quantities on a

finer time scale than into strategic planning to optimize the system performance by includ-

ing more detailed system information. The short-term operational planning comes at the

bottom, and allocates available resources to operational tasks to fulfill the requirements

by considering more precise process details such as resource availability (production

units, machines, personnel), production and transportation time and cost, production
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change-over time and cost, and makes detailed plan for production and material shipment

within the network. As the decisions of operational planning are implemented on the

system, it considers finer process details, and therefore to limit the problem complexity, op-

erational planning is typically carried out for individual units (i.e. nodes), e.g. production

scheduling takes care of production activities within manufacturing sites, logistic planning

takes care of material flows of a distribution channel. The midterm planning incorporates

some features from both the strategic and operational models. For example, it considers

key resource limitations in a similar fashion as in operational models. Similarly, much like

strategic planning, they account for interactions between different facilities in an abstract

way to layout the production and distribution plan. Due to consideration of varying levels

of information at each stage, the plan created at upper layer may not remain feasible

at the bottom level. For example, strategic planning uses a simpler representation of a

process due to a large time horizon and to limit the model complexity. It represents pro-

duction and logistic activities in an aggregated way in comparison to a detailed production

planning model. Further, infeasibility may be introduced because of system disturbances,

like uncertainty in demand and production yield, maintenance activities, and planned or

unplanned plant shutdown. The planned maintenance activities can be taken into account

by careful planning, but model complexity restricts the accommodation of all known plant

dynamics at the upper level. To make this framework more efficient, there is a need to

develop a mechanism to ensure that feasible targets are passed from the upper layers,

and causes of any infeasible production plan should be fed back to the upper level in some

way to reduce the occurrence of infeasibility. In other words, information should flow in

both directions. This constitutes the main focus of our work.

Sousa, Shah, and Papageorgiou (2008) present a multilevel planning approach for a

chemical supply chain and discuss the need for integration between planning levels.

They cite that due to aggregated information utilized at the upper level and ignoring

task sequencing produce the occurrences of under-utilization of resources at lower level

and results in sub-optimal production and distribution plans. They investigate different

integration methodologies, such as restricting resource availability, working towards

effectively utilizing bottleneck resources, coordinating different planning layers, and

analyzing the system efficiency by comparing planning metrics. In these methodologies,

information collected at bottom level is used to improve the upper-level planning. Bose

and Pekny (2000) integrate multi-level planning and devise a framework to schedule

detailed planning activities for a consumer goods supply chain network.

Production planning is a part of company-wide production and distribution network. Con-

sidering its prime importance within process supply industries, production planning and
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scheduling gathered major attention in the systems engineering community. Kallrath

(2002a) discusses the importance of combining strategic and operational planning in a

production network, and states that analyzing strategic and operational planning simul-

taneously can greatly improve the system performance. He mentions that production

bottlenecks can be easily removed if the appropriate information is incorporated at the

upper level. Further, he cites that organization structure and company culture also play a

vital role in implementing integration approaches. Kallrath (2002b) provides a thorough

discussion on planning and scheduling models and algorithms. He cites that integration

between strategic and operational planning is one of the emerging research focus areas

in the chemical process industries. Maravelias and Sung (2009) have written an excellent

review on medium-term production planning and scheduling and discussed the benefits of

integrating these two layers.

Early work on integrating scheduling decisions in a campaign planning problem for

parallel continuous batch plants is addressed by Papageorgiou, and Pantelides (1996).

A cyclic production schedule is considered within each campaign, and a decomposition

based approach is presented to solve an integrated campaign planning and scheduling

problem. Susarla and Karimi (2011) present a planning tool to study the effects of resource

allocation such as maintenance, limited resource availability, new product introduction

and delivery delays on the production schedules and system performance. Within each

campaign planning period, production sequencing is enabled where production change-

over time has been included. Bhatnagar, Mehta, and Teo (2011) integrate shipment

planning and scheduling in multi-mode transportation networks by iteratively using the

shipment scheduling information in a planning problem. They use a more responsive

but costly air shipment route in place of a less expensive sea shipment route to offset

demand uncertainty. Verderame and Floudas (2008) achieve an integration effect by

formulating discrete time operational planning with a production disaggregation model

which generates daily production targets for the underlying scheduling level. They use

an iterative framework to compute production scheduling decisions in a staged manner.

In the first iteration, the operational planning model computes the targets for the entire

horizon, and the scheduling model lays out production activities to satisfy the target for

the first time period. In the next iteration, the planning problem is resolved with the

known planning targets for the first time period and adjusted demand targets.

Another approach to handling the integration between planning and scheduling is to

include a surrogate model which defines abstract scheduling information within the

planning model. One such way is to include the feasibility information of a scheduling

model by a set of constraints. Li and Ierapetritou (2009) develop convex underestimation
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of the production cost of the scheduling model and incorporate it into the planning

problem, and solve the integrated problem in an iterative fashion. Sung and Maravelias

(2007) present an offline approach to estimate the convex region of feasible production

targets and convex underestimation of production cost in terms of linear constraints

involving only planning variables. These linear constraints are then added in the planning

problem to integrate the effect of production scheduling at the planning level. Stefansson,

Shah, and Jensson (2006) study the problem of multiscale production planning and

scheduling for the pharmaceutical industry. They incorporate a bidirectional information

exchange in the form of feasibility constraints which are derived based on the lower level’s

information. In some cases, the computation of surrogate models becomes too complex

and can be replaced by a simple interaction parameter/factor. Wu and Ierapetritou

(2007) derive a factor (which they termed as a sequence factor) to include the effect of

production sequencing in a planning model, and used it in an iterative framework to solve

a hierarchical production planning and scheduling problem. The factor is calculated from

objective function values of the planning and scheduling problem, and updated in each

iteration.

In its simplest form, the integration can be accomplished by inserting scheduling con-

straints into the planning problem. Although the exercise is straightforward, the resulting

problem becomes large and complex to manage. An alternate way to solve such a complex

problem is to decompose it based on the system knowledge or mathematical structure. In

the PSE literature, Lagrangian decomposition and its variants are widely used to solve

such types of problems. The decisions that appear in both problems can be decoupled by

creating a copy of these variables and linked through so called the linking constraints.

These linking constraints are then relaxed with the use of a Lagrangian relaxation method.

Shah and Ierapetritou (2012) use an augmented Lagrangian decomposition algorithm to

handle the large scale integrated planning and scheduling problem. Further, to reduce the

algorithm complexity, they use a diagonal quadratic approximation to handle the quadratic

penalty term appearing in the objective function. Heever and Grossmann (2003) propose

an integration framework for a hydrogen production network, where they include detailed

scheduling decisions only for a subset of the entire planning horizon. However, to handle

the problem complexity of a nonlinear mixed integer model, they use a Lagrangian decom-

position based heuristic algorithm to break the integrated problem. Erdirik-Dogan and

Grossmann (2006) formulate an integrated production planning and scheduling problem

and decompose it to create master planning problem and slave scheduling problem. An

iterative framework is used, and cuts (integer cuts and logical) are added to speed up

the computation. Erdirik-Dogan and Grossmann (2008) extend it to include the cyclic
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production sequencing constraints, formulated using an asymmetric traveling salesman

problem, in the upper-level problem. This work is further extended for multi-site continu-

ous production and distribution networks by Terrazas-Moreno and Grossmann (2011). The

problem complexity is handled using a bilevel and a spatial Lagrangian decomposition

method. In the area of refinery planning, Mouret, Grossmann, and Pestiaux (2011) use a

Lagrangian decomposition method to solve an integrated production planning & crude oil

scheduling problem.

As an alternative to keep the problem complexity minimal, Kopanos, Puigjaner, and

Maravelias (2011) present a multi-model approach for a continuous production facility.

They utilize a discrete time approach for inventory and product delivery for production

planning, immediate precedence based approach for aggregated production sequencing,

and lot-sizing based continuous time approach for production scheduling. This hybrid

model incorporates a scheduling model within each planning period and a discrete time

planning model across composite time periods. Figueira et al. (2015) present a slot

based scheduling modeling approach embedded within a discrete time planning model

to integrate production planning with scheduling of an integrated paper and pulp mill.

The integration is further tightened by using aggregated production sequence set up

information at the planning level.

The advanced process control technique, model predictive control (MPC) which is widely

used in systems engineering, provides a systematic approach to generate a decision

policy for supply chain planning (Wang and Rivera, 2008; Tzafestas, Kapsiotis, and

Kyriannakis, 1997; Seferlis and Giannelos, 2004), and offers an advantage of improving

performance in the presence of supply and demand variability. Bose and Pekny (2000) use

an MPC framework for SC planning and scheduling. They study three different control

structures namely, (1) centralized, (2) decentralized, and (3) distributed MPC; and use an

integrated model to derive a detailed production schedule for the first time period and

capacity planning for the rest of the time periods. Munawar and Gudi (2005) achieve

the integration effects using a control theoretic framework, with cascade and receding

horizon control techniques. Using a control framework, they ensure that disturbances

are handled at local levels. The information from the lower level is fed back to the upper

level regarding shortfall or overproduction. To ensure the robustness of upper-level

decisions, the planning constraints are posed conservatively by adding a sloping loss

terms. Additionally, to improve the flexibility of the solution, the objective function is

devised to push for a tighter production schedule for the initial periods. For semiconductor

manufacturing, Wang, Rivera, and Kempf (2007) use an MPC based control framework

for tactical and inventory planning which receives the targets from a strategic planning
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module. Through a simulation study, they conclude that the MPC controller improves

customer service levels in the presence of high stochasticity in the manufacturing process.

It is apparent from the above literature review that most of the approaches presented

for integrated planning & scheduling target only a single facility, production. In the

present work, we consider tactical and operational planning of a supply chain network

which includes multiple production and distribution facilities. To tackle the problem of

infeasibility and lack of coordination faced in the traditional hierarchical framework, we

combine midterm tactical planning and short-term operational planning in one model. In

the proposed modeling framework, a few initial time periods are modeled with detailed

planning activities and remaining periods with a medium-term planning model. Further,

we use MPC-based tools to calculate the planning decisions in a rolling horizon fashion.

Because of the inherent feedback mechanism embedded in the MPC framework, the

approach partially offsets the effects of model inconsistency and system disturbances.

The rest of the chapter is organized as follows. A modeling framework for supply chain

planning and scheduling is presented in the next section. This includes an optimization

based decision framework (Section 5.2.5). In Section 5.3, the proposed method is imple-

mented on a simulation case study and the results are presented. The conclusion and

remarks are noted down in section 5.6.

5.2 INTEGRATED PLANNING

We consider a supply chain system illustrated in Figure 5.1. It consists of parallel suppliers,

multiple production facilities, and distribution centers. A plant site places an order for raw

material to suppliers. We assume that there is an upper limit on the purchase quantity that

can be ordered from suppliers. Purchased raw materials are stored at the plant site. Each

production site (facility) houses batch reactors that operate in parallel. Batch reactors

are used to produce intermediate and final products. Some final products are produced

in a single stage, and the remaining final products are produced in a multi-stage fashion

through intermediates. Final and intermediate products are stored at the plant site. After

receiving an order, the plant site ships the final products to the distribution center where

it is stored and shipped to the customer upon receiving the customer order. Each batch

reactor can run multiple production schemes and produce different products. We assume

that the data is given for what products can be produced at each reactor, their minimum

and maximum production capacity and processing time. Sequence-dependent change-over

time and cost are given. The changeover and production time are considered as an integral
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number of time discretization period of the short-term planning (STP) model. We further

assume that the cleaning time between two different production runs is limited by the

minimum discretization period. The maximum storage capacity of each storage echelon

is given. Further, the transportation quantity between two SC nodes is governed by the

shipping capacity of the lanes, capacity of the production facility and/or the customer

demand. We assume that the transportation amount must be at least as large as minimum

capacity to use that route. All decisions related to the raw material purchase, production

and transportation occur at the beginning of the discrete time intervals. The storage

location can not store more than its design capacity. Customer orders are delivered at

the end of each time period. All non-satisfied orders are accumulated as back-orders and

carried forward to the next time period. Back-orders are fulfilled before a new demand

request can be met.

S1

O j,ls,m,t

S2

MS1

IPj,m,t

Pj,ps,r,m,t

PM1

MS2

PS1

PS2

DS1

IS j,d,t B j,d,t

DS2

DFj,d,t

DFj,d,t

FD j,m,d,t

FPj,m,m′ ,t

S Supplier PS Plant Site
MS Material Storage
PM Product Manufacturing DS Distribution Site

Figure 5.1: Schematic of a process supply chain system for integrated planning study

The integrated model involves two time scale models, a short-term planning and medium-

term planning (MTP) model. The MTP (tactical model) makes the decisions pertaining

to the order amount placed at suppliers, transportation quantities for shipping lanes,

production amount of each product, start and end time of production runs (production

tasks) and cleaning operations, and inventory levels of storage locations over large time

periods (e.g. week). The STP (operational) model uses a finer time scale and makes

the production scheduling decisions such as assignment of production task to a reactor,
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production sequencing, start and end time of cleaning operations, production amount of

each product, transportation quantities between nodes of the network, inventory levels

at plant storage sites and distribution centers, and order quantities to suppliers. The

integrated model derives these decisions by optimizing the operating cost of the supply

chain.

An integrated hybrid-time process supply chain modelAn integrated hybrid-time process supply chain model

In this section, we present an integrated planning model. We use a discrete time for-

mulation for the mathematical description of SC planning activities. The discrete time

model divides the time horizon into a finite number of discrete time intervals and defines

planning constraints at these discrete time points, which simplifies problem definition and

model structure (Méndez et al., 2006). The integrated model, presented in this section,

incorporates two different time buckets - a finer time grid for operational planning con-

straints and a coarser time grid for tactical planning constraints. In the coming sections,

we interchangeably refer the tactical model as medium-term planning model (MTP) and

operational model as short-term planning model (STP) due to their associated time scale.

The integrated planning model describes initial periods with detailed planning operation

as more accurate system information, and demand forecast are available, while later

time periods are modeled using a coarse representation due to growing uncertainty in

both system information and demand forecast. The combination of STP and MTP model

provides following benefits, (1) the integration exercise eliminates the infeasibility issue

encountered in the hierarchical framework, (2) it allows scheduling operational activities

for a long horizon due to a relatively moderate computing resources requirement, which

facilitates inclusion of any planned maintenance activities, and/or shutdown if any, and

therefore their impact can be better managed, (3) decisions derived from an integrated

model can be implemented directly on the system as detailed planning activities are

determined for the initial time periods, and (4) aggregation in the later time periods

facilitates the handling of not so known distant demand prediction with aggregate deci-

sions. Along with these benefits, it comes with the disadvantage of a complex problem

formulation due to the involvement of a non-uniform time discretization. Figure (5.2)

shows the time discretization of the integrated modeling framework. NS is the total

number of STP (operational) time periods, and NP is the total number of planning periods

for the integrated model. The time index t represents the time period of the integrated

model, which combines both the operational and tactical planning models. The opera-

tional planning model use a time index ts, which runs from 1 to NS, while the tactical
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model time index tm runs from NS + 1 to NP . Please note that the superscripts S and M

Operational
Planning

. . . Operational
Planning

Tactical
Planning

. . . Tactical
Planning

t=1 2 3 . . . NS NS +1 NP −1 NP

Short Term Planning Medium Term Planning

Figure 5.2: Schematic diagram showing time index map of the integrated model

indicate variables corresponding to the STP and MTP model respectively. For a better

representation of model constraints, we divide them in three subsections; (i) operational

planning constraints, (ii) tactical planning constraints, and (iii) interface constraints.

5.2.1 Operational (Short-term) Planning Constraints

The operational planning constraints characterize the short-term dynamic behavior of

material and information flow within a supply chain. It uses time discretization of length

∆Ts, where each STP period is indexed by ts. A discrete-time representation facilitates

the inclusion of time delays (lags). Further, we assume that decision-making occurs at

the beginning of each time period. The operational constraints include material balances

around each echelon, production and storage capacity constraints, production sequencing

constraints, and change-over constraints. The operational planning constraints presented

here are an extension of the hybrid time model by Mastragostino, Patel, and Swartz (2014)

and Chapter 4, modified to change the production network representation and to include

production sequencing.

The decisions that we are considering for operational planning are, (i) allocation of

production task ps to batch production unit r at time period ts, Ups,r,ts; (ii) production

sequencing and detailed timings of production and cleaning tasks, (iii) amount of material

j processed in production unit r at plant site m at time period ts, PSj,ps,r,m,ts; (iv) quantity

of material j ordered from supplier ls for plant site m at time period ts, OSj,ls,m,ts; (iv)

inventory level of material j at plant site m at time period ts, IPSj,m,ts ; and at distribution

center d at time period ts, (ISSj,d,ts); (v) shipment quantity between two plant site m and m′

at time period ts, FPSj,m,m′,ts ; and from plant site m to distribution center d at time period

ts, FDS
j,m,d,ts

; and (vi) amount of final product j delivered to customers at time period ts,

FSSj,d,ts .
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Mass balance at plant siteMass balance at plant site

We define JRps and JPps as the set of raw materials and products for a production task ps

respectively. Set PSr,m is the set of production tasks that can be performed on unit r at

plant site m. The material set JR contains the raw materials that need to be ordered from

suppliers, J includes all materials, and Jm is the set of materials involved at plant site m.

The mass balance of material j around the storage echelon at plant site m is given by

Equation (5.1). The inventory level of material j at plant site m at the start of time period

ts + 1, IPSj,m,ts+1 equals the inventory present at the start of time period ts minus (i) the

quantity consumed at plant site m, PSj,ps,r,m,ts , (ii) the amount shipped to other plants

FPSj,m,m′,ts and distribution centers FDS
j,m,d,ts

, plus (i) the amount produced at plant site

m, (ii) the amount received from suppliers and other plants.

IPSj,m,ts+1 = IPSj,m,ts +
∑

ls:j∈JR

OSj,ls,m,ts−(δR
ls,m

/∆Ts) −
∑

d:j∈JP

FDS
j,m,d,ts

+
∑
r

∑
ps∈PSr,m:j∈JP

ps

PSj,ps,r,m,ts−(σps/∆Ts) −
∑
r

∑
ps∈PSr,m:j∈JR

ps

PSj,ps,r,m,ts

+
∑

m′:j∈J/JR

FPSj,m′,m,ts−(δP
m′,m/∆Ts) −

∑
m′:j∈J/JR

FPSj,m,m′,ts ∀ j ∈ Jm,m, ts (5.1)

where, δRls,m is the shipment delay between when an order for raw material j is made to a

supplier ls (Oj,ls,m,t) to the corresponding delivery. Similarly, δPm,m′ is the transportation

delay for an inter-plant shipment. σps is the batch time of production scheme ps.

The consumption amount of raw material j is expressed in terms of the consumption

amount of main raw material of the corresponding production scheme. Similarly, the

production amount of material j produced in production scheme ps is also expressed in

terms of its main raw material consumption.

PSj,ps,r,m,ts = µj,ps P
S
j′,ps,r,m,ts ∀ j ∈ JRps, j′ ∈ JMR

ps , ps ∈ PSr,m, r,m, ts (5.2)

PSj,ps,r,m,ts = βps µj,ps P
S
j′,ps,r,m,ts ∀ j ∈ JPps, j′ ∈ JMR

ps , ps ∈ PSr,m, r,m, ts (5.3)

The mass balance coefficient of chemical j in production scheme ps is denoted as µj,ps,

and βps is the process yield of production scheme ps.
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Capacity constraintsCapacity constraints

The inventory of material j at plant site m is restricted to a maximum storage capacity of

ΩR
m.

IPSj,m,ts ≤ ΩR
j,m ∀ j ∈ Jm,m, ts (5.4)

Equation (5.5) represents the maximum order which can be made to supplier ls for raw

material j (λRls,m) during a time period. Similarly, constraint (5.6) restricts the inter-plant

shipment quantity to a maximum quantity of λPm,m′ during a time period. Similarly, the

shipment amount of products from plant site m to distribution site d is restricted by λFm,d
during a time period and given by Equation (5.7).

OSj,ls,m,ts ≤ λ
R
ls,m ∀ j ∈ JR, ls,m, ts (5.5)∑

j∈J/JR

FPSj,m,m′,ts ≤ λ
P
m,m′ ∀ m,m′, ts (5.6)

∑
j∈JP

FDS
j,m,d,ts ≤ λ

F
m,d ∀ m, d, ts (5.7)

Equation (5.8) restricts the consumption amount of main raw material PSj,ps,r,m,ts to lie

between a lower (γlps,m) and upper (γups,m) bound. The binary variable Ups,r,t is introduced

to model a disjunction in the continuous variable PSj,ps,r,m,ts . Ups,r,t is 1 if processing unit r

at plant site m begins production task ps at time period ts; and 0 otherwise.

γlps,m Ups,r,ts ≤ PSj,ps,r,m,ts ≤ γ
u
ps,m Ups,r,ts ∀ j ∈ JMR

ps , ps ∈ PSr,m, r,m, ts (5.8)

Production sequencingProduction sequencing

Production assignment constraints allocate a production task to a production unit. At any

given time, a production unit can be associated with only one task. Further, allotment

of another task can not be initiated until the current task is finished. Equation (5.9) is

a full backward constraint that restricts the start of another production task ps at the

processing unit r at time period ts, if a task has already begun within the backward time

interval [ts − (σps/∆T ) + 1, ts]. σps represents the processing time of production task ps.

CLr,ts represents the existence of a cleaning operation at unit r. CLr,ts is 1 if cleaning

operation is initiated; and 0 otherwise.

∑
ps

ts∑
t′=ts−(σps/∆Ts)+1

Ups,r,t′ + CLr,ts ≤ 1 ∀ r, ts (5.9)
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Figure 5.3: Production sequencing and cleaning operation placement. Production run
ps (green) starts at time ts = 1 which lasts for 4 time periods, so another
production run (red) can not be started. Cleaning task has to be scheduled
before running other production run ps′ (violet)

Sequence-dependent change-overSequence-dependent change-over

In most batch production operation environments, a production unit needs cleaning or

some kind of preparation before another production scheme can run on the same unit.

The cleaning constraints are adapted from Kondili, Pantelides, and Sargent (1993) and are

represented in a backward-time format. Equation (5.10) is the cleaning constraint, which

states that a cleaning operation (CLr,ts) is required, if a production task ps is performed

at processing unit r at time ts, and another task ps′ is performed in the same unit within

the time interval [t′s, ts] and no other task is performed in-between. Figure 5.3 illustrates

production sequencing and the placement of a cleaning operation.

UTps,r,ts +
∑

ps′∈PSr:ps′ 6=ps
UTps′,r,t′s −

ts−1∑
t=t′s+1

∑
ps′∈PSr

UTps′,r,t − 1 ≤
ts−1∑
t=t′s+1

CLr,ts

∀ ps ∈ PSr, r, ts, t′s < ts (5.10)

UTps,r,ts =
ts∑

t′=ts−(σps/∆Ts)+1
Ups,r,t′ ∀ ps ∈ PSr, r, ts (5.11)

The auxiliary variables UTps,r,ts records the occupancy of unit r by production scheme ps

at time period ts and is derived from the binary decision variable Ups,r,t which represents

the start time of a production scheme ps. UTps,r,ts take the value 1 if task is running,

otherwise 0. The formulation ensures the integrality of the continuous variables CL and

UT . In the case where two different processing tasks (ps and ps′) take place in adjacent

time periods (i.e. t′s = ts − 1), the first and second term take the value 1 in expression

(5.10), while the summation term
∑ts−1
t=t′s+1 [·] becomes zero and therefore the left hand
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side takes the value 1 + 1− 0− 1 = 1 and right hand side becomes 0, and thus it prevents

such situation from occurring.

Mass balance at distribution siteMass balance at distribution site

The mass balance of final product j in distribution site d is given by Equation (5.12), where

δFm,d is the transportation delay between plant site m and distribution site d, and FSSj,d,t
is the quantity of final product j delivered from distribution center d at time period ts to

satisfy customer demand and accumulated back orders.

ISSj,d,ts+1 = ISSj,d,ts +
∑
m

FDS
j,m,d,ts−(δF

m,d
/∆Ts) − FS

S
j,d,ts ∀ j ∈ JP , d, ts (5.12)

ISSj,d,ts ≤ ΩS
j,d ∀ j ∈ JP , d, ts (5.13)

The total maximum amount of inventory of material j that can be stored at distribution

site d is ΩS
j,d.

Back-order balanceBack-order balance

If sufficient inventory of final product j is present, the full customer order will be satisfied;

otherwise only a partial order will be shipped. The unsatisfied demand will be recorded

as back orders and will be shipped at a future time. Equation (5.14) represents the back

order balance for final product j at distribution site d,

BS
j,d,ts+1 = BS

j,d,ts − FS
S
j,d,ts +DFj,d,ts ∀ j ∈ JP , d, ts (5.14)

Here, DFj,d,ts is the demand of final product j at distribution site d at time period ts.

The amount of final product j (FSSj,d,ts) delivered from distribution site d at time period ts

to satisfy customer demand and accumulated back orders is given by,

FSSj,d,ts =

 DFj,d,ts +BS
j,d,ts

, if ISSj,d,ts ≥ DFj,d,ts +BS
j,d,ts

ISSj,d,ts , if ISSj,d,ts < DFj,d,ts +BS
j,d,ts

∀ j ∈ JP , d, ts (5.15)

ISSj,d,ts is the inventory of final product j at distribution site d at time period ts. The above

disjunction function can be formulated using a binary variable. To circumvent the need to

add new binary variables, the variable FSSj,d,ts is eliminated by introducing an auxiliary

variable IS∗Sj,d,ts = ISSj,d,ts − B
S
j,d,ts

as given in Mastragostino, Patel, and Swartz (2014).

Equations (5.12) and (5.14) are then translated into Equation (5.16), where IS∗Sj,d,ts is
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positive if sufficient inventory exists and negative in the case where sufficient inventory is

not present and therefore results in a back-order.

IS∗Sj,d,ts+1 = IS∗Sj,d,ts +
∑
m

FDS
j,m,d,ts−(δF

m,d
/∆Ts) −DFj,d,ts ∀ j ∈ JP , d, ts (5.16)

In the plant simulation model, the storage capacity constraints (5.4) and (5.13) are

modified as,

IPSj,m,ts ≤ ΩR
m + SIPSm,ts

ISSj,d,ts ≤ ΩS
j,d + SISSj,d,ts

where, SIPSm,ts and SISSj,d,ts are slack variables to avoid problem infeasibility issues arising

due to demand uncertainty in plant simulations.

Since, Equation (5.14) is replaced by Equation (5.16), the amount of back-order is given

using the following constraint (5.17).

− ISS∗j,d,ts ≤ B
S
j,d,ts ≤ IS

S
j,d,ts − IS

S∗
j,d,ts ∀ j ∈ JP , d, ts (5.17)

Minimizing back-order quantity BS
j,d,ts

and inventory amount ISSj,d,ts in the objective

function ensures that, Equation (5.17) sets BS
j,d,ts

= −ISS∗j,d,ts and ISSj,d,ts = 0 when ISS
∗

j,d,ts

is negative, and BS
j,d,ts

= 0 and ISSj,d,ts = ISS
∗

j,d,ts
if ISS

∗
j,d,ts

is positive.

Bounds on variablesBounds on variables

IPSj,m,ts , IS
S
j,d,ts , B

S
j,d,ts ≥ 0 ∀ j,m, d, ts

OSj,ls,m,ts , P
S
ps,r,m,ts , FP

S
j,m,m′,ts , FD

S
j,m,d,ts ≥ 0 ∀ j, ls, ps, r,m,m′, d, ts

Ups,r,ts ∈ {0, 1} ∀ ps ∈ PSr, r, ts
CLr,ts , UTps,r,ts ∈ [0, 1] ∀ r, ps, ts

5.2.2 Medium-term Planning Constraints

The MTP constraints are an aggregated version of STP constraints. They use time index

of ∆Tm (> ∆Ts) and determine production, inventory, and shipment amounts over a

coarser time scale. The MTP model ignores the detailed production and cleaning timing

constraints, however it approximates them using cyclic scheduling constraints. The goal

of MTP is to determine the optimal production and transportation quantity over a long
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time horizon (months) considering raw material availability, storage capacity, production

capacity, and cost of materials, storage and transportation. Along with aggregated

decisions of the operational planning, the decisions that we are addressing for tactical

planning operation are, (i) allotment of production task ps to unit r at each time period

tm, Y Pps,r,tm; (ii) number of batches for each production task ps at unit r, NBps,r,tm; (iii)

first (Y Fps,r,tm) and last task (Y Lps,r,tm) of the production sequence at each time period tm,

(iv) precedence of a production task ps in the production sequence at each time period

tm, XPps,ps′,r,tm ; (iv) production link between scheme ps and ps′ to be broken to generate

production sequence from a cyclic schedule at unit r at each time period tm, XBps,ps′,r,tm ;

(v) change-over variable to make the cleaning decision between two different production

schemes across planning time periods, XCps,ps′,r,tm .; and (vi) total production change-over

time at each time period tm, TCr,tm . The superscript M denotes a MTP model variable.

Material storage at plant site - Mass balanceMaterial storage at plant site - Mass balance

The inventory balance for MTP time period can be written in a similar way as for STP

period. The inventory level of material j, IPMj,m,tm+1 at the start of time period tm + 1 is the

inventory present at the start of time period tm plus (i) the amount received from suppliers

OMj,ls,m,tm and other plant sites FPMj,m′,m,tm , (ii) the amount produced PMj,ps,r,m,tm , minus

(i) the quantity consumed at plant site m, and (ii) the shipment quantity to distribution

centers FDM
j,m,d,ts

and other plant sites FPMj,m′,m,ts .

Raw material procurement orders, production batch runs, and shipment orders, that are

initiated during operational planning periods and still in-transit (or in-process) at the in-

terface point (t = NS), is received during the first time period of tactical model and hence

these quantities are added in the inventory balance for time tm = NS + 1 Equation (5.18).

For example, the term
∑NS

t′=NS−(δR
ls,m

/∆Ts)+1 O
S
j,ls,m,t′ represents the raw material procure-

ment order that is placed during STP time periods t = NS − (δRls,m/∆Ts) + 1 to NS and

is received at MTP time period t = NS + 1, hence the quantity is added in the balance

Equation (5.18).

IPMj,m,tm+1 = IPMj,m,tm +
∑

ls : j∈JR

OMj,ls,m,tm +
NS∑

t′=NS−(δR
ls,m

/∆Ts)+1

OSj,ls,m,t′


+
∑
r

∑
ps∈PSr,m :j∈JP

ps

PMj,ps,r,m,tm +
NS∑

t′=NS−σps
ls,m

+1
PMj,ps,r,m,t′


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+
∑

m′: j∈J/JR

FPMj,m′,m,tm +
NS∑

t′=NS−(δP
m′,m/∆Ts)+1

FPSj,m′,m,t′


−
∑
r

∑
ps∈PSr,m :j∈JR

ps

PMj,ps,r,m,tm −
∑

m′:j∈J/JR

FPMj,m,m′,tm −
∑

d:j∈JP

FDM
j,m,d,tm

∀ j ∈ JRm,m, tm = NS + 1 (5.18)

The following material balance (5.19) appears for the subsequent time periods.

IPMj,m,tm+1 = IPMj,m,tm +
∑

ls : j∈JR

OMj,ls,m,tm −
∑

d:j∈JP

FDM
j,m,d,tm

+
∑
r

∑
ps∈PSr,m :j∈JP

ps

PMj,ps,r,m,tm −
∑
r

∑
ps∈PSr,m :j∈JR

ps

PMj,ps,r,m,tm

+
∑

m′: j∈J/JR

FPMj,m′,m,tm −
∑

m′:j∈J/JR

FPMj,m,m′,tm

∀ j ∈ JRm,m, tm = NS + 2, . . . , NP (5.19)

Similar to the operational planning, the consumption and production amount of material j

involved in task ps are expressed as,

PMj,ps,r,m,tm = µj,ps P
M
j′,ps,r,m,tm ∀ j ∈ JRps, j′ ∈ JMR

ps , ps ∈ PSr,m, r,m, tm (5.20)

PMj,ps,r,m,tm = βps µj,ps P
M
j′,ps,r,m,tm ∀ j ∈ JPps, j′ ∈ JMR

ps , ps ∈ PSr,m, r,m, tm (5.21)

Capacity constraintsCapacity constraints

The inventory of material j at plant site m is restricted to its maximum storage capacity

ΩR
m in a similar fashion as it is described in the operational planning.

IPMj,m,tm ≤ ΩR
j,m ∀ j ∈ Jm,m, tm (5.22)

The total order quantity of raw material j, OMj,ls,m,tm from supplier ls during time period tm

is restricted by λRls,m times H, where H is number of operational planning periods that can

be fit within one tactical planning period. For example, if the time bucket of operational

model is 1 day and tactical model is 1 week (7 days), H takes the value 7.

OMj,ls,m,tm ≤ H λRls,m ∀ j ∈ JR, ls,m, tm (5.23)∑
j∈JP

FDM
j,m,d,tm ≤ H λFm,d ∀ m, d, tm (5.24)
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∑
j∈J/JR

FPMj,m,m′,tm ≤ H λPm,m′ ∀ m,m′, tm (5.25)

Similarly, the shipment amounts of product j from plant site m to distribution site d

(FDM
j,m,d,tm

) and from plant site m to another plant site m′ (FPMj,m,m′,tm) are restricted by

their respective design capacities as given by Equations (5.24) and (5.25).

Because of the larger time grid, the production capacity constraint is described by an

aggregated version of the capacity constraint introduced in the STP model. The aggregated

total production amount from production unit r during time period tm from all production

schemes that can run on unit r is expressed in terms of the production amount of main

material of those production schemes and their relative production capacity coefficients

ηps, and should not exceed the design capacity of unit r (Γur ). Constraint (5.27) states that

if production scheme ps is allocated at time period tm (i.e. Y Pps,r,tm = 1), the production

amount on unit r should be greater than its allowable minimum design capacity (γlps,m).

∑
ps∈PSr,m

ηps P
M
j,ps,r,m,tm ≤ (H − TCr,tm/∆Ts) Γur ∀ j ∈ JMR

ps , r,m, tm (5.26)

γlps,m Y Pps,r,tm ≤ PMj,ps,r,m,tm ∀ j ∈ JMR
ps , ps ∈ PSr,m, r,m, tm (5.27)

PMj,ps,r,m,tm ≤ (H − TCr,tm/∆Ts) γups,m Y Pps,r,tm ∀ j ∈ JMR
ps , ps ∈ PSr,m, r,m, tm (5.28)

TCr,tm is the production changeover time during time period tm, and is an aggregate

version of cleaning variable CLr,ts . As explained earlier, the change-over represents

cleaning or other set up activities required between two different production runs and

hence the unit is not available for production. The termH−TCr,tm represents the total time

available for production within time period tm. The production changeover time is defined

in the cyclic scheduling section. Constraint (5.28) sets the production amount to zero

when scheme ps is not allocated during time period tm. Since, the aggregated production

amount is constrained by Equation (5.26), the term (H − TCr,tm) in Equation (5.28) can

be changed to H without any loss to remove the bi-linearity.

PMj,ps,r,m,tm ≤ H γups,m Y Pps,r,tm ∀ j ∈ JMR
ps , ps ∈ PSr,m, r,m, tm (5.29)

Cyclic scheduling constraintsCyclic scheduling constraints

To account for production sequencing, the MTP model incorporates cyclic scheduling con-

straints without considering actual timings of production schemes. The cyclic scheduling

is formulated using a travelling salesman problem (TSP). These constraints generate a

cyclic production schedule in a way that minimizes production change-over time and cost.
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The production cycle is then converted to an optimal production sequence by breaking

a production link having highest change-over time. These constraints are adapted from

Erdirik-Dogan and Grossmann (2007) and modified to include the scenario where no

production is running on a unit.

(a) Number of batches for each production scheme

NBps,r,tm = PMj,ps,r,m,tm / γups,m ∀ j ∈ JMR
ps , ps ∈ PSr,m, r,m, tm (5.30)

Constraint (5.30) calculates the total number of batches of each production scheme at

processing unit r. NBps,r,tm is treated as an integer variable in the formulation.

(b) Changeover time - within time period

The following constraints generate a cyclic schedule of assigned products and breaks the

link having highest changeover time to calculate the minimum changeover time in each

time period.

Y Pps,r,tm =
∑

ps′∈PSr

XPps,ps′,r,tm ∀ ps ∈ PSr, r, tm (5.31)

Y Pps′,r,tm =
∑

ps∈PSr

XPps,ps′,r,tm ∀ ps′ ∈ PSr, r, tm (5.32)

Constraints (5.31) and (5.32) state that if production scheme ps is allocated to unit r

during time period tm (Y Pps,r,tm = 1), two production transitions, one from scheme ps

to ps′ and second from scheme ps′ to ps, must occur during time period tm. XPps,ps′,r,tm
indicates the transition from production scheme ps to ps′ at unit r during time period tm.

It is worth mentioning that, in constraints (5.31) and (5.32), production task (or scheme) ps

and ps′ may represent the same production task. If ps and ps′ are restricted to be different,

it results in an infeasible schedule for a single production task allotment case. On the

contrary, permitting ps = ps′ generates a schedule with self-loops (a cycle consisting one

production scheme repeating multiple times) due to zero change-over time. To permit the

self-loop only for the single production scenario, the following set of constraints (5.33) −
(5.35) are included. Expression (5.35) states that, if production scheme ps is running in

unit r at time period tm (i.e. Y Pps,r,tm = 1), and no other production scheme ps′ different

than ps is assigned in the same unit at same time period (i.e.
∑
ps′∈PSr:ps′ 6=ps Y Pps′,r,tm = 0),

then only the production scheme ps can be followed by scheme ps (XPps,ps,r,tm can take
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value 1), and vice versa.

Y Pps,r,tm ≥ XPps,ps,r,tm ∀ ps ∈ PSr, r, tm (5.33)

Y Pps′,r,tm +XPps,ps,r,tm ≤ 1 ∀ ps, ps′ ∈ PSr, ps′ 6= ps, r, tm (5.34)

Y Pps,r,tm −
∑

ps′∈PSr:ps′ 6=ps
Y Pps′,r,tm ≤ XPps,ps,r,tm ∀ ps ∈ PSr, r, tm (5.35)

The optimal production schedule is determined by breaking exactly one link of a generated

cyclic schedule. The binary variable XBps,ps′,r,tm represents the pair (link) to be broken in

constraint (5.36).

∑
ps∈PSr

∑
ps′∈PSr

XBps,ps′,r,tm = 1 ∀ r, tm (5.36)

In the cases where no production task is allocated to the unit due to insufficient inventory of

raw material or maintenance shutdown, there is no requirement for scheduling production

activities during that time period. However, constraint (5.36) demands to break exactly

one production link, which implicitly requires running at least one production scheme

irrespective of raw material or production equipment availability. To accommodate a no-

production case constraints (5.37) - (5.39) are formulated which state that if no production

scheme is running at unit r at time period tm, the transition variable XBps,ps′,r,tm takes

the value zero, otherwise exactly one transition is allowed. Defining an indicator variable

DDr,tm for recording whether any production task is running on unit r at time period tm,

the Equations (5.37) - (5.38) state that the variable DDr,tm takes the value one if at least

one production task ps is assigned to unit r.

DDr,tm ≥ Y Pps,r,tm ∀ r, ps ∈ PSr, tm (5.37)

DDr,tm ≤
∑

ps∈PSr

Y Pps,r,tm ∀ r, tm (5.38)

∑
ps∈PSr

∑
ps′∈PSr

XBps,ps′,r,tm = DDr,tm ∀ r, tm (5.39)

0 ≤ DDr,tm ≤ 1

If the pair is not selected in the cycle, the corresponding transition link takes the value

zero, enforced by constraint (5.40) :

XBps,ps′,r,tm ≤ XPps,ps′,r,tm ∀ ps, ps′ ∈ PSr, r, tm (5.40)

The total changeover time (TCr,tm) in each time period is the summation of the changeover
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time corresponding to each selected pair minus the changeover time of broken link.

TCr,tm =
∑

ps∈PSr

∑
ps′∈PSr

τps,ps′ XPps,ps′,r,tm −
∑

ps∈PSr

∑
ps′∈PSr

τps,ps′ XBps,ps′,r,tm

∀r, tm (5.41)

τps,ps′ is the production change-over time from scheme ps to ps′.

(c) Changeover time - across time period

To determine the changeover time between adjacent time periods, one need to know the

first and last production scheme running at each time period.

Y Fps′,r,tm ≥
∑

ps∈PSr

XBps,ps′,r,tm ∀ps′ ∈ PSr, r, tm (5.42)

Y Lps,r,tm ≥
∑

ps′∈PSr

XBps,ps′,r,tm ∀ps ∈ PSr, r, tm (5.43)

If the link between production scheme ps and ps′ is broken, then scheme ps becomes the

last scheme (Y Lps,r,tm = 1) and ps′ becomes the first scheme (Y Fps′,r,tm = 1) to be run in

the optimal production sequence for unit r during time period tm. Moreover, exactly one

production scheme can be run as the first production scheme and one scheme can be run

as the last production scheme, as indicated by (5.44) and (5.45).

∑
ps∈PSr

Y Fps,r,tm = 1 ∀r, tm (5.44)

∑
ps∈PSr

Y Lps,r,tm = 1 ∀r, tm (5.45)

The changeover variable between two adjacent time periods (XCps,ps′,r,tm) becomes 1, if

production scheme ps is running at time period tm and scheme ps′ at time period tm + 1.

According to constraint (5.46), exactly one changeover happens from scheme ps, if and

only if scheme ps is the last production run at time period tm. Similarly, exactly one

changeover happens to scheme ps′, if and only if scheme ps′ is run the first at time period

tm + 1.

∑
ps′∈PSr

XCps,ps′,r,tm = Y Lps,r,tm ∀ps ∈ PSr, r, tm (5.46)

∑
ps∈PSr

XCps,ps′,r,tm = Y Fps′,r,tm+1 ∀ps′ ∈ PSr, r, tm ∈ 1..NMT − 1 (5.47)
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(d) Time balance

The summation of changeover times and the production times within each time period

should be less than the length of tactical planning period (∆Tm = H ∆Ts).∑
ps∈PSr

NBps,r,tm σps + TCr,tm +
∑

ps∈PSr

∑
ps′∈PSr

XCps,ps′,r,tm τps,ps′ ≤ H ∆Ts ∀r, tm (5.48)

Distribution site - Mass balanceDistribution site - Mass balance

The inventory balance of material j at distribution site d is given by mass balance (5.49)

for time tm = NS + 1, and (5.50) for the subsequent time periods. Equation (5.49) includes

the effect of transportation and production delay as explained earlier. The inventory level

of material j (ISMj,d,tm) increases by the amount FDM
j,m,d,tm

received from plant sites and

decreases by the amount FSMj,d,tm shipped to customers at time period tm.

ISMj,d,tm+1 = ISMj,d,tm +
∑
m

FDM
j,m,d,tm +

NS∑
t′=NS−(δF

m,d
/∆Ts)

FDM
j,m,d,t′

− FSMj,d,tm
∀ j ∈ JPm ∪ JP , d, tm = NS + 1 (5.49)

ISMj,d,tm+1 = ISMj,d,tm +
∑
m

FDM
j,m,d,tm − FS

M
j,d,tm

∀ j ∈ JPm ∪ JP , d, tm = NS + 2, . . . , NP (5.50)

ISMj,d,tm ≤ ΩS
j,d ∀ j ∈ JP , d, tm (5.51)

ΩS
j,d represents the maximum storage capacity for material j at distribution site d.

Back-order balanceBack-order balance

Similar to the operational planning model, the back order balance is given by Equa-

tion (5.52).

BM
j,d,tm+1 = BM

j,d,tm − FS
M
j,d,tm +DFj,d,tm ∀ j ∈ JP , d, tm (5.52)

The amount of final product j (FSMj,d,tm) delivered from distribution site d at time period

tm to satisfy customer demand and accumulated back orders is given by,

FSMj,d,tm =

 DFj,d,tm +BM
j,d,tm

, if ISMj,d,tm ≥ DFj,d,tm +BM
j,d,tm

ISMj,d,tm , if ISMj,d,tm < DFj,d,tm +BM
j,d,tm

∀ j ∈ JP , d, tm (5.53)
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A similar reformulation as done in the short term planning model gives,

ISM∗j,d,tm+1 = ISM∗j,d,tm +
∑
m

FDM
j,m,d,tm +

NS∑
t′=NS−(δF

m,d
/∆Ts)

FDS
j,m,d,t′

−DFj,d,tm
∀ j ∈ JP , d, tm = NS + 1 (5.54)

ISM∗j,d,tm+1 = ISM∗j,d,tm +
∑
m

FDM
j,m,d,tm −DFj,d,tm ∀ j ∈ J

P , d, tm = NS + 2, . . . , NP (5.55)

where DFj,d,tm is the demand of final product j at distribution site d at time period tm.

Bounds on variablesBounds on variables

IPMj,m,tm , IS
M
j,d,tm , B

M
j,d,tm ≥ 0 ∀ j,m, d, tm

BM
j,d,tm ≥ −IS

M∗
j,d,tm ∀ j ∈ JP , d, tm

ISMj,d,tm ≥ IS
M∗
j,d,tm +BM

j,d,tm ∀ j ∈ JP , d, tm
XPps,ps′,r,tm , XBps,ps′,r,tm , XCps,ps′,r,tm ∈ {0, 1} ∀ ps, ps′ ∈ PSr, r, tm
Y Pps,r,tm , Y Fps,r,tm , Y Lps,r,tm ∈ {0, 1} ∀ ps ∈ PSr, r, tm

5.2.3 Interface Constraints

In an effort to simplify the model representation, the operational and tactical model

constraints were represented separately. However, they form part of a single overall

model. An adjustment is made to material balances in the first time period of the tactical

model to account for delays in the operational model. To complete the connection between

the two models, we equate the inventory levels at the interface point t = NS .

The inventory levels of material j at the end of the operational model (i.e t = NS + 1) is

equal to the inventory level at the start of tactical planning period (i.e. t = NS + 1).

IPMj,m,NS+1 = IPSj,m,NS+1 ∀ j,m (5.56)

IS∗,M
j,d,NS+1 = IS∗Sj,d,NS+1 ∀ j, d (5.57)
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5.2.4 MPC Optimization Problem Representation

The MPC optimization problem optimizes the objective function respecting system con-

straints and system dynamics.

Integrated modelIntegrated model

The model can be represented in the following form to simplify the MPC optimization

problem.

xst+1 = As1x
s
t +Bs

1u
s
t + . . .+Bs

vu
s
t−v +Gswst + c1 t = 1, . . . , NS (5.58)

xmt+1 = Am1 x
m
t +Bm

1 u
m
t + Em1 u

s
NS + . . .+ Emv u

s
NS−v +Gm1 w

m
t t = NS + 1 (5.59)

xmt+1 = Am2 x
m
t +Bm

2 u
m
t +Gm2 w

m
t t = NS + 2, . . . , NP (5.60)

A1x
s
t +A2p

s
t +B1u

s
t +B2q

s
t +G1w

s
t + c2 ≤ 0 t = 1, . . . , NS (5.61)

A3x
m
t +A4p

m
t +B3u

m
t +B4q

m
t +B5h

m
t +G2w

m
t + c3 ≤ 0 t = NS , . . . , NP (5.62)

xmNS+1 = xsNS+1 (5.63)

where, superscripts s and m denote the vector of variables for operational and tactical

model respectively. x, p, u, q, h, and w are the vectors of state variables, auxiliary state

variables, continuous decisions variables, binary decision variables, integer decision

variables, and disturbance parameters. c1, c2, and c3 are the vector of constants. The

parameter v represents the maximum value of production and transportation delay, that is

v =
[
max {δFM,D, δ

P
M,M , δ

R
LS,M } − 1

]
.

Some of the decisions variables in Equation (5.58) reflects the decisions in the past

when the time period t is less than or equal to v. These decisions variables are treated

as parameters and are captured through the vector of constants c1. Equations (5.58)

to (5.60) are inventory balance equations, where Equation (5.58) represents the set of

constraints (5.1) and (5.16), Equation (5.59) represents constraints (5.18) and (5.49),

and Equation (5.60) represents constraints (5.19) and (5.50). Equation (5.61) represents

the set of constraints (5.2)−(5.11), (5.13), and (5.17). Equation (5.62) represents the

set of constraints (5.20)−(5.27), (5.29)−(5.32),(5.37)−(5.48) and (5.51). Equation (5.63)

describes the equality constraints (5.56) and (5.57).

xs ≡
[
IPSJm,M , IS

∗S
JP ,D

]
xm ≡

[
IPMJm,M , IS

∗,M
JP ,D

]
ps ≡

[
BS
JP ,D, IS

S
JP ,D

]
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pm ≡
[
BM
JP ,D, IS

M
JP ,D

]
us ≡

[
OSJR,LS,M , P

S
J,PS,R,M , FP

S
J/JR,M,M , FD

S
JP ,M,D

]
um ≡

[
OMJR,LS,M , P

M
J,PS,R,M , FP

M
J/JR,M,M , FD

M
JP ,M,D,

]
qs ≡ [ UPS,R, CLR, UTPS,R ]

qm ≡
[
Y PPSR,R, XBPSR,PSR,R, Y FPSR,R, Y LPSR,R, XPPSR,PSR,R, XCPSR,PSR,R, DDR,

TCR ]

hm ≡ [ NBPS,R ]

ws ≡
[
DFSJP ,D

]
wm ≡

[
DFMJP ,D

]
The variables indices shown above indicate their maximum dimensions and would be

defined over the sets described in the model formulation section using the notation,

IPSJm,M :=
{
IPSj,m, ∀ m ∈M, j ∈ Jm

}
defined similarly for the other variables. Conveniently, the state and decision variables for

operational and tactical planning models can be combined together and represented as,

xt = [xst xmt ], pt = [pst pmt ], ut = [ust umt ], and qt = [qst qmt ]

Performance functionPerformance function

The performance of supply chain systems is quantified by various criteria. Neely, Gregory,

and Platts (1995) categorize SC performance metrics into four classes; quality, time, cost,

and flexibility. Beamon (1999) provides an overview of SC performance measures and

their evaluation, and presents a framework for the selection of performance measures for

SCs. We use a bi-criterion objective function consisting of quality and cost in the MPC

optimization problem. In our analysis, customer satisfaction is considered as a quality

measure for the supply chain operation and economics is measured in terms of the total

operating cost of running the supply chain. The customer satisfaction level is measured in

terms of total number of back-orders and is given by the following expression.

J1 :=
∑
j,d

NS−1∑
ts=1

BS
j,d,ts+1 +

NP−1∑
tm=NS

BM
j,d,tm+1

 (5.64)

The economic performance is measured by the total operating cost of running the supply
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chain.

J2 :=
NP−1∑
t=1

[
CT
x xt+1 + CT

p pt+1 + CT
u ut

]
(5.65)

where Cx is a cost vector for the state variables xt, Cp is a cost vector for the auxiliary

variables pt (states that are dependent on other independent state variables), and Cu is a

cost vector for the decision variables ut.

The multi-objective function for the integrated planning problem is given by weighted sum

of customer satisfaction (J1) and operating cost (J2), where ω1 and ω2 are the weighting

parameters.

J ∗ := ω1J1 + ω2J2 (5.66)

Remarks

1. As it was stated earlier, the model can accommodate transportation delays by setting

non-zero values to the delay parameters. However due to discrete-time formulation,

it (delay value) should be an integral of the STP discretization period.

2. It is assumed that the change-over cost is directly proportional to change-over time

and therefore breaking the production link having highest change-over time to

generate production schedule from a cyclic schedule will ensure minimum operating

cost.

3. It is assumed that cleaning operation (CLr,t) takes exactly one STP time period for

all processing units.

4. For the instances where no production task is allocated to a unit during any time

period, the production scheduling is not required. In this case, the constraints set

(5.37)−(5.39) sets the value of production indicator variable DDr,tm to zero.

5. The TSP constraints (5.30) to (5.48) for cyclic scheduling start the production

scheme, only if the involved raw materials are available or going to be produced

during that time period. So in the cases where one production scheme uses interme-

diate products of another production scheme as raw materials, and no intermediate

product is available at the start of the time period, it will allocate both production

schemes in one time period. However, the precedence of production schemes is

selected in a way that only minimizes the change-over time and neglects the neces-

sity of starting a production scheme that yields intermediate products for another

scheme. In this scenario, the solution obtained at the tactical planning may differ
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from the operational model although no subcycle exists. By contrast, the operational

model uses a smaller time grid and checks for the raw material availability before

allocating any production scheme to a unit.

6. The back-order and inventory amounts are accumulated at each time period and

penalized in the objective function. Due to the big time bucket (∆Tm > ∆Ts) of

tactical model, the intermediate dynamics present in these variables is simply lost,

and hence is not considered in the cost calculation. Therefore, the tactical model

is expected to underestimate the back-order and inventory cost of the operational

model.

5.2.5 Model Predictive Control (MPC) Framework

In the MPC framework, the controller solves a dynamic optimization problem spanning the

time horizon of interest and uses a process model to determine the optimal input moves in

accordance with a specified objective. Figure 5.4 shows a single layer decision framework

proposed in the current work. The MPC optimization problem calculates the decisions

using the hybrid time model discussed in the previous section. Only the first input moves

are implemented on the process. The system dynamics included in the model may not

exactly represent the real process behavior. Moreover the prediction of demand and

process yield are also not precise and therefore the implemented decisions will generate

process outputs that are different than the model predicted outputs. The mismatch

information is fed back to the controller at the next time increment. The time horizon

is advanced and the system is re-optimized with this new information. The feedback

essentially includes the effect of plant-model mismatch and system disturbances. Since

Integrated Model

Zone I

Operational Planning
Sampling time : 1 day

Zone II

Tactical Planning
Sampling time : 1 week

Supply Chain

Warehouse
Manufacturing

FacilitySuppliers Customers

Feedback
Demand, Inventory

Figure 5.4: Schematic representation of the proposed integrated planning decision frame-
work

the integrated model incorporates a non-uniform time grid, the advancement of the time
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horizon is achieved in a block manner that synchronizes the time grid of STP and MTP

models. Figure 5.5 shows a schematic diagram of the horizon advancement framework.

In the current approach, the time horizon is not extended until it reaches at the end of

the first large time bucket (∆Tm). Let’s consider a time snap shot at t = 4. At this point,

the decisions for time t = 1, 2, and 3 are known, therefore the MPC optimization problem

at t = 4 treats these variables as parameters and re-calculates the control trajectories.

The time synchronization of both models occurs at the end of large-bucket time period

(here, at t = 7). At this time instant, the time horizon is advanced by one large-bucket

time period as illustrated in the figure, and the past time periods are dropped.

Operational
Planning

Operational
Planning

Tactical
Planning

. . . Tactical
Planning

t=1 7 . . . NS NS +1 NP −1 NP

at time t = 1

Operational
Planning

Tactical
Planning

. . . Tactical
Planning

t=1 7 . . . NS NS +1 NP −1 NP

Known
Decisions

Optimization Decisions

at time t = 4

Operational
Planning

Tactical
Planning

. . . Tactical
Planning

t=1 7 . . . NS NS +1 NP −1 NP

at time t = 8

Figure 5.5: A rolling horizon strategy for MPC implementation. The time horizon advances
when it reaches at the end of a large time bucket (∆Tm).

5.3 CASE STUDY

The implementation of the proposed integrated modeling approach in a rolling horizon

MPC framework is demonstrated on a simulation case study of a multi-product, multi-

echelon supply chain. It comprises of two suppliers (LS1,LS2), two plant sites (M1,M2),

four reactors (R1, . . . ,R4) that can run five production schemes (PS1, . . . ,PS5), and two

distribution sites (DC1,DC2). The manufacturing facility has multiple reactors that can run

in parallel. Each reactor can run only subset of production schemes. As shown in Figure

5.6, total 5 production schemes are available to produce two final products E and G from

two main raw materials A and B. Materials C, D, and F are intermediate products. Plant

site M1 has two reactors R1 and R2. Reactor R1 can run the production scheme PS1 and
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PS2, and the production scheme PS3 can be run on reactor R2. The plant site M2 houses

two reactors R3 and R4. The production scheme PS4 and PS5 can be run on reactor R3 and

R4 respectively. Plant site M2 uses intermediate product D as one of its raw materials for

the production scheme PS4, and thus it can not start production until it receives it from

plant site M1. The mass balance coefficients of the reaction scheme are represented in

Figure 5.6. Customer demand and process yield are considered as input disturbances in

A

Reactor – 1

C

A

Reactor – 3
PS4

F

D

Reactor – 4
PS5

G

Reactor – 2
PS3

E

Plant - M1

Plant - M2

B D

PS1

PS2

Figure 5.6: Production network of a integrated planning case study. Reactor 1 is a
multipurpose batch production unit, and all other plants are dedicated plants.

the MPC framework. In the analysis, the customer service level is weighted 15 times the

process economics. To check the computation and economic efficiency of an integrated

model, we compare it against a full-sized detailed planning (DP) model. In the DP, the

entire planning horizon is formulated using the operational planning model. Because of

the inclusion of detailed dynamics, the DP provides a more accurate representation of the

system and is expected to yield an upper bound in terms of system performance. Total

operating cost and customer satisfaction are used as solution statistics to compare the

performance. The production change-over time (τps,ps′) is taken as 1 day for all production

switches. The aggregated production capacity (Γur ) for unit R1, R2, R3 and R4 is taken as

200 units. The case study data are summarized in Tables 5.1 to 5.8.

Table 5.1: Simulation parameter values for integrated planning
case study

Parameter Value Parameter Value

Simulation length 100 days ω1/ω2 15

∆Ts 1 day ∆Tm 1 week
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Table 5.2: Raw material cost for the in-
tegrated planning case study
($/unit)

Raw material Supplier

LS1 LS2

A 1 1.2

B 1.4 1.7

Table 5.3: Product back-order cost for the
integrated planning case study
($/unit)

Material

E G

Cost ($/unit) 5 5

Table 5.4: Cost parameter values for the integrated planning case study

Shipment Cost
of FP in Cu

Shipment Cost
of FF in Cu Production Cost of PS/ PM in Cu

Plant site Plant site Distribution site Production Task

M1 M2 D1 D2 PS1 PS3 PS2 PS4 PS5

M1 − 1.05 2.7 2.8 1.25 1 1 − −
M2 1.05 − 2.8 2.5 − − − 1 1

Note: The shipment costs are the same for all chemicals within each shipment category.

Table 5.5: Inventory parameter values for the integrated planning case study

Parameter Plant site Distribution site

Cx ($/unit) M1 M2 D1 D2

Cost of IP 0.8 0.7 − −
Cost of IS − − 1.5 1.25

Storage capacity

ΩR 150 150 − −
ΩF

E / ΩF
G 100 100 − −

Note: The inventory costs are the same for each chemical within
each storage site.

The optimization problem is modeled with AMPL and solved using CPLEX 12.6. Simulations

are performed on a 3.4 GHz Intelr CoreTM i7 machine with 8 GB of RAM to a 0.01%

optimality gap, running Windowsr 7 Professional 64-bit.

5.3.1 Nominal Case

In this section, we investigate the system performance using the integrated modeling

based MPC framework. The STP model uses a time discretization period of 1 day and the
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Table 5.6: Production parameter values for the integrated planning case study

Parameter Production Scheme

Plant site PS1 PS3 PS2 PS4 PS5

γu : production batch size
M1 200 200 200 − −
M2 − − − 200 200

γl : production batch size
M1 25 25 25 − −
M2 − − − 25 25

σps : production delay (day) − 2 1 1 1 2

βP
ps : process yield − 0.8 0.8 0.8 0.8 0.8

ηps : relative production Coef. − 1 1 1 1 1

Table 5.7: Maximum transportation quantity for the integrated planning case study

λR (units) λF (units) λP (units)

Supplier Distribution site Plant site

Plant site LS1 LS2 D1 D2 M1 M2

M1 150 150 100 100 − 100

M2 150 150 100 100 100 −

Table 5.8: Mass balance coefficients of production schemes for the integrated planning
case study

Material

Production
scheme

A B C D E F G

PS1 1∗ − 1 − − − −
PS2 − 1∗ − 1 − − −
PS3 − − 1∗ − 1 − −
PS4 1∗ − − 1 − 1 −
PS5 − − − − − 1∗ 1

Note: * denotes the main raw material for the corresponding production scheme

MTP model uses a 1 week discretization time. The sampling time of each MPC run is 1 day.

The performance is reported with the values obtained by running the MPC framework for

100 days. All simulation cases are run with weighting parameters, w1 = 15 and w2 = 1
and subjected to the same demand realization.
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Integrated model accuracyIntegrated model accuracy

Here, we check the modeling accuracy of the integrated model against the detailed opera-

tional model by running different simulations with varying combinations of operational

and tactical planning horizons. The DP model is considered as the base case for the

comparison. We aim to analyze the degradation in performance and thereby choosing the

optimal horizon for the integrated model.

System performance comparisonSystem performance comparison

Different simulations are run with an MPC prediction horizon of 49 days with the as-

sumption that operational model exhibits true process dynamics, that is no plant model

mismatch. Each run uses a different combination of small and composite time periods; (1)

14 days + 5 weeks, (2) 21 days + 4 weeks, (3) 28 days + 3 weeks, (4) 35 days + 2 weeks,

(5) 42 days + 1 week and (6) 49 days (base case - operational planning). The performance

value is reported by running each case for 100 simulation days. The x-tickmark 14d+5w

denotes an MPC planning horizon of 7 weeks; 14 days (2 weeks) of operational planning

and 5 weeks of tactical planning. Figure 5.7 shows the MPC controller performance of

optimizing operating and back-order cost using the integrated model. In all simulation

runs, same outcome of demand realization is considered.

The 49d+0w case, which represents a detailed modeling approach, shows the highest

level of customer satisfaction with minimum possible cost. As more and more time periods

are filled with a tactical planning model, the economic performance degrades. This is due

to the approximation of production and transportation capacity in the tactical planning

periods. However, the customer satisfaction level is more or less same in all the cases,

varying over a very narrow range from 91.15% to 91.56%. Another interesting observation

is that the rate of increase in economic performance (i.e. decrease in operating plus

back-order cost) diminishes as the number of operational planing blocks increases. The

system performance improves at a steep rate initially until 5 weeks of operational planning

period (35d+2w) but then it flattens off. Therefore, it can be inferred from the results

that for a prediction horizon of 49 days (7 weeks), the integrated model with 35 days of

operational and 2 weeks tactical planning horizon achieves comparable performance with

the detailed operational model (49d+0w). The total cost is 1.1495 ×105 units and 1.1589

×105 units with the cases 49d+0w and 35d+2w respectively.
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Figure 5.7: Performance comparison between integrated and detailed modeling approach
(without transportation delay)

Computation timeComputation time

Figure (5.8) shows the computational performance of the integrated modeling framework.

The plot indicates that the computation time increases with increasing slope as the time

horizon of STP model increases. The computation time is reported as the average time

required to solve one MPC optimization problem by running each simulation case for a

simulation horizon of 100 days. The number of binary and continuous variables increases

with the number STP blocks and hence the computation load goes up. Due to the high

number of decision variables for the detailed planning case, the computation load is the

highest among all. It is worthwhile to mention that the operational model (49D+0W )

yields superior performance (0.80 % against the case 35d+2w) but at the same time

the computation time is 6 times higher than the case 35d+2w. The analysis suggests if

the computation time of 11.1 sec is acceptable, operating the supply chain with an MPC

prediction horizon of 35 days + 2 weeks is superior to 49 days + 0 week, as comparable

economics performance is achieved at a significantly lower computation burden.

Similar comparison analysis is performed where transportation delay is considered in

the operational model, and results are summarized in Figure 5.9. The transportation

delay parameters are tabulated in Table 5.9. The performance gap quickly diminishes

as more and more number of time periods are filled with the operational model, and the

case 35d+2w generates very similar performance as detailed modeling case 49d+0w. It
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Figure 5.8: Computational performance comparison between integrated and detailed
modeling approach (without transportation delay)

is significant to note that though the tactical model does not account for transportation

delay, the performance degradation for the case 35d+2w against 49d+0w is quite minimal

and we believe that the feedback effect present in the MPC framework helps to offset

the losses. However, the total cost of operating a supply chain for the case 49d+0w with

delay has increased to 4.9849 ×105 from the non-delay case 1.1495 ×105, nearly 4 fold

increase. It is our assessment that the back-order cost constitutes a major portion of the

total cost. Delays in transporting materials across network causes delays in dispatching

the first batch of products to customers and creates stock-out conditions. Moreover,

because of the limited production capacity of the reactors, it takes longer to satisfy the

accumulated customer orders, and therefore the stock-out condition lasts for a longer

horizon. Further, this is compounded by the high weighting of the back-order cost. The

effect of the transportation delay is clearly seen in the level of customer satisfaction; for

the base case 49d+0w, the level drops from 91.56 % to 76.82 %. However, unlike the case

with no transportation delay, the customer satisfaction level increases from 61.55 % to

76.81 % as the operational planning horizon increases from 14 days (14d+5w) to 49 days

(49d+0w).
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Table 5.9: Transportation delays for the integrated planning case study

Plant site Supplier
Distribution

site Plant site

LS1 LS2 D1 D2 M1 M2

transportation delay δR δF δP

M1 3 3 3 4 0 2

M2 2 2 4 2 2 0
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Figure 5.9: Performance comparison between integrated and detailed modeling approach
(with transportation delay)

5.4 PLANNED MAINTENANCE SHUTDOWN

The MPC employs a feedback mechanism to mitigate the effect of disturbances and

uncertainty on the system performance. In this section, we investigate the system

performance under planned maintenance shutdown. We first discuss phenomena involving

shutdown modeling for the integrated planning. The presence of a non-uniform time grid

needs to be considered while formulating the shutdown model. For ease of explanation,

first we narrate how we model plant shutdown dynamics for a single time grid and then

extend it to for a hybrid time grid.
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Shutdown formulationShutdown formulation

The plant shutdown restricts the availability of an individual processing unit. In the STP

model, we represent this conditions by incorporating the following constraint (Chong,

2012) that makes the production unit unavailable by setting the value of a variable UTps,r,ts
to zero. UTps,r,ts as defined in Section 5.2.1, takes the value 1 if production task is assigned

to unit r at time ts.

UTps,r,ts ≤ 1− αshutr,ts ∀ ps, r, ts (5.67)

where αshutr,ts ∈ {0, 1} is an indicator variable that shows the status of processing unit r at

time period ts. It takes the value 1 when the unit is shut down and 0 for normal operation.

For instance, if we wish to induce a manual plant shutdown, we can explicitly impose the

following constraint by setting the value of αshutr,t as follows,

αshutr,t =


1 t = tstart, . . . , tend, r ∈ R

0 elsewhere

(5.68)

where tstart is shutdown start time and tend is shutdown end time. While αshutr,ts is a binary

variable, the explicit fixing of variables results in no net increment of binary variables in

the optimization problem and hence the computational complexity does not increase.

The above formulation is applicable if the shutdown period covers only STP time horizon,

as production unit availability UTps,r,ts is not defined for the MTP period. If a plant

shutdown event covers both STP and MTP time periods, additional constraints need to

be imposed to restrict the production activities in the MTP period. Shutdown activities

may not cover the whole MTP period due to the relatively large time bucket of the MTP

model which therefore makes the extension a non-trivial exercise. To model the plant

shutdown phenomena for the MTP horizon, we introduce a production capacity factor νr,tm

for unit r at time period tm into the MTP model. It is defined as the percentage of MTP

period available for production that is a non-shutdown time. By definition, the available

production time is the duration of a MTP period (H ∆Tm) less the shutdown time. We

further assume that the shutdown period is in multiple of the STP discretization time.

To facilitate the calculation of the plant shutdown time for a MTP period, we extend

the definition of the shutdown variable αshutr,t to cover the whole planning horizon rather

than restricting it to the STP time horizon. The shutdown indicator variable uses a STP

discretization time index over the whole planning horizon, i.e. the time index of αshutr,t
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takes value from t = 1 to t = NS + (NP −NS)H, similar to considering a detailed planning

time grid over the entire horizon. The new definition of the shutdown indicator variables

is therefore given by,

αshutr,t ∈ {0, 1} ∀ r, t ∈ 1, . . . , NS + (NP −NS)H

Naturally, it increases the number of binary variables; however it makes the shutdown

formulation easier to extend from a single time grid to the hybrid time grid. The shutdown

time (γtm) for a MTP period tm is now calculated simply from shutdown variable αshutr,t as

follows,

γtm =
NS+tmH∑

t=NS+(tm−1)H+1
αshutr,t ∀ r, tm (5.69)

Having defined the shutdown period, the production capacity factor is given as follows,

νr,tm = 1− γtm
H

= 1−

NS+tmH∑
t=NS+(tm−1)H+1

αshutr,t

H
∀ r, t (5.70)

The production capacity factor scales down the production capacity during shutdown.

Depending on the fraction of time period tm covered by shutdown activities, the summation

term in the denominator takes the value between 0 and H, which sets the value of the

production capacity factor between 0 and 1.

Adjustment of the production capacity for a shut down period requires modification of the

constraints (5.26) and (5.29) as follows,

∑
ps∈PSr,m

ηps P
M
j,ps,r,m,tm ≤ (H − TCr,tm/∆Ts) νr,tm Γur ∀ j ∈ JMR

ps , r,m, tm (5.71)

PMj,ps,r,m,tm ≤ H γups,m νr,tm Y Pps,r,tm ∀ j ∈ JMR
ps , ps ∈ PSr,m, r,m, tm (5.72)

In the case of complete shutdown during time period tm, the right side of constraints

(5.71) and (5.72) becomes zero (as νr,tm = 0), while they reduce to Equations (5.26)

and (5.29) respectively when no shutdown activities are scheduled. In simulation, αshutr,t

and νr,tm are specified as parameters and hence the problem remains a mixed-integer

linear programming problem (MILP).

As plant shut-down restricts the plant availability for production, the time balance equation

147



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

(5.48) needs to change to account for shutdown activities.

∑
ps∈PSr

NBps,r,tmσps + TCr,tm +
∑

ps∈PSr

∑
ps′∈PSr

XCps,ps′,r,tm τps,ps′

+ γtm ∆Ts ≤ H ∆Ts ∀r, tm (5.73)

The constraint (5.73) states that the summation of changeover time, shutdown time

(γtm ∆Ts) and production time within each time period should be less than the length of

each MTP time period H ∆Ts. All other model equations are kept the same as presented

in Section 5.2.

To simulate a manually triggered shutdown scenario, the shutdown indicator variable is

set to one for the shutdown period and νr,tm is calculated before running each instance

of an MPC optimization. At the end of a large-bucket time period, the MPC horizon is

advanced by a MTP period; αshutr,t and νr,tm are re-calculated to match the actual shutdown

period with a new MPC prediction horizon, and control inputs are updated.

For the simulation case study, we manually introduce shutdowns in units 1 and 3 from

time period 53 to 66, while unit 2 and 4 undergo shutdown from time period 67 to 80

(time markers and performance results are depicted in Figure 5.10). The MPC controller

sees the future plant shutdown condition and changes production planning in order to

minimize the impact of the plant shutdown and maximize the customer service level. The

integrated planning activities are scheduled with a prediction horizon of length varying

from 28d+1w (28+1×7 = 35 days) to 28d+6w (28+6×7 = 70 days). In all simulation runs,

same outcome of demand realization is considered. The longer the prediction horizon,

the MPC controller starts acting early and hence it gets more time to reschedule the

production activities. The customer service level increase steadily with the prediction

horizon and the improvement tapers off after a sufficiently long prediction horizon is

employed in the MPC controller. In the current study, it is achieved at 28d+5w (28+5×7=

63 days). Similarly, the operating cost decreases with the prediction horizon.

The schedule of maintenance activities naturally decreases the availability of production

resources, and hence the customer satisfaction level drops from 91.48% (no maintenance

case with 28d+3w) to 57.84 % (maintenance case with 28d+3w).
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Figure 5.10: (a) Operational status of reactors 1−4; (b) Performance results for integrated
planning with STP period of 28 days and MTP period varies from 1 week to 6
week

5.5 MAINTENANCE SHUTDOWN PERIOD OPTIMIZATION

In this section, we consider planned maintenance activities in which a time frame is speci-

fied over which it can be completed. In this scenario, the maintenance activities should

be scheduled at a time point where it has minimal impact on the system performance.

In other words, the start and finish time of plant shutdown period should be optimized

without jeopardizing plant safety.

Optimal shutdown formulationOptimal shutdown formulation

We formulate an optimal shutdown model to decide the best time to initiate the plant

shutdown within a given time frame [tstartp − tendp ], where tstartp is the earliest time by which

shutdown event can be initiated and tendp is the latest time by which shutdown process

should be completed.

In the earlier section, the shutdown period was given a priori and hence αshutr,t and νr,tm

are treated as parameters; however in the case of maintenance period optimization, they

are unknown and need to be determined within the optimization framework. Being a

discrete decision variable, αshutr,t increases the total count of binary variables and hence

computational burden, however it makes the extension of the single time scale shutdown

formulation for the hybrid time grid straightforward. Once a unit experiences shutdown,

it remains in shutdown mode for predefined time. In order to mark the shutdown start and

end time, we employ following constraint formulation from Kelly and Zyngier (2007) to

calculate the time-markers. The advantage of these constraints is that it does not require
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the definition of any new binary variables and thus does not adversely affect the solution

complexity.

αshutr,t − αshutr,t−1 = DNt − UPt ∀ t ∈ tstartp , . . . , tendp (5.74)

αshutr,t + αshutr,t−1 = DNt + UPt + 2QKt ∀ t ∈ tstartp , . . . , tendp (5.75)

DNt + UPt +QKt ≤ 1 ∀ t ∈ tstartp , . . . , tendp (5.76)

DNt; UPt; QKt ∈ [0, 1]

DNt and UPt shows the start (DNt = 1) and end (UPt = 1) time of a shutdown period

respectively. QKt takes the value 1 when plant is in shutdown mode except at the start

and end time instant. The formulation defined by constraints (5.74) − (5.76) enforce the

integrality of the the continuous variables DNt, UPt, and QKt.

When a unit undergoes maintenance, the plant stays offline for a specified contiguous

duration. The following formulation is adapted from Chong (2012) to ensure that the

shutdown event lasts for a specified duration TW .

SPt =
t+TW−1∑

t

αshutr,i ∀ t = tstartp , . . . , tendp − TW (5.77)

SPt ≥ TW DNt ∀ t = tstartp , . . . , tendp − TW (5.78)

tend
p∑

t=tstart
p

DNt = 1 (5.79)

tend
p∑

t=tstart
p

αshutr,t ≤ TW (5.80)

DNt = 0 ∀ t = tendp − TW + 1, . . . , tendp (5.81)

αshutr,t = 0 ∀ t < tstartp (5.82)

αshutr,t = 0 ∀ t > tendp (5.83)

Here TW is the length of shutdown period; SPt is the TW step ahead summation of shut-

down variable αshutr,t . Note that TW is assumed to be an integral of the STP discretization

time.

As some of the parameters of the shutdown formulation become variables, a few con-

straints need to be altered. Considering νr,tm as a decision variable in shutdown period

optimization problem introduces bilinearity. The term (H − TCr,tm/∆Ts) νr,tm in Equa-

tion (5.71) and νr,tm Y Pps,r,tm in Equation (5.72) become bi-linear, which transforms the

150



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

plant shutdown formulation to a mixed-integer non-linear programming (MINLP) formu-

lation. MINLP problems are difficult to solve, because of the combinatorial nature and

non-convexity. In an effort to keep the problem complexity minimal, we reformulate bilin-

ear terms into linear forms so that optimality can be more readily guaranteed. Moreover,

it also makes it easy to compare the system performance with different tuning parame-

ters. If the bilinear term contains one continuous variable and one binary variable, exact

linearization can be applied given the lower and upper bound of the continuous variable

(FICO Xpress Optimization Suite, 2009). The exact linear re-formulation of Equation (5.72)

can be given by the following set of equations.

AYps,r,tm ≤ Y Pps,r,tm ∀ ps ∈ PSr, r, tm (5.84a)

0 ≤ νr,tm −AYps,r,tm ≤ 1− Y Pps,r,tm ∀ ps ∈ PSr, r, tm (5.84b)

PMj,ps,r,m,tm ≤ H γups,m AYps,r,tm ∀ j ∈ JMR
ps , ps ∈ PSr,m, r,m, tm (5.84c)

Here, AYps,r,tm = νr,tm Y Pps,r,tm is an auxiliary variable.

In Equation (5.71), the term representing available production time (H−TCr,tm/∆Ts) νr,tm
is bi-linear. Instead of multiplying (H − TCr,tm/∆Ts) by νr,tm , we insert the definition of

shutdown period and subtract it from H−TCr,tm/∆Ts to calculate the available production

time, which converts the Equation (5.71) to a linear form.

∑
ps∈PSr,m

ηps P
M
j,ps,r,m,tm ≤ (H − TCr,tm/∆Ts − γtm) Γur ∀ j ∈ JMR

ps , r,m, tm (5.85)

The model can be extended to optimize the shutdown time for each processing unit

individually; for the simulation case study, we assume that all units experience shutdown

at the same time. All other model equations are kept same as presented in Section 5.2. For

the maintenance period optimization study, we run multiple open loop MPC simulations

with two prediction horizon lengths, 21d+11w and 35d+9w, to schedule maintenance

activities. The maintenance activities of 7 days has to be scheduled within specified time

frame, which has a start time of day 20 to a end time varying from day 30 to day 85. A κ

value of 0.5 is employed in the analysis. The maintenance period optimization results are

summarized in Table 5.10.

The results show the controller objective function value for open loop simulations that

is, running MPC controller only once at time t = 1 for the same outcome of demand

realization. The case with maintenance time frame of day 20− 35 yields the highest cost

(see Table 5.10). The cost gradually decreases with increasing maintenance time window.

For the given case study data, the maintenance gets pushed to the end as we extend
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Table 5.10: Maintenance period optimization results with a 7 day maintenance period and
different MPC prediction horizons and maintenance time windows

Case Maintenance Window

obj fn value (monetary units)

MPC Prediction horizon

from − to (day) 21d+11w
Maintenance

days 35d+9w
Maintenance

days

1 20 − 30 438924 (0%) 24-30 408897 (0%) 24-30

2 20 − 40 428710 (2.3%) 33-39 399847 (2.2%) 34-40

3 20 − 50 416316 (5.2%) 43-49 373144 (8.7%) 43-49

4 20 − 60 403579 (8.1%) 54-60 359226 (12.1%) 54-60

5 20 − 70 395403 (9.9%) 64-70 351050 (14.1%) 63-69

6 20 − 85 394654 (10.1%) 67-73 347762 (15.6%) 75-81

the maintenance time window. The number in bracket shows the % improvement from

the base case−1. For the prediction horizon 21d+11w, case−6 (maintenance time frame

from 20 to 85) shows a 10% improvement compared to case−1 (20−30). As discussed

earlier, due to the mismatch in the discretization periods, the operating and back-order

cost for the operational and tactical model yield different numbers and therefore the

comparison between different combination of prediction horizon is not performed for

open-loop simulation runs.

5.6 CONCLUSIONS

In this work, we presented an integrated modeling framework to combine operational and

tactical planning activities into a single mathematical model and used model predictive

control as a decision making tool. Through simulation, it was shown that the quality of

the integrated modeling framework performance depends on how many detailed planning

periods are used and it improves as more and more time periods are modeled with

detailed scheduling activities. Further, a good quality solution can be achieved with

low computation cost. We applied the proposed framework to a supply chain system

having multiple suppliers, multi-stage production facilities, and multiple warehouses.

Moreover, we studied the framework for maintenance shutdown cases and extended the

formulation to schedule the shutdown event to optimize the cost and improve the customer

satisfaction.
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NOMENCLATURE

Indicies/SetsIndicies/Sets

d ∈ D distribution site

j ∈ J material (chemical)

ls ∈ LS raw material supplier

m ∈M plant site

ps ∈ PS production scheme

r ∈ R production unit

ts ∈ T STP time period

tm ∈ T MTP time period

JMR
ps set of main raw-materials for production scheme ps

JP set of final products

JPm set of products for plant site m

JR set of raw materials

JRm set of raw materials for plant site m

PSr set of production schemes can be run at unit r

PSr,m set of production schemes can be run at unit r at site m

Rm set of processing units installed at site m

Binary VariablesBinary Variables

Ups,r,ts 1 if the processing unit r begins a production scheme ps at time period

ts; and 0 otherwise

XBps,ps′,r,tm 1 if the link between production schemes ps and ps′ is to be broken;

and 0 otherwise

XCps,ps′,r,tm changeover variable between scheme ps and ps′ across adjacent time

periods tm and tm + 1

XPps,ps′,r,tm 1 if production scheme ps precedes scheme ps in unit r at time period

tm; and 0 otherwise

Y Fps,r,tm 1 if the production scheme ps is running as first scheme at unit r at

time period tm; and 0 otherwise

153



Ph.D. Thesis - S Patel Chemical Engineering | McMaster University

Y Lps,r,tm 1 if the production scheme ps is running as last scheme at unit r at

time period tm; and 0 otherwise

Y Pps,r,tm 1 if the production scheme ps at unit r at time period tm ; and 0

otherwise

Integer VariableInteger Variable

NBps,r,tm number of batches of production scheme ps in unit r during time

period tm

Continuous VariablesContinuous Variables

tendp end time of shutdown event

tstartp start time of shutdown event

AYps,r,tm auxiliary variable represents multiplication of production factor νr,tm
and Y Pps,r,tm

B
(·)
j,d,t back-order quantity of final product j in distribution site d at time

period t

Cx cost coefficients for inventory held at the plant

Cp cost coefficients for inventory held at the distribution site

Cu cost coefficients for decision variables (raw material procurement,

production and transportation amount)

CLr,ts 1 if cleaning task begins at process unit r at time period ts; and 0

otherwise

DNt 1 if shutdown event starts at time period t; and 0 otherwise

FD
(·)
j,m,d,t quantity of final product j shipped from plant site m to distribution

site d during time period t

FP
(·)
j,m,m′,t quantity of material j shipped from plant site m to site m′ during time

period t

FS
(·)
j,d,t quantity of final product j shipped from distribution site d to fulfil

customer demand and back orders during time period t

IP
(·)
j,m,t inventory of material j stored at plant site m during time period t

IS
(·)
j,d,t inventory of product j held at distribution site d at time period t

IS
∗(·)
j,d,t auxiliary variable for inventory level of product j held at distribution

site d at time period t
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O
(·)
j,ls,m,t purchase quantity of raw material j to supplier ls from plant site m at

time period t

P
(·)
j,ps,r,m,t quantity of material j begins to undergo production in unit r of plant

site m at time period t (batch size)

QKt 1 if plant is in shutdown mode except at start and end time; 0 otherwise

SPt TW step ahead summation of shutdown indicator variable αshutr,t

TCr,tm total changeover time of unit r in time period tm

UTps,r,ts state of processing unit r for production scheme ps at time period ts

UPt 1 if shutdown event ends at time period t; 0 otherwise

αshutr,t shutdown indicator variable of processing unit r at time period t

γtm duration of shutdown event in multiple of STP concretization period at

time period tm

J ∗ overall objective function

J1 measure of customer satisfaction level

J2 measure of economic performance

ParametersParameters

tend end time of planned maintenance shutdown event

tstart start time of planned maintenance shutdown

v maximum value of transportation and production delay parameters

DFj,d,t customer demand of final product j at distribution site d at time period

t

H number of operational planning periods that can be fit within one

tactical planning period

NS number of STP time periods

NP length of prediction horizon for integrated planning model

∆Tm discretization time of MTP model

∆Ts discretization time of STP model

TW length of shutdown event

σps processing time of production scheme ps

βPps yield of production scheme ps

γur,ps maximum batch size for production scheme ps at processing unit r
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γlr,ps minimum batch size for production scheme ps at processing unit r

δFm,d shipment delay between plant site m and distribution site d

δPm,m′ shipment delay between plant site m and m′

δRls,m delivery delay of procured material between supplier ls and plant site

m

ηps relative production capacity coefficient for production scheme ps

κ ratio between weighting parameters (ω1/ω2)

λFm,d maximum transportation capacity from plant site m to distribution site

d during a time period

λPm,m′ maximum transportation capacity from plant site m to m′ during a

time period

λRls,m maximum quantity of raw material which can be ordered from supplier

j during a time period

µj,ps mass balance coefficient of material j in production scheme ps

νr,tm production capacity factor at time period tm

ρs probability of the occurrence of scenario s

τps,ps′ production change-over time from scheme ps to ps′

ω1 weighting parameter assigned to customer service (J1)

ω2 weighting parameter assigned to operating cost (J2)

Γur aggregated production capacity of production unit r

ΩR
m maximum storage capacity of raw material in plant site m

ΩS
j,d maximum storage capacity of final product j in distribution site d
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CHAPTER 6
Conclusions and Recommendations

In this chapter, we summarize the main contributions of the research work and discuss

recommendations for the future work.

6.1 CONCLUSIONS

A supply chain system comprises a number of activities, and for a better and efficient

management, it is generally decomposed in a hierarchical way. Within a hierarchical

decision-making framework, the long-term strategic layer comes at the top where the

design of supply chain network is finalized. After deciding the network structure, medium

term planning activities are scheduled based on the demand forecast. At the bottom, the

actual plant level operational decisions, such as production amount and sequencing are

decided. In this research, we first developed a strategic design approach. Then in the

second phase, we worked on a bottom operational decision level of a hierarchical control

framework. In the last phase of our research, we devised an approach to combine midterm

(tactical) and short-time (operational) planning. In the research work, we used various

techniques such as mixed-integer model formulation, stochastic modeling, variants of the

model predictive control (MPC) framework, and hybrid time scale modeling.

In the initial phase of research, discussed in Chapter 3, we considered the design of supply

chains in the presence of demand uncertainty, with a particular focus on capturing the

effects of time-limited transportation contracts in which specified minimum durations

of transportation linkages must be adhered to. The network design plays a vital role in
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defining the optimum operation of a supply chain by dictating the optimum production

and transportation capacity of the network. An optimization based design formulation

was proposed, with flexibility in allowable node connections and direction of material

flow. In the optimization formulation, the network superstructure was represented by a

mathematical model with the use of two sets of constraints: network structure constraints,

and operational planning constraints. All node connections were represented using binary

variable definitions, which provided the flexibility to include the node connection by

setting the value to one for the corresponding linkage. The time limited transportation

contracts were modeled without introducing any new binary variables, which helped to

minimize the computation burden in solving the MILP optimization problem. Demand

uncertainty was handled using a two-stage stochastic programming approach in which

the uncertain parameter space was discretized, with the design problem formulated as

an MILP. The advantage of the proposed flexible and time-varying network approach

was illustrated via an industrially based case study and the economic impact of taking

time-limited contractual constraints into account in the supply chain design, where these

exist, was demonstrated.

Next, in Chapter 4, we proposed an operational decision-making tool for a hybrid process

supply chain using a model predictive control (MPC) technique. Model predictive control is

an efficient control mechanism used in systems engineering to control chemical processes.

We used it to control a process supply chain in the presence of demand uncertainty. In this

work, we modeled the supply chain operational processes using a hybrid process model

where decisions governed by logical conditions/rulesets were accommodated using binary

variables. The uncertainty in demand and process yield were captured using a scenario-

based approach and handled using a robust MPC strategy formed by combining stochastic

programming with nominal MPC. Three variants of an uncertainty propagation mechanism

were presented, an open-loop approach, an approximate closed-loop strategy, and a

multi-stage closed-loop strategy. Multiple supply chain performance metrics, customer

service, and economics, were included within an integrated optimization framework. The

customer service (satisfaction level) and operating cost (economics) play against each

other; a Pareto optimality curve was generated to guide the selection of the best optimum

operating condition. The performance of the robust MPC framework was analyzed through

its application to a multi-product, multi-echelon process supply chain case study. The

proposed approach was shown to provide a substantial reduction in the occurrence of

back orders when compared to a nominal MPC implementation.

Finally, we proposed a medium-term planning framework integrated with an operational

planning model. Due to the use of different time scale models at each layer, challenges of
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coordination and infeasibility arise, which ultimately affects the supply chain efficiency. In

this research, tactical and operational planning activities of a multiproduct, multi-stage,

multi-echelon production and distribution network were described using an integrated

hybrid time modeling approach in which first few planning periods were formulated using

an operational planning model and the remaining time periods were modeled with a

tactical planning model. The key features of this strategy were, (1) representation of two

different time-scale planning activities in a single integrated model; (2) a general opti-

mization framework for an integrated planning approach that simultaneously considered

supply chain nodes such as suppliers, production network, transportation and storage

network, and customers; and (3) a model predictive control (MPC) based rolling horizon

formulation to update the optimal decisions to mitigate the effects of system disturbances.

A comparison analysis was performed to check the accuracy of the integrated model and

demonstrated that the proposed approach yields comparable performance with lower com-

putational resources. Further, we extended the modeling framework to include planned

maintenance and used it to optimize system economics in the case of plant maintenance.

The formulation was again expanded to optimally decide the start time of the planned

maintenance over a given time-frame.

6.2 RECOMMENDATIONS FOR FURTHER WORK

In this section, we identified several broad topics of future work.

• Decomposition strategy to speed up the computationDecomposition strategy to speed up the computation

For the supply chain design approach, including demand uncertainty is essential to

obtain a robust design, however, the time to solve the resulting two-stage stochastic

problem is very high. As the two-stage stochastic problem has a distinct mathe-

matical structure, a decomposition strategy such as Bender’s decomposition can be

employed to decompose and speed up the computation. After separating a master

problem containing only first stage decisions from the subproblems having only

second-stage variables, it can be solved separately in an iterative fashion till con-

vergence. The second-stage variables across scenarios are independent and hence

parallel computation can be employed to reduce the computation time tremendously.

• Contract dependent pricingContract dependent pricing

We included time-limited transportation contracts in the design formulation. An

extension to this work would be incorporation of an optional transportation route
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with no contract limitation but with a high shipping cost. However, a restriction

can be imposed to connect two nodes with only one transportation route at any

time period and implement switching fees from a time-limited contract option to

a no-contract option to reflect the cost of managing the material shipment routes.

The optimizer will then decide the optimal way to transport the materials across the

network.

• Time-limited transportation links in long-term planningTime-limited transportation links in long-term planning

The supply chain design problem developed in Chapter 3, makes design decisions

along with long-term planning decisions. Once the network structure is finalized, the

model can be used to make and update strategic decisions. In the strategic planning

problem, the decisions pertaining to design will be fixed, and the remaining decisions

can be classified into the first stage and second stage decisions. The first stage

decisions will correspond to the first time period decisions and the rest are second

stage decisions. Thus, the problem decides one set of the transportation linkages for

the first time period, and they would be same for all scenarios as those decisions

have to be implemented. If the optimizer decides to set up the link in the first time

period, then it will remain in service for minimum lock-in period irrespective of

scenario. However, the linkages for second time period onwards can be selected

based on the demand scenarios and can be different across scenarios. Similarly,

production and transportation amounts will also be different for a different scenario.

As time progresses, the problem will be solved to update these decisions.

• Scenario reduction using a particle filtering approachScenario reduction using a particle filtering approach

A large number of demand scenarios is required to characterize demand uncertainty.

However, the problem size increases rapidly with the increase in scenario number,

which exponentially increases computation load. Monte-Carlo sampling has been

shown to be an effective method for reducing the number of scenarios required to

characterize the demand uncertainty (Mastragostino, 2012). However, that also

results in a relatively high number of discrete realizations when the number of

uncertain parameters increases. A particle filter is a sequential Monte Carlo method

based on point mass (or "particle") representations of probability densities. It is a

generic framework of the sequential importance sampling (SIS) algorithm and works

on the principle of survival of the fittest. Because of the presence of this dynamic

sampling, the estimate of the true probability density function approaches the opti-

mal Bayesian estimate. Future work could use a particle filtering technique to reduce

the number of scenarios within multi-stage stochastic programming (Kostanjcar,

Jeren, and Cerovec, 2009).
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• Including uncertainty in the integrated planning frameworkIncluding uncertainty in the integrated planning framework

Accurate prediction of demand is not possible. Moreover, processing yield changes

due to different operating conditions, and thus there is uncertainty regarding pro-

duction capacity too. Future plan is to include demand and system uncertainties in

the integrated planning framework. Naturally, including uncertainty will increase

the computation load and therefore alternative strategies to solve a stochastic MPC

problem should be investigated.

• Inclusion of continuous-time model within integrated planning frameworkInclusion of continuous-time model within integrated planning framework

In the proposed integrated planning approach, it is assumed that the cleaning

time is multiple of the discretization time of the operational model. In a scenario

where the cleaning time is less than the sampling time, it results in underestimation

of available production time. One alternative is to use separate time index for

production sequencing or use of continuous time modeling approach. Further, there

are other instances where continuous-time representation is more convenient, such

as having processing time of production schemes that varies over wide time range.

Questions regarding how to fuse these different time representation models into one

have to be answered.
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