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Abstract

This thesis investigates the long-standing Abraham-Minkowski controversy
concerning the momentum of light inside a dielectric medium. A revealing
connection to the optical He-McKellar-Wilkens (HMW) phase is found upon
studying the Langrangian describing the classical laser-atom interaction. This
connection is further highlighted by moving into a semi-classical model in
which the phase arises as a result of the transformation between the Abraham
and Minkowski Hamiltonians. The HMW along with the Aharonov-Casher
phases are found to be both dynamic and geometric depending on the repre-
sentation. It is shown that an optical version of the HMW phase is acquired
by a dipole moving in a laser beam, and I propose several interferometric
schemes in order to observe the optical HMW e�ect. Finally, by moving into
a cavity system, it is possible to account for the back action of the atoms on
the light which changes the electromagnetic mode structure. This increase in
model sophistication grants an alternative vantage from which to interpret the
Abraham-Minkowski problem.
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Preface

This Thesis began as an investigation into the form of the electromagnetic
momentum inside a dielectric. Two competing expressions for the form of the
momentum were proposed by Abraham and Minkowski over 100 years ago,
and yet still the debate continues. I should mention at the outset of my thesis
that it is no longer a question of which representation is correct - they are
both correct given the right context. The question I wanted to answer was -
in what situation is the Minkowski or the Abraham expression appropriate?
This thesis is an attempt to answer this question, and to shed new light on a
centuries old problem. While researching the A-M problem, it became obvious
that there was a deep connection between the two forms of the momentum
and the geometric phase known as the He-McKellar-Wilkens phase. Although
it is likely that other researchers have understood this connection, in all our
searching, we did not �nd this connection mentioned in the literature. It began
to dawn on us that with this deep connection, we could e�ectively study the A-
B momentum by looking into the HMW phase. Our research direction began
to shift towards fully understanding the HMW phase and how it would be
possible to observe it in an optical system. Chapter 3 of this thesis highlights
the progress we have made in this enterprise. As a late addition to this thesis, I
decided to include earlier work I had done on the Abraham-Minkowski problem
in cavity systems. The work was incomplete, however, upon returning to the
problem I was able to �ll in some of the major holes that had plagued the
project - largely due to having a fuller understanding of the problem. I hope
that the work presented in this thesis will be of some small use to people
interested in studying electromagnetic momentum in a medium. Most of all,
I hope that the experimental proposals inspire experimentalists to undertake
this calling!
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�My advice is, don't touch it with a
ten foot pole! The literature is indeed
conflicting; also opaque, ambiguous, un-
clear, and---much of it---incompetent.�

-- David Grif�ths
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Chapter 1
Introduction

1.1 The Abraham-Minkowski momentum

There has been a recent resurgence of interest in understanding the electro-

magnetic momentum density in a dielectric medium [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Two di�erent forms of the mo-

mentum density were proposed by Minkowski and Abraham over 100 years ago

[23, 24]. Minkowski argued that the momentum density of an electromagnetic

�eld in matter be of the form

SMin = D×B, (1.1)

while Abraham held

SAbr =
1

c2
E×H. (1.2)

The Abraham-Minkowski dilemma can be recast in terms of the photon mo-

mentum traveling through a dielectric medium. The Abraham photon mo-

mentum is pAbr ≈ ~ωa/cn while the Minkowski photon momentum is pMin ≈

1
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~ωan/c, where n is refractive index of the material. It is hard to believe that

such a glaring di�erence has not been sorted out yet, but after 100 years, the

debate still continues. Part of the di�culty in answering this lies in the fact

that experiments have been preformed which claim to support both forms.

Consider the following two gedanken experiments. In the �rst experiment

suggested by Balazs [25] and further clari�ed by Barnett and Loudon [2], a

photon travels through a block of transparent material 1.1.

n

n

A)

B)

ℏω

v
Figure 1.1: A thought experiment which supports the Abraham representa-
tion of the photon momentum. In (A) a photon travels towards a stationary
dielectric block of refractive index n. In (B) we assume the photon is com-
pletely transmitted with no re�ection. The velocity of the photon is reduced
as it travels through the dielectric material to c/n. By invoking a conservation
of mass-energy argument, it's easy to show that the momentum of the photon
inside the material should be the Abraham momentum ~ω/cn.

The total energy of the system before the photon enters the medium is

Etotal = ~ω+Mc2, whereM is the mass of the block. While traveling through

the block, the photon speed slows down to c/n and therefore would take a time

t = Ln/c to traverse it, where L is the length of the block. Upon exiting, the

2



CHAPTER 1. INTRODUCTION

photon will have traveled a shorter distance than it would have had it traveled

in free space. This di�erence in distance is L(n−1). By the principle of uniform

motion of the center of mass-energy [26], the block must be displaced by some

distance ∆z in the direction of propagation of the photon. The uniform motion

of the center of mass-energy requires that

L(n− 1)~ω = ∆zMc2. (1.3)

If we then assume that the momentum acquired by the block came from the

momentum lost by the photon, we obtain

pblock = M
∆z

Ln/c
. (1.4)

Solving for ∆z in Eq. (1.3) and plugging this into Eq. (1.4) yields

pblock =

(
1− 1

n

)
~ω
c
. (1.5)

By conservation of momentum, we know the total momentum is given simply

by the initial momentum of the system

ptotal =
~ω
c
. (1.6)

We then set this equal to the �nal total momentum pblock + pphoton, and solve

for the �nal photon momentum inside the block

pphoton =
~ω
cn

= pAbr. (1.7)

3
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This leaves us with the Abraham momentum.

For the second gedanken experiment we again follow the work of [2]. Here

we consider an atom of mass m with a transition frequency of ωa traveling

through a medium with an index of refraction n, at velocity v. Let us also

assume that the atom is moving away from a light source emitting at an

angular frequency ω.

n
v

A) B)

Figure 1.2: A thought experiment which supports the Minkowski representa-
tion of the photon momentum. In (A) a photon of optical frequency ω interacts
with an atom of mass m and transition frequency ωa, which is traveling with a
velocity v through a dielectric of refractive index n. In (B) the atom can only
absorb the photons if the transition frequency matches the laser frequency in
the atom's frame of reference. Since the atom is moving with velocity v, the
atom sees the laser frequency shifted to ω

′
= ω(1− nv/c). Through conserva-

tion of energy and momentum, one �nds that the photon momentum must be
the Minkowski momentum ~ωn/c.

The atom can absorb a photon if the Doppler shifted frequency matches

the transition frequency of the atom. In this case we require

ωa = ω(1− nv

c
). (1.8)

By conservation of energy and momentum, in the laboratory frame, we

4
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then have

1

2
mv2

final + ~ωa =
1

2
mv2

initial + ~ω (1.9)

mvfinal = mvinitial + pphoton (1.10)

Combining these two equations with Eq. (1.8) and solving for the photon

momentum yields pphoton = ~ωn/c, which is none other than the Minkowski

momentum! So what exactly is going on here? How can both answers be

correct?

This thesis is an attempt to explain this paradox and to better understand

the work done by others on the subject.

The importance of unraveling this mystery goes beyond gedanken exper-

iments. Knowledge of the momentum of light in a medium is of importance

in interferometry using electromagnetic waves to manipulate atoms. Experi-

ments involving high precision measurements of the photon recoil momentum

are used, for example, to determine the �ne structure constant [27, 28, 29].

The �rst experiment designed to measure the momentum of light in a re-

fracting medium was preformed by Jones and Richards at the University of

Aberdeen in 1954 [30]. By shining light from a tungsten lamp o� of a mirrors

submerged in various liquids, they hoped to measure the momentum of light

in a medium. These mirrors were suspended by wires and tethered at each

end by gold alloy torsion �bers. By subjecting the mirrors to asymmetric in-

tensities of light, they were able to measure the torque on the mirrors, and

hence the momentum transferred by the light. By switching between di�erent

liquids, they were able to conclude that the momentum transferred scaled with

5
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the refractive indices of the di�erent media in accordance to the Minkowski

representation. The next signi�cant experiment was conducted by Ashkin and

Dziedzic in 1973 [31]. The experiment consisted of a glass cell containing air

and water. By shining a laser through the water/air interface, the radiation

pressure would cause the surface to either bulge in or out depending on the

form of the photon momentum. If the Minkowski momentum was correct, then

the surface would be expected to bulge in, while the opposite would be seen

if the Abraham representation was correct. By studying the emerging laser

beam pro�le, they were able to determine that surface of the water bulged

outward as predicted by the Minkowski momentum. In 1977, an experiment

by Walker and Walker [32] built o� of earlier work by James [33] in order to

prove the existence of the Abraham force (see Chapter 2) which is responsible

for the di�erence between the two momenta. Using a disc of barium titante

suspended on a torsion �ber, they were able to measure the torque due to time

varying electric and magnetic �elds. In doing so, they were able to con�rm

the existence of the Abraham force. Also in 1977, Jones and Leslie [34] re-

peated the experiment �rst performed by Jones and Richards with improved

technology. They implemented a laser and superior mirrors to obtain a �nal

result with a standard deviation of only 0.05%. They were able to con�rm the

Minkowski momentum, however, they later concluded that both forms can be

interpreted as being correct if one assumed the Abraham momentum included

a mechanical momentum component from the material itself. In 2005, David

Pritchard's group at MIT set out to determine whether atoms in a rubidium

BEC, subjected to an optical pulse, recoiled in accordance to Minkowski's

or Abraham's prediction [35]. Figure (1.3) shows the experiment in which a

standing wave pulse is applied to a BEC cloud of rubidium atoms. The mo-

6
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mentum kick out-couples a small fraction of atoms which evolve at a di�erent

rate from the other atoms. After a short delay, a second pulse recombines the

atoms and their interference is observed. This two-pulse Ramsey interferome-

ter revealed a momentum kick in accordance with the Minkowski form of the

momentum of light pMin = ~ωn/c. On the other hand, Peng and Leonhardt's

Figure 1.3: An experiment performed by the Pritchard and Ketterle group at
MIT in which they attempt to measure the momentum of light in a medium. A
standing wave pulse is applied to a rubidium BEC which outcouples a portion
of the atoms from the zero momentum state into the 2~k momentum state.
These atoms are allowed to evolve in this seperate state for 600 ms before
being recombined with the original zero momentum batch. The interference
pattern is then imaged to determine the momentum kick the atoms received.
They conclude that the momentum kick is modi�ed by the presence of the
BEC itself, and show that the atoms receive an impulse of 2~kn - consistent
with Minkowski's prediction. However, as we show in this thesis, this is also
consistant with Abraham's prediction.

7
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experiment in 2015 claims to have demonstarted that the momentum of light

traveling through a liquid is of the Abraham form pAbr = ~ω/nc [36]. Figure

(1.4) shows a graphical representation of the experiment in which a laser is

shone onto the surface of water. By observing an inward bulge on the surface,

they were able to conclude through momentum conservation arguments that

the light momentum must be of the Abraham form. Similarly, W. She, J.

Yu and R. Feng have claimed to observe the Abraham momentum in their

experiment. The setup consisted of a thin silica glass nano-�lament which was

subjected to a laser pulse. The pulse traveled down the �lament and exited

out of the free end causing the �lament to recoil. This pushing force (rather

than a pulling force) on the �lament is indicative of the Abraham momentum,

and hence they concluded that the momentum of the light inside the �lament

must be of the Abraham form. It should be noted that this experiment is not

without controversy [37]

In his famous review on relativity [38], Pauli pointed out that the Abraham

momentum density gA gives the same ponderomotive force on a stationary

dielectric as the Minkowski momentum density gM except for an extra term,

which we shall call the Abraham force (also sometimes called the Röntgen

force)

FA =
∂

∂t
(d×B), (1.11)

where d is the electric-dipole moment, and B is the magnetic �eld. However,

Pauli noted that �Because of the smallness of this term, it is hardly likely

that an experiment could be devised for deciding in favour of one or the other

of the two approaches�. J. P. Gordon has convincingly shown that when the

Lorentz force is used to calculate the ponderomotive force on a nondispersive

8
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Figure 1.4: An experiment preformed by Ulf Leonhardt and Nan Peng's
group on the optical force of light acting on water. By balancing the mo-
mentum from the incident, re�ected, and transmitted light with the surface
tension, they predict that an inward bulge in the liquid would be indicative of
the Abraham momentum, while an outward bulge, the Minkowski momentum.
Upon shining a laser upon the surface, they observed an inward bulge in the
liquid which corroborates the Abraham representation.

9
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dielectric medium the result agrees with the Abraham form [39]. Note: on

page 13 of [29] by Cladé et al., they claim that Gordon's paper supports

Minkowski, but this is an error. In fact, he clearly states, "In this work we

demonstrate for nondispersive dielectric media that Abraham's form ... does

indeed represent the true momentum density of electromagnetic �elds." The

Lorentz force approach allows for a physical interpretation of the origin of the

Röntgen term as being due to the Lorentz force on the internal electric current

in an oscillating dipole due to the magnetic �eld. Hinds and Barnett used the

Lorentz force approach to study the simplest dielectric of all, a single atom,

interacting with a travelling pulse of laser light [1]. The standard optical dipole

force

Fdip = −1

2
α∇E2, (1.12)

predicts that an atom will be attracted into a red-detuned pulse. Here E

is the electric �eld and we have introduced the polarizability α. Hinds and

Barnett showed, however, that the extra Abraham force term given in Eq.

(1.11) produces a force of twice the magnitude and in the opposite direction

to the dipole force so that the atom is repelled from the pulse.

It appears that there is now a consensus that both the Abraham and the

Minkowski forms can be correct, depending upon exactly what is measured

[40, 41]. An important step in resolving the Abraham-Minkowski puzzle was

the realization that pMin and pAbr are the photon momenta associated with the

canonical and kinetic momentum of the atoms, respectively. This link appears

to have �rst been established by Loudon, Babiker, Baxter and Lembessis [41].

This allows for a more intuitive understanding of the mechanism responsible for

the di�erent responses seen in experiments. In particular, it has been argued

10
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that the Abraham momentum is associated with centre-of-mass motion of a

medium, whereas if the medium is capable of di�racting (as cold atoms can),

the Minkowski momentum is more relevant because the momentum operator in

quantum mechanics is associated with the canonical momentum (however, we

shall see in this thesis that this argument due to Barnett [2] has its limitations

since we use di�raction to obtain a result in agreement with Abraham). In this

thesis we extend this line of investigation by considering the quantum phases

acquired by atoms interacting with light. In particular, inside a plane wave

laser beam an atom will feel no classical dipole force and yet will acquire a

quantum phase due to the Röntgen interaction (it is straightforward to show

that in the path-integral formulation of quantum mechanics a term related

to that given in Eq. (1.11) leads directly to the HMW phase). This line of

inquiry leads us to connect the Abraham momentum density with the so called

He-McKellar-Wilkens (HMW) phase.

11
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1.2 The HMW phase

Geometric phases were introduced into quantum mechanics by Michael Berry

in 1984 [42], although certain special cases were already known (see [43] for a

review). The geometric phase is a measure of the failure of certain variables to

return to their original values after cycling around a closed circuit in some pa-

rameter space. The simplest example is a tangent vector parallel transported

along a circuit on a sphere as shown in Figure (1.5). Parallel transport means

that that the tangent vector cannot rotate about the normal vector perpen-

dicular to the surface. It is found upon completing the cycle, that a rotation

in the vector's orientation has accumulated during the transport process.

Figure 1.5: Parallel transport of a tangent vector around a circuit on the
surface of a sphere is an example of motion that gives rise to a geometric phase
shift. In this particular circuit we start and end at the north pole.

12
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Now instead of the tangent vector, suppose we are interested in a two level

atom. The Hamiltonian for this atom interacting with light is given by [44]

H =
P̂ 2

2M
+ V + U, (1.13)

where V is any external potential and U is the atom-�eld coupling operator

given, in the basis of the ground and excited state of the atom, by

U =
~Ω

2

 cos (θ) e−iφ sin (θ)

eiφ sin (θ) − cos (θ)

 . (1.14)

Here Ω is the generalized Rabi frequency which characterizes the coupling

strength, θ is the mixing angle, and φ is the laser phase. The eigenstates for

the coupling operator are the dressed state vectors |χ1(r)〉 , |χ2(r)〉

|χ1〉 =

 cos ( θ
2
)

eiφ sin ( θ
2
)

 , (1.15)

|χ2〉 =

 −e−iφ sin ( θ
2
)

cos ( θ
2
)

 . (1.16)

We can then write the state of the atom Ψ in terms of the dressed state

basis as

|Ψ(r, t)〉 = ψ1(r, t) |χ1(r)〉+ ψ2(r, t) |χ2(r)〉 . (1.17)

The evolution of this state vector is determined by the Schrödinger equation

i~
∂

∂t
Ψ(r, t) =

(
P̂ 2

2M
+ V + U

)
Ψ(r, t), (1.18)

13
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Note that the spatial derivative originating from the canonical momentum

operator P̂ acts not only on the amplitudes ψj, but also on the basis vectors

|χj〉. Suppose now we are interested in a situation in which ψ2 = 0. Plugging

in Eq. (1.17) into Eq. (1.18) and taking the dot product with |χ1〉 yields

i~
∂

∂t
ψ1 =


(
P̂ −A

)2

2M
+ V + U1 + φ(r)

ψ1 (1.19)

where A = i~ 〈χ1,∇χ1〉 behaves like an e�ective vector potential, φ = ~2

2M
|〈χ1,∇χ1〉|2

is like the scalar potential, and U1 is the component of the coupling operator

along |χ1〉.

What is of interest to us is the appearance of the e�ective vector potential

A which arises due to the spatial dependence of the basis vectors. In Section

3, we will show that if one calculates the phase the atom in state |χ1〉 acquires

traveling along some path Γ, the presence of the vector potential A gives rise

to an extra phase, in addition to the standard dynamic phase, given by

e
i
~
∫
Γ A(r)·dr. (1.20)

This phase only depends on the path, and not on the interaction time - hence

the name geometric phase. Dynamic phases on the other hand are induced by

potentials (which gives rise to classical forces). As such they are characterized

by their dependence on the interaction time, and hence the velocity of the par-

ticle in question. Additionally, the dynamic phase is independent of direction

of propagation. Geometric phases, on the other hand, are propagation direc-

tion dependent, do not depend on the interaction time, and by extension are

independent of the particle velocity. These characteristic features will be used

14
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in Section 3 in order to di�erentiate geometric and dynamic perturbations.

This thesis primarily focuses one such geometric phase which arises in

atomic physics - The He-McKellar-Wilkens (HMW) phase. The HMW phase

is a topological quantum phase predicted by He and McKellar in 1993 [45] and

independently by Wilkens in 1994 [46]. It is one of a family of four such phases

that includes the Aharonov-Bohm (AB) [47] and Aharonov-Casher (AC) [48]

phases that are all related by electromagnetic dualities [49]. The AB phase

arises when a charged particle moves in a region of space where there is a

nonzero magnetic vector potential A and yet the magnetic �eld B = ∇ ×A

vanishes, as is the case outside of a solenoid. There is no force acting on the

particle and according to classical mechanics the particle is una�ected by the

presence of the solenoid. However, in the quantum case the particle's wave

function is a�ected. Any path encircling the solenoid acquires the phase

φAB = (q/~)

∮
A(r) · dr, (1.21)

which can be seen in the interference pattern between paths passing on di�erent

sides of the solenoid. The signi�cance of the AB phase is generally taken to

be that it can either be viewed as a manifestation of the physical reality of

electromagnetic potentials or of the non locality of quantum mechanics [50].

The HMW phase [45, 46]

φHMW = ~−1

∮
[B(r)× d] · dr, (1.22)

is associated with a neutral quantum particle endowed with an electric dipole

moment d moving in a closed circuit in a static magnetic �eld of strength B.

15
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Like the AC phase φAC = −(~c2)−1
∮

[E(r)×µ] ·dr, where a magnetic moment

µ moves in a static electric �eld and experiences, to �rst order in v/c, the

motional magnetic �eld Bmot = −v × E/c2, the electric dipole in the HMW

phase experiences a motional electric �eld Emot = v×B leading to the Röntgen

interaction [46] (note this implies the HMW phase is also a �rst order e�ect).

In order to obtain a �nite HMW (or AC) phase the physical electromagnetic

�elds should not vanish everywhere on the circuit (unlike in the AB phase)

but nevertheless various con�gurations of the �elds and polarization have been

proposed [45, 46, 49, 51] where no forces appear to act and yet the phase is

�nite. Indeed, it has been shown that the HMW phase can be derived by

considering the sum of the two AB phases acquired by the two charges forming

the dipole [51].

Experimental con�rmation of the AB [52, 53, 54, 55] and the AC [56, 57,

58, 59, 60] phases came quite quickly after the theoretical predictions and the

experiments have continued to be re�ned over the years. The HMW phase was

only recently detected using an atom interferometer operating in the Mach-

Zehnder con�guration [61, 62, 63, 64]. These latter experiments took care to

establish that the phase was time independent and reversed sign when the

direction of travel of the atoms was reversed, which are the hallmarks of a

geometric phase (of which topological phases are a particular case) and are in

contrast to dynamical phases.

Both the HMW and the AC phases can be derived using the Feynman

path integral. The standard integral approach which associates the phase

1
~

∫
Ldt with every path if we adopt the standard direct coupling Lagrangian

16
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Figure 1.6: An arrangement to observe the HMW phase φHMW =
~−1

∮
[B(r) × d] · dr analogous to the Aharonov-Casher phase with the mag-

netic dipole of the AC phase case replaced by an electric dipole in the HMW
arrangement, and the static radial electric �eld swapped with a static radial
magnetic �eld. The magnetic �eld here is created using a line of magnetic
monopoles - which is purely a hypothetical arrangement. In this arrangement
the radial magnetic �eld is always perpendicular to the dipole moment d pro-
viding a nonzero HMW phase without any classical forces acting on the atom.

17
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L supplemented by the motional �elds is

L =
1

2
mv2 + d · (E + v ×B) + µ · (B− v × E/c2), (1.23)

wherem is the mass of the particle and E and B are speci�ed in the laboratory

frame. Because we are interested in the optical regime where the E and B

�elds rapidly change sign, whereas µ does not (as we will show in Chapter 3),

we shall neglect the third term in Eq. (1.23) because it vanishes when averaged

over an optical cycle. The above Lagrangian can be compared to the standard

minimal coupling Lagrangian for a charged particle

L =
1

2
mv2 + qv ·A− qφ, (1.24)

where φ is the scalar potential. Comparing terms we can formally associate

B×d with qA and d ·E with −qφ. In this way the HMW phase given in Eq.

(1.22) follows directly from the AB phase given in Eq. (1.21). Apart from the

quantum HMW phase, these associations also suggest that we can treat the

dipole as an e�ective charge interacting with the following e�ective �elds

Beff ≡ ∇×Aeff =
1

q
∇× (B× d) (1.25)

Eeff ≡ −∇φeff −
∂Aeff

∂t
=

1

q

[
∇(d · E)− ∂

∂t
(B× d)

]
. (1.26)

that account for (classical) electromagnetic forces on the dipole. In the linear

response regime d = α(E + v ×B) [51], where α is the polarizability, we can

replace the second term in the Lagrangian by (α/2)(E + v × B)2. Following

through the calculation we �nd that to lowest order in v/c we can replace
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B × d by α(B × E) and d · E by (α/2)E2 in the Eqns. (1.25) and (1.26).

The terms depending on B× E are proportional to the local Poynting vector

S = (E × B)/µ0 of the optical �eld. In the plane wave laser beams we shall

consider here, the Poynting vector has zero curl and so Beff = 0. The very

interesting case of laser beams with non-zero orbital angular momentum such

as Laguerre-Gauss beams that would give Beff 6= 0 will be considered later in

Section 3. We thus �nd that the force on the dipole in an optical �eld carrying

zero orbital angular momentum is purely due to the e�ective electric �eld

F = qEeff = ∇
(α

2
E2
)

+ α
∂

∂t
(E×B). (1.27)

The �rst term is the familiar induced dipole force that depends on the gradient

of the intensity [65]. The second term depends on the time-dependence of the

Poynting vector. It is zero in static �eld con�gurations but gives a contribution,

for example, when �elds are turned on and o�. Unlike the dipole force, it is

nonconservative, a feature it shares with magnetic forces in general due to the

form of the velocity dependence of the Lagrangian.
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1.3 This Thesis

This thesis is organized into 6 sections. In Section 2 I review the classical

electromagnetic forces acting on an atom. I show how the dipole and Rönt-

gen forces arise from the Lorentz force acting on the charges of an atom. I

then explore the energy-momentum tensor and show how the Abraham and

Minkowski tensor representations di�er through the Röntgen force.

In Section 3 I introduce the idea of atomic interferometry and review the

Feynman path integral approach to calculating phases. I next propose three

di�erent experimental arrangements capable of measuring the HMW phase

through interferometric means. The �rst is an atomic Mach-Zehnder interfer-

ometer which additionally has an optical beam running along the two arms of

the inteferometer. These traveling beams induce an HMW phase in the atoms

as they travel along the length of the interferomter which is then measured

via interference. The second scheme is a Kapitza-Dirac interferometer which

interferes a BEC with itself after splitting it into a coherent superposition of

two parts and subjecting each part to an optical �eld. The two parts acquire

HMW phases as a result and interfere with each other when �nally recom-

bined. Finally, in the third setup, we consider a BEC in an optical ring trap

irradiated by a Laguerre-Gaussian (LG) beam. These LG beams carry angular

momentum which is transferred to the atoms when pulsed, thereby rotating

the BEC.

In Section 4 I show how two di�erent representation of the direct coupling

Hamiltonian give rise to the Abraham or the Minkowski momentum. The

HMW and the AC phase arise naturally as a result of the unitary transforma-

tion linking the two representations. Surprisingly, in the Abraham represen-

20



CHAPTER 1. INTRODUCTION

tation the HMW and AC phases appear as dynamic phases.

In Section 5, I approach these questions from the con�nes of an optical

cavity. This allows for a dynamic treatment of the electromagnetic �elds.

Beginning with a toy model for a double cavity system in which the central

mirror is allowed to move, I show that the Abraham momentum arises when

one takes into account the back action of the atom on the light. In this case,

as the atom moves, the standing wave structure is altered, and hence electro-

magnetic momentum is transferred. It is this process which is responsible for

producing the Abraham momentum.

Finally, in the last section, I give the main conclusions of this thesis and

discuss future directions.
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Chapter 2
Classical Forces

2.1 Introduction

In this section we focus on the classical forces associated with a neutral particle

interacting with an electromagnetic �eld. We will derive the classical force

F = α∇
(

1

2
E2(r, t)

)
+
∂

∂t
[d(r, t)×B(r, t)] , (2.1)

and show how the second term, which is often ignored, survives when dealing

with pulses. Working out the corresponding Abraham and Minkowski stress-

energy tensors allows us to see that the di�erence between the two is a matter of

bookkeeping. We show that the Minkowski stress tensor a�liates the second

term in Eq. (2.1) with a mechanical force, while the Abraham stress-tensor

groups it with the electromagnetic force. Both formulations turn out to be

correct, but answer slightly di�erent questions.
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2.2 The Classical Force on an Atom

We begin with the Lorentz force law for a charge q acted on by an electric �eld

E and a magnetic �eld B. Let x be the position of the charge, then

F = q

(
E +

dx

dt
×B

)
. (2.2)

We now wish to calculate the force on a dipole in a nonuniform electro-

magnetic �eld. To begin let us write the total force each charge in the dipole

experiences,

m1r̈1 = q (E (r1, t) + ṙ1 ×B (r1, t))−∇U (r1, t) ,

m2r̈2 = −q (E (r2, t) + ṙ2 ×B (r2, t)) +∇U (r2, t) . (2.3)

Here U is the binding potential of the dipole. Making use of the center of

mass coordinates

R =
m1

m1 +m2

r1 +
m2

m1 +m2

r2, (2.4)

and taking a �rst order expansion of the �elds about the center of mass

E (r1) = E (R) + (r1 −R) · ∇E (R) ,

E (r2) = E (R) + (r2 −R) · ∇E (R) . (2.5)

A similar expansion applies to the magnetic �elds. Substituting the �rst order

expansions into Eq. (2.3), along with the center of mass coordinates, and
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adding the two equations together yields

(m1 +m2) R̈ = q (r1 − r2) · ∇E (R)

+q (ṙ1 − ṙ2)×B (R) + H.O.

(2.6)

The higher order terms are dropped as they are of order ṙ/c smaller than the

other two terms. We introduce the dipole moment d = q(r1− r2). This allows

us to write the dipole force as

F = (d · ∇) E +
dd

dt
×B

= α

[
(E · ∇) E +

dE

dt
×B

]
, (2.7)

where α is the polarizability of the atom given by d = αE. Here we are

assuming that the dipole moment follows the external �eld adiabatically. We

then rewrite the full time derivative in terms of the intrinsic time derivative

and a comoving derivative d
dt

= ∂
∂t

+ v · ∇. The second term is of order v/c

smaller than the other terms in the Lorentz force, so we neglect it and simply

substitute d
dt

= ∂
∂t

into Eq. (2.7).

We now make use of the following vector identity

(E · ∇) E = ∇
(

1

2
E2

)
− E× (∇× E) , (2.8)

and Faraday's law

∇× E = −∂B

∂t
, (2.9)

which allows us to rearrange Eq. (2.7)
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F = α

[
1

2
∇E2 − E×

(
−∂B

∂t

)
+
∂E

∂t
×B

]
= α

[
1

2
∇E2 +

∂

∂t
(E×B)

]
. (2.10)

In this standard expression [1, 66, 67] many authors emphasize the fact that

the second term integrates to zero over an optical cycle. This is certainly true

for a plane wave, but is not generally correct. Let's take a closer look at the

dipole force by considering a pulsed traveling wave of the form

E(r, t) = E(ωt− kz) cos (ωt− kz)x̂,

B(r, t) = B(ωt− kz) cos (ωt− kz)ŷ. (2.11)

We assume that the envelopes E and B vary slowly in time. Plugging this into

Eq. (2.10)

F = αE(ωt− kz) ∂
∂z
E(ωt− kz) cos2 (ωt− kz)ẑ

+ αkE2(ωt− kz) cos (ωt− kz) sin (ωt− kz)ẑ

− αωE(ωt− kz)B(ωt− kz) cos (ωt− kz) sin (ωt− kz)ẑ

+ α
∂

∂t
[E(ωt− kz)B(ωt− kz)] cos2 (ωt− kz)ẑ. (2.12)

If we integrate this over an optical cycle, the second and third terms inte-

grate to zero. The time averaged force F̄ is then given by

F̄ =
1

2
α

[
E(ωt− kz) ∂

∂z
E(ωt− kz) +

∂

∂t
(E(ωt− kz)B(ωt− kz))

]
ẑ. (2.13)
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The �rst term in Eq. (2.13) is known as the optical dipole force, while the

second term is known as the Abraham force [68] (also called the Röntgen force

[69]). Notice that had the amplitudes been constant as in a plane wave, then

the second term would vanish. Only when the amplitude is changing does the

second term contribute. As was mentioned previously, the Abraham force is

usually left out of optical force calculations, however, in the case of a traveling

pulse, its contribution is non-negligible. Consider again Eq. (2.13). We can

rewrite it as

F̄ =
1

2
α

[
kE(ωt− kz)E ′(ωt− kz)− 2ω

c
E(ωt− kz)E ′(ωt− kz)

]
ẑ, (2.14)

where we have made use of the relationship E = cB. In this representation it

is easy to see that the Abraham force is in fact twice the magnitude of the op-

tical dipole force, and in the opposite direction [1]! It should be noted however

that the momentum transfer is given by P =
∫
Fdt. Thus, the Abraham force

can only transfer a maximal impulse of d0B0 determined by the maximum

amplitude (E0, B0) of the electromagnetic �eld. In contrast, the optical dipole

term will operate as long as the atoms are acted on by the �eld (for example,

an optical lattice). This is why in most circumstances, the optical dipole force

is the dominant e�ect. Only special cases, such as a pulsed traveling wave,

do we observe this extraordinary balance. In the next section we shall show

explicitly how the Abraham term allows us to obtain either the Minkowski or

the Abraham representation.

Finally, let's look at the decomposition of the dipole force Eq. (2.13) to
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better understand the two terms comprising it. How did we arrive at this form

for the dipole force? We began with the Lorentz force and determined the total

force acting on the center of mass of a dipole con�guration by considering the

Lorentz force on each of the charges. By doing so we arrived at Eq. (2.7) which

contained two components. The �rst component is the well known force on

a dipole due to a nonuniform electric �eld. The second term is due to the

internal dynamics of the atom. Going through the derivation, we see this term

is due to the relative motion ṙ1− ṙ2 of the charges in the dipole. Interestingly,

this is the only term that contributes to the force on a dipole in a transverse

plane wave. The i'th component of the dipole force Eq. (2.7) may be written

as

Fi = (d · ∇) Ei +

(
d

dt
d×B

)
i

, (2.15)

and for a transverse plane wave, the �rst term does not contribute, and hence

the entire force is contained in the second term.
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2.3 Forces in Matter

In this section, we show how the Lorentz force on an atom Eq. (2.10) can

be partitioned into bound and free charge forces using Maxwell's equation in

matter. We begin with the Lorentz force acting on a linear medium due to an

electromagnetic traveling wave of the form E(kx−ωt) = E(x, t) cos (kx− ωt)ẑ.

In this exposition, we will be making use of Maxwell's microscopic equations:

∇ · E =
ρ

ε0
(2.16)

∇× E = −∂B

∂t
(2.17)

∇ ·B = 0 (2.18)

∇×B = µ0J + µ0ε0
∂E

∂t
, (2.19)

Maxwell's equations in matter:

∇ ·D = ρf (2.20)

∇× E = −∂B

∂t
(2.21)

∇ ·B = 0 (2.22)

∇×H = Jf +
∂D

∂t
, (2.23)

and the auxiliary �elds

D = ε0E + P (2.24)

H =
1

µ0

B−M (2.25)

P = ε0χeE (2.26)

M = χmH, (2.27)
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where D is the electric displacement �eld, H is the magnetic intensity, P is

the polarization density, and M is the magnetization density. The microscopic

Lorentz force density in the i'th direction is given by [70]

fi = ρEi + (J×B)i

= (ε0∇ · E) Ei +

(
1

µ0

(∇×B)×B− ε0
∂E

∂t
×B

)
i

. (2.28)

Here we have made use of Maxwell's microscopic equations Eq. (2.19). Using

the vector identity A × (∇×A) = 1
2
∇A2 − (A · ∇) A, along with Ampère's

law we can rewrite this as

fi = ε0 (∇ · E) Ei −
1

2µ0

∇iB
2 +

1

µ0

(B · ∇) Bi

−ε0
∂

∂t
(E×B)i −

1

2
ε0∇iE

2 + ε0 (E · ∇) Ei. (2.29)

For a transverse traveling wave E(x, t) = E(kx − ωt) cos (kx− ωt)ẑ and

B(x, t) = B(kx − ωt) cos (kx− ωt)ŷ the �rst, third, and last term will drop

out since the electromagnetic �eld doesn't have a longitudinal component. We

are therefore left with

fi = −1

2
∇i

(
ε0E2 +

1

µ0

B2

)
− ε0

∂

∂t
(E×B)i. (2.30)

Let's now do the same thing, but instead consider the Lorentz force density

f̃ acting only on the free charges in the material. Following the same procedure

used for the microscopic Lorentz force we have
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f̃i = ρfEi + (Jf ×B)i

= (∇ ·D) Ei +

(
(∇×H)×B− ∂D

∂t
×B

)
i

= (∇ ·D) Ei −
1

2
∇i (H ·B) + (H · ∇) Bi

− ∂

∂t
(D×B)i −

1

2
∇i (D · E) + (D · ∇) Ei. (2.31)

Once again, we drop the �rst, third, and last term due to the electromagnetic

wave being transverse. We then arrive at

f̃i = −1

2
∇i (D · E + H ·B)− ∂

∂t
(D×B)i . (2.32)

What happens now if we wish to �nd the Lorentz force density f̌ acting on the

bound charges?

f̌i = ρbEi + (Jb ×B)i

= − (∇ ·P) Ei +

(
(∇×M)×B +

∂P

∂t
×B

)
i

= − (∇ ·P) Ei −
1

2
∇i (M ·B) + (M · ∇) Bi

+
∂

∂t
(P×B)i +

1

2
∇i (P · E)− (P · ∇) Ei. (2.33)

Here we have used the relationship ∇·P = −ρb. Dropping the �rst, third and

last terms again yields

f̌i =
1

2
∇i (P · E−M ·B) +

∂

∂t
(P×B)i . (2.34)

We then see that f = f̃ + f̌ . What does this tell us about the Abraham-
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Minkowski momenta? Consider the case in which M = 0. The Lorentz force

density equations Eq. (2.30), Eq. (2.45), and Eq. (2.34) tell us that the force

density due to the electromagnetic momentum carried by the wave is

− ε0
∂

∂t
(E×B)i = − ∂

∂t
(D×B)i +

∂

∂t
(P×B)i , (2.35)

or by integrating over all space and using P = dδ(r− ratom) we obtain

∂

∂t

∫
SMin dV −

∂

∂t

∫
SAbr dV =

∂

∂t
(d×B) , (2.36)

where

SMin = D×B, (2.37)

is Minkowski's optical momentum density, and

SAbr =
1

c2
E×H, (2.38)

is Abraham's optical momentum density. We have arrived at the well known

relationship between the Abraham and Minkowski momentum densities [1]

∫
SMin dV =

∫
SAbr dV + d×B(ratom). (2.39)

The derivation above gives some insight into the partitioning of electromag-

netic momenta into di�erent contributions.

We wish now to understand the relationship between the Abraham/Minkowski

momentum, and the energy of the dielectric medium. What is the energy in a

dielectric system? We begin by calculating the energy of an electromagnetic
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�eld due to the bound charges.

δW =

∫
(φ δρb) d3r = −

∫
φ(∇ · δP ) d3r

= −
∫
∇ · (φ δP ) d3r +

∫
(∇φ · δP ) d3r, (2.40)

where φ is the electric potential, ρb is the bound charge density, and P is the

polarization density. We have made use of the relationship ρb = −∇·P. Using

the divergence theorem, the �rst term in Eq. (2.40) can be written as

∫
∇ · (φ δP ) d3r =

∮
φ δP · dS. (2.41)

If we are integrating over all space, the �eld at in�nity is zero, so this term

integrates to zero. Using ∇φ = −E along with E = εE = ε0E + P for a linear

dielectric, we obtain

δW =

∫
(∇φ · δP ) d3r = −

∫
(E · δP ) d3r

=

∫
(ε0E · δE) d3r −

∫
(E · δD) d3r

=

∫
(ε0E · δE) d3r −

∫
(εE · δE) d3r. (2.42)

Then the work done in assembling the bound charges is given by

Wbound =

∫ E

0

δW =

∫ E

0

[∫
(ε0E · δE) d3r −

∫
(εE · δE) d3r

]
=

1

2
ε0

∫
E2 d3r − 1

2
ε

∫
E2 d3r = −1

2

∫
P · E d3r. (2.43)

The energy is negative since for bound charges, the force between the charges

is attractive and hence we lose potential energy as we bring bound charges in
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from in�nity to form dipolar molecules. Now of course the situation would

be reversed if we had started instead with neutral atoms and calculated the

work required to separate out the bound charges to create the same polarized

con�guration. If we had instead begun with neutral atoms, the work required

to arrive at the bound charge density ρbound would be W = 1
2

∫
P · E d3r.

Therefore, the energy Wbound required to assemble the bound charges is equal

and opposite to the internal potential energy Wint present due to the dipoles.

We then wish to calculate the total electric energy contained in the system.

The electric energy of the system is comprised of three terms: the energy

required to assemble the free charges Wfree, the energy required to assemble

the bound charges Wb, and the internal potential energy Wint. As we have

already shown, the bound and internal energies of the system are equal and

opposite. This implies that the total energy of the system is simply given by

the energy required to assemble the free charges WTotal = 1
2
ε
∫
E2 d3r. The

free charge derivation is similar to the bound case, simply replace the bound

charge density with the free charge density and the above result follows [70] .

On the other hand, if we are interested only in the energy of the system due to

the free and bound charges (i.e not including the internal dipolar energy) then

the energy of the system is Wfree + Wbound = 1
2
ε0
∫
E2 d3r. Returning back to

Eq. (2.45) and integrating over all space we see that it may be rewritten as

F̃i = −∇i (WTotal)−
∂

∂t

(∫
SMind

3r

)
i

. (2.44)

Hence the Minkowski momentum describes the electromagnetic momentum

associated with the total energy of the dielectric. The Abraham momentum

on the other hand arises in Eq. (2.30) and can be written as (again integrating
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over space)

Fi = −∇i (Wfree +Wbound)− ∂

∂t

(∫
SAbrd

3r

)
i

. (2.45)

Hence the Abraham momentum is shown to only be associated with the energy

due to the free and bound charges.
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2.4 The Energy-Momentum Tensor

The problem comes down to understanding how to de�ne the electromagnetic

energy-momentum tensor in a material. The tensor will have contributing

terms from both the electromagnetic �eld, and also from the material itself.

In the following derivation, we assume the medium to be non-magnetic and

dispersionless [71].

Let's start where we should start, with Maxwell's equations in matter:

∇ ·D = ρf (2.46)

∇ ·B = 0 (2.47)

∇× E = −∂B

∂t
(2.48)

∇×H = Jf +
∂D

∂t
. (2.49)

Here again the electric displacement D and auxillary magnetic �eld H are

de�ned as:

D = ε0E + P,

H =
1

µ0

B−M. (2.50)

We will also assume the dielectric relationship D = εE. We can derive Poynt-

ing's theorem by taking the dot product of E with Eq. (2.49) and H with Eq.

(2.48), then subtracting the two. This yields

E · (∇×H)−H · (∇× E) = E · Jf + E · ∂D

∂t
+ H · ∂B

∂t
. (2.51)

We then make use of the identity E · (∇×H)−H · (∇× E) = −∇ · (E×H)
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which gives us

1

2

∂

∂t
(E ·D + B ·H) = −E · Jf −∇ · (E×H) . (2.52)

Eq. (2.52) is Poynting's theorem. The term on the left is the rate of change of

energy density in the �elds, the �rst term on the right is the rate of work done

per unit volume on the charges, and the second term on the right gives the

energy �ux density. We next derive the force equation for an electromagnetic

�eld on the free charges of a material. The Lorentz force density on free charges

is given by

f̃ = ρfE + Jf ×B, (2.53)

where ρf and Jf are the free charge and free current densities respectively.

Substituting in Eq. (2.46) and Eq. (2.49) gives

f̃ = E (∇ ·D)−B×∇×H− ∂D

∂t
×B. (2.54)

We can rearrange this and use Eq. (2.48) to get

f̃ = E (∇ ·D)−B×∇×H−D×∇× E− ∂

∂t
(D×B) . (2.55)

After some manipulation, we arrive at

f̃ +
∂

∂t
[D×B] = ∇ ·

(
ED + HB− 1

2
I (D · E + H ·B)

)
, (2.56)

where I is the unit vector, EB represents the dyadic product between the

electric and magnetic �elds de�ned by XY = X ·YT . We now combine Eq.

(2.56) with the Poynting theorem Eq. (2.52) to obtain a four dimensional
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expression
∂ (Tµν)Min

∂xν
= fM

µ . (2.57)

Here fM
0 = −E · Jf is the rate of work done per unit volume, fM

i is the

Lorentz force density in the i'th direction as given by Eq. (2.53), and Tµν is

the Minkowski energy-momentum tensor given by

(Tµν)Min =1
2

(E ·D + B ·H) E×H

D×B −ED−HB + 1
2
I (D · E + H ·B)

 . (2.58)

Where

T00 =
1

2
(E ·D + B ·H) , (2.59)

is the energy density

T0a = E×H, (2.60)

is the energy �ux density

Ta0 = D×B, (2.61)

is the momentum density

Tab = −EaDb −BaHb +
1

2
δab (E ·D + B ·H) , (2.62)

is the Maxwell stress tensor. Here the Greek indices run from 0−3 while Latin

indices run from 1−3. The stress tensor give the force per unit area acting on

a surface. Tij is the force per unit area in the i'th direction acting on a surface

oriented in the j'th direction. The force density is the change in mechanical

momentum with respect to time. Therefore the Minkowski energy-momentum
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tensor gives us an expression which relates the mechanical momentum of a

system to the electromagnetic momentum.

Where then does this leave the Abraham representation? Let's go back

through the derivation. If we go back to Eq. (2.55) we can see where the

Abraham tensor deviates from the Minkowski tensor. Taking Eq. (2.55) and

adding ε0 (εr − 1) ∂
∂t

E×B from both sides gives us

f̃ + ε0 (εr − 1)
∂

∂t
E×B

= E (∇ ·D)−B×∇×H−D×∇× E− ∂

∂t

E×H

c2
. (2.63)

This simple juggling of terms allows us to write the Abraham energy-momentum

tensor

(Tµν)Abr =1
2

(E ·D + B ·H) E×H

E×H
c2

−ED−HB + 1
2
I (D · E + H ·B)

 . (2.64)

Where the momentum density is now E×H
c2

, and

∂ (Tµν)Abr

∂xν
= fA

µ . (2.65)

Once again fA
0 = −E·Jf is the rate of work done per unit volume, however now

fA
i = fM

i + ε0 (εr − 1) ∂
∂t

E×B, where fM
i is the Lorentz force density as given

by the Minkowski tensor. The Abraham force density term is more familiar

to us if we write it in another form. We use the relationship ε0χeE = P where

χe = εr − 1 and where εr is the relative susceptibility (note D = ε0εrE). The
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force density term may then be written as fA = ∂
∂t

(P×B) which is our old

friend the Abraham force density Eq. (2.38)! Here we can clearly see that the

di�erence between the Abraham and Minkowski representation comes down

to bookkeeping. During the derivation of the Abraham energy-momentum

tensor, we simply took the Abraham force density out of what we assumed

to be the electromagnetic momentum, and grouped it in with the mechanical

momentum associated with the medium itself. A physical interpretation of

these results will have to wait until Chapter 4.
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Chapter 3
Interferometry

3.1 Introduction

Atomic interferometry involves coherently manipulating the translational, and/or

temporal, evolution of atoms in order to obtain extremely precise information

about a physical system. The idea extends principles more familiar in optical

interferomtery to atoms. The wave nature of atoms and molecules allows us to

interfere these particles with their de Broglie wavelength playing the role of the

optical wavelength. In particular, atom interferometry o�ers a unique window

from which to view the Aharonov-Bohm, Aharonov-Casher, and He-McKellar-

Wilkens phases. These e�ects are only accessible to experiments which are able

to interfere atoms - revealing the phase nature of atoms, which is not present

in the classical theory. In this section we will review the path integral formula-

tion of quantum mechanics which will lead us to a simple way to calculate the

quantum phase picked up by atoms due to various perturbations. With the

necessary mathematical tools under our belt, we introduce the Mach-Zehnder

(MZ) interferometer and apply a traveling wave of light along each ineterfer-
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ometer arm in order to induce an HMW phase. These two arms are spatially

separated and subjected to di�erent traveling waves. The atom beam, being

coherently split into a superposition of two di�erent translational states, now

experiences a di�erent environment in each arm, and hence each state evolves

di�erently. Recombining the two states then produces an interference pattern

revealing information about how the atoms couple with the environment. We

show that under a carefully set up experiment, it is possible for the �rst time,

to observe the optical He-McKellar-Wilkens phase. Two other setups are then

introduced: the Kapitza-Dirac interferometer, and the Laguerre beam interfer-

ometer. These experiments o�er alternative opportunities to probe the small

geometric phase.
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3.2 Path Integrals

In this section we introduce Feynman's approach to path integrals. We be-

gin with a classical treatment of the problem, and then move to a quantum

interferometric system. For a more detailed derivation see [72].

3.2.1 Classical Mechanics

Consider the two points (xa, ta) and (xb, tb). There are in�nitely many paths

Γ1,Γ2, ... linking them, but only one Γcl is actually taken by the particle for

a given initial momentum p0. This path is determined from the classical

Lagrangian of the system

L(x, ẋ) =
1

2
mẋ2 − V (x), (3.1)

through the principle of least action (PLA). The PLA states that Γcl is the

path which extremizes the classical action

S(Γcl) =

∫ tb

ta

L(x(t), ẋ(t)) dt. (3.2)

To �nd the path which extremizes the action S we consider a variation εη(t)

in the classical path. The action is then written as

S(Γ) =

∫ tb

ta

L(x(t) + εη(t), ˙x(t) + εη̇(t)) dt. (3.3)

If we require this to be extremal with respect to ε, then we must solve for

d

dε

∫ tb

ta

L(x(t) + εη(t), ˙x(t) + εη̇(t)) dt = 0. (3.4)
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This implies that

∫ tb

ta

(
∂L

∂x
· η(t) +

∂L

∂ẋ
· η̇(t)

)
dt = 0. (3.5)

This may be rewritten by making use of integration by parts on the second

term ∫ tb

ta

∂L

∂ẋ
· η̇(t) dt =

[
∂L

∂ẋ
· η(t)

]tb
ta

−
∫ tb

ta

η(t) · d
dt

∂L

∂ẋ
dt. (3.6)

The �rst term on the right side is zero since we require the variation η(t) to

be zero at the boundaries. This then leads to

∫ tb

ta

[
∂L

∂x
· η(t)− η(t) · d

dt

∂L

∂ẋ

]
dt = 0. (3.7)

Since η(t) is arbitrary other than vanishing at the end points, this implies

that:
∂L

∂x
− d

dt

∂L

∂ẋ
= 0, (3.8)

which we recognize as the Euler-Lagrange equation. The Hamiltonian is de-

�ned as

H = p · ẋ− L, (3.9)

where the canonical momentum p is given by

p =
∂L

∂ẋ
. (3.10)
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3.2.2 The Quantum Propagator

The �nal state |ψ(tb)〉 of a quantum system is determined through an evolution

operator U acting on the initial state |ψ(ta)〉

|ψ(tb)〉 = U (ta, tb) |ψ(ta)〉 . (3.11)

This allows us to write the projection of the �nal state onto the coordinate

basis as

ψ(xb, tb) = 〈xb|ψ(tb)〉 = 〈xb|U (ta, tb) |ψ(ta)〉

=

∫
dxa 〈xb|U (ta, tb) |xa〉 〈xa|ψ(ta)〉 . (3.12)

The strength of the evolution operator formalism lies in its ability to deal with

compositions

U (ta, tc) = U (ta, tb)U (tb, tc) . (3.13)

Feynman postulated that the propagator can be thought of as a sum of con-

tributions from all possible paths

〈xb|U |xa〉 = N
∑

Γ

e
iSΓ
~ , (3.14)

whereN is a normalization constant, and
∑

Γ denotes the sum over all possible

paths. SΓ/~ in Eq. (3.14) varies rapidly and therefore induces destructive

interference - unless the path Γ is an extremum. In this case, constructive

interference occurs between neighbouring paths. Therefore, only paths very

near to the classical path actually contribute in Eq. (3.14).
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Let us now consider quadratic Lagrangians of the form

L = a(t)ẋ2 + b(t)xẋ+ c(t)x2 + d(t)ẋ+ e(t)x+ f(t), (3.15)

and suppose we introduce a small perturbation to the classical path x(t) =

xcl(t) + η(t). We make sure the boundary terms still match. Then the propa-

gator can be written as

〈xb|U |xa〉 =

∫
Dη(t) e

i
~S[xcl+η(t)], (3.16)

where
∫
Dη(t) is an integral over all path perturbations η(t). Here we have

neglected writing the normalization factor since we are only interested in the

phase. Plugging in the quadratic Lagrangian Eq. (3.15) into Eq. (3.16) yields

〈xb|U |xa〉 = e
i
~Scl

[∫
Dη(t) exp

(
i

~
S
′
)]

S
′
=

∫ tb

ta

dt
[
a(t)η2(t) + b(t)η(t) · η̇(t) + c(t)η2

]
. (3.17)

Here we have dropped all terms linear in η and η̇ as they represent �rst order

variations in the action around the extremum path and therefore are zero

by de�nition. Terms that are independent of η or η̇ are factored out in Scl.

This only leaves the three quadratic terms in Eq. (3.17). As these terms are

independent of the boundary points xa and xb, this allows us to write the

propagator as

〈xb|U |xa〉 = F (ta, tb) e
i
~Scl , (3.18)
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and hence

ψ (xb, tb) = F (ta, tb)

∫
dxa e

i
~Scl[xa,ta;xb,tb]ψ (xa, ta) . (3.19)

Consider now an initial state, which is a plane wave, given by

ψ (xa, ta) =
1√
2π~

e
i(p0·xa−E0t)

~ , (3.20)

with initial momentum p0. The classical action Scl is a function only of the end

points Scl(xa, ta; xb; tb). A stationary point corresponds to a point along the

classical trajectory (i.e points which correspond to extremums of the actions).

In this case we assume xa is di�erent from the classical stationary point x0.

We can expand the initial wavefunction around the stationary point x0

ψ (x0 + η, ta) =
1√
2π~

e
i(p0·(x0+η)−E0t)

~

=
1√
2π~

e
i(p0·x0−E0t)

~ e
ip0·η

~ . (3.21)

Any quadratic Lagrangian can always be expanded around the stationary point

x0 to second order as

Scl[x0 + η, ta; xb, tb] = Scl[x0, ta; xb, tb]− p0 · η + C (ta, tb) η
2, (3.22)

where

p0 = − ∂

∂x0

Scl[x0, ta; xb, tb], (3.23)

C (ta, tb) =
1

2

∂2

∂x0
2
Scl[x0, ta; xb, tb]. (3.24)
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Using the result from Eq. (3.19) then allows us to write

ψ (xb, tb) = F (ta, tb)

∫
dη e

i
~Scl[x0+η,ta;xb,tb]ψ (x0 + η, ta)

= F (ta, tb)

∫
dη e

i
~(Scl[x0,ta;xb,tb]−p0·η+C(ta,tb)η

2+p0·η) 1√
2π~

e
i(p0·x0−E0t)

~ .

(3.25)

Here we have simply substituted in our expanded action Eq. (3.22) and

wave function Eq. (3.21). Noting that

ψ(x0, ta) =
1√
2π~

e
i(p0·x0−E0t)

~ , (3.26)

and ∫
dηe

iC(ta,tb)η
2

~ =

[
iπ~

C(ta, tb)

] 1
2

, (3.27)

we can write this as

ψ (xb, tb) = F (ta, tb) e
i
~Scl[x0,ta;xb,tb]ψ (x0, ta)

∫
dηe

iCη2

~

=

[
iπ~

C (ta, tb)

]1/2

F (ta, tb) e
i
~Scl[x0,ta;xb,tb]ψ (x0, ta) .

(3.28)

Thus we see that the phase of the �nal wavefunction is given by the action

acting along the classical path plus the initial phase of the wavefunction.

3.2.3 Perturbations

Let us �nally see how small perturbations to the Lagrangian, such as those

measured in an interferometer, in�uence the phase. To begin with, let's con-
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Figure 3.1: A visual representation of the perturbed (Γ2) and unperturbed
(Γ0, Γ1) paths taken between perturbed (xa) and unperturbed (x0) boundary
points.
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sider a scenario in which the starting position x0 is shifted to a new starting

point xa. Here we are assuming x0 corresponds to a point of stationary phase

just as it did in the previous subsection. We are therefore assuming that we

are slightly o� the classical path, and we wish to �nd a constraint on this per-

turbation which will still allow us to approximately use the original classical

path. Here we de�ne the classical path Γ1 from xa to the end point xb under

the initial momentum p0. This will be di�erent from the classical path Γ0

from x0 to xb. Ignoring the amplitude factor F , we expand the wavefunction

and the action about the stationary point xa

ψ (xb, tb) =
1√
2π~

e
i(p0·xa−E0t)

~ e
i
~Scl[xa,ta;xb,tb]

=
1√
2π~

e
i(p0·[x0+(xa−x0)]−E0t)

~ e
i
~(Scl[xa,ta;xb,tb]−p0(xa−x0)+C(xa−x0)2]

= ψ (x0, ta) e
i
~Scl[x0,ta;xb,tb]e

iC(xa−x0)2

~ . (3.29)

If we then assume that the starting point xa is close enough to the stationary

point x0 to satisfy
C (xa − x0)2

~
� 1, (3.30)

then we can approximate the �nal wavefunction ψ (xb, tb) simply by evolving

a neighbouring wavefunction along the original classical path!

With this preliminary result, we can tackle the e�ect that a perturbation

has on the phase of a wavefunction. Consider the Lagrangian

L = L0 + εL1, (3.31)
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with ε� 1. We wish to approximate the perturbed wavefunction

ψ1 (xb, tb) = ψ (xa, ta) e
i
~
∫
Γ1

(L0+εL1) dt
, (3.32)

and write it in terms of the unperturbed wavefunction

ψ0 (xb, tb) = ψ (x0, ta) e
i
~
∫
Γ0
L0 dt. (3.33)

Here we have neglected the amplitude factors as we are only interested in the

phase. This is because typically the phase is experimentally sensitive, while the

amplitude will vary much more slowly in general. Γ1 is the classical trajectory

followed in the perturbed Lagrangian from the perturbed point xa to the �nal

point xb. Γ0 is de�ned as the classical trajectory followed by the particle from

the initial point x0 to xb with initial unperturbed momentum p0. If the two

starting points are su�ciently close that they satisfy Eq. (3.30), then as we

showed, we can write

ψ (xa, ta) e
i
~
∫
Γ1

(L0+εL1) dt ≈ ψ (x0, ta) e
i
~
∫
Γ2

(L0+εL1) dt
. (3.34)

Here Γ2 is the classical path linking the unperturbed boundary points x0 and xb

under the perturbed Lagrangian. Although the boundary terms now match,

the initial momentum and the Lagrangian are still di�erent giving rise to

this altered classical path. The path Γ2 is an extremum for the perturbed

Lagrangian, and hence

∫
Γ2

Ldt ≈
∫

Γ0

(
L+O(ε2)

)
dt. (3.35)
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Thus to �rst order we can write

ψ1 (xb, tb) = ψ (x0, ta) e
i
~ß
∫
Γ0

(L0+εL1) dt
= ψ0 (xb, tb) e

i
~
∫
Γ0
εL1 dt. (3.36)

This shows that so long as condition Eq. (3.30) is met, we can derive the phase

due to any perturbation to �rst order by integrating the perturbation along

the unperturbed path.
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3.3 The Mach-Zehnder Interferometer

In this section we consider a Mach-Zehnder interferometer arrangement which

can be used to detect the optical HMW phase. The interferomter uses three op-

tical gratings which �rst order Bragg scatter a collimated and velocity selected

beam of 7Li atoms. Lithium is chosen due to its relatively small polarizability

and its small mass which provides the atom beam with a sizable recoil veloc-

ity. This choice of using an atom with a small polarizability seems counter

intuitive, but as we shall see, it works to our advantage here. Along one of the

arms, we apply a traveling wave laser beam as seen in �gure 3.2. The laser

beam is then retro-re�ected back along the other arm. Each arm is 60 cm in

length and the atoms are �red through at a velocity of 3 × 103 m/s. High

atom velocities are preferable as the HMW phase depends on the interaction

distance, and not on the interaction time, whereas by limiting the interaction

time, we can reduce visibility issues caused by spontaneous emission. The

transverse velocity of a highly collimated beam is on the order of 10 cm/s.

The atom will then pick up an HMW phase shift φHMW = −~−1
∮

[αE×B] ·dr

due to the presence of the laser along the lower arm and the opposite phase

along the upper path.

The di�culty in realizing this e�ect experimentally hangs on the ability to

maximize the contribution due to the HMW phase, while suppressing sponta-

neous emission. The HMW phase is incredibly small and requires a large laser

intensity to become visible. The danger in pushing the intensity too high is

that decoherence due to spontaneous emission can smear out any trace of the

HMW e�ect. Spontaneous emission is the process by which an already excited

atom emits a photon to drop down to a lower energy state. In this section we
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Figure 3.2: A Mach-Zehnder inteferometer made with 3 laser standing wave
laser gratings and with a travelling wave laser beam applied along the lower
arm and retro-re�ected back along the upper arm. The atom beam undergoes
�rst order Bragg scattering at the �rst standing wave laser which splits the
atoms into a coherent superposition of the two arms of the interferometer. The
atoms pick up an HMW phase as they travel down the arms along/against the
applied laser, proportional to the Poynting vector ε0E×B.

will discuss Rayleigh scattering, which describes an initially unexcited atom

interacting with o�-resonant light. Rayleigh scattering can be thought of as

the o� resonant version of spontaneous emission and includes the entire pro-

cess of becoming excited, emitting a photon, and dropping back to a lower

energy level. The Rayleigh scattering rate of photons out of the laser beam

by each atom γR is given by

γR =
Iα2k3

6πε20c~
, (3.37)

where I = 1
2
cε0E

2 is the intensity of the laser beam. Here we see the wisdom

of choosing an atom with a smaller polarizability. The HMW phase scales as

α(ω), while the scattering rate scales as α2(ω). It is therefore in our interest

to make α(ω) as small as possible, while still being able to detect the HMW

phase. Consider a beam of 7Li irradiated by a laser detuned from the D1

line by ∆/2π = 150 GHz (the transition frequency being 4.47 × 1014 Hz).

At such large detunings, the corresponding dynamic (frequency-dependent)
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polarizability α(ω) can then be found from [73]

α(ω) ≈ ω2
0α0

ω2 − ω2
0

(3.38)

where α0 = 2.705 × 10−39 F ·m2 [74] is the static ground state polarizability

of 7Li. Under a ∆/2π = 150 GHz detuning, the corresponding polarizability

is α(ω) = 4× 10−36 F ·m2. We �nd that with these parameters, the intensity

required to obtain a modest HMW phase shift of 0.2 radians along the 120 cm

arm is I = 1.7 × 102 W/cm2. Plugging this into Eq. (3.37) gives γR = 5.1 ×

102 s−1, which corresponds to a 9% chance of a spontaneous event occurring

during the 40 µs transit across the interferometer.

The main objective of the experiment is to di�erentiate the di�erent pertur-

bations present in the experiment. These perturbations fall into two distinct

categories: the velocity dependent phase contributions (Stark, Sagnac), and

the velocity independent phase terms (HMW, Doppler, di�raction). Here it

is worth identifying what we mean by velocity dependent and independent

terms. Velocity dependent perturbations in the Lagrangian such as the HMW

term v · (d×B), become velocity independent phase contributions when in-

tegrated over time
∫

v · (d×B) dt →
∫

(d×B) · dr. Similarly, terms in the

Lagrangian such as the Stark energy 1
2
αE2 which are independent of velocity,

pick up a velocity dependence due to the time integral when we consider the

phase e�ects. Going forth, we shall always refer to the phase contribution (i.e

the action rather than the Lagrangian contribution) when discussing velocity

independent/dependent perturbations.

The second bene�t of working with an optical beam over a static �eld - it

eliminates the Aharonov-Casher and Zeeman e�ects. This is because both of
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these e�ects are due to the interaction energy µ ·B. The magnetic moment µ

is given by

µ =
q

2mec
(L + 2S) , (3.39)

where L is the electron angular momentum operator, and S is the electron spin

operator. Notice now that L and S depend on the state of the atom. However,

the transition rate of the atom is given by the Rabi frequency ΩR = dab·E0

~ ,

where dab is the dipole matrix element. This tells us that the frequency at

which the magnetic moment oscillates is ΩR which is approximately 4 GHz for

our arrangement. However, since the magnetic component of the laser �eld

itself oscillates at an optical frequency on the order of 1015 Hz, the product of

the two will integrate to zero over a Rabi cycle. Hence, both the Zeeman and

AC e�ects are not present when dealing with optical lasers. Put another way,

while the electric dipole moment is induced by the electromagnetic laser (i.e.

it did not exist prior to the laser acting on the atom), the magnetic moment

is not.

We begin by considering the Lorentz force acting on an atom while entering

and traveling inside the laser beam. The Lorentz force in the i'th direction is

Fi(xa, t) = αE(xa, t) ·
∂

∂xi
E(xa, t) + α

∂

∂t
(E(xa, t)×B(xa, t))i . (3.40)

We may write the electric and magnetic �elds in our con�guration as

E(x, t) = E(x) cos (ωt− kx)ẑ (3.41)

B(x, t) = B(x) cos (ωt− kx)ŷ. (3.42)
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If we look at average force (averaged over an optical period T)

〈F (x)〉 =
1

T

∫ t+T

t

f(x) dt = αE(x)
∂

∂x
E(x)

1

T

∫ t+T

t

cos2(kx− ωt) dt

+ 2kαE2(x)
1

T

∫ t+T

t

sin (kx− ωt) cos (kx− ωt) dt

− 2ωαE(x)B(x)

∫ t+T

t

sin (kx− ωt) cos (kx− ωt) dt. (3.43)

The second and third force terms integrate to zero, and thus we are only left

with the optical dipole force

〈F (x)〉 =
1

2
αE(x)

∂

∂x
E(x). (3.44)

This result follows since, surprisingly, it is the partial derivative of the

Abraham term that appears in the force equation, and not the total derivative.

This can be seen by applying the Euler-Lagrange equations to the Lagrangian

Eq. (1.23)

L =
1

2
mv2 + d · (E + v ×B) + µ · (B− v × E/c2). (3.45)

As we mentioned above, the third term vanishes due to the magnetic moment

being independent of the applied laser. Using the convective derivative d
dt

=

v · ∇+ ∂
∂t

we �nd

ma =
d

dt
(d×B) +∇ [d · E− v · (d×B)]

=
∂

∂t
(d×B) + v · ∇ (d×B) +∇ [d · E− v · (d×B)]

=
∂

∂t
(d×B) +∇ (d · E) . (3.46)
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If there is perfect symmetry between the overlap of the upper laser beam with

the upper arm of the interferometer and the lower laser beam with the lower

arm of the interferometer, then the second term in Eq. (3.46) cancels out in

its contribution to the dynamic phase.

We now consider the velocity dependent phase perturbations - the Stark,

and Sagnac e�ects. Given the parameters mentioned previously, the Stark

energy at peak intensity is 1
2
αE2 = 2.5×10−27J. The corresponding phase shift

over one of the 120 cm arms is φS = 1.0×104 rad during the 40 µs transit. It is

therefore desirable to con�gure the upper and lower beams to be as symmetric

as possible in order to cancel as much of this phase as possible. However, a

zero output reading does not necessarily imply that both interferometer arms

are contributing equally - since any phase shift di�erence of 2Nπ will yield the

same null result. Therefore, the intensity must be ramped up slowly from zero

to assure both beams are equally aligned. Let us for the time being suppose

that a small alignment asymmetry leads to total Stark phase di�erence between

the two arms of 1 radian. How then can we separate the velocity independent

geometric phase shifts we are interested in from the Stark shift? We can do so

by varying the initial velocity v0 of the atoms. The time it takes for an atom

to traverse the interaction zone is T = L/v0. Here L = 1.2 m is the distance

over which the atom interacts with the laser beam. The total velocity v is the

sum of components from the initial velocity v0 and the perpendicular recoil

velocity vrec = 2~kL/m. From this we �nd the distance traveled by the atom

is

d =

√
L2 +

4~2k2
LL

2

m2v2
0

≈ L

(
1 +

2~2k2
L

m2v2
0

)
(3.47)

We note that while the time T = L/v0 spent in the interaction region is
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inversely proportional to the initial velocity v0, the correction to the distance

traveled d grows only as the inverse square of v0. Therefore to �rst order,

d ≈ L. This behavior is signi�cant since the phase generated by the Stark

shift

φS =
1

~

∫ (
1

2
αE2

)
dt, (3.48)

depends on the time spent in the interaction region, while the phase generated

by the HMW term

φHMW = −1

~

∫
(d×B) · dr, (3.49)

depends on the distance traveled in the interaction region. Varying the initial

velocity leaves the velocity independent phase terms such as φHMW constant

to �rst order, while allowing us to isolate the velocity dependent terms such

as φS. The output intensity of the interferometer can thus be written as

I(T ) = 〈I〉 [1 + V cos (C1T + C2)] , (3.50)

where

V =
Imax − Imin

Imax + Imin

, (3.51)

is the fringe visibility, C1 corresponds to the phase due to perturbations depen-

dent on time, and C2 the phase due to perturbations independent of time. The

visibility V is degraded by spontaneous emission. In the limit where the sepa-

ration distance d between the two arms of the interferometer is much greater

than the laser wavelength d � λL, a single photon scattered by an atom is

enough to destroy the coherence because it becomes possible to localize the

atom to one of the two paths, breaking the superposition state [75]. In our

setup, we necessarily must fall in this regime as it is paramount that the two
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paths be separated enough so that each independently interacts with its own

traveling wave laser beam. Using the recoil velocity of 7Li vrec = 9 cm/s, we

obtain a maximum separation distance of 35 µm which would lead to complete

decoherence if spontaneous emission occurs. The 9% of atoms that do undergo

spontaneous emission then contribute to the background noise which slightly

lowers fringe visibility.

By taking measurements with di�erent initial velocities [62], one obtains

an output interference pattern of the form cos (C1T + C2). We must check

that the uncertainty in our time measurement δT does not precipitate a large

time dependent phase uncertainty which would mask the contribution from

C2. To see that this is not the case, we note that an uncertainty in velocity

δv0 will alter C1T through

C1T =
C1L

v0

=
C1L

v0 + δv0

≈ C1L

v0

(
1− δv0

v0

)
, (3.52)

where L is the length of the interaction region and v0 is the mean atomic beam

velocity. The velocity uncertainty therefore leads to a time dependent phase

uncertainty

δφ ≈ −C1L

v0

δv0

v0

. (3.53)

Using atomic beam phase choppers [76], we may measure the average beam

velocity to within 0.1%. We then �nd that the uncertainty in C1T is δφ ≈ 1

mrad. It is therefore possible to measure C1 by varying v0 and hence T . By

observing the output phase's sinusoidal variation near a node as T is varied

in small increments, C1 can be obtained by �nding the slope. The velocity

can be altered by seeding the 7Li with a noble gas. Vigué et al. for example
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use krypton (v = 744 ± 18 m/s), argon (v = 1062 ± 20 m/s), and neon

(v = 1520± 38 m/s) [62]. The mean velocity varies as 1/
√
M , where M is the

mass of the carrier gas [61].

Note that C1 contains both the Stark phase and the Sagnac phase, which

is due to the Earth's rotation. In the interferometry experiment preformed by

Vigue [62], with similar parameters, they measured the e�ect of the Sagnac

phase to be on the order of ≈ 0.65 rad. This phase is dependent on the latitude

at which the experiment is preformed and can be calculated out, or measured

with the two traveling lasers switched o�.

We must also take into account the velocity distribution associated with

a supersonic atomic beam. This threatens to mask the HMW phase and

decrease the fringe visibility. The normalized longitudinal velocity distribution

is approximated by [63]

P (v) =
S‖

v0

√
π

exp

[
−
(

(v − v0)S‖
v0

)2
]
, (3.54)

where v0 is the mean velocity, and S‖ = v0/
(√

2σ
)
is the parallel speed ratio

which is a function of the RMS σ of the velocity distribution around the mean

velocity. The velocity distribution modi�es the transmission signal

〈I〉 = I0

∫
dvP (v) [1 + V cos(φ)] . (3.55)

Let

〈φ〉 =

∫
dvP (v)φ(v), (3.56)

δφ = φ(v)− 〈φ〉 . (3.57)
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Substituting these terms into Eq. (3.55) and expanding the cosine term to

third order in δφ, one obtains [63]

〈I〉 = I0 [1 + Vm cos (φm)] , (3.58)

where we de�ne the modi�ed terms φm = φ−〈(δφ)3/6〉 and Vm = V [1− 〈(δφ)2/2〉].

Let us examine how this a�ects the Stark phase. The velocity distribution will

act to modify the Stark term by φS
′ = φS − 〈(δφS)3/6〉. The value of δφS in

our arrangement would then be approximately

δφ ≈ φS
∆v

v
. (3.59)

Suppose that, as suggested above, the two beams are arranged such that the

mean output phase contribution due to the Stark shift can be reduced to within

1 radian (φS ≈ 1). Even with a generous velocity dispersion ratio ∆v/v = 10%

[64] we �nd φS
′ ≈ φS and therefore we can neglect the e�ects of the velocity

distribution.

We now consider the velocity independent phases contained in C2, begin-

ning with the Doppler shifted Stark phase,

φDoppler = exp

[
i

~

∫
1

2
αE2

(
kL · v

∆

)
dt

]
. (3.60)

Eq. (3.60) can be derived by noting that the Doppler shift manifests itself

through the polarizability [65]

α =
∆|dab|2E0

~
[
∆2 + Γ2

4
+ Ω2

2

] . (3.61)
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Here dab is the dipole matrix element of the transition, Γ is the linewidth,

∆ = ωL − ωa is the detuning and Ω is the Rabi frequency. In the large

detuning regime, the polarizability is approximately inversely proportional to

the detuning. A moving atom experiences a Doppler shifted detuning

1

∆Doppler

=
−1

ωa −
(
1 + v

c

)
ωL
≈ 1

∆

(
1 +

kL · v
∆

)
(3.62)

Therefore the Doppler shifted Stark energy is

1

2
αE2

(
1 +

kL · v
∆

)
(3.63)

The �rst term is the rest frame Stark energy, while the second term yields Eq.

(3.60). Unfortunately for us, the Doppler shifted phase can be rewritten in a

form very nearly mimicking the HMW phase: φDoppler = ω
∆
φHMW. However, we

see that φHMW ∝ 1/∆, and φDoppler ∝ 1/∆2. Using this di�erence, it is possible

to distinguish the two perturbations by manipulating the detuning. Note that

because ωL > ∆, then φDoppler > φHMW for all monochromatic plane wave

lasers ( 5000 times larger!). We can, however, make the HMW phase larger

than the Doppler phase by using two traveling beams which are oppositely

detuned from the transition frequency.

Figure 3.3 shows four con�gurations with blue (blue arrows) and red (red

arrows) detuned beams. In con�guration (A), the beams are blue detuned

from the atomic transition frequency, while in (B) the beams are red detuned.

Between con�gurations (A) and (B) the sign of the HMW phase reverses sign,

while the Doppler term changes by a factor of ωR/ωB, where the subscripts

(R,B) indicate red/blue detuned beams. Note that in con�gurations (A) and
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Figure 3.3: Four di�erent con�gurations are shown which help distinguish
the HMW phase from the Doppler shifted Stark e�ect. The blue color indicates
a positive detuning, while red indicates the beam is negatively detuned.
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(B), the Doppler phase will be a factor of ω/∆ larger than the HMW phase,

which makes detecting the HMW phase rather di�cult. We overcome this issue

by considering con�guration (C) in which we overlap two oppositely traveling

beams - one red detuned, and the other symmetrically blue detuned. The

HMW term doubles in value relative to con�guration (B), while the Doppler

term has been cut to half that of the new HMW phase. This is a unique

situation in which the HMW term is actually larger than the Doppler phase

allowing for us to observe the HMW phase clearly over the Doppler phase.

Finally in con�guration (D) both blue and red detuned beams are traveling

in the same direction. The HMW phase here is identically zero since the

blue detuned beam contributes an equal and opposite HMW phase to the

atom, while the Doppler term acquires an energy shift of 1
2
αE2 (kLR+kLB)·v

∆
.

This con�guration allows us to isolate the Doppler phase in order to obtain a

precise value for this term.

Finally we mention the di�raction phase φd which is caused by the Bragg

scattering standing waves responsible for splitting the atom beam. The phase

is dependent on the positions of the standing wave mirrors (i.e the phase of

the beam splitting standing wave produced by each mirror.) y1, y2, y3 [62]

φd = 2kSW (y1 − y2 + y3) (3.64)

where kSW is the standing wave laser wave number. The di�raction phase can

be calculated a priori and is then subtracted out of the �nal output signal.

We have shown that Mach-Zehnder inteferometer provides a means to ob-

serve the optical HMW phase. By using an optical laser, we e�ectively remove

the Zeeman and Aharonov-Casher phase shifts from contaminating the ob-
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served shift. The output intensity of the MZ interferometer can be divided

into time dependent and time independent phases. Thus it is possible to sep-

arate out the velocity dependent phases (Stark, Sagnac) from the velocity in-

dependent phases (HMW, Doppler, di�raction). It is the Doppler term which

provides the most trouble for such an experiment. However, even though the

Doppler shift is much larger than the HMW phase for a single traveling plane

wave, we can use di�erent symmetric arrangements, as indicated in �gure 3.3,

to quench its e�ect and promote the HMW phase. In particular, using two

oppositely traveling, symmetrically blue and red detuned lasers, we can make

the HMW phase

φHMW = −1

~

∫
(d×B) · dr, (3.65)

twice as large as the Doppler phase shift, thus revealing this enigmatic e�ect.
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3.4 The Kapitza-Dirac Interferometer

Here we consider a long thin Bose Einstein condensate placed in a uniform trav-

eling wave laser beam. We assume the BEC is initially magnetically trapped

and con�ned in some region, while a plane wave laser is switched on. The trap

is then turned o� and a standing pulse is applied to the BEC. The standing

wave pulse acts as a beam splitter. The reason we want the laser on before

the standing pulse is because we want to only observe the HMW phase shift

without having to deal with the classical forces associated with entering a laser

beam. As a result of the �rst pulse, the atoms are put into a superposition

of the |±2nr~k〉 momentum states, and the ground state. Here k is the recoil

momentum and nr is the refractive index of the BEC. After 1 ms of free prop-

agation, a second standing pulse is applied which kicks some of the |±2nr~k〉

group back into the ground state and produces an interference pattern which

may then be imaged. This set up closely follows the work done by Pritchard's

group [35], where we have modi�ed the experiment to include a traveling op-

tical laser beam acting on the BEC. The choice of using 7Li over 87Rb comes

down to having a smaller polarizability (remember the HMW phase scales as

α, while spontaneous emission scales as α2), and a smaller mass - which leads

to a greater recoil velocity.

The dipole potential created by a standing wave pulse is given by [77]

U(x, t) =
~Ω2

R

∆
f 2(t) sin2 (nrkx). (3.66)

Where ΩR is the Rabi frequency and ∆ is the detuning away from the atomic

transition frequency. Here we have assumed ∆� Γ/4, where Γ is the sponta-
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Figure 3.4: In (A) the initial con�guration is a 7Li BEC in a harmonic trap
illuminated by a laser. (B) The trap is then switched o� and the BEC is pulsed
with a standing wave of laser light which scatters a fraction of the atoms into
|±2~nrk〉 states. (C) After a delay of 1 ms, a second standing pulse scatters
these atoms back into the ground state.
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neous decay rate. The time envelope f can be any function, but here we assume

it is a simple step function resulting in a square wave pulse. In the Raman-

Nath approximation, the wave function immediately following a Kapitza-Dirac

pulse is [78, 35]

|ψ〉 = |ψ0〉 e
−i
~
∫
dt′ U(x,t′) = |ψ0〉 e

−i
2∆

Ω2
Rτe

i
2∆

Ω2
Rτ cos (2nrkx). (3.67)

Here we have de�ned τ =
∫
dt′f 2(t′) which for a square wave pulse is simply

the interaction time τ = tint. Note that in the Kapitza-Dirac regime we are

assuming short interaction times relative to the recoil frequency (i.e. t �

1/ωrec), and hence during the pulse we assume the atomic motion is negligible.

Making use of the identity

eiA cos (B) =
∞∑

m=−∞

imJm(A)eimB, (3.68)

we rewrite the wave function in terms of Bessel functions of the �rst kind in

the position space representation

〈x|ψ〉 = 〈x|ψ0〉 e
−iΩ2

Rτ

2∆

∞∑
m=−∞

imJm

(
Ω2
Rτ

2∆

)
ei2mnrkx. (3.69)

In the position space representation 〈x, ψ0〉 = 〈x, 0nrkx〉 → 1. This allows us

to write the state after the initial Kapitza-Dirac pulse as:

|ψ〉 = e
−iΩ2

Rτ

2∆

∞∑
m=−∞

imJm

(
Ω2
Rτ

2∆

)
|2mnr~k〉 . (3.70)

From here on, we will only keep the three terms corresponding to m =

(−1, 0, 1) as the other terms are much smaller, corresponding to a negligible
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fraction of atoms in these higher momentum states. The Hamiltonian after

the �rst pulse has acted is given by

Ĥ =

(
P̂ + d×B

)2

2m
− 1

2
αE2

=
P̂ 2 + 2d×BP̂ + (d×B)2

2m
− 1

2
αE2.

(3.71)

This is true since the Abraham term d×B is a constant in this setup and so

commutes with the momentum operator. Since plane waves are eigenstates of

this Hamiltonian, the eigenvalue of the term P̂ is

P̂ e±i2nrkx = ±2nr~ke±i2nrkx, (3.72)

and therefore

Ĥe±i2nrkx =

[
(±2nr~k + d×B)2

2m
− 1

2
αE2

]
e±i2nrkx. (3.73)

We will drop the global phase factor appearing in front of the summation in

what follows. From here we can determine the state of the wave function ψ at
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any time t after the pulse:

|ψ(t+ τ)〉 = e
−iĤt

~ |ψ(0)〉

= J0

(
Ω2
Rτ

2∆

)
e
−i
~

[
(d×B)2

2m
− 1

2
αE2

]
t
|0nr~k〉

+ iJ1

(
Ω2
Rτ

2∆

)(
e
i2nrkx− it~

[
(2nr~k+d×B)2

2m
− 1

2
αE2

])
|2nr~k〉

+ iJ1

(
Ω2
Rτ

2∆

)(
e
−i2nrkx− it~

[
(−2nr~k+d×B)2

2m
− 1

2
αE2

])
|−2nr~k〉

= e
−it
~

(
(d×B)2

2m
− 1

2
αE2

)[
J0

(
Ω2
Rτ

2∆

)
|0nr~k〉

+ iJ1

(
Ω2
Rτ

2∆
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e
i

(
2nrkx−

4~2n2
rk
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d×B
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+ iJ1

(
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Rτ
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e
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(
−2nrkx−

4~2n2
rk

2t

2m~ +2nrk
d×B
m

t

)
|−2nr~k〉

]
. (3.74)

Here we have made use of the identity J−m(θ) = (−1)mJm(θ). During this

time τ , the phases of the |±2nrk〉 states evolve at a di�erent rate from those

in the ground state.

We next apply another standing wave pulse to this wave function - partially

recombining the momentum states. We are interested in �nding the probability

of �nding the atoms in the ground state |0nr~k〉 after this second pulse, so we

are only interested in the |0nr~k〉 terms,

|ψ(t+ 2τ)〉 = e
−it
~

(
(d×B)2

2m
− 1

2
αE2

)[
J2

0

(
Ω2
Rτ

2∆

)
|0nr~k〉

− J2
1

(
Ω2
Rτ

2∆

)
e
i

(
2nrkx−

4~2n2
rk

2t

2m~ −2nrk
d×B
m

t

)
|0nr~k〉

− J2
1

(
Ω2
Rτ

2∆

)
e
i

(
−2nrkx−

4~2n2
rk

2t

2m~ +2nrk
d×B
m

t

)
|0nr~k〉

]
.

(3.75)
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The probability p0 of �nding the atoms in the ground state |0nr~k〉 is

p0 = | 〈ψ(t+ 2τ)|0nr~k〉 |2 = J4
0

(
Ω2
Rτ

2∆

)
− 4J2

0

(
Ω2
Rτ

2∆

)
J2

1

(
Ω2
Rτ

2∆

)
cos

(
4~2n2

rk
2t

2m~

)
× cos

(
2nrkx− 2

d×B

m
nrkt

)
+ 4J4

1

(
Ω2
Rτ

2∆

)
cos2

(
2nrkx− 2

d×B

m
nrkt

)
. (3.76)

The third term can be dropped as J2
0J

2
1 � J4

1 for short times. Thus far we

have neglected the impact that the Doppler shifted Stark term would have

on our ability to see the HMW phase. Without the Doppler shift, the Stark

energy 1
2
αE2 does not a�ect the probability since it contributes equally to all

momentum states. The Doppler shift presents itself through the detuning

∆± ≈ ∆
(

1± ωL

∆

v

c

)
. (3.77)

The Doppler shifted Stark term is therefore

1

2
α
(

1∓ ωL

∆

v

c

)
E2, (3.78)

for blue(-) and red(+) detuning respectively. If we include this term, the
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probability amplitude becomes

p0 = | 〈ψ(t+ 2τ)|0nr~k〉 |2 = J4
0

−4J2
0J

2
1 cos

(
4~2n2

rk
2t

2m~

)
cos

(
2nrkx− 2

d×B

m
nrkt+

1

2
αE2 ωL

~∆

v

c
t

)
+4J4

1 cos2

(
2nrkx− 2

d×B

m
nrkt+

1

2
αE2 ωL

~∆
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t

)
= J4

0 − 4J2
0J

2
1 cos

(
4~2n2

rk
2t

2m~

)
cos

(
2nrkx− 2αE2nrkt

mc

(
1− ωL

2∆

))
.

(3.79)

In the last line we have dropped the J4
1 term as it is much smaller than the

others. In Eq. (3.79) we see that the Doppler term depends on the detuning

of the laser ∆ in the polarizability α (which is proportional to 1/∆ ), the laser

frequency ωL, and the detuning itself ∆. Therefore, by switching between red

and blue detuned lasers the Doppler term will simply change in magnitude

through the frequency as the other two terms will cancel the sign change out.

The HMW term on the other hand, will not change magnitude (as it doesn't

contain a frequency term), but it will change signs with the detuning. Thus,

one can distinguish the two e�ects by performing the experiment twice. Once

using a blue, and once using a red detuned traveling wave laser.

The HMW phase is incredibly small and requires a large laser intensity

to become visible. The HMW frequency is 2d×B
m
nrk. If we use α = 4 ×

10−36 F ·m2 as we did in the previous section (corresponding to a detuning of

∆/2π = 150 GHz), then we require a laser intensity of I = 6× 106 W/cm2 to

obtain a phase shift of 1 radian during the τ = 1 ms propagation.

Spontaneous emission is a major concern as it a�ects the visibility of the
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interference fringes required to observe the HMW e�ect. If the separation

distance d between the out-coupled sample of atoms in the state |2~nrk〉 and

the ground atoms |0~nrk〉 is larger than the wavelength of the probe laser

interacting with the sample, then any spontaneous emission would destroy the

coherence of the experiment. This follows from the fact that under such cir-

cumstances, a spontaneous event would allow an observer to positively identify

the sample from which the photon was emitted. This would then break the

superposition state of the two samples, thus eliminating the ability to interfere

the two states. This, however, is not the case here. Let us take the dimensions

of the condensate to be 300 µm × 20 µm [79]. The recoil velocity of lithium is

approximately vrec = 9 cm/s. Therefore, during the 1 ms that the two samples

are separating, the total separation distance is d = 1.8 × 10−4 m. Therefore

the majority of the condensate overlaps throughout the process. Pritchard's

group [75] has measured the e�ects of spontaneous emission on decoherence

and found that for such small separation distances the fringe contrast will not

be overly diminished.

In free space, such an intensity output would be di�cult to achieve, but by

placing the atom in a ring cavity (Figure 3.5) we can enhance the intensity by

a factor of 2F/π [27], where F is the �nesse of the cavity system. The cavity

�nesse required will of course depend on the intensity of the pump laser. A

caveat of placing the atom in a cavity system is that a back action of the

atom on the intra-cavity �eld can alter the light �eld. An example of this is

collective atom recoil lasing (CARL) where the atoms collectively scatter light

from one travelling mode to the other resulting in a accelerating force on the

atoms. Such an e�ect would obviously be undesirable as it would add an extra

layer of complication to disentangling the HMW phase from other e�ects. For
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a single atom massively detuned from the cavity mode, even for such high

intensities such as those required to see the HMW phase, the CARL threshold

is not reached [80, 81] and the back action e�ects may safely be ignored.

Figure 3.5: A schematic for the high �nesse ring cavity setup used to en-
hance the intensity of the traveling wave. The cavity mode must be massively
detuned from the atomic transition in order to suppress spontaneous emission
γ.

Using a Kaptiza-Dirac pulse of wavelength λ = 671 nm the value of the

recoil term is nr~kx = 3.4 × 103, while 4~2n2
rk

2t
2m~ is approximately twice the

size of the recoil term. The Abraham term which is responsible for the HMW

phase is 2d×B
m
nrk t = 9.5 t/s.
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In �gure 3.6 we plot the probability of �nding the atom in the ground state

Eq. (3.76) as a function of propagation time, with and without the HMW phase

using these values. The red line shows the probability to �nd the atoms in the

ground state without the HMW phase, while the solid blue lines include the

HMW phase. In �gure 3.7 we plot the Fourier transform using a propagation

time of τ =1 ms, sampled at a frequency of 1µs. Although the magnitude

of the fourier peaks between the two predictions is apparent, it is di�cult to

discern the frequency shift.
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Figure 3.6: A plot of the probability of �nding the atoms in the ground
state p0 = | 〈ψ(t + 2τ)|0n~k〉 |2. The red line show the probability of �nding
the atoms in the ground state without the HMW phase, while the blue line
includes the HMW phase. The intensity of the laser is I1 = 6 × 106 W/cm2

detuned to ∆ = 150/2π GHz. The total propagation time is τ =1 ms.

A possible enhancing technique which may also be implemented to increase

the size of the Röntgen term is to consider large momentum transfer beam-

splitters (LMT). Thus far we have only considered 2-photon recoil momentum
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Figure 3.7: The time-discrete Fourier transform of Eq. (3.76) using τ =1 ms
of total propagation time. The dotted blue line shows the Fourier transform
without the HMW phase, while the red line includes the HMW phase. The
e�ect of the HMW phase on the Fourier transform is most apparent in the
magnitude change, while the frequency shift is di�cult to see.
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kicks. However, it is possible to use large momentum transfers on the order

of 10nr~k− 100nr~k [82]. Using such an LMT, we could signi�cantly increase

the e�ects of the HMW phase. This however also works against us by increas-

ing the separation distance between samples, and hence decreasing the fringe

visibility. A better option is to simply increase the intensity slightly at the

cost of a modest decrease in visibility due to spontaneous emission. In Figures

3.8 and 3.9 we plot Eq. (3.76) and the time-discrete Fourier transform using

an intensity of I2 = 6× 107 W/cm2.
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Figure 3.8: A plot of the probability of �nding the atoms in the ground
state p0 = | 〈ψ(x, t + 2τ)|0n~k〉 |2 vs. propagation time. The red line show the
probability of �nding the atoms in the ground state without the HMW phase,
while the blue line include the HMW phase. Here the di�erence between the
two is more apparent. The intensity of the laser is set to I2 = 6× 107 W/cm2.
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Figure 3.9: The time-discrete Fourier transform of Eq. (3.76) using an in-
creased intensity I2 = 9.7× 107 W/cm2. The separation between the peaks is
more obvious here.

79



McMaster University N.Miladinovic � Ph.D. Thesis

3.5 Laguerre Beam Interferometer

Laguerre-Gaussian (LG) laser beams provide yet another avenue to observing

the HMW phase. LG beams have a Poynting vector which swirls around the

direction of propagation, giving it an orbital angular momentum. This forms

a little circuit for an HMW interferometer to act as long as the atoms can be

guided around the circuit. The setup we consider in this section is a trapped

BEC in a time-orbiting magnetic ring trap as outlined in [83, 84]. The BEC

is irradiated with a single LG beam. Note that this is di�erent from typical

setups [85] in which the Laguerre-Gauss beam is accompanied by a counter-

propagating ordinary Gaussian-pro�le beam. In that case, the interference of

the two beams creates a standing wave pro�le, producing a dipole force on

the BEC which is responsible for the transfer of angular momentum. On the

contrary, what we wish to show is that the HMW phase and the Abraham

force can be observed from a setup in which only a single LG beam is present.

This section is slightly di�erent from the other two as here we wish to observe

the Lorentz force in action. As was mentioned in Chapter 2, there are two

components to the optical Lorentz force: the well known optical dipole force,

and the illusive Abraham force. We investigate a simple arrangement in which

the presense of the Abraham force can be easily detected. Consider an LG

mode Llm=0, linearly polarized in the transverse x-direction as shown in �gure

3.10. The magnitude of the Laguerre-Gauss mode ul0 at z = 0 can be written

in cylindrical coordinates as [86]

ul0(r, φ) = A0

√
2

πw2
0

√
1

l!
exp

(
−2r2

w2
0

)(√
2r

w0

)l

exp (ilφ), (3.80)
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where A0 is the amplitude, and w0 is the beam waist. The vector potential

Figure 3.10: A Laguerre-Gauss beam with linear polarization acts on an
atomic circuit trap. In upper right frame we show a cross-section of the beam
which has an azimuthal component giving the Poynting vector a non-zero
circulation. The blue ring here represents the ring trap.

A(r,φ, z) associated with such a mode can be written as

A(r, φ, z) = ul0(r, φ) exp i(kz − ωt)x̂. (3.81)

The electric and magnetic �elds may then be obtained in the Lorentz gauge

(∇ ·A + 1
c2
∂V
∂t

= 0, where V is the scalar potential) via

E(r, φ, z) = −∇V − ∂A

∂t
= iω

(
A(r, φ, z) +

∇ (∇ ·A(r, φ, z))

k2

)
B(r, φ, z) = ∇×A(r, φ, z). (3.82)
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We apply the paraxial approximation to Eq. (3.82) (i.e dropping all second

order derivatives) and obtain

E(r, φ, z) = iωu((r, φ)) exp i(kz − ωt)x̂− c∂u(r, φ)

∂x
exp i(kz − ωt)ẑ

B(r, φ, z) = iku(r, φ) exp i(kz − ωt)ŷ − ∂u(r, φ)

∂x
exp i(kz − ωt)ẑ.

(3.83)

We are interested in calculating the HMW phase. We begin by �nding the

real component of E×B using Eq. (3.83)

E×B∗ =

(
iωu(r, φ)

∂u∗(r, φ)

∂x

)
x̂+

(
iωu∗(r, φ)

∂u(r, φ)

∂y

)
ŷ+

(
ωk |u(r, φ)|2

)
ẑ.

(3.84)

Eqn. (3.84) can be rewritten in cylindrical coordinates as

E×B∗ = iωu(r, φ)

(
∂

∂r
r̂ +

1

r

∂

∂φ
φ̂

)
u∗(r, φ) +

(
ωk |u(r, φ)|2

)
ẑ. (3.85)

From Eq. (3.84) and Eq. (3.80) we can calculate the azimuthal component of

E×B∗.

(E×B∗)φ = − A2
0 ωφ 2l+1

π w2l+2
0 (l − 1)!

r2l−1 exp

(
−4r2

w2
0

)
. (3.86)

This term is the only component responsible for rotating the BEC around the

toroidal trap. However, since we also wish to write the LG mode in terms

of the output power of the laser P , we also want the z-component of E×B∗

in order to �nd the intensity of the laser. We are using the fact that the

z-component is the dominant term, and hence we can approximate the total

82



CHAPTER 3. INTERFEROMETRY

intensity by only considering the z-component.

(E×B∗)z =
ωkA2

0 2l+1

πw2l+2
0 l!

r2l exp

(
−4r2

w2
0

)
. (3.87)

The intensity is then given by I ≈ 1
2
ε0c

2 (E×B)z. Plugging in Eqn. (3.87)

and integrating over the area gives the power P

P =

∫ 2π

0

∫ ∞
0

(
1

2
ε0c

2E×B∗
)
z

r dr dφ =
ωkA2

0 2−l−1 Γ[1 + l]

l!
, (3.88)

where Γ is the gamma function. Solving for the amplitude A0 we obtain

A0 =

(
2l!P

ε0c2ωk 2−l−1 Γ[1 + l]

) 1
2

(3.89)

Although in this section we are interested in the Abraham force, it is worth

digressing to consider the phase shift induced by the HMW e�ect. The term

in the action responsible for giving rise to the HMW phase has been shown to

be due to the Röntgen interaction

SHMW =

∫
αv · (B× E) dt = −

∫
α (E×B) · dl (3.90)

Plugging in Eq. (3.88) into Eq. (3.86) and integrating around a circuit of radius

R:

SHMW = − αA2
0 ω2l+2

w2l+2
0 (l − 1)!

R2l−1 exp

(
−4R2

w2
0

)
. (3.91)

The maximum HMW phase occurs at a radius of

R =
ω

2

(
l − 1

2

) 1
2

. (3.92)
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Therefore we would ideally want our trap to con�ne the atoms to a circuit of

this radius. Then assuming a power of 1 Watt, an angular state of l = 1, and

a beam waist of w0 = 100µm, we �nd the induced HMW phase acquired by

traveling one lap around the ring trap is φHMW ≈ 1 rad. Recently Willke's

[86] group was able to generate high order (u3
3) Laguerre-Gauss beams with

high laser power (83 Watts) which could further push the induced HMW phase

higher if desired.

The experimental setup we now consider for observing the optical Abraham

force is shown in 3.11. A BEC of 7Li atoms is initially con�ned in a ring trap.

A Laguerre-Gauss beam is then switched on. Without the Abraham term, the

only component of the Lorentz force responsible for acting on the BEC would

be the optical dipole force F1 = α 1
2
∇E2. During the time that the LG beam

is being switched on, the electric �eld amplitude has a time dependence that

can be described as Eφ(z, t) = E(ωt − kz)cos(ωt − kz). Therefore, the force

experienced by the BEC during the switch on is given by

F̄ =
1

2
αkE(ωt− kz)E ′(ωt− kz)φ̂. (3.93)

This optical dipole force would have the e�ect of rotating the BEC in a clock-

wise direction (for a red detuned LG beam). On the other hand, if the Abra-

ham force is present, the total time averaged azimuthal force on the BEC

would be

F̄ =
1

2
α

[
kE(ωt− kz)E ′(ωt− kz)− 2ω

c
E(ωt− kz)E ′(ωt− kz)

]
φ̂, (3.94)
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which yields an aziumthal force in the opposite direction! Thus we can corrob-

orate the existence of the Abraham force by observing the rotational direction

of the BEC.

3.6 Summary and Conclusions

In this section we explored three di�erent arrangements: the Mach-Zehnder,

Kapitza-Dirac, and Laguerre-Gauss interferometers. The Mach-Zehnder inter-

ferometer is the strongest potential candidate due to its simple geometry, and

obtainable parameters. The most di�cult task is aligning the red and blue

detuned beams precisely enough to ensure that an equal Stark shift is observed

in both arrangements. The Kapitza-Dirac interferometer su�ers from sponta-

neous emission due to the high intensity laser required to resolve the HMW

shift. It does, however, have the advantage of not having to deal with classi-

cal forces, unlike the other two setups which must go through pains to cancel

out the e�ects due to the dipole and Abraham force. In the Laguerre-Gauss

arrangement, we actually desire to see the classical Lorentz force to act on the

BEC. In this setup we were interested in observing the �ow direction of the

BEC as an LG beam was switched on. Without the Abraham force, we expect

the BEC to be rotated clockwise, while with it, we expect counterclockwise

rotation. We showed that the HMW phase and the Abraham force are inti-

mately tied together through the Lagrangian term (the Röntgen interaction)

v · (d×B). As we shall show in the next chapter, this term is responsible for

both the geometric (HMW) and dynamic (Abraham) e�ects observed in these

three experiments.
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Figure 3.11: An interferometer setup utilizing a Laguerre-Gauss beam with
linear polarization. Atoms are trapped in a time-orbiting magnetic ring trap
while they interact with a time-varying LG beam. These atoms experience an
azimuthal force which will drive rotation around the trap. The direction of
rotation will prove or disprove the existence of the Abraham force.
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Chapter 4
Quantum Representations

4.1 Introduction

In this section, we show that while both forms of the electromagnetic mo-

mentum density are correct, they correspond to di�erent representations of

the Hamiltonian. In fact, they are linked to two di�erent representations of

the direct coupling Hamiltonian which we show to be tied intimately with the

Aharonov-Casher and the He-McKellar-Wilkens phases. The two geometric

phases are shown to be related through a unitary transformation. In addi-

tion, we show that the HMW and AC phases can be viewed as being either

geometric or dynamic in nature. In other words, depending on the represen-

tation used, the HMW phase can be viewed as a geometric phase arising from

the canonical momentum of the Hamiltonian, or as a dynamic phase arising

from the Abraham force. This section is inspired by Loudon et al [41] in

which they �rst connected the canonical/kinetic atomic momentum with the

Minkowski/Abraham momentum.
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4.2 The Abraham/Minkowski representation

We begin with the Lagrangian for a dielectric composed of polarizable/magnetizable

atoms interacting with an electromagnetic �eld.

L =
∑
i

1

2
miẋ

2
i +

1

2

∫ (
εȦ2 − 1

µ
(∇×A)2

)
d3r, (4.1)

where A is the vector potential, µ is the permeability, and ε is the permittivity.

The sum is over individual atoms. The canonical momentum of the atoms p

and the �eld Π is given by

p =
∂L

∂ẋ
=
∑
i

miẋi, (4.2)

Π =
∂L

∂Ȧ
= εȦ. (4.3)

Therefore, the corresponding Hamiltonian is given by

H =
∂L

∂ẋ
ẋ +

∂L

∂Ȧ
Ȧ− L =

∑
i

p2
i

2mi

+
1

2

∫ (
Π2

ε
+

1

µ
(∇×A)2

)
d3r. (4.4)

Using the de�nitions for the electric and magnetic �elds in the Coulomb

gauge

E = −∂A

∂t
, (4.5)

B = ∇×A, (4.6)
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along with the linear auxiliary �eld de�nitions

D = εE = ε0E + P = ε0E +
∑
i

dδ(r− ri), (4.7)

H =
B

µ
=

1

µ0

B−M =
B

µ0

−
∑
i

mδ(r− ri), (4.8)

we arrive at the correct form for the energy of the system

H =
∑
i

1

2
miẋ

2
i +

1

2

∫
(D · E + H ·B) d3r. (4.9)

Here P is the polarization, d is the dipole moment, M is the magnetiza-

tion, and m is the magnetic moment. Note that 1
2

∫
(D · E + H ·B) d3r is

a function of position due to electric/magnetic moments contained in D/H.

However, Eq. (4.1) is not the whole story. In the reference frame the atoms,

the Lorentz transformed �elds are Ē = E + v ×B and B̄ = B− ε0µ0 (v × E)

(to �rst order in v/c). Hence, the Lagrangian for moving atoms is found by

substituting in Ē and B̄ for the lab frame electric and magnetic �elds E and

B in Eq. (4.1).

L =
∑
i

1

2
miẋ

2
i +

∑
i

1

2

∫
ε
(
−Ȧ + ẋi × (∇×A)

)2

d3r

−
∑
i

1

2

∫
1

µ

(
∇×A +

1

c2
(ẋi × Ȧ)

)2

d3r

=
∑
i

1

2
miv

2
i +

1

2

∫
(D · E−H ·B) d3r

−
∑
i

∫
vi · (D×B) d3r +

∑
i

∫
vi ·

E×H

c2
d3r + H.O. (4.10)
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The canonical momentum for the atoms and �eld is then given by

pi = mvi −
∫ (

Di ×B− E×Hi

c2

)
d3r

≡ mvi − di ×Bi −
Ei ×mi

c2
, (4.11)

Π ≈ ∂L

∂Ȧ
= εȦ. (4.12)

We have dropped higher order terms in the canonical �eld momentum Π. The

subscript i associated with the �elds indicate that the �eld is evaluated at the

position of atom i. The corresponding Hamiltonian is then found to be

H =
∑
i

1

2mi

(
pi + di ×Bi +

Ei ×mi

c2

)2

+
1

2

∫
(D · E + H ·B) d3r. (4.13)

The Schrödinger equation for the Hamiltonian is therefore given by

i~ψ̇(r, t) =
∑
i

1

2mi

(
pi + di ×Bi +

Ei ×mi

c2

)2

ψ(r, t)

+

(
1

2

∫
(D · E + H ·B) d3r

)
ψ(r, t). (4.14)

The last term in Eq. (4.14) may be rewritten by making use of Poynting's

theorem [70] :

E · Jf = −1

2

∂

∂t
(D · E + B ·H)−∇ · (E×H) . (4.15)
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Since there are no free currents, Jf = 0. This allows us to write

1

2
(D · E + B ·H) = −

∫ t

−∞
∇ · (E×H) dt′. (4.16)

Consider a plane wave pulse of the form

E(x, t) = E(kx− ωt) cos (kx− ωt). (4.17)

For such a �eld, we can rewrite the second term in Eq. (4.16) using a change

in variables:
∂

∂x
→ −1

c

∂

∂t
. (4.18)

Thus for a �eld of the form given by Eq. (4.17), Poynting's theorem allows us

to write

1

2
(D · E + B ·H) = c

∂

∂t

∫ t

−∞

(
E×H

c2

)
dt′ = c

E×H

c2
. (4.19)

Substituting this into Eq. (4.14) gives

i~ψ̇(r, t) =
∑
i

1

2mi

(
pi + di ×Bi +

Ei ×mi

c2

)2

ψ(r, t)+cSAbrψ(r, t). (4.20)

The second term on right is the energy due to the Abraham momentum

SAbr(r, t) =

∫
E×H

c2
d3r. (4.21)

Eq. (4.20) is what we will call the Abraham representation. The �rst term

on the right is of course the kinetic momentum of the atom. Note that both

the AC and the HMW e�ect arise in this representation as dynamic phases
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through the kinetic momentum [87]

mv = m
∂H

∂p
= p + d×B +

E×m

c2
. (4.22)

The dynamic phase due to the kinetic energy is then given by

θdyn = −1

~

∫ t

−∞

1

2
mv·v dt′ = − 1

2~

∫ r

−∞
mv·dr′ = − 1

2~

∫ r

−∞

(
p + d×B +

E×m

c2

)
·dr′.

(4.23)

The Abraham representation is in no way unique however. We can trans-

form the Schödinger equation into the Minkowski representation through a

unitary transformation by writing the wave function as

ψ(r, t) = Ψ(r, t) exp

[
− i

~

∫ r

−∞
S(r′, t) · dr′

]
, (4.24)

where S(r, t) ≡
∑

i (di ×Bi + ε0µ0Ei ×mi). Substituting this back into Eq.

(4.20) gives us (See appendix A.1)

i~Ψ̇(r, t) exp

[
− i
~

∫
S(r′, t) · dr′

]
+ Ψ(r, t)

(
∂

∂t

∫
S(r′, t) · dr′

)
exp

[
− i
~

∫
S(r′, t) · dr′

]
= −

∑
i

~2 (∇2
iΨ(r, t))

2mi

exp

[
− i

~

∫
S(r′, t) · dr′

]
+ cSAbr(r, t) Ψ(r, t) exp

[
− i
~

∫
S(r′, t) · dr′

]
. (4.25)

Cancelling out the unitary term and rearranging gives

i~Ψ̇(r, t) =
∑
i

p2
i

2m
Ψ(r, t)−

(
∂

∂t

∫ r

−∞
SMin · dr′

)
Ψ(r, t). (4.26)
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The second term is now the energy due to the Minkowski momentum

SMin =

∫
(D×B) d3r (4.27)

Once again using Eq. (4.18) and the divergence theorem, we can write Eq.

(4.26) as

i~Ψ̇(r, t) =
∑
i

p2
i

2m
Ψ(r, t) + cSMinΨ(r, t). (4.28)

We will refer to this representation as the Minkowski representation. The pi

term on the right of Eq. (4.28) is now the canonical momentum of the atom

as opposed to the kinetic momentum in the Abraham representation.

Suppose we start with the initial wave function ψ0. From Eq. (4.24) we see

if we decided to use the Minkowski formulation and naively plugged in Ψ = ψ0,

we would obtain an incorrect result. Using the Minkowski representation forces

us to use the initial wave function

Ψ(r, t) = ψ0(r, t) exp

[
− i

~

∫ r

−∞

∑
i

(
di ×Bi +

Ei ×mi

c2

)
· dr′

]
. (4.29)

This is precisely the He-McKellar-Wilkens and the Aharonov-Casher phase.

The HMW and AC e�ects appear in the Minkowski representation as geo-

metric phases, in contrast to the dynamic phase portrayal in the Abraham

representation.

4.3 Conclusion

We began by showing how the classical Lagrangian for polarizable/magnetizable

atoms interacting with an electromagnetic �eld must be modi�ed by consid-
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ering the Lorentz transformed interactions as seen from the atom's reference

frame. We were then able to show that the corresponding Hamiltonian yielded

the Abraham momentum through Poynting's theorem. By transforming the

�eld through the unitary transformation

exp

[
− i

~

∫ r

−∞

∑
i

(
di ×Bi +

Ei ×mi

c2

)
· dr′

]
. (4.30)

We were able to produce the Minkowski momentum for the �eld, at the ex-

pense of transforming the kinetic momentum of the atom into the canonical

momentum

pcanonical = mv − d×B− E×m

c2
. (4.31)

We then showed that if ψ0 satis�es the Schrödinger equation in the Abraham

representation, then

Ψ(r, t) = ψ0(r, t) exp

[
− i

~

∫ r

−∞

(
d×B +

E×m

c2

)
· dr′

]
(4.32)

satis�es the Schrödinger equation in the Minkowski representation. This gen-

erates the AC phase φAC = −(~c2)−1
∮

[E(r) ×m] · dl along with the HMW

phase φHMW = ~−1
∮

[B(r) × d] · dl. Finally we showed that the AC/HMW

e�ect may be interpreted as emerging from a dynamic or a geometric phase

depending on the representation.
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Chapter 5
Cavity Momentum

5.1 Introduction

In this section we consider an electromagnetic �eld in a cavity interacting with

a dielectric slab which is allowed to move. The model is solved analytically by

making use of a simple δ-function approximation for the central dielectric slab.

This system o�ers a unique opportunity to study the energy and momentum of

light in matter. For one, since the light is con�ned to a cavity, we have a well

controlled system which can be precisely manipulated. The central dielectric

slab can in theory be replaced with a single atom. The cavity system then

acts to enhance the atom's in�uence on the light since the beam will bounce

back and forth many times during the cavity lifetime, interacting with the

atom during each pass. During the intervening travel time between cavity

mirrors, the light is traveling in free space where there is no ambiguity in

photon momentum. As we shall see, we obtain the same conclusions inside

the cavity as we did in free space - but for quite distinct reasons.

This chapter follows the work we published on the optical Landau-Zener
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e�ect [88]. In the �rst section 5.2 we introduce a simple model for the spatial

dependence of the dielectric permittivity function inside a double cavity. This

model treats the central membrane as a Dirac δ-function which facilitates

analytic calculations. In Section 5.3 we �nd the global static solutions (normal

modes) of Maxwell's wave equation subject to this dielectric function. From

here we are able to extract the refractive index of the cavity-slab system. In

Section 5.4 we determine the optical force on the dielectric slab. Finally in

Section 5.5 we use the work-energy theorem to determine the form of the

energy-momentum density. Conclusions are drawn in Section 5.6.

5.2 δ-function dielectric model

Consider a double cavity formed from two end mirrors plus a dielectric mem-

brane located between them, as shown Figure 5.1.

A simple theoretical model describing such a double cavity has been given

in a classic paper by Lang, Scully and Lamb [89]. For the purposes of solving

Maxwell's wave equation in the double cavity, they treated the end mirrors

as perfect re�ectors and the central membrane as a thin slab of dielectric

material which is modelled by a Dirac δ-function spatial pro�le. The double

cavity model is thereby encoded in a dielectric permittivity function of the

form

ε(x) =


ε0(1 + a

ε0
δ(x)) −L1 < x < L2

∞ elsewhere
, (5.1)

where x = −L1, and x = L2 are the positions of the end mirrors. a is a

parameter which determines the re�ectivity of the central membrane. We have

purposely written it in this suggestive manner in anticipation of the �ndings
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Figure 5.1: Double cavity setup consisting of two perfectly re�ecting mirrors,
along with a partially transmissive central membrane. ∆L ≡ L1 − L2 is the
di�erence in length between the two sub-cavities.
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in Appendix B. The total length of the double cavity is L ≡ L1 + L2, and

we also de�ne the di�erence between the lengths of the two sub-cavities to be

∆L ≡ L1−L2, which is also twice the displacement of the membrane from the

center of the whole cavity.

Maxwell's wave equation for the electric �eld E(x, t) in the double cavity

is
∂2E(x, t)

∂x2
− µ0ε0(1 +

a

ε0

δ(x))
∂2E(x, t)

∂t2
= 0 . (5.2)

In Appendix A we compare the force calculations of the δ-membrane model

to the standard dipole force equation to obtain a relationship between a and

the polarizibility of an atom.

We write the solutions to the Maxwell wave equation as Em(x, t) = Um(x) exp(−iωmt),

where ωm = km/
√
ε0µ0 is the angular frequency and m = 1, 2, 3 . . . is an in-

teger labeling the modes. The dimensionless mode functions Um(x) can be

chosen to be orthogonal in the Sturm-Liouville sense by ensuring that they

obey
1

ε0

∫ L2

−L1

ε(x)Ul(x)Um(x)dx = 0, l 6= m. (5.3)

Inserting the above form for E(x, t) into Eq. (5.2) gives

d2Um(x)

dx2
+ k2

m(1 +
a

ε0

δ(x))Um(x) = 0 . (5.4)

Solutions satisfying the boundary conditions Um(−L1) = Um(L2) = 0 are given

by

Um(x) =


ALm sin [km(x+ L1)] −L1 ≤ x ≤ 0

ARm sin [km(x− L2)] 0 ≤ x ≤ L2 .

(5.5)

Assuming the electric �eld is continuous across the δ-membrane, so that Um(0+) =
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Um(0−), we can integrate Eq. (5.4) over a vanishingly small interval contain-

ing the membrane and thereby �nd the last boundary condition U ′m(0+) −

U ′m(0−) = − a
ε0
k2
mUm(0).

Combining all the boundary conditions one is led to the following equation

for the wave numbers km of the allowed modes [89]

cos(km∆L)− cos(kmL) = 2ε0
sin kmL

akm
. (5.6)

This transcendental equation can in general only be solved numerically. How-

ever, when akm becomes large the sinc function on the right hand side becomes

small. The left hand side may then be expanded around its roots and this per-

mits approximate analytic solutions which will be supplied in Section 5.3. We

refer to the solutions for the wave number in the case of an empty cavity

system (i.e when there is no central membrane) as k0.

5.3 Analytic Results

The mode amplitudesALm andARm on the two sides of the membrane will now

be calculated. From the continuity condition for the �eld across the membrane

we �nd that

ALm
ARm

= −sin(kmL2)

sin(kmL1)
= −sin[km(L−∆L)/2]

sin[km(L+ ∆L)/2]
. (5.7)

Throughout this paper we make use of results obtained by considering a

closed cavity system. Although not physical, the results approximate an open

cavity system in which the end mirrors are much more re�ective than the

central membrane. To see this consider a double cavity system in which the two
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end mirrors are not perfectly re�ective. This scenario is fundamentally very

di�erent from the case in which we have perfectly re�ecting end mirrors. In

the latter case, the mirror position determines the allowed wavenumbers of the

system. In the former case, the positioning does not change the wavenumber

of the pumped laser, it only changes the amplitude. We wish to �nd the

amplitude ratios of the left and right mode as a function of central membrane

position. To accomplish this, we solve Maxwell's equations in the four zones

(the two left and right sub-cavities, along with the two regions to the left and

right of the cavity system). We treat the mirrors as delta potentials similar to

how we treated the dielectric membrane. Using the ansatz that in each region

we have a plane wave propagating to the right and a plane wave propagating

to the left, we may solve for the amplitude of the waves by matching boundary

values. Continuity of the electric �eld at the mirrors give the following relations

(see �gure 5.2):

Aeikx1 +Beikx1 = Ceikx1 +Deikx1 , (5.8)

C +D = E + F, (5.9)

Eeikx3 + Feikx3 = Geikx3 . (5.10)

Integrating over an in�nitesimal region about each delta mirror gives the �nal

3 relations:

i

k

(
−Aeikx1 +Beikx1 + Ceikx1 −Deikx1

)
=
aL

ε0

(
Aeikx1 +Beikx1

)
,(5.11)

i

k
(−C +D + E − F ) =

a

ε0
(C +D) , (5.12)

i

k

(
−Eeikx3 + Feikx3 +Geikx3

)
=
aR

ε0

(
Eeikx3 + Feikx3

)
. (5.13)
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Figure 5.2: A schematic decomposition of the di�erent traveling waves both
inside and outside of the cavity system. Using Maxwell's equations along with
proper boundary conditions, it is possible to determine the amplitude ratio of
the left sub-cavity �eld, relative to the right sub-cavity �eld.
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Figure 5.3: The relative amplitude ratio Eq. (5.7) is plotted (red) along side
numeric solutions obtained using Maxwell's equations in an open cavity system
(blue). In the open system, the outer mirrors were set to be 10 times more
re�ective than the central membrane.

Where aL, aL, and a are the left, right, and central mirror strengths as given

by Eq. (5.1). We set A = 1 and then numerically solve this system of equations

and determine the amplitude ratio of the left cavity relative to the right cavity.

In �gure 5.3 we compare the amplitude ratio found in Eq. (5.7) with numerical

solutions obtained for an open cavity system. The end mirrors are assumed to

be 10 times more re�ective than the central membrane. We see that the �eld

distribution coincides very well with the closed cavity.

We now turn back to the transcendental equation Eq. (5.6) . It is possible

to �nd an analytic solution for the wave number km when a is very small as

it is for a low density atomic cloud. When a is very small, the right side of

Eq. (5.6) must still be of order one since the left side is of order one, therefore

sin kL must be very close to zero. We can then expand kmL about mπ to �rst
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order

cos(km4L)± 1 = ∓2ε0L

a

(
L

mπ

(
km −

mπ

L

))
. (5.14)

Where the upper signs correspond to odd m while lower signs give the result

for even m. Now cos(k∆L) has a k in the argument, however as this doesn't

deviate from mπ much, it is reasonable for small values of a to replace it with

mπ as the cosine function is insensitive to such small perturbations

km = ∓ amπ

2ε0L2

(
cos(mπ

4L
L

)± 1

)
+
mπ

L
. (5.15)

Note that the upper signs correspond to odd m and lower signs to even m

respectively. In Figure 5.4 we plot Eq. (5.15) against the numeric solution for

the wave number to show that the analytic approximation is su�ciently close

to the numeric solution. We see that the overlap is near perfect for a = 10−5.

We now ask ourselves what the e�ective refractive index is for the system.

For this we use Eq. (5.15) for the wave number km and rewrite it in a form

that allows us to extract the e�ective index of refraction nr

km =
mπ

L

[
∓ a

2ε0L

(
cos(mπ

4L
L

)± 1

)
+ 1

]
= k0nr, (5.16)

and we see that

nr =

[
∓ a

2ε0L

(
cos(mπ

4L
L

)± 1

)
+ 1

]
. (5.17)

For the remainder of this chapter we will assume m is even and work with the

odd wavemodes kodd. Confusingly, an even m gives rise to an odd wavemode

and vice versa. For a membrane position near ∆L = 0, we can expand the
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Figure 5.4: Wavenumber is plotted as a function of central membrane posi-
tion. The analytic result Eq. (5.15) is in blue, and the exact numerical solution
is plotted in red. In the plot the value of a, which controls the strength of the
δ-potential, is set at a = 10−5.
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refractive index to second order as

nr ≈ 1− am2π2

4ε0L3
(∆L)2. (5.18)

We will return to this result shortly.

5.4 The Force on the Central Membrane

We turn to the problem of calculating the electromagnetic force on the central

membrane. The optical force is the rate at which momentum is being extracted

from the electromagnetic �eld due to the presence of the membrane. This will

then allow us to calculate the average photon momentum inside the cavity for

a given membrane position ∆L. The force is given by Eq. (2.30)

F =

∮
S

←→
T · da− ε0µ0

∂

∂t

∫
V

Sdτ, (5.19)

where
←→
T is the Maxwell stress tensor de�ned as

Txx =
ε0

2

(
E2
x − E2

y − E2
z

)
+

1

2µ0

(
B2
x −B2

y −B2
z

)
, (5.20)

Txy = ε0 (ExEy) +
1

µ0

(BxBy) . (5.21)

S in Eq. (5.19) is the Poynting vector, which we neglect for the time being,

i.e. let us �rst consider only the force due to the stress tensor
←→
T . Integrating

about a Gaussian pillbox containing the central membrane gives [90] (see �gure

5.1).
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Figure 5.5: The force is found by integrating the Maxwell stress tensor
around a small pillbox containing the central membrane.
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F =
ε0

2

(
|ELm|2 − |ERm|2

)
=

(ε0

2
|ERm|2

)(∣∣∣∣sin(kmL2)

sin(kmL1)

∣∣∣∣2 − 1

)
. (5.22)

Where ELm and ERm are the electromagnetic �elds to the left and right of

the central membrane respectively. Note that here what we call the force F

is really the radiation pressure (force/area). We have made use of Eq. (5.7)

in writing the left �eld ELm in terms of the right. The second factor in Eq.

(5.22) tells us that the force is proportional to the amplitude ratio between

the modes on the left and right of the central membrane as is expected with

radiative pressure. The �rst factor tells us that the force is proportional to

the intensity of the �eld. When the central membrane is at ∆L = 0, then

ERm = E and we can write the total electromagnetic energy per unit area as

Etotal =

L∫
0

ε0 |E|2 dl =
ε0 |ERm|2 L

2
. (5.23)

For small deviations around ∆L = 0, we make the approximation

ε0 |ERm|2 L
2

≈ Etotal. (5.24)

This approximation allows us to write the �rst factor in Eq. (5.22) simply as

Etotal:

F =
Etotal

L

(∣∣∣∣sin(kmL2)

sin(kmL1)

∣∣∣∣2 − 1

)
. (5.25)

As we are interested in determining the average force per photon, we divide
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Eq. (5.25) by the number of photons nphoton. It is assumed that the total

number of photons in the cavity is conserved during adiabatic motion of the

membrane

nphoton =
Etotal

~ck0

. (5.26)

This gives the average force per photon

F =
~ck0

L

(∣∣∣∣sin(kmL2)

sin(kmL1)

∣∣∣∣2 − 1

)
. (5.27)

We can further simplify this expression by noting that for very small a we

can approximate the amplitude ratio factor in Eq. (5.27) to �rst order

∣∣∣∣sin(kmL2)

sin(kmL1)

∣∣∣∣2 ≈ ε0L
amπ
− 1

2
sin(mπ4L

L
)

ε0L
amπ

+ 1
2

sin(mπ4L
L

)
. (5.28)

Substituting this into Eq. (5.27) and simplifying yields

FMin = −~k0c
amπ

ε0L2
sin(mπ

4L
L

). (5.29)

We have written the force here with a subscript, foreshadowing results from

the next section.

5.5 Energy and Momentum

In this section we want to determine how much energy is required to realize

a given membrane con�guration. It is assumed that the polarizbility factor α

is very small, and we make use of the analytic results obtained in Sections 5.3

and 5.4. The work-energy theorem tells us how much energy must be used by
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the �eld in moving the central membrane to some position 4L.

Efield = −
∫
F dx. (5.30)

Substituting in the force Eq. (5.29)

Efield = −
∫
FMin

d (4L)

2

=

∫ 4L
0

~k0c
αmπ

2L2
sin(mπ

4L′

L
)d (4L′)

= −~ck0

[
α

2L

(
cos(mπ

4L
L

)− 1

)]
≈ ~ck0

am2π2

4ε0L3
(∆L)2. (5.31)

Eq. (5.31) tells us is the energy per photon Efield used to move the membrane

from the centered position4L = 0, to some other position4L. By subtracting

Efield from the initial photon energy ~ck0, we arrive at an expression for the

energy per photon remaining in the system

Ephoton = ~ck0

(
1− am2π2

4ε0L3
(∆L)2

)
. (5.32)

Then using Eq. (5.18), we can rewrite this in terms of the refractive index

Ephoton = ~ck0nr. (5.33)

To obtain the momentum we note that the electromagnetic �elds are prop-

agating in a vacuum, and hence we divide Eq. (5.32) by c and obtain the

Minkowski momentum pmin = ~k0nr.
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Let us now go back to the Maxwell force Eq. (5.19). In the derivation

which resulted in us obtaining the Minkowski momentum, we only considered

the force, and hence the momentum, due to the stress tensor term. We now

take into account the momentum contribution from the Poynting vector term.

The Poynting (or Abraham) radiation pressure (force/area) is

FPoynting = − ∂

∂t

∫ L2

L1

(ε0E×B) . (5.34)

We can rewrite the Poynting vector in terms of the left and right electric �eld

amplitudes

FPoynting = −ε0
∂

∂t

(
|ELm|2 L1 + |ERm|2 L2

)
. (5.35)

After some manipulation (see appendix B), we obtain a simpli�ed expression

for the force

FPoynting =
∂

∂t

(
~k0

am2π2

2εL3
(∆L)2

)
. (5.36)

The momentum pPoynting transferred to the system by moving the membrane

to ∆L is found by integrating this force with respect to time

pPoynting = ~k0
am2π2

2εL3
(∆L)2. (5.37)

We found earlier that the momentum pmin of the photons inside the cavity

due to the Maxwell stress tensor Eq. (5.32) is given by

pmin = ~k0

(
1− am2π2

4ε0L3
(∆L)2

)
. (5.38)

If we now include the momentum pPoynting we �nd the total momentum of the
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photons to be

ptotal = ~k0

(
1− am2π2

4ε0L3
(∆L)2

)
+ ~k0

am2π2

2ε0L3
(∆L)2

= ~k0

(
1 +

am2π2

4ε0L3
(∆L)2

)
≈ ~k0

1− am2π2

4ε0L3 (∆L)2
=

~k0

nr
= pabr. (5.39)

We have arrived the Abraham momentum!

5.6 Conclusion

The Minkowski-Abraham paradox was shown to result from the Poynting term

in the Maxwell force equation

F =

∮
S

←→
T · da− ε0µ0

∂

∂t

∫
V

Sdτ. (5.40)

This result is consistent with our �ndings from the previous chapters, even

though we arrived at it by quite di�erent means. Note that the Poynting term

here is not equal to the Abraham force term fA = ∂
∂t

(P×B) responsible for

the di�erence between the two momenta in the previous chapters. We began

by showing how the refractive index arises as a result of the superposition

between left and right traveling modes inside the cavity. This calculation

required us to consider a perfectly re�ecting cavity, however, it was shown that

so long as the cavity mirrors were signi�cantly more re�ective than the central

membrane, this approximation holds. This result is particularly interesting

since in the perfectly re�ecting cavity scenario, the mirror positions determine

the allowed wavenumber in the cavity. While in the more physical, open cavity
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system, the position of the mirrors only a�ects the amplitude of the modes, yet

they both converge to the same solution when the ratio of mirror re�ectivity

to membrane re�ectivity is large. We were then able to calculate the force

from these modes acting on the central dielectric membrane to determine the

momentum transferred from the electromagnetic �elds to the membrane. The

resulting electromagnetic momentum was shown to be of either the Minkowski

or Abraham form depending on whether or not the Poynting term in the

Maxwell force equation is included.
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Chapter 6
Conclusions and Outlook

6.1 Conclusions

Why is it so many experiments tend to favor the Minkowski representation

over the Abraham form? The reason lies with the Abraham (Poynting) force

FA = α ∂
∂t

(E×B). As we saw in Section 2, this only becomes relevant in certain

situations. We saw that this force averages to zero over an optical cycle unless

the �elds have a time-dependent amplitude. The momentum transferred is

only dependent on the initial and �nal amplitude of the �eld. Therefore not

only do we require the electromagnetic �eld amplitude to be time dependent,

but also that the �eld not be pulsed (i.e turned on and then o� quickly). This

makes it di�cult to observe in an experiment. However, if one considers the

momentum gained from an electromagnetic �eld due to a �eld which is ini-

tially at zero and is then turned up to some maximal strength Emax, one �nds

the Abraham force contribution is twice as much as that due to the gradient

force. Of course for a pulsed �eld, the Abraham force will contribute zero

total momentum as the initial and �nal amplitudes are both the same. Thus
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the Abraham force is observable, and in fact greater than the optical dipole

force, during this initial amplitude switch on period. The reason why the

Abraham force has been so elusive, is because we have been doing the wrong

experiments. At the outset of this thesis, one of the end goals was to under-

stand why certain experiments observed the Minkowski versus the Abraham

momentum. Let us go back and review two of the cornerstone experiments

which produced seemingly con�icting conclusions and see if we can make sense

of the results.

The �rst experiment we reexamine was performed by Pritchard and Ketterle

[35]. The setup consisted of an elongated 87Rb Bose-Einstein condensate con-

tained in a magnetic trap. They used a λ = 780 nm standing wave pulse which

acted for 5 µs to out couple approximately 5% of the atoms. After waiting

600 µs a second pulse was applied which recombined some of the atoms from

this group with the original ground state group, producing at interference pat-

tern. Using ballistic imaging they were able to resolve the momentum states

and conclude that the atoms had acquired a momentum kick proportional

to the refractive index of the gas, thus corroborating Minkowki's claim. We

immediately see the issue here however. By pulsing a standing wave, they

have ensured that the Abraham force will contribute nothing for two reasons.

Firstly, a standing wave has no net Poynting vector, and hence the Abraham

force will be zero. Secondly, even if there was a small net Poynting vector

associated with the laser, after the full pulse cycle, the initial and �nal ampli-

tudes of the pulse are the same, and hence the momentum transferred due to

the Abraham force must be zero.

The second experiment was performed by Ulf Leonhardt and Nan Peng

[36]. In this experiment they shone a laser onto the surface of water and
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oil. By observing the surface bulge they were able to conclude that the elec-

tromagnetic momentum coincided with the Abraham momentum. How can

we make sense of this with what we've learned? The di�erence between the

Pritchard-Ketterle experiment and this one is the nature of the light beam. In

the Leonhardt experiment, the surface of the liquid sees an electric �eld ampli-

tude which switches on from zero to some maximum value. During this process

the Abraham force FA = α ∂
∂t

(E×B) is nonzero - unlike in the Pritchard ex-

periment. As was mentioned earlier, under these conditions the Abraham force

contribution is twice that of the dipole force (and in the opposite direction).

Therefore, it is no wonder that Leonhardt's group observed an outward bulge,

indicative of the Abraham momentum.

What is the take home message after all this? Let's go back and take a look

at Poynting's theorem in the Minkowski and the Abraham representation. In

the Minkowski representation, Eq. (2.56), we have

f̃ +
∂

∂t
[D×B] = ∇ ·

(
ED + HB− 1

2
I (D · E + H ·B)

)
, (6.1)

where we identify f̃ with the rate of change of mechanical momentum. What

this equation is telling us is that

∂

∂t

(
P̃mechanical

)
+
∂

∂t

(
P̃electromagnetic

)
= ∇ ·Wtotal, (6.2)

where P̃mechanical is the mechanical momentum of the material, P̃electromagnetic

is the electromagnetic momentum, and Wtotal is the total work done. Now

just as we had previously done in Section 2, we subtract ε0 (εr + 1) ∂
∂t

(E×B)

115



McMaster University N.Miladinovic � Ph.D. Thesis

from both sides. This gives us

f +
∂

∂t

E×H

c2
= ∇ ·

(
ED + HB− 1

2
I (D · E + H ·B)

)
, (6.3)

where f = f̃ + ∂
∂t

(P × B). Now in the Abraham representation, we identify

f with the change in mechanical momentum ∂
∂t

Pmechanical and E×H
c2

with the

change in electromagnetic momentum Pelectromagnetic. So how does this �t in

with the fact that Minkowski form is the representation most often claimed

in the literature? Consider again the Abraham force density ∂
∂t

(P×B) which

is responsible for the di�erence between f̃ and f . As we mentioned above, a

typical experiment will not observe the Abraham force, and hence will measure

the force density on the system to be simply f̃ . In doing so however, they will

be led erroneously to conclude that the corresponding electromagnetic �eld

momentum is P̃electromagnetic in Eq. (6.1) and hence the Minkowski momentum.
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Appendix A
Appendix to Chapter 4

In this appendix I derive some of the fundamental results of this thesis. Details
omitted in the body of the thesis are shown here. In the �rst subsection I fully
derive the Abraham representation and show all steps. In the second subsec-
tion I show how to derive the direct coupling Hamiltonian from the minimal
coupling representation. Finally in the third subsection I show how one can
derive the direct coupling Hamiltonian through a gauge transformation.

A.1 Appendix: Abraham Representation Expan-

sion

In this section we go through the derivation of the Minkowski Hamiltonian
given by Eq. (4.28). The Schrodinger equation in the Abraham representation
is given by Eq. (4.20)

i~ψ̇(r, t) =
∑
i

1

2mi

(
pi + di ×Bi +

Ei ×mi

c2

)2

ψ(r, t) + cSAbrψ(r, t). (A.1)

Here we have written

SAbr =

∫
E×H

c2
dV. (A.2)

ψ(r, t) = Ψ(r, t) exp

[
− i

~

∫ r

−∞
S(r′, t) · dr′

]
, (A.3)
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where S(r, t) ≡
∑

i (di ×Bi + ε0µ0Ei ×mi) This yields

i~Ψ̇ + Ψ

(
∂

∂t

∫ x

0

S dx′
)

= −~2(∇2Ψ) + 2i~(∇Ψ)SA + ΨS2 + i~Ψ(∇S)

−2i~(∇Ψ)S− i~Ψ(∇S)− 2ΨS2

−2i~(∇Ψ)(d×B)− i~Ψ(∇(d×B))− 2ΨS(d×B)

+Ψ
(
S2 + (d×B)2 + 2S(d×B)

)
−Ψ

∫
1

2
(D · E + H ·B) dV. (A.4)

Here we have omitted writing out the phase factor

exp

[
− i
~

∫ x

0

S dx′
]
, (A.5)

as it appears multiplying every term and will be factored out. Canceling terms
leaves us with

i~Ψ̇ + Ψ

(
∂

∂t

∫ x

0

S dx′
)

= −~2(∇2Ψ)− 2i~(∇Ψ)(d×B)− i~Ψ(∇(d×B))

+Ψ(d×B)2 −Ψ

∫
1

2
(D · E + H ·B) dV. (A.6)

Factoring terms, this can be rearranged into

i~Ψ̇ =

(
(P + d×B)2

2M
−
∫

1

2
(D · E + H ·B) dV − ∂

∂t

∫ x

0

S dx′

)
Ψ. (A.7)
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A.2 Appendix: The Göppert-Mayer Transfor-

mation

We begin with the minimal coupling Hamiltonian for a system of charges
interacting with an electromagnetic �eld

H(x, t) =
∑
j

1

2mj

[pj − qj A(0, t)]2 + Vc(x), (A.8)

where A(x, t) is the vector potential, ej is the charge, and Vc(x) is the scalar
potential energy of the system. In the long-wavelength approximation, we have
assumed the spatial variation of A(x, t) is negligible. We therefore choose the
location of the system of charges considered to be at x = 0 and set A(x, t) =
A(0, t). The corresponding Schrödinger equation for the minimal coupling
Hamiltonian is given by

i~ψ̇(x, t) =

[∑
j

1

2mj

[pj − qj A(0, t)]2 + Vc(x)

]
ψ(x, t). (A.9)

The unitary transformation responsible for giving rise to the electric dipole
interaction (direct coupling representation) is given by the Göppert-Mayer
transformation (GMT)

Θ(t) = exp

[
i

~
∑
j

qj rj ·A(0, t)

]
= exp

[
i

~
d ·A(0, t)

]
, (A.10)

where
d =

∑
j

ej rj. (A.11)

We rewrite the wave function ψ as

ψ(x, t) = Θ(t)Ψ(x, t) = exp

[
i

~
d ·A(0, t)

]
Ψ(x, t). (A.12)
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Substituting this into Eq. (A.9) yields This yields

i~Ψ̇(x, t)Θ(t) + Ψ(x, t)Θ(t) (d · E(0, t)) =

−Ψ(x, t)Θ(t)

(
i
∑
j

ej
2mjc

A(0, t)

)2

− ∇Ψ(x, t)Θ(t)

(
2i~
∑
j

ej
2mj

A(0, t)

)

− ~2∇2Ψ(x, t)Θ(t) + 2Ψ(x, t)Θ(t)

(
i
∑
j

ej
2mj

A(0, t)

)2

+ ∇Ψ(x, t)Θ(t)

(
2i~
∑
j

ej
2mj

A(0, t)

)

+ Ψ(x, t)Θ(t)

(
i
∑
j

ej
2mj

A(0, t)

)2

+ Ψ(x, t)Θ(t)Vc(x).

(A.13)

Where we have used

E(0, t) = −∂A(0, t)

∂t
. (A.14)

Canceling terms and rearranging leaves us with

i~Ψ̇(x, t) =

[
P2

2M
− d · E(0, t) + Vc(x)

]
Ψ(x, t). (A.15)

Where P =
∑

j pj and M =
∑

jmj Here we have arrived at the direct cou-
pling representation of the Hamiltonian. This Hamiltonian however, does not
include the radiation energy of the �elds themselves. Our treatment of the
minimal coupling Hamiltonian Eq. (A.9) may be extended further by includ-
ing the radiation energy of the �elds themselves

HR =
1

2

∫ (
ε0E

2(x, t) +
B2(x, t)

µ0

)
dV =

∑
j

~ωj
(
aj
† aj +

1

2

)
. (A.16)

The question then arises, how does the radiation Hamiltonian transform un-
der the Göppert-Mayer unitary transformation transformation? Clearly if the
�elds are treated classically, the GMT Eq. (A.10) will commute with the elec-
tric �eld. If however, we consider a quantized �eld, this is no longer true. In
order to determine how the �elds transform under a quantized �eld, we must
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promote the vector potential to an operator [91]

A(x, t) =
∑
j

Aωj
[
aj εje

i(kj ·x−ωt) + aj
† εje

−i(kj ·x−ωt)
]
, (A.17)

where ε is the polarization, and

Aωj =

[
~

2ε0L3ωj

] 1
2

. (A.18)

The transverse electric �eld in the Coulomb gauge is given by

E⊥(x, t) = i
∑
j,µ

Eωj
[
aj εje

i(kj ·x−ωt) − aj† εje−i(kj ·x−ωt)
]
, (A.19)

where

Eωj =

[
~ωj

2ε0L3

] 1
2

. (A.20)

From here it is necessary to determine the commutation relation between the
vector potential and electric �eld.

[A(x, t),E⊥(x′, t)] =

i~
2ε0L3

∑
j⊥,j

′
⊥

([
a†j, aj′

]
eikj′ ·x

′
e−ikj ·x

)
+

i~
2ε0L3

∑
j⊥,j

′
⊥

([
a†j′ , aj

]
eikj ·xe−ikj′ ·x

′
)

=

i~
2ε0L3

∑
j⊥

(
eikj ·(x−x

′) + e−ikj ·(x−x
′)
)
.

(A.21)

Where we have made use of the relation [aj, a
†
j′ ] = δj,j′ . In the summation, the

notation j⊥ indicates that we are taking the sum over the transverse modes.
We convert our sum into an integral through [? ]∑

k

→ L3

(2π)3

∫
d3k, (A.22)

and we make use of the transverse delta function

δ⊥(x− x′) =
1

(2π)3

∫
d3k⊥ e

ikj ·(x−x′). (A.23)
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Therefore we �nd

[A(x, t),E⊥(x′, t)] = −i~
ε0
δ⊥(x− x′). (A.24)

In order to determine how the electric �eld transforms under the GMT Θ(t)
we use the property that for any two operators A and B

exp (iA) B exp (−iA) = B + i[A,B] + ... (A.25)

Using Eq. (A.24) and Eq. (A.25) we �nd

Θ(t)E⊥(x, t)Θ†(t) = E⊥(x, t) +
1

ε0
d⊥(x, t) =

D(x, t)

ε0
. (A.26)

Where D is the displacement �eld. Note that for a neutral system ∇ ·D = 0
and therefore the displacement �eld is fully transverse which allows us to drop
the perpendicular su�x. It can easily be checked that

Θ(t)B(x, t)Θ†(t) = B(x, t), (A.27)

Θ(t)A(x, t)Θ†(t) = A(x, t), (A.28)

Θ(t)P(x, t)Θ†(t) = P(x, t). (A.29)

This allows us to deduce that

Θ(t)D(x, t)Θ†(t) = ε0E(x, t). (A.30)

We can now preform a generalized Göppert-Mayer transformation for the total
minimal coupling Hamiltonian

HMin = H0 +HR

=
∑
j

1

2mj

[pj − qj A(0, t)]2 + Vc(x)

+
1

2

∫ (
ε0E

2(x, t) +
B2(x, t)

µ0

)
dV. (A.31)

We begin with the Schrödinger equation

i~
∂

∂t
ψ = H ψ, (A.32)

and rewrite the wave function as

ψ = e
i
~d·AΦ. (A.33)
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This allows us to express the Schrödinger equation in terms of the wave func-
tion Φ

i~
∂

∂t
Φ = i~

∂

∂t

(
e
i
~d·Aψ

)
= i~e

i
~d·A

∂

∂t
ψ − e

i
~d·A

(
ḋ ·A + d · Ȧ

)
ψ

= e
i
~d·AH ψ − e

i
~d·A

(
ḋ ·A + d · E

)
ψ

= e
i
~d·AH e−

i
~d·AΦ− e

i
~d·A

(
ḋ ·A + d · E

)
e−

i
~d·AΦ.

(A.34)

The HamiltonianHMin transforms under the generalized GMT in the same way
that that it did when the �elds were considered classical, with the exception
that E→ D/ε0. Therefore under the generalized GMT, the minimal coupling
Hamiltonian Eq. (A.31) is transformed into the direct coupling Hamiltonian

Hdir =
P2

2M
− d ·D(0, t) + Vc

+
1

2

∫ (
D2(x, t)

ε0
+

B2(x, t)

µ0

)
dV.

(A.35)
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A.3 Appendix: Gauge Transformation - Direct

Coupling

In this section, we outline the derivation of the direct coupling Hamiltonian
through the use of the Göppert-Mayer gauge to �rst order in the polarization
term. This means we leave out the magnetization �eld. We begin with the
minimal coupling Lagrangian [91]

Lmin =
1

2

∑
n

mnṙ
2
n − Vc +

∑
n

[qnṙnA(rn, t)− qnU(rn, t)]

+
ε0
2

∫ [
Ȧ2(r, t)− c2 (∇×A(r, t))2

]
d3r. (A.36)

Where A and U are the vector and scalar potential for the external �elds, and
Vc is the Coulomb potential. The corresponding Hamiltonian is given by

Hmin =
∑
n

1

2mn

[pn − qnA(rn, t)]
2 + Vc +

∑
n

qnU(rn, t)

+
ε0
2

∫ [
Ȧ2(r, t)− c2 (∇×A(r, t))2

]
d3r. (A.37)

Here the conjugate momentum and conjugate �eld are given by

pn = mnṙn + qnA(rn, t), (A.38)

Π(r, t) = ε0Ȧ(r, t) = −ε0E(r, t). (A.39)

Let us now preform the following gauge transformation

A′(rn, t) = A(rn, t) +∇χ(rn, t), (A.40)

U ′(rn, t) = U(rn, t) +
∂

∂t
χ(rn, t). (A.41)

Substituting this into the minimal coupling Lagrangian Eq. (A.36), the trans-
formed Lagrangian becomes

Ldir =
1

2

∑
n

mnṙn − Vc +
∑
n

[qnṙnA
′(rn, t)− qnU ′(rn, t)]

+
ε0
2

∫ [
Ȧ2(r, t)− c2 (∇×A(r, t))2

]
d3r

= Lmin +
d

dt

[∑
n

qn χ(rn, t)

]
. (A.42)
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This shows that the gauge transformation generated by χ is equivalent to
adding

d

dt

[∑
n

qn χ(rn, t)

]
, (A.43)

to the Lagrangian. The direct coupling Lagrangian is obtained through the
Göppert-Mayer generator

χ(r, t) = −
∫

P⊥(r, t) ·A(r, t) d3r. (A.44)

Where
P(r) =

∑
n

qn(r−Rn)δ(r−Rn), (A.45)

is the electric polarization vector �eld. The transformed conjugate momentum
and conjugate �eld become

pn = mnṙ, (A.46)

Π(r, t) = ε0Ȧ(r, t)−P⊥(r, t) = −D(r, t). (A.47)

Where D is the displacement �eld. Note that for a neutral system ∇ ·D = 0
and therefore the displacement �eld is fully transverse which allows us to
drop the perpendicular su�x. From here we can construct the transformed
Hamiltonian

Hdir =
∑
n

pn · ṙn +

∫
Π(r, t) · Ȧ(x, t) d3r − Ldir

=
∑
n

1

2mn

p2
n + Vc −

1

ε0

∫
P⊥(r, t) ·D(r, t) d3r

+
ε0
2

∫ [
D2(r, t)− c2 (∇×A(r, t))2] d3r. (A.48)

This is the direct coupling Hamiltonian.
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A.4 Appendix: The Direct Coupling Lagrangian

This section follows Thirunamachandran's derivation [91]. The minimal cou-
pling Lagrangian for an atom interacting with an electromagnetic �eld is given
by

Lmin =
1

2

∑
n

mnṙ
2
n +

∫
J⊥(r) ·A(r) d3r

+
ε0
2

∫ [
Ȧ2(r, t)− c2 (∇×A(r, t))2

]
d3r. (A.49)

Here J⊥ is the perpendicular component of the current density. In terms of
elementary charges e, the current density can be written as

J(r) = e
∑
n

ẋnδ(r− xn). (A.50)

This can then be Taylor expanded about some point R:

Ji(r) = e
∑
n

ẋn,i

[
1− (xn −R)j∇j +

1

2
(xn −R)j(xn −R)k∇j∇k...

]
δ(r−R).

(A.51)
We can also Taylor expand the charge density ρ around R

ρ(r) = e
∑
n

δ(r−xn) = e
∑
n

[
1− (xn −R)j∇j +

1

2
(xn −R)j(xn −R)k∇j∇k...

]
δ(r−R).

(A.52)
This allows us to write the charge density in terms of the net charge density
ρnet(r) = e

∑
n δ(r−R) as

ρ(r) = e
∑
n

δ(r− xn) = ρnet −∇ ·P(r), (A.53)

where we have de�ned the electric polarization �eld P as

P(r) = e
∑
n

(xn−R)

[
1− 1

2
(xn −R)j∇j +

1

6
(xn −R)j(xn −R)k∇j∇k...

]
δ(r−R).

(A.54)
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Now the time derivative of the i'th component of the electric polarization �eld
is given by

dPi(r)

dt
= e

∑
n

ẋi,n

[
1− 1

2
(xn −R)j∇j +

1

6
(xn −R)j(xn −R)k∇j∇k...

]
δ(r−R)

− e
∑
n

(xn −R)iẋj,n∇j

[
1

2
− 1

3
(xn −R)k∇k...

]
δ(r−R). (A.55)

Using Eq. (A.51) and Eq. (A.55) we then �nd

Ji(r)−dPi(r)

dt
= e

∑
n

(−ẋn,i(xn −R)j∇j + ẋn,j(xn −R)i∇j)

(
1

2
− 1

6
(xn −R)k∇k + ...

)
δ(r−R).

(A.56)
This can be rewritten as

Ji(r)− dPi(r)

dt
= [∇×M(r)]i , (A.57)

where we have de�ned the magnetization M as

Mi(r) = e
∑
n

[(xn −R)× ẋn]i

[
1

2
− 1

3
(xn −R)j∇j + ...

]
δ(r−R). (A.58)

We are now ready to preform a gauge transformation on the minimal coupling
Lagrangian by adding a total time derivative (which leaves the equations of
motion the same)

Ldir = Lmin −
d

dt

∫
P⊥(r) ·A(r) d3r. (A.59)

Expanding out the gauge transformed Lagrangian:

Ldir = Lmin −
∫

Ṗ⊥(r) ·A(r) d3r−
∫

P⊥(r) · Ȧ(r) d3r. (A.60)

Using Eq. (A.57) and the de�nition of the minimal coupling Lagrangian Eq.
(A.49) yields

Ldir =
1

2

∑
n

mnṙ
2
n −

∫
P⊥(r) · Ȧ(r) d3r +

∫
(∇×M(r)) ·A(r) d3r

+
ε0
2

∫ [
Ȧ2(r, t)− c2 (∇×A(r, t))2

]
d3r. (A.61)

This is the direct coupling Lagrangian.
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Appendix B
Appendix to Chapter 5

In this appendix I present calculations pertaining to chapter 5.

B.1 Abraham Force in a Cavity

In this section we derive the force contribution due to the poynting component
of the Maxwell force equation Eq. (5.19)

Fpoynting = − ∂

∂t

∫ L2

L1

(ε0E×B) . (B.1)

Here we follow a strategy similar to that used in deriving the stress-tensor
force.

Fpoynting = − ε0
2c

∂

∂t

(
|ELm|2 L1 + |ERm|2 L2

)
= − ∂

∂t

ε0 |ERm|2

2c

[
|ELm|2

|ERm|2
L+ ∆L

2
+
L−∆L

2

]
. (B.2)

We have introduced a factor of 1/2 here due to integrating the poynting vector.
We now make use of the approximation

|ELm|2

|ERm|2
=

∣∣∣∣sin(kmL2)

sin(kmL1)

∣∣∣∣2 ≈ ε0L
amπ
− 1

2
sin(mπ4L

L
)

ε0L
amπ

+ 1
2

sin(mπ4L
L

)
. (B.3)
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Substituting this into Eq. (B.2) we obtain

Fpoynting = − ∂

∂t

(
ε0 |ERm|2

2c

(
ε0L
amπ
− 1

2
sin(mπ4L

L
)
) (

L+∆L
2

)
+
(
ε0L
amπ

+ 1
2

sin(mπ4L
L

)
) (

L−∆L
2

)
ε0L
amπ
− 1

2
sin(mπ4L

L
)

)
.

(B.4)
This can be simpli�ed by noting that the �rst term in the denominator domi-
nates the second term for small a. This then yields

Fpoynting = − ∂

∂t

ε0 |ERm|2

2c

[
L− amπ∆L

2ε0L
sin(mπ

4L
L

)

]
. (B.5)

The �rst term is simply the length of the cavity L and drops out since it is
constant in time. At this point we make the approximation that the energy

ε0 |ERmL|2

2
, (B.6)

is approximately constant for small ∆L, and hence we can write it simply is
Etotal. By dividing by the total number of photons

nphoton =
Etotal

~ck0

, (B.7)

we obtain the force per unit area per photon due to the poynting term

Fpoynting = ~k0
∂

∂t

[
amπ∆L

2ε0L2
sin(mπ

4L
L

)

]
. (B.8)

Expanding this to second order about ∆L = 0 then yields the �nal result

Fpoynting =
∂

∂t

(
~k0

am2π2

2εL3
(∆L)2

)
. (B.9)
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B.2 Microscopic Investigations

Here, we connect the microscopic description of optical forces on atoms [65]
with the classical derivation obtained in Section 5.4. This relationship will
link the δ-function factor a in Eq. (5.1) with the polarizability of an atom. We
begin by examining the force derived using the Maxwell stress tensor. Suppose
we have a dielectric slab, which we approximate with a δ-function, interacting
with two opposing plane waves. The stress-tensor force contribution is given
by

F =
ε0

2

(
|E1|2 + |E2|2 − |E3|2 − |E4|2

)
. (B.10)

Let us rewrite the outgoing �elds E1 and E4 as a linear combination of the
incoming �elds E2 = Elefte

ikx+iφ and E3 = Erighte
−ikx

E1 = rE2 + tE3, (B.11)

E4 = tE2 + rE3, (B.12)

where the re�ectivity r and the transmission t for the δ-model are given
by [88]

r =
i ka

2ε0

1− ika
2ε0

, (B.13)

t =
1

1− ika
2ε0

. (B.14)

Substituting these equations into Eq. (B.10) yields
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F =

ε0
2

∣∣∣ ka2ε0

∣∣∣2∣∣∣1− ika
2ε0

∣∣∣2 |Eleft|2 +
ε0
2∣∣∣1− ika
2ε0

∣∣∣2 |Eright|2

+
i ε0ka

4ε0∣∣∣1− ika
2ε0

∣∣∣2EleftElefte
2ikx+iφ

−
ika
∗

4∣∣∣1− ika
2ε0

∣∣∣2EleftErighte
−2ikx−iφ

+
ε0

2
|Eleft|2 −

ε0

2
|Eright|2 −

ε0
2

∣∣∣ ka2ε0

∣∣∣2∣∣∣1− ika
2ε0

∣∣∣2 |Eright|2

−
ε0
2∣∣∣1− ika
2ε0

∣∣∣2 |Eleft|2 −
ika

4∣∣∣1− ika
2ε0

∣∣∣2EleftErighte
−2ikx−iφ

+
ika
∗

4∣∣∣1− ika
2ε0

∣∣∣2EleftErighte
2ikx+iφ. (B.15)

Here a is a complex parameter which we break up in its real and imaginary
components a = a1 + ia2. Simplifying the expression above yields

F = −ka1EleftEright sin (2kx+ φ)∣∣∣1− ika
2ε0

∣∣∣2
+

ka2

2

(
|Eleft|2 − |Eright|2

)∣∣∣1− ika
2ε0

∣∣∣2
+

ε0

∣∣∣ ka2ε0

∣∣∣2 (|Eleft|2 − |Eright|2
)

∣∣∣1− ika
2ε0

∣∣∣2 . (B.16)

where φ is the phase di�erence between the two incoming waves at x = 0.
Let us examine Eq. (B.16) term by term to gain a better understanding of what
each term represents. The �rst term, which we label as F1, is the reactive part
of the force more commonly known as the dipole force. To see this let us
consider the standard reactive force on an atom as given by Cohen-Tannoudji
[65] for a �eld of the form E(x) = Elefte

ikx+iφ + Erighte
−ikx
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Freactive = −~∆

4

−→
∇Ω2

Γ2

4
+ ∆2 + Ω2

2

=
1

4
α1∇E2. (B.17)

Here Ω is the atomic Rabi frequency, Γ is the spontaneous decay rate, d is
the dipole coherence, and ∆ is the detuning. We also introduce α1 as the real
component of the atomic polarizibility given by

α =
−∆ |d|2

~
[

Γ2

4
+ ∆2 + Ω2

2

] ≈ − |d|2
~∆

. (B.18)

One �nds that for E(x) = Elefte
ikx+iφ + Erighte

−ikx

∇E2 = −4kEleftEright sin (2kx+ φ) . (B.19)

Substituting this back into Eq. (B.17) we get

Freactive = −αkEleftEright sin (2kx+ φ) . (B.20)

We now compare Eq. (B.20) to the �rst term F1 of Eq. (B.16). If we are
considering a single atom in the dispersive regime, then a may be assumed
very small. We may therefore approximate F1 to �rst order in a

F1 ≈ −a1EleftEright sin (2kx+ φ) . (B.21)

Comparing Eq. (B.20) with Eq. (B.21) we see that for an atom, α1 = a1,
and that indeed F1 is the reactive component of the optical force.

Let us now return to Eq. (B.16) and consider the second term F2 in the
equation. This term can be shown to be nothing more than the dispersive
force. Following a similar scheme to that used above we have

F2 =
1
2
ka2

(
|Eleft|2 − |Eright|2

)∣∣1− ikα
2

∣∣2 . (B.22)

For small a we approximate F2 to �rst order

F2 ≈
1

2
ka2

(
|Eleft|2 − |Eright|2

)
. (B.23)

We now wish to compare this to the dispersive force as given by Cohen-
Tannoudji [65]. The dispersive force felt by an atom under the in�uence of a
�eld of the form E(x) = Elefte

ikx+iφ + Erighte
−ikx is given by
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Figure B.1: This plot compares the complete force obtained using the
Maxwell stress tensor (red) against the reactive component - the �rst term
F1 of Eq. (B.16) (blue). Here α = 10−8 was used. It is seen that for small α,
the other two components of Eq. (B.16) may be neglected.
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Fdispersivee = −~Γ
(−→
∇φ(−→r )

) Ω2

Γ2 + 4∆2 + 2Ω2

=
(
|Eleft|2 − |Eright|2

) k |d|2 Γ

4~∆2
. (B.24)

The imaginary component of the polarizibility of an atom is [65]

α2 =
Γ
2
|d|2

~
[

Γ2

4
+ ∆2 + Ω2

2

] ≈ Γd2

2~∆2
. (B.25)

Thus we can rewrite the dispersive force as

Fdispersive =
α2k

2

(
|Eleft|2 − |Eright|2

)
. (B.26)

Comparing Eq. (B.26) with Eq. (B.23) and see that α2 = a2, consistent
with what we found for the reactive component of the force. Now the third
component F3 of Eq. (B.16) is interpreted as the radiation pressure due to
incoherent scattering. To see this we note that

R = |r|2 =

∣∣ka
2ε

∣∣2∣∣1− ika
2ε

∣∣2 . (B.27)

Comparing the coe�cient in Eq. (B.16) with Eq. (B.27) we see that indeed

F3 = 2R
(
|Eleft|2 − |Eright|2

)
. (B.28)

This is a second order e�ect in a which is why it is neglected in the con-
ventional optical force on an atom. For higher densities however, it dominates
F1 and F2 which explains why the radiative pressure equation of classical elec-
trodynamics [70] agrees well for high density objects such as mirrors.
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