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Abstract

The Summary Receiver Operating Characteristic (SROC) curve is a method used

to summarize the performance of a diagnostic test using data from a meta-analysis,

and the Area Under the SROC Curve (AUC) is a measure of the performance of a

diagnostic test. The Partial Area Under the SROC Curve (partial AUC) is some-

times used instead of the AUC, to include only the clinically relevant part. Several

truncation methods are used on simulated data to determine the effect of the trunca-

tion methods on estimating the properties of partial AUC - mean, bias and standard

deviation. Also, when part of the data is truncated before fitting the SROC curve,

we examined how the properties of the SROC parameters are affected by the choice

of truncation method. The results show that the truncation methods do affect the

properties of partial AUC and the estimated SROC parameters. First of all, the

estimated values of the partial AUC, with or without scaling, are increased as the

value of truncation point increases. The standard deviation of the partial AUC has

an increasing relationship with the value of truncation point, and the standard devi-

ation of the scaled partial AUC is in contrast. Truncating a certain percentage of the

data performs worse than truncating a part of the SROC curve with respect to the

accuracy of estimation. As for estimating the SROC curve parameters a and b, the

truncation method which keeps more studies gives more accurate estimation.
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Notation and abbreviations

SROC curve...Summary receiver operating characteristic curve

AUC...Area under the SROC curve

TPR...true positive rate

FPR...false positive rate
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under method B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.78 Experiment 9 - Boxplot showing the distribution of b̂ (heterogeneity)

under method B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.79 Experiment 9 - Boxplot showing the distribution of ̂AUC∗
0,s under

method B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.80 Experiment 9 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) un-

der method B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xviii



Chapter 1

Introduction

The diagnosis for a disease can be represented in a two-by-two table, where one di-

rection is the true disease stage, which could be a case or a non-case, and the other

direction is the test result - positive or negative (Walter, 2002).

Table 1.1: Two-by-Two Contingency Table.
Case Non-case

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)
Column Total n1=TP+FN n2=FP+TN

The ratio of the number of true positive and the number of cases is defined as

the true positive rate (TPR) or sensitivity. The ratio of the number of false positive

and the number of non-cases is defined as the false positive rate (FPR), which is

equivalent to 1-specificity.
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TPR =
TP

n1

FPR =
FP

n2

(1.1)

The test result being positive (having the disease) or negative (not having the

disease) is determined by the threshold. The threshold can be a numeric value, like

the blood pressure. One doctor might diagnose the patients as having high blood

pressure if the systolic pressure is greater than 140 mmHg, while another doctor may

use 150 mmHg as the threshold. The threshold can also be a personal judgement, like

a diagnosis of a dermatosis. Different doctors may make different judgements based

on their experience.

Making wrong diagnosis could cause severe results. Giving a non-case a positive

test result, which is false positive, will lead to a second test or a non-necessary surgery

and treatment. However, the patient who has a disease being tested as negative (false

negative) might miss the best treatment time. Our focus is to reduce the mistakes in

diagnosis. In other words, we are trying to get as high TPR as possible while keep-

ing the FPR to a low level. Then, the Summary Receiver Operating Characteristic

(SROC) curve is introduced to summarize the relationship between the TPR and the

FPR (Walter, 2005).
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1.1 Area Under the SROC Curve

The Summary Receiver Operating Characteristic (SROC) curve is a method used

to summarize the performance of a diagnostic test using data from a meta-analysis

(Irwig et al., 1993). On the SROC curve, each point comes from a separate study,

and different thresholds may have been applied in each study. Therefore, higher true

positive rate (TPR) values do not always associate with higher false positive rate

(FPR) values. Then the SROC curve illustrates the relationship between the TPR

and the FPR across studies. The SROC curve can be fitted by the model proposed

by Moses et al. (Moses and Shapiro, 1993).

First, define

D = ln

 TPR

1− TPR

− ln

 FPR

1− FPR

 ,

S = ln

 TPR

1− TPR

 + ln

 FPR

1− FPR

 .

(1.2)

The diagnostic odds ratio is the ratio between TPR/(1-TPR) and FPR/(1-FPR),

then the diagnostic log-odds ratio is equivalent to D. The value of S increases as the

product of TPR and FPR increases. For a single study, when the diagnostic threshold

changes, the TPR and the FPR change monotonically. Therefore, S can be considered

as a measure of the threshold. Estimates of D and S are calculated for each study,

and a straight line can be fitted by

D = a+ bS (1.3)
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using simple linear regression.

If b ≈ 0, i.e. the value of D does not change with the change of S, or equivalently

the log-odds ratio, ln(OR) does not change with the threshold, then the studies are

called homogeneous. Otherwise, they are heterogeneous.

TPR can be written as a function of FPR,

TPR =
exp( a

1−b
)( FPR

1−FPR
)(1+b)/(1−b)

1 + exp( a
1−b

)( FPR
1−FPR

)(1+b)/(1−b)
. (1.4)

The Area Under the Curve (AUC) is achieved by,

AUC =

∫ 1

0

exp( a
1−b

)( x
1−x

)(1+b)/(1−b)

1 + exp( a
1−b

)( x
1−x

)(1+b)/(1−b)
dx. (1.5)

The AUC is a measure of the overall performance of a test. AUC close to 1 indicates

a test that discriminates most cases and non-cases correctly. The integration in (1.5)

has no closed form.

1.2 Motivation and Partial Area Under the SROC

Curve

In disease screening, high FPR corresponds to a large proportion of misclassifying

non-cases as cases, and it will lead to a second test for them, which causes waste of

medical resources. Therefore, the right-hand part of the SROC curve, where the FPR
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is particularly large, is considered clinically irrelevant.

As an alternative measure to the full AUC (1.5), the partial area under the SROC

curve (partial AUC) is the area of a partial region under the SROC curve. This region

could be where data have been observed, or restricted by the range of TPR or FPR

which is clinically relevant. The partial AUC is denoted as AUCrs.

AUCrs =

∫ s

r

exp( a
1−b

)( x
1−x

)(1+b)/(1−b)

1 + exp( a
1−b

)( x
1−x

)(1+b)/(1−b)
dx. (1.6)

var( ̂AUCrs) ≈

∂AUC

∂a


2

var(â) +

∂AUC

∂b


2

var(b̂)+

2

∂AUC

∂a


∂AUC

∂b

 cov(â, b̂).

(1.7)

Considering the clinically relevant area of the SROC curve, the partial AUC is

calculated by taking the integration from 0 (r = 0) to a truncation point (s) defined

using various truncation methods. Figure 1.1 shows the full AUC and AUC0,0.2. The

maximum of the AUC is 1, while the maximum of the AUC0s is s. In order to com-

pare the truncation methods without the effect of s, the scaled partial AUC is defined

as,

AUC∗
0s =

AUC0s

s
. (1.8)
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Figure 1.1: Comparison of the full AUC and the partial AUC.

In his paper (Walter, 2005), Walter discussed the numerical evaluations of the par-

tial AUC and the scaled partial AUC, and their standard deviations. It was shown

that when taking odds ratio to be 10, as the range restriction (s) becomes smaller,

the values of the partial AUC are reduced; additionally, the effect of heterogeneity

becomes more evident. The values of partial AUC are decreasing as b changes from

-0.4 to 0.4. Under scaling, the decreasing trend of the partial AUC as b increasing is

more dramatic.

Concerning the standard error of partial AUC, assuming that SE[ln(OR)] = 1 and

ignoring the terms of var(b) and cov(a, b) for simplicity, the standard error of partial

AUC is increasing and the standard error of the scaled partial AUC is decreasing as

s increases.

This thesis explores the properties of the partial AUC and the scaled partial AUC
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with the method of simulation. In this thesis, the properties of partial AUC are com-

pared between alternative truncation methods. The mean and standard deviation

of partial AUC are estimated by the sample mean and sample standard deviation,

and the bias is the difference between the sample mean and the true value which is

known. Additionally, the bias and the standard deviation for estimating parameters

of the SROC curve, which are ln(OR) := a and heterogeneity := b, are also compared.

1.3 Objective

Each dataset consists of 1,000 groups of simulated clinical data from the same pro-

cedure which will be discussed in the next chapter. Each group, or say, replication,

containing ten studies, will be used to generate an SROC curve. The truncation

methods applied in this thesis are classified into two types.

One type of the method, called method A, is executed by fitting the SROC curve

then truncating part of the curve. The SROC curve is estimated from the full data

using the Moses's model, then it is truncated by eight methods, denoted as A-1, A-2

till A-8. The partial AUC is calculated by equation (1.6). The bias and the standard

deviation of the partial AUC can be obtained by replicating this process 1000 times,

then the properties of the estimated partial AUC can be compared between methods.

The other type of method, called method B, is truncating part of the data then

fitting the SROC curve. Part of data is excluded via eight truncation methods,

denoted as B-1, B-2 till B-8, then the SROC curve is fitted based on the remaining
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part of the data. Therefore, the SROC curve could be different under each truncation

method. As well as the properties of partial AUC, the accuracy of estimating a and b

are also discussed in order to reveal the effect of excluding data on fitting the SROC

curve.
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Chapter 2

Methodology

2.1 Data Simulation

The general process of simulating diagnostic data is by creating 10 pairs of TPR and

FPR for 10 studies.

2.1.1 Simulation Settings

In the homogeneous case, the odds ratio (OR) is fixed between studies. OR is assigned

to be 2, 5, 10 or 20, and the corresponding a0 = ln(OR) are 0.693, 1.609, 2.303, 2.996.

The number of studies in each replication is set to be 10. 10 random variables are

generated from a certain distribution as the values of specificity (s2) for each study.

Since the range of specificity is (0,1) and a low value of specificity (corresponding to

a high FPR) is clinically irrelevant, possible distributions are required to be in the

range of (0,1) and left-skewed. Two distributions are chosen to simulate the data.
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One of them is the mixed uniform, which is a mixture of two uniform distributions

- 8 random variables from Unif (0.5, 1), and 2 random variables from Unif (0, 0.5).

The other one is a beta distribution with the shape parameters α = 5 and β = 2.

Additionally, a uniform distribution, Unif (0,1), is used in one experiment to check

whether the performance of truncation methods is affected when the values of speci-

ficity are evenly distributed.

Figure 2.1: Plot of Beta (5,2) distribution.

The numbers of cases and non-cases are set to be n1 and n2 respectively, where

n1 and n2 could be fixed or from a certain distribution.

The choices of the settings are unlimited, and only a limited number of them can

be investigated in this thesis. Table 2.1 lists the values that have been explored in
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this thesis. The number of cases, number of non-cases, distribution of specificity, a

(log-odds ratio) and b (heterogeneity) can be considered as the control variables.

Table 2.1: List of the simulation settings.
Expe-
riment

n1 (Number
of the cases)

n2 (Number of
the non-cases)

Distribution of
specificity

a0 (log-odds
ratio)

b0
(heterogeneity)

1 50 200 Mixed-uniform ln2 0
2 125 125 Mixed-uniform ln2 0
3 25 225 Mixed-uniform ln2 0
4 50 200 Mixed-uniform ln5 0
5 50 200 Mixed-uniform ln10 0
6 50 200 Mixed-uniform ln20 0
7 50 200 Beta (5,2) ln2 0
8 50 200 Uniform ln2 0
9 Unif(40,60) Unif(160,240) Mixed-uniform ln2 0
10 50 200 Mixed-uniform ln2 various values 6=0

The first experiment is defined as the base setting. In each experiments from 2

to 10, one of the control variables is changed to discover how these variables affect

the performance of the truncation methods. Experiments 1, 2 and 3 vary in the

ratio of cases versus non-cases. Experiments 1, 4, 5 and 6 have increasing log-odds

ratio. Three different distributions of specificity are applied in Experiments 1, 7 and

8. Experiment 9 involves variability of numbers of cases and non-cases. Experiment

10 tests the heterogeneous studies.

The number of replications is fixed to be 1000, which is confirmed to be suffi-

ciently large to give a satisfactory precision in estimating the partial AUC and the

parameters a and b. Also, all experiments have 10 studies per replication.
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2.1.2 Simulation Process

For each value of the specificity (s2) generated from the selected distribution, the

corresponding value of the sensitivity (s1) for each study is calculated by the following

formula. The formula is from the relationship between the TPR and the FPR (1.4),

and s1 = TPR, s2 = 1-FPR.

s1 =
exp( a0

1−b0
)(1−s2

s2
)(1+b0)/(1−b0)

1 + exp( a0
1−b0

)(1−s2
s2

)(1+b0)/(1−b0)
(2.1)

For homogeneous case (Experiment 1 to Experiment 9), (2.1) can be simplified as

s1 =
exp(a0)(

1−s2
s2

)

1 + exp(a0)(
1−s2
s2

)
. (2.2)

The next step is to generate 10 pairs of numbers of true positive (TP) and numbers

of false positive (FP) from a binomial distribution.

TP ∼ Binomial(n1, s1)

n2 − FP ∼ Binomial(n2, s2)

(2.3)

In case of 0 appearing in any cell in the 2-by-2 contingency table, then 0.5 correc-

tion (Fleiss et al., 2003) is applied. Therefore, one two-by-two table is created for

each study. Then, 10 pairs of the empirical true positive rate (TPR) and the empir-

ical false positive rate (FPR) can be calculated from this table, displayed in Table 2.2.

Then, n pairs of empirical true positive rate (TPR) and empirical false positive

rate (FPR) can be calculated from this table.
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Table 2.2: 2 by 2 table for a single study.
cases non-cases

positive TP+0.5 FP+0.5
negative n1-TP+0.5 n2-FP+0.5

TPR = (TP + 0.5)/(n1 + 1)

FPR = (FP + 0.5)/(n2 + 1)

(2.4)

The above process is replicated 1000 times, and each replication contains 10 stud-

ies, which is corresponding to 10 pairs of TPR and FPR. This forms a 2000 × 10

matrix. Each set of the data varies in n1, n2, the distribution of specificity and the

values of a0 and b0.

2.2 Truncation

For one replication in the simulated data, the SROC curve is generated by the model

introduced in Chapter 1. Then the AUC is calculated by (1.5). The partial AUC can

be calculated by one of the following methods.

One type of truncation method is fitting the SROC curve by ten pairs of TPR and

FPR, then truncating part of the curve. This type is named method A. The SROC

curve can be truncated at a fixed point s, and s is between 0 and 1. The value of s

is selected to be 0.1 (A-1), 0.2 (A-2), 0.3 (A-3), 0.4 (A-4), 0.6 (A-5) and 0.8 (A-6).

(Inside the brackets are the names of the specific methods within method A.) Then

the corresponding partial AUC is the partial area under the SROC curve in the range

13
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0 to s. The SROC curve can also be truncated so that it covers a certain percentage

of the data. Sorting the studies with increasing FPR, then p% of the data with the

highest FPR is excluded. p is selected to be 10 (A-7), 20 (A-8). Since each study

within a replication has the same number of cases and non-cases, and there are 10

studies in each replication, then the partial AUC for A-7 is the partial area under

the SROC curve in the range 0 to the second highest FPR, and the partial AUC for

A-8 is the partial area under the SROC curve in the range 0 to the third highest FPR.

Figure 2.2: Sketch of truncation method A.

Figure 2.2 shows truncation method A, and the curve is fitted using all 10 points.

The left vertical dotdash line shows truncating at s = 0.4 (A-4), and the right vertical

dashed line shows truncating at p = 10 (A-7).
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Since each method of type A is truncating on the same SROC curve, the trunca-

tion method would not affect the estimation of parameters a and b. For truncation

methods A-1 through A-6, the partial AUC is recorded for each replication. For trun-

cation methods A-7 and A-8, the partial AUC and the truncation point (the largest

FPR in remaining studies) are recorded.

The other type (type B) of truncation method is excluding part of the data, then

fitting the SROC curve on the remaining data. This method can also be truncated

at a fixed value or a fixed percentage. For each fixed value s. 0.1 (B-1), 0.2 (B-2), 0.3

(B-3), 0.4 (B-4), 0.6 (B-5) and 0.8 (B-6), if there are more than half of the studies,

which are five studies, have FPRs in the range of (0, s), then an SROC curve is fitted

by the studies in this range, and the partial AUC is the integral of this curve from 0

to s. Otherwise, this replication is considered to be invalid under this method. For

each percentage p, 10 (B-7) or 20 (B-8), p% of the data is excluded, then an SROC

curve is fitted by the remaining studies, and the partial AUC is the integral of this

curve from 0 to the highest FPR after excluding p% of the data.
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Figure 2.3: Sketch of truncation method B.

Figure 2.3 shows method B-4, as an example. Six out of ten studies have an

FPR in the range (0,0.4), then it is valid to be truncated. Studies with an FPR

greater than 0.4 are excluded (circles on Figure 2.3), and the SROC curve is fitted

by those six studies with FPR less or equal to 0.4 (solid dots). Even though the

data is restricted in the range (0,0.4), the fitted SROC curve is defined on the do-

main (0,1). Here, only part of the SROC curve is plotted, emphasizing that it is

fitted by only the red dots. Also, the part of SROC curve not shown is irrelevant to

calculate the partial AUC. For the same data shown in Figure 2.3, it is invalid for

method B-2; since there are only two studies of which the FPR is in the range (0, 0.2).

For each method of type B, the remaining data could be different. Therefore, a

new SROC curve is fitted for each method. Then the estimation of parameters a and

16



M.Sc. Thesis - Jing Cai McMaster - Mathematics & Statistics

b is affected by the truncation method.

In summary, the truncation method can be categorized as in Table 2.3.

Table 2.3: Summary of the truncation methods.

fixed point truncation
fixed percentage
truncation

Method A (fitting the SROC
curve with full data)

A-1, A-2, A-3, A-4, A-5, A-6 A-7, A-8

Method B (fitting the SROC
curve with part of the data)

B-1, B-2, B-3, B-4, B-5, B-6 B-7, B-8

2.3 Truncation Methods Comparison

The truncation methods are compared in the following aspects. The first one is the

theoretical value of the partial AUC, which is calculated by (1.5), and the values of

a and b are from Table 2.1. For the fixed point truncation methods (A-1 to A-6 and

B-1 to B-6), the theoretical values are the same for every replication and the average

in each method, and the upper bound of the integration is the corresponding s. For

the fixed percentage truncation methods (A-7, A-8, B-7 and B-8), s changes in each

replication, hence the theoretical values are different for each replication. The theo-

retical value for each replication is defined as the integration of (1.6) over 0 to its own

truncation point s. The theoretical values of the partial AUC for these four methods

(generally, not for single replication) were considered to use the expectation of s as

the upper bound of integration in (1.5). This works for certain situations. For ex-

amples, 10 studies with specificities generated from beta distribution, each study has
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the same numbers of cases and non-cases. When excluding 10% of the data, the ex-

pectation of s is the expectation of the second largest values in these 10 Beta random

variables, which can be obtained by the order statistics. However, the expectation of

s cannot always be expressed numerically. Therefore, it requires a definition of the

theoretical value of partial AUC which works in any situation. The theoretical value

of partial AUC for fixed percentage truncation methods is defined to be the average

of the theoretical values for each replication.

The second aspect is the distribution and the bias of the partial AUC for each

method. Two important statistics are the sample mean and the standard deviation to

explore the distribution of the partial AUC. The bias of the partial AUC is obtained

by subtracting the theoretical value from the sample mean. Also, the estimated values

of the partial AUC from 1000 replications are plotted with a boxplot. 1000 biases for

each replication, which are the differences between the estimated partial AUC and its

own theoretical value, are also shown in boxplots, so that the effect of the truncation

method on the bias of estimating partial AUC can be compared without the effect of

the true value.

Another aspect can be observed uniquely for method B. In each method in the

type B method, the SROC curve for each replication is generated based on the trun-

cated data. The essential parameters for the SROC curve are a (log-odds ratio) and b

(heterogeneity), which are the coefficients of the linear regression in Moses model. In

order to have enough data to generate an SROC curve, a valid replication is defined
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as the following. In one replication, the number of studies with an FPR in the trun-

cation range (0, s) has to be no less than a half of the number of total studies. The

valid number is expected to increase as s increases and has maximum value 1,000.

The valid number for A-7 and A-8 is 1,000 for sure. Since the data being excluded is

fixed to be 20% or 10%, and there are 10 studies with the same number of cases and

non-cases for every replication, then the number of studies in the truncation range

are correspondingly to be eight or nine. Only valid replications were processed to the

following steps. An SROC curve is generated for every method in every replication.

Therefore, the estimated parameter a and b are different between methods within one

replication, and the effect of truncation method to estimating a and b also need to be

compared. Here, similar statistics are applied as for the partial AUC, sample mean,

bias, standard deviation and boxplot for visualization.

Let AUC∗
0s be the partial AUC scaled by its integration range (0,s),

̂AUC∗
0s =

ˆAUC0s

s− 0
=

ˆAUC0s

s
. (2.5)

For methods A-1 through A-6, mean of the scaled partial AUC equals the scaled

mean of the partial AUC since the truncation range s is fixed in each replication.

The theoretical value for AUC∗
0s is the theoretical value for AUC0s divided by its

corresponding truncation point,

AUC∗
0s =

AUC0,s

s− 0
=

∫ s

0

exp(a)( x
1−x

)

1 + exp(a)( x
1−x

)
dx

s
. (2.6)
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The theoretical values of scaled partial AUC for A-7, A-8, B-7 and B-8 are the

averaged ratio of the theoretical partial AUC for each replication and its corresponding

truncation point.

20



Chapter 3

Results

3.1 Truncating on the Base Setting

Define the base setting (Experiment 1 in Table 2.1) to be

• studies per replication - 10

• number of cases in each study - 50

• number of non-cases in each study - 200

• values of specificity follows mixed uniform distribution

• a = ln 2

• b = 0

3.1.1 ̂AUC0s Under Method A

In table 3.1, column AUC refers to the full AUC, which can be considered as a partial

AUC with range 0 to 1; “p1” refers to the partial AUC under truncation method A-1,
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and “p2” refers to the partial AUC under truncation method A-2 and so on. The

theoretical values in the first row are calculated by taking integration of the theoret-

ical function (3.1) from 0 to s for p1 through p6.

̂AUC∗
0s =

̂AUC0s

s− 0
=

̂AUC0s

s
. (3.1)

The row mean are the average partial AUC over 1000 replications. Bias is the

difference between the mean and theoretical value, and SD is the standard deviation

of the partial AUC.

Table 3.1: Properties of ̂AUC0s under method A.
p1 p2 p3 p4 p5 p6 AUC p7 p8

s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.316 0.162
Mean 0.010 0.035 0.075 0.127 0.259 0.423 0.612 0.315 0.161
Bias (×10−3) 0.169 0.038 -0.199 -0.419 -0.803 -1.363 -2.009 -1.167 -0.627
SD (×10−2) 0.274 0.649 0.968 1.219 1.646 2.071 2.316 10.069 3.492
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Figure 3.1: Boxplot showing the distribution of ̂AUC0s under method A.

Table 3.1 shows that the mean of partial AUC increases and the standard devi-

ation increases as s increases (Methods A-1 to A-6 and full AUC). Figure 3.1 is the

boxplot of ̂AUC0s under method A, where the middle line in each box is the median

and the range of box is the first quartile to the third quartile. Table 3.1 and Figure

3.1 show similar pattern of how the partial AUC changes with a fixed truncation

point. For methods A-7 and A-8, the truncation point in each replication varies,

which results a greater standard deviation.
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Figure 3.2: Boxplot showing the distribution of bias ( ̂AUC0s) under method A.

From Table 3.1 and Figure 3.2, bias ( ̂AUC0s) under methods A-1 through A-6

is approximately centered at 0, which implies that the simulation process estimates

partial AUC is estimated unbiasedly in the fixed point truncation methods. Consid-

ering the absolute values of bias for method A-7 and A-8, they are not significantly

larger than the absolute values of bias for method A-1 to A-6. However, from Figure

3.2, the differences between ̂AUC0s and AUC0s are not symmetrically distributed for

method A-7. The range of the bias is wider than the range for A-8, and the range

for A-8 is greater than the range for other methods. Therefore, truncating at a fixed

point of the SROC curve performs better than truncating a fixed percentage of the

data with respect to an unbiased and precise estimate.
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3.1.2 ̂AUC∗0s Under Method A

AUC∗
0s is the partial AUC scaled by its integration range (0, s), as shown in (2.4). In

this section, it is examined that the effect of the truncation methods on the partical

AUC when scaling is involved. In Table 3.2, all the row names and column names are

the same as in Table 3.1, and the values in row theoretical are the theoretical partial

AUC calualated via the method introduced in Chapter 2.

Table 3.2: Properties of ̂AUC∗
0s under method A.

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.464 0.351
Mean 0.095 0.177 0.250 0.317 0.432 0.529 0.612 0.462 0.350
Bias (×10−3) 1.692 0.193 -0.664 -1.047 -1.338 -1.703 -2.009 -1.756 -1.096
SD (×10−2) 2.742 3.247 3.225 3.047 2.744 2.589 2.316 6.363 4.308

Similar to the AUC∗
0s, the estimated AUC∗

0s in 1000 replications and the differences

between the estimated AUC∗
0s and the theoretical values for AUC∗

0s are visualized as

boxplots.
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Figure 3.3: Boxplot showing the distribution of ( ̂AUC∗
0s) under method A.

From table 3.2 and figure 3.3, the estimated partial AUC ̂AUC∗
0s increases as s

increases with scaling, while the standard deviation and the range become more con-

stant as the fixed truncation point s increases. Specifically, except for the first one,

the standard deviation shows a slightly decreasing relationship with s. The scaling

increases the standard deviations for method A-1 to A-6 and A-8, and it decreases

the standard deviation for method A-7.
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Figure 3.4: Boxplot showing the distribution of bias ( ̂AUC∗
0s) under method A.

The boxplot of bias of the scaled partial AUC displayed in Figure 3.4 also shows

that the scaling makes a difference to the standard deviation of ̂AUC∗
0s. The standard

deviation is no longer increasing as s increases. In the fixed percentage truncation

method, the variation in the truncation point increases the variation in the partial

AUC. The range of the bias for A-7 and A-8 are larger than the range of the bias for

the fixed point truncation method even with scaling.

3.1.3 ̂AUC0s Under Method B

Instead of applying all the truncations on the same SROC curve (method A), the

partial AUC can also be obtained by calculating the partial area under the SROC

curve which is fitted by only part of the studies (method B). Selection of the studies

and determination of the truncation point follow the procedure described in Chapter

2.
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Table 3.3: Properties of ̂AUC0s under method B.
row.names p1 p2 p3 p4 p5 p6 AUC p7 p8
Valid 10 158 602 938 1000 1000 1000 1000 1000
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.316 0.162
Mean 0.011 0.037 0.078 0.130 0.262 0.425 0.612 0.317 0.162
Bias (×10−3) 1.329 1.866 2.584 2.463 1.693 0.914 -2.009 1.119 0.208
SD (×10−2) 0.110 0.633 1.083 1.278 1.631 2.034 2.316 10.173 3.444

Table 3.3 gives the valid number of replications. For the fixed point truncation

method, a replication is defined to be valid if it contains a half or more studies which

have FPR in the range (0, s). For example, the valid number for the partial AUC in

method B-1 (p1) is 10, which means that only 10 out of 1000 replications that there

are 5 or more studies have FPR in the range (0, 0.1) in this replication. As for the

full AUC, the partial AUC in method B-7 (p7) and the partial AUC in method B-8

(p8), the SROC curve is designed to be fitted by the full data, 90% of the data or

80% of the data; i.e. every replication is valid. The values of partial AUC and its

standard deviation has an increasing relationship of s as in method A.
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Figure 3.5: Boxplot showing the distribution of ̂AUC0s under method B.

Figure 3.6: Boxplot showing the distribution of bias ( ̂AUC0s) under method B.

Compared with method A, the absolute values of bias for p1 to p5 in method B

are greater. Since only part of the data is used to fit the SROC curve, the fitted curve

could be far away from the true curve. For p6, p7, p8 and AUC, most (or all) data is
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used to fit the SROC curve, then the absolute values of bias are similar for method

A and B. Method B-1 and B-2 give small standard deviations of the partial AUC,

however, the valid numbers are so small that methods B-1 and B-2 and meaningless.

For each method in method B, the SROC curve is fitted with different set of the

data points, i.e. the simulated studies are selected to fit the SROC curve when a dif-

ferent truncation method applied. Therefore, the estimates of the SROC parameter

log-odds ratio (a) and heterogeneity (b) could be different for each truncation method

and each replication. a is set to be ln2 and b is set to be 0 in the simulation step.

The sample mean, the bias and the standard deviation of estimated a and b in 1000

replication are listed below. Also, boxplots are used for visualization.

Table 3.4: Properties of â (log-odds ratio) under method B.
a1 a2 a3 a4 a5 a6 a a7 a8

Mean 0.883 0.837 0.805 0.754 0.713 0.700 0.683 0.705 0.713
Bias 0.190 0.144 0.112 0.061 0.020 0.007 -0.010 0.011 0.020
SD 1.382 0.672 0.449 0.296 0.176 0.149 0.146 0.147 0.190
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Figure 3.7: Boxplot showing the distribution of â (log-odds ratio) under method B.

Table 3.5: Properties of b̂ (heterogeneity) under method B.
b1 b2 b3 b4 b5 b6 b b7 b8

Mean 0.019 0.034 0.034 0.022 0.012 0.006 -0.001 0.007 0.012
Bias 0.019 0.034 0.034 0.022 0.012 0.006 -0.001 0.007 0.012
SD 0.303 0.194 0.169 0.138 0.101 0.086 0.073 0.086 0.105
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Figure 3.8: Boxplot showing the distribution of b̂ (heterogeneity) under method B.

The estimates of the SROC curve parameters a (log-odds ratio) and b (hetero-

geneity) based on part of the data are cloSD to the true value shown as the solid line

in Figure 3.7 and Figure 3.8. From table 3.4 and table 3.5, the estimating of a and

b becomes more accurate and precise as s increases. More data is included in fitting

SROC curve; the fitted curve is closer to the true curve. For B-5 to B-8, the bias and

standard deviation for both a and b are similar to what in column AUC. Therefore,

estimating the values of a and b with part of the data is as good as using the full data

when s is large enough.

3.1.4 ̂AUC∗0s Under Method B

The partial AUC obtained in method B is also scaled. Scaling is applied after the

SRCO curve being fitted, so it does not affect the estimates of the SROC parameters

a and b.
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Table 3.6: Properties of ̂AUC∗
0s under method B.

row p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.464 0.351
Mean 0.107 0.186 0.260 0.324 0.436 0.532 0.612 0.465 0.352
Bias (×10−3) 13.293 9.329 8.613 6.159 2.821 1.143 -2.009 1.459 0.819
SD (×10−3) 1.101 3.163 3.610 3.194 2.718 2.543 2.316 6.432 4.140

Figure 3.9: Boxplot showing the distribution of ̂AUC∗
0s under method B.

33



M.Sc. Thesis - Jing Cai McMaster - Mathematics & Statistics

Figure 3.10: Boxplot showing the distribution of bias ( ̂AUC∗
0s) under method B.

Similar to what has been observed in method A, the scaling make the standard

deviation more constant between methods. The estimated partial AUC is more biased

with scaling because of dividing by a number less than one, especially for methods

with small s.

Similar to the base setting, all the experiments listed in Table 2.1 requires 6 tables

and 10 figures to illustrate. To reduce the length of contents, most of the tables and

figures will be attached in the appendix.

3.2 Effect of Truncation Methods as n1 and n2 Change

3.2.1 The Ratio of n1 and n2 Changes

Experiments 1, 2 and 3 listed in Chapter 2 have the same settings except for the ratio

of numbers of cases and non-cases. Experiment 1 - the base setting has 50 cases
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and 200 cases for each study, which is a commonly seen ratio in empirical data from

the literature. However, in practice, the ratio could be very different. If the effect of

truncation method is similar for all these three experiment, then the choice of trun-

cation method would be easy for there is no need to consider the ratio of numbers of

cases and non-cases within studies. Experiment 2 has 125 cases and 125 non-cases

for each study (more balanced than experiment 1) and experiment 3 has 25 cases

and 225 non-cases for each study (more unbalanced than experiment 1). All three

experiments have the same total number of cases and non-cases.

Starting from the estimates of the partial AUC, the changes of results with differ-

ent ratio of numbers of cases and non-cases are similar under method A and method

B. In the view of the bias, there is no significant difference among three settings,

all the biases are small relative to the sample means of the partial AUC. As for

the standard deviation, the ratio of numbers of cases and non-cases does not affect

the standard deviation for the fixed percentage truncation method (A-7 and A-8).

However, for the fixed point truncation methods, when the numbers of cases and

non-cases are more balanced (Experiment 2), the standard deviation decreases, and

the standard deviation increases when the numbers of cases and non-cases are more

unbalanced (Experiment 3). This implies that the variation inside a study does affect

the variation to the curve.

The figures of boxplots of the partial AUC and the bias for these three experi-

ments show almost the same pattern (See Appendix, Figure A.1, A.2, A.11, A.12,

A.21 and A.22). Then the performance of the truncation methods is not affected by
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the ratio of the numbers of cases and non-cases.

The observations for the partial AUC are also true for the scaled partial AUC.

Since the ratio of numbers of cases and non-cases does not affect the values of the

estimated partial AUC and the truncating range, the scaling changes the results with

the same scale, and the increasing and decreasing relationships remain the same.

As for the estimated SROC parameter a and b in method B, the standard devia-

tion in Experiment 3 is greater than that in experiment 1, and Experiment 2 has the

lowest standard deviation, which is the same as the estimated partial AUC. Same as

in the base setting, when the valid number is large enough, equivalently, when the

truncation point s is large enough, fitting the SROC curve with only part of the data

gives sufficiently accurate and precise estimates of both a and b.

In summary, the ratio of number of cases and non-cases does effect some proper-

ties of the partial AUC and the SROC parameters a and b, but it does not change the

effect of truncation methods on them. Therefore, the ratio of number of cases and

non-cases can be ignored when choosing a truncation method to an empirical clinical

dataset.

3.2.2 n1 and n2 are not Fixed

Experiment 9 in the appendix tested the situation that the numbers of cases and

non-cases are from a uniform distribution, and the numbers are kept to be the same
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between studies. In the other word, the variation of the numbers of cases and non-

cases between replications is added to experiment 9. The results of experiment 9 are

almost the same as Experiment 1. This implies that when keeping n1 and n2 to be

the same between studies, the variation of n1 and n2 between replications does not

affect the performance of the truncation methods.

3.3 Effect of Truncation Methods as a0 and b0 Change

3.3.1 a0 Increases

When increasing the log-odds ratio, the SROC curve is moving towards the upper left

corner shown in the following figure. Therefore, the region under the SROC curve

gains more area, causing the partial AUC to also increase for some fixed s.
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Figure 3.11: SROC curves with different values of log-odds ratio (a).

Experiments 1, 4, 5 and 6 apply increasing values of log-odd ratio (a), and all

other parameters and distribution are kept to be the same.

First, comparing the results under a certain method of type A, the sample mean

and the absolute value of bias of the partial AUC increase as the log-odds ratio in-

creases. As for the standard deviation, it is increasing as the log-odds ratio when

truncating at low values of s, and it is decreased for high values of s. The standard

deviations are always increasing as a increases for A-7 and A-8. However, the pattern

of how the bias and standard deviation are effected by the truncation methods are

the same for any value of a. The sample mean, the absolute value of bias and the

standard deviation of partial AUC are increasing as s increases for the fixed point

truncation methods, and A-7 always give the largest bias and standard deviation.
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Figure 3.12: Plot of standard deviations of AUC0s with different values of log-odds
ratio (a).

After scaling, the decreasing relationship between the standard deviation and s

becomes more dramatic as the log-odds ratio increases. Visually, from Figure 3.14,

Figure 3.15 and Figure 3.16, the range of both estimated AUC0s and the bias shrinks

along the x-axis from “p1” to “AUC” more obviously as a increases. This suggests,

in practice, truncating at a high value of the FPR is suggested for a large log-odds

ratio study if the scaled partial AUC is applied.
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Figure 3.13: Boxplots showing the distribution of ̂AUC0s and bias ( ̂AUC0s) under
method A with a = ln 5.

Figure 3.14: Boxplots showing the distribution of ̂AUC0s and bias ( ̂AUC0s) under
method A with a = ln 10.
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Figure 3.15: Boxplot showing the distribution of ̂AUC0s and bias ( ̂AUC0s) under
method A with a = ln 20.

Secondly, for all type B methods, the sample mean of the partial AUC increases as

the log-odds ratio increase, but there is no clear trend of how the bias and standard

deviation changes with the log-odds ratio. Additionally, increasing log-odds ratio

does not make a great difference on how the truncation methods affect the estimates

of a and b with respect to the bias and the standard deviation. The scaling has the

same effect as for method A.

3.3.2 b0 6= 0

When the parameter b is not equal to 0, the study is called heterogeneous. The same

process of simulation and truncation is also applied to heterogeneous cases, and the

only difference is when generating the data, the values of sensitivity are calculated

by equation 2.1 with non-zero value of b.

Not yet being truncated, there is a problem when generating the SROC curve
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by simulated data. The log-odds ratio is under-estimated when b0 is positive and

over-estimated when b0 is negative. Also, b is biased toward 0. Here is a table of one

estimation at a0 = ln 2 = 0.693.

Table 3.7: Estimations of a, b and AUC in heterogeneous case.
b0 -0.8 -0.6 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.6 0.8
â 0.717 0.711 0.697 0.701 0.695 0.676 0.656 0.619 0.509 0.424

b̂ -0.751 -0.564 -0.282 -0.184 -0.093 0.084 0.159 0.224 0.374 0.448
SD(b) 0.117 0.096 0.077 0.080 0.078 0.075 0.078 0.089 0.106 0.112

ÂUC 0.599 0.606 0.611 0.613 0.613 0.610 0.606 0.599 0.579 0.564
bias (AUC) 0.005 0.004 0.001 0.001 0.000 -0.003 -0.006 -0.011 -0.023 -0.030

When b0 is negative, the estimated b is larger than the theoretical value, which is

less heterogeneous. The estimated b gets more biased as the absolute value of b in-

creases. When b0 is positive, estimated b is smaller than the theoretical value, which

is also less heterogeneous. The estimated b is getting more biased as the absolute

value of b increases. The estimated b is more biased when b0 is positive than when b0

is negative. The parameter a is over-estimated when b0 is negative, and it is under-

estimated when b0 is positive. Balanced by the estimation of a and b, estimated AUC

is not that biased.

A lot work has been done to find out the reason behind the biasness of the esti-

mates â and b̂ in heterogeneous case. The first guess is that the 0.5 correction causes

the bias, then the numbers of cases and non-cases are increased to reduce the effect

of 0.5 correction. Then the estimates become less biased; however, even when the

number of cases is increased to 50,000 and the number of non-cases is increased to

200,000, which are incredibly large for a clinical data, the bias is still present. This
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means that the effect of 0.5 correction cannot be eliminated by increasing the sample

size. Then the linear regression in Moses's model is replaced with the weighted linear

regression (Walter, 2002). The bias is less but still not satisfactory.

To find out at which step in the simulation the problem happens, some lines of

the R code are skipped. The finding is that when the step of generating binomial

random variables is skipped, the parameters a and b are estimated perfectly for both

homogeneous cases an heterogeneous cases. Binomial sampling is adding noise to the

true function, and the noise is strong when one of the TPR and FPR is close to 0 or

1. Figure 3.16 shows the SROC curve with a being 2 and b equals to 0, 0.5 and -0.5

respectively. It can be seen that on the SROC curves for heterogeneous case, there

are more parts of the curve that corresponding to a TPR or FPR close to 0 or 1.

However, this guess fails to explain the asymmetry of the bias and the bias occur so

quickly as b slightly approaches away from 0.
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Figure 3.16: SROC curve with different values of heterogeneity (b).

3.4 Effect of Truncation Methods as the Distribu-

tion of Specificity Changes

Experiment 1, 7 and 8 have the same settings except for the distribution of specificity.

One major difference when comparing these three experiments is the performance

of the fixed percentage truncation method. Applying beta (5,2) or uniform (0,1)

distributions significantly decrease the standard deviation of the partial AUC under
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method A-7, A-8, B-7 and B-8. The other difference is that for method B in Experi-

ment 7 and 8, the valid numbers for small s are much less than the valid number in

Experiment 1.

45



Chapter 4

Summary and Discussion

4.1 Summary

This thesis examined the effect of truncation methods on the properties of partial

AUC, such as the bias, standard deviation, accuracy and precision for estimating

SROC parameters a and b.

Applying different truncation methods does change the value of partial AUC.

Specifically, ̂AUC0,s increases as s increases, whether the value of s is fixed or de-

termined by other methods. Either the SROC curve is fitted by the full data then

truncated (method A) or the SROC curve is fitted by the truncated data (method

B). Under the fixed point truncation method, which is truncating the SROC curve

at a fixed point s, the standard deviation of the partial AUC increases as s increases

and the standard deviation of the scaled partial AUC decreases as s increases. This

is corresponding to the analytical results from (Walter, 2005). This suggests that if

the value of the partial AUC is used, then it is possible to truncate at a low value of
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the FPR, and if the value of the scaled partial AUC is used, then it is recommended

to truncate at a high value of the FPR.

The fixed percentage truncation method is less recommended than the fixed point

truncation method. In the fixed percentage truncation method, the variation in trun-

cation point increases the variation in partial AUC. Even with scaling, the disadvan-

tage of the fixed percentage truncation method being less precise than the fixed point

truncation method cannot be eliminated. Comparing two fixed percentage truncation

methods, excluding 20% of the data (A-8 and B-8) gives less bias and lower standard

deviation than excluding 10% of the data (A-7 and B-7). Truncating the SROC which

is fitted by either the full data or with part of the data, excluding 20% of the data

gives less biased estimated partial AUC and smaller standard deviation.

Comparing methods A and B, method A is recommended. When applying method

B, part of the data is excluded before fitting the SROC curve, which leads to two

problems. First, there may not be enough data to fit the curve, especially when

the truncating range is small. Second, fitting the SROC curve with only part of the

data could be more variable due to the loss of information. What the simulation and

truncation under method B provide is that when the truncation point s is sufficiently

large or a large enough proportion of the data is used to fit the SROC, estimating

the partial AUC and the SROC parameters a and b using part of the data is as good

as using the full data.

Changing the simulation settings such as the ratio of the numbers of cases and
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non-cases, the log-odds ratio and the distribution of specificities does change the

values of the bias and the standard deviation for partial AUC. However, how these

properties are affected by the truncation methods is similar in all settings.

Combining all the results, truncating at FPR = 0.6 or 0.8 performs well no matter

which method is used, with or without scaling. It gives low bias and a relatively low

standard deviation compared with the estimated AUC. Truncating at a higher FPR

would include more clinically irrelevant region, and truncating at a lower FPR would

lose more information.

In practice, the choice of the truncating point is also determined by what region

is the most interesting. When using the AUC or the partial AUC as a measure to

compare diagnostic tests, multiple comparisons are applied. One can compare the

full AUC, the partial AUC on a certain range and the partial AUC under the SROC

curve fitted by a part of the data for the tests. If a diagnostic test has the highest

value of the full AUC or the partial AUC, then it is convincing that this test performs

the best in classifying cases and non-cases.

4.2 Future Work

For the homogeneous case, there are more choices of the settings when simulating the

data. For example, the number of studies is not necessary to be 10. When there are

more or less studies to fit an SROC curve, then the effect of truncation methods could

be different from what performed as in this thesis. Also, the variation of the numbers

of cases and non-cases between studies could be introduced. This could be achieved
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by simulating a pair of the numbers of cases and non-cases from a distribution for

each study.

In this thesis, only one variable is changed from experiment 1, while in the clinical

data, the situation is more complicated. For example, there might be interaction

when changing the number of studies and the distribution of specificities at the same

time. Also the distribution of specificities is not always able to be approximated by

a named distribution. Other than the simulation method proposed in this thesis,

an alternative way is to approximate the distributions of cases and non-cases. The

distribution could be normal, logistic, or others. Then by moving the threshold, the

empirical TPR and FPR are obtained.

Moreover, the reason for the unsatisfactory estimation in heterogeneous case needs

more work to find out.
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Appendix A

Results for Experiment 2 to

Experiment 9

A.1 Experiment 2 - 125 cases and 125 non-cases

per study, mixed uniform distribution of speci-

ficities, a=ln2, b=0

A.1.1 ̂AUC0,s under method A

Table A.1: Experiment 2 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.315 0.164
Mean 0.009 0.035 0.075 0.127 0.259 0.423 0.612 0.313 0.163
Bias (×10−3) 0.102 -0.055 -0.304 -0.535 -0.912 -1.356 -1.826 -1.496 -0.869
SD(×10−2) 0.240 0.569 0.843 1.050 1.379 1.702 1.891 9.796 3.863
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Figure A.1: Experiment 2 - Boxplot showing the distribution of ̂AUC0,s under method
A

Figure A.2: Experiment 2 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method A
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A.1.2 ̂AUC∗0,s under method A

Table A.2: Experiment 2 - Properties of ̂AUC∗
0,s under method A

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.463 0.353
Mean 0.095 0.177 0.250 0.316 0.432 0.529 0.612 0.462 0.351
bias (×10−3) 1.021 -0.277 -1.015 -1.338 -1.521 -1.695 -1.826 -1.805 -1.707
SD(×10−2) 2.403 2.844 2.809 2.626 2.298 2.128 1.891 6.085 4.460

Figure A.3: Experiment 2 - Boxplot showing the distribution of ( ̂AUC∗
0,s) under

method A
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Figure A.4: Experiment 2 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method A

A.1.3 ̂AUC0,s under method B

Table A.3: Experiment 2 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

Valid 13 171 579 938 1000 1000 1000 1000 1000
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.316 0.162
Mean 0.010 0.038 0.078 0.129 0.260 0.425 0.612 0.315 0.163
Bias (×10−3) 1.038 2.235 2.287 1.915 0.366 0.227 -1.826 -1.368 1.534
SD(×10−2) 0.162 0.606 0.903 1.167 1.412 1.708 1.891 9.850 3.767

Figure A.5: Experiment 2 - Boxplot showing the distribution of ̂AUC0,s under method
B
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Figure A.6: Experiment 2 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method B

Table A.4: Experiment 2 - Properties of â (log-odds ratio) under method B
a1 a2 a3 a4 a5 a6 a a7 a8

Mean 1.692 0.910 0.772 0.742 0.697 0.695 0.683 0.696 0.696
Bias 0.567 0.369 0.165 0.073 0.023 0.015 0.014 0.016 0.028
SD 0.753 0.608 0.406 0.270 0.153 0.124 0.119 0.126 0.168

Figure A.7: Experiment 2 - Boxplot showing the distribution of â (log-odds ratio)
under method B

Table A.5: Experiment 2 - Properties of b̂ (heterogeneity) under method B
b1 b2 b3 b4 b5 b6 b b7 b8

Mean 0.196 0.050 0.021 0.018 0.005 0.004 -0.001 0.004 0.004
Bias 0.026 0.029 0.023 0.015 0.008 0.005 0.004 0.005 0.009
SD 0.161 0.169 0.152 0.123 0.089 0.074 0.063 0.074 0.093
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Figure A.8: Experiment 2 - Boxplot showing the distribution of b̂ (heterogeneity)
under method B

A.1.4 ̂AUC∗0,s under method B

Table A.6: Experiment 2 - Properties of ̂AUC∗
0,s under method B

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.463 0.353
Mean 0.104 0.188 0.259 0.322 0.434 0.531 0.612 0.463 0.351
Bias (×10−3) 10.380 11.177 7.624 4.787 0.609 0.284 -1.826 -0.237 -1.106
SD (×10−2) 1.623 3.028 3.011 2.919 2.353 2.135 1.891 6.105 4.205

Figure A.9: Experiment 2 - Boxplot showing the distribution of ̂AUC∗
0,s under method

B
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Figure A.10: Experiment 2 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method B

A.2 Experiment 3 - 25 cases and 225 non-cases per

study, mixed uniform distribution of specifici-

ties, a=ln2, b=0

A.2.1 ̂AUC0,s under method A

Table A.7: Experiment 3 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.314 0.159
Mean 0.010 0.036 0.076 0.128 0.260 0.424 0.612 0.313 0.159
Bias (×10−3) 0.503 0.734 0.773 0.726 0.322 -0.707 -1.879 -0.737 0.552
SD (×10−2) 0.330 0.777 1.168 1.495 2.100 2.695 3.031 9.740 3.707
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Figure A.11: Experiment 3 - Boxplot showing the distribution of ̂AUC0,s under
method A

Figure A.12: Experiment 3 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method A
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A.2.2 ̂AUC∗0,s under method A

Table A.8: Experiment 3 - Properties of ̂AUC∗
0,s under method A

p1 p2 p3 p4 p5 s 0.1 0.2 0.3
0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.463 0.348
Mean 0.099 0.180 0.253 0.319 0.434 0.530 0.612 0.462 0.349
Bias (×10−3) 5.028 3.670 2.577 1.816 0.536 -0.884 -1.879 -0.691 1.502
SD (×10−2) 3.299 3.887 3.892 3.737 3.500 3.369 3.031 6.557 4.948

Figure A.13: Experiment 3 - Boxplot showing the distribution of ( ̂AUC∗
0,s) under

method A
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Figure A.14: Experiment 3 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method A

A.2.3 ̂AUC0,s under method B

Table A.9: Experiment 3 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

Valid 12 161 611 947 1000 1000 1000 1000 1000
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.314 0.159
Mean 0.012 0.040 0.080 0.131 0.264 0.428 0.612 0.316 0.161
Bias (×10−3) 2.292 4.186 4.579 4.231 4.155 3.778 -1.879 2.211 1.787
SD (×10−2) 0.457 0.894 1.511 1.736 2.150 2.687 3.031 9.864 3.673

Figure A.15: Experiment 3 - Boxplot showing the distribution of ̂AUC0,s under
method B
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Figure A.16: Experiment 3 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method B

Table A.10: Experiment 3 - Properties of â (log-odds ratio) under method B
a1 a2 a3 a4 a5 a6 a a7 a8

Mean 0.892 0.879 0.818 0.774 0.733 0.720 0.686 0.718 0.737
Bias 2.463 0.973 0.337 0.162 0.056 0.040 0.037 0.039 0.065
SD 1.569 0.986 0.581 0.403 0.236 0.199 0.192 0.197 0.256

Figure A.17: Experiment 3 - Boxplot showing the distribution of â (log-odds ratio)
under method B

Table A.11: Experiment 3 - Properties of b̂ (heterogeneity) under method B
b1 b2 b3 b4 b5 b6 b b7 b8

Mean 0.013 0.033 0.033 0.027 0.016 0.011 -0.007 0.009 0.017
Bias 0.123 0.069 0.044 0.030 0.016 0.011 0.008 0.011 0.017
SD 0.351 0.262 0.209 0.172 0.125 0.107 0.089 0.105 0.132
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Figure A.18: Experiment 3 - Boxplot showing the distribution of b̂ (heterogeneity)
under method B

A.2.4 ̂AUC∗0,s under method B

Table A.12: Experiment 3 - Properties of ̂AUC∗
0,s under method B

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.463 0.348
Mean 0.117 0.198 0.266 0.328 0.440 0.535 0.612 0.467 0.352
Bias (×10−3) 22.920 20.929 15.262 10.579 6.924 4.723 -1.879 3.536 4.350
SD (×10−2) 4.566 4.471 5.036 4.341 3.583 3.358 3.031 6.608 4.792

Figure A.19: Experiment 3 - Boxplot showing the distribution of ̂AUC∗
0,s under

method B
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Figure A.20: Experiment 3 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method B

A.3 Experiment 4 - 50 cases and 200 non-cases per

study, mixed uniform distribution of specifici-

ties, a=ln5, b=0

A.3.1 ̂AUC0,s under method A

Table A.13: Experiment 4 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.020 0.066 0.129 0.201 0.368 0.552 0.747 0.424 0.243
Mean. 0.020 0.066 0.128 0.200 0.365 0.548 0.743 0.421 0.241
Bias (×10−3) 0.288 -0.096 -0.592 -1.087 -2.088 -3.073 -3.725 -2.784 -1.446
SD(×10−2) 0.486 0.928 1.197 1.369 1.628 1.855 1.971 10.576 4.817
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Figure A.21: Experiment 4 - Boxplot showing the distribution of ̂AUC0,s under
method A

Figure A.22: Experiment 4 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method A
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A.3.2 ̂AUC∗0,s under method A

Table A.14: Experiment 4 - Properties of ̂AUC∗
0,s under method A

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.1985243 0.332 0.429 0.504 0.613 0.689 0.747 0.634 0.533
Mean 0.201 0.331 0.427 0.501 0.609 0.686 0.743 0.630 0.530
Bias (×10−3) 2.884 -0.479 -1.975 -2.718 -3.480 -3.842 -3.725 -3.653 -2.878
SD (×10−2) 4.855 4.639 3.991 3.423 2.714 2.318 1.971 5.115 4.812

Figure A.23: Experiment 4 - Boxplot showing the distribution of ( ̂AUC∗
0,s) under

method A
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Figure A.24: Experiment 4 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method A

A.3.3 ̂AUC0,s under method B

Table A.15: Experiment 4 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

Valid 10 172 571 943 1000 1000 1000 1000 1000
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.020 0.066 0.129 0.201 0.368 0.552 0.747 0.424 0.243
Mean 0.020 0.069 0.130 0.201 0.367 0.551 0.743 0.423 0.241
Bias (×10−3) 0.647 2.533 1.019 -0.197 -0.897 -0.479 -3.725 -0.811 -1.514
SD (×10−2) 0.457 0.894 1.511 1.736 2.150 2.687 3.031 9.864 3.673

Figure A.25: Experiment 4 - Boxplot showing the distribution of ̂AUC0,s under
method B
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Figure A.26: Experiment 4 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method B

Table A.16: Experiment 4 - Properties of â (log-odds ratio) under method B
a1 a2 a3 a4 a5 a6 a a7 a8

Mean 1.288 1.690 1.641 1.631 1.613 1.613 1.588 1.616 1.610
Bias 0.761 0.281 0.097 0.046 0.023 0.020 0.023 0.021 0.026
SD 0.872 0.530 0.311 0.214 0.152 0.143 0.151 0.144 0.160

Figure A.27: Experiment 4 - Boxplot showing the distribution of â (log-odds ratio)
under method B

Table A.17: Experiment 4 - Properties of b̂ (heterogeneity) under method B
b1 b2 b3 b4 b5 b6 b b7 b8

Mean -0.086 0.012 0.011 0.019 0.016 0.016 -0.007 0.016 0.013
Bias 0.046 0.036 0.022 0.016 0.009 0.007 0.007 0.007 0.010
SD 0.215 0.189 0.148 0.126 0.094 0.086 0.082 0.086 0.099
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Figure A.28: Experiment 4 - Boxplot showing the distribution of b̂ (heterogeneity)
under method B

A.3.4 ̂AUC∗0,s under method B

Table A.18: Experiment 4 - Properties of ̂AUC∗
0,s under method B

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.199 0.332 0.429 0.504 0.613 0.689 0.747 0.634 0.533
Mean 0.205 0.344 0.432 0.503 0.611 0.689 0.743 0.633 0.530
bias (×10−3) 6.472 12.664 3.398 -0.494 -1.495 -0.599 -3.725 -0.944 -3.130
SD (×10−2) 2.631 4.019 3.935 3.490 2.641 2.173 1.971 5.197 4.857

Figure A.29: Experiment 4 - Boxplot showing the distribution of ̂AUC∗
0,s under

method B
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Figure A.30: Experiment 4 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method B

A.4 Experiment 5 - 50 cases and 200 non-cases per

study, mixed uniform distribution of specifici-

ties, a=ln10, b=0

A.4.1 ̂AUC0,s under method A

Table A.19: Experiment 5 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.032 0.095 0.172 0.256 0.437 0.629 0.827 0.500 0.303
Mean 0.032 0.095 0.170 0.254 0.434 0.624 0.821 0.495 0.301
Bias (×10−3) 0.456 -0.371 -1.312 -2.215 -3.843 -5.129 -5.811 -4.602 -2.723
SD(×10−2) 0.696 1.133 1.338 1.441 1.559 1.646 1.687 11.478 5.126
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Figure A.31: Experiment 5 - Boxplot showing the distribution of ̂AUC0,s under
method A

Figure A.32: Experiment 5 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method A
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A.4.2 ̂AUC∗0,s under method A

Table A.20: Experiment 5 - Properties of ̂AUC∗
0,s under method A

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.319 0.476 0.573 0.640 0.729 0.786 0.827 0.746 0.666
Mean 0.323 0.474 0.568 0.635 0.723 0.780 0.821 0.739 0.660
bias (×10−3) 4.558 -1.857 -4.372 -5.539 -6.405 -6.412 -5.811 -6.686 -6.013
SD(×10−2) 6.963 5.665 4.460 3.602 2.598 2.058 1.687 4.267 4.458

Figure A.33: Experiment 5 - Boxplot showing the distribution of ( ̂AUC∗
0,s) under

method A
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Figure A.34: Experiment 5 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method A

A.4.3 ̂AUC0,s under method B

Table A.21: Experiment 5 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

Valid 9 162 603 946 1000 1000 1000 1000 1000
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.032 0.095 0.172 0.256 0.437 0.629 0.827 0.500 0.303
Mean 0.031 0.095 0.171 0.254 0.435 0.626 0.821 0.496 0.300
Bias (×10−3) -0.608 -0.587 -0.622 -1.709 -2.885 -3.383 -5.811 -3.713 -3.239
SD(×10−2) 0.689 1.082 1.225 1.454 1.537 1.605 1.687 11.590 5.081

Figure A.35: Experiment 5 - Boxplot showing the distribution of ̂AUC0,s under
method B
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Figure A.36: Experiment 5 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method B

Table A.22: Experiment 5 - Properties of â (log-odds ratio) under method B
a1 a2 a3 a4 a5 a6 a a7 a8

Mean 2.687 2.460 2.348 2.322 2.293 2.282 2.258 2.281 2.296
Bias 0.398 0.144 0.058 0.034 0.025 0.025 0.026 0.025 0.025
SD 0.631 0.380 0.241 0.184 0.159 0.159 0.163 0.158 0.159

Figure A.37: Experiment 5 - Boxplot showing the distribution of â (log-odds ratio)
under method B

Table A.23: Experiment 5 - Properties of b̂ (heterogeneity) under method B
b1 b2 b3 b4 b5 b6 b b7 b8

Mean 0.119 0.077 0.034 0.033 0.028 0.022 -0.019 0.016 0.028
Bias 0.058 0.035 0.021 0.016 0.010 0.009 0.009 0.009 0.011
SD 0.242 0.187 0.146 0.127 0.101 0.094 0.093 0.093 0.103
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Figure A.38: Experiment 5 - Boxplot showing the distribution of b̂ (heterogeneity)
under method B

A.4.4 ̂AUC∗0,s under method B

Table A.24: Experiment 5 - Properties of ̂AUC∗
0,s under method B

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.319 0.476 0.573 0.640 0.729 0.786 0.827 0.746 0.666
Mean 0.313 0.473 0.571 0.636 0.724 0.782 0.821 0.740 0.659
bias (×10−3) -6.080 -2.933 -2.074 -4.271 -4.809 -4.229 -5.811 -5.616 -7.017
SD (×10−2) 6.886 5.409 4.084 3.634 2.562 2.006 1.687 4.369 4.296

Figure A.39: Experiment 5 - Boxplot showing the distribution of ̂AUC∗
0,s under

method B
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Figure A.40: Experiment 5 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method B

A.5 Experiment 6 - 50 cases and 200 non-cases per

study, mixed uniform distribution of specifici-

ties, a=ln20, b=0

A.5.1 ̂AUC0,s under method A

Table A.25: Experiment 6 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.046 0.124 0.210 0.302 0.492 0.688 0.887 0.551 0.348
Mean 0.047 0.123 0.209 0.299 0.488 0.682 0.880 0.546 0.345
bias (×10−3) 0.722 -0.428 -1.591 -2.659 -4.466 -5.786 -6.445 -5.290 -3.108
SD(×10−2) 0.907 1.273 1.402 1.448 1.468 1.472 1.472 11.745 5.661
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Figure A.41: Experiment 6 - Boxplot showing the distribution of ̂AUC0,s under
method A

Figure A.42: Experiment 6 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method A
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A.5.2 ̂AUC∗0,s under method A

Table A.26: Experiment 6 - Properties of ̂AUC∗
0,s under method A

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.463 0.618 0.701 0.755 0.820 0.860 0.887 0.831 0.772
Mean 0.470 0.616 0.696 0.748 0.813 0.853 0.880 0.823 0.765
Bias (×10−3) 7.223 -2.139 -5.305 -6.649 -7.443 -7.233 -6.445 -8.144 -6.560
SD(×10−2) 9.068 6.363 4.675 3.619 2.446 1.840 1.472 3.473 4.031

Figure A.43: Experiment 6 - Boxplot showing the distribution of ( ̂AUC∗
0,s) under

method A
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Figure A.44: Experiment 6 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method A

A.5.3 ̂AUC0,s under method B

Table A.27: Experiment 6 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

Valid 7 193 612 935 1000 1000 1000 1000 1000
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.046 0.124 0.210 0.302 0.492 0.688 0.887 0.551 0.348
Mean 0.048 0.122 0.207 0.297 0.486 0.681 0.880 0.545 0.342
Bias (×10−3) 1.701 -1.982 -3.345 -4.862 -6.390 -6.385 -6.445 -6.296 -6.570
SD (×10−2) 0.726 1.037 1.338 1.531 1.542 1.426 1.472 11.832 5.688

Figure A.45: Experiment 6 - Boxplot showing the distribution of ̂AUC0,s under
method B
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Figure A.46: Experiment 6 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method B

Table A.28: Experiment 6 - Properties of â (log-odds ratio) under method B
a1 a2 a3 a4 a5 a6 a a7 a8

Mean 3.027 3.059 3.018 2.978 2.941 2.931 2.934 2.935 2.945
Bias 0.552 0.098 0.049 0.040 0.038 0.035 0.041 0.036 0.038
SD 0.743 0.313 0.221 0.201 0.195 0.187 0.201 0.190 0.195

Figure A.47: Experiment 6 - Boxplot showing the distribution of â (log-odds ratio)
under method B

Table A.29: Experiment 6 - Properties of b̂ (heterogeneity) under method B
b1 b2 b3 b4 b5 b6 b b7 b8

Mean -0.021 0.051 0.059 0.049 0.045 0.029 -0.038 0.019 0.044
Bias 0.105 0.043 0.029 0.020 0.013 0.011 0.012 0.012 0.015
SD 0.324 0.208 0.171 0.140 0.116 0.104 0.111 0.109 0.121
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Figure A.48: Experiment 6 - Boxplot showing the distribution of b̂ (heterogeneity)
under method B

A.5.4 ̂AUC∗0,s under method B

Table A.30: Experiment 6 - Properties of ̂AUC∗
0,s under method B

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.463 0.618 0.701 0.755 0.820 0.860 0.887 0.831 0.772
Mean 0.480 0.608 0.690 0.742 0.810 0.852 0.880 0.821 0.757
bias (×10−3) 17.012 -9.910 -11.149 -12.155 -10.650 -7.982 -6.445 -9.924 -14.435
SD(×10−2) 7.263 5.183 4.460 3.827 2.569 1.782 1.472 3.568 4.255

Figure A.49: Experiment 6 - Boxplot showing the distribution of ̂AUC∗
0,s under

method B
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Figure A.50: Experiment 6 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method B

A.6 Experiment 7 - 50 cases and 200 non-cases per

study, beta (5,2) distribution of specificities,

a=ln2, b=0

A.6.1 ̂AUC0,s under method A

Table A.31: Experiment 7 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.418 0.157
Mean 0.010 0.036 0.076 0.128 0.262 0.426 0.615 0.420 0.158
bias (×10−3) 0.561 0.919 1.115 1.280 1.578 1.560 1.136 1.488 1.277
SD(×10−2) 0.366 0.880 1.322 1.648 2.008 2.169 2.229 3.031 2.285
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Figure A.51: Experiment 7 - Boxplot showing the distribution of ̂AUC0,s under
method A

Figure A.52: Experiment 7 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method A
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A.6.2 ̂AUC∗0,s under method A

Table A.32: Experiment 7 - Properties of ̂AUC∗
0,s under method A

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.527 0.348
Mean 0.099 0.181 0.255 0.321 0.436 0.532 0.615 0.529 0.351
Bias (×10−3) 5.612 4.595 3.716 3.199 2.631 1.950 1.136 1.987 3.097
SD(×10−2) 3.664 4.400 4.408 4.120 3.346 2.711 2.229 2.861 4.075

Figure A.53: Experiment 7 - Boxplot showing the distribution of ( ̂AUC∗
0,s) under

method A
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Figure A.54: Experiment 7 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method A

A.6.3 ̂AUC0,s under method B

Table A.33: Experiment 7 - Properties of ̂AUC0,s under method B
p1 p2 p3 p4 p5 p6 AUC p7 p8

Valid 0 0 2 922 1000 1000 1000 1000 1000
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.418 0.157
Mean NaN NaN 0.077 0.131 0.262 0.427 0.615 0.420 0.159
bias (×10−3) NaN NaN 1.864 4.419 1.831 2.911 1.136 1.803 1.484
SD(×10−2) NaN NaN 0.258 1.361 1.561 1.955 2.229 2.845 1.997

Figure A.55: Experiment 7 - Boxplot showing the distribution of ̂AUC0,s under
method B
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Figure A.56: Experiment 7 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method B

Table A.34: Experiment 7 - Properties of â (log-odds ratio) under method B
a1 a2 a3 a4 a5 a6 a a7 a8

Mean NaN NaN 0.804 0.736 0.696 0.711 0.703 0.704 0.696
Bias NA NA 0.042 0.045 0.023 0.019 0.020 0.018 0.023
SD NA NA 0.204 0.213 0.151 0.140 0.141 0.133 0.151

Figure A.57: Experiment 7 - Boxplot showing the distribution of â (log-odds ratio)
under method B

Table A.35: Experiment 7 - Properties of b̂ (heterogeneity) under method B
b1 b2 b3 b4 b5 b6 b b7 b8

Mean NaN NaN 0.031 -0.005 -0.009 -0.003 -0.003 -0.005 -0.009
Bias NA NA 0.004 0.015 0.013 0.010 0.006 0.009 0.013
SD NA NA 0.064 0.124 0.114 0.102 0.080 0.093 0.114
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Figure A.58: Experiment 7 - Boxplot showing the distribution of b̂ (heterogeneity)
under method B

A.6.4 ̂AUC∗0,s under method B

Table A.36: Experiment 7 - Properties of ̂AUC∗
0,s under method B

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.527 0.348
Mean NaN NaN 0.257 0.329 0.436 0.534 0.615 0.530 0.352
bias (×10−3) NaN NaN 6.215 11.048 3.051 3.639 1.136 2.401 3.619
SD(×10−2) NaN NaN 0.858 3.402 2.602 2.444 2.229 2.569 3.307

Figure A.59: Experiment 7 - Boxplot showing the distribution of ̂AUC∗
0,s under

method B
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Figure A.60: Experiment 7 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method B

A.7 Experiment 8 - 50 cases and 200 non-cases

per study, uniform distribution of specifici-

ties, a=ln2, b=0

A.7.1 ̂AUC0,s under method A

Table A.37: Experiment 8 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.419 0.156
Mean 0.010 0.036 0.076 0.128 0.261 0.425 0.614 0.420 0.157
bias (×10−3) 0.515 0.814 0.945 1.030 1.116 0.865 0.311 0.742 0.943
SD(×10−2) 0.343 0.819 1.222 1.515 1.856 2.059 2.163 3.002 2.277
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Figure A.61: Experiment 8 - Boxplot showing the distribution of ̂AUC0,s under
method A

Figure A.62: Experiment 8 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method A
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A.7.2 ̂AUC∗0,s under method A

Table A.38: Experiment 8 - Properties of ̂AUC∗
0,s under method A

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.527 0.348
Mean 0.099 0.181 0.254 0.320 0.435 0.532 0.614 0.528 0.350
Bias (×10−3) 5.146 4.071 3.150 2.575 1.860 1.081 0.311 1.053 2.201
SD(×10−2) 3.431 4.094 4.072 3.788 3.094 2.573 2.163 2.733 3.890

Figure A.63: Experiment 8 - Boxplot showing the distribution of ( ̂AUC∗
0,s) under

method A

88



M.Sc. Thesis - Jing Cai McMaster - Mathematics & Statistics

Figure A.64: Experiment 8 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method A

A.7.3 ̂AUC0,s under method B

Table A.39: Experiment 8 - Properties of ̂AUC0,s under method B
p1 p2 p3 p4 p5 p6 AUC p7 p8

Valid 0 0 3 917 1000 1000 1000 1000 1000
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.419 0.156
Mean NaN NaN 0.086 0.131 0.261 0.426 0.614 0.420 0.157
bias (×10−3) NaN NaN 11.227 4.099 0.935 1.996 0.311 0.813 0.852
SD(×10−2) NaN NaN 0.991 1.262 1.439 1.964 2.163 2.863 1.998

Figure A.65: Experiment 8 - Boxplot showing the distribution of ̂AUC0,s under
method B
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Figure A.66: Experiment 8 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method B

Table A.40: Experiment 8 - Properties of â (log-odds ratio) under method B
a1 a2 a3 a4 a5 a6 a a7 a8

Mean NaN NaN 0.930 0.734 0.686 0.704 0.698 0.697 0.686
Bias NA NA 0.017 0.047 0.023 0.021 0.019 0.017 0.023
SD NA NA 0.129 0.216 0.152 0.144 0.137 0.132 0.152

Figure A.67: Experiment 8 - Boxplot showing the distribution of â (log-odds ratio)
under method B

Table A.41: Experiment 8 - Properties of b̂ (heterogeneity) under method B
b1 b2 b3 b4 b5 b6 b b7 b8

Mean NaN NaN 0.012 -0.004 -0.010 -0.004 -0.004 -0.006 -0.010
Bias NA NA 0.000 0.015 0.012 0.010 0.006 0.008 0.012
SD NA NA 0.021 0.121 0.112 0.101 0.078 0.091 0.112
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Figure A.68: Experiment 8 - Boxplot showing the distribution of b̂ (heterogeneity)
under method B

A.7.4 ̂AUC∗0,s under method B

Table A.42: Experiment 8 - Properties of ̂AUC∗
0,s under method B

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.527 0.348
Mean NaN NaN 0.288 0.328 0.435 0.533 0.614 0.529 0.350
bias (×10−3) NaN NaN 37.423 10.248 1.559 2.495 0.311 1.160 2.093
SD(×10−2) NaN NaN 3.303 3.156 2.399 2.455 2.163 2.512 3.149

Figure A.69: Experiment 8 - Boxplot showing the distribution of ̂AUC∗
0,s under

method B
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Figure A.70: Experiment 8 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method B

A.8 Experiment 9 - uniform (40,60) cases and uni-

form (160,240) non-cases per study, mixed uni-

form distribution of specificities, a=ln2, b=0

A.8.1 ̂AUC0,s under method A

Table A.43: Experiment 9 - Properties of ̂AUC0,s under method A
p1 p2 p3 p4 p5 p6 AUC p7 p8

s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.319 0.160
Mean 0.010 0.036 0.076 0.127 0.259 0.423 0.611 0.317 0.160
bias (×10−3) 0.331 0.383 0.255 0.052 -0.554 -1.524 -2.467 -1.639 -0.318
SD(×10−2) 0.282 0.656 0.968 1.218 1.677 2.151 2.425 9.649 3.517
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Figure A.71: Experiment 9 - Boxplot showing the distribution of ̂AUC0,s under
method A

Figure A.72: Experiment 9 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method A
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A.8.2 ̂AUC∗0,s under method A

Table A.44: Experiment 9 - Properties of ̂AUC∗
0,s under method A

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.466 0.349
Mean 0.097 0.179 0.252 0.318 0.432 0.529 0.611 0.464 0.349
Bias (×10−3) 3.307 1.914 0.850 0.130 -0.923 -1.906 -2.467 -1.706 -0.359
SD(×10−2) 2.816 3.279 3.227 3.045 2.794 2.689 2.425 6.112 4.327

Figure A.73: Experiment 9 - Boxplot showing the distribution of ( ̂AUC∗
0,s) under

method A
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Figure A.74: Experiment 9 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method A

A.8.3 ̂AUC0,s under method B

Table A.45: Experiment 9 - Properties of ̂AUC0,s under method B
p1 p2 p3 p4 p5 p6 AUC p7 p8

Valid 10 176 583 944 1000 1000 1000 1000 1000
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.009 0.035 0.075 0.127 0.260 0.424 0.614 0.319 0.160
Mean 0.010 0.038 0.078 0.130 0.262 0.426 0.611 0.320 0.161
bias (×10−3) 0.376 2.386 2.731 2.561 1.851 1.489 -2.467 0.971 0.371
SD(×10−2) 0.249 0.677 1.135 1.295 1.703 2.051 2.425 9.864 3.492

Figure A.75: Experiment 9 - Boxplot showing the distribution of ̂AUC0,s under
method B
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Figure A.76: Experiment 9 - Boxplot showing the distribution of bias ( ̂AUC0,s) under
method B

Table A.46: Experiment 9 - Properties of â (log-odds ratio) under method B
a1 a2 a3 a4 a5 a6 a a7 a8

Mean 0.880 0.881 0.798 0.753 0.714 0.704 0.680 0.706 0.714
Bias 1.069 0.704 0.260 0.098 0.034 0.022 0.023 0.024 0.041
SD 1.034 0.839 0.510 0.312 0.183 0.149 0.153 0.154 0.203

Figure A.77: Experiment 9 - Boxplot showing the distribution of â (log-odds ratio)
under method B

Table A.47: Experiment 9 - Properties of b̂ (heterogeneity) under method B
b1 b2 b3 b4 b5 b6 b b7 b8

Mean 0.039 0.048 0.033 0.022 0.012 0.007 -0.006 0.007 0.012
Bias 0.044 0.054 0.031 0.019 0.010 0.007 0.006 0.007 0.011
SD 0.209 0.233 0.176 0.138 0.099 0.085 0.076 0.084 0.106
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Figure A.78: Experiment 9 - Boxplot showing the distribution of b̂ (heterogeneity)
under method B

A.8.4 ̂AUC∗0,s under method B

Table A.48: Experiment 9 - Properties of ̂AUC∗
0,s under method B

p1 p2 p3 p4 p5 p6 AUC p7 p8
s 0.1 0.2 0.3 0.4 0.6 0.8 1
Theoretical 0.094 0.177 0.251 0.318 0.433 0.531 0.614 0.466 0.349
Mean 0.098 0.189 0.260 0.324 0.436 0.532 0.611 0.468 0.351
bias (×10−3) 3.761 11.929 9.105 6.403 3.085 1.861 -2.467 1.763 1.212
SD 0.025 0.034 0.038 0.032 0.028 0.026 0.024 0.063 0.042
SD(×10−2) 2.485 3.387 3.785 3.238 2.839 2.563 2.425 6.282 4.181

Figure A.79: Experiment 9 - Boxplot showing the distribution of ̂AUC∗
0,s under

method B
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Figure A.80: Experiment 9 - Boxplot showing the distribution of bias ( ̂AUC∗
0,s) under

method B
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