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Abstract

This dissertation concerns with the formulation of an improved multi-target multi-

Bernoulli (MeMBer) filter and the use of the joint multi-target (JoM) estimator in an

effective and efficient manner for a specific implementation of MeMBer filters. After

reviewing random finite set (RFS) formalism for multi-target tracking problems and

the related Bayes estimators the major contributions of this dissertation are explained

in detail.

The second chapter of this dissertation is dedicated to the analysis of the rela-

tionship between the multi-Bernoulli RFS distribution and the MeMBer corrector.

This analysis leads to the formulation of an unbiased MeMBer filter without mak-

ing any limiting assumption. Hence, as opposed to the popular cardinality balanced

multi-target multi-Bernoulli (CBMeMBer) filter, the proposed MeMBer filter can be

employed under the cases when sensor detection probability is moderate to low. Fur-

thermore, a statistical refinement process is introduced to improve the stability of

the estimated cardinality of targets obtained from the proposed MeMBer filter. The

results from simulations demonstrate the effectiveness of the improved MeMBer filter.

In Chapters III and IV, the Bayesian optimal estimators proposed for the RFS

based multi-target tracking filters are examined in detail. First, an optimal solution

to the unknown constant in the definition of the JoM estimator is determined by
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solving a multi-objective optimization problem. Thus, the JoM estimator can be

implemented for tracking of a Bernoulli target using the optimal joint target detection

and tracking (JoTT) filter. The results from simulations confirm assertions about its

performance obtained by theoretical analysis in the literature. Finally, in the third

chapter of this dissertation, the proposed JoM estimator is reformulated for RFS

multi-Bernoulli distributions. Hence, an effective and efficient implementation of the

JoM estimator is proposed for the Gaussian mixture implementations of the MeMBer

filters. Simulation results demonstrate the robustness of the proposed JoM estimator

under low-observable conditions.
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Chapter 1

Introduction

1.1 Multi-target Tracking

Multi-target tracking is a joint estimation problem of unknown number of targets and

their states. The target number varies due to appearance and disappearance of targets

while their states evolve over time according to target dynamics. In addition, sensor

imperfections (e.g., noise and missed detections), and clutter introduce measurement

uncertainties which make the estimation problem too difficult to solve directly using

the Bayesian filtering techniques, e.g., Kalman filters and particle filters [1, 14].

The traditional approaches solve multi-target tracking problems in two steps: first,

the measurement uncertainty is addressed using a data association method. Then,

the Bayesian filtering techniques are used to update individual target states using

the associated measurements. Several data association methods have been proposed

in the literature. They range from the simple global nearest neighbor (GNN) data

association to the more complex ones such as joint probabilistic data association

(JPDA) and the multiple hypothesis tracking (MHT) [2, 3]. In the followings, some
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fundamental data association methods will be briefly discussed.

The GNN method assigns a unique measurement for each target by minimizing

a total cost function defined over all combinations of possible assignments of mea-

surements to targets. The possible assignments are determined under the constraint

that a measurement can be associated with at most one target and vice versa. Even

though this data association method is easy to implement, it is not robust since the

selected joint assignment is assumed to be correct. Therefore, tracks can be lost in

scenarios with high clutter rate or low probability of detection [2, 3]

The JPDA method uses all possible joint assignments with their association prob-

abilities. That is, instead of a hard joint assignment, soft joint assignments of mea-

surements to targets are performed using their association probabilities. The compu-

tational complexity of the JPDA increases exponentially with the number of targets

and the number of measurements. Therefore, some approximations are utilized to

propose its efficient but suboptimal implementations. [15, 16, 13]. The standard

JPDA assumes that the number of targets is fixed and known. This limiting assump-

tion is relaxed by incorporating target existence model into the JPDA framework

[11].

The MHT keeps a set of tracks hypothesized for all targets. Each hypothesis has

a posterior probability computed using Bayes rule. The basic idea in the MHT is

to progressively remove the data-association uncertainty with the help of new mea-

surements. Therefore, these hypotheses are propagated in time and used to generate

new hypotheses. However, the number of hypotheses grows exponentially with time.

In order to deal with this drawback on its implementation, hypothesis pruning, hy-

pothesis merging and gating techniques are utilized [3]. Consequently, a small set of

3
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hypotheses with high probabilities are maintained for each target.

1.2 Random Finite Set Based Multi-target Filters

1.2.1 Random Finite Set

The main challenge with the traditional multi-target tracking filters surfaces while

associating measurements to targets. In the random finite set (RFS) framework, the

modeling of multi-target tracking systems is completely free of explicit data associa-

tions. This is achieved by representing collections of target states and measurements

as finite set-valued random variables [8]. That is, an RFS X is a random variable

that takes values as finite subsets of a single-object state space, e.g., X ⊆ Rn where

Rn is Euclidean n-space. Thus, it consists of a random number of unordered elements

whose states are also random vectors. Hence, it can be completely characterized by

two distribution functions: i) a probability mass function of its cardinality variable

|X|, and ii) a symmetric joint probability distribution function of its elements for a

given cardinality. For any closed region S ⊆ Rn, the multi-target probability density

function f (X) is defined such that [4, 8]

Pr (X ⊆ S) =

∫
S

f (X) δX, (1.1)

where the set integral of f (X) is given by

∫
S

f (X) δX =f (∅) +
∞∑
i=1

1

i!

∫
S × ...× S︸ ︷︷ ︸

i times

f ({x1, ..., xi}) dx1...dxi, (1.2)

4
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where the infinitesimal volume dx1...dxi has units of υi if υ is the unit of hyper-

volume on S. Hence, f ({x1, ..., xi}) must have units of υ−i whereas f (∅) is a unitless

probability. Each term of the summation in (1.2) is the probability thatX is contained

in the region S for a given cardinality. Then, the cardinality distribution of X is

computed as

p|X| (i) =
1

i!

∫
|X|=i

f ({x1, ..., xi}) dx1...dxi, (1.3)

where the set integral is taken over all S for |X| = i. A complete statistical description

of X is provided by the multi-target probability density function f (X). Therefore,

for any X = {x1, ..., xi} this density is defined as follows [8]:

f ({x1, ..., xi}) = i! p|X| (i) f (x1, ..., xi) , (1.4)

where f (x1, ..., xi) is a symmetric joint probability distribution for all possible per-

mutations of random vectors (x1, ..., xi).

The probability generating functional (p.g.fl.) is another statistical descriptor

of an RFS. It provides a convenient way to obtain statistics of an RFS like the

generating functions used in probability theory, e.g., the characteristic function and

the probability generating function (p.g.f.). The p.g.fl. of an RFS X is defined by [8]

G [h] =

∫
hXf (X) δX, (1.5)

where h is any test function on X such that 0 ≤ h (x) ≤ 1, and

hX =


1 if X = ∅,∏

x∈X h (x) otherwise.

(1.6)

5
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Substituting the constant function h (x) = χ ∀x ∈ X into the p.g.fl. in (1.5) yields

the p.g.f. of |X| [8]:

G|X| (χ) = G [h]
∣∣
h(x)=χ ,

=
∞∑
i=0

χip|X| (i).
(1.7)

The p.g.f. completely characterize |X|, i.e., p|X| (i) = 1
i!
G

(i)
|X| (0) where G

(i)
|X| (χ) is the

ith derivative of G|X| (χ). In addition, the first two moments of |X| are given by

E [|X|] = G
(1)
|X| (1) and σ2

|X| = G
(2)
|X| (1)−

(
G

(1)
|X| (1)

)2

+G
(1)
|X| (1) [7, 8].

The important RFSs used in multi-target tracking are i) Poisson RFS, ii) inde-

pendent identically distributed (IID) cluster RFS, iii) Bernoulli RFS, and iv) Multi-

Bernoulli RFS [8]. Poisson RFS is a special case of the IID cluster RFS when the

cardinality distribution is Poisson [7]. Bernoulli RFS and its multi-target extension,

i.e., multi-Bernoulli RFS are the parametric RFSs. These two RFSs are the founda-

tion of the multi-target filters studied in this dissertation. Therefore, a brief review

of Bernoulli and multi-Bernoulli RFSs are provided in the following paragraphs.

Bernoulli

A Bernoulli RFS is an empty set to refer a nonexistent target with probability of

1 − q or is a singleton set whose random element x is statistically characterized by

a spatial probability density function f (x) on a single target state space. Thus, the

probability density function of a Bernoulli RFS X with the parameter pair {q, f} is

given by

f (X) =


1− q if X = ∅,

qf (x) if X = {x} .
(1.8)

The cardinality of a Bernoulli RFS is characterized by a Bernoulli distribution with

6
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the parameter q denoting the existence probability of a single target. This can be

verified by substituting (1.8) into (1.3). In addition, the p.g.fl. of the Bernoulli RFS

X is given by G [h] = 1− q + qf [h].

Multi-Bernoulli

A multi-Bernoulli RFS is the union of independent Bernoulli RFSs X(i) with

the parameter pair {q(i), f (i)}, i.e., X =
I⋃
i=1

X(i). Therefore, it is described by the

ensemble of the parameter pairs {
(
q(i), f (i)

)
}Ii=1. Suppose that there exist M targets

out of I constituent Bernoulli RFSs. Then, the probability density function of the

multi-Bernoulli RFS is given by

f (X) =


(
1− q(1)

)
...
(
1− q(I)

)
if X = ∅,∑

β

M∏
j=1

Θβf
β(j) (xj) if X = {x1, . . . , xM} ,

(1.9)

where

Θβ =
(
1− q(1)

)
...
(
1− q(I)

) qβ(1)

(1− qβ(1))
. . .

qβ(M)

(1− qβ(M))
, (1.10)

and the sum is taken over all permutations of the joint association hypotheses of

those existent Bernoulli targets that are represented by a one-to-one function β :

{1, ...,M} → {1, ..., I} for M ≤ I [8]. Using (1.3) the corresponding cardinality

distribution of the multi-Bernoulli RFS is obtained as

p|X| (M) =
1

M !

∑
β

Θβ. (1.11)

Using the independence of Bernoulli RFSs X(i), the p.g.fl. of the multi-Bernoulli RFS

7
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X is given by

G [h] = G1 [h] ....GI [h] , (1.12)

where Gi [h] = 1− q(i) + q(i)f (i) [h] for i = 1, ..., I [8].

1.2.2 Multi-Bernoulli Approximations

The Bayesian multi-target filtering is a recursive process performed in two steps [4, 8]:

Prediction: Let ϕk|k−1 (X |X ′ ) be the multi-target transition density, which char-

acterizes target motions, target births and target deaths. Then, the posterior multi-

target probability density fk−1|k−1

(
X|Z(k−1)

)
at time k − 1 is propagated according

to

fk|k−1

(
X|Z(k−1)

)
=

∫
fk−1|k−1

(
X ′|Z(k−1)

)
ϕk|k−1 (X |X ′ ) δX. (1.13)

Update: Let gk (Zk |X ) be the multi-target likelihood of observing the measure-

ment RFS Zk in the presence of noise, false alarms and missed detections. Then, the

predicted multi-target probability density is updated by the Bayes rule:

fk|k
(
X|Z(k)

)
=

gk (Zk |X ) fk|k
(
X|Z(k−1)

)∫
gk (Zk |X ) fk|k (X|Z(k−1)) δX

. (1.14)

Due to the combinatorial nature of ϕk|k−1 (X |X ′ ) and gk (Zk |X ) several integrals

must be evaluated over high dimensional product spaces in (1.13) and (1.14). There-

fore, the Bayes multi-target filter is computationally intractable [8]. However, if each

target is modeled by a Bernoulli RFS, a parametric approximation to the Bayes multi-

target filter can be obtained by propagating and updating their Bernoulli parameters,

i.e., the multi-Bernoulli RFS X.

8
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The multi-target multi-Bernoulli (MeMBer) filter provides a parametric approxi-

mation to the Bayes multi-target filter [8]. However, the posterior cardinality estimate

from the MeMBer filter is positively biased due to Bernoulli RFS approximation fol-

lowed for measurement-updated targets. The cardinality balanced multi-target multi-

Bernoulli (CBMeMBer) filter removes the bias [17]. However, the CBMeMBer filter

requires a limiting assumption on probability of detection.

1.3 Bayes Estimators for Multi-target Filters

The conventional state estimators, i.e., the expected a posteriori (EAP) and the

maximum a posteriori (MAP) estimators cannot be used to estimate RFS [8, 5].

There are two fundamental reasons why these two estimators are unavailable for RFS

[8, 6]. First, as indicated above, the multi-target density f ({x1, ...xi}) has units of

υ−i where υ is the unit of volume on a single target space, e.g., meter in R, and i

is a natural number including zero. Since it is impossible to compare f ({x1, ...xi})

for different values of |X| = i, the MAP estimate of X, i.e., X(MAP ) cannot be

determined. Second, the RFS is a finite-valued random set. Since addition and

subtraction operations are not defined on sets properly, the EAP estimate of X, i.e.,

X(EAP ) cannot be determined as well.

Instead of the EAP and MAP estimators, two Bayes multi-target estimators are

available to estimate RFS from multi-target filters [8]. These two estimators can be

interpreted as MAP-like estimators. This is because they both determine the MAP

estimates of individual target states from a given multi-target probability density.

The marginal multi-target (MaM) estimator determines this multi-target density by

9
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computing the MAP estimate of cardinality, i.e.,

X̂MaM = arg sup
x1,...,xîMAP

fk|k
(
{x1, ..., xîMAP }

∣∣Z(k)
)
, (1.15)

where

îMAP ∆
= arg sup

i
p|X| (i) , (1.16)

On the other hand, the joint multi-target (JoM) estimator determines the MAP

estimates of cardinality and target states simultaneously [8], i.e.,

X̂JoM = arg sup
X
fk|k

(
X
∣∣Z(k)

) ε|X|
|X|!

, (1.17)

where the parameter ε is an unknown constant and must satisfy that f ({x1, ..., xi}) εi ≤

1 for all |X| = i. In addition, there is a trade-off in the selection of ε between the

accuracy of multi-target state estimates and the speed of convergence to the true

multi-target state [8, 5].

The MaM and JoM estimators are both optimal in the sense that they minimize

their cost functions. However, the JoM estimator is more robust than the MaM

estimator because of its well-designed cost function [4].

1.4 Pareto Optimization

The multi-objective optimization problems consists of multiple conflicting objective

functions that need to be satisfied simultaneously [12, 9]. For example, the problem

of determining the most effective portfolio is a multi-objective problem. There are

many asset classes like stock, bond, cash and real-estate to invest in with different risk

10
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Figure 1.1: Illustration of Pareto front for the bi-objective portfolio problem.

factors. On average, a more risky asset class would have higher returns. Therefore,

there is no solution that maximizes return while minimizing risk. Instead, there are

many optimal solutions that do not dominate each other [12, 9]. These solutions

are called Pareto optimal and form a set of Pareto optimal objective vectors (also

known as Pareto front). Consider the dynamics of the economic system observed in

a country; the risk-versus-return analysis is illustrated in Fig. 1.1. The curve in Fig.

1.1 is the Pareto front where any improvement to risk incurs a detriment to return.

From optimization point of view, each point on Pareto front is an acceptable so-

lution. However, as in the case of single objective optimization problems, a final

solution shall be selected among these solutions. This can be achieved using decision

maker’s preference on each objective function that specifies the definition of the opti-

mum solution [12, 10, 9]. For example, the decision maker can determine the relative
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importance of each objective functions in multi-objective optimization by ranking

them.

1.5 Theme and Objectives of Dissertation

In compliance with the terms and regulations of McMaster University, this disserta-

tion has been written in sandwich thesis format by assembling three journal articles.

These articles are results of the independent research performed by the author of this

thesis.

The articles in the dissertation are focused on the multi-Bernoulli process and

the use of Bayesian estimators for MeMBer filters. In this scope, the relationship

between the multi-Bernoulli RFS distribution and the MeMBer corrector are ana-

lyzed in Paper I. This analysis is utilized to formulate an unbiased MeMBer filter like

the CBMeMBer filter but without making any limiting assumptions. In addition to

addressing an open issue in the CBMeMBer filter, the performance of the proposed

MeMBer filter on cardinality estimate of targets was improved. Then, the Bayesian

estimators proposed for the RFS based multi-target tracking filters are studied in

Paper II. The implementation of the robust JoM estimator was infeasible due to its

computational complexity and an unknown constant in its definition. In order to

determine an optimal solution to that constant, some fundamental concepts in infor-

mation theory and multi-objective Pareto optimization are studied. Thus, the JoM

estimator is implemented for tracking of a Bernoulli target. The results from simula-

tions confirm assertions about its performance obtained by theoretical analysis in the

literature. Finally, in Paper III, the proposed JoM estimator is reformulated for RFS

multi-Bernoulli distributions. Thus, the computationally complex JoM estimator can
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be used for the Gaussian mixture implementations of the MeMBer filters.

1.6 Summary of Enclosed Articles

The papers enclosed in this thesis are listed as follows:

1.6.1 Paper I (Chapter 2)

Erkan Baser, Thia Kirubarajan, Murat Efe, and Bhashyam Balaji

Improved MeMBer Filter with Modeling of Spurious Targets, IET Radar, Sonar &

Navigation, no. 2, vol. 10, pp. 285–298, February 2016.

Preface: Positive bias is observed on cardinality estimates obtained from the original

MeMBer filter. The CBMeMBer filter removes the bias under the assumption that the

probability of detection is close to unity. This assumption restricts its use in multi-

target tracking scenarios where sensor detection probability is moderate to small.

In order to deal with this problem, this paper expresses the relationship between

the posterior distribution obtained in the MeMBer data update step and the multi-

Bernoulli RFS distribution. Then, this relationship was utilized to introduce spurious

targets that account for the bias arising from multi-Bernoulli modeling of targets

in the MeMBer data update process. The modeling of spurious targets removes

the limiting assumption on the probability of detection. In addition, a statistical

method was proposed to refine existence probabilities of Bernoulli targets in the

light of measurements. Consequently, the proposed MeMBer filter outperforms the

CBMeMBer filter in stability of cardinality estimates of targets. Finally, in addition

to simulations, the strength and limitations of the IMeMBer filter was investigated
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by comparing it with optimal JoTT filter.

1.6.2 Paper II (Chapter 3)

Erkan Baser, Mike McDonald, Thia Kirubarajan, and Murat Efe

A Joint Multitarget Estimator for the Joint Target Detection and Tracking Filter,

IEEE Transactions on Signal Processing, no. 15, vol. 63, pp. 3857 –3871, May 2015.

Preface: The JoM estimator is a robust optimal Bayesian estimator proposed for the

RFS based multi-target tracking filters. However, it could not be put into use due to

the unknown JoM estimation constant. This paper provides an optimal solution to

that constant by solving a multi-objective optimization problem. The multi-objective

optimization problem consists of two conflicting objectives. The first objective func-

tion is defined using some fundamental concepts in information theory and aims to

maximize the entropy. On the other hand, the second one is obtained from the def-

inition of the JoM estimator and aims to improve the accuracy of JoM estimates.

The solution to these two conflicting objective functions is obtained as a Pareto op-

timal solution to their weighted sum. The weights are adjusted at each time step

considering the performance of tracking filter. The track management performance

of the proposed JoM estimator is compared with another optimal estimator called

MaM estimator in simulations. The results provide a justification to the theoretical

analysis performed about the performances of these two estimators in the literature.

1.6.3 Paper III (Chapter 4)

Erkan Baser, Thia Kirubarajan, Murat Efe, and Bhashyam Balaji

A Novel Joint Multitarget Estimator for Multi-Bernoulli Models, IEEE Transactions
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on Signal Processing, no. 19, vol. 64, pp. 5038–5051, June 2016.

Preface: The JoM estimator is computationally intractable for RFS multi-target dis-

tributions. Therefore, this paper extends the proposed JoM estimator to be used with

RFS multi-Bernoulli distributions in an effective and efficient manner. For this pur-

pose, two approximations are followed: first, the MAP estimates from an RFS multi-

Bernoulli distribution are approximated for given cardinalities of targets. Then, in

order to derive the multi-Bernoulli versions of the two conflicting objective functions

in Paper II, the posterior probability densities in the GM form are approximated as

Gaussian densities for each Bernoulli target. In addition, the computation of mixing

weights for these two conflicting objectives are reformulated considering dynamics

of multi-target tracking and characteristics of the JoM estimator. Thus, the Pareto

optimal solution to the JoM estimation constant is determined according to the dif-

ferent localization conditions such as occlusion and target birth. Two simulations are

provided, one for smaller and one for larger probabilities of detection. The results

conclude that the JoM estimator provides better tracking performance than the MaM

estimator when the uncertainty on cardinality estimates of targets is high, i.e., under

low observable conditions.
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Chapter 2

Improved MeMBer Filter with

Modeling of Spurious Targets

2.1 Abstract

The cardinality-balanced multi-target multi-Bernoulli (CBMeMBer) filter removes

the positive bias from the data-updated cardinality estimate in the MeMBer filter. In

this paper, the relationship between the MeMBer corrector and the multi-Bernoulli

random finite set (RFS) distribution is analyzed. By utilizing this relationship, a

filter that offers a new statistical framework for the MeMBer data update process is

proposed. Thus, the multi-Bernoulli RFS distribution is extended to model spurious

targets arising from targets under the legacy track set with high probabilities of

existence. Unlike the CBMeMBer filter, the proposed filter removes the bias observed

in the MeMBer filter by distinguishing spurious targets from actual targets, and while

doing this, it does not make any limiting assumption on the probability of target

detection. In addition, the modeling of spurious targets allows the refinement of the
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existence probabilities of targets in light of measurements. As a result, the stability of

the cardinality estimate is improved while removing the bias. The theoretical analysis

performed on the joint detection and state estimation problem of a single target

reveals the strengths and limitations of the proposed filter. In addition, numerical

simulations are performed in a scenario involving targets with crossing trajectories to

demonstrate the filter performance.

2.2 Introduction

The objective in multi-target tracking is to estimate both the time-varying number

of targets and their random states from the measurements received in the presence

of noise, false alarms, and missed detections. The random finite set (RFS) formalism

facilitates unified and probabilistic modeling of all presumed uncertainties associated

with multi-target tracking problems [12, 15]. Thus, the Bayesian framework for single

target tracking can be systematically translated into its multi-target counterpart. For

the resulting multi-target Bayes filter, the required Bayesian statistics are computed

using the finite set statistics (FISST) [12, 15, 14]. However, the implementation of

the multi-target Bayes filter using FISST is computationally intractable. Similar to

the single target Bayes filter, the statistical moment-based approximations to the

multi-target Bayes filter, known as the probability hypothesis density (PHD) and

the cardinalized PHD (CPHD) filters were developed in [11, 13] and implemented

in [29, 28, 32]. Recently, significant research has been devoted to improving the

performance of the PHD/CPHD filters [23, 24, 3] and to dealing with the problems

in their implementations such as extraction of state estimates and track labeling

[10, 20, 7]. In addition, further improvements have enabled these two filters to operate
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when clutter and/or detection profile are not known a priori [17, 18, 6].

The multi-Bernoulli assumption on the RFS of targets represents each target as a

randomly and independently switching on/off dynamic system [26]. In other words,

for each target an independent Bernoulli RFS provides a unified statistical represen-

tation of target existence and target states. Thus, the multi-target multi-Bernoulli

(MeMBer) filter was proposed as a tractable solution to multi-target tracking prob-

lems [14]. Since the MeMBer filter propagates the multi-target RFS as a multi-

Bernoulli RFS, it is a parameterized approximation to the RFS based multi-target

Bayes filter. Unlike the moment-based approximations, the MeMBer filter does not

suffer from the problem of the extraction of state estimates [14, 33]. That is, as

an advantage over the PHD/CPHD filters, its formulation for nonlinear models us-

ing sequential Monte Carlo (SMC) methods does not require employing error-prone

clustering algorithms.

The multi-Bernoulli RFS formalism implicitly followed in the formulation of the

PHD and CPHD filters draws more interest through the development of the MeMBer

filter. Subsequently, alternative implementations and improvements to the MeMBer

filter were proposed [35, 36, 21]. In addition, the Bernoulli RFS formalism was used

in the development of single-target tracking filters. First, the traditional integrated

probabilistic data association (IPDA) filter was formulated as RFS based Bayesian

recursion [5]. Then, the joint target detection and tracking (JoTT) filter (also known

as the Bernoulli filter) was developed [14, 30]. In [9], the Bernoulli filter was further

improved to handle imprecise measurements. For comprehensive overview of the

theory, implementation and applications, interested readers are referred to the tutorial

on Bernoulli filters [26].
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In the MeMBer filter, the estimated number of targets (i.e., the cardinality esti-

mate) is positively biased. The reason for the bias was explained as a consequence

of the multi-Bernoulli parameters computed for targets under the data-induced track

set [33, 30]. The cardinality-balanced MeMBer (CBMeMBer) filter was introduced

in [33] to remove the bias by revising the computation of these data-updated pa-

rameters. In addition, the SMC implementations of the CBMeMBer and MeMBer

filters were proposed as well as their Gaussian mixture (GM) implementations for

mildly nonlinear multi-target models. Similar to the improvements in [17, 18] the

CBMeMBer filter was then improved further to handle the joint problem of unknown

background clutter and detection profile while filtering [34].

Recently, the notion of labeled RFS was introduced as well as the conjugate prior

distributions of these new RFSs with respect to the standard multi-target likelihood

function [31]. Thus, the analytically tractable and closed-form solutions can be de-

rived for their Bayesian inference. Hence, the generalized labeled multi-Bernoulli

(GLMB) filter was proposed along with its relatively efficient version (known as

δ−GLMB filter) in terms of computational and memory resources [31]. These two

filters propagate the history of data-associations together with track sets. However,

the RFS formalism using the FISST benefits from the elimination of the computa-

tional problems due to explicit data associations in multi-target tracking [15, 14, 30].

Since this advantage is sacrificed for accuracy and estimation of target tracks, it is

computationally more expensive than the CBMeMBer filter [31, 22]. In [22], the

LMB filter was proposed as an efficient approximation of the δ−GLMB filter. Thus,

it inherits strong sides of the CBMeMBer filter and the δ−GLMB filter. Therefore, it

removes the restrictive high signal-to-noise ratio (SNR) and low clutter assumptions
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while it provides track estimates with better accuracy, compared to the CBMeMBer

filter. However, the computational complexity of the LMB filter is still more expen-

sive than that of the CBMeMBer filter since it requires explicit data associations as

the δ−GLMB filter.

In this paper, the relationship between the MeMBer corrector and the multi-

Bernoulli RFS distribution is analyzed. By utilizing this analysis, a filter that offers

a new statistical framework for the MeMBer data update process is proposed. Hence,

the multi-Bernoulli RFS distribution is extended by spurious targets arising from

targets under the legacy track set with high probabilities of existence. In the MeMBer

update, the legacy track set is obtained from the predicted Bernoulli targets, assuming

that they are not detected. However, all Bernoulli targets in the MeMBer prediction

are also combined for each measurement to introduce targets under the data-induced

track set. To resolve this ambiguity, the concept of spurious target is introduced

under the data-induced track set against actual targets for the same measurements.

Therefore, the proposed filter attempts to remove the positive bias observed in the

MeMBer filter by distinguishing spurious targets from actual targets.

The modeling of spurious targets allows the refinement of the existence proba-

bilities of targets in light of measurements. As a result, the stability of cardinality

estimate is improved while the positive bias observed in the MeMBer filter is removed.

When compared to the CBMeMBer filter, the proposed filter, which is hereinafter re-

ferred to as the improved MeMBer (IMeMBer) filter, does not make any limiting

assumption on the probability of detection. In addition to simulations, theoretical

analysis is performed in order to demonstrate the strengths and limitations of the

proposed IMeMBer filter. Preliminary results on this work were published in [4].
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This paper is organized as follows: Section 2.3 provides the necessary background

on the multi-Bernoulli RFS, the MeMBer filter, and the MeMBer data update process.

Section 2.4 analyzes the relationship between the MeMBer corrector and the multi-

Bernoulli RFS distribution. By utilizing this analysis, the IMeMBer filter is derived

in Section 2.5. The strengths and limitations of the IMeMBer filter are theoretically

analyzed in Section 2.6. Simulation results are presented in Section 2.7. Finally,

conclusions are drawn in Section 2.8.

2.3 Background

2.3.1 Multi-target Multi-Bernoulli Process

Let the spatial probability density functions of individual targets be denoted as

f (1) (y) , ..., f (ν) (y) if they do exist with probabilities q(1), ..., q(ν). Since each target

evolves independently from one another and follows a Bernoulli distribution with the

parameter pair {q, f}, the multi-target state can be modeled as a multi-Bernoulli RFS,

which is the union of the independent Bernoulli RFSs. Thus, the multi-Bernoulli RFS

is described by the parameter set
{
q(i), f (i)

}ν
i=1

. That is, the multi-target distribution

is given by

f (Y ) =


(
1− q(1)

)
...
(
1− q(ν)

)
if Y = ∅,∑

β

n∏
j=1

Θβf
β(j) (yj) if Y = {y1, . . . , yn} ,

(2.1)

where

Θβ =
(
1− q(1)

)
...
(
1− q(ν)

) qβ(1)

(1− qβ(1))
. . .

qβ(n)

(1− qβ(n))
,
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and the summation is taken over all permutations of the joint association hypotheses

that are defined as one-to-one functions β : {1, ..., n} → {1, ..., ν} for n ≤ ν [14].

2.3.2 MeMBer Filter

The MeMBer filter consists of two steps: i) prediction and ii) update. These two

steps are briefly presented below. Interested readers are referred to [14, 33] for further

details.

Step-1: Prediction

Given a multi-Bernoulli RFS distribution parameterized by {q(i)
k−1
, f (i)

k−1
}Mk−1

i=1 at

time step k − 1, the predicted distribution is also in the form of multi-Bernoulli

but parameterized by the union of two independent multi-Bernoulli RFSs: the first

RFS includes independent Bernoulli targets surviving from time k − 1 according to

a Markov state transition density pk|k−1(·|yk−1) with probability pS,k(y). This RFS is

described by the following Bernoulli parameters for each target:

q
(i)
k|k−1 = q

(i)
k−1f

(i)
k−1 [pS,k] , (2.2)

f
(i)
k|k−1 (y) =

pk|k−1

[
pS,kf

(i)
k−1

]
f

(i)
k−1 [pS,k]

, (2.3)

where for a given test function h (y), a functional of f (y) is defined by f [h] =∫
h(y)f (y) dy.

In addition to surviving targets, another RFS is used as a birth model to explore

newborn Bernoulli targets at time step k. This second RFS is independent of the

first one and is described by {q(i)
Γ,k, f

(i)
Γ,k
}MΓ,k

i=1 .

Step-2: Update
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Suppose that the predicted multi-Bernoulli RFS distribution at time step k is given

by {q(i)
k|k−1

, f (i)
k|k−1
}Mk|k−1

i=1 , where Mk|k−1 = Mk−1+MΓ,k. Then, the posterior distribution

is approximately parameterized by the union of two multi-Bernoulli RFSs: the first

RFS includes the parameters given by

q(i)
L,k

= q
(i)
k|k−1

1− f (i)
k|k−1 [pD,k]

1− q(i)
k|k−1f

(i)
k|k−1 [pD,k]

, (2.4)

f (i)
L,k

(y) =
1− pD,k (y)

1− f (i)
k|k−1 [pD,k]

f
(i)
k|k−1 (y) , (2.5)

for the predicted Bernoulli targets, assuming that they are not detected with proba-

bility 1− pD,k(y).

The second RFS includes the parameters referring to joint updates of all pre-

dicted Bernoulli targets. For each measurement z in the set Zk these parameters are

computed as

qU,k (z) =

Mk|k−1∑
i=1

q
(i)
k|k−1

f
(i)
k|k−1[pD,kgk(z|· )]

1−q(i)
k|k−1

f
(i)
k|k−1[pD,k]

κ (z) +
Mk|k−1∑
i=1

q
(i)
k|k−1

f
(i)
k|k−1[pD,kgk(z|· )]

1−q(i)
k|k−1

f
(i)
k|k−1[pD,k]

, (2.6)

fU,k (y; z) =

Mk|k−1∑
i=1

q
(i)
k|k−1

pD,k(y)gk(z|y )

1−q(i)
k|k−1

f
(i)
k|k−1[pD,k]

f
(i)
k|k−1 (y)

Mk|k−1∑
i=1

q
(i)
k|k−1

f
(i)
k|k−1[pD,kgk(z|· )]

1−q(i)
k|k−1

f
(i)
k|k−1[pD,k]

, (2.7)

where gk(z|y) is the sensor likelihood function at time step k and κ(z) is the intensity

function of Poisson distributed clutters.
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2.3.3 MeMBer Data Update

To elaborate on the data update process given by (2.6) and (2.7), suppose that the

single-sensor multi-target measurements at time step k are modeled by the RFS:

Zk =

[ ⋃
y∈Yk

Ξk (y)

]
UCk, (2.8)

where Ck denotes measurements due to Poisson distributed clutter with intensity

κ(z) = λcΦ(z) and Ξk(y) denotes the measurement set produced by a target with

state y. More precisely, a specified target is either detected with probability of target

detection pD,k(y), thus Ξk(y) = {z}, or missed with probability 1 − pD,k(y), thus

Ξk(y) = ∅.

In the probability generating functional (p.g.fl.) form, the MeMBer corrector

consists of two products given by [14]

Gk [h] ≈
Mk|k−1∏
i=1

GL,k [h]
∏
z∈Zk

GU,k [z;h], (2.9)

where the first product corresponds to the updated p.g.fl. of targets under the legacy

track set, i.e., the individual updates of the Mk|k−1 predicted Bernoulli targets, as-

suming that they are not detected, while the second one corresponds to the updated

p.g.fl. of targets under the data-induced track set, i.e., the joint updates of the Mk|k−1

predicted Bernoulli targets for each z ∈ Zk.

Although the updated p.g.fl. of targets under the legacy track set is of multi-

Bernoulli form, the updated p.g.fl. of targets under the data-induced track set is not.

To address this problem, two approximations were proposed in the MeMBer filter:
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first, the clutter process is assumed sparsely distributed in time. This approximation

yields [14]

GU,k [z;h] =
κ (z) +

∑Mk|k−1

i=1 G
(i)
U,k [z;h]

κ (z) +
∑Mk|k−1

i=1 G
(i)
U,k [z; 1]

, (2.10)

where

G
(i)
U,k [z;h] =

q
(i)
k|k−1f

(i)
k|k−1 [hpD,kgk (z |·)]

1− q(i)
k|k−1 + q

(i)
k|k−1f

(i)
k|k−1 [h (1− pD,k)]

.

Since the numerator and denominator are both functions of h, GU,k[z;h] cannot be

written in Bernoulli form, i.e., G[h] = 1−q+qf [h]. Therefore, a second approximation

is made by setting h = 1 in the denominator of G
(i)
U,k[z;h] and thus leading to [14]:

G
(i)
U,k [z;h] ≈

q
(i)
k|k−1f

(i)
k|k−1 [hpD,kgk (z |·)]

1− q(i)
k|k−1f

(i)
k|k−1 [pD,k]

. (2.11)

In [33], it is asked why (2.11) is a good approximation. Therefore, we first examine

this issue by analyzing the relationship between the MeMBer corrector and the multi-

Bernoulli RFS distribution. This analysis introduces an alternative derivation for the

MeMBer data update process and thus yields a new statistical framework to remove

the positive bias from the data-updated cardinality estimate in the MeMBer filter.

2.4 Alternative MeMBer Data Update

The MeMBer filter is a parameterized approximation to the RFS based multi-target

Bayes filter. Given this parameterization, our analysis is based on establishing an

equivalence between the multi-target posterior distribution of targets under the data-

induced track set and the multi-Bernoulli RFS distribution given by (2.1).
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Using the product rule for set derivatives [11, 14], the posterior distribution cor-

responding to the p.g.fl. of the targets under the data-induced track set in (2.9) can

be derived as follows:

fU,k (Y ) =
δn

δY

∏
z∈Zk

GU,k [z;h]

∣∣∣∣
h=0

,

=



∑
β

n∏
j=1

∂GU,k
∂δyj

[
zβ(j); 0

] m∏
l=1

`/∈Im(β)

GU,k [z`; 0] if n ≤ m,

0 if n > m,

m∏̀
=1

GU,k [z`; 0] if n = 0,

(2.12)

where |Y | = n, |Zk| = m and the summation is taken over all permutations of the

joint associations defined as one-to-one functions β : {1, ..., n} → {1, ...,m}, and

Im (·) denotes the image of the function β.

The equivalence of fU,k (Y ) and f (Y ) results in

m∏
`=1

GU,k [z`; 0] =
(
1− q(1)

)
...
(
1− q(m)

)
, (2.13)

and

∑
β

n∏
j=1

∂GU,k

∂δyj

[
zβ(j); 0

] m∏
`=1

`/∈Im(β)

GU,k [z`; 0] =
∑
β

n∏
j=1

[
qβ(j)fβ(j) (yj)

] m∏
`=1

`/∈Im(β)

(
1− q`

)
,

(2.14)

for Y = ∅ and Y = {y1, ..., yn}, respectively. The equivalence expressed by (2.13)

and (2.14) are analytically valid since the number of targets under the data-induced

track set is equal to m in the MeMBer data update process. In (2.13), all of them
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are assumed to be nonexistent, while in (2.14), only n out of m targets under the

data-induced track set are assumed to be existent.

From (2.13), the computation of existence probabilities using 1−qU,k(z) = GU,k[z; 0]

where

GU,k [z; 0] = 1−
∑Mk|k−1

i=1 G
(i)
U,k [z; 1]

κ (z) +
∑Mk|k−1

i=1 G
(i)
U,k [z; 1]

, (2.15)

produces the same results as those computed in the MeMBer data update process.

Using (2.14), the existence probabilities obtained from (2.13) can be justified. In

addition, the spatial probability density functions for targets under the data-induced

track set can be computed if they do exist. Specifically, a particular concern here is

to establish the facts that result in

∂GU,k

∂δyj

[
zβ(j); 0

]
= qβ(j)f β(j) (yj) . (2.16)

When targets under the data-induced track set are approximated as multi-Bernoulli

RFS, each target follows a Bernoulli RFS with a p.g.fl. of the form G[h] = 1−q+qf [h].

Suppose that a target under the data-induced track set exists, then using the func-

tional derivative defined in [14] the following identity is obtained:

∂GU,k

∂δy
[z; 0] =

∂GU,k

∂δy
[z; 1] , (2.17)

where the left hand side represents the probability density function of a Bernoulli

RFS, while the right hand side represents its PHD function. Therefore, the PHD and

the probability density function of a Bernoulli RFS are identical if the corresponding

target does exist. In the MeMBer filter, the identity in (2.17) cannot be validated

unless one of the following prior assumptions is made: pD,k(y) = 1 or h = 1 in the

31



Ph.D. Thesis - E. Baser McMaster - Electrical Engineering

denominator of G
(i)
U,k[z;h] (see Appendix A for proof). This fact explains why the

approximation setting h = 1 was proposed for the derivation of the MeMBer filter in

[14].

Using the relationship between the p.g.fl. of an RFS and the probability gener-

ating function (p.g.f.) of its discrete cardinality distribution [13] (i.e., G [h]|h(y)=χ =

G (χ)|Y |), the expected value of the cardinality, i.e., the existence probability, for

each target under the data-induced track set is computed as

∂GU,k (χ)|Y |
∂χ

|χ=1 =
∂

∂χ
(1− q + χq) ,

= q.

(2.18)

Thus, from (2.10) where G
(i)
U,k[z;h] is approximated by (2.11), we get the result claimed

in (2.15) as

qU,k (z) =

∑Mk|k−1

i=1 G
(i)
U,k [z; 1]

κ (z) +
∑Mk|k−1

i=1 G
(i)
U,k [z; 1]

. (2.19)

In order to compute the corresponding spatial probability density function the

following two steps are performed: First, the PHD of the Bernoulli RFS is computed

from its p.g.fl. as

∂GU,k

∂δy
[z; 1] =

Mk|k−1∑
i=1

q
(i)
k|k−1

f
(i)
k|k−1

(y)pD,k(y)gk(z|y )

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,k]

κ (z) +
∑Mk|k−1

i=1 G
(i)
U,k [z; 1]

, (2.20)

and then following from (2.16) and (2.17), (2.20) is divided by (2.19). This normal-

ization yields the same spatial probability density function as that computed in [14],
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i.e.,

fU,k (y; z) =

Mk|k−1∑
i=1

q
(i)
k|k−1

f
(i)
k|k−1

(y)pD,k(y)gk(z|y )

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,k]∑Mk|k−1

i=1 G
(i)
U,k [z; 1]

. (2.21)

In the MeMBer filter, setting h = 1 before deriving the multi-Bernoulli parameters

produces a bias in the cardinality estimate [33]. The CBMeMBer filter deals with this

issue by computing the existence probabilities of targets under the data-induced track

set from (2.10) without making the approximation given by (2.11). In other words, the

identity required for multi-Bernoulli RFS approximation in (2.17) is not validated for

the computation of the existence probabilities in the CBMeMBer filter. Nevertheless,

the spatial probability density functions computed in the CBMeMBer filter are valid,

provided that pD,k(y) is set at pD,k(y) ≈ 1. That is, in the CBMeMBer filter, the

required identity in (2.17) is validated at the stage where fU,k(y; z) is computed.

Although no assumption was made on pD,k(y) in [14], substituting pD,k(y) ≈ 1 into

(2.21) yields the same spatial probability density function as that computed in the

CBMeMBer filter.

2.5 Improved MeMBer Filter

2.5.1 Modeling of Spurious Targets

In the MeMBer data update process, with probability 1− qU,k(z) a target rising from

any z ∈ Zk can be considered as non-existent. That is, each measurement can be

thought of as having originated from the clutter process with probability 1− qU,k(z).

On the other hand, due to positive bias a target under the data-induced track set

can be modeled as either actual or spurious. Therefore, if a target does exist, the
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disambiguation between spurious target and actual target requires an augmented

Bernoulli RFS. Similar to the extension in [34], the state space of Bernoulli RFS Y

is temporarily extended as Υ′ = Υ× {0, 1} in the data update process to label these

targets, i.e., Y ′ = {y, u} ∈ Υ′. Thus, the corresponding RFS distribution is defined

as

fU,k (Y ′) =


1− qU,k (z) if Y ′ = ∅,

q̃U,k(z)f̃U,k (y) if Y ′ = {y, 0} ,

q̄U,k(z)f̄U,k (y) if Y ′ = {y, 1} ,

(2.22)

where the parameter pairs {q̃U,k, f̃U,k} and {q̄U,k, f̄U,k} for u = 0 and u = 1 characterize

spurious and actual targets, respectively, provided that a target does exist with total

probability q̃U,k(z) + q̄U,k(z) = qU,k(z).

The p.g.fl. of this augmented Bernoulli RFS, if a target does exist, is written as

q̄U,k(z)f̄U,k [h] + q̃U,k(z)f̃U,k [h] = ḠU,k [z;h] + G̃U,k [z;h] ,

= GU,k [h; z] ,

(2.23)

where the last equation proves the total probability by (2.18) for the mutually exclu-

sive events u = 0 and u = 1. Thus, the multi-target posterior distribution given by

(2.12) is extended using the product rule as follows:

fU,k (Y ′) =



∑
β

∑
θ

ρ∏
i=1
θ(i)>0

∂G̃
∂yi

[
zβ(θ(i)); 0

] n∏
j=1

j /∈Im(θ)

∂Ḡ
∂yj

[
zβ(j); 0

] m∏̀
=1

`/∈Im(β)

GU,k [z`; 0] if n ≤ m,

0 if n > m,

m∏̀
=1

GU,k [z`; 0] if n = 0,

(2.24)
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where spurious targets correspond to the factors of the first product computed for all

joint associations defined by a function θ : {1, ..., ρ} → {0, 1, ..., n} for ρ ≤ n. Note

that θ (i) > 0 denotes a unique association, while θ (i) = 0 denotes a null association

(i.e., no spurious target). The actual targets correspond to the factors of the second

product computed for all joint associations defined by the one-to-one function β,

provided that j /∈ Im(θ).

For each Bernoulli target i in the MeMBer prediction, there is a corresponding

target with probability q
(i)
L,k under the legacy track set. In the MeMBer data update

process, all Bernoulli targets in the MeMBer prediction are also compiled for each

z ∈ Zk to declare a target under the data-induced track set. Without considering

targets under the legacy track set, their contributions to targets under the data-

induced track set would give rise to a positive bias in the cardinality estimate like an

internal clutter generator. Based on this premise, the p.g.fl. in (2.11) for any z can

be separated into two terms:

G
(i)
U,k [z;h] =

q
(i)
k|k−1 q

(i)
L,kf

(i)
k|k−1 [hpD,kgk (z |·)]

1− q(i)
k|k−1f

(i)
k|k−1 [pD,k]

+

q
(i)
k|k−1

(
1− q(i)

L,k

)
f

(i)
k|k−1 [hpD,kgk (z |·)]

1− q(i)
k|k−1f

(i)
k|k−1 [pD,k]

,

(2.25)

where the first term on the right hand side denotes the contribution to the p.g.fl.

of a spurious target, i.e., G̃U,k [z;h], since the predicted Bernoulli target i is already

updated as a target under the legacy track set, while the second term denotes the

contribution to the p.g.fl. of an actual target, i.e., ḠU,k [z;h], by satisfying the total

probability. Thus, (2.25) shows how to use (2.23) for the multi-Bernoulli RFS.

Using (2.18) with ḠU,k [z;h] and G̃U,k [z;h], the probability of existence for the
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actual and spurious targets are computed as

q̄U,k(z) =

Mk|k−1∑
i=1

q
(i)
k|k−1

(
1−q(i)

L,k

)
f

(i)
k|k−1 [pD,kgk(z|· )]

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,k]

κ (z) +
Mk|k−1∑
i=1

G
(i)
U,k [z; 1]

, (2.26)

and

q̃U,k (z) =

Mk|k−1∑
i=1

q
(i)
k|k−1

q
(i)
L,kf

(i)
k|k−1 [pD,kgk(z|· )]

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,k]

κ (z) +
Mk|k−1∑
i=1

G
(i)
U,k [z; 1]

, (2.27)

respectively.

According to (2.22), if a spurious target does exist, its probability density function

has the form of q̃U,k(z)f̃U,k(y; z). In addition, (2.17) is still valid for G̃U,k [z;h]. This

is because each contribution from (2.11) to G̃U,k [z;h] using (2.25) is proportional to

q
(i)
L,k, which is independent of h. Thus, its spatial probability density function can be

obtained by dividing the PHD computed from G̃U,k [z;h] using (2.17) by (2.27):

f̃U,k (y; z) =

Mk|k−1∑
i=1

α̃(i)f
(i)
k|k−1 (y) pD,k (y) gk (z |y )

Mk|k−1∑
i=1

α̃(i)f
(i)
k|k−1 [pD,kgk (z |·)]

, (2.28)

where α̃(i) = q
(i)
k|k−1 q

(i)
L,k(1 − q

(i)
k|k−1f

(i)
k|k−1 [pD,k])

−1. This spatial probability density

function is bounded except when pD,k(y) = 1 or pD,k(y) = 0. The reason is that

either the bias in the cardinality estimate is equal to zero when pD,k(y) = 1 or there

are no targets under the data-induced track set when pD,k(y) = 0, in which case there

would be no spurious targets generated in the MeMBer filter.

Similarly, the spatial probability density function of each actual target under the
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data-induced track set can be obtained by dividing the PHD computed from ḠU,k [z;h]

using (2.17) by (2.26):

f̄U,k (y; z) =

Mk|k−1∑
i=1

ᾱ(i)f
(i)
k|k−1 (y) pD,k (y) gk (z |y )

Mk|k−1∑
i=1

ᾱ(i)f
(i)
k|k−1 [pD,kgk (z |·)]

, (2.29)

where ᾱ(i) = q
(i)
k|k−1 (1− q(i)

L,k)(1− q
(i)
k|k−1f

(i)
k|k−1 [pD,k])

−1. In contrast to the CBMeMBer

filter, no limiting assumption is made on pD,k(y). Nevertheless, substituting pD,k(y) ≈

1 into (2.29) yields the spatial probability density function, which is the same as that

computed in the CBMeMBer filter.

In [33], the PHD function of the updated p.g.fl. has positive and negative parts.

Therefore, a valid spatial probability density function cannot be obtained unless the

negative part is neglected by the prior assumption of pD,k(y) ≈ 1. The existence

probability of a spurious target given by (2.27) explains the cardinality distribution

from that negative part of the PHD function. See Appendix B for this alternative

explanation for modeling spurious targets.

As in the IMeMBer and CBMeMBer filters, the prediction step of the LMB filter

corresponds to that of the MeMBer filter. However, the approximation followed

in its update step matches its PHD with that of the multi-target posterior density

[22]. Hence, it removes the high SNR and low clutter assumptions made for the

CBMeMBer filter while it requires computationally expensive exact data associations

for this efficient approximation. It is important to note that the proposed IMeMBer

filter eliminates the high SNR assumption but it still requires low clutter assumption

because of the first approximation in the MeMBer filter. In addition, it benefits
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from the RFS formalism to eliminate exact data associations. Therefore, the time

complexity of the CBMeMBer (or IMeMBer) filter is approximately same as that of

the PHD filter, i.e., linear in the number of measurements [16]. On the other hand,

the time complexity of the LMB filter is at worst cubic in the number of measurements

[22].

2.5.2 Physical Interpretation of Track Sets

The MeMBer data update compiles all Bernoulli targets in the MeMBer prediction for

each z ∈ Zk to declare a target under the data-induced track set. By modeling of spu-

rious targets their contributions to targets under the data-induced track set decreases,

especially if the corresponding targets under the legacy track set have high existence

probabilities. However, the existence probabilities of targets under the legacy track

set are computed without the current measurement set. In addition, the use of two

different mathematical models under the legacy track set and the data-induced track

set for the existence probability of the same target would yield poor performance in

the cardinality estimate. This is because they refer to the same physical event in the

real world. This situation is illustrated with the following example customized to a

single Bernoulli target from [1].

Assume that we have an unfair coin with probabilities P1 (′head′) = 0.6 and

P1 (′tail′) = 0.4. The events ′head′ and ′tail′ can be considered as mutually exclu-

sive ′target existence′ and ′target death′ events for a Bernoulli target, respectively.

Thus, a probability space is constructed as (Ω1, σ1, P1) where Ω1 = {′head′,′ tail′} is

the sample space, and σ1 is the sigma field of measurable subsets of Ω1 through the

measure P1.
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Table 2.1: Cardinality Distributions for Alternative Probability Spaces

Cardinality distribution \Target number n = 0 n = 1 n = 2
p|Y |,1 (n) 0.4 0.6 n/a
p|Y |,2 (n) 0.49 0.42 0.09

Alternatively, a second probability space is formed as (Ω2, σ2, P2) where Ω2 =

{′head1′,′ head2′,′ tail′} with P2 (′head1′) = 0.3, P2 (′head2′) = 0.3, and P2 (′tail′) =

0.4. Similar to the first probability space, the event ′tail′ can be considered as

′target death′ event for a Bernoulli target. On the other hand, the events ′head1′

and ′head2′ can be considered as ′target existence′ event for the same Bernoulli tar-

get but under the legacy track set and data-induced track set, respectively.

As indicated in [1], these probability spaces can be considered the equivalent

models of randomness, i.e., P1 (′tail′) = P2 (′tail′) and P1 (′head′) = P2 (′head1′) +

P2 (′head2′). However, the (CB)MeMBer filter determines the number of existing tar-

gets with the maximum a posteriori (MAP) estimate from the cardinality distribution

of multi-Bernoulli RFS [14, 33]. Using the existence probabilities of the Bernoulli

target(s) in these two alternative probability spaces, the cardinality distributions are

computed in Table 2.1.

According to Table 2.1, the MAP estimates from the cardinality distributions

contradict with each other. The same contradiction would also arise if the existence

of a target were determined with the highest probability in both probability spaces

[1].
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2.5.3 Refinement of Existence Probabilities

To address the problem observed in the physical interpretation of track sets, the

refinement of existence probabilities are proposed. Before the multi-target state es-

timation, the refinement process determines targets detected under the legacy track

set using the following test statistics obtained from (2.27):

q̃U,k (z, i) =

q
(i)
k|k−1

q
(i)
L,kf

(i)
k|k−1 [pD,kgk(z|· )]

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,k]

κ (z) +
∑Mk|k−1

i=1 G
(i)
U,k [z; 1]

. (2.30)

Then, it purifies the legacy track set by eliminating these targets in light of measure-

ments. Thus, the contributions to actual targets in (2.26) are to be updated, i.e.,

computed as in the MeMBer data update process.

To determine targets detected under the legacy track set, the following two meth-

ods are designed: i-) using the existence probabilities given by (2.27) for each z ∈ Zk,

compute the cardinality distribution of spurious targets [14]. Thus, the MAP estimate

of their cardinality, i.e., ñMAP , is determined. Then, select the ñMAP spurious tar-

gets with the highest existence probabilities q̃U,k(z). However, the predicted Bernoulli

targets may not be resolved for the measurements Zs
k ⊂ Zk, which give rise to the

selected spurious targets. Considering one target can generate at most one mea-

surement, targets detected under the legacy track set are determined by maximizing

(2.30) for each z ∈ Zs
k, i.e.,

i∗ = arg max
i∈I

(q̃U,k (z, i)) , (2.31)
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where I =
{

1, ...,Mk|k−1

}
is the dynamic list consisting of the indices of targets, which

are not detected, under the legacy track set. Therefore, an index j is removed from

the list I if i∗ = j for any z ∈ Zs
k. The legacy track set is purified by eliminating

the target with index i∗, i.e., q
(i∗)
L,k = 0. Thus, the existence probability of the actual

target against the spurious one for the same z is updated as

q̄U,k (z) = q̄U,k (z) + q̃U,k (z) . (2.32)

This is because no positive bias is observed for the measurement z after the purifica-

tion. In addition, ii-) for the remaining indices in the list I, some targets under the

legacy track set may exist with small to moderate probabilities. On the other hand,

there may be actual targets with high to moderate existence probabilities to refer to

the same physical events. That is, spurious targets with small to moderate existence

probabilities may indicate resolved targets, which are detected under the legacy track

set. To determine these targets, the remaining measurements in Zk − Zs
k are used in

(2.31). Thus, the legacy track set is purified by setting q
(i∗)
L,k = 0 conditional on

q̃U,k (z, i)


≥ Th if i = i∗,

< Th otherwise,

(2.33)

where z ∈ Zk − Zs
k and Th is the termination threshold for Bernoulli targets. Then,

the existence probability of the actual target for the same z is updated as in (2.32).

Consequently, all Bernoulli RFSs under the legacy track set and data-induced track

set represent one physical event for different targets. Table 2.2 shows the pseudo-code

of the refinement process carried out according to these two methods.
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Table 2.2: Refinement Process

Input: Q̃k =
{
q̃

(i)
U,k

}Nm
i=1

where Nm = |Zk|
• Compute the cardinality distribution from Q̃k [14].
• Determine MAP estimate of the cardinality, i.e., ñMAP .
• Sort the existence probabilities of spurious targets:

− [∼, Id] = sort
(
Q̃k, ‘descend’

)
.

• Obtain Zs
k from the ordered list Id using ñMAP .

• Initialize the dynamic list I =
{

1, ...,Mk|k−1

}
.

• for z ∈ Zs
k

− Evaluate (2.31) to find the index i∗.

− Set q
(i∗)
L,k = 0 and evaluate (2.32).

− Update the dynamic list: I = I − {i∗}.
end
• for z ∈ Zk − Zs

k

− Evaluate (2.31) to find the index i∗.
− If the condition in (2.33) is satisfied,

◦ Set q
(i∗)
L,k = 0 and evaluate (2.32).

◦ Update the dynamic list: I = I − {i∗}.
end

end

2.6 Theoretical Analysis of IMeMBer Filter

The aim of this section is to theoretically analyze the strengths and limitations of

the proposed IMeMBer filter. The most convenient way of doing this analysis is to

substitute Bernoulli RFS for multi-Bernoulli RFS. Thus, the complex problem at

hand simplifies to the joint detection and state estimation problem of a single target

with measurements of uncertain origin. In this case, the joint target detection and

tracking (JoTT) filter provides an exact and theoretically optimal Bayesian solution

[14].

In traditional single target tracking problems, a target of interest is assumed
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to be always present [2]. The integrated probabilistic data association (IPDA) is

an algorithm that removes this assumption by estimating the probability of target

existence along with the target’s states [19]. The RFS formulation of the IPDA

algorithm was derived in [5]. Then, its extended RFS versions referred to as the

Bernoulli filter [30] or the JoTT filter [14] was developed.

Suppose that at most one target is present and this is known a priori. In this

case, the RFS of target state is modeled as a Bernoulli RFS with the parameter pair

{q, f} so that

f (Y ) =


1− q if Y = ∅

qf (y) if Y = {y} .
(2.34)

The prediction step of the MeMBer filter is exact, i.e., given the multi-Bernoulli

RFS, the prediction for each target is independently modeled by a Bernoulli RFS.

However, the MeMBer data update approximates the exact Bayesian multi-target

update [14]. Therefore, the theoretical analysis will focus on the comparison between

the IMeMBer corrector and the JoTT corrector.

In the original derivation of the JoTT filter, the false alarm process is modeled as

an arbitrary RFS. When the Poisson false alarm RFS is substituted for the arbitrary

false alarm RFS, the original update equations of the JoTT filter defined in [14] are

given by

qk|k =

1− fk|k−1 [pD,k] +
∑
z∈Zk

fk|k−1 [pD,kgk(z|· )]
κ(z)

q−1
k|k−1 − fk|k−1 [pD,k] +

∑
z∈Zk

fk|k−1 [pD,kgk(z|· )]
κ(z)

, (2.35)

fk|k (y) =

1− pD,k (y) + pD,k (y)
∑
z∈Zk

gk(z|y )
κ(z)

1− fk|k−1 [pD,k] +
∑
z∈Zk

fk|k−1 [pD,kgk(z|· )]
κ(z)

fk|k−1 (y) . (2.36)
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For a Bernoulli RFS, the legacy part of the updated p.g.fl. in (2.9) is given by

[14]

GL,k [h] =
1− qk|k−1 + qk|k−1f [h (1− pD,k)]
1− qk|k−1 + qk|k−1f [(1− pD,k)]

, (2.37)

while its data-induced part given by (2.10) simplifies to

ḠU,k [z;h] =
κ (z) + Ḡ

(i)
U,k [z;h] |i=1

κ (z) +GU,k [z; 1]
, (2.38)

where Ḡ
(i)
U,k [z;h] |i=1 denotes the p.g.fl. of an actual target in (2.25). Thus, using

(2.18) the probability of existence of a single target is computed as

qk|k =
∂

∂χ

[
GL,k (χ)

∏
z∈Zk

ḠU,k (z;χ)

]∣∣∣∣∣
χ=1

,

=
∂GL,k

∂χ
(χ)

∣∣∣∣
χ=1

∏
z∈Zk

Ḡ(0)
U,k

(z;χ)

∣∣∣∣∣
χ=1

+

G(0)
L,k

(χ) |χ=1

∑
z∈Zk

∂ḠU,k

∂χ
(z;χ)

∣∣∣∣∣
χ=1

,

(2.39)

where the last equation follows from the product rule [11, 14].

Since a Bernoulli target is present as either a legacy or a data-induced track, i.e.,

these two events are mutually exclusive for a Bernoulli RFS, it follows that

G(0)
L,k

(χ) |χ=1 = pL,|Yk| (0) ,

= 1.0,

(2.40)
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and ∏
z∈Zk

Ḡ(0)
U,k

(z;χ)

∣∣∣∣∣
χ=1

= p̄U,|Yk| (0) ,

= 1.0,

(2.41)

where the last equations in (2.40) and (2.41) are results of [13]

G (n) =
∞∑
n=0

χnp|Y | (n) ,

where p|Y | (n) denotes the cardinality distribution evaluated at nonnegative integer

n.

From [13] we know that the expected value of the cardinality is given by

∂G

∂χ
(χ)

∣∣∣∣
χ=1

= G(1) (1) ,

=
∑∞

n=1
np|Y | (n) .

For a Bernoulli RFS, this simplifies to

G(1) (1) = p|Y | (1) ,

where p|Y | (1) denotes the probability that a single target is present, i.e., the proba-

bility of target existence. The gradient derivatives in (2.39) are therefore expressed

as

G
(1)
L,k (1) = qL,k, (2.42)

Ḡ
(1)
U,k (z, 1) = q̄U,k (z) . (2.43)
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Then, substituting (2.40)–(2.43) into (2.39), the posterior probability of target

existence is defined as

qk|k = qL,k +
∑
z∈Zk

q̄U,k (z). (2.44)

This probability measure is valid, i.e., 0 ≤ qk|k ≤ 1.0 as long as clutter points are

sparsely distributed. In other words, it is unlikely that any two measurements are

highly related to a Bernoulli target via the sensor likelihood function gk (z |y ). Re-

call that, for multi-Bernoulli RFS formalism of data-induced part of the MeMBer

corrector, the clutter distribution is also approximated not to be too dense [14]. Ac-

cordingly, two cases are possible: 1) if no measurement is collected, i.e. Zk = ∅,

then

qk|k = qL,k,

= qk|k−1

1− fk|k−1 [pD,k]

1− qk|k−1‘fk|k−1 [pD,k]
,

(2.45)

and 2) if there is only one measurement that makes significant contribution to the

single target under the data-induced track set while the others are negligible, i.e.,

implicitly assuming that Zk = {z}, then

qk|k ≈ qL,k + q̄U,k (z) . (2.46)

After substituting qL,k and q̄U,k (z) into (2.46), some algebraic manipulations yield

qk|k ≈
1− fk|k−1 [pD,k] +

fk|k−1 [pD,kgk(z|· )]
κ(z)

q−1
k|k−1‘

− fk|k−1 [pD,k] +
fk|k−1 [pD,kgk(z|· )]

κ(z)

. (2.47)

From the identity in (2.17), the PHD of the posterior density of a Bernoulli RFS

is given by qk|k fk|k (y). Thus, the corresponding spatial probability density functions

46



Ph.D. Thesis - E. Baser McMaster - Electrical Engineering

can be obtained by dividing the PHDs computed under these two cases by (2.45) and

(2.47), respectively (see Appendix C for proof). That is,

fL,k (y) =
1− pD,k (y)

1− fk|k−1 [pD,k]
fk|k−1 (y) , (2.48)

fU,k (y) =
1− pD,k (y) + pD,k (y) gk(z|y )

κ(z)

1− fk|k−1 [pD,k] +
fk|k−1 [pD,kgk]

κ(z)

fk|k−1 (y) . (2.49)

Likewise, for each of these two cases, JoTT corrector given by (2.35) and (2.36)

exactly reduces to the same equations, i.e., (2.45) and (2.48) or (2.47) and (2.49),

respectively. Therefore, the IMeMBer corrector agrees with the theoretically opti-

mal JoTT corrector for a Bernoulli RFS as long as the Poisson clutter is sparsely

distributed. On the other hand, for each of these two cases, it was demonstrated

that the legacy part of the MeMBer corrector resembles the JoTT corrector, while its

data-induced part resembles the PHD corrector [14]. Since the PHD is the first order

moment approximation to the multi-target posterior density, significant information

is lost even in the single target case [8]. This may theoretically explain why the

IMeMBer filter outperforms the MeMBer filter. Furthermore, this theoretical anal-

ysis indicates that the CPHD filter would outperform the IMeMBer filter in highly

cluttered environments. This is because for each of these two cases, it was demon-

strated that the CPHD filter reduces to the JoTT filter without making any limiting

assumption on the rate of clutter [14].
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2.7 Simulation Results

In this section, the performance of the proposed IMeMBer filter is validated by two

simulation examples. The performance evaluation is based on the stability and accu-

racy of cardinality estimate. For this purpose, the Optimal Subpattern Assignment

(OSPA) metric is employed [25]. The OSPA metric compares two RFSs by measur-

ing difference in their cardinalities and localization error between associated elements

after an optimal assignment algorithm. The sensitivity of the OSPA metric to these

two types of errors are adjusted by the cut-off parameter c and the order parameter

p. As indicated in [27], for p = 2 smooth distance curves are obtained by computing

the localization error as in other traditional metrics, e.g., the root mean squared error

(RMSE). Therefore, the OSPA metric, which is sensitive to the stability and accuracy

in cardinality estimate, is computed by setting p = 2 and c = 25.

Implementation of the IMeMBer filter differs from the CBMeMBer filter in the

data update process, where (2.26) and (2.29) are computed. In addition, the test

statistics given by (2.30) are obtained from (2.27) in order to refine the existence

probabilities in light of measurements before the multi-target state estimation. De-

tails about both SMC and GM implementations of the CBMeMBer filter can be found

in [33].

2.7.1 Nonlinear Multi-target Tracking Example

In this example, the IMeMBer filter is compared with the CBMeMBer and LMB fil-

ters through the multi-target tracking scenario shown in Fig. 2.1. The state vector

of each individual target comprises positions and velocities in x − y directions, i.e.,

y = [px, py, vx, vy]
T . If target does survive with probability pS,k(y) = 0.95, its states
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evolve according to the discrete white noise acceleration model [2]. The state evolu-

tion error is modeled as white Gaussian noise with standard deviations σv,x = 0.3m/s2

and σv,y = 0.3m/s2 to cover small accelerations.
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Figure 2.1: Trajectories of three targets along with the change in the state-dependent
probability of target detection.

The scene is monitored by a range-bearing sensor located at [ps,x, ps,y] = [−300m, −300m]T

and the target-originated measurements are given by

Θk = arctan ((px − ps,x)/(py − ps,y)) + ωΘ, k,

rk =

(√
(px − ps,x)2 + (py − ps,y)2

)
+ ωr,k,

where ωΘ, k and ωr,k denote mutually independent, zero-mean Gaussian noise se-

quences for bearing and range measurements with the standard deviations σΘ,k =

π/180rad and σr,k = 0.1m, respectively. As can be seen in Fig. 2.1, the sensor has a
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state-dependent probability of target detection given by

pD,k (y) =
0.80N

(
[px, py]

T ; [ps,x, ps,y]
T , 10002I2

)
N
(

[ps,x, ps,y]
T ; [ps,x, ps,y]

T , 10002I2

) , (2.50)

In addition, a Poisson clutter model generates uniformly distributed false alarms over

the surveillance region V = [−300m, 300m] × [−300m, 300m] with the average rate

of λc = 5 per scan. Note that the positive bias observed in the MeMBer filter reduces

as pD,k takes values close to unity such that when pD,k = 1.0, it vanishes [33]. In

Fig. 2.1, the state dependent probability of detection given by (2.50) takes values in

the range of [0.58, 0.80] over the surveillance region. Hence, it is expected that the

cardinality estimate in the MeMBer filter would be biased significantly. In addition,

for the moderate values of pD,k(y) the assumption for the derivation of valid spatial

probability density functions in the CBMeMBer filter is not satisfied.

In the considered example, the three different filters explore newborn targets ac-

cording to the birth model given by {q(i)
Γ,k, f

(i)
Γ,k}3

i=1 where the existence probabilities

are set to q
(1)
Γ,k = q

(2)
Γ,k = q

(3)
Γ,k = 0.05, and the spatial density functions are modeled

by Gaussian densities f
(i)
Γ,k = N(y;m

(i)
Γ,k, PΓ) with means m

(1)
Γ,k = [−50, 150, 0, 0]T ,

m
(2)
Γ,k = [50, 150, 0, 0]T , m

(3)
Γ,k = [−140, 100, 0, 0]T , and identical covariance matrices

PΓ = diag([25, 25, 15, 15]). Fig 2.2 shows the x and y components of the target

trajectories, measurements and the position estimates obtained from the IMeMBer

filter for one Monte Carlo trial. It can be seen that two targets cross each other at

time steps k = 21, k = 25 and k = 29.

The three filters are initialized by using the multi-Bernoulli birth model at time

step k = 1. At the end of each iteration, Bernoulli targets with existence probabilities
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Figure 2.2: x and y components of target trajectories, measurements and IMeMBer
filter estimates.

less than Th = 10−2 are terminated. Then, the resampling step allocates a number of

particles to each Bernoulli target, which is proportional to its probability of existence

between lmax = 2000 and lmin = 1000, i.e., l
(i)
k ∝ q

(i)
k lmax s.t. l

(i)
k > lmin [29].

The performances of the three filters are demonstrated by running the scenario

shown in Fig. 2.1 for 500 Monte Carlo runs. In each trial, a random measurement data

set is generated for the same target trajectories. Fig. 2.3 shows the average cardinality

estimates and their ±1 standard deviations for the three filters. The average standard

deviations measured from the plots of the IMeMBer, CBMeMBer, and LMB filters

are 0.59, 0.81, and 0.62, respectively. These values indicate that, in terms of the sta-

bility of cardinality estimate, the IMeMBer filter outperforms the LMB filter, which

in turn outperforms the CBMeMBer filter even though the cardinality estimates from

the three filters converge to the true cardinality. In addition, observe that both the

IMeMBer and LMB filters’ responses to target death after time step k = 40 is slower
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than that of the CBMeMBer filter. This is because, like the comparison between the

PHD and CPHD filters in [32], these filters have higher confidence on their cardinality

estimates with smaller standard deviations, compared to the CBMeMBer filter.
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Figure 2.3: The average cardinality estimates over 500 Monte Carlo runs: true cardi-
nality (red solid line), estimated cardinality (green dotted line), and their ±1 standard
deviations (blue dashed lines) for the SMC-IMeMBer, SMC-CBMeMBer, and SMC-
LMB filters.

In Fig. 2.4, the cardinality and localization performances of the three filters are

measured as one using the OSPA metric. As expected, Fig. 2.4 corroborates observa-

tions inferred from Fig. 2.3. In other words, the OSPA metric with parameters p = 2

and c = 25 penalizes the CBMeMBer filter much more than the other two filters due

to the highest instability observed in its cardinality estimate. In addition, it can be

seen that the the IMeMBer filter outperforms the LMB filter. However, observe the

abrupt changes in the OSPA metric for these two filters due to their slow responses

to the target death after time step k = 40. At this point, it is important to note that

both Fig. 2.3 and Fig. 2.4 demonstrate that the IMeMBer filter successfully handles

52



Ph.D. Thesis - E. Baser McMaster - Electrical Engineering

the crossing targets at time steps k = 21, k = 25 and k = 29.
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Figure 2.4: The average OSPA metrics over 500 Monte Carlo runs for the SMC-
IMeMBer, SMC-CBMeMBer, and SMC-LMB filters.

The spatial probability density function of an actual target in the IMemBer filter,

i.e., (2.29) is different from that in the CBMeMBer filter. To evaluate the localiza-

tion performances of these two filters, the localization component of the OSPA metric

can be examined. The contribution of the localization error to the OSPA metric is

computed after determining optimal assignment as [25, 27]

e
(c)
p,loc (X, Y ) =

(
1

n
min
π∈Πn

m∑
i=1

min
(
c, d
(
xi, yπ(i)

))p) 1
p

,

where Πn denotes all permutations between the true RFS X = {x1, ..., xn} and the

estimated RFS Y = {y1, ..., ym} for m ≤ n, and d
(
xi, yπ(i)

)
is the base distance, that

corresponds to the Euclidean norm for p = 2. In OSPA metric, the base distance

is mitigated by the cut-off parameter c if the distance between two points exceeds
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c. In Fig. 2.5, the localization components of the average OSPA metrics and the

RMSEs show that the IMeMBer filter produces more accurate state estimates than

the CBMeMBer filter. In addition, it can be seen that the IMeMBer and LMB

filters have similar localization performance. Based on this result, the performance

difference between the IMemBer and LMB filters arises from the stability of their

cardinality estimates.
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Figure 2.5: The average localization errors over 500 Monte Carlo runs for the SMC-
IMeMBer, SMC-CBMeMBer, and SMC-LMB filters.

2.7.2 Linear-Gaussian Multi-target Tracking Example

In the last example, the GM-IMeMBer filter is compared with the GM-CBMeMBer

and GM-LMB filters. For the ease of implementation, rather than using (2.50) the

detection probability is set to constant values. In addition, the target-originated
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measurements are linear-Gaussian processes modeled as

zk = Hyk + ηk,

where ηk is the zero-mean Gaussian measurement noise with covariance matrix Rk =

diag([1.0, 1.0])m. Thus, the positions of the targets are monitored, i.e., the obser-

vation matrix is given by H = [I2×2, 02×2], where I2×2 and 02×2 denoting the 2 × 2

identity and zero matrices, respectively. For computational efficiency of the GM im-

plementation with the maximum of 25 components (i.e., Jmax = 25), the termination,

pruning and merging thresholds are set to Th = 10−2, Pr = 10−3, and U = 2.5,

respectively [28]. All other model and scenario parameters are the same as those in

Section 2.7.1.
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Figure 2.6: The average OSPA metrics over 500 Monte Carlo runs for the GM-
IMeMBer, GM-CBMeMBer, and GM-LMB filters at different detection probabilities.

The performances of the three filters were measured by running the same scenario
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in Fig. 2.1 for 500 Monte Carlo runs. In Fig. 2.6, the average OSPA metrics show

the performances of these filters for three different values of the detection probability.

It can be seen the GM-IMeMBer and LMB filters have the same performance as pD

takes higher values, and they outperform the GM-CBMeMBer filter. In addition,

abrupt changes are observed for the GM-IMeMBer and LMB filters after time step

k = 40. As explained in Section 2.7.1, this is due to their slow response to the target

death. Finally, Fig. 2.6 demonstrates that the GM-IMeMBer filter successfully deals

with the crossing targets since no abrupt changes due to missing targets are observed

at time steps k = 21, k = 25, and k = 29.

In Fig. 2.7, the localization components of the average OSPA metrics are shown.

It can be seen that the IMeMBer and LMB filters have the same localization perfor-

mance, and they produce more accurate state estimates than the CBMeMBer filter.
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Figure 2.7: The average localization errors over 500 Monte Carlo runs for the GM-
IMeMBer, GM-CBMeMBer, and GM-LMB filters.
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2.8 Conclusion

The CBMeMBer filter removes the positive bias from the data-updated cardinality

estimate in the MeMBer filter. The derivation of the CBMeMBer filter depends on

the computation of the cardinality from the exact p.g.fl. without making the second

approximation in [14]. In this paper, an alternative derivation of the MeMBer data

update process from another perspective is presented. In contrast to the CBMeMBer

filter, the new MeMBer data update process follows the two approximations made in

the derivation of the MeMBer filter. Then, it is extended to model spurious targets

arising from targets under the legacy track set. The modeling of spurious targets

yields an unbiased MeMBer filter, referred to as the IMeMBer filter.

In the IMeMBer filter, the spatial probability density function of an actual target

differs from that computed for a target under data-induced track set in the CBMeM-

Ber filter. However, its formulation relaxes the limiting assumption on the probability

of target detection required for the derivation of valid spatial probability density func-

tions in the CBMeMBer filter. In addition, the modeling of spurious targets is utilized

to refine the existence probabilities before multi-target state estimation. Thus, the

stability of cardinality estimate is improved. Simulation results were provided to

demonstrate the effectiveness of the proposed filter.
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2.9 Appendix A

The gradient derivative of the p.g.fl. GU,k[z;h] with respect to a target state y is

given by

∂GU,k

∂δy
[z;h] =Ψ−1

Mk|k−1∑
i=1

q
(i)
k|k−1f

(i)
k|k−1 (y)× pD,k (y) gk (z |y )(

1− q(i)
k|k−1 + q

(i)
k|k−1f

(i)
k|k−1

[
hp′D,k

])−
q

(i)
k|k−1f

(i)
k|k−1 [hpD,kgk (z |·)] p′D,k (y)(

1− q(i)
k|k−1 + q

(i)
k|k−1f

(i)
k|k−1

[
hp′D,k

])2

 ,
(2.9.1)

where p′D,k (y) = 1 − pD,k (y) and Ψ = κ(z) +
∑Mk|k−1

i=1 G
(i)
U,k[z; 1]. Note that (2.9.1)

does not in general produce the same results when it is evaluated at h = 0 and h = 1.

Now, take the gradient derivative under the prior assumption of pD,k(y) = 1.

Then,

∂GU,k

∂δy
[z;h] = Ψ−1

Mk|k−1∑
i=1

q
(i)
k|k−1f

(i)
k|k−1 (y) gk (z |y )(
1− q(i)

k|k−1

) . (2.9.2)

Since (2.9.2) is independent of h, it produces the same results when it is evaluated

at h = 0 and h = 1.

Again, take the gradient derivative but, now under the prior assumption of setting

h = 1 in the denominator of G
(i)
U,k[z;h], i.e., by following (2.11) as

∂GU,k

∂δy
[z;h] = Ψ−1

Mk|k−1∑
i=1

q
(i)
k|k−1f

(i)
k|k−1 (y) pD,k (y) gk (z |y )

1− q(i)
k|k−1f

(i)
k|k−1 [pD,k]

, (2.9.3)

Since (2.9.3) is independent of h, it produces the same results when it is evaluated
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at h = 0 and h = 1.

2.10 Appendix B

In [33], the PHD function of the updated p.g.fl. is given by (see (34) and (35) in [33])

Dk|k−1 (y; z) =

Mk|k−1∑
i=1

D
(i)
U,k (y; z)

κ (z) +
Mk|k−1∑
i=1

G
(i)
U,k [1; z]

, (2.10.1)

where the negative part of D
(i)
U,k (y; z) is

D̃
(i)
U,k (y; z) =

q
(i)2
k|k−1f

(i)
k|k−1 [pD,kgk (z| ·)] (1− pD,k (y))(

1− q(i)
k|k−1f

(i)
k|k−1 [pD,k]

)2 f
(i)
k|k−1 (y) . (2.10.2)

Using (2.16), the existence probability from (2.10.2) for i = 1, ...,Mk|k−1 can be

computed as

q̃U,k (z) =

∫
D̃k|k−1 (y; z) dy,

=

Mk|k−1∑
i=1

q
(i)2
k|k−1

f
(i)
k|k−1[pD,kgk( z|·)]

(
1−f (i)

k|k−1[pD,k]
)

(
1−q(i)

k|k−1
f

(i)
k|k−1[pD,k]

)2

κ (z) +
Mk|k−1∑
i=1

G
(i)
U,k [1; z]

.

(2.10.3)

Then, substituting (2.4) into (2.10.3) yields the same existence probability as that

computed for a spurious target, i.e., (2.27). Thus, spurious targets appear as targets

that are detected under the legacy track set. This is another explanation of the

premise that results in (2.25).
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2.11 Appendix C

The posterior p.g.fl. of the multi-Bernoulli RFS has the form

Gk [h] = GL,k [h]
∏
z∈Zk

GU,k [h; z]. (2.11.1)

Using the product rule, the PHD of Gk [h] is derived by taking its first order set

derivative and then evaluating it at h = 1, i.e.,

Dk (y) =
δGk

δy
[h]

∣∣∣∣
h=1

,

=
δGL,k

δy
[h]

∣∣∣∣
h=1

∏
z∈Zk

GU,k [z;h]

∣∣∣∣∣
h=1

+

GL,k [h]|h=1

∑
z∈Zk

δGU,k

δy
[z;h]

∣∣∣∣∣
h=1

,

(2.11.2)

where GL,k and GU,k are p.g.fl.s of targets under the legacy and data-induced track

sets and are defined by (2.37), and (2.38), respectively for a Bernoulli RFS. For

the two possible cases defined for a Bernoulli target, i.e., Zk = ∅ and Zk = {z},

considering the fact that a single target cannot be classified as a target under legacy

and data-induced track sets at the same time, (2.11.2) simplifies to

Dk (y) =
δGk

δy
[h]

∣∣∣∣
h=1

,

=
δGL,k

δy
[h]

∣∣∣∣
h=1

GU,k [z;h]|h=1
qL,k=1

+

GL,k [h]|h=1

δGU,k

δy
[z;h]

∣∣∣∣
h=1
qL,k=0

,

(2.11.3)
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For Zk = ∅, the derivation of the PHD can be found in [14, 33]. On the other

hand, for Zk = {z}, the evaluation of the expression in (2.11.3) using p.g.fl.s given by

(2.37) and (2.38) results in

Dk (y) = qk|k−1

 1−pD,k(y)

1−qk|k−1fk|k−1[pD,k]

1 +
qk|k−1fk|k−1[pD,kgk(z|·)]

1−qk|k−1fk|k−1[pD,k]
× 1

κ(z)

+

pD,k(y)gk(z|y)

1−qk|k−1fk|k−1[pD,k]
× 1

κ(z)

1 +
qk|k−1fk|k−1[pD,kgk(z|·)]

1−qk|k−1fk|k−1[pD,k]
× 1

κ(z)

fk|k−1 (y) .

(2.11.4)

After some algebraic manipulations, (2.11.4) can be rewritten as follows:

Dk (y) =
1− pD,k (y) + pD,k (y) gk(z|y )

κ(z)

q−1
k|k−1
− fk|k−1 [pD,k] +

fk|k−1[pD,kgk(z|·)]
κ(z)

fk|k−1 (y) . (2.11.5)

Finally, dividing the PHD by the corresponding existence probability given by

(2.47) yields the claimed result, i.e.,

fU,k (y) =
1− pD,k (y) + pD,k (y) gk(z|y )

κ(z)

1− fk|k−1 [pD,k] +
fk|k−1 [pD,kgk]

κ(z)

fk|k−1 (y) . (2.11.6)
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Chapter 3

A Joint Multitarget Estimator for

the Joint Target Detection and

Tracking Filter

3.1 Abstract

This paper proposes a joint multitarget (JoM) estimator for the joint target detec-

tion and tracking (JoTT) filter. An efficient choice to the unknown JoM estimation

constant (i.e., hypervolume around target state estimate) is proposed as a Pareto-

optimal solution to a multi-objective nonlinear convex optimization problem. The

multi-objective function is formulated as two convex objective functions in conflict.

The first objective function is the information theoretic part of the problem and aims

for entropy maximization, while the second one arises from the constraint in the def-

inition of the JoM estimator and aims to improve the accuracy of the JoM estimates.
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The Pareto-optimal solution is obtained using the weighted sum method, where ob-

jective weights are determined as linear predictions from autoregressive models. In

contrast to the marginal multitarget (MaM) estimator, the “target-present” decision

from the JoM estimator depends on the spatial information as well as the cardinality

information in the finite-set statistics (FISST) density. The simulation results demon-

strate that the JoM estimator achieves better track management performance in terms

of track confirmation latency and track maintenance than the MaM estimator for dif-

ferent values of detection probability. However, the proposed JoM estimator suffers

from track termination latency more than the MaM estimator since the localization

performance of the JoTT filter does deteriorate gradually after target termination.

3.2 Introduction

Target tracking is the process of estimating the state of a dynamic object by filtering

noisy measurements in the presence of false alarms and missed detections. The whole

process can be divided into track confirmation, track maintenance, and track termi-

nation functions. Hence, it is necessary to verify the existence of the target from the

received measurements. A number of statistical algorithms have been proposed for

the detection and tracking of single (or multiple) target(s) [2]. A recent innovation in

the area of target detection and tracking is in the application of the Random Finite

Sets (RFS) using the finite-set statistics (FISST) [27, 26].

The RFS formalism of the Bayesian multitarget filter provides a formal mech-

anism for propagating and updating FISST densities. Using the Almost Parallel

Worlds Principle (APWOP) along with the relationship between the FISST proba-

bility and the measure theoretic probability, some statistical concepts and techniques
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in filtering theory and information theory can be established for the RFS formalism

[27, 26]. However, the conventional single target state estimators (e.g., the maximum

a posteriori (MAP) estimator and the expected a posteriori (EAP) estimator) are

undefined for RFS based multitarget filters [27, 25]. Hence, two Bayesian optimal

estimators were proposed to obtain the multitarget states from FISST densities. The

first multitarget state estimator is called the marginal multitarget (MaM) estimator.

This estimator only considers the cardinality information (i.e., the number of ele-

ments of a given RFS) in FISST densities. The second multitarget state estimator is

called the joint multitarget (JoM) estimator. This estimator, as its name suggests,

considers both the cardinality and spatial information related to multitarget states in

FISST densities. These two estimators are Bayesian optimal, i.e., they minimize their

Bayes risk functions. Recently, the minimum mean optimal sub-pattern assignment

(MMOSPA) estimator in [14] was generalized for the probability hypothesis density

(PHD) filter [4]. Thus, a theoretical basis also has been established for the commonly

used k-means clustering method.

The multi-Bernoulli assumption on the RFS of targets represents each target in-

dependently by a parameter pair {q, f} [34]. That is, for each target an independent

Bernoulli RFS provides a unified statistical representation of target existence via

the probability q and target states via the spatial probability density f (x). Using

the multi-Bernoulli RFS representation, tractable approximations of the multitarget

Bayes filter, generally known as the multi-target multi-Bernoulli (MeMBer) filters,

were developed [27, 39, 3]. In addition, the Bernoulli RFS formalism was used in the

development of an exact solution to the single-target tracking problem. First, the

integrated probabilistic data association (IPDA) filter [30] was formulated as an RFS
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based Bayes filter [11]. Then, this RFS formulation was extended by making use of

a target birth model, state-dependent detection probability and arbitrary false alarm

process in its framework. Thus, the joint target detection and tracking (JoTT) filter

(also known as the Bernoulli filter) was developed with the objective of estimating

the target existence probability along with its state(s)[27, 38]. For more detailed in-

formation regarding the theory, implementation and applications of Bernoulli filters,

interested readers are referred to [34].

The performance of tracking algorithms and state estimators can be evaluated by

metrics defined in terms of cardinality, time, and accuracy [17, 35]. The performance

metrics should be determined according to which attributes of the tracking algorithm

or the state estimator are selected to be monitored. For example, the mean OSPA

(MOSPA) metric is appropriate to reduce jitters and track coalescence [14, 5]. In

addition, they should be consistent with the criteria that the tracking algorithm or

state estimator is developed to optimize [14, 23]. Based on these facts, it is important

to point out that the estimated states from the JoTT filter using the JoM estimator is

identical to that using the MaM estimator if “target-present” decision is confirmed by

these two estimators. Therefore, the performance metric(s) should be selected so as

to monitor the cardinality and time attributes of these two estimators regarding track

confirmation, track maintenance quality after the target birth, and track termination.

There are numerous metrics defined in terms of cardinality and time. Nevertheless,

the OSPA metric is defined as a rigorous and robust performance measure for the

(multi)target Bayes filters [36, 33].

Even though the MaM estimator is used in MeMBer type filters, the exact use of

the JoM estimator with these filters has not been studied so far. In this paper, we
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propose a JoM estimator to obtain the estimate of the target RFS from the JoTT

filter. The proper choice to the unknwon JoM estimation constant (i.e., hypervolume

around target state estimate) is obtained as a Pareto-optimal solution to a multi-

objective nonlinear convex optimization problem. The multi-objective function is

formulated as two convex objective functions in conflict. The first objective function

is the information theoretic part of the problem and aims for entropy maximization,

while the second one arises from the constraint in the definition of the JoM estimator

and aims to improve the accuracy of the JoM estimates. The Pareto-optimal solution

is obtained using the weighted sum method [31, 28, 18, 29]. This method aggregates

two or more objective functions into a single objective function using weights selected

according to their relative importance. Then, the resulting single-objective optimiza-

tion problem can be solved using any standard optimization technique [31, 28].

This paper is organized as follows: Section 3.3 provides the necessary background

on information theory and multitarget state estimation. In Section 3.4, the Bayesian

optimal multitarget estimators (i.e., MaM and JoM estimators) are presented along

with their evaluations for estimation of multitarget states. The proper choice to the

JoM estimation constant is formulated in Section 3.5. For its Pareto-optimal solution,

linear predictions of objective weights are proposed in Section 3.6. The implementa-

tion of the JoM estimator for the JoTT filter under Gaussian assumptions is presented

in Section 3.7. Simulation results are shown in Section 3.8. Finally, conclusions and

future research directions are given in Section 3.9.
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3.3 Background

3.3.1 Concepts in Information Theory

In the following, we introduce some of the basic concepts of information theory. For

the sake of completeness and clarity, we also summarize how each concept is utilized

later.

Entropy : A random variable is statistically characterized by its probability density

function (pdf). In traditional statistics, variance of a random variable is used to

measure its uncertainty. However, in the information theoretic sense, entropy is a

measure of the amount of uncertainty in a random variable [13]. For a discrete

random variable x characterized by the probability mass function (pmf) p (x) over its

sample space X , the entropy is computed as

H (p) = −
∑
x∈X

p (x) log (p (x)), (3.3.1)

where − log (p (x)) is called the self-information obtained by the observation of x. For

the continuity of entropy, 0 log (0) = 0, and thus zero probability does not change the

uncertainty in x.

Entropy is a nonnegative measure, i.e., H (p) ≥ 0 with the properties that H (p)

is maximized if p (x) is uniform, and H (p) = 0 if there is no uncertainty in x, i.e.,

p (x) = 0 or 1 [13]. Hence, larger entropy means that less information is available for

the realization of a random variable through its pmf [22].

Differential Entropy : For continuous random variables, the information theoretic

uncertainty analogous to the entropy is called the differential entropy, and is defined
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as

H (f) = −
∫
s

f (x) log (f (x)) dx, (3.3.2)

where S is the support set of the continuous pdf f (x). Unlike the entropy, the

differential entropy has values in the range [−∞,∞]. Therefore, its standalone value

cannot be interpreted as the amount of uncertainty on a continuous time random

variable. Besides, it makes sense within the definition of the following concepts.

Entropy and differential entropy will be utilized to analyze uncertainties related

to the cardinality and spatial information in a FISST density, respectively. Thus, we

can evaluate how appropriate the MaM and JoM estimators are for estimation of the

multitarget states.

Asymptotic Equipartition Property : In information theory, the weak law of large

numbers corresponds to asymptotic equipartition property (AEP) [13]. That is, given

that x̃1, ..., x̃n are independent and identically distributed (i.i.d.) random samples

from f (x), then the normalized self-information of this sequence weakly converges to

the (differential) entropy of f (x) with a small positive tolerance, i.e., τ > 0 if n is

large enough to satisfy [13]

Pr

(∣∣∣∣− 1

n
log f (x̃1, ..., x̃n)→ H (f)

∣∣∣∣ < τ

)
> 1− δ, (3.3.3)

where δ → 0 as n → ∞ (proof is given by Chebyshev’s inequality). The collection

of these sequences forms typical set Anτ . Most of the total probability is contained in

this set, i.e., Pr (Anτ ) > 1− τ and is almost uniformly distributed [13] as

2−n(H(f)+τ) ≤ Pr (x̃1, ..., x̃n) ≤ 2−n(H(f)−τ). (3.3.4)
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Hence, if any statistical conclusion is drawn for a typical set, it would be true in

general with high probability [13]. In addition, the volume of typical set is almost

given by [13, 24]

V ol (Anτ ) ≈ 2nH(f). (3.3.5)

Then, the larger\smaller the differential entropy is, the more f (x) disperses\concentrates

over its support set S. Note that the typical set has the smallest volume, compared

to all possible sets that contain most of the total probability [13, 22].

Typical set of a standard Gaussian density will lead us to define another impor-

tant set, where the sequences of mostly likely state estimates exist. Thus, our aim

would be the entropy maximization by defining a uniform density over this set.

Quantization: The relationship between the entropy and the differential entropy

is established by quantization. To see this, assume that the range of a continuous

random variable x is divided into bins of ∆ where f (x) is continuous. Then, the

entropy of the quantized random variable is given by

H (p) = −
∞∑
−∞

pi log (pi) ,

= −
∞∑
−∞

f (xi) ∆ log (f (xi) ∆) ,

= −
∞∑
−∞

f (xi) ∆ log (f (xi))− log (∆) ,

(3.3.6)

where the first term approaches −
∫
S
f (x) log (f (x)) as ∆ → 0. Thus, for n bit

quantization of a continuous random variable, i.e., ∆ = 2−n, the entropy increases

with n as

H (p) = H (f) + n.
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This means that in order to represent an n-bit quantized information from x ∼ f (x)

the average number of bits required is H (f) + n [13].

This concept will be utilized to analyze the entropy of a FISST density when the

corresponding RFS is quantized. This analysis demonstrates an important fact about

the selection of the JoM estimation constant.

Kullback-Leibler Divergence (Relative Entropy): Kullback-Leibler (KL) divergence

is a statistical measure of the difference of a model or a theory based pdf f (x) from a

true or a reference pdf ft (x) on the same support set. If ft (x) is absolutely continuous

with respect to f (x) or +∞ otherwise, KL divergence of f (x) from ft (x) is defined

as

K (ft ‖f ) =

∫
ft (x) log

(
ft (x)

f (x)

)
dx,

=

∫
ft (x) log (ft (x))dx−

∫
ft (x) log (f (x))dx,

= H (ft ‖f )−H (ft) ,

(3.3.7)

where the first term measures the uncertainty introduced by using a model or the-

ory based f (x) instead of the true or reference ft (x) while the second term is the

differential entropy of ft (x). Hence, the more f (x) resembles ft (x), the less is the

information lost due to using f (x). That is, K (f ‖ft ) ≥ 0 gets smaller values with

equality if and only if f (x) = ft (x).

KL divergence is an important concept used in the development of other consis-

tent concepts in information theory. For example, mutual information is a special

case of KL divergence [13], and entropy maximization is in general formulated as the

minimization of KL divergence instead of Shannon’s entropy given by (3.3.1) and

(3.3.2) [22, 19].

With the help of other relevant concepts KL divergence will be utilized to define
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the information theoretic part of the multi-objective optimization problem.

3.3.2 Multitarget State Estimation

In the following, we exemplify the problems of the MAP and EAP estimators when

they are generalized for estimation of multitarget states. Then, we define the global

MAP estimators, i.e., the GMAP-I and GMAP-II estimators, which were introduced

in [16] and also known as the MaM and JoM estimators in [27, 25], respectively.

Consider the scenario in [27, 26], where a Bernoulli target moves in the one dimen-

sional interval [0, 2] with units given in meters. In addition, suppose that the target

existence probability is set to 0.5 and if the Bernoulli target does exist, its spatial

probability density is uniform over [0, 2]. That is, suppose that the FISST density in

units of m−|X| is

f (X) =



0.5, if X = ∅

0.25 m−1, if


X = {x}

0 ≤ x ≤ 2

0, otherwise

First, we try to obtain the MAP estimate using XMAP = arg sup
X
f (X). However,

the MAP estimator is undefined since f (∅) = 0.5 cannot be compared with f ({x}) =

0.25 m−1. This problem would be eliminated by converting f (X) into a unitless

quantity by multiplying it with m|X|. Thus, we obtain the MAP estimate as XMAP =

∅. However, this conversion results in a paradox. That is, if the Bernoulli target moved

in the same interval with units given in kilometer instead of meter, this would result

in f ({x}) = 250 m−1. Thus, we would obtain the MAP estimate as XMAP = {x}

after the conversion. That is, the change in unit of measurements from m to km also
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changes the MAP estimate [27, 26].

Now, using the set integral we try to obtain the EAP estimate from

XEAP =

∫
Xf (X) δX,

= ∅f (∅) +

2∫
0

xf ({x}) dx,

= 0.5 (∅+ 1 m) .

As indicated in [27, 26], the EAP estimator faces additional problems arising from

ill-defined arithmetic operations on sets. Therefore, like the MAP estimator, the EAP

estimator is undefined when generalized for estimation of multitarget states.

The GMAP-I and GMAP-II are Bayesian estimators, which are defined according

to the minimization of the following cost functions [16]

C0 (X, Y ) =


0, if |X| = |Y |

1, if |X| 6= |Y |
(3.3.8)

and

C (X, Y ) = C0 (X, Y ) + C1 (X, Y ) , (3.3.9)
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respectively. The second cost function in (3.3.9) takes into account the spatial infor-

mation in a FISST density, i.e.,

C1 (X, Y ) =


0, if


s = r,

(`1, ..., `s) = (ϕβ1 , ..., ϕβr) ,

(x1, ..., xs) = (yβ1 , ..., yβr) ∈ K

1, otherwise

where the hybrid RFSs are defined as X = {ξ1, ..., ξs} and Y = {ζ1, ..., ζr} with

their identities (`1, ..., `s) and (ϕ1, ..., ϕr), i.e., ξi = (xi, `i) for i = 1, ..., s and ζi =

(yi, ϕi) for i = 1, ..., r. The RFSs consisting of ∀x, y ∈ Rn are surrounded by a

closed ball K in (Rn)r and are associated through a one-to-one function given by β :

(`1, ..., `s)→ (ϕ1, ..., ϕr). Thus, the cost function in (3.3.8) just weights the cardinality

discrepancy, whereas the cost function in (3.3.9) weights both the cardinality and

spatial discrepancies. These properties of the GMAP-I and GMAP-II estimators will

help us in evaluating the corresponding MaM and JoM estimators for estimation of

multitarget states.

3.4 Multitarget Bayes Estimators

For RFSs with different cardinalities, their FISST densities have incommensurable

scales (i.e., different physical dimensions). Furthermore, addition and subtraction

operations on RFSs are not defined properly. Therefore, the multitarget analogues of

the MAP and EAP estimators are undefined [27, 26, 25, 16]. Nevertheless, two MAP

like multitarget estimators were proposed for FISST densities. In the following, we
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show how multitarget states are obtained using these Bayes estimators. In addition,

we evaluate how appropriate they are for this purpose based on the results obtained

from the analysis of uncertainties related to the cardinality and spatial information

in a FISST density.

Marginal Multitarget (MaM) Estimator : The MaM estimate of an RFS is com-

puted in a two-step procedure: first, the MAP estimate of the cardinality is deter-

mined:

n̂MAP ∆
= arg sup

n
p|X| (n) , (3.4.1)

where |X| denotes the cardinality variable for the RFS X and is characterized by its

probability mass function. That is, the cardinality distribution of the RFS X, given

that Z(k) is the RFS of measurements at time k, is

p|X| (n)
∆
=

1

n!

∫
fk|k

(
{x1, ..., xn}

∣∣Z(k)
)
dx1...dxn. (3.4.2)

Then, the MAP estimate of the multitarget states is determined from the cor-

responding FISST posterior density for the given cardinality estimate n = n̂MAP

as

X̂MaM = arg sup
x1,...,xn̂MAP

fk|k
(
{x1, ..., xn̂MAP }

∣∣Z(k)
)
. (3.4.3)

The MaM estimator is Bayesian optimal [27, 25, 16]. However, it does not utilize

all the information contained in the multitarget posterior density. Hence, it would be

statistically unreliable when the target number is related to the spatial information

in the FISST posterior density [27, 25]. That is, using the relationship between the

FISST probability and measure theoretic probability, the differential entropy of an
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RFS X is given by [32, 15]

H (fX) = −
∫
f (X) log

(
v|X|f (X)

)
δX,

= −
∞∑
n=0

1

n!

∫
f ({x1, ..., xn})×

log (vnf ({x1, ..., xn})) dx1...dxn,

(3.4.4)

where v−|X| is the unit of the FISST density f (X). Note that the dependence of the

FISST posterior density on the RFS Z(k) is dropped here for conciseness.

Substituting f ({x1, ..., xn}) = n!p|X| (n) f (x1, ..., xn) into (3.4.4) yields

H (fX) = −
∞∑
n=0

p|X| (n)

∫
f (x1, ..., xn)×

log
(
n!vnp|X| (n) f (x1, ..., xn)

)
dx1...dxn,

(3.4.5)

and, after some algebraic manipulations, the differential entropy may be rewritten as

the sum of the three terms, i.e.,

H (fX) =−
∞∑
n=0

p|X| (n) log
(
p|X| (n)

)∫
f (x1, ..., xn) dx1...dxn+

−
∞∑
n=0

p|X| (n)

∫
f (x1, ..., xn) log (vnf (x1, ..., xn))dx1...dxn+

−
∞∑
n=0

p|X| (n) log (n!)

∫
f (x1, ..., xn) dx1...dxn,

(3.4.6)
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where the first term is the entropy of the cardinality distribution:

H (p) =
∞∑
n=0

p|X| (n) log
(
p|X| (n)

)∫
f (x1, ..., xn) dx1...dxn,

= −
∞∑
n=0

p|X| (n) log
(
p|X| (n)

)
,

and the second term is the average differential entropy of the joint pdf of x1, ..., xn

over p|X| (n):

E [H (fX,n)] =
∞∑
n=0

p|X| (n)H (fx,n) .

The probability assigned to the FISST density with cardinality n, i.e., fX,n =

f ({x1, ..., xn}), is uniformly distributed among joint pdfs fx,n = f ({x1, ..., xn}) of n!

possible vectors for all permutations of {x1, ..., xn}, i.e., fx,n are symmetric joint pdfs

of (xσ1, ..., xσn), where σ indicates the permutation on the numbers {1, ..., n} [27, 15].

Hence, the third term indicates the information uncertainty due to change in the

representation from RFSs, i.e., {x1, ..., xn}, to vectors of indistinguishable points, i.e.,

(x1, ..., xn) [32, 15]:

E [log (n!)] =
∞∑
n=0

p|X| (n) log (n!) ,

The MaM estimator’s cost function only penalizes the cardinality discrepancy

between the true RFS and its estimate [16]. Therefore, the MaM estimator determines

multitarget states without considering the uncertainty represented by the second and

the third terms in the FISST densities.

Joint Multitarget (JoM) Estimator : In contrast to the MaM estimator, the JoM

estimator determines the target number and multitarget states simultaneously from
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the FISST posterior density [27] as

X̂JoM = arg sup
X
fk|k

(
X
∣∣Z(k)

) ε|X|
|X|!

, (3.4.7)

where the parameter ε denotes a small constant (hereinafter called as the JoM esti-

mation constant) and satisfies that f ({x1, ..., xn}) εn ≤ 1 for all integers n ≥ 0. How-

ever, there is a trade-off in the selection of ε. That is, smaller values of ε yield better

accuracy in multitarget state estimates, but with slower convergence to the true mul-

titarget states [27, 25]. In Appendix A, information theoretic analysis demonstrates

that the uncertainty in multitarget state estimates cannot be improved by selecting

too small values for ε.

Alternatively, the JoM estimator can be performed in a two-step procedure [27].

First, for integer values n ≥ 0 the MAP estimates of the RFSs are computed from

the corresponding posterior FISST densities:

X̂n = arg sup
x1,...,xn

f
(
{x1, ..., xn}

∣∣Z(k)
)
. (3.4.8)

Then, using X̂n for each n, the JoM estimate is determined as X̂JoM = X̂ n̂, where

n̂ denotes the solution to the following maximization problem:

n̂ = arg sup
n
f
(
{x̂1, ..., x̂n}

∣∣Z(k)
) εn
n!
. (3.4.9)

Like the MaM estimator, the JoM estimator is Bayesian optimal [27, 25, 16].

However, it is naturally more appropriate for the estimation of multitarget states

since its cost function penalizes both discrepancies in cardinality and multitarget
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Figure 3.1: The cross section of the typical set of the standard Gaussian density in
Rnx .

states [16]. In addition, it is known that the JoM estimator is statistically convergent

[27, 25].

3.5 Optimization of the JoM Estimation Constant

The differential entropy of a pdf is roughly represented by a uniform density over its

typical set [13, 24]. However, typical sets do not include the sequences of all the most

(least) probable state estimates [13, 24]. For example, Fig. 3.1 shows the cross-section

of the typical set of a standard Gaussian density around a hypersphere centered at

the origin of Rnx [24, 8]. It can be seen that the typical set is represented by a thin

shell bounded by two convex sets (see Appendix B). Instead, for log-concave pdfs

(e.g., a Gaussian pdf) superlevel sets can be defined so as to include the sequences of
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most likely state estimates [8, 10]:

Sλ = {x ∈ Rnx| f (x̃1, ..., x̃n) ≥ λ} , (3.5.1)

where x̃1, ..., x̃n are i.i.d. samples drawn from the log-concave pdf f (x), and λ is the

supremum value of the uniform probability on the typical set for a small positive

constant τ , i.e., λ = e−n(H(f)−τ) [13], where H (f) is in nats. In particular, if x is

Gaussian-distributed with mean µ and covariance matrix P in Rnx , i.e., x ∼ N (µ, P ),

then substituting H (f) = 0.5 log ((2πe)nx |P |) [13] for λ yields

λ = ((2π)nx |P |)−n/2
e−n(

nx
2
−τ),

and the joint probability distribution of i.i.d. samples are given by

f (x̃1, ..., x̃n) =
n∏
i=1

f (x̃i),

= f (x̂)n e
− 1

2

n∑
i=1

(x̃i−µ)TP−1(x̃i−µ)
,

where f (x̂) = ((2π)nx |P |)−1/2
.

Thus, the superlevel set given by (3.5.1) can be alternatively defined as

Sλ =

{
x̃ ∈ Rnx | 1

n

n∑
i=1

(x̃i − µ)TP−1(x̃i − µ) ≤ nx − 2τ

}
.

(3.5.2)

In general, this bounded and closed set includes the sequences of most likely random

samples drawn from f (x). However, our aim is to define a confined set that exclusively
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consists of good state estimates from the JoM estimator. To this end, the superlevel

set in (3.5.2), when evaluated at n = 1, gives the least upper bound for this special

subset as

S
(1)
λ =

{
x ∈ Rnx| (x− µ)T P−1 (x− µ) ≤ nx − 2τ

}
, (3.5.3)

where 0 < 2τ < nx. This means that S
(1)
λ is a hyperellipsoid (i.e., a convex set) with

the centroid at µ in the region surrounded by the inflection points of the Gaussian

density f (x).

The entropy maximization helps ignore spurious details like tail probabilities and

side-lobes for which samples from these parts can be hardly ever observed [20]. Over

bounded and closed sets, the entropy maximization is achieved by uniform densities

[13]. Then, the KL divergence of f (x) from the uniform density defined on S
(1)
λ , i.e.,

u (x) = ε−1
λ is given by

K (u ‖f ) =

∫
u (x) log

(
u (x)

f (x)

)
dx,

= H (u ‖f )− log (ελ) ,

(3.5.4)

where log (ελ) is the differential entropy of u (x) = ε−1
λ , i.e., H (u) = log (ελ), and

H (u ‖f ) = − log (f (x̂)) +
1

2ελ

∫
ελ

(x− µ)TP−1(x− µ)dx,

≤ − log (f (x̂)) +
1

2
(nx − 2τ) ,

where the last inequality follows from (3.5.3). Thus, the KL divergence in (3.5.4) can

be rewritten as

K (u ‖f ) ≤ − log (f (x̂) ελ) +
1

2
(nx − 2τ) , (3.5.5)
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where the first term on the right hand side is the approximated KL divergence of

f (x) from u (x) = ε−1
λ when ελ takes so small values, i.e., nx − 2τ → 0. Note that

the sum on the right hand side of (3.5.5) is always nonnegative since K (u ‖f ) ≥ 0

on ελ.

The volume of the hyperellipsoid S
(1)
λ can be expressed in terms of τ as follows

[7]:

ελ = C (nx) |P |
1/2

rnx/2, (3.5.6)

where r = nx − 2τ is the critical value for the total probability of f (x) in the hyper-

ellipsoid, and C (nx) is the volume of the hypersphere with the unit radius in Rnx .

After substituting for ελ into (3.5.5), the problem at hand (i.e., determining the

optimum volume of the hyperellipsoid) can be formulated as a nonlinear convex opti-

mization problem that determines the optimum value of τ for the least upper bound

of the KL divergence. That is,

minimize fo,I (τ) = −log (f (x̂) ελ) +
1

2
(nx − 2τ) ,

subject to g1 (τ) = −τ ≤ 0,

g2 (τ) = − (nx − 2τ) + γmin ≤ 0,

(3.5.7)

where γmin is a small constant determined according to the chi-square table, con-

sidering the degree of freedom (i.e., nx) and the probability of the confidence level

indicating the smallest hyperellipsoid, e.g., Pr ((nx − 2τ) ≥ γmin) ≥ 95%.

The convex optimization problem in (3.5.7) is solely formulated in terms of in-

formation theoretic sense. In other words, the objective function fo,I(τ) in (3.5.7)
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is minimized as nx − 2τ → nx (see Appendix C for proof). Thus, the computation

of the least upper-bound on the KL divergence through the optimization problem in

(3.5.7) corresponds to the minimization of information gain in magnitude measured

by

K (u ‖f ) ≤ H (f)− log (ελ) .

In the JoM estimator, the selected hyperellipsoid surrounding the estimated states

of targets should satisfy

∫
εnλ

f ({x1, ..., xn}) dx1...dxn
∆
=

∫
εnλ

f (x1, ..., xn) dx1...dxn,

∼= f (x̂1, ..., x̂n) εnλ,

(3.5.8)

where the first expression follows from f ({x1, ..., xn})
∆
= n! f (x1, ..., xn) and im-

plies that the volume of the hyperellipsoid ελ for each target should be so small

that only one permutation of the RFS is possible in the product space εnλ, i.e.,

{x1, ..., xn} = (x1, ...xn) [16]. However, as indicated in [27], setting εnλ to extremely

small values would be impractical without considering the information provided by

f (x). In other words, u (x) would be more informative than f (x) as nx − 2τ → 0.

However, this contradicts the information theoretic part of the optimization problem

in (3.5.7), which aims for entropy maximization by minimizing information gain ob-

tained using u (x) instead of f (x).

In contrast to single-objective optimization, there is usually no unique solution

that simultaneously achieves the optimization of more than one objective function. In-

stead, in multi-objective optimization problems, Pareto-optimal solutions can be com-

puted according to the relative importance of individual objective functions [31, 28].
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For a vector of conflicting objective functions given by F (x) = [f1(x), ..., fN(x)] a

solution x∗ is said to be Pareto optimal if there does not exist another solution that

dominates it [31]. That is, given that T is the feasible design space, there is no another

point, x ∈ T satisfying F (x) ≤ F (x∗) and fi(x) < fi(x
∗) for at least one objective

function. There are multiple methods for multi-objective optimization problems.

However, the conversion of the multi-objective problem into a single-objective prob-

lem is the standard way of solving [31, 28].

To determine the optimum value of τ , two objective functions fo,I (τ) and fo,J (τ),

which quantify entropy maximization and the accuracy of the JoM estimator, re-

spectively, are in conflict with one another. An optimization problem with a single

convex objective function can be defined by aggregating them with appropriately

selected weights. However, a consistent Pareto-optimal solution to this optimization

problem requires the normalization of these conflicting objective functions in different

magnitudes [28, 18]. To this end, their extreme values are calculated at the vertex

points of the Pareto-optimal set [28]. Specifically, for the problem at hand, first set

τ = 0 to obtain the minimum of fo,I (τ), i.e., FMin
o,I while setting fo,J (τ) to its max-

imum value, i.e., FMax
o,J . Then, set τ = 0.5 (nx − γmin) to obtain FMax

o,I and FMin
o,J

for fo,I (τ) and fo,J (τ), respectively. Finally, the following robust normalization is

performed for these conflicting objective functions [28, 18]:

fTranso,ξ (τ) =
fo,ξ (τ)− FMin

o,ξ

FMax
o,ξ − FMin

o,ξ

,∀ξ ∈ {I, J} .
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Thus, an optimization problem with a single convex objective function can be ob-

tained as follows:

minimize fm (τ) = wIf
Trans
o,I (τ) + wJf

Trans
o,J (τ) ,

subject to g1 (τ) = −τ ≤ 0,

g2 (τ) = − (nx − 2τ) + γmin ≤ 0,

(3.5.9)

where fTranso,J is the normalization of the objective function defined as

fo,J (τ) =


(nx − 2τ)2 if (nx − 2τ) > γmin

0 otherwise,

considering the accuracy of the JoM estimator.

In this paper, the weights of the conflicting objectives are determined as linear

predictions from autoregressive (AR) models. The next section presents details about

this process. However, the weights can also be chosen depending on the application

and preference of decision maker(s) [31, 28].

The nonlinear convex optimization problem in (3.5.9) can be solved using any

standard nonlinear optimization technique [31]. In addition, the solution is strictly

Pareto optimal for the positive weights of the convex objective functions [28, 18] . In

this paper, the sequential quadratic programming (SQP) is employed to find a Pareto-

optimal solution to (3.5.9). The SQP iteratively solves a quadratic approximation to

the Lagrangian function, in the sense that the sequence of solutions approaches to op-

timal solution satisfying the necessary Karush-Kuhn-Tucker (KKT) conditions [9, 6].

Note that there are many other ways to solve the above multi-objective optimization

problem. The contribution of this paper is not in optimization, but in multitarget
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detection and state estimation. Thus, we have used a standard optimization approach

that guarantees a Pareto-optimal solution without exhaustive comparison with other

approaches.

In order to illustrate the geometrical interpretation of the weighted sum method,

let us examine the nonlinear convex optimization problem in (3.5.9) with the following

parameters: P = diag
(
[50, 50, 10, 10]′

)
, nx = 4 and γmin = 0.297 with the confidence

probability of 99.9%. Considering the inequality constraints in (3.5.9) the feasible de-

sign space of τ , i.e., T = {τ |gi (τ) ≤ 0, i = 1, 2} is obtained as T = [0, 1.8515] [28, 29].

Thus, the feasible criterion space of the vector of the normalized objective functions,

i.e., F =
[
fTranso,I (τ) , fTranso,J (τ)

]
is defined as Ω = {F |τ ∈ T} [28, 29]. Fig. 3.2 shows

the relationship between the Pareto front and the normalized objective functions in

the feasible criterion space. The Pareto front is the set of the non-dominated points,

i.e., Pareto-optimal points in the criterion space [28]. As can be seen in Fig. 3.2, the

Pareto front is a convex curve. Thus, a Pareto-optimal point can always be obtained

depending on the weights of the conflicting objective functions [29, 40]. This is be-

cause for a given set of weights, the weighted sum method approximates the Pareto

front as a line [40]:

fTranso,I (τ) = −wJ
wI
fTranso,J (τ) +

1

wI
fm (τ ∗) ,

where τ ∗ denotes a Pareto-optimal solution. For example, the SQP finds the Pareto-

optimal solution as τ ∗ = 1.1674 if the conflicting objective functions are considered

equally important, i.e., wI = wJ = 0.5. Thus, the Pareto-optimal point in the fea-

sible design space is computed as F = [0.1747, 0.1687]. As expected, the normalized

objective functions in conflict are penalized almost equally. In Fig. 3.2, the line
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with the slope −1 is tangent to the Pareto front at F = [0.1747, 0.1687] and locally

approximates the convex Pareto front.
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Figure 3.2: Geometrical interpretation of the weighted sum method in the feasible
criterion space.

3.6 Linear predictions of objective weights

AR models predict the current output of a stochastic process based on its previous

outputs. The AR model of order N , denoted as AR (N), is in general defined by [21]

xk = c+
∑N

i=1
αixk−i + ϑk,

where c denotes a constant for a non-zero mean value of xk, {αi}Mi=1 are predictor

coefficients and ϑk is a white noise representing prediction error with zero mean and
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variance σ2
ϑ. For linear predictions of the objective weights, we use the following

AR (1) model:

wk = c+ αwk−1 + ϑk, (3.6.1)

where the predictor coefficient indicates linear relationship in this time series. For a

wide sense stationary (WSS) process, the condition |α| < 1 must be satisfied. In this

case, the AR (1) model is statistically characterized by [21]

E [wk] = µw =
c

1− α
,

var (wk) = σ2
w =

σ2
ϑ

1− α2
,

cov (wk, wk−i) = σ2
wα

i.

Thus, the autocorrelation function between wk and wk−i decays to zero by αi as

i→∞. This means that the AR (1) model is also stable, i.e., represents a predictable

process.

The objective function fo,J (τ) in (3.5.9) only considers the degree of freedom,

i.e., nx because of the definition of the hyperellipsoid in (3.5.3). Thus, substituting

(3.5.6) into (3.5.8) for a Bernoulli target with parameter pair {qk, fk} over the volume

ελ results in ∫
ελ

fk ({x}) dx ∼= qkfk (x̂) ελ,

= qk
1

2nx/2Γ
(
nx
2

+ 1
)(nx − 2τ)nx/2,

where fk (x) is a Gaussian pdf and Γ (·) denotes the gamma function. Notice that the

approximation is independent of P at time k, denoted as Pk. To consider the covari-

ance of fk (x) implicitly in this approximation we determine the degree of correlation
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between wJ,k and wJ,k−1 as

βk =
|Pk−1|1/2

|Pk|1/2
1A (qk) ,

where the first term is the ratio of infinitesimal volumes to locate a Bernoulli target

with the same spatial probability at time k and k − 1, respectively and 1A denotes

an indicator function defined on the set A = [qmin, 1] [27]. The indicator function

neglects changes in Pk before confirming a Bernoulli target with the threshold qmin.

Thus, we keep the weights at their initial states until a probable Bernoulli target is

confirmed. In addition, for a stable process the correlation must decay to zero as time

lag increases. For this purpose, we set α = βk in (3.6.1) within its control limits as

shown in Fig. 3.3.
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Figure 3.3: Predictor coefficient of AR(1) model versus the degree of correlation
between successive weights.
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At this point, it is important to note that our AR (1) model with the predictor

coefficient evolving in time does not represent a WSS process. However, it would turn

into a WSS process after the optimal JoTT filter converges to its steady-state with

detections. Then, the predictor coefficient is set to α = 0.9 according to Fig. 3.3 since

successive changes in Pk would be small. Thus, the linear predictions monotonically

approach to µw,J = 10cJ , where 0.1 ≤ µw,J ≤ 0.9 in order to prevent that one objective

completely dominates another in the multi-objective optimization. Since fk (x) is very

peaky after the convergence, fo,J (τ) becomes more important than fo,I (τ) in (3.5.9).

Hence, µw,J is set to its maximum value, i.e., µw,J = 0.9 by cJ = 0.09.

Using wI,k + wJ,k = 1, the the AR (1) model for wI,k is defined by

wI,k = 0.01 + αwI,k−1 + νk,

where νk is a white noise with zero mean and variance σ2
w,I = σ2

w,J since νI,k =

−ϑJ,k. Similarly, after the convergence its linear predictions monotonically approach

to µw,I = 0.1.

On the other hand, the optimal JoTT filter gradually deteriorates after target

death. Therefore, βk takes values close to zero and with α = 0.1 the linear predictions

for wJ,k and wI,k monotonically approach to their opposite means, i.e., µw,J = 0.1 and

µw,I = 0.9, respectively. Consequently, fo,I (τ) becomes more important than fo,J (τ)

in (3.5.9) as fk (x) disperses over ελ.
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3.7 Implementation of the JoM Estimator for the

JoTT Filter

Suppose that at most one target is present. In this case, the RFS of a single target

can be modeled as a Bernoulli RFS with the parameter pair (qk−1, fk−1). Thus, its

FISST density is parameterized as

fk−1 (X) =


1− qk−1 if X = ∅

qk−1fk−1 (x) if X = {x} ,
(3.7.1)

where qk−1 is the existence probability of the target, and fk−1 (x) is its spatial pdf if

the target is present.

In the prediction step of the JoTT filter, the FISST density fk−1 (X) propagated

to time k is parameterized as follows [27, 38]:

qk|k−1 = pB (1− qk−1) + qk−1

∫
pS,k−1 (x) fk−1 (x) dxk−1, (3.7.2)

fk|k−1 (x) =
1

qk|k−1

[(1− qk−1) pBbk (x) + qk−1 〈f, pSψ〉] , (3.7.3)

where a newborn target is declared with probability pB according to a birth density

bk (x), i.e., the Bernoulli parameter pair (pB, bk), and

〈f, pSψ〉 =

∫
fk−1 (x) pS,k−1 (x)ψk|k−1 (· |x) dxk−1,

where pS,k−1 (x) is the state-dependent target survival probability and if the target sur-

vives, its states evolve according to the Markov state transition density ψk|k−1 (· |x).
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Suppose that the single-sensor multitarget measurements at time k are modeled

as

Zk = Γk (x)UCk,

where Ck is the RFS of i.i.d. false alarms and Γk (x) is the Bernoulli RFS of target-

originated measurement with the parameter pair (pD(x), gk(z|x)), where pD(x) is the

detection probability, and gk(z|x) is the measurement likelihood function.

In the original derivation of the JoTT filter, the false alarm process is modeled

as an arbitrary RFS. If the Poisson false alarm RFS with mean rate λc and spatial

pdf c (z) is substituted for the arbitrary false alarm RFS, the original data update

equations of the JoTT filter defined in [27, 38] have the form of

qk|k =

1− fk|k−1 [pD] +
∑
z∈Zk

fk|k−1 [pDgk(z|· )]
κ(z)

q−1
k|k−1 − fk|k−1 [pD] +

∑
z∈Zk

fk|k−1 [pDgk(z|· )]
κ(z)

, (3.7.4)

fk|k (x) =

1− pD (x) + pD (x)
∑
z∈Zk

gk(z|x )
κ(z)

1− fk|k−1 [pD] +
∑
z∈Zk

fk|k−1 [pDgk(z|· )]
κ(z)

fk|k−1 (x) . (3.7.5)

where, in general, fk|k−1 [x] =
∫
x fk|k−1 (x)dx and κ (z) = λc c (z) is the intensity

function of the Poisson false alarm RFS.

For the JoM estimator, the Bayesian risk function to be minimized is given by

[16] ∫
C (X, J (Z)) f (X) δX ≈ 2− p|X| (|J |)−

f (X) ε|J |

|J |!
, (3.7.6)
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where J denotes the JoM estimator, C is the cost function that penalizes both dis-

crepancies in cardinality and multitarget states, and p|X| (|J |) is the cardinality dis-

tribution evaluated at the target number |J |.

Then, using the updated Bernoulli parameters from the JoTT filter, the JoM

estimator confirms the presence of a single target if

2− (1− qk|k ) > 2− qk|k − qk|k fk|k (x̂) ε, (3.7.7)

where the left hand side is the Bayes risk function evaluated for the “no-target” case,

i.e., X = ∅ and the right hand side is the Bayes risk function evaluated for the “target-

present” case, i.e., X = {x}. Solving this inequality for qk|k yields the following test

for “target-present” decision:

qk|k >
1

2 + fk|k (x̂) ε
. (3.7.8)

As in the original JoM estimator, first, the MAP estimate of X = {x} is computed

from the parameterized FISST density, i.e.,
(
qk|k , fk|k

)
where the spatial pdf fk|k has

the Gaussian mixture form, i.e., fk|k (x) =
∑Nk

i=1w
(i)
k|kf

(i)
k|k, with the mixing weights

satisfying that
∑Nk

i=1w
(i)
k|k = 1.0. Before state estimation, pruning and merging of the

Gaussian components are performed. Thus, the state estimation is obtained using

the well-separated and significant Gaussian density components according to (3.4.8).

For the selected Gaussian density component, its Pareto-optimal volume given by

TP,opt = qk|kεP,opt is computed. Then, the test for “target-present” decision in (3.7.8)

is checked using εP,opt. That is, fk|k (x̂) εP,opt is set to min
(
fk|k (x̂) εP,opt, 1/qk|k

)
.

Consequently, if target is progressively better-localized, all of its probability mass
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would be almost located in εP,opt, i.e., qk|k fk|k (x̂) εP,opt ≈ 1 [27].

3.8 Simulation Results

In this section, the proposed JoM estimator is compared with the MaM estimator.

To do this, their track management performance using outputs of the JoTT filter is

evaluated through the OSPA metric [36, 33]. The OSPA metric compares two finite

sets X, and Y , considering the difference in their cardinalities (i.e., cardinality error)

and the positional distance between their associated points (i.e., localization error)

after an optimal assignment. The sensitivity of the OSPA metric to these two errors

are controlled by the cut-off parameter c and the order parameter p. However, for a

Bernoulli RFS the OSPA metric reduces to [12]

d(c)
p (X, Y ) =



0 if X = ∅, Y = ∅

c if X = ∅, Y = {y}

c if X = {x} , Y = ∅

d(c) (x, y) if X = {x} , Y = {y} ,

where d(c) (x, y) = min (c, d (x, y)) is the cut-off distance between the points in two

non-empty Bernoulli RFSs. Thus, in this case, the OSPA metric is independent

of the order parameter p. In addition, the major performance difference between

the two estimators is expected to occur in the accuracy of their decisions on track

confirmation, track maintenance, and track termination. Then, the cut-off parameter

c must be set to a high value in order to make the OSPA metric sensitive to cardinality

errors due to false and missing point estimates. In simulations, the OSPA metric is
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therefore computed with the parameters p = 1, and c = 25.

The target state vector comprises position and velocities in x− y directions, i.e.,

xk = [px,k, py,k, vx,k, vy,k]
′. If the target does survive with probability pS = 0.90, its

states evolve according to the coordinated turn model with the known turn rate Ω

[7, 1], i.e., the state transition model is

xk = F (Ω)xk−1 +Gωk−1,

where ωk−1 ∼ N (0, Qk−1) is the zero-mean Gaussian process noise with covariance

matrix Qk−1 = diag ([0.1, 0.1]′) m/s2, and the system matrices are

F (Ω) =



1 0 sin(ΩT)
Ω

−1−cos(ΩT)
Ω

0 1 1−cos(ΩT)
Ω

sin(ΩT)
Ω

0 0 cos (ΩT) − sin (ΩT)

0 0 sin (ΩT) cos (ΩT)


, G =



T 2

2
0

0 T 2

2

T 0

0 T


,

where T is the sampling interval and set at T = 1s in simulations.

The single target tracking scenario runs for 40s. The target appears at time k = 6

and moves along a straight line with a constant speed of |v| = 5 m/s in the x − y

directions until time k = 20. Then, it starts maneuvering at a constant turn rate

of |Ω| = 2 deg/s and is terminated at time k = 35. The target birth is modeled

as a Bernoulli RFS given by {qb, fb (x)}, where the birth existence probability is

set at qb = 0.01, and the spatial pdf is defined as fb (x) = N (x̂b, Pb) with mean

x̂b = [−70, 70, 0, 0]′ and covariance matrix Pb = diag
(
[50, 50, 10, 10]′

)
.

The target is detected by a sensor with state-independent detection probability
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pD and the sensor has a linear Gaussian measurement model given by

zk = Hxk + ηk,

where ηk ∼ N (0, Rk) is the zero-mean Gaussian measurement noise with covariance

matrix Rk = diag
(
[1, 1]′

)
m. With I2×2 and 02×2 denoting the n × n identity and

zero matrices, respectively, the observation matrix is given by H = [I2×2, 02×2]. In

addition to noisy target-originated measurement, the received measurement set in-

cludes clutter points. In simulations, clutter is modeled as a Poisson RFS with the

mean rate of λc = 10 per scan and uniform spatial distribution over the surveillance

region V = [−300m, 300m] × [−300m, 300m], i.e., c(z) = V −1. The performance of

the two estimators is evaluated by running the same scenario for 500 Monte Carlo

runs. In each trial, target-originated measurement, detected with pD, and indepen-

dent random clutters are generated. Fig. 3.4 shows the x and y components of the

target trajectory, measurements and the position estimates obtained from the JoTT

filter with pD = 0.80 for one Monte Carlo trial.

In the JoTT filter, the Bernoulli RFS is represented as a Gaussian mixture. The

maximum number of Gaussian components is set at Jmax = 100. They are pruned and

merged at each time step with thresholds Tprune = 10−3 and Tmerge = 4.0, respectively

according to the algorithm proposed in [37].

The track management performance of the proposed JoM estimator and the MaM

estimator are shown in Fig. 3.5–3.7 for different values of the detection probability,

ranging from high to moderately small values, i.e., pD = 0.95, 0.90, ...., 0.70. The MaM

estimator confirms “target-present” decision by comparing the existence probability

qk|k with the hard threshold 0.5. However, the proposed JoM estimator confirms
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Figure 3.4: x and y components of target trajectory, measurements and JoTT filter
estimates.

“target-present” decision by setting a lower margin than this hard threshold consid-

ering how well the JoTT filter localizes the target, i.e., the term fk|k (x̂) ε in (3.7.8).

However, the maximum value of fk|k (x̂) ε is set by a confirmation threshold qmin. In

simulations, qmin is set to 0.20. Thus, the track, for which qk|k > qmin, is confirmed

by the JoM estimator. In particular, the use of this threshold helps to prevent false

point estimates before the target birth and after the target death.

In Fig. 3.5, it can be seen that the two estimators demonstrate almost the same

track management performance in terms of track confirmation before the target birth

at time k = 6. In addition, the initial track maintenance quality of the proposed JoM

estimator with insignificant values of the lower margin is nearly the same as that of
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Figure 3.5: 500 Monte Carlo run averages of the OSPA metric computed for the track
management performance of the JoM and MaM estimators.

the MaM estimator. However, the JoTT filter localizes the target more accurately us-

ing target-originated measurements detected with high probability as time proceeds.

Therefore, the lower margin than the hard threshold 0.5 becomes significant, so that

the proposed JoM estimator does not prematurely declare track termination if the

target is miss-detected due to sensor imperfection. On the other hand, large values of

the lower margin than the hard threshold 0.5 result in latency on track termination.

That is, after the target is terminated at time k = 35, the localization performance

of the JoTT filter does deteriorate gradually due to missed detections. Hence, the

track termination decision is delayed in the proposed JoM estimator.

In Fig. 3.6(a), it can be seen that the track management performances of the two

estimators are nearly the same during the tracking scenario. These results indicates
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Figure 3.6: 500 Monte Carlo run averages of the OSPA metric computed for the track
management performance of the JoM and MaM estimators.

that the decrease in the existence probability of target (qk|k) cannot be compensated

by the value of the lower margin computed in the proposed JoM estimator when

the target is miss-detected. However, Fig. 3.6(b) shows that the track maintenance

quality of the proposed JoM estimator is better than that of the MaM estimator

after the target birth. That is, the value of the lower margin can compensate the

decrease in qk|k due to target being miss-detected. Nevertheless, the proposed JoM

estimator suffers from track termination latency more than the MaM estimator due

to the statistics indicating a well-localized target obtained from the JoTT filter after

time k = 35.

Finally, Fig. 3.7 shows the track management performances of the two estimators

under moderately small detection probabilities. It can be seen that the initial track
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management performance of the proposed JoM estimator is better than that of the

MaM estimator. More explicitly, the MaM estimator suffers much more from the

track confirmation latency using the hard threshold 0.5 than the JoM estimator with

insignificant values of the lower margin. In addition, the track maintenance quality

of the proposed JoM estimator is better than that of the MaM estimator after a

small period of time from the target birth. However, as in Fig. 3.6(b), the proposed

JoM estimator confirms track termination with larger time delay after time k = 35,

compared to the MaM estimator.
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Figure 3.7: 500 Monte Carlo run averages of the OSPA metric computed for the track
management performance of the JoM and MaM estimators.

According to the AR (1) models in Section 3.6, time evolution of the weights in

(3.5.9) for different values of detection probability is shown in Fig. 3.8 and Fig. 3.9.

For considerably high detection probabilities, e.g., pD = 0.95 and pD = 0.90, the
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weights are adjusted as indicated in Section 3.6, i.e., they monotonically approach

to their means after the optimal JoTT filter converges to its steady-state with de-

tections. However, if the detection probability is not so high or close to moderately

small values, the weights are predicted based on the estimation error analysis in the

optimal JoTT filter. Consequently, the linear predictions can be considered to be

adaptive to the JoTT filter’s performance.
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Figure 3.8: 500 Monte Carlo run averages of the weights for high detection probabil-
ities.

3.9 Conclusions

In this paper, we have proposed an optimization algorithm to compute the optimal

value of the unknown estimation constant in the JoM estimator. The optimization

problem is defined in terms of two conflicting objective functions. The first objective
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Figure 3.9: 500 Monte Carlo run averages of the weights for moderately small detec-
tion probabilities.

function is defined in terms of the information theoretic sense and aims for entropy

maximization by setting the estimation constant to its maximum permissible value.

In contrast, the second one arises from the constraint in the definition of the JoM

estimator and aims to improve the accuracy of the JoM estimates by setting the

estimation constant to its minimum value determined by the probability of user’s

confidence level. We used a standard optimization approach that guarantees a Pareto-

optimal solution.

The proposed JoM estimator is used in the JoTT filter and compared to the other

MAP type multitarget estimator-called the MaM estimator. The simulation results

demonstrate that the track management performance of the proposed JoM estimator

in terms of track confirmation latency, and track maintenance quality after target
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birth is better than that of the MaM estimator for different values of the detection

probability, ranging from high to moderately small values. However, the proposed

JoM estimator suffers from track termination latency more than the MaM estimator

as the localization performance of the JoTT filter does deteriorate gradually after

target termination.

3.10 Appendix A

To understand why selection of too small values for the JoM estimation constant does

not ameliorate multitarget state estimates, quantize the FISST density f ({x1, ..., xn})

for all n into small and disjoint hyperspaces ∆n with volume εn. Then using the rela-

tion f ({x1, ..., xn})
∆
= n!f (x1, ..., xn) the probability over a small hyperspace indexed

by variable i, i.e., ∆n
i [27] is computed as:

pi (n) =
1

n!

∫
∆n
i

f ({x1, ..., xn}) dx1...dxn,

=

∫
∆n
i

f (x1, ..., xn) dx1...dxn,

≈ f (x̂1i , ..., x̂ni) ε
n.

(3.10.1)

where x̂1i , ..., x̂ni denotes the multitarget state estimates obtained from f ({x1, ..., xn})

in ∆n
i . Note that if f ({x1, ..., xn}) is peaky over ∆n

i , ε must be set to a small value

to satisfy the following condition:

∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) ≤ 1. (3.10.2)
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Thus, similar to the quantization of a continuous random variable, the entropy of the

quantized RFS is defined as

H
(
X∆
)

= −
∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) log (pi (n)). (3.10.3)

Upon substitution of pi (n) = f (x̂1i , ..., x̂ni) ε
n into the logarithmic function in

(3.10.3), the entropy of the quantized RFS can be rewritten as

H
(
X∆
)

= −
∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) log (f (x̂1i , ..., x̂ni) ε

n),

= −
∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) log (f (x̂1i , ..., x̂ni))−

∞∑
n=0

∑
i:∆n

i ∈Xn
pi (n) log (εn),

(3.10.4)

where the first term is the average self-information of the joint symmetric pdfs

(i.e., f (x1, ..., xn)) over ∆(n) and the second term is the average self-information of

the uniform pdfs (i.e.,U (x1, ..., xn) = ε−n) over ∆(n).

For simplicity of analysis, assume that f (x̂1i , ..., x̂ni) ≈ 1.0 over some hyperspaces

∆n
i indexed by i∗. For the rest, f (x̂1i , ..., x̂ni) ≈ 0 and thus from (3.10.1) the proba-

bility over those regions is pi (n) ≈ 0. In this case, using the convention 0 log 0 = 0

and log 1 = 0, the first term in (3.10.4) is canceled and the entropy of the quantized

RFS simplifies to

H
(
X∆
)
≈ −

∞∑
n=0

∑
i∗:∆n

i∗∈X
n

pi∗ (n) log (εn), (3.10.5)

Note that ε is small enough to satisfy the condition given by (3.10.2). Similar to

typical sequences with equal probabilities in a typical set, most of the total probability
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is almost equally divided on some hyperspaces ∆n
i∗ indexed by i∗. Therefore, selecting

too small values for ε will not ameliorate the accuracy in multitarget state estimates.

On the contrary, the entropy will get larger values due to the uncertainty regarding

what multitarget state estimate is true.

3.11 Appendix B

For the standard Gaussian density f (x) defined in Rnx , it follows from (3.3.3) that

the amount of self-information associated with the outcome (x̃1, ..., x̃n) ∈ Aτn is

H (f)− τ < − 1

n
log f (x̃1, ..., x̃n) < H (f) + τ, (3.11.1)

where x̃1, ..., x̃n are i.i.d. samples from f (x), and H (f) = 0.5 log (2πe)nx [13].

Substituting for − log f (x̃1, ..., x̃n) = 0.5n log (2π)nx + 0.5
∑n

i=1 x̃
T
i x̃i into (3.11.1)

and making some algebraic manipulations yield

n (nx − 2τ) <
∑n

i=1
x̃Ti x̃i < n (nx + 2τ) , (3.11.2)

where
∑n

i=1 x̃
T
i x̃i represents a thin shell around a hypersphere centered at the origin

of Rnx as claimed.
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3.12 Appendix C

The nonlinear convex optimization problem in (3.5.7) is referred to as the primal

problem [10]. The Lagrangian of the primal problem is written as

L (τ, λ) = fo,I (τ) + λ1g1 (τ) + λ2g (τ) , (3.12.1)

where τ and λ = (λ1, λ2) are called primal and dual variables, respectively.

According to the duality theorem, the dual problem has the same optimal solution

with the primal problem if Slater’s condition holds [6]. Associated with the primal

problem, the dual function is defined as

g (λ) = min
τ
L (τ, λ) ,

= L (τ ∗, λ) ,

(3.12.2)

where τ ∗ is the primal solution and the dual solutions to g (λ), i.e., λ∗ = (λ∗1, λ
∗
2) are

the Lagrange multipliers of the primal problem.

For any convex optimization problem with differentiable objective and constraint

functions, the necessary and sufficient conditions to analyze the optimality of τ ∗, and

λ∗ = (λ∗1, λ
∗
2), are called the Karush-Kuhn-Tucker (KKT) conditions [10, 6]. That is,

τ ∗, and λ∗ = (λ∗1, λ
∗
2) must satisfy the following conditions

gi (τ
∗)≤ 0, for i = 1, 2 (3.12.3)

λ∗
i
≥ 0, for i = 1, 2 (3.12.4)

λ∗
i
gi (τ

∗) = 0, for i = 1, 2 (3.12.5)
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and

∇τL (τ ∗, λ∗) = ∇τfo,I (τ ∗) +
∑2

i=1
λ∗

1
∇τ gi (τ

∗) = 0, (3.12.6)

where (3.12.3) is called primal feasibility conditions of τ ∗, (3.12.4) is called the dual

feasibility conditions of λ∗ = (λ∗1, λ
∗
2), and (3.12.5) is called complementary slackness

conditions. Thus, the last KKT condition verifies that τ ∗ is the global minimum point

of L (τ, λ∗).

Based on the KKT conditions three possible cases are distinguished for optimality

of τ ∗ , and λ∗ = (λ∗1, λ
∗
2):

1. The constraints are both inactive: this means that λ∗
i

= 0, for i = 1, 2. Then,

the optimal value of the primal variable is set to τ ∗ = 0 to satisfy the last KKT

condition as

∇τL (τ ∗, λ∗) =
nx

nx − 2τ ∗
− 1 = 0. (3.12.7)

2. The constraints are both active: this means that λ∗
i
> 0 for i = 1, 2. Then, the

complementary slackness conditions contradicts for optimality of τ . That is,

(3.12.5) for i = 1 requires that τ ∗ = 0, whereas (3.12.5) for i = 2 requires that

τ ∗ = 0.5 (nx − γmin) where γmin � nx. Nevertheless, the optimal value of the

primal variable becomes τ ∗ = 0 if the probability of confidence is excessively

set to γmin = nx. Thus, the last KKT condition will have the form

∇τL (τ ∗, λ∗) =
nx

nx − 2τ ∗
− 1− λ∗1 + 2λ∗2,

= −λ∗1 + 2λ∗2,

(3.12.8)

in which case, λ∗1 = 2λ∗2. That is, the inequality constraint g2 (τ) turns into

g2 (τ) : τ ≤ 0. Then, the constraints g1 (τ) and g2 (τ) contradict each other
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unless they both turn into the equality constraint given by τ = 0.

3. One active and one inactive constraint: this means that either λ∗1 > 0 and

λ∗2 = 0 or λ∗1 = 0 and λ∗2 > 0. If λ∗1 > 0 and λ∗2 = 0, then the complementary

slackness condition for i = 1 requires that τ ∗ = 0 but the last KKT condition

cannot be satisfied for τ ∗ = 0. On the other hand, if λ∗1 = 0 and λ∗2 > 0, then the

complementary slackness condition for i = 2 requires that τ ∗ = 0.5 (nx − γmin)

and again, the last KKT condition cannot be satisfied for λ∗2 > 0.

Consequently, the inequality constraints for the nonlinear convex problem are both

inactive unless nx = γmin. In addition, τ ∗ = 0 is the optimal solution for the primal

problem. That is, the convex objective function fo,I (τ) given by (3.5.7) has a global

minimum at nx − 2τ ∗ = nx. Note that the inequality constraints gi (τ) , for i = 1, 2

are affine in addition to the convexity of fo,I (τ), then Slater condition for the strong

duality holds. Therefore, the strong duality indicates that the optimal solution to the

primal problem fo,I (τ) can be attained from the dual problem [10].
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Chapter 4

A Novel Joint Multitarget

Estimator for Multi-Bernoulli

Models

4.1 Abstract

In this paper, the joint multitarget (JoM) estimator proposed for the joint target

detection and tracking (JoTT) filter is reformulated for the Gaussian mixture (GM)

implementations of the multitarget multi-Bernoulli (MeMBer) filters. For this pur-

pose, a mode-finding algorithm is employed to search for the most significant mode of

a GM density. Thus, the maximum a posterior (MAP) estimates of Bernoulli targets

are determined. In addition, the multi-Bernoulli versions of the two conflicting objec-

tive functions for the Pareto-optimal value of the unknown JoM estimation constant

are derived. Simulations compare the performance of the proposed JoM estimator
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with that of the marginal multitarget (MaM) estimator in a multitarget tracking sce-

nario, where the probability of target detection is a function of target states. The

simulation results demonstrate that the proposed JoM estimator outperforms the

MaM estimator under moderately low-observable conditions. This is because the

incomplete cost function of the MaM estimator is not adequate to obtain accurate

cardinality estimates of targets without considering how well targets are localized.

Nevertheless, the proposed JoM estimator may suffer from track termination latency

more than the MaM estimator due to the definition of its cost function.

4.2 Introduction

The multitarget tracking (MTT) problem is one of jointly estimating the time-varying

number of targets and their random states using noisy sensor measurements in the

presence of missed detections and false alarms [2]. As opposed to the classical MTT

algorithms, e.g., the multiple hypothesis tracking (MHT) filter [2], the random finite

set (RFS) theory and its calculus known as the finite set statistics (FISST) provide a

new approach to obtain the multitarget (FISST) posterior probability density with-

out making explicit data association [21, 24, 23]. The probability hypothesis density

(PHD) filter was developed as the first-order moment approximation to the FISST

posterior probability density [23, 20]. The physical interpretation of the PHD can be

explained as target occupancy probabilities of infinitesimal bins in the surveillance

region [14, 15]. However, the cardinality estimate of targets from the PHD filter can

be inaccurate and unstable due to the PHD’s linearization and Poisson RFS approx-

imation [13, 22]. Therefore, the cardinalized PHD (CPHD) filter was developed to

estimate the cardinality distribution as well the PHD [22]. Hence, it provides more
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accurate cardinality estimates compared to the PHD filter [37]. Nevertheless, both

the PHD and CPHD filters can suffer from the so-called spooky effect in local cardi-

nality estimates [16].

The Bernoulli RFS formalism models the track of a target by a parameter pair

(q, f), where q denotes the existence probability of the target, and f denotes its prob-

ability density function (pdf) if it does exist [23, 31]. The integrated probabilistic

data-association (IPDA) filter estimates the existence probability of a single-target

and its states simultaneously [26]. This optimal Bayesian solution to the complete

single-target detection and tracking problem was re-derived using the Bernoulli RFS

in [12] and then was extended as the Bernoulli filter, also known as the joint target

detection and tracking (JoTT) filter in [23, 35]. In addition, using the multi-Bernoulli

RFS, the multitarget multi-Bernoulli (MeMBer) filter was proposed as the parametric

approximation to the FISST posterior probability density [23].

The MeMBer filter in [23] (hereinafter called the original MeMBer filter) is pos-

itively biased in the cardinality estimate [38]. The cardinality balanced MeMBer

(CBMeMBer) filter removes the bias by computing the updated existence probabil-

ities from the exact probability generating functionals (p.g.fl.) [38]. However, this

results in a restrictive assumption on the probability of target detection in order to

compute valid spatial probability density functions. In [4], the improved MeMBer

(IMeMBer) filter removes the bias by introducing spurious Bernoulli targets without

any restrictive assumptions. In addition, it refines the existence probabilities in light

of measurements using the statistics of these targets. Thus, it improves the cardi-

nality estimate, compared to the CBMeMBer filter, which in turn provides better

cardinality estimate than that obtained from the PHD filter [38, 4].
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Recently, the notion of labeled RFS was introduced along with their conjugate

priors for the standard multitarget likelihood functions [36]. Hence, the generalized

labeled multi-Bernoulli (GLMB) filter and its more efficient version known as δ-GLMB

filter in terms of computational complexity and memory requirements were proposed.

These two filters are analytically tractable and have closed-form solutions [34]. How-

ever, they are computationally more expensive than the IMeMBer and CBMeMBer

filters [36]. Therefore, the LMB filter was developed as an efficient approximation

of the δ-GLMB filter by inheriting the benefits of the CBMeMBer and δ-GLMB fil-

ters [29]. Subsequently, a tractable approximation of any labeled RFS density using

GLMB densities was proposed in [28]. On the other hand, a conjugate prior distri-

bution for unlabeled RFSs in a special hybrid form was proposed in [40] to obtain

their full multitarget posterior. Thus, two tractable multitarget filters were devel-

oped using two different approximations of marginal association distributions. Then,

a robust alternative to these two filters was proposed by finding the best-fitting multi-

Bernoulli RFS to the FISST posterior probability density [41]. The performances of

the IMeMBer, CBMeMBer and LMB filters were compared with simulations in [4].

In the literature, two Bayes optimal estimators for RFSs were proposed and ap-

plied to multitarget tracking [23, 17, 19]. These estimators are called the marginal

multitarget (MaM) and the joint multitarget (JoM) estimators. According to their

Bayes cost functions in [17], the JoM estimator minimizes both the cardinality and

spatial discrepancies between the true RFS and its estimate simultaneously to deter-

mine the MAP estimate, whereas the MaM estimator first minimizes the cardinality

discrepancy and then the MAP estimate is extracted from the associated FISST pos-

terior probability density. Therefore, the JoM estimator is more appropriate than
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the MaM estimator to obtain the estimates of multitarget states, especially when the

cardinality estimate is related to the spatial information in the FISST probability

density, i.e., targets’ states under low-observable conditions [19, 5]. In addition, an-

other Bayes optimal estimator for RFSs was proposed in [1, 7]. This specific estimator

was applied to multiuser detection and channel tracking in wireless communications.

In [5], the exact use of the JoM estimator was proposed to obtain the estimate of

target RFS from the JoTT filter. For the proposed estimator, the unknown JoM esti-

mation constant is computed as a Pareto-optimal solution to two conflicting objective

functions. The first objective is defined in terms of the information theoretic sense,

whereas the second one is obtained from the constraint in the definition of the JoM

estimator. Track management performance analysis in [5] demonstrates that the JoM

estimator outperforms the MaM estimator in terms of track confirmation latency and

track maintenance quality, but the track termination latency can be worse in the JoM

estimator than that in the MaM estimator.

In this paper, the JoM estimator in [5] is reformulated for the Gaussian Mixture

(GM) implementations of the MeMBer filters. For this purpose, a mode-finding al-

gorithm is employed. This allows searching for the most significant mode of a GM

density if it has more than one significant component close to one another. Thus,

the MAP estimates of Bernoulli targets are obtained by maximizing their FISST

posterior probability densities. In addition, GM densities are approximated around

their most significant modes as Gaussian densities according to the number of their

modes [9]. This local approximation facilitates the derivation of the multi-Bernoulli

RFS versions of the two conflicting objective functions in [5]. Under moderately
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low-observable conditions, the simulation results demonstrate that the JoM estima-

tor provides more reliable cardinality estimates compared to the MaM estimator.

As illustrated by examples in [23, 19], the reason is that the cardinality estimates

obtained from the MaM estimator are determined by the existence probabilities of

targets without considering how well they are localized.

The rest of the paper is organized as follows: Section 4.3 outlines the IMeMBer

and CBMeMBer filters. Section 4.4 provides an overview of the multitarget Bayes

estimators along with the exact use of the JoM estimator proposed for the JoTT

filter. In Section 4.5, the JoM estimator proposed for the JoTT filter is reformulated

for the GM implementations of the MeMBer filters. Simulation results are shown in

Section 4.6. Finally, conclusions are drawn in Section 4.7.

4.3 Background

4.3.1 Multitarget Multi-Bernoulli RFS Modeling

Let Xk denote a Bernoulli RFS of a mobile target at time k. Then, using the pa-

rameter pair (qk, fk) for its existence and the detection of target states, the FISST

probability density of this Bernoulli RFS is defined as [23, 31]

fk (X) =


1− qk if Xk = ∅,

qkfk (x) if Xk = {x} .
(4.3.1)

A multi-Bernoulli RFS is a union of independent Bernoulli RFSs. That is, for

independent Bernoulli targets X
(1)
k , ..., X

(m)
k with pdfs f

(1)
k (x) , ..., f

(m)
k (x) and exis-

tence probabilities q
(1)
k , ..., q

(m)
k , the multitarget state is described by the parameter
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set {(q(i)
k , f

(i)
k )}mi=1. Thus, its FISST probability density is given by

fk (X) =


(

1− q(1)
k

)
...
(

1− q(m)
k

)
if Xk = ∅,∑

ζ

n∏
j=1

Θζf
(ζ(j))
k (xj) if Xk = {x1, . . . , xn} ,

(4.3.2)

where

Θζ =
(
1− q(1)

)
...
(
1− q(m)

) q(ζ(1))

(1− q(ζ(1)))
. . .

q(ζ(n))

(1− q(ζ(n)))
,

and the summation is taken over all permutations of the joint association hypotheses

that are defined as one-to-one functions ζ : {1, ..., n} → {1, ...,m} for n ≤ m [23].

4.3.2 Multitarget Multi-Bernoulli Filters

Using the multi-Bernoulli RFS, the original MeMBer filter was derived under two ap-

proximations in [23]. These approximations allow the data-induced tracks (i.e., tracks

of detected targets) to be modeled as multi-Bernoulli RFS. Then, the CBMeMBer fil-

ter was proposed to remove the positive bias observed in the cardinality estimate from

the original MeMBer filter [38]. However, the CBMeMBer filter makes a restrictive

assumption on the probability of target detection, namely that it is close to unity. In

[4], the Bernoulli RFS given by (4.3.1) was augmented to introduce spurious targets

in addition to actual ones. Thus, the IMeMBer filter removes the bias without any

assumption on the probability of target detection. In addition, it refines the existence

probabilities of Bernoulli targets. This prevents propagating two different hypotheses

for the same target, one in the legacy track set (tracks of undetected targets) and

another one in the data-induced track set. Hence, the IMeMBer outperforms the

CBMeMBer filter in terms of stability of cardinality estimation [4].
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In this subsection, we outline the IMeMBer and CBMeMBer filters by presenting

their recursive steps since the JoM estimator proposed in [5] will be reformulated

for their GM implementations. For detailed information about these two filters we

encourage the interested readers to refer to [38, 4].

Prediction Step: This step is exact and identical in the IMeMBer and CBMeM-

Ber filters. Suppose that at time k − 1, the FISST posterior probability density of

multi-Bernoulli RFS is parameterized by {(q(i)
k−1, f

(i)
k−1)}Mk−1

i=1 . The Bernoulli targets

from time k − 1 independently evolve according to a Markov state transition density

pk|k−1 (·|x) with the probability of target survival pS,k (x). Thus, the parameters for

surviving Bernoulli targets are independently computed as [38, 4]

q
(i)
k|k−1 = q

(i)
k−1f

(i)
k−1 [pS,k] , (4.3.3)

f
(i)
k|k−1 (x) =

pk|k−1

[
pS,kf

(i)
k−1

]
f

(i)
k−1 [pS,k]

, (4.3.4)

where for a given test function h (x), the functional of f (x) is defined by f [h] =∫
h(x)f (x) dx.

In addition to the surviving Bernoulli targets, a new multi-Bernoulli RFS is intro-

duced for target births using the parameter set given by {(q(i)
Γ,k, f

(i)
Γ,k)}

MΓ,k

i=1 . Therefore,

the predicted FISST probability density is parameterized by the union of two pa-

rameter sets for two types of predicted Bernoulli targets, i.e., {(q(i)
k|k−1, f

(i)
k|k−1)}Mk|k−1

i=1 ,

where Mk|k−1 = Mk−1 +MΓ,k [38, 4].

Update Step: This step is divided into two parts for the two types of Bernoulli

track sets. The first set is called the legacy track set. The computations of parame-

ters for Bernoulli targets under this set are exact and identical in the IMeMBer and
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CBMeMBer filters. That is, using the predicted parameter set {(q(i)
k|k−1, f

(i)
k|k−1)}Mk|k−1

i=1

each Bernoulli target under the legacy track set is described by the parameters [38, 4]

q(i)
L,k

= q
(i)
k|k−1

1− f (i)
k|k−1 [pD,k]

1− q(i)
k|k−1f

(i)
k|k−1 [pD,k]

, (4.3.5)

f (i)
L,k

(x) =
1− pD,k (x)

1− f (i)
k|k−1 [pD,k]

f
(i)
k|k−1 (x) , (4.3.6)

assuming that it is not detected with probability 1− pD,k(x).

The second track set is called the data-induced track set and consists of detected

Bernoulli targets. The computations of their parameters require two approximations

in the original MeMBer filter. However, in the CBMeMBer filter, the second approx-

imation (setting h = 1) is skipped. Instead, using the exact p.g.fl.s, the existence

probabilities of these Bernoulli targets are computed as [38]

qU,k(z) =

Mk|k−1∑
i=1

q
(i)
k|k−1

(
1−q(i)

k|k−1

)
f

(i)
k|k−1 [pD,kgk(z|· )](

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,k]

)2

κ (z) +
Mk|k−1∑
i=1

G
(i)
U,k [z; 1]

, (4.3.7)

where gk(z|x) is the sensor likelihood function for a given measurement z ∈ Zk, κ(z)

is the intensity function of the Poisson distributed clutter, and

G
(i)
U,k [z; 1] ≈

q
(i)
k|k−1f

(i)
k|k−1 [pD,kgk (z |·)]

1− q(i)
k|k−1f

(i)
k|k−1 [pD,k]

.

The violation of the multi-Bernoulli RFS modeling results in invalid pdfs. Hence,

a restrictive assumption on the probability of target detection is made by setting
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pD,k(x) ≈ 1. Thus, the pdfs of these Bernoulli targets are computed as [38]

fU,k (x; z) =

Mk|k−1∑
i=1

q
(i)
k|k−1

1−q(i)
k|k−1

f
(i)
k|k−1 (x) pD,k (x) gk (z |x)

Mk|k−1∑
i=1

q
(i)
k|k−1

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,kgk (z |·)]

. (4.3.8)

The IMeMBer filter follows the two approximations in the original MeMBer filter.

On the other hand, it augments Bernoulli RFS to remove the positive bias by modeling

spurious targets1. More explicitly, similar to the extension in [39], the state space

of Bernoulli RFS X is temporarily extended as Υ′ = Υ × {0, 1}. Thus, actual and

spurious targets under the data-induced track set can be labeled by an augmented

variable u. Hence, the FISST probability density of the augmented Bernoulli RFS,

i.e., X ′k = {x, u} ∈ Υ′, is defined as [4]

fU,k (X ′) =


1− qU,k (z) if X ′k = ∅,

q̃U,k(z)f̃U,k (x) if X ′k = {x, 0} ,

q̄U,k(z)f̄U,k (x) if X ′k = {x, 1} ,

(4.3.9)

where the parameter pairs (q̃U,k, f̃U,k) and (q̄U,k, f̄U,k) for u = 0 and u = 1 represent

spurious and actual targets, respectively. Thus, the p.g.fl. of the data-induced track

set in [23] is partitioned for actual and spurious targets (see, (25) in [4]). Hence, the

1In the update step of the original MeMBer filter, the legacy track set is obtained from the Bernoulli
RFSs introduced in the prediction step, assuming that they are not detected. Nevertheless, the
predicted Bernoulli RFSs are also used with each measurement to introduce targets under the data-
induced track set. To address this ambiguity, i.e., the use of predicted Bernoulli RFSs to generate
two contradicting hypotheses for each target, the idea of spurious target is introduced in [4].
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parameters of these targets are computed as follows [4]:

q̃U,k (z) =

Mk|k−1∑
i=1

q
(i)
k|k−1

q
(i)
L,kf

(i)
k|k−1 [pD,kgk(z|· )]

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,k]

κ (z) +
Mk|k−1∑
i=1

G
(i)
U,k [z; 1]

, (4.3.10)

f̃U,k (x; z) =

Mk|k−1∑
i=1

α̃(i)f
(i)
k|k−1 (x) pD,k (x) gk (z |x)

Mk|k−1∑
i=1

α̃(i)f
(i)
k|k−1 [pD,kgk (z |·)]

, (4.3.11)

where α̃(i) = q
(i)
k|k−1 q

(i)
L,k(1− q

(i)
k|k−1f

(i)
k|k−1 [pD,k])

−1 and

q̄U,k(z) =

Mk|k−1∑
i=1

q
(i)
k|k−1

(
1−q(i)

L,k

)
f

(i)
k|k−1 [pD,kgk(z|· )]

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,k]

κ (z) +
Mk|k−1∑
i=1

G
(i)
U,k [z; 1]

, (4.3.12)

f̄U,k (x; z) =

Mk|k−1∑
i=1

ᾱ(i)f
(i)
k|k−1 (x) pD,k (x) gk (z |x)

Mk|k−1∑
i=1

ᾱ(i)f
(i)
k|k−1 [pD,kgk (z |·)]

, (4.3.13)

where ᾱ(i) = q
(i)
k|k−1 (1− q(i)

L,k)(1− q
(i)
k|k−1f

(i)
k|k−1 [pD,k])

−1. It is important to note that

the existence probabilities given by (4.3.7) and (4.3.12) are identical. This means

that the IMeMBer filter removes the positive bias as the CBMeMBer filter. On the

other hand, if pD,k(x) ≈ 1, (4.3.13) will reduce to (4.3.8). As a result, these two filters

can be considered identical if pD,k(x) ≈ 1. However, it is important to note that the

aim of this paper is not to compare these two filters with each other.

Before the multitarget state estimation in the IMeMBer filter, the detection of
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any Bernoulli target under the legacy track set is checked using the following test

statistic obtained from (4.3.10):

q̃U,k (z, i) =

q
(i)
k|k−1

q
(i)
L,kf

(i)
k|k−1 [pD,kgk(z|· )]

1−q(i)
k|k−1

f
(i)
k|k−1 [pD,k]

κ (z) +
∑Mk|k−1

i=1 G
(i)
U,k [z; 1]

. (4.3.14)

The proposed refinement process in [4] can be summarized as follows: first, it deter-

mines the MAP estimate of the cardinality of spurious targets using (4.3.10). Then, it

removes Bernoulli targets under the legacy track set, which maximize (4.3.14) for the

measurements giving rise to these spurious targets. In addition, if (4.3.14) is small

but has a significant contribution from only one Bernoulli target under the legacy

track set, this may indicate a resolved and detected Bernoulli target under the legacy

track set. Hence, the proposed refinement process removes these Bernoulli targets as

well. Finally, it updates existence probabilities of actual targets for the same mea-

surements. Consequently, each Bernoulli RFS under the legacy track set and the

data-induced track set represents a particular target hypothesis with a significant

probability.

4.4 Multitarget Bayes Estimators

For RFSs with different cardinalities, their FISST probability densities are incom-

parable because of their different units of measurement. Furthermore, addition and

subtraction operations on RFSs are not defined properly. Therefore, the multitarget

analogues of the standard MAP and expected a posteriori (EAP) estimators are un-

defined [23, 17, 19]. Nevertheless, two MAP-like multitarget Bayes estimators were
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proposed to obtain estimates of an RFS from its FISST probability density.

Marginal Multitarget (MaM) Estimator : The MaM estimate of an RFS is com-

puted in two steps: first, the MAP estimate of the cardinality is determined as

n̂(MAP ) ∆
= arg sup

n
p|X| (n) , (4.4.1)

where |X| denotes the cardinality variable for the RFS X and is characterized by its

posterior probability mass function (pmf) as follows:

p|X| (n)
∆
=

1

n!

∫
fk
(
{x1, ..., xn}

∣∣Z(k)
)
dx1...dxn. (4.4.2)

Then, assuming that n̂(MAP ) is the true cardinality, the MaM estimate of the multi-

target RFS is determined as

X̂(MaM) = arg sup
x1,...,xn̂(MAP )

fk
(
{x1, ..., xn̂(MAP )}

∣∣Z(k)
)
. (4.4.3)

The MaM estimator is Bayes optimal [23, 17, 19]. However, it does not consider

all uncertainties contained in the FISST posterior probability density [17, 5]. That

is, using the cost function of the MaM estimator the Bayesian risk function to be

minimized is computed as 1−p|X|(n) [17]. However, as explained in [5], the differential

entropy of an RFS can be expressed as the sum of three terms: i) entropy of the

cardinality distribution, ii) average differential entropy of the joint pdf, and iii)

uncertainty due to change in representation from RFS to vectors of indistinguishable

points. Hence, its estimate given by (4.4.3) can be unreliable, when the cardinality

estimate is related to targets’ states [19, 5].
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The use of the MaM estimator for the MeMBer filters can be illustrated on the

parameter set {(q(i)
k , f

(i)
k )}Mk

i=1 as follows [23]: first, the posterior pmf of the cardinality

is computed for n = 1, ...,Mk, i.e.,

p|X| (n) =

Mk∏
i=1

(
1− q(i)

k

)
σMk,n (Θ), (4.4.4)

where σMk,n is the elementary symmetric function of degree n in the set

Θ =

{
q

(1)
k

1− q(1)
k

, ....,
q

(Mk)
k

1− q(Mk)
k

}
,

and is computed according to [37]. Thus, n̂(MAP ) is obtained from (4.4.1). On

the other hand, there is no straightforward solution to (4.4.3). Instead, one ap-

proach is to determine the individual state estimates from the PHD as X̂(MaM) =

arg supx1,...,xn̂(MAP )
Dk (x), where Dk (x) =

∑Mk

i=1 q
(i)
k f

(i)
k (x) [23]. However, as indi-

cated in [33], this may result in selecting peaks from the PHD with small weights

instead of significant ones, especially when newborn Bernoulli targets appear with

large covariance matrices. This would contradict the first step of the MaM estima-

tor since these selected targets may not make significant contributions to n̂(MAP ).

Alternatively, a favorable approach is to extract individual state estimates as the

MAP estimates from pdfs of Bernoulli targets, considering their existence probabili-

ties [23, 33].

Joint Multitarget (JoM) Estimator : This estimator determines the cardinality

and multitarget states from the FISST posterior probability density simultaneously,
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as opposed to the MaM estimator [23], i.e.,

X̂(JoM) = arg sup
X
fk
(
X
∣∣Z(k)

) ε|X|
|X|!

, (4.4.5)

where the parameter ε denotes a small constant (hereinafter called the JoM estima-

tion constant) and satisfies f ({x1, ..., xn}) εn ≤ 1 for all integers n ≥ 0. However,

the selected value of ε results in a trade-off between the accuracy of the estimated

multitarget states and the convergence rate to the true multitarget states. That is,

the smaller the value of ε, the more accurate the estimates from the JoM estimator

but the slower the convergence speed to that accuracy and vice versa [23]. In addi-

tion, note that the value of ε should be no smaller than the best possible localization

accuracy, given the limitations of the sensor.

Alternatively, the JoM estimator can be implemented by following these two steps

[23]: first, for integer values n ≥ 0 the MAP estimates of the RFSs are computed as

X̂(MAP )
n = arg sup

x1,...,xn

fk
(
{x1, ..., xn}

∣∣Z(k)
)
. (4.4.6)

Then, the JoM estimate of the multitarget RFS is determined as X̂(JoM) = X̂
(MAP )
n̂ ,

where n̂ is the solution to the following optimization problem:

n̂ = arg sup
n
fk
(
{x̂1, ..., x̂n}

∣∣Z(k)
) εn
n!
. (4.4.7)

Like the MaM estimator, the JoM estimator is Bayes optimal [23, 17, 19]. How-

ever, it is more appropriate than the MaM estimator to obtain the estimates of mul-

titarget states since its cost function penalizes both discrepancies in cardinality and
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multitarget states simultaneously [17]. In addition, the JoM estimator is statistically

consistent [17]. Therefore, its estimates would be more reliable than those obtained

from the MaM estimator [19, 5].

The exact use of the JoM estimator has just been proposed for the JoTT filter in

[5]. The proper choice of the unknown JoM estimation constant (ε) is computed as a

Pareto-optimal solution to a multi-objective nonlinear convex optimization problem.

The multi-objective optimization problem consists of multiple objective functions in

conflict. The aggregation of these objective functions with appropriate weights is

the standard way of solving this problem [27, 25]. However, the objective functions

usually take values in different ranges. Therefore, they should be first normalized to

be comparable in magnitudes [18].

In [5], the multi-objective function is defined by two conflicting objective func-

tions. The first objective function is formulated in terms of information theoretic

sense as follows:

minimize fo,I (τ) = −log (f (x̂) ε) +
1

2
(nx − 2τ) ,

subject to g1 (τ) = −τ ≤ 0,

g2 (τ) = − (nx − 2τ) + γmin ≤ 0,

(4.4.8)

where f(x) is a Gaussian pdf in Rnx , and γmin is a small constant obtained from the chi-

square table, considering the degree of freedom (i.e., nx) and determines the probabil-

ity of the confidence level for the smallest hyperellipsoid, i.e, Pr ((nx − 2τ) ≥ γmin) =

Q, where Q denotes the upper-tail probability. This nonlinear convex objective func-

tion aims to minimize the Kullback-Leibler (KL) divergence of the Gaussian pdf f(x)

from the uniform density over the hyperellipsoid with volume ε = C (nx) |P |
1
2 (nx − 2)

nx
2
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is the volume of the hypersphere with unit radius in Rnx . On the other hand, the

second objective function is defined as

fo,J (τ) =


(nx − 2τ)2 if (nx − 2τ) > γmin,

0 otherwise,

(4.4.9)

considering the volume of the hyperellipsoid given by ε, and the constraint given by

g2 (τ) in (4.4.8). The aim of this objective function is to improve the accuracy of the

JoM estimator by increasing the resolution of the estimate [17]. This is because the

first objective function in (4.4.8) takes smaller values as ε increases, i.e., nx−2τ → nx

[5]. After the aggregation of these conflicting objective functions, the optimization

problem has the form [5]

minimize fm (τ) = wIf
Trans
o,I (τ) + wJf

Trans
o,J (τ) ,

subject to g1 (τ) = −τ ≤ 0,

g2 (τ) = − (nx − 2τ) + γmin ≤ 0,

(4.4.10)

where wI and wJ are the relative weights of the normalized objective functions given

by

fTranso,ξ (τ) =
fo,ξ (τ)− FMin

o,ξ

FMax
o,ξ − FMin

o,ξ

,∀ξ ∈ {I, J} ,

where FMin
o,ξ and FMax

o,ξ are the minimum and maximum values of the objective func-

tions, respectively. The weights are adjusted according to the localization perfor-

mance of the optimal JoTT filter while tracking a single Bernoulli target [5]. The

Pareto-optimal solution to (4.4.10) can be obtained using the traditional sequential

quadratic programming (SQP) [6] technique developed for nonlinear optimization
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problems. Details about the conflicting objective functions and the implementation

of the JoM estimator proposed for the JoTT filter can be found in [5].

4.5 Reformulation of the JoM Estimator

In this section, we first propose an approximation to (4.4.6) using a mode-finding

algorithm. Second, using Gaussian approximations to GM densities we generalize

conflicting complex objective functions given by (4.4.8) and (4.4.9) for multi-Bernoulli

RFS. As shown in (4.4.10), the normalized objective functions are aggregated with

adaptive weights to determine the Pareto-optimal solution to τ . Then, we analyze the

operation of the proposed JoM estimator. Considering this analysis and dynamics of

multitarget tracking, i.e., target births and missed detections, the predictor coefficient

of the autoregressive models which were employed to predict the weights in [5] are

redefined. In addition, we define confidence levels for the smallest hyperellipsoid, i.e.,

γmin according to the predictor coefficient.

4.5.1 Mode Finding and MAP Estimate

The Bayesian risk function2 corresponding to the JoM estimator J (Z) is defined as

[17, p. 192]

R (J) =E [C (X, J (Z))] ,

=

∫
C (X, J (Z)) f (X)δX,

(4.5.1)

where C is the cost function that penalizes both discrepancies in cardinality and

multitarget states. In the following, the argument Z is dropped from J (Z) when the

2The dependence of the FISST probability density on Z is dropped for conciseness.
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latter itself is an argument of another function. The Bayesian risk function is zero

in a small neighborhood of J (Z) = X̂(JoM) with volume ε|J |. Therefore, (4.5.1) can

be evaluated approximately using the definition of the set integral as follows [17, p.

193]:

R (J) ≈ 2− p|X|
(
|X̂(JoM)|

)
−
f
(
X̂(JoM)

)
ε|X̂

(JoM)|

|X̂(JoM)|!
. (4.5.2)

where the last two terms correspond to the total probability subtracted from the

maximum cost for the JoM estimator. Thus, the JoM estimator aims to maximize

p|X| (|J |) +
f (X) ε|J |

|J |!

∣∣∣∣
X=J(Z)

, (4.5.3)

where the first term is always greater than the second one according to (4.4.2). The

difference between them is significant, especially when Mk > 1 and n 6= Mk. The rea-

son is that there are B (Mk, n) = Mk!/(n! (Mk − n)!) different multi-Bernoulli RFSs

with cardinality n, and all of them contribute to the pmf of their cardinality, i.e.,

p|X| (n) given by (4.4.2), whereas the probability distribution is computed exclusively

around their MAP estimate, i.e., X̂
(MAP )
n given by (4.4.6). Therefore, the JoM es-

timate of a multitarget RFS is formulated as the optimization of the second term,

i.e., by (4.4.5). In [17], this fact is explained as follows: the Bayesian risk function is

minimized if f (X) is maximized over all finite subsets X ⊆ Rnx with |X| = |J |.

Suppose that at time k, the multi-Bernoulli RFS Ξk is described by the parame-

ter set {(q(i)
k , f

(i)
k )}Mk

i=1. Then, each term in (4.5.3) can be computed using (4.3.2) and

(4.4.2). That is, the evaluation of (4.4.2) for the finite set Xk ⊂ {x1, ..., xMk
} with

cardinality n is given by (4.4.4). In addition, the evaluation of (4.3.2) is straightfor-

ward if Xk = ∅. Otherwise, (4.3.2) can be rewritten in a more appropriate form using
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the relationship f ({x1, ..., xn})
∆
= n!f (x1, ..., xn) as follows [23]:

fk (X) = n!

Mk∏
i=1

(
1− q(i)

k

) ∑
|Xk|=n

n∏
j=1
xj∈Xk

q
(j)
k

1− q(j)
k

f
(j)
k (xj), (4.5.4)

where the summation is taken over all finite sets of existing targets with cardinality

n and can be evaluated using the elementary symmetric function of the set given by

Θf,k =

{
q

(i)
k

1− q(i)
k

f
(i)
k (xi)

}Mk

i=1

. (4.5.5)

Thus, similar to (4.4.4), (4.3.2) can be expressed in a compact notation as

fk (X) = n!

Mk∏
i=1

(
1− q(i)

k

)
σMk,n (Θf,k), (4.5.6)

where σMk,n (Θf,k) = 1 for n = 0 by convention [22].

Using (4.5.6), the solution to (4.4.6) determines the MAP estimate as the max-

imum contribution to σMk,n (Θf,k). However, the exact solution to (4.4.6) is still

computationally complex. Instead, GM PHD of fk (X) can provide an approximate

solution to (4.4.6) [23], but cannot adequately distinguish closely-spaced targets [20].

A suboptimal but tractable solution to (4.4.6) can be determined under the follow-

ing constraint: the most-likely state estimates of each independent Bernoulli RFS are

contained within a hyperellipsoid S(i) with volume ε(i) centered at the most significant

mode of its GM density, i.e., x̂
(MAP )
i . This constraint limits the search space but is

reasonable, especially for those MeMBer filters categorized as measurement-oriented

type MeMBer filters (e.g., IMeMBer and CBMeMBer filters). This is because they

combine all Bernoulli RFSs updated with same measurement into one Bernoulli RFS
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and thus pdfs of Bernoulli RFSs tend to be localized [40, 41]. Note that as a limiting

case of the MAP estimator, the JoM estimator assumes that ε(i) are so small that

f
(i)
k (xi) can approximated as f

(i)
k

(
x̂

(MAP )
i

)
[23, 17].

The p.g.fl. provides an alternative representation of all statistics represented by

a FISST probability density [24, 23]. For the multi-Bernoulli RFS Ξk, the p.g.fl. is

given by [23]

Gk [h] =

Mk∏
i=1

(
1− q(i)

k + q
(i)
k f

(i)
k [h]

)
, (4.5.7)

where h (x) can be any real-valued function selected according to the quantity of

interest [23, 20]. Considering our constraint on the search space, we define h (x) as

an indicator function of the event that x is a member of any measurable search space

S, i.e.,

1S (x) =


1 if x ∈ S,

0 otherwise.

(4.5.8)

This choice of h (x) defines a special version of the p.g.fl. known as the belief-mass

function (bmf) as βk (S) = Gk [1S], where S ⊆ Rnx . Thus, βk (S) denotes the proba-

bility that Xk is completely contained in the hyperspace S [23, 20].

The FISST probability density can be constructed from the corresponding p.g.fl.

using the functional derivative with respect to the finite set Xk = {x1, ..., xn} as [23]

fk (X) =
δGk

δXk

[1S]

∣∣∣∣
S=∅

=
δnGk

δx1 · · · δxn
[0] . (4.5.9)
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Thus, using the product rule [23], (4.4.6) can be rewritten as follows:

X̂(MAP )
n = arg sup

x1,...,xn

∑
|Xk|=n

n∏
i=1

X
(i)
k ∈Xk

1

1− q(i)
k

δG
(i)
k

δX
(i)
k

[1S(i) ]

∣∣∣∣∣
S(i)=∅

, (4.5.10)

where G
(i)
k corresponds to the ith factor on the right hand side of (4.5.7). Therefore,

its functional derivative is nonzero for X
(i)
k = {xi}. Then, using the constraint defined

on the hyperellipsoid S(i), it can be approximated as

δG
(i)
k

δX
(i)
k

[1S(i) ]

∣∣∣∣∣
S(i)=∅

∼= q
(i)
k f

(i)
k

(
x̂

(MAP )
i

)
.

Consequently, a suboptimal but reasonable solution to (4.4.6) is obtained by solving

X̂(MAP )
n

∼= arg sup
x̂1,...,x̂n

∑
|Xk|=n

n∏
i=1

X
(i)
k ∈Xk

q
(i)
k

1− q(i)
k

f
(i)
k

(
x̂

(MAP )
i

)
,

= arg sup
x̂1,...,x̂n

σ
(

Θ̂
(MAP )
f,k

)
,

(4.5.11)

where Θ̂
(MAP )
f,k is the set given by (4.5.5) evaluated at xi = x̂

(MAP )
i for i = 1, ...,Mk.

In order to solve (4.5.11), we can utilize the following recursive formulation of the

elementary symmetric function [22]:

σMk,i (Θf,k) = σMk−1,i

(
Θf,k\θ(j)

f,k

)
+ θ

(j)
f,kσMk−1,i−1

(
Θf,k\θ(j)

f,k

)
, (4.5.12)

where Θf,k\θ(j)
f,k = {q(i)

k (1− q(i)
k )
−1
f

(i)
k (xi)

∣∣∣∣i = 1, ...,Mk & i 6= j}, and thus the second

term includes the jth Bernoulli target in all multi-Bernoulli RFSs of existing targets,

whereas the first one does not. Hence, the maximum contribution to σMk,n

(
Θ̂f,k

)
is
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determined by maximizing the second term in (4.5.12) for θ̂
(j)
f,k recursively, i.e.,

arg sup
θ̂f,k⊆Θ̂f,k

|θ̂f,k|=n

σMk,n

(
Θ̂f,k

)
= σMk−1,n

(
Θ̂f,k\θ̂(j),∗

f,k

)

+ arg sup
θ̂f,k\θ̂

(j)
f,k

σMk−1,n−1

(
Θ̂f,k\θ̂(j),∗

f,k

)
sup
j
θ̂

(j)
f,k,

(4.5.13)

where θ̂
(j),∗
f,k = supj θ̂

(j)
f,k and n ≤ Mk − 1. The first term on the right hand side of

(4.5.13) is a constant since arg sup θ̂f,k
cannot return the maximum contribution to

σMk,n

(
Θ̂f,k

)
without θ̂

(j),∗
f,k . This recursive process corresponds to determining the n

largest elements of Θ̂f,k and can be performed by finding the indices of its elements

sorted in descending order, i.e.,

` = sort
(

Θ̂f,k, ‘descend’
)
, (4.5.14)

where ` denotes the index vector and its first n elements are the indices of Bernoulli

targets in the multi-Bernoulli RFS that make the maximum contribution to σMk,n

(
Θ̂f,k

)
.

Since the JoM estimator is a MAP-like estimator [23, 17, 19], a mode-finding algo-

rithm can be employed to extract the MAP estimates of Bernoulli targets from their

GM densities. To ensure the clarity and integrity of this section, we assume that the

MAP estimates of Bernoulli targets are available, i.e.,
{
x̂

(MAP)
i

}Mk

i=1
, and thus Θf,k is

evaluated at these estimates to obtain ` using (4.5.14). Nevertheless, the details of

the mode-finding algorithm can be found in the Appendix.
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4.5.2 Objective Functions for Multi-Bernoulli RFSs

In this subsection, we will generalize the conflicting objective functions given by

(4.4.8) and (4.4.9) for multi-Bernoulli RFS. To do this, the mode-finding algorithm

is utilized again to approximate GM densities as Gaussian densities. Thus, we can

evaluate the multitarget KL divergence to derive the multi-Bernoulli version of (4.4.8).

Finally, the generalization of (4.4.9) for multi-Bernoulli RFS is performed considering

the constraint defined for the first objective function and the total volume for MAP

estimates.

In [5], the derivation of (4.4.8) starts with the definition of a special convex set,

where the most-likely state estimates from a Gaussian pdf are exclusively found, i.e.,

S =
{
x ∈ Rnx| (x− µ)TP−1 (x− µ) ≤ nx − 2τ

}
, (4.5.15)

where 0 < 2τ < nx. The aim in (4.4.8) is to minimize the KL divergence around

the mode of a Gaussian pdf. Therefore, GM densities are approximated by Gaussian

densities around their most significant modes. For a given GM density, this approx-

imation can be performed according to the number of its modes as follows [9]: i) if

the GM density is unimodal, the covariance matrix of the approximated Gaussian

density around the mixture’s mode, i.e., µ
(mode)
k is computed as

P
(mode)
k =

lk∑
j

ω
(j)
k

[
P

(j)
k +

(
µ

(mode)
k − µ(j)

k

)(
µ

(mode)
k − µ(j)

k

)T]
. (4.5.16)

Otherwise, ii) if the GM is multimodal, its Hessian Hk at a mixture’s mode contains

information about its local concentration. In addition, the Hessian of a Gaussian
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density at its mode is given by

Hk
(mode) = −|2πPk|−

1
2P−1

k . (4.5.17)

Thus, setting the singular value decomposition (SVD) of the negative definiteHk
(mode),

i.e., Hk
(mode) = −UΛUT to the known Hk the covariance matrix of the approximated

Gaussian density around µ
(mode)
k is computed as

P
(mode)
k =

∣∣2π(−Hk)
−1
∣∣− 1

nx+2 (−Hk)
−1. (4.5.18)

Recall from the Appendix that the Hessians of a GM density are computed while

searching for its modes.

After this approximation, we can define (4.5.15) for each component of the multi-

Bernoulli RFS Xk. Thus, the information theoretic part of the multi-objective func-

tion, i.e., (4.4.8) can be generalized for multi-Bernoulli RFS using the multitarget KL

divergence defined as [23, 17]

Kk (U‖ f) =

∫
Uk (X) log

(
Uk (X)

fk (X)

)
δX. (4.5.19)

where Uk (X) is the reference (or ground truth) FISST probability density, which

fk (X) is compared to, and is defined over some bounded space, where both of them

are continuous.

The convex set in (4.5.15) denotes a hyperellipsoid around the mode of a Gaussian

pdf [5]. The volume of this hyperellipsoid represents the degree of accuracy to which

most-likely state estimates can resolve [23, 17]. Suppose that there are n ground
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truth targets. Each of them is characterized by a uniform density over one of those

hyperellipsoids centered at the MAP estimates, i.e.,
{
x̂

(MAP)
`(j)

}n
j=1

. Thus, the ground

truth FISST probability density in (4.5.19) is defined as [23, 17]

Uk (X) =
∑
ς

u
(ς(1))
k (x1) ...u

(ς(n))
k (xn)

if |Xk| = n and n > 0,

(4.5.20)

where ς denotes all permutations on the integers 1, ..., n. For the JoM estimator

given by (4.4.5), all hyperellipsoids have the same volume, i.e., u
(ς(j))
k (xj) = ε−1

k for

j = 1, ..., n. Therefore, (4.5.20) can be simplified to [23, 17]

Uk (X) = n!ε−nk if |Xk| = n and n > 0, (4.5.21)

and thus using (4.5.6), provided that |Xk| = n, (4.5.19) can be written as

Kk (U‖ f) =

∫
S×...×S

εk
−n log

εk
−n

Mk∏
i=1

(
1− q(i)

k

)
σMk,n (Θf,k)

dx1...dxn.
(4.5.22)

Since the volumes of each hyperellipsoid centered at X̂
(MAP )
n,k =

{
x̂

(MAP )
`(j)

}n
j=1

,

i.e., εk, are so small that (4.5.22) can be approximated for those n Bernoulli targets

selected by ` as follows:

Kk (U‖ f) ∼= − log
(
p|X̂k| (n) εk

n
)

+
n∑
j=1

Hk

(
u‖ f̃ (`(j))

)
, (4.5.23)
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where f̃
(`(j))
k (x) denotes Gaussian approximation to the GM density of the Bernoulli

target indexed by ` (j),

Hk

(
u‖ f̃ (`(j))

)
= −

∫
S

εk
−1 log

(
f̃

(`(j))
k (x)

)
dx, (4.5.24)

is the measure of uncertainty introduced by using f̃
(`(j))
k (x) instead of u

(`(j))
k (x), and

p|X̂k| (n) is the pmf of the cardinality, i.e., (4.4.2) evaluated for X̂
(MAP )
n,k .

Using (4.5.15), we can determine the least upper bound for the KL divergence

from (4.5.24) as [5]

Hk

(
u‖ f̃

)
≤ − log

(
f̃k
(
x̂(MAP )

))
+

1

2
(nx − 2τ) . (4.5.25)

Thus, the multi-Bernoulli RFS version of (4.4.8) is derived from (4.5.23) as follows:

minimize fo,I (τ) = − log
(
p|X̂k| (n)

)
+

n∑
j=1

[
− log

(
f̃

(`(j))
k

(
x̂

(MAP )
`(j)

)
εk

)
+

1

2
(nx − 2τ)

]
,

subject to g1 (τ) = −τ ≤ 0,

g2 (τ) = − (nx − 2τ) + γmin ≤ 0.

(4.5.26)

It is important to note that − log
(
p|X̂k| (n)

)
is constant if there exists at most one

Bernoulli target. That is, p|X̂k| (1) = qk if Mk = 1. Since fo,I (τ) is a nonlinear convex

objective function [5] this constant can be ignored. Therefore, (4.5.26) will reduce to

(4.4.8) if Mk = 1.

According to (4.5.15), the volume of the individual hyperellipsoid around each
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MAP estimate in X̂
(MAP )
n,k is given by [5]

ε
(`(j))
k = C (nx)

∣∣∣P̃ (`(j))
k

∣∣∣ 1
2
(nx − 2τ)

nx
2 , (4.5.27)

where P̃
(`(j))
k is the covariance matrix of f̃

(`(j))
k (x) and given by either (4.5.16) or

(4.5.18). However, the uniform densities in (4.5.26) are identical, see (4.5.21). There-

fore, a common hyperellipsoid must be defined around each MAP estimate in X̂
(MAP )
n,k .

This hyperellipsoid must maintain the total volume given by

εnk =
n∏
j=1

ε
(`(j))
k , (4.5.28)

where εnk = C(nx)
n
∣∣∣P̃k∣∣∣n2 (nx − 2τ)n

nx
2 . Thus, the generalized variance of the common

hyperellipsoid is obtained as the geometric average of individual ones:

∣∣∣P̃k∣∣∣ = n

√√√√ n∏
j=1

∣∣∣P̃ (`(j))
k

∣∣∣.
Note that the common hyperellipsoid is utilized to evaluate (4.5.26). Nevertheless,

the volume of interest for each Bernoulli target is given by (4.5.27) while satisfying

(4.5.28). Hence, substituting εk = ε
(`(j))
k for j = 1, ..., n into (4.5.26) does not change

the objective function in magnitude.

Considering the constraint g2 (τ) in (4.5.26) and the total volume given by (4.5.28),

the multi-Bernoulli version of the second objective function, i.e., (4.4.9), which is in
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conflict with (4.5.26), is defined by

fo,J (τ) =


(nx − 2τ)2n if (nx − 2τ) > γmin,

0 otherwise,

(4.5.29)

where the exponent keeps the objective function in quadratic form if n = 1. Thus,

the problems arising from linear objective functions are averted when the weighted

sum method is used to model the multi-objective optimization [18].

4.5.3 Operation of the Proposed JoM Estimator

The proposed JoM estimator declares the (n+ 1)th Bernoulli target in addition to n

Bernoulli targets with their MAP estimates X̂
(MAP )
n,k extracted using the mode-finding

algorithm if the additional target satisfies

1

(n+ 1)!
fk

(
X̂

(MAP )
n+1

) n+1∏
j=1

ε
(`(j))
k,n+1 >

1

n!
fk

(
X̂(MAP )
n

) n∏
j=1

ε
(`(j))
k,n , (4.5.30)

where ε
(`(j))
k,n and ε

(`(j))
k,n+1 are the volumes of hyperellipsoids computed for the Bernoulli

target indexed by ` (j) when the multi-Bernoulli RFS version of (4.4.10) comprised

of (4.5.26) and (4.5.29) is solved for X̂
(MAP )
n,k and X̂

(MAP )
n+1,k , respectively.

Substituting fk (X) in (4.5.6) evaluated for X = X̂
(MAP )
n,k and X = X̂

(MAP )
n+1,k into

(4.5.30) results in

n+1∏
j=1

f̃
(`(j))
k

(
x̂

(MAP )
`(j)

)
ε

(`(j))
k,n+1

q
(`(j))
k

1− q(`(j))
k

>
n∏
j=1

f̃
(`(j))
k

(
x̂

(MAP )
`(j)

)
ε

(`(j))
k,n+1

q
(`(j))
k

1− q(`(j))
k

, (4.5.31)
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where f̃
(`(j))
k (x) are the Gaussian densities defined by following the extraction of MAP

estimates in subsection 4.5.2. The common terms on both sides of (4.5.31) cancel each

other out and thus it can be reduced to

f̃
(`(n+1))
k

(
x̂

(MAP )
`(n+1)

)
ε

(`(n+1))
k,n+1

q
(`(n+1))
k

1− q(`(n+1))
k

> ρn,n+1, (4.5.32)

where ρn,n+1 denotes the product of the ratios εk,n/εk,n+1 for the first n Bernoulli

targets. Consequently, the (n+ 1)th Bernoulli target is declared, if its existence

probability satisfies

q
(`(n+1))
k >

ρn,n+1

ρn,n+1 + f̃
(`(n+1))
k

(
x̂

(MAP )
`(n+1)

)
ε

(`(n+1))
k,n+1

, (4.5.33)

According to (4.5.33), the dynamics of the JoM estimator depend on both the

existence probability of the (n+ 1)th Bernoulli target and how well it is localized,

considering the first n Bernoulli targets. Therefore, “no-target” decision with the

probability of 1 − q
(`(n+1))
k for the (n+ 1)th Bernoulli target can be revoked if its

localization performance is comparable with those of the first n Bernoulli targets

[23].

4.5.4 Adaptive Objective Weights and Confidence Levels

In [5], the weights of the conflicting objective functions in (4.4.10) are adjusted while

tracking a single Bernoulli target by the optimal JoTT filter. For this purpose, two

autoregressive (AR) models of order 1 are employed to predict these weights, whose
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sum is unity i.e., ωJ,k + ωI,k = 1. The predictor coefficient of these weights is deter-

mined according to [5]3

Bk =
|Pk−1|1/2

|Pk|1/2
1A (qk) , (4.5.34)

where the first term is the ratio of volumes of the hyperellipsoids around the MAP

estimates of a Bernoulli target with the same chi-square quantile at times k − 1 and

k, and the indicator function keeps the weights at their initial states before declaring

a real target, i.e., when qk /∈ A, where A = [qmin, 1].

In the single target case, the covariance matrix obtained from the optimal JoTT

filter would either converge to its steady-state with correct detections or fluctuate due

to missed detections after the target is declared. However, the value of Bk abruptly

changes after target births while tracking multiple targets. Therefore, the missed de-

tections of the converged targets cannot be monitored through Bk until the covariance

matrices of newborn targets converge to their steady-states. To address this issue,

(4.5.34) is redefined for X̂
(MAP )
n,k as

Bk =

∣∣∣P̃min

∣∣∣1/2

∣∣∣P̃k∣∣∣1/2
if q

(`(i))
k ≥ qmin for i = 1, ..., n, (4.5.35)

where
∣∣∣P̃min

∣∣∣ = min
{∣∣∣P̃t∣∣∣}k−1

t=1
. Thus, the weights at time k − 1 are adjusted accord-

ing to how well multi-Bernoulli targets are localized at time k, compared to the best

localization performance achieved until that time.

Considering Bk in (4.5.35), the probability of confidence level given by γmin is also

3Here, to avoid confusion, the predictor coefficient in [5] is denoted by Bk.
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adjusted. Thus, its value indicates the smallest hyperellipsoid for multi-Bernoulli tar-

gets under different localization conditions named as “improvement”, “fluctuation”,

“occlusion”, and “birth”. Table 4.1 shows how γmin is adjusted under these conditions

according to Pr ((nx − 2τ) ≥ γmin) = Q using the chi-square table.

Table 4.1: Adaptive Confidence Levels

Condition Bk Q
“improvement” [1,∞) %97.5
“fluctuation” [Bmax, 1) %95
“occlusion” [Bmin,Bmax) %90

“birth” [0,Bmin) %85

In Table 4.1, the parameters Bmin and Bmax are the control limits for the predic-

tor coefficient and are set at Bmin = 0.1 and Bmax = 0.9 [5]. Therefore, none of the

conflicting objective functions can completely dominate the other. As can be seen

from Table 4.1, the value of γmin gradually increases while the upper-tail probabil-

ity of the chi-square variable in (4.5.15) decreases from “improvement” condition to

“birth” condition. Hence, the value of ρn,n+1 in (4.5.33) decreases, especially when

the (n+ 1)th Bernoulli target in addition to X̂
(MAP )
n,k either undergoes an occlusion

or appears as a newborn target.

In summary, using γmin obtained from Table 4.1 the conflicting objective functions

in (4.5.26) and (4.5.29) are determined and normalized. Then, their aggregation is

performed with the adaptive weights computed using (4.5.35). Details on the com-

putation of adaptive weights can be found in [5].
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4.6 Simulation Results

In this section, the proposed JoM estimator is compared to the MaM estimator. For

this purpose, the optimal subpattern assignment (OSPA) metric is used as the perfor-

mance criterion [32, 30]. The OSPA metric compares two finite sets, considering the

difference in their cardinalities (i.e., cardinality error) and the positional distances

between their corresponding elements (i.e., localization error) after an optimal as-

signment. The sensitivity of this metric to these two errors is adjusted by tuning the

cut-off parameter c and the order parameter p. In addition, the type of the localiza-

tion error computed in the OSPA metric is determined by the order parameter. For

example, the average Euclidean distance and the root mean square (RMS) error are

computed by setting p = 1 and p = 2, respectively.

The major performance difference between these two estimators are expected to

arise from their cardinality errors due to false alarm or missed detections. Therefore,

the OSPA parameters are set at p = 2 and c = 300. Hence, the cardinality error

is penalized more significantly than the localization error. Otherwise, OSPA met-

ric would be biased in favor of the MaM estimator with smaller localization errors,

compared to those computed for the proposed JoM estimator when the cardinality

estimate obtained from the MaM estimator is not accurate [32].

In simulations, the GM-IMeMBer and GM-CBMeMBer filters are used for the

same MTT scenario, but with different state-dependent detection probabilities in the

exponential form as in (4.6.1) and (4.6.2). The exponential detection probability is

a function of the range between the sensor at [−300,−300] and targets. Therefore,

especially in low-observable conditions, missed detections depend on the positions of

targets. Thus, the MaM estimator would be expected to suffer from this because
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of its cost function. Details on the GM implementations of these two filters with

exponential detection probability can be found in the supplementary material accom-

panying this paper [3]. The state vector of each individual target consists of positions

and velocities in x-y directions, i.e., x = [px, py, vx, vy]
T . If targets survive between

two consecutive time scans with the constant probability pS,k(x) = 0.95, their states

propagate independently according to the linear white noise acceleration model [2]:

xk = Fkxk−1 + Gwk−1,

where wk−1 is a white Gaussian noise with standard deviations σv,x = 0.3 m/s2 and

σv,y = 0.3 m/s2, and the system matrices are given by

Fk =

 I2×2 ∆I2×2

02×2 I2×2

 ,G =

 ∆2

2
I2×2

∆I2×2

 ,
where I2×2 and 02×2 denote 2 × 2 identity and zero matrices, respectively, and ∆

denotes the time interval between two consecutive time scans and is set at ∆ = 1s in

simulations.

The GM-IMeMBer and GM-CBMeMBer filters explore target births according to

the multi-Bernoulli RFS described by the parameter set {(q(i)
Γ,k, f

(i)
Γ,k)}5

i=1, where the ex-

istence probabilities are set to q
(i)
Γ,k = 0.05, and the pdfs are given by Gaussian densities

f
(i)
Γ,k(x) = N

(
x ;µ

(i)
Γ,k, PΓ

)
with means µ

(1)
Γ,k = [−45, 150, 0, 0]T , µ

(2)
Γ,k = [45, 150, 0, 0]T ,

µ
(3)
Γ,k = [125, 60, 0, 0]T , µ

(4)
Γ,k = [75, 105, 0, 0]T , µ

(5)
Γ,k = [−170, 185, 0, 0]T and common

covariance matrices PΓ,k = diag([25, 25, 15, 15]).

Measurements originating from targets are noisy spatial components of their states.
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Figure 4.1: x and y components of the true target tracks and their measurements
observed in clutter.

That is, they are modeled as a linear-Gaussian process:

zk = Hxk + ηk,

where the observation matrix is given by H = [I2×2, 02×2], and ηk is a white Gaus-

sian noise with standard deviations σp,x = 1m and σp,y = 1m. In addition to

noisy target-originated measurements, the measurement set includes clutters. In

simulations, clutter is modeled as a Poisson RFS with the mean rate of 10 per

scan, i.e., λc = 10 and uniform spatial distribution over the surveillance region

V = [−300m, 300m] × [−300m, 300m]. Fig. 4.1 shows the x and y components of

the true target tracks in the MTT scenario together with their measurements in clut-

ter. It can be seen that targets with tracks 1 and 2 at time step k = 19 and tracks 3

and 4 at time step k = 30 cross each other. The performances of the two estimators
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are evaluated by running this scenario with random measurement sets for 5000 Monte

Carlo runs.

In GM implementations, the maximum number of Gaussian components is set to

Jmax = 25. After terminating Bernoulli targets with existence probabilities less than

Th = 0.02, their components are pruned and merged with thresholds Pr = 0.01 and

U = 2.5 according to the algorithm in [33]. In addition, the control parameters of

the fixed-point search to find the modes of a given GM density are set as follows:

max it = 1000, min step = 10−4 × Λ
1
2
min, where Λmin is the smallest positive eigen-

value of the covariance matrices, and max eig = 0. Finally, the parameter qmin in

(4.5.35) is determined subject to observable conditions. Thus, any Bernoulli target

with qk < qmin cannot be declared by the JoM estimator.

4.6.1 Example 1: Low-Observable Conditions

In this example, the performances of the GM-IMeMBer filters with the proposed JoM

estimator and the MaM estimator are compared under moderately low-observable

conditions. As indicated in Section 4.3.2, no restrictive assumption on the probability

of target detection is required for the IMeMBer filter. Therefore, the state-dependent

probability of target detection is defined as

pD (x) =
0.85N

(
Hx; [−300,−300]T, 10002I2×2

)
N
(

[−300,−300]T; [−300,−300]T, 10002I2×2

) . (4.6.1)

As can be seen from Fig. 4.2, the target detection probability given by (4.6.1)

takes values in the range of 0.61 to 0.85. According to the trajectories of the five tar-

gets, their detection probabilities change approximately in the interval [0.72, 0.81].
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Considering low-observable conditions, the minimum existence probability to declare

a Bernoulli target is set at qmin = 1/3. Since cardinality errors due to missed de-

tections depend on positions of targets, the proposed JoM estimator is expected to

outperform the MaM estimator by yielding more reliable estimates. In the following,

the performances of these two estimators are compared by evaluating the accuracy

and stability of their cardinality estimates.
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Figure 4.2: Trajectories of five targets and the state-dependent probability of target
detection in the surveillance region.

In Fig. 4.3, the average cardinality estimates over 5000 Monte Carlo runs and

their ±1σ standard deviations for the two estimators are shown. The RMS errors

measured from the plots of the JoM and MaM estimators are approximately 0.25 and

0.34, respectively, whereas their standard deviations are almost the same. As can be

seen from Fig. 4.3, the cardinality estimate from the MaM estimator is negatively

biased, compared to that from the JoM estimator. Therefore, these values indicate

that the proposed JoM estimator produces more accurate cardinality estimates than
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the MaM estimator. Another important result obtained from Fig. 4.3 is that the re-

sponse times of the JoM estimator to track terminations at times k = 31 and k = 41

are slower than those of the MaM estimator.
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Figure 4.3: The average cardinality estimates over 5000 Monte Carlo runs: true
cardinality (red solid line), estimated cardinality (green dotted line), and its ±1 stan-
dard deviations (blue dashed lines) for the IMeMBer filters with the JoM and MaM
estimators.

In Fig. 4.4, the OSPA metric shows the cardinality performances of the two esti-

mators. As expected, it corroborates the results inferred from Fig. 4.3. That is, the

track maintenance quality of the proposed JoM estimator is better than that of the

MaM estimator. However, the instantaneous peaks are observed at times k = 31 and

k = 41 due to the corresponding track termination latencies in Fig. 4.3. Notice that

the JoM estimator suffers from these track termination latencies more than the MaM

estimator under this condition. The reason is that the MaM estimator responds to

target deaths by considering only existence probabilities, whereas the JoM estimator

considers existence probabilities together with localization performances. Since the
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localization performances deteriorate gradually after target deaths at times k = 30

and k = 40, the track termination decisions in the JoM estimator is slower, compared

to those in the MaM estimator.
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Figure 4.4: The average OSPA over 5000 Monte Carlo runs for the IMeMBer filters
with the JoM and MaM estimators.

4.6.2 Example 2: High-Observable Conditions

In this example, the performances of the CBMeMBer filters with the proposed JoM

estimator and the MaM estimator are compared. Since the CBMeMBer filter is

derived under the assumption of high-observable conditions, i.e., pD,k(x) ≈ 1, the

state-dependent probability of target detection is defined as

pD (x) =
0.98N

(
Hx; [−300,−300]T, 30002I2×2

)
N
(

[−300,−300]T; [−300,−300]T, 30002I2×2

) . (4.6.2)
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Note that the aim of our comparison is to demonstrate that there is a performance

difference between the two estimators when estimates based on the cardinality dis-

tribution are not accurate, especially under low-observable conditions [23, 19]. Oth-

erwise, if the cardinality estimates from the MaM estimator are as accurate as those

from the JoM estimator, these two MAP-like estimators perform similarly.
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Figure 4.5: Trajectories of five targets and the state-dependent probability of target
detection in the surveillance region.

As can be seen from Fig. 4.5, the target detection probability given by (4.6.2) takes

values in the range of 0.945 to 0.98. According to the trajectories of the five targets,

their detection probabilities change approximately in the interval [0.963, 0.975]. Since

cardinality errors due to missed detections rarely occur, the proposed JoM estimator

is not expected to outperform the MaM estimator. Accordingly, the minimum exis-

tence probability to declare a Bernoulli target is set at qmin = 0.45. On the other

hand, all other model and scenario parameters are the same as those in subsection

4.6.1.
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In Fig. 4.6, the average cardinality estimates over 5000 Monte Carlo runs and their

±1σ standard deviations for the two estimators are shown. It can be seen that their

cardinality estimates converge to the true cardinality. In addition, the RMS errors

measured from the plots are both 0.09 approximately. These results demonstrate

that the performances of the proposed JoM and MaM estimators are similar under

high-observable conditions.
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Figure 4.6: The average cardinality estimates over 5000 Monte Carlo runs: true cardi-
nality (red solid line), estimated cardinality (green dotted line), and its ±1 standard
deviations (blue dashed lines) for the CBMeMBer filters with the JoM and MaM
estimators.

In Fig. 4.7, the OSPA metric shows the cardinality performances of the two es-

timators. As expected, it corroborates the results inferred from Fig. 4.6. That is, it

can be seen that the performances of the two estimators are almost the same even

though the OSPA metric with c = 300 is sensitive to errors in cardinality estimates.
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Figure 4.7: The average OSPA over 5000 Monte Carlo runs for the CBMeMBer filters
with the JoM and MaM estimators.

4.7 Conclusion

In this paper, the JoM estimator proposed for the JoTT filter was reformulated to

obtain the estimate of the multi-Bernoulli RFS. For this purpose, a mode-finding

algorithm was employed to obtain the MAP estimates of Bernoulli targets from their

GM pdfs. Thus, the conflicting objective functions designed to determine the Pareto-

optimal value of the unknown JoM estimation constant were generalized using local

statistics of GM densities. In addition, the weights of the conflicting objectives and

the confidence level were adjusted considering the characteristics of the multitarget

tracking and the proposed JoM estimator.

Simulations demonstrate that the proposed JoM estimator is more reliable in the
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cardinality estimate than the MaM estimator under moderately low-observable condi-

tions. However, it suffers from track termination latency more than the MaM estima-

tor because of gradually deteriorating localization performances after target deaths.

Finally, the performance comparison under high-observable conditions demonstrates

that the two estimators achieve the same accuracy and stability in cardinality esti-

mates. This is the expected since the cardinality error due to missed detections is

low under high-observable conditions.

4.8 Appendix

There is no analytical solution to find the number of modes of a GM density and their

positions over the state space [8, 11]. However, for one-dimensional GM densities

and GM densities with either homoscedastic or isotropic covariance matrices, the

number of modes is not greater than the number of components. In addition, they

are positioned inside the convex hull of GM centroids [8, 11]. It is important to note

that the mode of interest in the JoM estimator is the MAP estimate, i.e., the mode

with the highest probability among all modes of a GM density. Hence, finding all

minor modes are not necessary.

In [8], the fixed-point search was proposed to find modes of GM densities with

arbitrary covariance matrices. This algorithm is described as an iterative hill-climbing

algorithm since it starts searching modes from each component centroid and stops

if a local maximum of the GM density is found. The local maximum, minimum

and saddle points are stationary points of multivariate GM densities. Therefore, the
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fixed-point search first takes the gradient of a given GM density, i.e.,

∇fk (x) =

lk∑
j=1

ω
(j)
k N

(
x;µ

(j)
k , P

(j)
k

)(
P

(j)
k

)−1 (
x− µ(j)

k

)
, (4.8.1)

where fk(x) =
∑lk

j=1 ω
(j)
k N(x;µ

(j)
k , P

(j)
k ). Then, (4.8.1) is solved for x, and thus the

fixed-point iteration is obtained as

xn+1 =

(
lk∑
j=1

f
(j)
ω,k (xn)

(
P

(j)
k

)−1
)−1 lk∑

j=1

f
(j)
ω,k (xn)

(
P

(j)
k

)−1

µ
(j)
k , (4.8.2)

where f
(j)
ω,k(x) = ω

(j)
k−1N(x;µ

(j)
k , P

(j)
k ).

The fixed-point search continues until one of the following convergence conditions

is satisfied: i) the maximum number of iterations (max it) is reached or ii) the

distance between successive iterations is less than a priori threshold value (min step).

To confirm if the stationary point is a local maximum of a given GM density, the

fixed-point search checks its Hessian given by

Hk =

lk∑
j=1

ω
(j)
k N

(
x;µ

(j)
k , P

(j)
k

)(
P

(j)
k

)−1
[(
x− µ(j)

k

)(
x− µ(j)

k

)T
− P (j)

k

](
P

(j)
k

)−1

.

(4.8.3)

More explicitly, if (4.8.3) evaluated at a stationary point is negative definite, the point

is characterized as a local maximum, i.e., Λmax,Hk < max eig, where Λmax,Hk is the

maximum eigenvalue of the Hessian, and max eig is a nonnegative parameter used to

eliminate minima without missing any local maximum [8].

The fixed-point search proposed in [8] corresponds to the mean-shift algorithm

for the Gaussian kernel, which can be derived as an expectation maximization (EM)
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algorithm [11, 10]. Thus, using the convergence properties of the EM algorithm,

some conclusions can be drawn about the fixed-point search [11, 10]: i) its practical

convergence is a local maximum from any given starting point and ii) the rate of

its convergence is usually linear (i.e., slow) unless the components of a GM density

are well-separated. Note that closely-spaced components of each GM density are

merged after pruning its negligible components in the GM implementations of the

MeMBer filters. Purification of GM densities would also accelerate the fixed-point

search without missing any significant mode [8].
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Chapter 5

Conclusions and Future Research

The work in this thesis studied the problem of cardinality bias observed in the MeM-

Ber filter and proposed a practical and efficient use of the JoM estimator for RFS

(multi-)Bernoulli distributions.

To address the positive cardinality bias in the MeMBer filter, the equivalence

between the multi-target posterior distribution of data-induced targets and the multi-

Bernoulli RFS distribution was established. This provided an alternative derivation of

the MeMBer data update process. Then, this alternative derivation was extended to

introduce spurious targets that described the cardinality bias. Actually, the spurious

targets removed the ambiguity arising from modeling of two contradicting hypothesis

for predicted Bernoulli targets: one under the legacy track set and another under the

data-induced track set. In contrast to the popular CBMeMBer filter, the modeling of

spurious targets removed the bias without making any limiting assumption on sensor

probability of detection. This allowed the proposed IMeMBer filter to be employed

in scenarios where sensor probability of detection had moderate to small values. At

this point, it is important to note that the CBMeMBer filter can be obtained from
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the IMeMBer filter when sensor probability of detection is so close to unity. The

improvement to the proposed IMeMBer filter was achieved by refinement of existing

probabilities. Hence, the stability of the cardinality estimate was improved, compared

to that in the CBMeMBer filter. In addition to simulations, a theoretical analysis like

those presented for the PHD and CPHD filters was performed to demonstrate strength

and limitations of the IMeMBer filter. One possible research direction obtained from

this analysis would be to remove sparsely-distributed clutter assumption made in the

data update process. Thus, like the CPHD filter, the IMeMBer filter would have a

satisfactory performance in high cluttered environments.

The another main contribution of this thesis allowed the robust JoM estimator

to be used in RFS multi-Bernoulli filters. For this purpose, an optimal solution to

the unknown JoM estimation constant was computed by solving a multi-objective

optimization problem. For this optimization problem, two convex nonlinear objective

functions in conflict were defined: the first objective function aimed to reduce infor-

mation gain by minimizing the KL divergence of actual spatial probability density

function from its uniform approximation. On the other hand, the second objec-

tive function aimed to improve the accuracy of estimated states. Since there was

no a utopian solution that simultaneously optimized these conflicting objectives, the

weighted sum method was used to obtain a unique Pareto optimal solution to the

unknown JoM estimation constant. The decision maker’s preference on each objec-

tive function was determined by adaptive weights. The proposed JoM estimator was

applied to the optimal JoTT filter. The simulation results demonstrated its supe-

rior track management performance in terms of track confirmation latency and track
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maintenance against the MaM estimator. However, it suffered from the track termi-

nation delay more than the MaM estimator.

Finally, the proposed JoM estimator was reformulated to be used with the multi-

Bernoulli distribution. For this purpose, those conflicting objective functions were

generalized using local statistics of GM densities. In addition, a new calculation

method for adaptive weights were proposed to adjust them according to dynamics of

multi-target tracking and characteristics of the JoM estimator. The proposed JoM

estimator provided more reliable cardinality estimates than the MaM estimator under

moderately low-observable conditions. This was the expected result since the JoM

estimator was more robust than the MaM estimator. However, as in the single target

tracking case, it suffered from track termination delay more than the MaM estimator.

The reason behind this behavior was due to gradually deteriorating localization per-

formance of the multi-target filter after target deaths. Furthermore, the performance

comparison under high-observable conditions demonstrated that the performances

of these two estimators were same in terms of accuracy and stability of cardinality

estimates.

Results obtained from simulations of the proposed JoM estimators in both single

and multi-target tracking scenarios indicate that one possible research direction would

be to reduce the track termination latency.
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