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Lay Abstract

This study proposes a novel form of pattern classification method, which is formulated

in a way so that it is easily executable on a computer. Two different versions of the

method are developed. These are the LFS (localized feature selection) and lLFS (lo-

gistic LFS) methods. Both versions are appropriate for analysis of data with complex

distributions, such as datasets that occur in biological signal processing problems. We

have shown that the performance of the proposed methods is significantly improved

over that of previous methods, on the datasets that were considered in this thesis.

The proposed method is applied to the specific problem of determining the prog-

nosis of a coma patient. The viability of the formulation and the effectiveness of the

proposed algorithm are demonstrated on several synthetic and real world datasets,

including comatose subjects.
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Abstract

The main idea of this thesis is to present the novel concept of localized feature selection

(LFS) for data classification and its application for coma outcome prediction.

Typical feature selection methods choose an optimal global feature subset that is

applied over all regions of the sample space. In contrast, in this study we propose a

novel localized feature selection approach whereby each region of the sample space

is associated with its own distinct optimized feature set, which may vary both in

membership and size across the sample space. This allows the feature set to optimally

adapt to local variations in the sample space. An associated localized classification

method is also proposed.

The proposed LFS method selects a feature subset such that, within a localized

region, within-class and between-class distances are respectively minimized and max-

imized. We first determine the localized region using an iterative procedure based

on the distances in the original feature space. This results in a linear programming

optimization problem. Then, the second method is formulated as a non-linear joint

convex/increasing quasi-convex optimization problem where a logistic function is ap-

plied to focus the optimization process on the localized region within the unknown

co-ordinate system. This results in a more accurate classification performance at
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the expense of some sacrifice in computational time. Experimental results on syn-

thetic and real-world data sets demonstrate the effectiveness of the proposed localized

approach.

Using the LFS idea, we propose a practical machine learning approach for auto-

matic and continuous assessment of event related potentials for detecting the presence

of the mismatch negativity component, whose existence has a high correlation with

coma awakening. This process enables us to determine prognosis of a coma patient.

Experimental results on normal and comatose subjects demonstrate the effectiveness

of the proposed method.
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Notation and abbreviations

ML Machine Learning

LFS Local(ized) Feature Selection

lLFS logistic Localized Feature Selection

VC Vapnik Chervonenkis

SVM Support Vector Machine

RBF Radial Basis Function

RoL Region of Locality

MMN Mismatch Negativity

EEG Electroencephalogram

GCS Glasgow Coma Scale

ERP Event Related Potential

std Standard

dev Deviant

TPR True Positive Rate

TNR True Negative Rate

LOO Leave-One subject-Out

IEEE Institute of Electrical and Electronics Engineers
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Chapter 1

Introduction

Dimensionality reduction is a very important component in data classification appli-

cations. It is an antidote to what Bellman referred to as the “curse of dimensionality”

(Bellman and Dreyfus, 1962). It is well known that the performance of typical classi-

fiers notably drops when the number of available objects is not adequate in comparison

to the number of candidate features (Weston et al., 2000). A typical approach to

addressing this problem is to apply some form of dimensionality reduction to the can-

didate feature set before the classification process. Dimensionality reduction plays an

important role in big data problems, such as e.g., in the medical field, where oligonu-

cleotide microarray data is used for identification of cancer-associated gene expression

profiles of prognostic or diagnostic value (Van’t Veer et al., 2002; Wang et al., 2005;

Sun et al., 2010). In this case the number of available samples is less than a hundred

while the raw data are characterized by thousands of features. Among this large gene

set, only a small subset of these features is relevant to the determination of cancerous

tumor spread or/and growth. Thus some form of dimensionality reduction technique

is required to identify this small subset of relevant features.
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Dimensionality reduction approaches can be classified into two categories. The

first is feature extraction (Webb, 2003; Jolliffe, 2005; Roweis and Saul, 2000; Oveisi

et al., 2012) which is also called subspace learning. The second category is feature

selection (Peng et al., 2005; Wei and Billings, 2007; Wang, 2008; Zeng and Cheung,

2011; Kwak and Choi, 2002; Chakraborty and Pal, 2015). Feature extraction ap-

proaches, like PCA (Jolliffe, 2005), LDA (Duda et al., 2001) and ICA (Hyvärinen

and Oja, 2000), perform dimensionality reduction through combining original fea-

tures to find a new set of features. Typically, extracted features lose their physical

interpretation in terms of the original features. Feature selection approaches perform

dimensionality reduction, with no transformation, by selecting a subset of the origi-

nal features. Hence, feature selection approaches retain the physical interpretability

property in terms of the selected features. In this study we consider the feature

selection aspect of the dimensionality reduction problem.

Traditionally, feature selection approaches are categorized into wrapper and filter

approaches. Wrapper approaches evaluate a feature subset based on the accuracy of

a specific classifier on a specific data set. Filter methods evaluate a feature subset

based on its information content instead of optimizing the performance of any specific

classifier. The interested reader may refer to (Gui et al., 2016; Kohavi and John,

1997; Sánchez-Maroño et al., 2007) for more details.

Feature selection algorithms can also be categorized into batch methods and online

algorithms. In the former the feature selection task is conducted in an offline phase

where all features of training instances are given while the online feature selection

algorithms assume that the full feature space is unknown in advance. The online

methods are appropriate for the applications where the training samples or features

3
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arrive in a sequential manner (Wu et al., 2013; Wang et al., 2014; Yu et al., 2014).

In this study the batch algorithms are considered and discussed.

From another point of view, conventional feature selection algorithms assume that

all regions of sample space can be optimally characterized by a common subset of

features (Wang, 2008; Peng et al., 2005; Guyon and Elisseeff, 2003; Liu and Motoda,

2007; Brown et al., 2012; Khushaba et al., 2011). These approaches can be roughly

categorized into two major groups. The first group includes approaches that select

a common feature subset with no consideration of the local behavior of the samples

over the sample space. For example, in (Peng et al., 2005), a common subset of

features is selected using a mutual information based approach that utilizes a minimal-

redundancy maximal-relevance criterion. In (Zhu et al., 2007a), a common feature set

is computed based on a genetic algorithm (GA) where the GA solutions are fine tuned

based on a Markov blanket algorithm; the embedded Markov blanket-based memetic

operators add or delete features from a GA solution. (Aliferis et al., 2010) presents

an algorithm to learn local causal structure around a target variable of interest by

focusing on both identification of variables that are direct causes or direct effects of the

target and discovery of Markov blankets. In (Wang, 2008), a common discriminative

feature subset is obtained by maximizing a class separability criterion. In (Khushaba

et al., 2011), a differential-evolution based algorithm is used for computing a common

feature set. The Fisher criterion is used in (Duda et al., 2001) where each feature

score is computed based on minimizing intra–class distances and maximizing inter–

class distances. In (Cheng et al., 2011), a common feature set is selected based

in spirit on Fisher’s discriminant analysis, where in defining the class separability,

it incorporates the kernel trick to map each original input to a higher dimensional
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kernel space. In (Tao et al., 2015), a common set is computed through a combination

of linear discriminant analysis and sparsity regularization. In (Ramona et al., 2012)

a feature subset is determined based on two criteria designed for the optimization of

the SVM, including kernel target alignment and kernel class separability. In (Xiang

et al., 2012) a common feature subset is computed through expanding a nonconvex

paradigm into a sparse group feature selection process. The selection algorithm elastic

net, presented in (Zou and Hastie, 2005), combines the algorithmic ideas of Least

Angle Regression (LARS) (Efron et al., 2004), the computational benefits of ridge

regression and the tendency towards sparse solutions of the LASSO. In (Sun et al.,

2014) a feature selection method, for microarray data classification, is presented that

is based on partial least squares and theory of Reproducing Kernel Hilbert Space

(Shawe-Taylor and Cristianini, 2004).

The second group applies local information of the sample space for computing an

optimal feature subset (Kira and Rendell, 1992; Kononenko, 1994; Gilad-Bachrach

et al., 2004; Sun, 2007; Chen et al., 2009; Sun et al., 2010; Liu et al., 2013). For

example, Bi-Clustering approaches (Madeira and Oliveira, 2004; Cheng and Church,

2000; Dhillon, 2001) use local information for simultaneously clustering data and

features. In (Li et al., 2008), data clustering is realized through a greedy feature

selection algorithm which can assign a specified feature set to each cluster. However,

these algorithm s are unsupervised feature selection approaches. The approaches

more relevant in the present case are “margin” based algorithms that are supervised

and embed local information. These methods select features based on maximizing

“margin”, where “margin” of a sample is defined as the difference between the distance

to the nearest differently labeled sample and the distance to the nearest same labeled
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sample. For example, in the sample-based RELIEF algorithm (Kira and Rendell,

1992), feature weights are iteratively updated according to the margin of a randomly

selected sample at the current iteration. The main drawback of RELIEF is that

the neighboring samples are predefined in the original feature space, which yields

degraded margin estimates in the presence of irrelevant features. The Simba algorithm

(Gilad-Bachrach et al., 2004) is an enhancement of the RELIEF algorithm in that

during the learning process, margins are reevaluated based on the learned feature

vector. The main drawback of Simba is that its objective function is non-convex and

hence is characterized by the presence of local minima. In (Sun et al., 2010), a local

learning–based feature selection method is presented in which a complex non-linear

problem is decomposed into a set of locally linear problems. In (Liu et al., 2011)

local information is embedded in feature selection through combining instance-based

and model-based learning methods. However, the main disadvantage of this second

group of algorithms is that they still generate a common feature set for the whole

sample space.

Thus we see that current feature selection schemes impose a global set of fea-

tures that are common across the entire sample space. Such schemes are inherently

restricted in their ability to adapt to statistical variations (i.e., non–stationarities),

across the sample space. These variations could be the result of a change in operat-

ing conditions of the underlying generative process. In this study, we introduce an

alternative view to the traditional concept of a common feature set. We introduce

what we believe is the novel concept of localized feature selection. The concept of

localized feature selection is implemented by considering each sample of the training
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set as a representative point for its neighboring region. A unique (and possibly dis-

tinct) feature subset is selected for every such region, based on an optimality criterion

that encourages local clustering over that region. Because the selected feature subset

varies over the sample space, conventional classifiers are no longer appropriate for the

proposed algorithm. We therefore present a localized classification procedure that

has been adapted to the proposed scenario.

The proposed approach has several advantages. First, it accommodates non–

stationarities in the underlying data distribution, because no assumptions are made

about the distribution of data over the sample space. Therefore, it allows irregular

and/or disjoint distributions of samples. The proposed approach is also effective

when the sample space lies on a non-linear manifold, since an optimal feature subset

can be selected to fit the local behavior in each region of the manifold. Second, the

proposed method may be less sensitive to overfitting relative to other methods. The

overfitting phenomenon may be considered from two perspectives: feature selection

and classification. With regard to feature selection, with alternative methods such

as (Peng et al., 2005; Khushaba et al., 2011; Zhu et al., 2007a), the number of

selected features is determined in advance by a user–defined parameter. The value

of this parameter is often difficult to determine and if this parameter is set too high,

features may be selected whether they are relevant or not, a fact which introduces

vulnerability to overfitting. In contrast, we show that the proposed algorithm limits

the number of selected features only to those features which are most relevant, and

so in this sense is less vulnerable than other methods to overfitting. Further, with

regard to classification, we investigate the Vapnik Che1rvonenkis (VC) dimension for

the proposed classifier structure. Under certain assumptions, we show that the value

7
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of the VC dimension for the localized classifier is moderate. A modest value of VC

dimension also implies reduced sensitivity to overfitting.

The rest of this thesis is organized as follows: Chapter 2 presents and demonstrates

the localized feature selection and classification idea (referred as LFS method). The

LFS method is published in IEEE Transactions on Pattern Analysis and Machine

Intelligence. An improved version of the LFS feature selection method is presented

in Chapter 3, referred as logistic Localized Feature Selection lLFS. The idea of the

lLFS approach is submitted to IEEE Transactions on Neural Network and Learning

Systems which is under second revision. An application of the proposed localized

feature selection idea for automatic and continuous detection of Mismatch Negativity

(MMN) is presented in Chapter 4. Conclusions and future works are presented in

Chapter 5.

8
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Chapter 2

Localized Feature Selection (LFS)

2.1 Abstract

The main idea of this thesis is to present the novel concept of localized feature selection

(LFS) for data classification and its application for coma outcome prediction.

Typical feature selection methods choose an optimal global feature subset that is

applied over all regions of the sample space. In contrast, in this study we propose a

novel localized feature selection approach whereby each region of the sample space

is associated with its own distinct optimized feature set, which may vary both in

membership and size across the sample space. This allows the feature set to optimally

adapt to local variations in the sample space. An associated localized classification

method is also proposed.

The proposed LFS method selects a feature subset such that, within a localized

region, within-class and between-class distances are respectively minimized and max-

imized. We first determine the localized region using an iterative procedure based

on the distances in the original feature space. This results in a linear programming
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optimization problem. Then, the second method is formulated as a non-linear joint

convex/increasing quasi-convex optimization problem where a logistic function is ap-

plied to focus the optimization process on the localized region within the unknown

co-ordinate system. This results in a more accurate classification performance at

the expense of some sacrifice in computational time. Experimental results on syn-

thetic and real-world data sets demonstrate the effectiveness of the proposed localized

approach.

Using the LFS idea, we propose a practical machine learning approach for auto-

matic and continuous assessment of event related potentials for detecting the presence

of the mismatch negativity component, whose existence has a high correlation with

coma awakening. This process enables us to determine prognosis of a coma patient.

Experimental results on normal and comatose subjects demonstrate the effectiveness

of the proposed method.

2.2 Proposed LFS Method

The proposed method is presented in two parts: feature selection and class similarity

measurement. In the former, a discriminative subset of features is selected for each of

the sample space regions. In the latter, a localized classifier structure for measuring

the similarity of a query datum to a specific class is presented.

2.2.1 Feature selection

Assume that we encounter a classification problem withN training samples
{(

x(i), y(i)
)}N

i=1
⊂

RM × Y where Y = {Y1, . . . , Yc} is the set of class labels, x(i) is the ith training sample

11
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containing M features and y(i) ∈ Y is its corresponding class label.

To implement the proposed localized feature selection scheme, we consider each

training sample x(i) to be a representative point for its neighboring region and assign

an M -dimensional indicator vector f (i) ∈ {0, 1}M to x(i) that indicates which features

are optimal for local separation of classes. If the element f
(i)
m = 1, then the mth feature

is selected for the ith sample, otherwise it is not. The optimal indicator vector f (i)

is computed such that, in its respective subspace, the neighboring samples with class

label similar to y(i) cluster as closely as possible around x(i), whereas samples with

differing class labels are as far away as possible. No assumptions are made that

require the classes to be unimodal, nor on the probability distribution of the samples.

In this work, Euclidean distance is used as the distance measure.

The following will present the process of calculating f (i) corresponding to the

representative point x(i).

Initial formulation

Assume that x
(k,i)
p is the projection of an arbitrary training sample x(k) into the

subspace defined by f (i) as follows:

x(k,i)
p = x(k) ⊗ f (i) , k = 1, . . . , N (2.1)

where ⊗ is the element-wise product. In the sequel, projection into the space defined

by f (i) is implied, so dependence on i in x
(k,i)
p is suppressed.

We want to encourage clustering behaviour – i.e. in the neighborhood of x
(i)
p ,

we want to find an optimal feature subset f (i) so that, in the corresponding local

co–ordinate system, we satisfy the following two goals:
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1. neighboring samples of the same class are closely situated around x
(i)
p , and

simultaneously,

2. neighboring samples with different classes are further removed from x
(i)
p .

To realize these goals, we define N−1 objective functions which are weighted distances

of all within- and between-class samples to be respectively minimized and maximized

as in (2.2).

min
f (i)

w
(i)
j

∥∥∥x(i)
p − x

(j)
p

∥∥∥
2
, j ∈ y(i), j 6= i

max
f (i)

w
(i)
j

∥∥∥x(i)
p − x

(j)
p

∥∥∥
2
, j /∈ y(i) (2.2)

where y(i) is the set of all training samples with class label similar to y(i). The quan-

tity w
(i)
j is the weight of the corresponding distance where, in order to concentrate

on neighboring samples and reduce the effect of remote samples on the objective

functions, higher weights are assigned to the closer samples of x
(i)
p . Weights decrease

exponentially with increasing distance from x
(i)
p . However, measuring sample dis-

tances from x
(i)
p is a challenging issue since these distances should be measured in

the local co–ordinate system defined by f (i), which is unknown at the problem outset.

To overcome this issue, we use an iterative approach for computing f (i), where at

each iteration weights are determined based on the distances in the co–ordinate sys-

tem defined at the previous iteration. The following discussion assumes the weights

have been determined in this manner. Further discussion on the computation of the

weights is given later in Section Weight definition.

There are constraints that must be considered in our optimization formulations.

Since we are looking for an indicator vector f (i) = (f
(i)
1 , f

(i)
2 , . . . , f

(i)
M )T the problem
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variables f
(i)
m ,m = 1, . . . ,M are restricted to 0 and 1, where (.)T is transpose operator.

Because there must be at least one active feature in f (i), the null binary vector must be

excluded, i.e. 1 ≤ 1Tf (i) where 1 is an M dimensional vector with all elements equal

to 1. Furthermore, we would like to limit the maximum number of active features to

a user–settable value α, i.e. 1Tf (i) ≤ α, where α must be an integer number between

1 and M . Therefore, the feature selection problem for the neighboring region of x(i)

can be written as follows:

min
f (i)

w
(i)
j

∥∥∥x(i)
p − x

(j)
p

∥∥∥
2
, j ∈ y(i), j 6= i

max
f (i)

w
(i)
j

∥∥∥x(i)
p − x

(j)
p

∥∥∥
2
, j /∈ y(i)

s.t.


f
(i)
m ∈ {0, 1}, m = 1, . . . ,M

1 ≤ 1Tf (i) ≤ α

(2.3)

where the notation {·} is used to indicate a discrete set, whereas the notation [·] is

used later to indicate a continuous interval.

In the next section, the above optimization problem is reformulated into an effi-

cient linear programming optimization problem.

Problem reformulation

To obtain a well-behaved optimization problem, in the following, we use the squared

Euclidean distance instead of the Euclidean distance itself. It is apparent that the

optimal solution of (2.3) is invariant to this replacement. Considering the sample

projection definition in (2.1) and the fact that the problem variables fm(i), m =
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1, . . . ,M are binary, each objective function of (2.3) can be simplified as follows:

w
(i)
j

∥∥x(i)
p − x(j)

p

∥∥2
2

= w
(i)
j

∥∥(x(i) − x(j)
)
⊗ f (i)

∥∥2
2

= w
(i)
j

M∑
m=1

(
δ
(i)
j,mf

(i)
m

)2
= w

(i)
j

M∑
m=1

f (i)
m δ

(i)2

j,m

= w
(i)
j ∆

(i)T

j f (i) (2.4)

where ∆
(i)
j =

(
δ
(i)2

j,1 , δ
(i)2

j,2 , . . . , δ
(i)2

j,M

)T
,
(
x(i) − x(j)

)
⊗
(
x(i) − x(j)

)
.
(
f
(i)
m

)2
in the

second line is replaced with f
(i)
m due to the first constraint in (2.3). The important

conclusion drawn is that the objective functions are linear in terms of the problem

variables.

Using the summation of all weighted within-class distances and all weighted

between-class distances in the sub-feature space defined by f (i), we define the to-

tal intra-class distance and the total inter-class distance as in (2.5). The problem

is then reformulated by simultaneously minimizing the former and maximizing the

later.

total intra− class distance :∑
j∈y(i)

(
w

(i)
j ∆

(i)T

j f (i)
)
, a(i)Tf (i)

total inter − class distance :∑
j /∈y(i)

(
w

(i)
j ∆

(i)T

j f (i)
)
, b(i)Tf (i) (2.5)

We see that (2.3) is in the form of an integer program, which is known to be
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computationally intractable (Boyd and Vandenberghe, 2004). However this issue is

readily addressed through the use of a standard and widely–accepted approximation of

an integer programming problem (Thai, 2013; Souza, 2001; Boyd and Vandenberghe,

2004). Here, we replace (relax) the binary constraint in (2.3) with linear inequalities

0 ≤ f
(i)
m ≤ 1,m = 1, . . . ,M . This procedure restores the computational efficiency of

the program. A randomized rounding procedure (to be discussed further) that maps

the linear solution back onto a suitable point on the binary grid, then follows.

These reformulations result in (2.6), which is a multi-objective optimization prob-

lem consisting of two linear objective functions that are to be simultaneously mini-

mized and maximized, along with 2M + 2 linear constraints.

min
f (i)

a(i)Tf (i)

max
f (i)

b(i)Tf (i)

s.t.


f
(i)
m ∈ [0, 1] ,m = 1, . . . ,M

1 ≤ 1Tf (i) ≤ α

(2.6)

There are several ways to re-configure a multi-objective problem into a standard

form (Boyd and Vandenberghe, 2004; Hwang et al., 1979; Mavrotas, 2009) with a

single objective function; e.g. a linear combination of the objective functions. In the

multi-objective case, the concept of optimality is replaced with Pareto optimality.

A Pareto optimal solution is one in which an improvement in one objective requires

a degradation of another. Since our multi-objective optimization problem is convex

(because both objective functions and the constraints defined in (2.6) are convex)

the set of achievable objectives Λ is also convex. The solution to a multi-objective

16



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

optimization problem is not unique and consists of the set of all Pareto optimal points

that are on the boundary of the convex set Λ. Different points in the set correspond to

different weightings between the two objective functions. The set of Pareto points is

unique and independent of the methodology by which the two functions are weighted

(for more detail about Pareto optimal approach see (Boyd and Vandenberghe, 2004)).

In this study, we use the ε-constraint method as described by (2.7), such that instead

of maximizing the total inter-class distance, we force it to be greater than some

constant ε(i). In this way we can map out the entire Pareto optimal set by varying a

single parameter, ε(i). One advantage of this approach is that we can guarantee the

combined inter-class distances are in excess of the value of the parameter ε(i).

min
f (i)

a(i)Tf (i)

s.t.


f
(i)
m ∈ [0, 1] ,m = 1, . . . ,M

1 ≤ 1Tf (i) ≤ α

b(i)Tf (i) ≥ ε(i)

(2.7)

The parameter ε(i) must be determined such that the optimization problem defined

in (2.7) is feasible. In the next section we present an approach to automatically

determine a value of the parameter ε(i) which guarantees that the feasible set is not

empty.

Problem feasibility

The optimization problem defined in (2.7) is feasible if there is at least one point that

satisfies its constraints. The constraints f
(i)
m ∈ [0, 1] ,m = 1, . . . ,M indicate that the
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Figure 2.1: The polyhedron P in the case of a 3-D original feature space, i.e. the data

dimension M is 3, where α is set to 2. It is a unit cube (defined by 0 ≤ f (i)m ≤ 1, m = 1, . . . , 3)
in which two regions, i.e. blue and red pyramids, are removed. The blue pyramid is the
intersection between unit cube and the half space 1Tf (i) < 1, and the red pyramid is the
intersection between the half space 1Tf (i) > α and the unit cube.

optimum point must be inside a unit hyper-cube. The constraints 1 ≤ 1Tf (i) ≤ α

indicate that the optimum point must be within the space between two parallel hyper-

planes defined by 1Tf (i) = 1 and 1Tf (i) = α. Since α is an integer number greater than

or equal to 1, the space bounded by these two parallel hyper-planes is always non-

empty and its intersection with the unit hyper-cube is also non-empty. In fact, the

intersection of the spaces defined by f
(i)
m ∈ [0, 1] ,m = 1, . . . ,M and 1 ≤ 1Tf (i) ≤ α

is a polyhedron P that can be seen as a unit cube in which two parts are removed;

the first part is the intersection between the half-space 1Tf (i) < 1 and the unit hyper-

cube, and the second is the intersection between the half-space 1Tf (i) > α and the

unit hyper-cube (see Fig. 2.1). If the intersection between the polyhedron P and the

half-space defined by b(i)Tf (i) ≥ ε(i), i.e. the last constraint, is non-empty then the

optimization problem is feasible. The maximum value ε
(i)
max that ε(i) can take such

that the intersection remains non-empty is the solution to the following feasibility LP
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problem:

max
f (i)

b(i)Tf (i)

s.t.


f
(i)
m ∈ [0, 1] ,m = 1, . . . ,M

1 ≤ 1Tf (i) ≤ α.

(2.8)

Effectively, (2.8) corresponds to an extreme Pareto point where the weighting given

to the intra-class distance term (the first objective in (2.6)) is zero. Finally, we set

ε(i) = βε
(i)
max where β lies between zero and one. In this way, the optimization problem

is always feasible and by changing β we can map out the entire Pareto optimal set

corresponding to different relative weightings of intra- vs. inter-class distances. Here

we define the Pareto optimal point corresponding to a specific value of β as f
(i)
β ;

furthermore we define the set
{

f
(i)
β

}
β∈[0,1]

as the complete Pareto optimal set. The

final reformulation of the problem may therefore be expressed as:

min
f
(i)
β

a(i)Tf
(i)
β

s.t.


f
(i)
m,β ∈ [0, 1] ,m = 1, . . . ,M

1 ≤ 1Tf
(i)
β ≤ α

b(i)Tf
(i)
β ≥ βε

(i)
max.

(2.9)

where f
(i)
β = (f

(i)
1,β, f

(i)
2,β, . . . , f

(i)
M,β)T. This formulation has the desirable form of a linear

program and hence is convex.

The solution to (2.9) provides a solution for each element of f
(i)
β over the continuous

range [0, 1] that may be considered close to the corresponding binary Pareto optimal
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solution f∗
(i)

β . To obtain f∗
(i)

β , a randomized rounding process (Thai, 2013; Souza,

2001; Boyd and Vandenberghe, 2004) is applied to the optimal point of (2.9), i.e.

f
(i)
β , where f

(i)
m,β is set to one with probability f

(i)
m,β and is set to zero with probability

(1 − f
(i)
m,β) for m = 1, . . . ,M . To explore the entire region surrounding the Pareto

optimal f
(i)
β , the randomized rounding process is repeated 1000 times and the point

that simultaneously satisfies constraints of (2.9) and provides the minimum value for

the objective function of (2.9) is chosen as the binary Pareto point f∗
(i)

β . Among

the binary Pareto optimal points
{

f∗
(i)

β

}
β∈[0,1]

the one which yields the best local

clustering of samples is chosen as the binary feature vector f∗
(i)

corresponding to the

representative point x(i). This process is explained more in detail in Section 2.2.2.

Weight definition

In order to compute the sub-feature set f∗
(i)

corresponding to the representative point

x(i), the proposed method focuses on the neighboring samples by assigning higher

weights to them. However, the computation of the weights is dependent on the co–

ordinate system, which is defined by f∗
(i)

, which is unknown at the problem outset.

To overcome this problem, we use an iterative approach. At each iteration, weights

w
(i)
j , j = 1, . . . , N, j 6= i (see (2.3)) are computed using the previous estimates of

f∗
(i)
, i = 1, . . . , N . Initially, the weights are all assigned uniform values. Empirically,

if two samples are close to each other in one space, they are also close in most of the

other sub-spaces. Therefore we define w
(i)
j , using the distance between x(i) and x(j)
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in all N subspaces obtained from the previous iteration, in the following manner:

w
(i)
j =

1

N

(
N∑
k=1

exp
(
−
(
dij|k − dminij|k

)))
dij|k =

∥∥∥(x(i) − x(j)
)
⊗ f∗

(k)
∥∥∥
2

dminij|k =


min
v∈y(i)

div|k , if y(j) = y(i)

min
v/∈y(i)

div|k , if y(j) 6= y(i)
(2.10)

where f∗
(k)
, k = 1, . . . , N are known from the previous iteration. Such a definition

implies all the w
(i)
j are normalized over [0, 1].

The pseudo code of the proposed feature selection method is presented in Algo-

rithm 1 where the parameter τ is the number of iterations and is set to its default

value 2 in all our experiments.

2.2.2 Class similarity measurement

The localized feature selection approach results in optimal feature set variation over

the sample space. Hence conventional classifiers are inappropriate. In this section

we build a classifier which is appropriate for the localized scenario. The proposed

localized classifier classifies a query datum xq based on measuring distances in the

induced feature spaces defined by the optimal feature sets f?
(i)
, i = 1, . . . , N .

The proposed localized feature selection algorithm assumes that the sample space

is formed from N , probably overlapped, regions around representative points. Here,

we define each region to be a hyper-sphere Q(i) centered at x
(i)
p (i.e., the projection of

x(i) into the subspace defined by f (i)) with class label y(i). In this study, we determine
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Input:
{(

x(i), y(i)
)}N

i=1
, τ , α

Output:
{

f?
(i)
}N
i=1

1 Initialization: Set f?
(i)

= (0, . . . , 0)T , i = 1, . . . , N ;
2 for iteration← 1 to τ do

3 f?
(i)

prev. = f?
(i)
, i = 1, . . . , N ;

4 for i← 1 to N do

5 Compute w
(i)
j , j = 1, . . . , N − 1 using

{
f?

(k)

prev.

}N
k=1

as in (2.10);

6 Compute ε
(i)
max through solving (2.8);

7 for β ← 0 to 1 do

8 Compute f
(i)
β through solving (2.9);

9 Compute f?
(i)

β through randomized rounding of f
(i)
β ;

10 end

11 Set f?
(i)

equal to the member of
{

f?
(i)

β

}
β∈[0,1]

which yields the best

local performance as explained in Section 2.2.2;

12 end

13 end

Algorithm 1: pseudo code of the proposed feature selection algorithm.

the radius, i.e. r(i)(γ), of Q(i) such that the “impurity level” within the hyper-sphere

Q(i) is not greater than the user-defined parameter γ. The “impurity” level is the

ratio of the number of inter-class samples within Q(i) to the number of intra-class

samples within Q(i). In all our experiments, γ is fixed at the value 0.2 (its default

value).

The similarity SY` (xq; γ) of query datum xq to class Y` ∈ Y is measured based on

how many hyper-spheres with class label Y` contain xq. To this end, we define a set

of binary variables s(i)(xq; γ) : RM → {0, 1}, i = 1, . . . , N , defined as follows:

s(i)(xq; γ) = step[r(i)(γ)−
∥∥x(i)

p − x(q)
p

∥∥
2
] (2.11)
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where

step(z) =


1 if z ≥ 0

0 otherwise.

(2.12)

The s(i)(xq; γ) may be interpreted as “weak” classifiers that indicate the similarity

of xq to the corresponding region1. The similarity of xq to the class Y`, SY` (xq; γ), is

computed through aggregation of the “weak” classifier results corresponding to the

regions whose class labels are the same as Y`, as follows:

SY` (xq; γ) =

∑
i∈Y` si (x

q; γ)

η`
(2.13)

where Y` indicates the set of all regions whose class labels are Y`. η` is the cardinality

of Y`. We compute the SY` (xq; γ) , ` = 1, . . . , c and the class label of xq, i.e. yq, is

the one which has the largest similarity :

yq = argmax
Yl∈Y

{SY1 , SY2 , . . . , SYc}. (2.14)

If xq is not situated in any of the hyper-spheres Q(i) i = 1, . . . , N , then we

would like its class label to be determined based on the class label of its nearest

neighboring sample. However, since there are N local co–ordinate systems in which

to measure distance, which one or ones are appropriate? To address this matter,

we evaluate the set of distances of all N nearest neighbors as measured in each

co–ordinate system. The class of xq is then determined using a majority voting

procedure over the corresponding classes in the set. The number of votes for each

1Heuristically, slightly better results may be obtained if the neighboring sample of xq is also
considered–i.e., s(i)(xq; γ) is set to 1 if the output of equation (2.11) is 1 and the class label of the
nearest neighbor is y(i). However, since here γ = 0.2 the effect of the neighboring sample is small.
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class is normalized to the total number of samples within that class. It is to be noted

that such a situation is a rare occurrence in all our experiments – only 0.03%.

In the following we discuss an approach to determine an appropriate value for β

which results in the selection of a suitable point in the Pareto set. We solve (2.9) for

different values of β followed by the randomized rounding process to obtain f?
(i)

β , where

β ranges from 0 to 1 with increments of 0.05. Each candidate binary vector f?
(i)

β defines

a local co-ordinate system and therefore specifies the respective hyper-sphere Q(i) and

the weak classifier s(i). The local clustering performance corresponding to f?
(i)

β is then

determined using a leave-one-out cross-validation procedure over the training samples

situated within Q(i). Performance is evaluated using decisions from the respective

weak classifier s(i). Finally, among the candidate binary points
{

f?
(i)

β

}
β∈[0,1]

the one

with the best local clustering performance is chosen as the optimum binary feature

set f?
(i)

corresponding to the representative point x(i) (see line 11 of Algorithm 1).

Fig. 2.2 shows a block diagram of the proposed algorithm.
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Figure 2.2: Block diagram of the proposed algorithm for data classification. The neighboring region of each representative
point is modeled by an optimal feature subset selected from the available feature pool. Details of the local feature selection
and classification procedures for a query datum xq are presented in Sections 2.2.1 and 2.2.2, respectively.
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2.3 Properties of the proposed algorithm

In this section we present three important properties of the proposed approach defined

in Section 2.2. These properties are 1) that the proposed localized classifier defined

in Section 2.2.2 has a modest Vapnik–Chervonenkis (VC) dimension, 2) that the

proposed approach is insensitive to the overfitting problem, and 3) that the proposed

feature selection method may be parallelized.

2.3.1 Vapnik Chervonenkis (VC) dimension

The Vapnik–Chervonenkis (VC) dimension (Vapnik, 1998) is used to quantify the

“power” of a classifier to separate points in a feature space. A classifier with a larger

VC value indicates higher classification power, yet may be prone to over–fitting,

compared to one with a lower VC dimension.

A classifier structure may be represented by a family F of functions parameterized

by a set θ, such that F = {f(x; θ) : RM → Y} where x is a training sample.

For example, in the case of the linear perceptron, f = sign{θT1 x − θ2} where θT =[
θT1 , θ2

]
. Consider a training set XN =

{(
x(i), y(i)

)}N
i=1
⊂ RM × Y . Then F “shatters”

this set if there exist values of θ which can correctly classify the training samples

corresponding to all possible cN combinations of the respective y–values where c is

cardinality of Y . The VC dimension is the largest N which can be shattered. For

example, in the case of a two class problem, the linear perceptron classifier has a VC

dimension of M + 1 (Burges, 1998). The VC dimension plays an important role in

establishing bounds on the performance of the classifier.

The VC dimension h for the LFS classifier is developed in the Appendix A, and

under certain assumptions, is shown to be equal to the value L(d 1
γ
e − 1), where L is
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the number of clusters in the training set and d·e denotes the ceiling function.

The fact that the LFS classifier has a finite VC dimension means that a variety

of learning theoretic performance bounds can be applied in this situation. One such

bound relates to how well a learning algorithm trained on a finite training set will

generalize to unseen data (Vapnik, 1998). In this respect and under the assumption

that all training points are drawn i.i.d from some distribution D(x, y), i.e. XN ∼

DN , and under the assumption that future test points will drawn from the same

distribution, we can define an empirical risk and an expected risk (Burges, 1998;

Vapnik, 1998), respectively as in (2.15) and (2.16):

RN(θ) =
1

N

N∑
i=1

1

2
|y(i) − f(x(i); θ)|, (2.15)

R(θ) =

∫
1

2
|y − f(x; θ)|dD(x; y). (2.16)

Assuming the empirical loss converges uniformly to the expected loss, then with

probability 1− ξ, ξ ∈ [0, 1], the following bound holds:

R(θ) ≤ RN(θ) +

√
h(log(2N

h
) + 1)− log( ξ

4
)

N
. (2.17)

This bound indicates that, by minimizing RN(θ) over θ for a given training set, a

minimum upper bound on expected performance over unseen samples is established

if h is finite. See (Vapnik, 1998) for details.

Furthermore, a finite value of h permits us to make assertions regarding the sample

complexity of the classifier. To this end we define the the optimal risk R? as follows:
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R?(θ) = inf
θ
R(θ) (2.18)

Then a good training algorithm will generate an RN(θ) close to R?(θ), or more

precisely (Anthony and Bartlett, 1999), for a positive real number ρ ∈ [0, 1], which

is prescribed in advance, we have

Pr
XN∼DN

{RN(θ) < R?(θ) + ρ} ≥ 1− ψ, (2.19)

where ψ ∈ [0, 1] tends to be a small value. No is the sample complexity. It indicates

the number of training samples required for the error of the classifier to be well

behaved. If a learning system has a finite VC dimension h, then the value of No can

be bounded (Anthony and Bartlett, 1999) as follows:

No(ρ, ψ) ≤ 64

ρ2

(
2h log(

12

ρ
) + log(

4

ψ
)

)
. (2.20)

In many cases these bounds are of not much value in the practical setting, since

they have been demonstrated to be very loose in some situations (Burges, 1998).

However, these bounds do give us a sense that the empirical risk is not far from the

expected risk for a reasonable value of N . Further, (2.20) suggests that the number

of training samples required to guarantee a certain level of performance varies only

logarithmically with the parameters ψ and ρ. Both these points suggest that with the

LFS classifier, we can expect well behaved error performance, i.e., that the classifier

will generalize well to new, unseen samples, under modest values of N .
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2.3.2 LFS and the overfitting issue

Both the feature selection and classification processes contribute to the overfitting

problem. As is discussed in Section 2.3.1 and Appendix A, the LFS classifier has a

finite and moderate VC dimension value which is independent of the dimension of

the feature space in which the classification is performed. Therefore it is less prone

to the overfitting than a method with a high or infinite value of h (Burges, 1998).

We now discuss the LFS feature selection procedure with respect to overfitting.

Assume that the set X denotes the set of all available features. Consider an ideal

scenario in which, for each localized region, the set of available features X can be

partitioned into two disjoint sets X (i)
R and X (i)

I so that X (i)
R ∪X

(i)
I = X , i = 1, . . . , N .

X (i)
R and X (i)

I respectively denote the set of relevant and irrelevant features. Assume

that the cardinality of X (i)
R is ζ

(i)
R .

Assume a hypothetical situation where the parameter α is set to ζ
(i)
R . Note that

“relevant” features are those that encourage local clustering behavior quantified by

the optimization problem defined in (2.9). In this way, we assume that the features

in X (i)
R are sufficiently relevant to be selected by the proposed algorithm; i.e. the

features in X (i)
R with high probability are selected as the solution to (2.9) followed by

the randomized rounding procedure. If α now grows above the value ζ
(i)
R , the features

in X (i)
I become candidates to be selected. Since the features in X (i)

I are “irrelevant”

features, i.e. do not encourage local clustering behavior, their respective element in

the optimal solution of (2.9) must be given a low value, i.e. a value close to zero

in order to satisfy optimality. Hence, the features in X (i)
I , with high probability, are

not selected after the randomized rounding process. Such a solution remains feasible

because of the inequality constraint involving α in (2.9). Therefore, in this idealized
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scenario, as α increases, the cardinality of the selected localized feature set tends to

saturate at the level ζ
(i)
R .

In the more practical scenario, the available feature set X may not be clearly

partitioned into relevant and irrelevant features as we have assumed; hence, as α

grows, “partially relevant” features may continue to be selected. Nonetheless, as

is demonstrated in Section 2.4.5, the saturation behavior of the number of selected

features is clearly evident in real-world scenarios.

In summary, the proposed LFS feature selection method chooses only relevant

features. In this respect, it is less vulnerable to overfitting than methods which select

a predetermined number of features. If this number is too high, then as indicated

previously, these methods can select noisy features, making them prone to overfitting.

Thus, both the LFS feature selection and classifier procedures are insensitive to the

overfitting problem in the sense we have indicated.

2.3.3 LFS can be parallelized

The feature selection procedure for any representative point is independent of all other

such points. This enables the localized feature selection process to be performed in

parallel.

2.4 Experimental results

2.4.1 Experimental set-up

In this section we perform several experiments on one synthetic and ten binary real-

world data sets to demonstrate the effectiveness of the proposed feature selection
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algorithm.

In real world applications, obtaining labeled examples to be used as training sam-

ples is often very expensive and time consuming, as it requires the effort of human

annotators, who must often be quite skilled. For instance, obtaining a single labeled

example for protein shape classification, which is one of the grand challenges of bi-

ological and computational science, requires months of expensive analysis by expert

crystallographers (Zhu et al., 2003). Therefore one of the most relevant problems

in the field of feature selection is where only a small number of training points is

available for the training phase.

Small sample sizes, and their inherent risk of imprecision and overfitting, pose a

great challenge for many modeling problems (Saeys et al., 2007; Sima and Dougherty,

2006; Braga-Neto and Dougherty, 2004; Bolón-Canedo et al., 2014). Hence the real

world data sets used in our experiments have small number of training samples.

Performance of the LFS method on data sets with relatively large number of training

points is not the focus of this study.

The proposed algorithm is compared with eight state-of-the-art feature selection

algorithms: Logo2 (Sun et al., 2010), FMS3 (Cheng et al., 2011), MBEGA4 (Zhu

et al., 2007a), Elasticnet5 (based on LARS-EN) (Zou and Hastie, 2005), kPLS6 (Sun

et al., 2014), MetaDistance7 (Liu et al., 2011), DEFS8 (Khushaba et al., 2011) and

mRMR9 (Peng et al., 2005) where the first 7 methods are specifically developed for

2http://plaza.ufl.edu/sunyijun/PAMI2.htm
3http://www2.cs.siu.edu/ ∼ qcheng/featureselection pubfolder/index.html
4http://csse.szu.edu.cn/staff/zhuzx/MAFS.html
5http://www2.imm.dtu.dk/pubdb/views/publication details.php?id=3897
6https://github.com/sqsun/kernelPLS
7http://metadistance.igs.umaryland.edu/
8http://www.mathworks.com/matlabcentral/fileexchange/30877-differential-evolution-based-

channel-and-feature-selection
9http://penglab.janelia.org/proj/mRMR/
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the sparse data case where a small number of training samples are given. To have

a fair comparison, parameters of all these feature selection algorithms as well as the

proposed LFS algorithm were set to the default values suggested by the respective

authors. In the case of the Elasticnet method, in the training phase, the regularization

parameter δ that determines the weight of the l2 penalty ranges from 10−3 to 103

(evenly spaced on the log-scale) where for each given δ the entire regularization path

corresponded to the l1 penalty is considered. Among the entire grid corresponding to

these two regularization parameters, the node that provides the best fit on the training

data (based on the Akaike’s Information Criterion) is chosen as the regularization

parameters corresponded to the l2 and l1 penalties for using in the test phase (see

(Sjöstrand, 2005) for more details).

In order to evaluate classification accuracies corresponding to the features selected

by our comparison algorithms, we use the SVM classifier with an RBF kernel. In each

case, the top t features are selected by the respective algorithm, and then the SVM

classifier is trained using the sampled training data in the induced feature subspace

defined by these top-t features. Finally the sampled test data, in the respective

induced subspace, are classified using the trained SVM, where following (Li et al.,

2015; Lovato et al., 2016; Zhu et al., 2007a; Peng et al., 2005; Wang, 2008; Cheng

et al., 2011; Gilad-Bachrach et al., 2004; Khushaba et al., 2011; Zhu et al., 2007b) the

SVM classifier parameters are set to their default values (in MATLAB). To provide

a fair comparison, parameter of the proposed localized classifier (i.e. γ) is also set to

its default value 0.2 and is fixed during all experiments.

The proposed algorithm is implemented in MATLAB on a computer with an

Intel(R) Core i7-2600 CPU @ 3.4 GHz and 16 GB RAM.
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Figure 2.3: Illustration of the synthetic data set in terms of its relevant features x1 and x2,
after feature values are transformed into their z-scores.

2.4.2 Data sets

We present our results using both synthetic and real-world data sets.

As is shown in Fig. 2.3, the synthetic data set is distributed in a two dimensional

feature space where class Y1 data is split into two discrete clusters. The features x1

and x2 of all subclasses ’�’, ’+’ and ’◦’ are drawn from Normal distributions with

unit variances. Besides the two relevant features x1 and x2, following (Wang, 2008),

each sample is artificially contaminated by adding a varying number of irrelevant

features, ranging in number from 1 to 30, 000, as a means of testing the capability of

the proposed method to detect only the most relevant features. The number 30, 000

is deemed to be a reasonable upper limit for most scientific applications (Sun et al.,

2010). The artificial irrelevant features are independently sampled from a Gaussian

distribution with zero-mean and unit-variance.

Characteristics of the real-world data sets used for the experiments are summa-

rized in Table 2.1. The total number of available labeled samples in each data set is

given by the sum of the second and third columns.
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Table 2.1: Characteristics of the real-world data sets used in the experiments.

Data set # Train # Test # Features (M)
Sonar (Brown et al., 2012) 100 108 60(100)
DNA (Wang, 2008) 100 3086 180(100)
Breast (Brown et al., 2012) 100 469 30(100)
Adult (Bache and Lichman, 2013) 100 1505 119(100)
ARR (Alon et al., 1999) 100 320 278(100)
Prostate (Nie et al., 2010) 90 12 5966
Duke-breast (West et al., 2001) 30 12 7129
Leukemia (Brown et al., 2012) 60 12 7070
Colon (Alon et al., 1999) 50 12 2000
Nervous system (Pomeroy et al., 2002) 48 12 7129

The number of artificially added irrelevant features is indicated in parentheses.

To increase the challenge of the classification problems, following (Sun et al.,

2010), the original features of the data sets “Sonar”, “DNA”, “Breast”, “Adult”

and “ARR” are artificially augmented by 100 irrelevant features, independently sam-

pled from a standard Normal distribution. Data sets “Prostate”, “Duke-breast”,

“Leukemia”, “Colon” and “Nervous system” are microarray data sets where in each

case the number of features is significantly larger than the number of samples..

Each feature variable in the synthetic data set and the real-world data sets have

been transformed beforehand to their z-score values.

2.4.3 Accuracy of classification

In this section, classification performance of the proposed LFS algorithm is compared

with eight well-known feature selection algorithms indicated in Section 2.4.1.

In our experiments, the number of selected features t in our comparison feature

selection algorithms and the parameter α of the LFS algorithm (which is analogous
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to the parameter t) ranges from 1 to 30 for data sets “Sonar”, “DNA”, “Breast”,

“Prostate”, “Duke-breast”, “Leukemia” and “Colon”, 1 to 60 for data set “Adult”, 1

to 100 for data set ARR and 1 to 35 for data set “Nervous system”, since there is no

performance improvement for our comparison algorithms for larger values.

Following (Sun et al., 2010), for each data set, a bootstrapping algorithm is used

to evaluate the feature selection algorithms’ performance. For this purpose, for a given

t (α), each feature selection algorithm is run 10 times on each data set, where for each

run the respective number of available data points, presented in the second column of

Table 2.1, are randomly selected as training samples and the remaining data points,

the number of which is indicated in the third column of Table 2.1, are used as test

samples for that run. The average performance and the standard deviation over all

10 runs are recorded. For a fair comparison of different feature selection algorithms,

the training and test sets for each run are common for all algorithms.

The minimum classification error rate, the corresponding standard deviation and

the number of selected features t (α), for each algorithm on each data set, is reported

in Table 2.2. In order to demonstrate the necessity for feature selection, we also

report the classification error rate which results from applying the SVM classifier

with an RBF kernel on each data set without prior feature selection. These results,

shown in the last column of Table 2.2, are significantly degraded with respect to the

case when feature selection is used, and thus demonstrate that the feature selection

process is indeed an important component of the data classification process. The

best result for each data set is shown in bold. Among the nine algorithms, the

proposed LFS algorithm yields the best results in eight out of the ten data sets.

(The improved version of the LFS method, i.e. the lLFS algorithm discussed in next
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chapter, outerforms all methods on all data sets.) The last row shows the classification

error rates averaged over all data sets. This row indicates that the proposed LFS

method performs noticeably better on average than the other eight algorithms.
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Table 2.2: Minimum classification error (in percent) of the different algorithms. The corresponding standard deviation (in
percent) and t (α) are respectively reported in parenthesis. The last column corresponds to the classification results using
SVM with no feature selection.

Data set LFS Logo FMS MBEGA Elasticnet kPLS MetaDist DEFS mRMR SVM

Sonar 22.9(3.9,30) 26.8(3.4,8) 28.8(2.6,14) 29.4(8.0,2) 27.7(4.2,5) 26.8(6.3,3) 28.9(9.9,12) 27.8(6.7,8) 28.7(2.6,1) 49.9(4.8)

DNA 13.4(1.9,15) 15.3(5.7,5) 15.3(1.8,6) 18.0(4.7,4) 16.1(4.7,3) 13.4(2.5,3) 27.0(10.7,6) 18.7(5.0,3) 13.8(3.0,3) 49.7(2.0)

Breast 6.4(1.3,11) 8.3(1.4,7) 7.7(1.4,9) 9.1(1.5,18) 8.8(1.5,3) 8.2(1.6,5) 12.9(6.0,9) 11.0(2.5,8) 8.3(2.2,4) 37.6(0.6)

Adult 22.3(1.5,30) 24.5(1.9,8) 24.7(0.3,46) 24.5(0.7,26) 24.6(0.5,19) 24.7(0.3,35) 24.3(1.0,9) 24.7(0.3,28) 24.8(0.3,30) 24.7(0.3)

ARR 33.1(2.6,29) 33.9(5.3,8) 32.2(2.9,34) 31.8(7.4,18) 38.7(3.6,9) 40.0(7.0,6) 40.7(5.7,80) 31.4(4.7,7) 31.6(3.3,10) 43.7(1.2)

Prostate 4.2(4.4,6) 8.3(7.9,3) 6.7(6.6,11) 7.5(8.3,18) 7.5(6.1,8) 6.7(8.6,2) 40.0(11.0,72) 13.7(9.6,4) 8.3(7.6,7) 57.5(10.7)

Duke-breast 10.8(7.9,3) 21.7(11.9,7) 24.2(13.3,4) 21.7(14.8,14) 32.5(14.4,11) 20.8(9.0,8) 38.3(19.7,10) 26.7(14.6,3) 21.7(5.8,5) 63.3(10.5)

Leukemia 3.3(4.3,30) 6.7(5.3,2) 2.5(4.0,2) 8.3(6.8,26) 6.7(5.3,3) 3.3(4.3,3) 26.7(8.6,18) 16.8(10.9,4) 5.0(5.8,8) 35.8(14.2)

Colon 9.2(0.1,21) 20.8(10.6,2) 13.3(9.0,6) 20.8(4.4,16) 15.0(11.0,3) 19.2(13.1,5) 25.0(6.8,3) 26.7(14.1,2) 19.2(5.6,4) 36.7(17.2)

Nervous sys. 26.7(9.5,4) 33.3(14.2,9) 35.0(20.3,20) 33.3(8.8,14) 35.0(14.0,12) 31.7(18.3,15) 30.0(9.0,7) 32.5(17.8,12) 32.5(16.4,2) 37.5(16.8)

Average 15.2 20.0 19.0 20.5 21.3 19.5 29.4 23.0 19.4 43.6
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Figure 2.4: Percentage of correct feature selection over four successive iterations of the
proposed algorithm for the synthetic data set, where the samples are contaminated with a
varying number of irrelevant features. The parameter α is set to 2.

2.4.4 Iterative weight definition and correct feature selection

As illustrated in Fig. 2.3, the distribution of class Y1 of the synthetic data set has two

disjoint subclasses, whereas class Y2 is a compact class with one mode. Samples of

subclass ’+’ can be discriminated from samples of class Y2 using only the relevant fea-

ture x1. In a similar way, samples of subclass ’�’ require only x2, whereas samples of

class ’◦’ require both x1 and x2 . The results of applying the proposed method to the

synthetic data set over four successive iterations is shown in Fig. 2.4, where samples

have been contaminated with additional irrelevant features ranging in number from

1 to 30,000. Each point shows the percentage of samples for which the expected fea-

ture(s), (i.e. x1 for samples within subclass ’+’, x2 for samples within ’�’ and {x1, x2}

for samples within ’◦’), are correctly identified. It can be seen that the performance

is refined from one iteration to another, especially for a higher number of irrelevant

features. The most significant improvement happens at the second iteration; hence,

as mentioned previously, the default value of τ is set to 2.

The data set ”DNA” has a ”ground truth”, in that much better performance

has been previously reported if the selected features are those with indexes in the

38



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

1 40 80 120 160 200 240 280
0

20

40

60

80

Feature index

Pe
rc

en
ta

ge
 o

f 
se

le
ct

io
n

60 70 80 90 100 110 120
0

20

40

60

80

Figure 2.5: Selected features for “DNA” data set. The height corresponding to each feature
index indicates what percentage of representative points select the respective feature as a
discriminative feature, where α is set to a typical value of 5.

interval between 61 to 120 (John, 1994; Wang, 2008). This observation provides a

good means of evaluating LFS performance on a real world data set. Fig. 2.5 shows

the result of applying the proposed LFS method to the data set “DNA”, where the

height of each feature index indicates the percentage of representative points which

select these ground-truthed features as a member of their optimal feature set. These

results demonstrate that the proposed method mostly identifies features with indexes

from 61 to 105. Thus they are well matched to the ”ground truth”. The proposed

method also performs very well in discarding the artificially added irrelevant features,

i.e. features with indexes from 181 to 280.

2.4.5 Sensitivity of the proposed method to α and γ

To show the sensitivity of the proposed method to the parameter α, the classification

error rate and the cardinality of the optimal feature sets (averaged over all N sets)

versus α, for data set “Sonar”, are respectively shown in Fig. 2.6 and Fig. 2.7 where α

ranges from 1 to the maximum possible value of M = 160. These results demonstrate

the robustness of the proposed LFS algorithm against overfitting as discussed in

Section 2.3.2.

39



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

20 40 60 80 100 120 140 160
20

25

30

35

40

α

E
r
r
o
r
r
a
t
e

Figure 2.6: Classification error rate of the proposed method for data set “Sonar” where the
parameter α ranges from 1 to the maximum possible value of M = 160.
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Figure 2.7: Averaged cardinality of the optimal feature sets f∗
(i)
i = 1, . . . , N versus the

parameter α where α ranges from 1 to the maximum possible value of M = 160.

Note that estimating an appropriate value for the number of selected features

is generally a challenging issue. This is usually estimated using a validation set or

based on prior knowledge, which may not be available in some applications. As can

be seen, the proposed LFS algorithm is not too sensitive to this parameter. Moreover,

as illustrated in Fig. 2.7, the cardinality of the optimal feature sets saturates for a

sufficiently large value of α.

The error rate of the proposed method versus the impurity level parameter γ for

data set “Colon” is shown in Fig. 2.8 where γ ranges from 0 to 1. Small (large)

values of γ can be interpreted as a small (large) radius of the hyper-spheres. This

demonstrates that the error rate is not too sensitive to a wide range of values of γ.

As one may intuitively guess, we found that impurity levels in the range of 0.1 to 0.4

are appropriate. As mentioned previously, throughout all our experiments, γ is set
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to 0.2 without tuning. This value is seen to work well over all data sets.
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Figure 2.8: Classification error rate of the proposed method for data set “Colon” where the
parameter γ ranges from 0 to 1.

2.4.6 How far is the binary solution from the relaxed one?

To demonstrate that the relaxed solutions are a proper approximation of the final

binary solutions, obtained from the randomized rounding process explained in Sec-

tion 2.2.1, the normalized histogram over the `1–norm distances between the relaxed

solutions and their corresponding binary solutions is shown in Fig. 2.9. The height

of each bar indicates what fraction of the representative points have the correspond-

ing value as their `1–norm distance. The `1–norm distances are normalized relative

to the data dimension M . As may be seen, the relaxed solutions are appropriate

approximations of the binary solutions.

2.4.7 CPU time

The computational complexity for computing a feature set for each representative

point depends mainly on the data dimension. Fig. 2.10 shows the CPU time taken

by the proposed method (using MATLAB) to perform feature selection for one rep-

resentative point on the synthetic data set, with the number of irrelevant features

41



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

≈
≈F

ra
ct

io
n

 o
f 

re
p

re
se

n
ta

ti
v
es

Figure 2.9: Histogram of distances between relaxed solutions and their corresponding binary
solutions for data set “Prostate” where α is set to the typical value of 5.

ranging from 1 to 30000. As may be seen, the figure shows linear complexity of the

LFS method with respect to feature dimensionality.

Note that the feature selection process for each representative point is independent

of the others and can be performed in parallel. For instance, in the case of a data set

with 100 training samples (i.e. N = 100) and 10,000 features (i.e. M = 10, 000) on a

typical desktop computer with 12 cores, the required processing time in the training

phase is almost 25 seconds. Note again that this is the training phase time which is

performed off-line. On the other hand, the test phase only involves testing whether

the query datum contained within the specified hyper-spheres and determining the

class label of its nearest neighbors. This is much faster than the training process, since
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Figure 2.10: The CPU time (seconds) taken by the proposed algorithm to perform feature
selection for one representative point x(i) with a given β on the synthetic data set where
the parameter α is set to 2.
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it requires no optimization. In our experiments, the test phase is typically performed

in a fraction of a second.

2.5 Conclusions

In this chapter we introduce the concept of localized feature selection. The proposed

local feature selection algorithm adaptively assigns a specific optimal feature subset

to each of the sample space regions, in contrast to traditional methods, which select

a common feature set for the entire sample space. This allows the feature set to

optimally adapt to local variations of the sample space.

The process of computing a specific feature subset for each region is independent

of those of other regions and hence can be performed in parallel. Since the proposed

algorithm makes no assumptions regarding the data distribution over the sample

space, it is also an appropriate approach for the case where the data are distributed

on a non-linear and/or a disjoint manifold. The LFS procedure is formulated as a

linear program, which has the advantage of convexity and efficient implementation.

A query datum is classified through aggregation of “weak” classifier results which are

based on the selected region-specific feature subsets. The Vapnik–Chervonenkis (VC)

dimension is determined and, under certain assumptions, is found to have a finite,

moderate value. This, in combination with the fact that the method selects only

relevant features, suggest the LFS method is not overly sensitive to the overfitting

problem. Experimental results demonstrate the superior performance of the proposed

algorithm on a large variety of data sets.
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Chapter 3

Logistic Localized Feature

Selection (lLFS)

3.1 Abstract

This chapter presents an improved version of the localized feature selection idea pro-

posed in Section 2.2.1.

Let
{(

x(i), y(i)
)}N

i=1
⊂ RM × Y be the training data set of a c-class classification

problem where N is the number of training samples, x(i) is an M dimensional feature

vector, Y = {Y1, . . . , Yc} is the set of all class labels and y(i) ∈ Y is the class label of

the ith training sample x(i).

As discussed in the previous chapter, our main idea for locally modeling the sample

space is to assign a specific optimal feature subset to each of the sample space regions.

To realize this goal, we assume that each sample x(i) is a representative point for its

neighboring region. For each representative point x(i), we compute an M -dimensional

indicator vector f (i) ∈ {0, 1}M , i = 1, . . . , N , which indicates the relevant features
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for the neighboring region of x(i). We use the notation {·} to indicate a discrete

set. For example, if the second and the fourth features are the relevant features for

the neighboring region of x(i), all elements of f (i) are zero except the second and

fourth ones. Thus f (i) defines a local co–ordinate system, or frame. The vector f (i) is

computed such that, in the ith frame, neighboring samples of x(i) whose class labels

are similar to that of x(i), i.e. y(i), cluster as closely as possible around x(i), whereas

samples with different class labels are as far removed as possible from x(i).

Determining the neighboring samples is a challenging issue since these distance

measures depend on the local co–ordinate system, which is determined by f (i), which

is unknown at the problem outset. In Section 2.2.1, the neighboring samples are

mainly determined using an iterative approach initiated based on the distances in

the original feature space. This is not a reliable procedure in the presence of a

large number of irrelevant features, since distance measurements can vary strongly

between the selected feature space and the original feature space. In this chapter,

the distance measurement problem is alleviated, since the underlying optimization

problem is formulated such that distances are a function of the unknown vector f (i).

Distances are measured using a logistic function metric within the corresponding

co-ordinate system. This enables the optimization process to focus on a localized

region within the sample space. We refer to the proposed algorithm as the logistic

Localized Feature Selection (lLFS) method. lLFS is efficiently formulated as a joint

convex/increasing quasi-convex optimization problem with a unique global optimum

point. The local classification approach presented in Section 2.2.2 is utilized for

measuring the similarity of a new input data point to each class. Using the lLFS

method, similar to the LFS algorithm, feature selection processes for different regions
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of the sample space are independent from each other and can therefore be performed

in parallel. The computer implementation of the method can therefore be fast and

efficient.

The proposed lLFS algorithm is presented in Section 3.2. Performance of the lLFS

algorithm, on eleven synthetic and real-world data sets, is demonstrated in Section

3.3. Conclusions are drawn in Section 3.5.

3.2 Proposed lLFS method

This section is organized as follows. Section 3.2.1 presents the proposed formulation

for the improved local feature selection lLFS. Accompanying optimization problem is

treated in Section 3.2.2. Section 3.2.3 explains that the final formulation for the lLFS

method is a joint convex/increasing quasi convex optimization problem with unique

global optimum point. A procedure for determining the two required parameters of

the proposed formulation is presented in Section 3.2.4.

3.2.1 Problem definition

Let S(i) be the subspace of the original M–dimensional feature space whose axes

correspond to the selected features. That is, an axis corresponding to a candidate

feature is contained in S(i) if the corresponding element of f (i) is 1. Denote x
(i)
p as the

projection of the ith training sample x(i) into S(i). In this study, the feature set f (i) =

(f
(i)
1 , f

(i)
2 , . . . , f

(i)
M )T is found such that the clustering behavior in the neighborhood of

x
(i)
p is optimum with respect to the following two objectives:

• other samples of the same class cluster as closely as possible around x
(i)
p , and
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simultaneously,

• samples with different classes are separated as far as possible from x
(i)
p , where

distances in each case are measured within S(i).

To quantify these goals, we consider the respective objective functions U1 and U2,

defined by (3.1a) and (3.1b) as follows:

U1(f (i)) = 1
n−1

∑
j;y(j)=y(i),j 6=i

G
(
(aTj f)(i);σ(i), λ

)
(3.1a)

U2(f (i)) = 1
N−n

∑
j;y(j) 6=y(i)

G
(
(aTj f)(i);σ(i), λ

)
(3.1b)

The functions U1 and U2 may be regarded as local intra– and inter–class distance

measures, respectively. The role of the function G(·) is described later. The term

(aTj f)(i) is the `1–norm of the distance vector between x(i) and x(j) in S(i). In fact, the

simpler notation (aTj f)(i) replaces the more correct but awkward expression a
(i)T

j f (i);

a
(i)
j is the `1 distance vector between x(i) and x(j) in the original feature space, i.e.

a
(i)
j =

∣∣x(i) − x(j)
∣∣ where |·| denotes the absolute value of the elements of the vector.

The variables λ and σ(i) are parameters to be defined later in Sec. 3.2.4. The variable

n is the number of samples whose class labels are y(i) and (·)T is transpose operator.

The local feature selection process may then be formulated in the context of the
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Figure 3.1: The function G(·), which is a shifted logistic function with an additional linear
term, where the parameters σ(i) and λ are set to the typical values 0.1 and 0.001, resp.

following optimization problem:

min
f (i)
U1(f (i))

max
f (i)
U2(f (i))

s.t.


f
(i)
m ∈ {0, 1}, m = 1, . . . ,M

1 ≤ 1T f (i) ≤ α,

(3.2)

Similar to the case of LFS, some constraints are considered in (3.2). Since f (i) is an

indicator vector, the problem variables are either 0 or 1. Since there must be at least

one active feature, the null indicator vector is discarded, i.e. 1 ≤ 1Tf (i) where 1 is

an M dimensional vector whose elements are all 1. Furthermore, we would like to

set an upper bound on the number of selected features using a user-settable constant

parameter α, hence the constraint 1Tf (i) ≤ α is also included.

We note that the distance measure (aTj f)(i) is transformed by the modified logistic

function G (see Fig. 3.1), which for the purposes of this study, is defined as

G (z;σ, λ) =
1

1 + exp (−σz)
− 0.5 + λz. (3.3)
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Since optimization algorithms in general are gradient-driven, changes in variables

at the next iteration depend on the gradients at the current iteration. As explained

later, λ is set to a small value, so the linear term in (3.3) may be neglected for the

time being. In this case, the gradient of the logistic function for the large–distance

samples in (3.1a) and (3.1b), (i.e., those in the saturation region shown in Fig. 3.1)

have a small value and hence do not contribute significantly to changes in the U1 and

U2 at the next iteration. On the other hand, terms for which the quantity (aTj f)(i) has

a small–to–medium value (i.e., for a point in the effective region), we note that G in

these cases is approximately linear. Since the large–distance terms can be neglected,

the optimization problem of (3.2) thus becomes approximately equivalent to

min
f (i)

1
n−1

∑
j∈RoL, y(j)=y(i)

(aTj f)(i)

max
f (i)

1
N−n

∑
j∈RoL, y(j) 6=y(i)

(aTj f)(i)

s.t.


f
(i)
m ∈ {0, 1}, m = 1, . . . ,M

1 ≤ 1T f (i) ≤ α,

(3.4)

which corresponds directly to satisfying goals 1 and 2 as desired. The set of sample

points for which (aTj f)(i) is in the effective region of G are considered as the region of

locality (RoL) of the point x
(i)
p .

Therefore, within S(i), through the objective functions of (3.2), the large–distance

samples have little effect on the selection of f (i), whereas the small–distance samples

have a stronger effect on the selection of f (i). Therefore, the purpose of transforming

the distance measure (aTj f)(i) by G(·) is to influence the choice of f (i) by “focusing”

the objective functions on samples that are close to x
(i)
p ; i.e., to encourage localization
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in the feature selection process.

The existence of the linear term in (3.3) introduces a (small) gradient in the

objective functions with respect to f (i). This is so that potentially relevant samples

that are far from x
(i)
p at a current iteration of the optimization process have the

potential to become close to x
(i)
p in an appropriate co-ordinate system in subsequent

iterations.

Note that to measure the distance between two samples in the original space, other

standard definitions (e.g. Euclidean distance) may also be used. However, for the

purpose of this study, following (Sun et al., 2010), we use the `1 distance because it

provides a linear combination of the feature-wise distances (with no transformation)

which preserves the logistic function behavior with respect to each elemental distance

measure.

3.2.2 Optimization process

The optimization problem posed by (3.2) is a discrete binary program and hence

is computationally intractable (Boyd and Vandenberghe, 2004). As is discussed

in Section 2.2.1, a standard and widely–accepted way to alleviate this difficulty is

relaxation of the binary variables, i.e. replacing f
(i)
m ∈ {0, 1} with f

(i)
m ∈ [0, 1] m =

1, . . . ,M , followed by a randomized rounding process (Thai, 2013; Souza, 2001;

Boyd and Vandenberghe, 2004). Here, the notation [·] denotes a continuous interval,

whereas {·} denotes a binary set, as before.

The optimization problem defined in (3.2) is a multi-objective optimization prob-

lem. In a similar manner to the LFS method discussed in Section 2.2.1, the individ-

ual objective functions are combined using the concept of the ε-constraint (Coleman
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et al., 1999) as shown in (3.5):

min
f (i)
U1(f (i))

s.t.


f
(i)
m ∈ [0, 1], m = 1, . . . ,M

1 ≤ 1T f (i) ≤ α

U2(f (i)) ≥ ε(i)

(3.5)

Here, the inter–class distance measure (relating to U2 in (3.1b)) becomes a constraint,

and is forced to be greater than a parameter ε(i). In this way, we can map out the

entire Pareto optimal set by varying this single parameter. This procedure guarantees

that the transformed inter-class distances are in excess of the value of ε(i).

We must determine the parameter ε(i) such that the feature selection problem

defined in (3.5) is feasible. (3.5) is feasible if its constraint set is non–empty. In the

following we present an effective approach to specify a value for ε(i) that guarantees

feasibilty.

Similar to the LFS formulations discussed in Section 2.2.1, the optimum point

must be inside the intersection of an M -dimensional unit hyper-cube defined by f
(i)
m ∈

[0, 1],m = 1, . . . ,M and the space bounded by the two parallel hyper-planes 1Tf (i) =

1 and 1Tf (i) = α. This intersection defines a non-empty polyhedron P . For an

illustration of the geometry of P , see Fig. 2.1.

The maximum feasible value ε
(i)
max of ε(i) is determined by solving the maximum

value of U2 over P . This is equivalent to finding the extreme Pareto optimal point

where the weighting assigned to the within-class distance term, i.e. U1, is zero. Hence,
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ε
(i)
max is the solution to the feasibility problem defined in (3.6):

ε
(i)
max = max

f (i)
U2(f (i))

s.t.


0 ≤ f

(i)
m ≤ 1, m = 1, . . . ,M

1 ≤ 1T f (i) ≤ α

(3.6)

Finally, the parameter ε(i) in (3.5) is replaced with the value βε
(i)
max, where 0 ≤

β ≤ 1. In this way, the feature selection problem is always feasible and the en-

tire Pareto optimal set corresponding to different relative weightings of the objective

functions (3.1a) and (3.1b) can be mapped out through variation of β. In the follow-

ing, the Pareto point corresponding to a specific value of β is defined as f
(i)
β where

f
(i)
β = (f

(i)
1,β, f

(i)
2,β, . . . , f

(i)
M,β)T; therefore, the complete Pareto optimal set is defined as{

f
(i)
β

}
β∈[0,1]

. The problem of interest now becomes:

min
f
(i)
β

U1(f (i)β )

s.t.


f
(i)
m,β ∈ [0, 1], m = 1, . . . ,M

1 ≤ 1T f
(i)
β ≤ α

U2(f (i)β ) ≥ βε
(i)
max.

(3.7)

The optimum point obtained from solving (3.7) defines the relaxed solution such that

each element of f
(i)
β exists in the continuous range [0, 1]. However, the final (binary)

solution f∗
(i)

β must be over the discrete set {0, 1} as in (3.2); i.e., the solution f
(i)
β to

(3.7) must be snapped onto a binary grid. This procedure is performed by applying

a randomized rounding process to f
(i)
β , as discussed in Section 2.2.1, so that the mth
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element is set to 1 (active) with probability f
(i)
m,β and is set to zero (inactive) with

probability (1 − f
(i)
m,β) where m = 1, . . . ,M . We repeat the randomized rounding

process a thousand times. The choice for the binary optimum vector f∗
(i)

β is the

one which provides the minimum value for the objective function of (3.7), as well as

satisfying all constraints.

The final value f∗
(i)

, corresponding to the best value of β from the set
{

f∗
(i)

β

}
β∈[0,1]

,

is chosen as the one which provides the best local clustering performance of the

training samples. The procedure for determining the best local clustering performance

is similar to that of the LFS method discussed in Sect. 2.2.2.

Algorithm 2 presents the pseudo code of the proposed feature selection algorithm.

The problem variables are initialized to uniform values that satisfy the constraint

1Tf
(i)
β ≤ α. Note that since the problem does not suffer from the presence of local

minima (as discussed in Section 3.2.3), the initial point does not affect the solution,

although it may affect the computational time.

3.2.3 Problem convexity

In this section we discuss the convexity property of the optimization problems de-

fined in (3.6) and (3.7). By definition, (aTj f)(i) is always positive; hence the terms

G
(
(aTj f)(i);σ(i), λ

)
in (3.1a) and (3.1b) are always positive. Thus the function G is

both concave and increasing quasi-convex (see Fig. 3.1) (Boyd and Vandenberghe,

2004). Equation (3.6) defines an optimization problem whose objective function is

concave, because it is the summation of N − n concave functions (see (3.1b)). The

constraint set is linear and hence defines a convex feasible set. Thus (3.6) is a convex

problem.
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Input:
{(

x(i), y(i)
)}N

i=1
, α

Output:
{

f?
(i)
}N
i=1

1 Initialization: Set f
(i)
β = 1

α
(1, . . . , 1)T i = 1, . . . , N , β ∈ [0, 1]; λ = 0.01

α
;

2 for i← 1 to N do

3 Compute distance vectors a
(i)
j =

∣∣x(i) − x(j)
∣∣;

4 Compute σ(i) through solving (3.8) using the initial values;

5 Compute ε
(i)
max through solving (3.6);

6 for β ← 0 to 1 do

7 Compute f
(i)
β through solving (3.7);

8 Randomized rounding process of f
(i)
β to obtain binary feature vector

f?
(i)

β ;

9 end

10 Set f?
(i)

equal to the member of
{

f?
(i)

β

}
β∈[0,1]

which yields the best local

clustering performance as explained in Section 3.2.5;

11 end

Algorithm 2: pseudo code of the proposed feature selection algorithm.

The objective function of (3.7) is a strictly increasing quasi-convex function since it

is the summation of n− 1 strictly increasing quasi-convex functions (see (3.1b)). The

constraint set of (3.7) is convex and feasible. Therefore, (3.7) defines a quasi-convex

problem with a unique global minimum. (Boyd and Vandenberghe, 2004). Since both

problems have unique global optima, they have the computational advantage of not

being trapped in local minima, with the solution being invariant to the initialization

procedure.
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3.2.4 Determination of the parameters of G(·)

We discuss a procedure for determining values of the parameters σ(i) and λ. This

procedure depends on the feature values being normalized into their respective z–

score values beforehand.

The value of the parameter σ(i) in G(·) is defined such that, in the subspace defined

by the initial value of f
(i)
β in the optimization procedure, the farthest sample from x(i),

denoted by ϕ(i), sits on the knee point of G(·); hence σ(i) is the solution of (3.8):

1

1+exp(−σ(i)ϕ(i))
− 0.5 = 0.47, (3.8)

where ϕ(i) = max
j=1:N,j 6=i

{
(aTj fβ)(i)

}
.

The number 0.47 above is chosen to be representative of the knee point of G(·) (see Fig.

3.1). The intuition behind (3.8) is that no sample should fall within the saturation

region during the first iteration of the optimization process, so that effectively all

samples are considered by the objective function of (3.7).

The parameter λ controls the contribution of the samples that are in the saturation

region (see Fig. 3.1). The addition of the linear term in (3.3) allows potentially close

samples that are far form x
(i)
p in a current iteration, i.e. situated in the saturation

region, to have the potential to migrate into the effective region of G(·) in subsequent

iterations. Thus we require a small gradient in the saturation region relative to the

gradient in the effective region. As α grows, the slope of the effective region decreases,

because elements in f
(i)
β , and consequently ϕ(i), may increase; which results in a

decrease of σ(i) in the solution to (3.8). Hence, as α grows, the slope of saturation

region, i.e. λ, should decrease. Thus, in our experiments, the value of λ is set
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heuristically according to the value 0.01
α

. This form allows λ to vary inversely with α

as required. The value 0.01 in the numerator allows the slope of the saturation region

to be small enough compared with that of the effective region.

Note that the values for σ(i) and λ are set once during the initialization process of

the algorithm according to the procedure just described. They are not varied further

during execution. The parameter values used to produce the results shown in Sect.

3.3 were set according to this procedure and were not tuned to improve performance.

3.2.5 Class similarity measurement

Similar to the LFS method, the consequence of the logistic localized feature selection

approach lLFS is that, since there is no common set of features across the sam-

ple space, conventional classifiers are inappropriate. Hence, the localized classifier

proposed in Section 2.2.2 is used for the purpose of class similarity measurement.

Furthermore, similar to the LFS method, performance of the lLFS algorithm is rela-

tively invariant to an upper bound on the number of selected features (i.e. α). See

Sections 2.3.1 and 2.3.2 for more details.

The process of determining an appropriate value for β, which results in the selec-

tion of a suitable point in the Pareto set, is also similar to that of the LFS method

discussed at the last paragraph of Section 2.2.2.
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3.3 Experimental results

3.3.1 Experimental set-up

In this section we perform several experiments on one synthetic and ten binary real-

world data sets to demonstrate the effectiveness of the proposed feature selection

algorithm. As is discussed in Section 2.4, the focus of this study is on the challenging

problems where a small number of samples are available for training.

The proposed algorithm is compared with LFS and eight other state-of-the-art

feature selection algorithms Logo, FMS, MBEGA, Elasticnet, kPLS, MetaDistance,

DEFS and mRMR as are described in Section 2.4.1. The parameters of all algorithms

are set to the default values. The SVM classifier with an RBF kernel, as is described

in Section 2.4.1, is used as the required classifier for the global feature selection

algorithms.

The proposed algorithm is implemented in MATLAB on a computer with an

Intel(R) Core i7-2600 CPU @ 3.4 GHz and 16 GB RAM.

3.3.2 Data sets

The synthetic, or “toy” data set, as is shown in Fig. 3.2, is distributed in a two

dimensional feature space defined by x1 and x2 in which class Y1 has two disjoint

sub-classes shown by � and J, whereas samples of class Y2, shown by �, have a uni-

modal distribution. Samples of each subclass are drawn from unit variance Normal

distributions. In order to test the capability of the proposed lLFS method to identify

only the relevant features x1 and x2, following (Wang, 2008), each sample is artificially

contaminated by augmenting it with 100 iid irrelevant features drawn from a standard
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Figure 3.2: Illustration of the synthetic data set in terms of its relevant features x1 and x2.

Normal distribution.

The real world data sets used in our experiments are the same as what we used in

Section 2.4.2 described in Table 2.1. In the case of microarray data sets “Prostate”,

“Duke-breast”, “Leukemia”, “Colon” and “Nervous system”, to speed up the simula-

tions, for the lLFS method only, we prune to 300 features beforehand. This will only

have the effect of slightly degrading of performance of the proposed algorithm. In

this study “Logo” (Sun et al., 2010) is used for pruning, although other approaches

may be used.

Each feature variable in the synthetic data set and the real-world data sets have

been transformed beforehand to their z-score values.

3.3.3 Accuracy of classification

In this section, classification performance of the proposed lLFS algorithm is com-

pared with LFS and the eight state-of-the-art feature selection algorithms indicated

in Section 3.3.1.

In our experiments, similar to Section 2.4.3, the number of selected features t in
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our comparison feature selection algorithms and the parameter α of the LFS and

the lLFS algorithm (which is analogous to the parameter t) ranges from 1 to 30 for

data sets “Sonar”, “DNA”, “Breast”, “Prostate”, “Duke-breast”, “Leukemia” and

“Colon”, 1 to 60 for data set “Adult”, 1 to 100 for data set ARR and 1 to 35 for data

set “Nervous system”, since there is no performance improvement for our comparison

algorithms for larger values. For each data set, a bootstrapping algorithm is used

to evaluate the feature selection algorithms’ performance, as is described in Section

2.4.3.

The minimum classification error rate, the corresponding standard deviation and

the number of selected features t (α), for all the eight global algorithms and the LFS

method on each data set, is reported in Table 3.1 where, for each data set, the best

result over all the ten algorithms is shown in bold. The average of the classification

error rates over all the ten data sets is shown in the last row of the table. In order

to demonstrate the necessity for feature selection, we also report the classification

error rate which results from applying the SVM classifier with an RBF kernel on each

data set without prior feature selection. These results, shown in the last column of

Table 3.1, are significantly degraded with respect to the case when feature selection is

used, and thus demonstrate that the feature selection process is indeed an important

component of the data classification process.
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Table 3.1: Minimum classification error (in percent) of the different algorithms. The corresponding standard deviation (in
percent) and t (α) are respectively reported in parenthesis. The last column corresponds to the classification results using
SVM with no feature selection.

Data set lLFS LFS Logo FMS MBEGA Elasticnet kPLS MetaDist DEFS mRMR SVM

Sonar 22.3(3.4,5) 22.9(3.9,30) 26.8(3.4,8) 28.8(2.6,14) 29.4(8.0,2) 27.7(4.2,5) 26.8(6.3,3) 28.9(9.9,12) 27.8(6.7,8) 28.7(2.6,1) 49.9(4.8)

DNA 11.8(1.8,4) 13.4(1.9,15) 15.3(5.7,5) 15.3(1.8,6) 18.0(4.7,4) 16.1(4.7,3) 13.4(2.5,3) 27.0(10.7,6) 18.7(5.0,3) 13.8(3.0,3) 49.7(2.0)

Breast 6.2(1.4,17) 6.4(1.3,11) 8.3(1.4,7) 7.7(1.4,9) 9.1(1.5,18) 8.8(1.5,3) 8.2(1.6,5) 12.9(6.0,9) 11.0(2.5,8) 8.3(2.2,4) 37.6(0.6)

Adult 20.6(1.6,19) 22.3(1.5,30) 24.5(1.9,8) 24.7(0.3,46) 24.5(0.7,26) 24.6(0.5,19) 24.7(0.3,35) 24.3(1.0,9) 24.7(0.3,28) 24.8(0.3,30) 24.7(0.3)

ARR 27.6(3.0,23) 33.1(2.6,29) 33.9(5.3,8) 32.2(2.9,34) 31.8(7.4,18) 38.7(3.6,9) 40.0(7.0,6) 40.7(5.7,80) 31.4(4.7,7) 31.6(3.3,10) 43.7(1.2)

Prostate 4.2(4.4,6) 4.2(4.4,6) 8.3(7.9,3) 6.7(6.6,11) 7.5(8.3,18) 7.5(6.1,8) 6.7(8.6,2) 40.0(11.0,72) 13.7(9.6,4) 8.3(7.6,7) 57.5(10.7)

Duke-breast 7.5(8.3,27) 10.8(7.9,3) 21.7(11.9,7) 24.2(13.3,4) 21.7(14.8,14) 32.5(14.4,11) 20.8(9.0,8) 38.3(19.7,10) 26.7(14.6,3) 21.7(5.8,5) 63.3(10.5)

Leukemia 2.5(4.0,16) 3.3(4.3,30) 6.7(5.3,2) 2.5(4.0,2) 8.3(6.8,26) 6.7(5.3,3) 3.3(4.3,3) 26.7(8.6,18) 16.8(10.9,4) 5.0(5.8,8) 35.8(14.2)

Colon 9.2(0.1,21) 9.2(0.1,21) 20.8(10.6,2) 13.3(9.0,6) 20.8(4.4,16) 15.0(11.0,3) 19.2(13.1,5) 25.0(6.8,3) 26.7(14.1,2) 19.2(5.6,4) 36.7(17.2)

Nervous sys. 26.7(9.5,4) 26.7(9.5,4) 33.3(14.2,9) 35.0(20.3,20) 33.3(8.8,14) 35.0(14.0,12) 31.7(18.3,15) 30.0(9.0,7) 32.5(17.8,12) 32.5(16.4,2) 37.5(16.8)

Average 13.8 15.2 20.0 19.0 20.5 21.3 19.5 29.4 23.0 19.4 43.6



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

Furthermore, for each data set, the classification error rate versus the number of

selected features (i.e. t (α)) for the lLFS method and the top half of our comparison

global feature selection algorithms, that show the best performance on the basis of the

last row of Table 3.1, are shown in Fig. 3.3. This figure besides the results reported

in Table 3.1 show that the classification accuracy of the proposed lLFS algorithm

is significantly improved relative to the other methods considered, and provides the

lowest error rate over all data sets.
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Figure 3.3: Classification error (in percent) versus number of selected features for the
proposed lLFS method and the top 5 of our comparison feature selection algorithms over
all 10 real world data sets.
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In addition, in order to demonstrate that the improved relative performance of the

lLFS method is not just a reflection of the performance of the SVM classifier, we per-

form an additional set of classification experiments using two alternative classifiers:

logistic regression and Adaboost (with a decision tree as a weak learner) (McCullagh

and Nelder, 1989; Freund and Schapire, 1997). These classifiers are used in conjunc-

tion with the top half of our comparison feature selection algorithms that show the

best performance on the basis of Table 3.1. The average of the minimum classification

errors (using these classifiers) over all ten data sets are presented in Table 3.2. We

see that the improved performance of the lLFS method persists in this case also.

Table 3.2: Minimum classificatio error (in percent) of the top half comparison feature
selection algorithms using two alternative classifiers: Adaboost (first value) and Logistic
regression (second value).

Data set Logo FMS kPLS mRMR

Sonar 30.8,30.2 26.7,32.2 27.4,29.6 28.7,31.8

DNA 15.3,14.2 15.8,14.5 13.6,13.4 14.4,13.9

Breast 9.0,7.3 7.7,7.4 7.3,7.0 7.7,7.2

Adult 24.0,23.6 24.0,23.5 24.7,24.7 22.9,22.3

ARR 36.7,35.4 35.9,35.6 37.8,36.8 34.4,31.8

Prostate 9.2,5.8 10.0,9.2 6.7,8.3 9.2,9.2

Duke-breast 20.8,15.8 20.0,25.8 20.0,22.5 13.3,24.2

Leukemia 4.2,5.0 2.5,4.2 3.3,4.2 2.5,3.3

Colon 15.8,17.5 17.5,17.5 15.8,15.8 16.7,14.2

Nervous sys. 36.7,35.8 33.3,40.0 32.5,38.3 38.3,34.2

Average 20.2,19.1 19.3,21.0 18.9,20.1 18.8,19.2

3.3.4 Relevant feature identification

In the following, we demonstrate the performance of the proposed method in iden-

tifying relevant features using the synthetic data set and the data set “DNA”, for

which there is a “ground truth”.
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Figure 3.4: Selected features for the synthetic data set. The height of each feature index
indicates what percentage of the representative points in (a) subclass � of class Y1, (b)
subclass J of class Y1 and (c) class Y2 shown by � select the respective feature as a member
of their optimal feature subset, where α is set to 2.

The synthetic, or “toy” data set shown in Fig. 3.2 is included for the sole purpose

of demonstrating that the proposed method is capable of identifying relevant and

distinct feature sets in the presence of a large number of contaminating features, in

a disjoint data space. We see that samples of class � require both relevant features

x1 and x2 to be discriminated from class Y1, whereas samples of subclass � require

only x1 and samples of subclass J require only x2. Fig. 3.4 shows the performance

of the proposed local feature selection algorithm on the synthetic data set. For each

subclass, the height of each feature index indicates what percentage of the samples

within that subclass selects the respective feature. As can be seen, the lLFS method

has perfect performance in selecting feature x1 for subclass �, feature x2 for subclass J

and features {x1, x2} for class �, as well as perfectly discarding all irrelevant features

indexed from 3 to 102. Note that the sample distribution is unknown at the problem

outset, due to the contamination by the hundred irrelevant features. This “toy”

example demonstrates the ability of the lLFS method to select a feature set that

optimally adapts to local variations in the sample space.
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Figure 3.5: Selected features for “DNA” data set. The height corresponding to each feature
index indicates what percentage of representative points select the respective feature as a
discriminative feature, where α is set to a typical value of 10.

As mentioned earlier in section 2.4.4, the data set “DNA” is generally used for

detecting the “presence” or “absence” of a splice junction in a given deoxyribonucleic

acid (DNA) sequence (Wang, 2008). It has been previously shown that improved

performance in most cases is observed if the attributes closest to the junctions are

used (John, 1994; Wang, 2008). These attributes correspond to features indexed from

61 to 120. We therefore have a good idea beforehand what the good features are,

and thus have an available “ground truth” for this example. The result of applying

the proposed method on the data set “DNA” is shown in Fig. 3.5, where the height

of each feature index indicates the percentage of representative points that select the

respective feature as a member of their optimal discriminative sub-feature set. This

figure demonstrates that the lLFS method mostly selects attributes indexed from

80 to 105, that are well matched to the “ground truth”, as well as discarding the

artificially added irrelevant features, which are indexed from 181 to 280.
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Figure 3.6: Distribution of samples around a typical representative point of (a) “Adult”
data set and (b) “ARR” data set. In each case, the normalized histogram of within-class
distances from the respective representative point is shown in red, and that for between-
class distances is in blue. The dashed black line indicates the value of the radius of the
respective Q(i), for the specified level of impurity γ = 0.2.

3.3.5 Validation of the localized feature selection concept

In this section, we present two examples which demonstrate the efficacy of this con-

cept. In the first example, we show that the distribution of samples around various

representative points from typical real–world data sets is not uniform, suggesting that

the underlying statistical behaviour varies from one region to the next. In the sec-

ond example, we show that the optimal selected features vary considerably over the

representative regions. These two examples validate the motivation for the localized

approach, at least in these cases.

Clustering around representative points

To demonstrate the performance of the proposed algorithm in forming a within-class

cluster around representative points, the distribution of sample distances from two

typical representative points, selected respectively from the data sets “Adult” and

“ARR”, are shown in Fig. 3.6. Here the normalized histogram of within-class samples
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is shown in red and between-class samples in blue. The height of each bar in the

red (blue) histogram indicates what proportion of the within-class (between-class)

samples corresponds to the respective distance from the representative point. All

distances are computed in the respective induced feature subspace. As may be seen,

there is a cluster of within–class samples, where the distances from the corresponding

representative point are relatively small. This group forms the desired cluster. We

note that the inter-class samples are distributed further from the representative point,

as desired. Fig. 3.6 illustrates an important concept related to lLFS, in that only

the localized clustering behavior is significant, and so not all within–class samples

are required to lie close to the respective representative point. In this respect, it is

interesting to note that in both cases in the figure, there is a second cluster of within–

class samples (outside the Q(i) radius). However, in this case, unlike that of the close–

in cluster, we see these samples are heavily contaminated with between–class samples.

So in this far–away region, the feature space corresponding to the representative point

is not appropriate for separating the classes and that a different set of coordinates

may be more effective in this case. Thus, we see this example provides an instance

which shows how an adaptive feature selection scheme has potential for improved

performance over one which uses a common set of features.

Overlap of the optimal feature subsets

To what extent do the selected features vary over the representative regions? To

address this question, in Fig. 3.7 we show the normalized histogram of the selected

features over all feature subsets for the data set “Duke-breast”, where the parameter

α is set to a typical value of 10. The height of each feature index indicates what

69



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

1 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

20

40

60

Feature index

P
er
ce
n
ta
g
e
o
f
se
le
ct
io
n

Figure 3.7: Histogram of selected features for “Duke-breast” data set. The height of each
feature index indicates what percentage of representative points select the respective feature
as a member of their optimal sub feature set. The parameter α is set to the typical value
of 10.

percentage of the representative points select that respective feature as a member of

their selected feature subset. We see the selected feature set indeed varies over the

set of available training samples, as a consequence of the adaptability property of the

lLFS method. As expected, the optimal feature subsets overlap to some extent, but it

is also evident that there is no common feature subset that pervades over all regions.

This experiment demonstrates that in typical problems there exist a large number of

common features that are selected by a significant number of representative points,

and a less common set of features that are informative, but only for some small

sub–populations of the sample space. The most commonly selected features perform

most of the discrimination task, and therefore provide a form of “interpretability”

of the features. However, the less common features are still important, in that they

can provide “specialized” information relevant to discrimination, but only over the

small sub-populations. It is clear that the ability to offer this specialized information

cannot be afforded with a method employing a global feature set.

The reader may also be interested to know what would be the classification accu-

racy if the top 10 dominant features, i.e. most informative features, are selected as

global features and fed into the SVM classifier with an RBF kernel. The classification
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Figure 3.8: Classification error rate (in percent) of the proposed method for the data set
“Breast” where the parameter α ranges from 1 to the maximum possible value of M , i.e.
130.
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Figure 3.9: Averaged number of active features in the optimal feature sets f∗
(i)
i = 1, . . . , N

versus the parameter α. α ranges from 1 to the maximum possible value of M = 130.

error rate using such a sub–feature set is 18.33%, which is in the range of the error

rate of our comparison algorithms, but nevertheless is significantly greater than the

7.5% error rate corresponding to the proposed algorithm, as presented in Table 3.1

for the Duke–Breast data set. This result illustrates the effectiveness of including the

less–common features for this case, and hence gives an example of the advantage of

an adaptable feature selection approach.

3.3.6 Sensitivity to the parameter α

With this example, we provide a demonstration of the property of the proposed

method where the selected number of features tends to saturate at a value corre-

sponding to the number of relevant features for the respective region, as previously

discussed in Sect. 2.3.2. To demonstrate this point, the classification error rate of the

proposed method and the number of selected features (averaged over all N feature
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sets) for the data set “Breast”, for all possible values of α (i.e. 1 ≤ α ≤ 130) are

shown in Fig. 3.8 and Fig. 3.9, respectively. The saturation effect is clearly evident

from the figures. The saturation value can be obtained by examining the behavior

for a sufficiently large value of α; for example, in the case of the data set “Breast”,

as can be seen in Fig. 3.9, the saturation value is 21. This value is the maximum

number of features that each local region may require.

3.3.7 How far is the binary solution from the relaxed one?

To demonstrate that the relaxed solutions are proper approximations of the final bi-

nary solutions obtained from the randomized rounding process explained in Section

3.2.2, the normalized distribution of the distances of binary elements from the corre-

sponding relaxed elements for data set “Duke-breast” is shown in Fig.3.10. The height

of each bar indicates what percentage of elements have the corresponding value as

the distance between their binary solution and the linear approximation. This result

demonstrates that the relaxed solutions are appropriate approximations of the binary

solutions.
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Figure 3.10: The normalized histogram of distances of binary elements from the correspond-
ing relaxed elements for data set “Duke-breast”. The parameter α is set to the typical value
of 10.
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3.3.8 lLFS with large number of irrelevant features

A reader may be interested to see performance of the proposed lLFS method in select-

ing relevant features in the presence of thousands of irrelevant features. To this end,

performance of the lLFS method on the real world data set “DNA” (that its “ground

truth” is defined in Section 3.3.4) is shown in Fig. 3.11 where samples of “DNA” are

contaminated with 105 iid irrelevant features. As is shown, after feature selection,

the lLFS algorithm correctly select attributes indexed from 80 to 105 that are well

matched to the “ground truth”, as well as discarding the artificially added irrelevant

features indexed from 181 to 100180. This experiment besides the results reported in

Table 3.1 confirms the performance of the proposed method for identification of the

relevant features in the presence of thousands of irrelevant features.
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Figure 3.11: Selected features for “DNA” data set where each sample is augmented with
105 iid irrelevant features. The height corresponding to each feature index indicates what
percentage of representative points select the respective feature as a discriminative feature,
where α is set to a typical value of 10.

3.3.9 CPU time

The required CPU time for computing optimal feature subsets for lLFS and our

comparison feature selection methods are presented in Table 3.3. Note that these
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algorithms are implemented in different programming languages (i.e. c, Matlab and

Java) therefore their time is not comparable.

lLFS method is implemented in MATLAB where we use the package “fmincon”

for solving the convex and quasi-convex optimization problems defined in (3.6) and

(3.7). Because the proposed lLFS method can be parallelized, depending on the

available number of CPU cores, the required CPU time lies between the two extremes

reported in the second column of Table 3.3. If a computer has K cores, the CPU

time of the lLFS method will be 1/K of the upper extreme– therefore the lower

extreme corresponds to the case where N cores are available (i.e. the required time

for computing the optimal feature subset for a representative point) and the upper

extreme corresponds to the case where there is no parallelization (i.e. N times the

lower extreme). For example, since the personal computer used in this study has 8

cores, the required CPU time is 1/8 of the upper extreme values. Note that these

computation times could be substantially further reduced by executing the algorithm

in a faster language such as C. Note further that, the feature selection process is

performed in the training phase, which is off-line and we are not making any claim

that the lLFS competes with regard to speed in training. On the other hand, the more

critical on-line test phase, i.e. classification of a query datum, is performed much more

quickly, once training is complete – the average test phase time over the data sets

employed in this study is 6 ms. This is because the classification process requires no

optimization and only involves testing whether the query datum is contained within

the specified hyper-spheres, and determining the class label of its nearest neighbors.
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Table 3.3: CPU time (sec.) taken for feature selection by different algorithms.

Data set lLFS Logo FMS MBEGA Elasticnet kPLS MetaDist DEFS mRMR

Sonar [0.59,59.40] 0.28 0.05 159.35 0.05 0.06 0.08 10.01 0.10

DNA [1.66,165.62] 0.39 0.06 116.99 0.07 0.06 0.12 10.50 0.17

Breast [0.47,47.31] 0.24 0.05 83.83 0.04 0.06 0.12 10.08 0.08

Adult [0.71,71.01] 0.45 0.05 286.59 0.06 0.06 1.51 10.55 0.16

ARR [2.12,212.46] 0.35 0.06 103.40 0.07 0.06 0.21 10.11 0.23

Prostate [1.92,172.42] 3.14 0.15 243.73 4.19 0.16 1.79 16.17 0.69

Duke-breast [1.97,59.10] 0.45 0.08 229.96 2.68 0.16 0.43 21.45 0.82

Leukemia [1.70,101.83] 0.94 0.15 330.77 2.02 0.14 0.74 15.82 0.90

Colon [2.12,106.12] 0.64 0.08 44.36 0.87 0.16 0.30 25.43 0.84

Nervous sys. [2.06,98.78] 0.76 0.09 260.87 2.15 0.14 0.60 15.90 1.05

Average [1.53,109.41] 0.76 0.08 185.98 1.22 0.11 0.59 14.60 0.50
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As is discussed in Section 2.4.1 data classification with a small number of training

samples is one of the most challenging classification problems (Saeys et al., 2007;

Sima and Dougherty, 2006; Braga-Neto and Dougherty, 2004). As is demonstrated

in Sections 3.3.3 to 3.3.8, the lLFS method is a great fit to such cases because it

considers each training sample as a representative point for its neighboring region

and compute an optimal feature subset for that region. However a reader may be

interested to know about the required CPU time when there is a relatively large

training set. To this end, the CPU time required for computing the optimal feature

subset of a representative point versus the number of the training samples N is shown

in Fig. 3.12 where N is increased up to 104. As may be seen, the figure shows linear

complexity of the CPU time (for one representative point) with respect to the number

of training points. Therefore, considering the fact that the lLFS method computes a

feature subset for each training point, the complexity of the proposed lLFS algorithm

with respect to the number of training points is N2

K
where K is the number of available

CPU cores (see Section 3.3.9).
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Figure 3.12: CPU time taken for computing the optimal feature subset of a representative
point versus number of training samples N on a synthetic data set (with similar distribution
as is illustrated in Fig. 3.2 where all three data clusters have the same number of sample
points) where α is set to 2 and the data set is contaminated with 5000 irrelevant features.
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3.4 lLFS vs. LFS

• As is shown in Table 3.1, lLFS has more accurate classification performance

compared to LFS because lLFS defines the neighboring samples as a function

of the optimal feature subset which uses a logistic function. On the other hand,

the LFS algorithm defines the neighboring samples based on the distances in

the original feature space. This may not be a reliable procedure in the presence

of a large number of irrelevant features.

• lLFS is formulated as a non-linear joint convex/quasi convex optimization prob-

lem while LFS has been formulated as a linear programming problem, which

can be solved faster. Hence, lLFS trades complexity for performance.

• Both LFS and lLFS use the localized classification approach presented in Section

2.2.2. Therefore, the finite moderate VC dimension of the localized classifier in

combination with the fact that they select only relevant features, suggests both

the lLFS and LFS methods are not overly sensitive to the overfitting problem.

• For both the lLFS and the LFS algorithms, the process of computing a feature

subset for each representative point is independent of those of other represen-

tative points and hence can be performed in parallel.

3.5 Conclusions

In this chapter we improved the proposed localized feature selection (LFS) approach

presented in Chapter 2 through alleviating the distance measurement problem related
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to the neighboring samples determination. This improvement is realized by formu-

lating the underlying optimization problem such that the distances are a function of

the unknown optimal feature subset. Distances are measured using a logistic function

metric within the corresponding co-ordinate system. This enables the optimization

process to focus on a localized region within the sample space. The proposed logistic

localized feature selection (lLFS) method is formulated as a joint convex/increasing

quasi-convex optimization problem with no local minima. The localized classification

approach presented in Section 2.2.2 is utilized for measuring the similarity of a new

input data point to each class. The finite moderate VC dimension of the localized

classifier in combination with the fact that the lLFS method selects only relevant

features, suggest the lLFS method is not overly sensitive to the overfitting problem.

lLFS can be performed in parallel. Experimental results demonstrate the superior

performance of the lLFS over LFS and the previous state-of-the-art feature selection

algorithms on a large variety of data sets.
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Chapter 4

Automatic and Continous

Detection of Mismatch Negativity:

Application to Coma Outcome

Prediction

4.1 Abstract

Accurate and fast detection of event related potential (ERP) components is an un-

resolved issue in neuroscience and critical health care. Mismatch negativity (MMN)

is a component of the ERP to a deviant stimulus in a sequence of identical stimuli

that has good correlation with coma awakening. All of the previous studies for MMN

detection are based on visual inspection of the averaged ERPs (over a long recording

time) by a skilled clinician. However, in practical situations, such an expert may
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not be available or familiar with all aspects of evoked potential methods. Further,

we may miss important clinically essential events due to the implicit averaging pro-

cess used to acquire the ERPs. In this chapter, using the LFS method proposed in

Chapter 2, we propose a practical machine learning (ML) approach for automatic

and continuous assessment of the ERPs for detecting the presence of the MMN com-

ponent. The proposed method consists of two phases: learning and testing. The

trained model obtained from the learning phase is used in the testing phase to assess

the brain response of a test subject to a deviant stimulus to detect the presence of

the MMN component. The method is capable of detection over intervals as short as

two minutes. This finer time resolution enables identification of waxing and waning

cycles in level of consciousness. We show evidence that suggests the existence of even

short waxing periods is highly predictive of recovery. Experimental results on 25 nor-

mal and comatose subjects demonstrate the effectiveness of the proposed method for

automatic and continuous assessment of ERPs for MMN detection.

4.2 Introduction

Coma is a state of prolonged unconsciousness that can be caused by a variety of prob-

lems, e.g. traumatic brain injury, stroke, brain tumor, drug or alcohol intoxication

(Young et al., 1998). Continuous assessment of level of consciousness as well as coma

outcome prediction, acquired as reliably and as soon as possible, are important as-

pects of patient care. Outcome prediction is important for patients, their relatives and

attendant medical staff because of the limited availability of intensive-care therapy,

the demands of planning individual patient management, and the need for counsel-

ing relatives with realistic expectations. Online assessment of comatose patients is
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very important because it provides us the capability to detect short increases in the

level of consciousness, thus improving both outcome prediction and the rehabilitation

process1 (Kane et al., 2000).

Traditional approaches for coma outcome prediction are mainly based on a set

of clinical observations (e.g. asymmetry in pupillary responsiveness, dilatation and

constriction, verbal and motor responses) (Marmarou et al., 2007; Mushkudiani et al.,

2008; Lee et al., 2010; Teasdale and Jennett, 1974) and electrophysiological techniques

(based on the classical resting state electroencephalogram and on evoked responses

to sensory stimulations) (Greenberg et al., 1977; Rappaport et al., 1977).

The Glasgow Coma Scale (GCS) is the most common clinical indicator that de-

scribes level of consciousness based on clinical assessment. The scale consists of 3

parts: assessment of eye opening, verbal response, and best motor response (Jones,

1979). The GCS ranges between 3 (deep unconsciousness) to 15 (best response)

where the score 8 or less corresponds to the comatose state. However, treatment in

the intensive-care unit, with intubation and sedation, often confounds clinical assess-

ment such that prediction of outcome for an individual patient can be difficult (Kane

et al., 2000).

The role of neurophysiological methods has been reviewed in (Chiappa and Hill,

1998) where it is quite clear that electroencephalogram (EEG) and early evoked po-

tentials allows an objective assessment and provides useful prognostic information in

comatose patients. Early evoked potentials like primary somatosensory responses in

the 30-ms range and brainstem auditory evoked potentials have been used for more

than two decades due to their high predictive value. Brainstem auditory evoked

1A passive rehabilitation regimen could be feasible when suitable markers indicate higher levels
of consciousness.
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potentials test the function of the auditory nerve and auditory pathways in the brain-

stem. These are electrical responses of the auditory pathways that occur within 10 to

15 milliseconds of an appropriate acoustic stimulus (Petrova, 2009; Jewett and Willis-

ton, 1971). Somatosensory evoked potentials are generated by stimulation of afferent

peripheral nerve fibers by either physiological (eg., muscle stretch) or electrical means

(typically, a square wave of 0.2- to 2-millisecond duration is delivered to a peripheral

nerve by electrodes) (Chawla et al., 2016). However, early evoked potentials are a

good predictor only for poor coma outcome (accuracy > 98% when there are no focal

injuries) and their presence does not guarantee a good coma outcome (Madl et al.,

1996; Zandbergen et al., 1998; Robinson et al., 2003; Fischer et al., 2006).

Recently, long latency event-related potentials (ERPs) have been introduced as

useful predictors of good coma outcome (Lew et al., 2006) (the potential application of

long latency ERPs in clinical practice is reviewed in (Kane et al., 2000)). Appropriate

auditory paradigms elicit long latency ERPs even in the absence of the patient’s

attention, making them useful in the assessment of altered states of consciousness.

A passive oddball paradigm of demonstrated utility consists of two types of stimuli

(Holeckova et al., 2006): standard tones and deviant tones, where repetitive standard

tones are interspersed with slightly deviant stimuli. This paradigm elicits two different

long latency ERP components: N1 and mismatch negativity (MMN). The presence of

N1 and MMN (elicited at respectively about 100 and 150 millisecond post-stimulus)

provides evidence of basic brain function. The N1 is an obligatory sensory response

evoked by each tone (i.e. both standard and deviant) and highlights the encoding of

acoustic input in the auditory cortex. The MMN is an automatic response to deviants

and highlights preserved automatic sensory memory processes. The presence of the
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MMN demonstrates proper functioning of pre-attentive cognitive processes. These

ERPs are elicited without requiring the subject’s active involvement.

Clinical studies on coma patients demonstrate that the MMN has good correlation

with coma awakening (Morlet and Fischer, 2014; Fischer et al., 1999). The reported

results show that more than 90% of patients who were considered as non-awake showed

no MMN (i.e. a high specificity) and more than 90% of patients in whom MMN was

detected returned to consciousness (i.e. a high positive predictive value). But only

about 30% of patients who had regained consciousness showed MMN (i.e. a low

sensitivity).

One of the important yet unresolved issues in the literature is accurate and fast

detection of ERP components (e.g. MMN and N1). One of the major drawbacks of all

previous studies is that they all require visual inspection by a skilled clinician (Morlet

and Fischer, 2014) while, in practical situations, such an expert is not likely available.

Another difficulty with current methods is that assessment must be performed based

on the average of ERP signals over a long recording time (typicaly on the order of

30 min) (Duncan et al., 2009; Morlet and Fischer, 2014), in order to reduce the

effect of background EEG noise. However, in this study we show evidence that the

level of consciousness of coma victims to “waxes and wanes” over durations much

shorter than the interval used to average the signal. We also provide evidence that

even short durations of increased level of consciousness are relevant to coma outcome

prediction. Thus a significant disadvantage of using excessive averaging is that we

may miss such important, clinically relevant events. The use of excessive averaging

could be one of the reasons for the low sensitivity of the MMN reported in clinical

studies. Therefore, automatic detection of ERP components over as short a time
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frame as possible is necessary to provide the most salient clinical information on the

current state and prognosis of the patient.

In this study we extend the pioneering work of (Morlet and Fischer, 2014; Fischer

et al., 1999) and alleviate the above difficulties associated with coma prognosis by

proposing an advanced machine learning (ML) technique. This technique automati-

cally and continuously detects, over a relatively short window of 2 minutes, whether

the brain responses to deviant tones include the MMN component or only the oblig-

atory N1 component. If the former, the patient is likely to emerge.

Machine learning (known also as data mining or pattern recognition) methods have

been previously used in several EEG applications, including the analysis of EEG sig-

nals for epilepsy (Ghosh-Dastidar et al., 2008; Guler and Ubeyli, 2007), in evaluating

residual functional deficits following concussion (Cao et al., 2008), to classify sleep

stage in animals (Crisler et al., 2008), for distinguishing age of infants (Ravan et al.,

2011), and to predict and investigate the response and effect of selective serotonin

reuptake inhibitor (SSRI), and clozapine (CLZ) treatments for major depressive dis-

order and schizophrenia (Ravan et al., 2015; Khodayari-Rostamabad et al., 2013).

The machine learning methodology proposed in this study employs mathematically-

structured, optimization-based (i.e. based on the LFS methods) machine learning

techniques.

The proposed methodology consists of two phases: learning and testing. In the

former, through use of training subjects a model is trained, and in the testing phase

the trained model is used to identify the presence of the MMN component in the

brain response of a test subject to deviant tones. The learning phase is realized

in a feature-selection/classification framework where labeled training ERP samples

85



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

are needed– labels indicate whether an ERP response has an MMN component or

has only the obligatory component N1. Due to the low sensitivity of current MMN

averaging methods for coma outcome prediction, determination of accurate labels for

training purposes is not possible. An alternative approach to collecting labels is to

have a skilled clinician visually inspect ERP responses averaged over short windows

(on the order of 2 minutes). However, the cost of gathering sufficient data with such

an approach is prohibitive. Therefore to deal with this problem, in this study we

employ an indirect approach to training and testing where labeled training data is

provided exclusively by healthy subjects. This approach is explained in more detail

in Sect. 4.4.

The proposed method provides an objective facility that will significantly improve

the efficacy of health care for coma victims, in that it lowers the demands for skilled

personnel and thus can reduce cost. Furthermore, because the effective averaging

window of the proposed method has been reduced to 2 minutes, the waxing and wan-

ing cycles of the patient can now be detected. Experimental results are presented

that demonstrate this phenomenon. The accuracy and prognostic power of the MMN

is now significantly improved, in that the detection of short duration waxing inter-

vals is highly relevant to predicting outcome. Thus the proposed method can be an

important aid when formulating decisions on whether to continue or terminate life

support for comatose patients.

The remaining portion of this chapter is organized as follows. Section 4.3 describes

the oddball paradigm used in this study and the EEG recording process. The pro-

posed methodology is presented in Section 4.4. Experimental results and Conclusions

are presented in Sections 4.5 and 4.6, respectively.
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4.3 Passive oddball paradigm and EEG recording

In this study, the N1 and MMN components are elicited using a modification of a

classic auditory oddball paradigm, as described in part in (Fischer et al., 2008).

Stimuli consist of standard tones (85%) and deviant tones (15%). These stimuli

are randomly presented; however, each deviant is preceded by at least two standard

tones. In this study we use a duration deviant that is one of the most robust types

of “deviant” features, both for evoking the MMN but also for producing one of the

most stable MMN waveforms over time (Escera et al., 2000).

This passive oddball paradigm is applied to 22 healthy normal subjects and 3

comatose patients where standard and deviant stimuli are tones of 800 Hz lasting for

75 ms and 30 ms, respectively. The rise/fall is 5 ms. The stimulus onset asynchrony

(SOA) of the standard and deviant tones is 610 ms; thus, any stimulus preceded by

a standard or deviant tone begins 610 ms after the onset of that tone. The stimuli

are presented in a session of 1880 items (with a total duration of approximately 30

minutes), of which 280 are deviants and the remaining are standards.

EEG signals of subjects under the passive oddball paradigm are recorded with a

32-channel BioSemi headcap2 with a standard sampling rate of 512 Hz.

4.4 Proposed methodology

In this section we propose a machine learning–based algorithm for automatic and

continuous assessment of a subject.

As indicated previously, it is necessary to use an indirect approach for collecting

2http://www.biosemi.com/headcap.htm
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labels for the training data. In this study, training data is collected only from healthy

subjects. Provision of labels is then implicit, since with high probability healthy

subjects respond appropriately to both standard and deviant tones. The proposed

machine learning algorithm is trained to discriminate between the states having only

N1 vs. having N1 + MMN over the healthy training set (as seen in Sect. 4.5.1, this

task is performed with 92.7% accuracy). We then use the proposed machine learning

algorithm to determine the similarity between the standard and deviant responses of

a (coma) test subject to those of the aggregate healthy subjects. If the similarities

are high, then with high probability the MMN component (in addition to the N1

component) exists in the test subject. Since previous studies have verified that the

presence of the MMN is highly indicative of recovery, the efficacy of the proposed

indirect approach for determining prognosis is verified. A quantitative measure for

determining similarity is described in the sequel.

Details of the learning and testing phases of the proposed method are respectively

presented in Sections 4.4.1 and 4.4.2.

4.4.1 Learning phase

We define two classes of data where the first class Y1 corresponds to the presence of

N1 only and the second class Y2 corresponds to the presence of the MMN component

in addition to the N1. In this section, we train a feature subspace in which class Y2

is discriminated from class Y1 where the required training points for both classes Y1

and Y2 are provided from healthy brain responses to both standard tones (providing

N1 alone) and deviant tones (providing N1 plus MMN) respectively.

The learning phase consists of three stages: 1) pre-processing 2) feature extraction
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and 3) feature selection. In the pre-processing step, training points for both classes

Y1 and Y2 are extracted from the healthy training subjects under the passive oddball

paradigm explained in Section 4.3. An artifact removal algorithm is then applied. In

the second step, each of the extracted training points is represented by a large number

of candidate features. Then, in the last step, the candidate feature set is reduced to

the most relevant features such that within the subspace defined by these relevant

features, class Y2 is optimally discriminated from class Y1. The remaining portion of

this section gives details of the learning phase stages.

Pre-processing

The relevant ERP components, corresponding to both standard and deviant stimuli,

are contained within an interval 0 to 300 ms after the stimulus onset.

To better highlight N1 and MMN components in pathological recordings and to

remove the effect of eye blink and muscle artifacts, the extracted epochs are filtered

by a band-pass FIR filter from 2 Hz to 30 Hz with a filter order of 40 (Morlet and

Fischer, 2014; Armanfard et al., 2016c,a) . Then the epochs in which the variance

of the Vertical-EOG channel exceeds 500 µv2 or the signal peak to peak (on any

electrode) exceeds 100 µv are excluded (Ravan et al., 2015).

Finally, to generate reliable and stable training points, for each training subject,

deartifacted epochs associated with standard and deviant tones are averaged. Con-

sequently, each training subject provides two 32-channel training samples: 1) the

averaged clean signals corresponding to standard tones (i.e. class Y1) and 2) the aver-

aged clean signals corresponding to deviant tones (i.e. class Y2). These two averaged

signals for a typical training subject (at channel Fz) are shown in Fig. 4.1 where,

89



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

Time(ms)
0 100 200 300

µ
V

-3

-2

-1

0

1

2

Controll subject--Grand Average ERPs

Standard
Deviant

MMN

N1

Figure 4.1: Averaged ERPs corresponding to standard (blue) and deviant (red) stimuli of
a typical normal subject at channel Fz. The obligatory N1 component is elicited for both
standard and deviant stimuli while the MMN occurs only for the deviant.

as expected, the standard signal has only the N1 component and the deviant signal

has both the N1 and MMN components. Therefore, if there are N subjects used for

training, after pre-processing, there are 2×N 32-channel training samples: N training

samples with class label Y1 and N training samples with class label Y2.

Feature extraction

In this step, each training point obtained from the previous part is represented with a

large number M of candidate features. The candidate feature set consists of various

statistical quantities at each channel. These quantities are kurtosis, skewness, vari-

ance, maximum, minimum and power in eight different frequency bands: Alpha-band

(8Hz to 13Hz), Beta1-band (13Hz to 20 Hz), Delta-band (1Hz to 4Hz), Lower-band

(1Hz to 8Hz), Total-band (1Hz to 30 Hz), Beta-band (13Hz to 30 Hz), Beta2-band
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(20Hz to 30Hz) and Theta-band (4Hz to 8Hz). In addition, the wavelet decomposi-

tion vector with wavelet ‘rbio6.8’ 3 at level 3 is also considered (i.e. 62 features per

channel). Consequently, all together, each channel is represented with 75 features.

Finally, we concatenate all channels’ features and represent each training point i

with an M -dimensional feature vector x(i) ∈ RM , i = 1, . . . , 2N , (N samples corre-

sponding to standard responses, and N for deviant) with accompanying class label

y(i) ∈ {Y1, Y2} where M = 2400 (i.e. 32×75). In this study, it is noted that the

number of candidate features M far exceeds the number of training samples 2×N .

Feature Selection

Apparently, not every extracted feature in the candidate feature set discriminates

equally between the brain states (i.e. the states corresponding to classes Y1 and

Y2). Irrelevant features may degrade the accuracy and efficiency of the similarity

measurement in the test phase (Jain et al., 2000). Therefore, the candidate feature

set must be reduced to contain only the most relevant features. This task is performed

using a feature selection process. Since all ERPs have the obligatory component

N1, the relevant features are selected such that, within the corresponding induced

subspace, training points in class Y2 are optimally discriminated from those in class

label Y1.

Many feature selection approaches are presented in the literature (Peng et al.,

2005; Sun et al., 2010; Cheng et al., 2011; Duda et al., 2001; Cheng et al., 2011). Al-

most all of these methods select a global common feature subset for all regions of the

3available in MATLAB
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sample space. These methods may not be appropriate for complex classification prob-

lems (such as classification of biological signals) with sparse/disjoint/irregular/non-

stationary sample distributions – e.g. in cases where samples in the same class sepa-

rate into multiple clusters that have different statistical characterizations that cannot

be modeled by the same feature subset. The proposed localized feature selection

(LFS) method presented in Chapter 2 (published in (Armanfard et al., 2016b) and

(Armanfard and Reilly, 2013)) addresses these concerns by allowing various groups

of samples in different regions of the sample space to be associated with their own

distinct optimal feature set, which may vary both in membership and size across the

sample space. The LFS algorithm considers the feature vector of each training sample

x(i) as a representative point for its neighboring region, and selects an optimal distinct

feature subset, indicated by the binary vector f (i), for each of these regions. Each of

these distinct feature subsets are selected such that, within the corresponding induced

subspace, class Y2 is locally discriminated from class Y1 through a localized cluster-

ing procedure. That is, we minimize local intra–class distances and simultaneously

maximize local inter–class distances. f (i) is an M -dimensional indicator vector that

indicates which candidate features are optimal for local separation of classes. If the

mth element of f (i) is 1, then the mth feature is selected for the ith region, otherwise

it is not. With this method, no assumptions are made on the probability distribution

of the samples. Therefore disjoint or multi–model distributions are accommodated.

In this work, following (Armanfard et al., 2016b) the Euclidean distance is used as

the distance measure.

In this study, training points are extracted from different individuals; this imposes

intra-class variations over the sample space due to nonstationarity. Furthermore, we
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are dealing with a sparse problem where N << M . The LFS method has proven to

be very successful for feature selection under such conditions. We therefore use this

method for our experiments presented in the following Section 4.5.

4.4.2 Testing phase

In this section, the selected feature subsets, computed in the previous section, are

utilized for automatic and continuous assessment of a test subject. To this end, the

proposed procedure updates its detection results continuously according to what we

refer to as protocol P1. That is, the results are updated at one–minute intervals,

where each result uses ERP data extending two minutes into the past.

The testing phase consists of three stages: pre-processing, feature extraction and

similarity measurement where each phase is explained in the following:

Pre-Processing

The test subject is assessed according to Protocol P1 described above. To this end,

300-ms epochs (0 to 300 ms after stimulus onset) corresponding to the standard

and deviant tones are extracted. Then, as described in section 4.4.1, epochs are

de-artifacted. The clean 32-channel epochs corresponding to standard and deviant

tones are then averaged. Therefore, after performing the pre-processing steps, every

one–minute intervals, there are two 32-channel signals, corresponding to standard and

deviant tones, that are based on recorded data within the past 2 minute window.
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Feature Extraction

Every one–minute interval, M = 2400 candidate features are extracted from each

clean averaged signal (computed over the last 2-min window), as explained in Section

4.4.1. These features form two “query” M -dimensional vectors xqstd(t),x
q
dev(t) ∈ RM

corresponding to standard and deviant stimuli respectively, where t denotes the in-

terval index and the superscript q denotes “query”. (In the sequel, we suppress the

subscript notation “std” and “dev” and the dependence on time, for notational clar-

ity.) In the next section, the proposed localized classifier presented in Section 2.2.2

(published in (Armanfard et al., 2016b)) is employed to measure the similarity of the

xq to the training set.

Similarity measurement

In a similar manner described earlier in Section 2.2.2, we associate a hyper-sphere

Q(i) whose class label is y(i) with the ith, i = 1, . . . , 2N training point where the

similarity SY` (xq; γ) of query datum xq to class Y` ∈ {Y1, Y2} is measured based on

how many hyper-spheres with class label Y` contain xq (see (2.11)-(2.13)).

Therefore, if both the two query data over a particular window corresponding to

the standard and deviant ERPs show high similarity to respectively class Y1 and Y2,

then the brain function over that window is similar to the normal brain function (i.e.

standard stimuli elicited N1 and the deviant stimuli elicited both N1 and MMN).

In this way, by using protocol P1, we can detect the presence of MMN components

that are elicited over the relatively short window of 2 minutes, with one minute

updates. Conventional methods require a significantly longer window (at least 30

minutes), i.e. at least 250 deviant responses to detect the presence of MMN, e.g.
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(Morlet and Fischer, 2014; Fischer et al., 1999).

4.5 Experiments

In Section 4.5.1, performance of the proposed methodology is demonstrated on the

normal subjects. In Section 4.5.2 performance of the proposed method for automatic

and continuous assessment of comatose patients is demonstrated.

4.5.1 Performance on normal subjects

The performance of the proposed methodology on normal subjects is demonstrated

through a Leave-One subject-Out (LOO) cross validation strategy; one round of cross-

validation involves partitioning the N + 1 total available subjects into sets which

include N training subjects and one test subject. The learning phase explained in

section 4.4.1 is applied to the N training subjects and then the test phase explained in

Section 4.4.2 is applied to the one remaining test subject to validate the performance

of the trained model. Here, since ground truth of the test subject is known, validation

is performed in a classification framework where class label yq of a query datum xq

is defined as follows:

yq = argmax
Yl∈Y

{SY1 , SY2}. (4.1)

where SY` , ` = 1, 2 is defined in Section 4.4.2.

In this study the total number of available normal subjects N + 1 is 22; hence

the number of available training points at each LOO round is 42 (i.e. 2×N) where

21 points correspond to Class Y1 and 21 points correspond to class Y2. The LOO

procedure is performed 22 times with different partitioning in each round.
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Three criteria are used for performance evaluation: these are true positive rate

(TPR), true negative rate (TNR) and accuracy, which are defined as follows:

TPR =
N+1∑
k=1

TP (k)

P (k)
, TNR =

N+1∑
k=1

TN (k)

N (k)
, (4.2)

Accuracy =
N+1∑
k=1

TP (k) + TN (k)

P (k) +N (k)
, (4.3)

where, at round k of the LOO process, TP (k) (TN (k)) is the number of query data

with class Y2 (Y1) that are correctly predicted as class Y2 (Y1), and P (k) (N (k)) is

the total number of query points with class label Y2 (Y1) where queries are extracted

based on the P1 protocol. High accuracy with equally distributed TPR and TNR is

desired.

In these experiments, the parameter α used by the LFS method, that sets an

upper limit on the number of selected features, ranges from 1 to 10.

The maximum accuracy along with the corresponding TPR and TNR of the pro-

posed methodology is presented in the second column of Table 4.1 where the default

parameter values are used for the LFS method. The high prediction accuracy (92.7%)

demonstrates the effectiveness of the proposed methodology for automatic and contin-

uous assessment of a healthy subject to identify the presence of the MMN component.

Furthermore, to demonstrate better performance of the localized algorithm in

comparison with the global feature selection methods, the classification performance

of the proposed strategy using the top half of our comparison global feature selection

algorithms is also recorded. In this case, since the localized classifier explained in

section 4.4.2 is not appropriate for a global feature selection scheme, the SVM is used

as a classifier with parameters set to their default values. Following our experiments
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Table 4.1: Maximum Accuracy of the proposed method, along with the corresponding TPR
and TNR (in percent), averaged over 22 runs, using both local and global feature selection
algorithms. Standard deviations (in percent) are presented in parentheses.

LFS Logo FMS kPLS mRMR

Accuracy 92.7(8.1) 87.1(8.9) 86.8(10.0) 84.9(11.4) 86.9(9.3)
TPR 92.9 80.4 83.6 78.4 79.4
TNR 92.4 93.9 90.0 91.5 94.4

in section 2.4, our comparison global feature selection algorithms are Logo (Sun et al.,

2010), MFA (Cheng et al., 2011), kPLS (Sun et al., 2014) and mRMR (Peng et al.,

2005) where the number of selected features also ranges from 1 to 10. The maximum

accuracy along with the corresponding TPR and FNR (averaged over 22 runs) is

reported in columns 3-6 of Table 4.1. The results demonstrate the effectiveness of the

localized approach compared with global feature selection methods for the prediction

problem defined in this study.

4.5.2 Performance on comotouse patients

In this section the proposed methodology presented and verified in Sections 4.4 and

4.5.1 is applied to our 3 comatose patients for which measurements are available. The

patient’s response to the auditory oddball paradigm is assessed according to P1, to

establish the similarity of the patient’s brain function to that of a normal brain.

Patient 1 is a 29-year old male who was involved in a motor vehicle collision.

We began testing 27 days post-injury. He regained consciousness and was extubated

50 days after his admission. We recorded multiple sessions of the auditory oddball

paradigm as explained in section 4.3 over a period of 48 hours to capture the modula-

tion of the MMN as the patients level of consciousness changed. In total, 17 sessions
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of data were acquired. Continuous EEG was recorded from 32 sites positioned accord-

ing to the 10-20 standard. He presented with a right parietal subdural hematoma,

acute traumatic subarachnoid hemorrhage and diffuse axonal injury, and scored 4 on

the Glasgow Coma Scale at the initiation of data collection.

Patient 2 is a 21-year old male who was involved in a collision between an all-

terrain vehicle and a tree. He was thrown from the vehicle and wasn’t wearing a

helmet. Recording began 13 days after his admission and concluded the next evening

due to his transfer to a stepdown unit. He was GCS 7 at the time of recording. In

total, 7 sessions of data were acquired. Continuous EEG was recorded from 32 sites

positioned according to the 10-20 standard. He was transferred to stepdown 15 days

post-injury and, after 2 days, he was GCS 10. He slowly recovered over the next

couple days, showing more and more alertness, tracking, and command following.

His improvement while in stepdown was slow. His discharge summary states: His

best GCS was 10/15. He remained unable to use the left side of his body, he cannot

use his left leg. There was minimal movement of the right lower limb. With the right

upper limb, he was able to do a thumbs up, snap his fingers and hold a ball. He was

then discharged to the rehab unit 2 months after his collision. 3 months later, he

was discharged from rehab to his home. His discharge summary shows that he was

no longer in a minimally conscious state, as he was walking without aids and was

working on his grasp. He was reading a newspaper and answering questions about it.

Patient 3 was a 55-year old male. He was admitted after he was involved in a

motor vehicle collision with multiple roll overs. He was brought in by air ambulance.

His notes say he had a subarachnoid hemorrhage, and was GCS 3 at the scene. The

patient was on life support for about 9 days when recording began. The family
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decided to withdraw support the following day and he continued without breathing

support for about five days until he died. Recordings stopped before extubation. He

was GCS 4 to 5 during recording. In total, 9 sessions of data were acquired.

For all patients, recordings are conducted in sessions, where each session is about

30-min in duration, with an inter-session time of about 2 hours. In our experiments,

each session consists of 17 2-min epochs, updated in 1-minute intervals, according to

protocol P1. Each epoch has about 18 deviant trials and 125 standard trials.

Automatic and Online assessment

Traditional approaches visually inspect the grand average ERPs (over all the recording

sessions) at a limited number of channels (typically channels Fz and Cz) to detect the

presence of N1 and MMN component (Holeckova et al., 2006; Morlet and Fischer,

2014). Such grand average ERPs for the case of our 3 patients at channels Fz and

Cz are shown in Fig. 4.2.

It is seen from these figures that in all cases, the N1 and MMN components are

not clearly discernible from either response, or if they are discernible, they are both

very weak. Yet, in the case of patients 1 and 2, they recovered, suggesting these

components may indeed be present in their ERP responses, although obscured. We

believe this outcome is a manifestation of the poor sensitivity of the conventional

MMN test to determine prognosis based on the grand average ERPs. In the case of

patient 3, the N1 and MMN components are also not discernible in Fig. 4.2. However

the recovery status of patient 3 is ambiguous in this case since he died a considerable

time after life support was withdrawn (later we present evidence that if life support

was not withdrawn, he may have recovered). Therefore we do not make claims one
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Figure 4.2: Grand average of the ERPs for patients 1-3 for the sites positioned at electrodes
Fz and Cz.

way or the other as to whether the N1 and MMN components should exist in this

case.

We hypothesize that the lack of discernibility of the N1 and MMN components in

the grand averages in Fig. 4.2 is a result of the waxing and waning of the patients’ level

of consciousness throughout the recording interval; i.e., the presence of possible N1

and MMN components at the highest level of consciousness is obscured, or smeared

out, by the averaging procedure. To verify this idea, we use patients 1-3 as test

subjects and, as is discussed in Section 4.4.2, extract query data from the patients

according to Protocol P1 where the required parameters are set to the same values

as those used for the normal subjects.
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Fig. 4.3 shows similarities, but only for the “active” 2-min epochs. Active epochs

are those for which both standard and deviant similarities, as defined by (2.13), exceed

a threshold Θ, which in our experiments is set to 0.5.

Fig. 4.3(a) shows similarity measures of the patients vs. the 2-minute epoch

index. The first 17 ticks correspond to the 17 2-min epochs of session 1 (S1) and

18-34 correspond to the epochs of session 2, etc. Sessions are concatenated even

though they are not contiguous in time. This figure demonstrates that patient 1

has many epochs in which the brain shows significant responses to both standard

and deviant stimuli– i.e. the brain activity has high similarity to that of normal

subjects. However, due to the significantly shortened averaging window, this figure

also verifies the existence of the waxing and waning behavior of the patient’s level of

consciousness, where in some sessions there are a large number of epochs that show

high similarity to normal brain function (waxing) while in other sessions there is a

decreased number of epochs in which the patient’s brain works similarly to normal

brain (waning).

Fig. 4.3(b) demonstrates the waxing and waning behavior of the level of con-

sciousness for patient 2. As expected, since this patient never fully recovered to a

normal state and was in a low-mid level of consciousness for a longer time compared

to patient 1, a lower similarity compared to the patient 1 is shown.

Fig. 4.3(c) demonstrates that, as we may have suspected, there are relatively few

epochs in which the patient’s brain response to stimuli is similar to that of normal

brains. However, a significant level of similarity is indicated in the earlier sessions.

At the time of extubation he could have been in a waning state as indicated by the

later sessions, where there are no active epochs.
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Figure 4.3: Similarity of the ERPs of patients 1-3 to the corresponding ERPs of normal
subjects, vs. epoch index. Similarities are shown for the active epochs where Θ is set to
0.5. The red and blue graphs are respectively corresponded to SY1(xqstd; γ) and SY2(xqstd; γ).
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Table 4.2: waxing criterion Cwax for the three comatose patients with different value of the
parameter Θ.

Patient 1 Patient 2 Patient 3

Θ = 0.4 20.76 16.81 13.73
Θ = 0.5 14.19 12.61 9.8
Θ = 0.6 6.23 5.88 2.61

We propose a measure indicating what percentage of the recording time each

patient is in the waxing state, as follows:

Cwax =
# active epochs

# of total epochs
× 100. (4.4)

The waxing criteria Cwax for each patient using three different threshold values

Θ are shown in Table 4.2. As is expected, for all Θ values, Cwax(patient 1) ≥

Cwax(patient 2) ≥ Cwax(patient 3) which indicates a higher chance of regaining con-

sciousness for patients 1 and 2 compared with patient 3.

Verification of the results

In this section we provide extra verification of the proposed methodology for identi-

fication of the epochs that have MMN. To this end, we examine some typical active

and non-active 2-minute epochs from different sessions of all patients to determine

whether the decision output by the proposed method is in agreement with the con-

clusions drawn from visual inspection of those epochs.

The average standard and deviant ERPs over Sessions 4 and 5 of patient 1 are

shown in Fig. 4.4. From the figure, which shows only electrodes Fz and Cz, an N1

component can be seen in the averaged signal of Session 4. However, visual inspection

over all channels suggests there is no evidence of the MMN in any of the 32 channels
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of Session 4. The averaged signals over Session 5 show a very weak negative wave

(< 0.25µV ) at about 100 ms but one cannot be sure whether this is indeed an N1 or

noise. For similar reasons, one cannot be definite about whether the small inflection

appearing after N1? at electrode Cz is an MMN component (we denote such tiny

indefinite inflections by the superscript ?). Therefore, since there is no definitive

MMN component that can be detected by visual inspection, the sub-grand average

signals indicate that there is no evidence of an appropriate brain response to the

deviant stimuli; whereas the detection results of the proposed method shown in Fig.

4.3(a) indicate that there are many active epochs in Sessions 4 and 5 (i.e. S4 and S5)

that have high similarity to the normal brain function.
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Figure 4.4: Sub-grand average of standard and deviant ERPs of patient 1 at sessions 4 and
5 at (a), (c) channel Fz and (b), (d) channel Cz.

Averaged signals corresponding to standard and deviant tones over four typical

single 2-min epochs are shown in Fig. 4.5. Visual inspection of these epochs demon-

strates that an MMN component exists at the 6th epoch of session 4 (i.e. S4), (Fig.

4.5(a)) and the 10th epoch of Session 5 (i.e. S5) (Fig. 4.5(d)). However, at the

13th epoch of S4 (Fig. 4.5(b)) and the 3rd epoch of S5 (Fig. 4.5(c)) there is no

MMN neither in channel Fz nor in any other electrode location. As expected, an

105



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

N1 clearly appears in all of these epochs, since this is an obligatory response to each

tone. Note that the components appearing in these figures cannot be detected from

the grand average and the sub-grand average signals shown in Figs. 4.2 and 4.4. This

can be considered a verification of our idea that waxing and waning of the level of

consciousness exists, and that excessive averaging can obscure this behaviour.
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Figure 4.5: Average of standard and deviant ERPs, at channel Fz, of patient 1 at epochs
a) 6th and b) 13th of session 4, and epochs c) 3rd and d) 10th of Session 5.
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We use these visual observations as ground truth and then verify the performance

of the proposed method based on the calculated similarities to normal subjects. To

this end, the similarity of the patient 1 brain function to that of the normal brain

over all epochs of Sessions 4 and 5 are shown in Fig. 4.6, which again shows that the

patient’s brain reaction to the deviant tones varies over time (waxing and waning).

Fig. 4.6(a) and Fig. 4.6(c) show that, as expected, patient’s brain response to the

standard stimuli has a good similarity to those of the normal subjects– this verifies

the existence of the obligatory response of the brain to standard tones. Figs. 4.6(b)

and 4.6(d) demonstrate that epochs 6 and 10 respectively of Sessions 4 and 5 show

a high similarity to the corresponding ERPs of normal subjects – i.e. the ERPs

corresponding to the deviant stimuli within these epochs have an MMN component

and the patient is likely to emerge from coma (which in fact he did). Furthermore,

these figures demonstrate that, over epochs 13 and 3 of respectively Sessions 4 and 5,

there is zero similarity between patients response to the deviant stimuli and those of

the normal subjects – this indicates that the patient didn’t have an MMN component

within these epochs (waning). These results are consistent with the visual inspection

results shown in Fig. 4.5. This verifies performance of the proposed method in

detecting the presence of MMN over a short 2-min window.
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Figure 4.6: Similarities of (a),(c) standard (b),(d) and deviant ERPs of patient 1 respectively
at Sessions 4 and 5 to those of the normal training subjects. Each vertical bar is corresponds
to a 2-min epoch.

In a manner similar to that of patient 1, in the following the performance of the

proposed method is verified over two typical single 2-min epochs of patient 2 using

visual inspection. To this end the sub-grand average of sessions 2 and 3 are shown in

Fig.4.7 where there are some indefinite components shown by N1? and MMN?. They

are indefinite because either the N1 does not appear in both standard and deviant

responses (session 2), or they are too weak to be reliable (session 3).
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Figure 4.7: Sub-grand average of standard and deviant ERPs of patient 2 at sessions 2 and
3 at (a), (c) channel Fz and (b), (d) channel Cz.

The average of the ERPs corresponding to the standard and deviant stimuli over

two typical epochs of sessions 2 and 3 are shown in Fig. 4.8, where visual inspection

indicates that the N1 component appears in both these epochs, but the MMN is

manifest only in the 5th epoch of session 2.

As in the case of patient 1, we again use these observations as ground truth. To this

end, the similarity of the brain function of patient 2 over all epochs of sessions 2 and 3
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Figure 4.8: Average of standard and deviant ERPs, at channel Fz, of patient 2 at a) 5th
epoch of session 4 and b) 9th epoch of Session 3.

to normal brain function is shown in Fig. 4.9. As expected, all 2-min epochs of sessions

2 and 3 have high similarity to the standard tones which indicates the presence of the

obligatory component N1 over all epochs. The high and low similarities respectively

shown in Figs. 4.9(b) and 4.9(d) demonstrate that the patient’s consciousness was in

his waxing phase in session 2 and in his waning phase in session 3.
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Figure 4.9: Similarities of (a), (c) standard (b), (d) and deviant ERPs of patient 2 at
Sessions 2 and 3 to those of the normal train subjects. Each bar is corresponded to a 2-min
epoch.

In addition, the 5th epoch of session 2 has a very high similarity to both standard

and deviant responses of the normal subjects which indicates the presence of MMN

component at this epoch – this is consistent with the ground truth obtained by visual

inspection of this epoch (see Fig. 4.8(a)). Furthermore, the 9th epoch of session 3

has a respectively high and zero similarity to the standard and deviant responses of

the normal subjects, which indicates that the N1 component is elicited in this epoch

while the MMN is not– this result is also consistent with the ground truth obtained
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by visual inspection of this epoch (see Fig. 4.8(b)) which again demonstrates the

performance of the proposed method for automatic and continuous assessment of

ERPs for the purpose of coma outcome prediction.

Note that both patients 1 and 2 demonstrate intervals where an MMN is present,

indicating a higher level of consciousness over these periods. Since these patients

recovered, there is evidence to suggest that even short periods of attentiveness are

predictive of a positive prognosis.

The same verification procedure is also applied again to patient 3. Recall that

this patient died five days after extubation. The grand average signals shown in

Fig. 4.2 give an indefinite indication that an MMN component might be elicited at

about 200 ms. It is indefinite because the respective N1 component is too weak. To

examine whether this patient indeed exhibits an MMN component, the sub-grand

average signals over sessions 2 and 3 of patient 3 are shown in Fig. 4.10. This figure

demonstrates that the MMN component may be elicited in session 3; however, we

cannot verify the presence of the N1 component in the deviant response. Further, it

demonstrates that some indefinite components appeared in the deviant response of

Session 2, however these inflections are either too weak or the N1 component doesn’t

appear properly in the standard response.

To examine whether any MMN is elicited, we look at two typical epochs of these

sessions. In this vein, the average of the ERPs corresponding to the standard and

deviant stimuli over these two epochs are shown in Figs. 4.11 and 4.12. These figures

clearly demonstrate the presence of N1 and MMN components in epochs 2 and 13 of

respectively sessions 2 and 3. We use these visual inspections as ground truth for the

proposed method and investigate the similarities corresponding to these two epochs.
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Figure 4.10: Sub-grand average of standard and deviant ERPs of patient 3 at sessions 2
and 3 at (a), (c) channel Fz and (b), (d) channel Cz.
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To this end, the similarity of all epochs of sessions 2 and 3 to the corresponding ERPs

of the normal subjects are shown in Fig. 4.13. These similarities indicate that there

is a high similarity between the ERPs corresponding to the 2nd and 13th epochs of

sessions 2 and 3 and those of the normal brain function. This high similarity correctly

matches the ground truth.
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Figure 4.11: Average of standard and devinat ERPs at 2nd epoch of session 2 of patient 3,
at channels a) Fz b) Cz c) C4.
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Figure 4.12: Average of standard and devinat ERPs of patient 3 occured at 13th epoch of
session 3, at channels a) Fz b) FC1.
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Figure 4.13: Similarities of (a), (c) standard and (b), (d) deviant ERPs of patient 2 at
Sessions 2 and 3 to those of the normal train subjects. Each bar is corresponded to a 2-min
epoch.

4.6 Discussion and Conclusions

In this study we proposed a machine learning based methodology for automatic and

continuous assessment of ERPs for identifying the presence of the MMN component.

The method consists of two phases: learning and testing. In the former discriminative

sub-spaces are trained using the LFS method and available training points, and then

the trained spaces are used in the test phase for continuous assessment of a test
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subject.

Due to the impracticality of collecting sufficient data from coma victims alone for

training purposes, an indirect approach to training and testing are employed in this

study, whereby the training data is provided exclusively by healthy subjects, rather

than coma patients. Experiments on data collected from healthy subjects show that

the proposed machine learning method has high accuracy (92.7%) in discriminating

between responses to standard and deviant tones.

The prognosis of a (coma) subject is determined by assessing the similarity of the

subject’s ERP responses to those of healthy subjects. A high similarity in the deviant

responses indicates that the MMN exists with high probability. Since the presence

of the MMN is highly correlated with recovery, a high similarity (as indicated by the

proposed method) therefore suggests recovery. Thus, the proposed method gives a

practical and accurate approach for determining coma prognosis. The effectiveness of

the proposed method in assessing coma prognosis has been established by comparing

similarity results to the ground truth obtained by visually examining ERP responses

averaged over short windows. In addition, the proposed method reduces load, cost

and impracticality of requiring frequent expert assessment during the course of a day.

We have seen that the presence of the MMN can be obscured by averaging over

excessively long windows. The proposed machine learning approach is capable of de-

tecting the presence of the MMN over short, 2–minute windows. This ability to detect

over short windows verifies the existence of waxing and waning cycles of consciousness

in a coma victim. Furthermore, our results suggest that the existence of even very

short intervals of a high level of consciousness is strongly related to recovery. Since

the proposed method is capable of detecting over such short intervals, the sensitivity

117



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

of the approach is therefore improved over that of previous methods.

The high sensitivity of the proposed method can be demonstrated by the fact

that there is no clear evidence of an MMN component in any of the patients in

Figure 4.2. Thus the prognosis of conventional methods for these victims would have

been negative. In contrast, since intervals of high similarities to healthy responses

were demonstrated in patients 1 and 2, the prognosis rendered by proposed method is

positive. The fact that patients 1 and 2 did recover verifies the improved performance

of the proposed method in these cases. Furthermore, a high specificity of more than

92% of the proposed methodology is demonstrated on normal subjects (see TNR in

table 4.1).

An additional consideration that the proposed method reveals is with regard to

patient 3. It is clear from Figure 4.3 that periods of high similarity did exist, indicating

he may have recovered if life support had continued. Thus we see an instance where

the decision to withdraw life support may have been premature.

We have proposed a machine learning method for coma prognosis that involves

selection of features that are relevant to coma prognosis. Hence, the selected features

could perhaps give us clues about the neurological function of recovery. In this study

however we have made no effort to investigate this matter, although it would be an

interesting avenue to pursue as future work.
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Chapter 5

Conclusions

5.1 Research summary

In this study we introduce the concept of localized feature selection. The proposed

local feature selection algorithm adaptively assigns a specific optimal feature subset

to each of the sample space regions, in contrast to the traditional methods, which

select a common feature set for the entire sample space. This allows the feature set

to optimally adapt to local variations of the sample space.

The process of computing a specific feature subset for each region is independent

of those of other regions and hence can be performed in parallel. Since the proposed

algorithm makes no assumptions regarding the data distribution over the sample

space, it is also an appropriate approach for the case where the data are distributed

on a non-linear and/or a disjoint manifold.

The proposed localized feature selection idea is first realized through a linear

programming optimization problem where the neighboring samples are determined

using an iterative approach initiated based on the distances in the original feature
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space (Chapter 2). Then, to have a more accurate determination of the neighboring

samples, the localized feature section idea is formulated as a joint convex/increasing

quasi-convex optimization problem with no local minima where a logistic function is

applied to focus the optimization process on the localized region within the unknown

co-ordinate system (Chapter 3).

A query datum is classified through aggregation of “weak” classifier results which

are based on the selected region-specific feature subsets. The Vapnik–Chervonenkis

(VC) dimension is determined and, under certain assumptions, is found to have a

finite, moderate value. This, in combination with the fact that the proposed localized

approach selects only relevant features, suggest both the LFS and the lLFS meth-

ods are not overly sensitive to the overfitting problem. In this study we specifically

consider the more challenging problems where a small number observations are avail-

able for training. Experimental results demonstrate the superior performance of the

proposed algorithm on a large variety of data sets.

In Chapter 4, using the proposed localized feature selection and classification idea,

we propose a practical machine learning (ML) approach for automatic and continu-

ous assessment of the ERPs for detecting the presence of the MMN component which

has a good correlation with coma awakening. The method is capable of detection

over windows as short as two minutes. This finer time resolution enables identifica-

tion of waxing and waning cycles in level of consciousness. Experimental results on

normal and comatose subjects demonstrate effectiveness of the proposed method for

automatic and continuous assessment of ERPs for MMN detection.
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5.2 Future research

In this PhD study, we investigate the localized feature selection idea for supervised

data classification where the class label of the training data are given. As a future

work the idea of local feature selection can be extended to the unsupervised data

clustering where there is no label for the training data.

In addition the proposed localized idea can be extended to the semi-supervised

case. One approach to semi-supervised learning e.g. (Gu et al., 2013; Bennett et al.,

1999) is to use the few labelled samples to iteratively classify the unlabelled points,

retraining the classifier in each iteration. The difficulty with such approaches is they

are generally slow, due to the intensive retraining process. The proposed feature

selection method offers a major advantage in this respect, since the incorporation of

a new unlabelled data sample may be implemented with only a single optimization

on the new data point without extensive retraining involving all available samples,

thus rendering the proposed method approach much faster.

Section 2 shows linear complexity of the LFS method with respect to feature di-

mensionality – i.e. the required CPU time for computing a feature subset increases

linearly with the number of available candidate features. This interesting linear be-

havior is because of the way that the constraint set is defined. As a future work it

would be interesting to investigate properties of the constraint set to define theoretical

complexity bounds and show why the results are linear?

In this work, the proposed formulations presented for LFS and lLFS algorithms

are solved using linprog and fmincon functions available in MATLAB. As a future

work, it would be interesting to investigate possibly better computational algorithms

that are better suited to the specific objective function – e.g. , both maximization and

121



Ph.D. Thesis - N. Armanfard McMaster - Electrical and Computer Engineering

minimization objective functions used in the LFS and lLFS algorithms are positive,

and this could make way for an improved solver.

Another way to extend and improve the proposed localized idea is to investigate

the localized classification in a probabilistic sense, using e.g. kernel density functions

instead of the hyperspheric classifier. More like a soft decision than a hard decision.

In this study, the proposed framework for MMN detection is based on the ERPs

happened in 2-min intervals. As a future work one may try to reduce the interval

duration to be shorter than 2 minutes and investigate what is the maximum lower

limit and what price do we pay?

The proposed localized idea can model non-stationarity of the EEG signals. In

this study the proposed idea is applied for coma outcome prediction. However, the

proposed localized modeling has more potential applications including identifying

effective medications for treatment of depression and schizophrenia, identifying trau-

matic brain injury from either resting state EEG or ERPs, applications to brain

computer interface, etc.
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Appendix A

Vapnik Chervonenkis dimension of

the localized classifier

In this section the VC dimension of the proposed LFS classifier, defined in Section

2.2.2 is discussed. To this end, for simplicity, we only consider the case where the

number of classes is two, i.e. Y = {Y1, Y2}. Based on Sections 2.2.2 and 2.3.1, the

family of functions F = {f(x(i); γ)} for the LFS classifier is given such that the

functions f(·; ·) are defined as

f(x(i); γ) = argmax
Yl∈Y

{SY1(x(i); γ), SY2(x
(i); γ)} (A.5)

where SYl(x
(i); γ), l = 1, 2 is defined in (2.11) to (2.13). The only parameter which

varies in f is the radius of the hyper-spheres, controlled through γ.

It is necessary to make assumptions in the derivation of the VC dimension for the

LFS classifier. First, we assume that within the kth frame (i.e. the induced space

corresponding to x(k)), some points of the same class as x(k) form a cluster around
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x
(k)
p . We assume that samples within the same data cluster are close enough such

that the localized cluster centers and the radii of the corresponding weak classifiers

are similar enough so that the query datum falls within all hyper-spheres. This

is not unreasonable since, in the proposed localized feature selection approach, the

corresponding feature subset of the kth frame is selected to encourage clustering.

Furthermore, we assume the underlying problem is well–behaved so that the number

of clusters L does not go to infinity as N → ∞, where N is the total number of

training points.

Theorem: We are given the LFS class of functions F as described. Then, under

the stated assumptions, the VC dimension is L(d 1
γ
e − 1).

Proof :

Recall the radius of a weak classifier grows until the “impurity level” of the cor-

responding hype-sphere Q(k) is not greater than the predefined parameter γ, where

“impurity level” is the ratio of the number of samples with opposite class label to the

number of samples having the same class label as x
(k)
p . It follows therefore that, in

the shattering process to define the VC dimension, each weak classifier corresponding

to the cluster Ll misclassifies bγ |Ll|c samples where b·c denotes the floor function

and |Ll| is the cardinality of the lth cluster where l = 1, . . . , L. Therefore, in the

shattering process, there is no mis-classification as long as bγ|Ll|c = 0, i.e. the max-

imum cardinality of the lth cluster without any classification error is d 1
γ
e − 1 where

d·e denotes the ceiling function. Hence, over L clusters, the LFS classifier can shatter

at least L(d 1
γ
e − 1) samples.

Now, assume the case where there is an extra training point added; i.e., there are

altogether a total of L(d 1
γ
e−1)+1 training samples. This extra training point will be
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situated in one of the existing clusters. Without loss of generality, in the shattering

process, we assign label Y1 to the samples of this cluster and label Y2 to the samples

of the other clusters. The number of samples with label Y1 is η1. The radii of all weak

classifiers associated with the cluster Y1 must now grow until one sample from class

Y2 is mis-classified, i.e. until the impurity level is not greater than γ. This sample

will be mis-classified by all η1 weak classifiers (see the assumptions). Therefore, for

this sample, the first term of the argmax function in (A.5) is 1 while the second term

is less than or equal to 1. Hence, for any value of L, the classifier output is Y1 or 0

(i.e no decision), which is a wrong decision. Similarly, by increasing the number of

training points in the shattering process, there will be a class label combination in

which at least one point will be mis-classified.

Thus the number of points that can be shattered is at most L(d 1
γ
e − 1), i.e. the

VC dimension of the LFS classifier is L(d 1
γ
e − 1).
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