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ABSTRACT

Test results for five full-scale steel-concrete composite
beams incorporating cellular steel floor and sixteen push-out specimens
are reported. The measured strains and deflections of the beams are
compared to those computed assuming complete interaction, to those
computed from the C.S.S.B.I. Composite Beam Manual, and to those computed
from the A.I.S.C. effective section modulus. The elastic finite difference
method is used to analyse the composite beams in the elastic range. The
effects of thickness of concrete slab and stud arrangement on composite
beam performance are studied. The ultimate flexural capacity of each
composite beam is computed on the basis of the inadequate connection
model using the average ultimate strengths of the push-out specimens.
The computed theoretical ultimate flexural capacity is compared to the
measured ultimate moment and reasonable agreement is obtained. The
inelastic finite difference method of analysing composite beams through

the inelastic region is studied and reported on.
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CHAPTER I

INTRODUCTION

1.1 General

Composite beams have been used in construction for several
decades and many research studies have been undertaken on them(l7).
Steel-concrete composite beams possess recognized inherent advantages
due to the rational disposition of the two materials in respect to their
tensile and compressive strength and stability(26). The steel-concrete
composite beam is studied in this report.

Steel-concrete composite beams are composed of a concrete slab
and a steel beam, these two compcnents being connected together by means
of shear connectors. These shear connectors usually consist of some
device welded to the top flange of the steel beam and embedded in the
concrete slab. The shear connector can have many forms, but only the
stud shear connector is studied in this report.

Conventional steel-concrete composite beams are composed of a
solid slab connected to a steel beam. The studs are welded to the steel
beam and the slab is cast around and over the headed stud shear connectors.
A conventional composite beam is pictured in Fig. 1.1.

In the past decade, a different type of composite beam has become
widely used, and is the object of this study. This type of composiﬁe
beam evolved after the introduction of cellular steel floor to the
construction industry. The purposes of the cellular steel floor are to
act as "in-situ" formwork for the concrete floor slab, to act as the
working surface during construction, and possibly to act as in-floor ducts

for mechanical and electrical services. The possibility of obtaining

composite action between the cellular steel floor with concrete topping



solid slab /7

. 141 ' 1T T T 9

CONVENTIONAL COMPOSITE BEAM

FIG. 1.l

(cellular steel floor

NI NI nlnIinIinlnld

COMPOSITE BEAM INCORPORATING
CELLULAR STEEL FLOOR

FIG. 1.2




and the steel beam was suggested(z). This type of composite beam
incorporating cellular steel floor has been studied in subsequent reports
a, 2, 3, 11, Fig. 1.2 shows this type of composite beam.

In this second type of composite beam, the cellular steel
floor is laid on top'of the steel beams with the cells running transversely
to the direction of the span of the steel beams. Headed stud shear
connectors may then be welded to the steel beam through the cellular steel
floor at points of contact between the upper flange of the steel beam
and cellular steel floor. The concrete is then poured on top of the
cellular steel floor and around the stud shear connectors. This type
of composite beam has a cellular zone between the solid upper part of the
slab and the top flange of the steel beam. The cellular zone consists of
concrete-filled ribs of the cellular steel floor which may or may not
have a stud shear connector embedded in them.

The stud shear connectors extend from the top flange of the
steel beam through the concrete-filled rib of the cellular steel floor
and into the solid part of the concrete slab above the cellular zone.

The second type of composite beam, described above and pictured
in Fig. 1.2, incorporating cellular steel floor and stud shear connectors,
is studied in this report.

1.2 Composite Action

Interaction of the concrete slab with the steel beam, under
flexural loading, is a function of how the two components are connected
together. The connection must resist the shearing force developed along
the interface between the slab and beam. The relafive horizontal movement
between the slab and the beam is called slip. When no slip occurs, the
concrete slab and the steel beam are rigidly interconnected and complete

interaction is achieved. When the slab and beam are not rigidly inter-



connected, some slip occurs, and incomplete interaction results.

1.2a Conventional Composite Beams with Solid Slab

Conventional composite beams have a solid slab and no cellular
steel floor. Because the shear connection resists slip, it causes a
compressive force in the concrete slab and an equal tensile force in the
steel beam. This force, called the interaction force because it would
not be present if there were no interaction, cannot exceed the sum of the
ultimate strengths of the shear connectors. To assure the prevention
of premature beam failure due to shear connection failure, the sum
of the ultimate strengths of the stud shear connectors must exceed the
lesser of ASFy (the tensile strength of the steel beam) or 0.85 f'.ab
(the compressive strength of the concrete slab). When the shear connection
satisfies this minimum ultimate strength criterion, it is spoken of as
an adequate shear connection. An adequate shear connection has enough
strength to develop the full steel area in tension or the full concrete
area in compression, whichever is least.

For conventional composite beams with adequate shear connection,
slip is neglected in their analysis, and a working stress approach based

on the transformed section method is applicable 5, 18).

By transforming
the area of the concrete slab into an equivalent area of steel, and
analysing the beam as if it were composed of only one material, the analysis
effectively assumes a rigid shear connection. This assumed rigid shear
connection is a good approximation for conventional composite beams (3> 12),
The conventional composite beam with an adequate shear connection

-has an (idealized) elastic-plastic load-deflection behaviour as indicated

in Fig. 1.3. 1Its elastic load-deflection response is calculated assuming



complete interaction. Its ultimate load may be determined from a simplified
ultimate stress distribution as outlined in Reference 5. ‘
For a conventional composite beam with an inadequate shear
connection, the elastic load-deflection response can be calculated by
means of a modified section modulus as proposed for the revised A.I.S.C.
code(s), or by more compréhensive methods (9). The ultimate strength of
conventional composite beams with an inadequate shear connection can be
calculated on the basis of simplified ultimate stress blocks as outlined
in Reference 5.
In conclusion, for conventional composite beams with or without
adequate shear connection, the design and analysis is specified in structural

codes and is reasonably straightforward.

1.2b Composite Beams Incorporating Cellular Steel Floor

Because of the cellular zone separating the solid part of the
concrete slab and the upper flange of the steel beam, these beams behave
more flexibly than those composite beams having a solid slab. This is
because the shear connection is more flexible. Under flexural loading,
these composite beams respond with incomplete interaction. Their shear
connection is not capable of transmitting as large an interaction force
per unit of slip as does the shear connection of a con&entional composite
beam with the same overall dimensions and connector spacing. The idealized
elastic-plastic load-deflection response of a composite beam with incomplete
interaction is shown in Fig. 1.3. Fig. 1.3 shows that the idealized
elastic load capacity of this type of composite b eam is less than that
of the conventional composite beam for the same deflection. For this
type of composite beam, Fig. 1.3 shows a lower idealized ultimate strength

than the conventional composite beam.
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Fig. 1.3 shows that the load-carrying capacity of the conventional
composite beam and the composite beam incorporating cellular steel floor
is greater than that of the steel beam alone. The load-carrying capacity
of the steel beam alone is taken as a reference line because any beam
performance over this line reflects the additional contribution of the
interaction force on the resisting moment. Clearly, the interaction force,
being the compressive force in the slab, cannot exceed the sum of the
ultimate strengths of the shear connectors. The ultimate strength of
the stud-concrete rib-cellular steel floor shear connection is markedly
lower than the ultimate strength of a stud shear connector in a solid
s1ab(2), uhen the sum of the ultimate strengths of the shear connectors
between points of maximum and minimum applied moments is less than either

of 0.85f'cba or AF , the shear connection is spoken of as inadequate.

y?
Composite beams with cellular steel floor and stud shear
connectors typically have an inadequate shear connection because the
maximum strength of the connections may be much lower than the strength
of those in the solid slab.
For instance, a 3/4 in. diameter 3" long steel stud embedded
in solid concrete has an ultimate strength of about 2.5 x 11.5 = 28.8
kips(s). The same stud welded through 1-1/2 in. cellular steel floor
with concrete topping has an ultimate strength of only 11.3 kips.
The shear connection in composite beams incorporating cellular
“steel floor may be inadequate for another reason. It may not be possible
to place enough shear connectors in the beam because they can only be

located in the ribs of the cellular steel floor. In composite beams

with a solid slab, the connectors can be spaced very closely.



1.3 Object and Scope

The performance of composite beams incorporating cellular steel
floor is markedly different from that of conventional composite beams.

No provisions for their design or analysis are incorporated in the North
American codes at the time of writing this report. This paper is intended
to examine the performance of the composite beam incorporating cellular
steel floor and stud shear connectors, and to evaluate the application

of some existing theories to their analysis both in the elastic and
inelastic ranges.

Since the load-slip relation for the shear connection must be
prescribed for theoretical analysis of this type of composite beam, a
series of push-out specimens were tested. The construction and testing
of these push-out specimens is described in Chapter 2.

The testing and analysis involved the following phases:

1. From push-out tests, the obtaining of representative load-
slip relations for the four types of shear connections used in the test
beams.

2. The construction of five full-scale composite beams.

3. The testing of these five composite beams, measuring strain,
deflection, and slip on each.

4. The comparison of measured performances of the five beams
keeping in mind the differences intentionally built into them.

5. The theoretical calculation of the performance of the five
beams in the elastic range, using the load-slip relations measured in
the push-out tests.

6. The theoretical calculation of the ultimate strengths of the

five composite beams tested, using the inadequate connection model of



Reference 5 and using the ultimate strengths of the shear connections
from the push-out tests.

7. The theoretical calculation of the complete moment-curvature
curve for the five beams tested, following the elastic-plastic extension
of the Stiissi finite difference method(g).

Chapter 2 introduces and describes the experimental programme
concerned with testing the push-out specimens.

Chapter 3 describes how the beam testing was done, and presents
the results of the tests.

Chapter 4 introduces the theoretical methods of analysis and
presents the results of the theoretical analyses alongside the measured
results both in the elastic range and at the ultimate load.

Chapter 5 describes how the complete moment-curvature curve

of a composite beam can be theoretically generated and describes the

author's work in this field.
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CHAPTER II

PUSH-OUT TESTS

2.1 Introduction

A push-out specimen consists of two concrete slabs and a stub
length of steel beam connected together such that each flange of the
steel beam abuts one of the largest faces of the slab (see Fig. 2.1).
In the tests of this report, the push-out specimens have stud shear
connectors welded through cellular steel floor to each flange of the
steel beam. A concrete slab is cast around the studs adjacent to each
flange of the steel beam. After setting, the two slabs are seated along
one edge such that the axis of the steel beam is vertical. By pushing
the steel beam out from between the two slabs in a direction parallel
to the axis of the steel beam, a shear force is applied to the shear
connection on each side of the steel beam. As this shear force is applied,
slip develops between the steel beam and the slab. By measuring the
applied force and the interfacial slip, a load-slip relation for the
particular shear connection can be plotted. This load-slip relation
from push-out tests is one measure of the way in which the shear connection
will behave in the composite beam.

The load-slip relation is influenced by number and type of

(4, 12) (12)’

shear connectors , geometry of ribs(z), strength of concrete

flange thickness(lz)

, and length of embedment of the shear connector.
The principal variables studied in this report are number of shear
connectors in each shear connection, and stud shear connector embedment

length.

2.2 Description of Push-Out Specimens

The 16 push-out specimens tested are pictured in Figs. 2.1 and
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2.2. The following items were coﬁmon to all specimens:

Cellular steel floor; Type T-15, 18 ga., Q-deck

Steel beam s 12 b 19, or 10WF21

Studs ; 3/4" diameter, steel, 3" and 4" long

Reinforcing for slab; 6 x 6, 10/10 WWF
Twelve specimens incorporated a single rib of the cellular steel floor,
while 4 specimens incorporated multiple ribs. 1In 14 of the specimens,
single shear connectors and pairs of shear connectors were offset from
the centreline of the flange of the steel beam. In 2 of the specimens,
single shear connectors were located directly over the web of the steel
beam. The reinforcement of the concrete slabs was the same in all
specimens. The concrete strength differed from specimen to specimen,
but was not considered as a variable for study.

The 16 push-out specimens incorporated 6 different types of
shear connections:

1. Single 3 in. stud on each flange, offset, single rib, 4 in.
slab. (3 specinens) SR/S/3

2, Double 3 in. studs on each flange, offset, single rib, 4 in.
slab. (3 specimens) SR/P/3

3. Single 4 in. stud on each flange, offset, single rib, 5 in.
slab. (3 specimens) SR/S/4

4. Double 4 in. studs on each flange, offset, single rib, 5 in.
slab. (3 specimens) SR/P/4

5. Single 3 in. stud on each flange, on centerline, multiple
rib, 4 in. slab (2 specimens) MR/S/3

6. Double 3 in. stud on each flange, offset, multiple rib, 4

in. slab. (2 specimens) MR/P/3
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The concrete was a commercial "ready-mix'" ordered with a
maximum aggregate size of 3/4 in. and a nominal 28-day strength of
3,000 p.s.i. The mix was adjusted on delivery to give 1-1/2 in. slump.

The slabs were cast one side at a time, and cylinders from
each pour were fiested concurrently with the push-outs to determine both

the modulus of eclasticity and the crushing strength.

Table 2a

Shear Connection Crushing Strength Modulus of Elasticity
Type - See P.12 Slab I/Slab II Slab I/Slab II

1 4290 / 4340 3.19/3.23 x 106

2 4290 / 4340 3.19/3.23 x 10°

3 4050 / 4560 3.20/3.41 x 10%

4 4050 / 4560 3.20/3.41 x 106

5 3350 / 4432 3.33/3.82 x 106

6 3350 / 4432 3.33/3.82 x 10%

2.3 Instrumentation and Testing of Push-Out Specimens

The push-out specimens were instrumented so that the overall
slip between the slab and the steel beam, and the applied load, were
measured. Fig. 2.3a shows the location of the .0001 in. dial gauges
mounted on the first five specimens, while Fig. 2.3b shows those mounted
on the remaining 11. The four extra gauges on the first five specimens tested
(labelled gauges 1 to 4, Fig. 2.3a) were used to indicate at what load
first slip reversal occurred. First slip reversal indicates rotation of

the rib of concrete in which the shear connector is embedded. This



14

*ﬂ 6 DIAL GAUGES

s
L@,
ey

3,4

I | DEFLECTOMETER MEASURED
- "THIS DIMENSION

T T

| I

Nl 4 :

==

=4l |

Iz 2|,

| |

| |

FIG. 2.3.a

DIAL GAUGES
{,2,3,4, LEFT OFF

| — DEFLECTOMETER MEASURED
THIS DIMENSION

o=

/_\ﬂ/_'\
\ L__JJ:L\._.I

{

T L ras

FlG.2.32.b




15

rotation shows up on the dial gauges because the indicating angle bracket
(see Fig. 2.3a) begins to rotate. When the bracket rotates, it compresses
the dial gauge shaft causing a reduction in the reading of the dial gauge.
This reduction in the magnitude of slip being recorded on the dial gauge
is referred to as slip reversal.

Since the load at first slip reversal was found to be approxi-
mately coincident with that load at which sudden jumps of slip appeared
on dial gauges 5 and 6 (see Fig. 2.3b), only the latter two were mounted
on the remaining 11 specimens.

In addition to the dial gauges, an electronic deflectometer
was installed to measure the change in distance between a bracket on
the web of the steel beam and the test bed. The bracket was mounted on
the centreline of the web so that small rotation of the deformed specimen
during the test would not influence the deflectometer reading. The signal
from the deflectometer was used as the abcissa drive for a drum plottér,
the ordinate beiag driven mechanically from a load indicator.

The push-out specimens were tested in a 120,000 1b. Tinius-
Olsen Universal testing machine. Before testing each specimen, the bond
between beam flange and concrete slab was gently broken by jacking the
slabs apart.

Load was increased in 2,000 1b. increments up to first cracking,
pausing at each increment. Thereafter, the load was increased in finer
increments, after a steady state had been reached at each load level.

2.4 Results and OJbservations

The load-slip curves as measured for each of the 6 shear
connection types (see Section 2.2) are presented in Figs. 2.4 to 2.8.

Where the curve 4id not end on the page, an ultimate slip greater than
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that shown was developed. However, every shear connection reached a
maximum statically sustainable load within the extent of each load-
slip curve presented in Figs. 2.4 to 2.8.

Each load-slip curve demonstrated that the load on the shear
connection increases proportionally with slip up to the first cracking
load. This is the load at which the concrete rib containing the shear
connector cracks across the root of the rib, leaving the shear connector
head embedded in the solid slab. The concrete rib appears to suffer a
tensile failure in like manner to the development of a tensile crack at
the root of a concrete cantilever (see Fig. 2.9b).

After first rib cracking, a drop in load of 5 to 20 percent
occurred. This drop can be easily identified on the load-slip curves.
Application of more load from this point of reduced capacity after first
rib cracking resulted in increased slip and an increased resistance to
slip. The modulus of this increased resistance to slip after first rib
cracking was in every case lower than the original load-slip modulus.

The ultimate load of each shear connection was reached after slip developed
to a magnitude approximately six times that at first rib cracking.

The load-slip curve after first rib cracking is erratic because
of the effects of the broken concrete teeth binding between the intact
part of the sléd and the flange of the steel beam, and because of erratic
slipping of the cellular steel floor over the concrete.

A sumnary of the cracking loads and the ultimate loads is
presented in Table 2.b.

Figurz 2.9a is a picture of the push-out specimen before
testing. Figurz 2.9b shows the rib cracks fully developed. Figure 2.9c

shows the pattern of slab cracking that developed subsequent to rib cracking.
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TABLE 2.b SUMMARY OF RESULTS OF PUSH-OUT TESTS

- kips

Details of F' p.a.i. Load at lst Crack Maximum Static Load Ratio of Strength
Push-Out Specimens ¢ Static Maximum Total | Per Connection| Average |Pairs connectors
Slab I/Slab II per Single Connectors
a Connection
b
SR/S/3 - OF 429074340 0,57 21,0 10.5
0.64 24,0 12.0 1Y.3
0.83 23.0 113 1.50
SR/P/3 - OF 4290/4340 0.30 40.0 20.0
0.74 30.0 15.0 17.0
59 32 | 16.0
SR/S/4 - OF 4050/4560 0.57 35.0 | 17.5
0.68 36.0 18.0 17.7
0.59 35.0 375
1.44
SR/P/4 - OF 4050/4560 0.63 50.0 25.0
0.52 5250 26.0 25.4
0.66 50.0 25.0
MR/S/3 -~ OC 3350/4432 0.65 31.0 15.5
0.68 26.3 13.15 14.3
1.55
MR/P/3 - OF 3350/4432 0.60 40.0 20.0
0.57 49.0 24.5 22,2 x5~

4MR = Multiple rib;
4 = 4 in. long studs;

SR = Single rib;
OF = Offset;

P = Pairs of studs;
0C = Over centerline

S = Single stud;

bConnection means overall connection - not individual connectors

3 = 3 in. long studs;

(44
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Figure 2.9d shows the shear connector pulled out of the concrete slab.

After t(he ultimate load of the shear ccnnection was reached,
the load fell abruptly in the chear connections of the 4 specimens where
there was more than one complete rib(a). in the 12 single rib cpecimens,
the shear connections-demonstrated a further ability to sustain lLoad
even after the slab had developed the crack vattern of Figure Z.9c.

Eight of the 12 tests of single rib specimens were discontinued because
of rotation of the steel beam from its originally vertical position

due to failure of the shear connection on only one side of the steel beam.
Pull-out of the studs from the concrete slab was observed in 3 single

rib specimens with 3" studs. One tensile failure of a single 4 in. stud
was observed at a slip of 0.90 in.

The load-slip curves of the shear connections incorporating 3
in. studs, both singly and in pairs, showed a greater variation from
test to test than did the load-slip curves of the shear connections
incorporating 4 in. studs. This is evidently due to the longer embedment
length of the 4 in. studs and their greater subsequent dependence on
the more uniform tensile properties of the steel stud rather than on the
more predictable shear strength of the concrete slab.

Comparing the average static ultimate load for pairs of connectors
wich that of single connectors from Table 2.b shows that the performance
of the connection with pairs of connectors is from 1.44 to 1.56 times
that of the connection with single connectors. Therefore, two connectors
only develop 1.5 times the ultimate shear resistance of a single connector,
for 3/4 in. diameter stud shear connectors spaced laterally at 2-1/2 in.

on cermntre.
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The first cracking load from Table 2.b can be compared
to the maximum load developed on the shear connection. If the lowest
and highest ratios are discarded as being unrepresentative extremes,
then the first cracking load is from a minimum of 0.57 to a maximum
of 0.74 of the ultimate load.

The increase in load after first cracking was in every case
more for pairs of connectors than for singles. The ratio of increase
in load after first cracking for pairs of connectors to that for single
connectors is:

(a) 2.04 for the multiple rib specimens, 3 in. studs

(b) 1.50 for the single rib specimens, 4 in. studs

(c) 1.20 for the single rib specimens, 3 in. studs.
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CHAPTER III

COMPOSITE BEAM TESTS

3.1 Introduction

Five full-scale composite beams incorporating cellular steel
floor and stud shear connectors were tested. The principal variables
studied were number and arrangement of shear connectors in the shear
span (see Fig. 3.1), and embedment length of shear connectors. The
slab width and reinforcement, and the beam span and loading were kept
constant for all five beams. The slab depth, and number, arrangement
and length of shear connectors were varied. The concrete strength varied
from beam to beam because separate pours were required, but concrete
strength was not a variable for study.

Two types of cellular steel floor were used: 1-1/2" deep rib
without bottom cover sheet, and 1-1/2" deep rib with bottom cover sheet
(see Fig. 3.1a). The first three beams used only the cellular steel
floor without a bottom cover sheet. The last two beams used a blend of
the two types of steel floor. Alternate 24" widths of the cellular steel
floor on the last two beams had a bottom cover sheet. Since the stud
shear connectors were to be welded through the cellular steel floor on
all beams, it was not possible to place studs at locations on the last
two beams where there was cellular steel floor with bottom cover sheet.
This is because it is only possible to weld through the cellular steel
floor where the total thickness of metal does not exceed that of 18 ga.
material.

The first three beams are detailed in Fig. 3.1 and incorporate
one type of cellular steel floor uniformly ovef their lengths. Six,

9 and 12 studs respectively wereevenly spaced throughout their shear spans.



LyoddnNes

SR <= T i~ —[eeledls
LI —fo-|- |
J—ip— SIS, "V S . T . _
¥ |
WD W ST, Wil °5 ESER— 2
, N MN.
X ol 8
.miuy — P — e 26 —1&— 1 M M
= g
e e 0o} — 61— ,
1 : A
N ~—Jo-{—
.w.ii L T SN S T SRS W W _
§ . ‘ _dNlod
,_ avor]
<G
N
ﬁ
-.m.it B = Rt < 8 @
A
2A
t—t ot = o —
__
~ EREY il ™
i ' Z, T ~ o<t M
\0 ; g 1 M 4 i [ M M & |
TR 1 I ¢ | < < o
w o |l E |
m ﬁ qQ ﬁ _ 0 ,, n g
| I e |/ euaas o o
| | _ S| [
m _ R |
<+ _ | N
i H | mw |
| | ) _
| | Q!
N & Q| o
m Y
<3| n
SR 18 TS R IS gy
sl avor
SIS R ST — L  sel-—— - r—f SRS T _—
N Mﬁwa A T i
|
Ao {—foe— W“.& 6—{— >
N} R N
N —— .1@. - = e UO ]\y%~u - Ixﬁh‘w —— MO 5
i [~
S st b
N &M K0
” & SSSS— . ) . &t s
I\, S
, I*‘l = g e i i ﬁ.d@ s N i ﬁwv lls»‘li\\J T Y ]

27
TYNINON
I
,@Ni \\NL_
$
;;L$ 1
W Lg LY
Ce
Wy 1 £
, uw 3 6
A3 W
Enie ol
-..WI..-J
Yt _.1
T
ul 2
_ Q
3 -
R 0l%
b E ~
= | X 10
5MW _w “cgz
\ Y? _ I o2
m& < 5
el RN
o9 g
Juw _ A4«
éM >4
+31 ~19
\Q
| i
oy =
G. o
~ :/
e T u
TP
S5 3
S
= 0 o
IR
o | $¥
0. 1 as




28

Three in. long studs and a 4 in. deep slab were used in the first
three beams. Thz2se three beams had a total of 16, 22, and 28 studs
respectively, and were identical except for the number of studs in
their shear spans.

The fourth and fifth beams tested (Fig. 3.2) both had 12
stud shear connectors in the shear span, and incorporated the blend
of two types of cellular steel floor explained above. In both of the
beams, the 12 studs in the shear span are situated in two groups of six,
separated by a gap of 36 in. where there are no studs. 4As explained
above, the gap o 36 in. between studs in the shear span was necessitated
by the presence of a width of cellular steel floor with bottom cover
sheet, through which no studs could be welded. The fourth and fifth
beams had a total of 30 studs in each. The studs of beam 4 weré 3 in.
long and the slab was 4 in. thick. The studs of beam 5 were 4 in. long
and the slab was 5 in. thick.

The five beams designed in the manner described above permit
comparisons to be made between them. The first three beams, because
they are identical except for the number of studs, can be compared to
show the influence of number of studs. Comparison of beams 2 (12 studs
evenly spaéed) and 4 (12 studs, groups of 6) is intended to show how
large connector intervals affect beam performance. Comparison of beams
4 (4 in. slab) and 5 (5 in. slab) is intended to show how slab depth/

stud embedment influences beam behaviour.
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3.2 Description of Specimens and Materials

The five composite beams with cellular steel floor were
fabricated by zligning the deck pieces on the steel beam and securing
them in place by tempofary templates along the underside of the top
flanges of the steel beam. The studs were then welded through the
deck, and plywcod formwork for the concrete slab set in place and secured
by tie-rods through the open cells above the steel beam.

Prior to casting the siabs, the partially fabricated assemblies
were tilted up on one edge, after which the surfaces of the steel beams
were prepared for strain gauging. After the strain gauges were applied
and lead wires connected, the beams were lowered flat again, the reinforcing
mesh was set in place, and the slabs were cast. Curing for seven days
under wet burlap and plastic sheeting followed.

The fabricated properties of the composite beams are listed

in Table 3.a.
Table 3.a

Composite Beam No.: I 2 3 4 5
Deck Used: ' Ribbed Ribbed Ribbed Rib/Cell Rib/Cell
No. Tot. 16 28 22 30 30
Studs | Shear Sp. 6 12 9 12 12
Tensile 68,000 68,000 68,000 68,000 68,000
Length 3" 3" 3" 3" 4”
Designation 12B19 12B19 12B19 12B19 12B19
Steel Fy (FLG) 41.6 41.6 40.7 40.7 40.7
Beam Fy Web 46.7 46.7 46.3 46.3 46.3
Dimensions o/A 68 x 4 68 x 4 68 x 4 68 x 4 68 x 5
Conc.| f'c 4290 5670 5670 3890 3890
Slab
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3.3 Instrumentation

The beams were instrumented to measure the following parameters:

1. lozd applied,

2, deflection,

3. slip between slab and steel beam, and

4. strains over the entire cross-section.

Fig. 2.3 to 3.5 detail the position of strain gauges and slip
gauges. From 34 to 49 electric resistance foil strain gauges, each 1/4 in.
long, were used on the steel surface of each composite beam. Frdm 1 to
15 paper-backed electric reéistance filament strain gauges with 6" gauge
lengths were applied to the concrete top surface. The strain gauges were
located so as to:

1. mezsure the strain across the depth of the steel beam midway
between studs,

2, mezsure the complete strain profile of the full composite
beam including slab at each load point and at mid-span.

Strain on the steel beam was measured and recorded by a DATRAN
automatic digital recérder, typically at the rate of about 3 seconds per
gauge. The strain gauges on the concrete were read on a PICO manual strain
indicator via a manual switching box.

The load was applied by means of one 100,000 1b. hydraulic ram
through a load cell and spreader beam to two point loads located 66 in.
from each support. The load cell was connected to a digital-display
electronic voltmeter through circuitry that allowed the voltmeter to

read 1 millivolt per 10 1b. applied load.
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3.4 Test Procedure

Testing the five full-scale composite beams incorporated
two phases:

Phase One - Dead load and shrinkage strains were measured

in the steel beam while the slab was being poured
and then as it was curing.

Phase Two - Live load was applied to the beams, and load,

deflection, slip and strain were measured.

For Phase One of the beam test programme, the strain gauges
on the steel bezm at mid-span were monitored and read before casting the
slab, immediately after casting the slab, and then daily subsequent to
that. As the ccncrete cured and shrinkage occurred, the strains in the
steel beam were seen to change (see Table 3.b).

Phase Two of the test programme began with lifting the beam
into the loading frame. The load was applied by means of one 100,000
1b. hydraulic rem through a load cell and spreader beam to two point
loads located 6€ in. from eaéh support.

Fig. 2.6 shows the loading frame, the single hydraulic ram,
the load cell directly beneath it, and the spreader beam which bears
on two points or. the top surface of the composite beam. A schematic
diagram of the two-point loading arrangement is shown in Fig. 3.6.

The strain recording instrument that had been used to measure
dead load and shrinkage strains was re-zeroed before any live load was
applied. Load was applied in 2,000 1b. increment; while a graphical
check was maintzined on increasing strains and deflections at mid-span
and at the load points. Subsequent to the onset of yielding on the

bottom flange, the beam was allowed to relax to a steady state capacity
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before each new load increment was applied. No cycling of the load
was carried out intentionally.

After the beam was well into the yield region, loading was
controlled by increments in deflection. Testing was discontinued
when the dgformation resulted in complete collapse or when it became
apparent that further deformation presented too great a hazard to
personnel. For all five beams, the test continued until at least
several points on the falling branch of the load-deflection curve were

obtained.
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3.5 Results anc Observations

In Phase One of the beam testing programme, mid-span strains
were monitored before and after pouring of the slab, and during slab
curing.

The cead load and shrinkage strains are presented in Table 3.b.
In the same table, the strain difference over the depth of the steel
beam is listed as a measure of curvature. The curvature is seen to
decrease during wet curing, only to increase again during the drying
out and shrinking of the slab. By subtracting these dead load and
shrinkage-induced sfrains from the nominal yield strain, a strain difference
available for live load is arrived at.

The tottom fibre strains are seen from Table 3.b to increase
in tension as curing progressed, narrowing the strain difference between
dead load strain and yield. The bottom fibre strain of beam No. 1
increased from +220 micro-inches under the dead load of the wet concrete
to +324 miéro—inches after 41 days of curing, during which time no
live load was ezpplied. This increase of 104 micro-inches is significant
when compared to a total allowable strain difference between no load

and allowable load of Fy/E = 1,300 micro-inches.
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TABLE 3.b

Strains in Steel Beams Due to Dead Load of Wet Ccncrete and While Concrete

is Hardening/Shrinking

BEAM STRAIN TOTAL DAYS ELAPSED
- 0 7 14 41
NO. GAUGE AFTER PLUS 7 DAYS PLUS 7 DAYS PLUS 27 DAYS
POURING WET CURING DRY CURING DRY CURING

Top =202 - 81 -103 -182

i ) Bottom +220 +263 +281 +324
Diff. 422 334 384 506
Top -218 L7 -219

2 Bottom +242 +275 +305 n.a.
Diff. 460 449 524
Top =222 -121 -171

3 Bottom +239 +357 +388 n.a.
Diff. 461 478 559
Top -183 -143

4 Bottom +219 +222 Nea. N8
Diff. 402 365
Top =273 =245

5 Bottom +307 +317 n.a. Neas
Diff. 580 562

n.a. - not available

Note: Top strains are averaged from two
gauges, bottom strains from three

’,,,d,—f”" gauges, located as shown. Gauges
are at mid-span.
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In Phase Two of the beam testing programme, applied load,
deflection, slip and strains were measured as a two-point live load
was applied to the beams. The deflection, slip and bottom and top
fibre strains are plotted as functions of position on the beam and
applied load in Figs; 3.7 to 3.17. The moment-curvature curves are
shown in Fig. 3.18, and the strains across the top surface of the
slab of beam 3 are shown in Fig. 3.19.

As explained earlier, the live load was applied by means of
a single loading ram acting at the centre of a spreader beam (see Fig. 3.6)
which was supported on the top of the test beam at two points. There-
fore, the test beam was not forced to deflect equally at the load points,
and as a result one load point tended to deflect more than the other.
This is the reason that the measured slips and strains plotted in Figs.

3.8 to 3.17 are not symmetrical about the mid-span of the beams.
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Fig. 3.7

Mid-Span Deflection as a Function of Total Applied Load - Beams 1 to 5

Beam 1 exhibits a lower load-deflection curve than do the
other four beams. Beam 5 exhibits a higher load-deflection curve than
do the other four beams. The load-deflection curves for beams 2, 3
and 4 are very close together up to a deflection of 4 in. The shear
connection and slab dimensions are as follows for the five beams:

Beam 1: 6-3" single studs in each shear span, 68" x 4" slab

Beam 2: 12-3" studs in pairs in each shear span, 68" x 4" slab

Beam 3: 9-3" single studs in each shear span, 68" x 4" slab

Beam 4: 12-3" studs in two groups of three pairs in each shear

span, 68" x 4" slab

Beam 5: 12-4" studs in two groups of three pairs in each shear

span, 68" x 5" slab.

Each beam deflected elastically up to a certain load, after
which the deflection increased in a smooth curvilinear manner up to the
ultimate load of the beam. At the ultimate load, the deflection increased
without any increase in load. For beams 1, 2 and 4, this load-deflection
plateau lasted through approximately 2 in. of vertical deflection. Beams
3 and 5 did not exhibit any significant post-ultimate load-deflection
plateau, but instead begén to unload immediately after the ultimate‘load
had been attainad. -

The unloading of each beam was gradual and no severe or sudden
increases in deflection were observed. Except for the test of beam 3,
the tests were aventually discontinued because of instability of the

loading apparatus, not because of complete breakdown of the beam.
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After 8 in. deflection of beam 3, the loading ram was unexpectedly
forced down too quickly, and catastrophic failure resulted.

From the load-deflection plots (Fig. 3.7), it can be seen that
first yielding of the beams occurred at from 60 to 70% of their ultimate
loads. Qualitatively, first yielding of the beam is evident when a
deflection occurs noticeably greater than the extension of the original
linearly elastic load-deflection line would predict.

The ccncrete slab remained entirely intact according to visual
inspection up tc a load of from 0.85 to 0.92 of the ultimate load. At
this point, the concrete slab began to break down, as evidenced by one
or more of three types of cracking.

A. Longitudinal Slab Cracking (see Fig. 3.7a)

This crack begar. on the top surface of the slab as a hairline separation,
probably due to transverse tension, originating under one or both load
points at the centreline of the slab. It extended either way longitudinally
from the loading pads, becoming longer as the load was increased. Even-
tually this crack extended from each loading pad to the ends of the beam
and through the mid-span area. This longitudinal crack never opened
beyond a hairline and so is considered as relatively unimportant. This
crack was probably due to transverse tension across the slab caused by
anti€lastic curvature of the slab. Such an effect would very likely not
be present in a complete floor system consisting of several beams with
a slab spanning continuously at right angles to them.

Point A on Fig. 3.7 indicates the first indication ofvlongitudinal

cracking.
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B. End Connector Restraining Cracks (see Fig. 3.7b)

Because the slip increased towards the supports, the end connectors were
deformed to the greatest extent. These end connectors tended to restrain
a horizontal lens of concrete below their heads. The part of the slab
above their heads tended to ride over these end connectors in a direction
parallel to the axis of the steel beam. As a result, cracks of the type
pictured in Fig. 3.7b formed.

This crack was originally of a shearing nature but tended to
open up to a maximum of about 1/4" very late in the testing. Point B
marked on Fig. 3.7 indicates the first indication of these end connector
restraining cracks.

C. Flexural Cracks (see Fig. 3.7c)

These cracks in the slab originated on the underside of the solid part
of the slab and progressed upward at a decreasingly acute angle to the
horizontal, much in the same way as flexural tension cracks propagate
in ordinary reinforced concrete beams. Several of these cracks developed
in the region of the load points on every beam. Fig. 3.7c shows the form
of several of these cracks and indicates that their form is bifurcated.
These flexural cracks in the slab, as apparent from external
observation, extended upward and inward to within 1/4 in. of the top
surface of the slab before very much unloading had occurred.
As pictured in Fig. 3.7d, these flexural tension cracks ultimately
extended through to the top surface of the slab, resulting in a sudden
loss of interaction and a steeper unloading. The initial indication of

flexural cracking is marked on Fig. 3.7 as C)) and Cay for beam 2, ete.
1z |
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Fig. 3.8

Bottom fibre strainm as a function of position on the beam and

as a function of total applied load - Beam 1

Brealdown of interaction between the slab and steel beam was
most advanced at the left-hand load point of Fig. 3.8 at the ultimate
load of 47.4 kips. However, complete breakdown of interaction occurred
at the right hznd load pocint subsequent to the attainment of ultimate
load. This is evidenced by the very large bottom fibre étrains that
developed at the right hand load point.

A solid straight line is drawn at a strain of 1240 micro-inches
per inch to rarresent the yield strain. This was achieved at mid-span
at a total applied load of 31 kips. For loads greater than this, the
strain is seen to increase very quickly in the regions of the beam where

the strain is greater than 1240 micro-inches per inch.
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Fig. 3.9

Bottom Fibre Strain as a Function of Position on the Beam and as a

Function of Total Applied Load - Beam 4

Breakdown of interaction, as evidenced by the high locali;ed
strains under the right-hand load point, was not as far advanced in
this beam as it was in beam 1 at an equal total applied load. Therefore,
the shear connection of beam 2 (12 studs in the shear span) caused more
complete interaction than did the shear connection of beam 1 (6 studs
in the shear span).

It can be observed that the strains at ultimate load were
very high (about: 5 times the yield strain) in a localized region of the
shear span directly beneath the load points. This was not the case with
the weaker shear connection of beam 1 (Fig. 3.8), where the region of
high strains was more extensive and occurred slightly inward from the

load points.
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Fig. 3.10

Bottom Fibre Strain as a Function of Position on the Beam and as a

Function of Total Applied Load - Beam 3

The strains were higher for the same total applied load than
those of beam 2, and lower than those of beam 1. The localized region
of high strains at ultimate load occurs inward from the load point,

and is more extensive than that of beam 2.
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Fig. 3.11

Bottom Fibre Strain as a Function of Position on the Beam and as a

Function of Total Applied Load - Beam 4

The strains of beam 4 at ultimate load were about 2.5 times
those of beam 2, both beams having 12 studs in their shear spans. The
region of very high strains around the load point was much more extensive
in this beam than in beams 1, 2, or 3. As evidenced by the higher
strains, the breakdown of interaction on beam 4 at ultimate load was

much more severe than on any of the beams 1, 2 or 3.
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Fig. 3.12

Bottom Fibre Strain as a Function of Position on the Beam and as a

Function of Total Applied Load - Beam 5.

The strains of beam 5, for an equivalent total applied load,
were very much less than on any of beams 1, 2, 3, or 4. The zone of
high strain was as extensive as it was on beam 4, and extended inward
from the load point approximately to the same extent as on beam 4. At
a total applied load of 50 kips, the strains of beam 4 are twice those

of beam 5.
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Fig. 3.13

Slip as a Function of Applied Load and as a Function of Position on

the Beam - Bean;}

The slip increased from zero at mid-span to a local maximum at
the load points, and then to an overall maximum at the support points.
The slip is seen to be very low (less than .0l in.) for total applied
loads of 25 kips or less. The slip increases very rapidly for loads
greater than 25 kips up to 0.2 in. at ultimate load. The figure 25 kips
load is significant because in Chapter IV, the working load is shown to
be less than 25 kips.

The load-slip curves for the shear connections as measured in
the push-out tests (section 2 of this report) indicate that the shear
connection reaches a maximum load at a slip of about 0.06 in. A horizontal
line at this slip is drawn on Fig. 3'13ﬂ The measured slip at each shear
connector at a total applied load of 4}.4 kips (ultimate) is greater than
.06 in., except at one stud in the right-hand shear span. Therefore,
at ultimate applied load, each shear connector except one is loaded to
its maximum capacity.

Some slip revérsal can be noted at a total applied load of
40.5 kips in the left-hand shear span. Slip reversal could be due to
the cellular steel floor separating from the concrete rib and the
consequent incorrect measurement of slip.

The slip measured at the ends of the beam was thought to be
more reliable than the slip measured at points along the underside of
the slab. This is because, at the ends of the beam, the mid-height of

the slab is exposed and its movement can be measured relative to the
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steel beam. On the underside of the slab, the differential longitudinal
displacement between the underside of the cellular steel floor and the

steel beam is measured. If the cellular -steel floor separates from the
concrete, this slip measurement is no longer accurate. For this reason,

no significance is attached to slip reversal.
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Fig. 3.14

Slip as a Func:ion of Applied Load and as a Function of Position on the

Beam - Beam 2

The slip increased from zero at mid-span to a maximum about
midway through the shear span, and then decreased slightly towards the
support points of the beam. The slips measured on beam 2 were quantitatively
about half of those measured on beam 1. All of the studs in the shear
spans reached their ultimate shear capacities at the beam's total ultimate
applied load, because the slip at each stud is greater than .06 in.

No slip reversal was measured, and the slip remained less than

.01 in. for loads less than about 30 kips.
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Fig. 3.15

Slip as a Function of Applied Load and as a Function of Position on

the Beam - Beam;i"

The slip increased from zero at mid-span through a local
maximum at the load point and to an overall maximum at the end of the
beam. The local maximum at the load point was also observed on beam 1.
The slip at one point in the right-hand shear span showed a reversal in
direction beéinaing at a total load of about 45 kips.

At the ultimate total applied load, the slip at all studs
was not up to .06 in. This indicates that the maximum possible shear
force may not b2 developed in the shear span at the ultimate load of the
beam.

The slips measured on beam 3 were slightly lower than those
measured on beam 2, and remained less than .0l in. everywhere on the

beam for loads less than about 40 kips.



63

SdiIX - a¥07 N7 d37ddVY

,w. o oIy
- $ gug
} J I | E | |
=
—_—l 1 — m J
‘I
9
&S _
'll‘ll 4
— o ~
o —|— T
R T | =
/ s
l'l.]
—a
I'\.[
Lldal A [
n
s ﬂ
1)}
W
O
o I
0
T
S
l‘l\l O
I
]
IIIY)»‘I J
ﬁ 1d-al . A
lvl?.a. .
i ,wo =
.
‘I‘llo s
SN )
|’l.° Ll
, |
N P !
I'II.?I‘ g “
e 1 I L S ! __
— ) S -
3 o o o 2 o
. SIHDNI NI 4171¢

20.0

MEASURED SLIPS - BEAM 3

FiG. 8.15




64

Fig. 3.16

Slip as a Function of Applied Load and as a Function of Position on

the Beam - Beam 4

As in beam 2, which also had 12 studs in the shear span, the
slip increased from zero at mid-span to an overall maximum in the left-
hand shear span. From this point the slip decreased toward the end
of the beam.

For loads up to about 50 kips, the slips measured on beam 4
were only slightly greater than those measured on beam 2 for the same
applied load. At ultimate load, approximately 55 kips for beams 2 and
4, the slips of beam 4 were about 4 times those of beam 2.

The slip had progressed far enough at ultimate load so that
all the studs saould have developed their maximum shear Eorces.

No slip reversals were measured, and at about 30 kips applied

load, the slip was in places greater than .01 in.
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Fig. 3.17

Slip as a Function of Total Applied Load and as a Function of Position

on the Beam - Beam 5

As on beam 4, the slip increased from zero at mid-span to an
overall maximum at the mid-point of the 36 in. interval between studs
in the shear span, for loads up to and including the ultimate load.

All measured slips of beam 5 are less than those of beam 4 for the same
total applied load.

All of the studs in the right-hand shear span and all but the
inntermost péir of studs in the left-hand shear span had reached ultimate
shear force at :the total ultimate applied load of the beam.

At 30 kips load, the slip approached .0l in. No slip reversals

were measured.
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Fig. 3.18

Applied Moment vs. Measured Curvature for the Steel Beam - Beams 1 to 5

Moment vs. curvature curves show the (post-ultimate) ductility
of the beams. Curvature is calculated by dividing the strain difference
across the depth of the steel beam by the depth of the steel beam.

(14)as the ratio of

The ductility factor of a beam is defined
the member deformation at unloading to the fictitious elastic member
deformation at the ultimate load of the member (see paft 4.8 of this
report). Unloading is loss of load to below 0.95 of the ultimate member
load.

The fictitious elastic member deformation is found by extending
the elastic part of the moment-curvative curve up to intersect the
horizontal projaction of the ultimate load level attained. Calculating

the ductility factor on this basis, the following ratios are obtained

for the five beams:

Beam L - 16.0
2 = 11.7
3 =~ 6.3
4 - 14.3
5 = 5.7

As can be seen from Fig. 3.18, the moment-carrying capacity of
beams 3 and 5 drops off relatively more quickly than do the curves for
the other three beams. This is reflected in a lower ductility factor

listed above for beams 3 and 5.
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Fig. 3.19

Strain in the Top of the Slab as a Function of Total Applied Load

for Each Load Foint and for Mid-Span - Beam 3

Four strain gauges were attached across the width of the
slab at each lcad point, and 7 strain gauges were attached across the
width of the slab at mid-span.

At mid-span, the concrete slab strains were uniform across
the width of the slab up to and after ultimate load. At each load
point, the strains remained uniform across the slab up to a total load
of 40 kips for the east load point, and up to about 30 kips for the
‘west load point.

The strains at the load points were significantly higher
than those at mid-span for loads greater than about 10 kips. This is
consistent with earlier findings(B), which show that the extreme fibre
strains at mid-span do not increase very much after first yielding of
the beam, whereas the extreme fibre strains under the load points increase
very quickly after first yielding of the steel beam. Yielding of beam 3
began at about 35 kips and progressed until 56.0 kips when the beam was
at its ultimate load. At 35 kips, the average slab strain at mid-span
was about 250 micro-inches, and at the full ultimate load of 56.0 kips,
the average mid-span strain was about 650 micro-inches.

Between the same loads, the strain at the ioad points increased
from about 300 micro-inches to about 1,000 micro-inches. The latter
figure is an approximate average of the measured edge strains and the
projected centrzline strain at the load point.

The me2asured slab strains for beam 3 show that the full slab
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width of 68 inches is equally strained and therefore effective ét
‘mid-span at the ultimate load. Under the load points, however, at
ultimate load, a region of high compressive strains developed close to
the centreline of the slab. This strain concentration at the centreline
of the slab at the load points was not in evidence at the working load

of the beam (less than 25 kips).
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General Observations on Beam Testing

As loading of the beams progressed, the steel beam yielded
at about 30 kips for beams 1 to 4, and at about 40 kips for beam 5.
After yielding of the steel beam, the concrete slab began to crack as
indicated on Fig. 3.7. The cracking began and continued gradually and
without any sudden effects. As the deflection increased and the ultimate
load was approached, concentrated rotations were noticeable at the load
points by viewing the beam in elevation. The beams remained structurally
sound through the ultimate load. Unloading was in every case gradual,
but faster in beams 5 and 3. No web or flange buckling was noticeable
on any of the five beams until well after unloading had begun.

The concrete slab continued to provide lateral support for
the steel beam, up to an estimated deflection of 13 in. in the case of
beam 3, before lateral buckling occurred. Fig. 3.20 shows beam 3 after
collapse.

A tendency was observed in all beams for the ribs of the
cellular steel floor to deform locally around the base of the individual
studs, eventually resulting in ripping of the metal sheet as shown in
Fig. 3.21. This ripping did not occur until very late in the test of
beam 3, and not at all in the other beams, but the tendency was evident
in all tests.

Between locations on the steel beam where the slab was held
down by the shear connectors, the slab showed a tendency to lift off the
top flange of the steel beam. For beams 1 to 3, ;he gap that developed
between the top flange of the steel beam and the bottom of the cellular

steel floor was small, but for beams 4 and 5, the gap increased to an
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estimated 3/8 in. This gap occurred in the 36 in. interval between
shear connectors in the shear span.

The tendency of the slab to 1lift off the steel beam is the
reason that shear connectors must be capable of resisting uplift.
Studies have been made(lg’ 20)of the uplift stresses in shear connectors,

but it is now common design practice to neglect any effects of uplift.
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CHAPTER IV

ANALYSIS OF TEST RESULTS

4.1 Introducticn

Analysis of composite beams incorporating cellular steel floor
is accomplished on the basis of certain assumptions. For example, if
slip between the concrete slab and the steel beam is assumed to be
negligible, then calculation of the strength of the composite beam is
made using the transformed section. Analysis on the basis of the
transformed section implies that no loss of interaction between the
concrete slab and steel beam occurs.

If, on the other hand, loss of interaction is to be taken

into account in the analysis of the composite beam, then the shear force
vs. slip relation of the shear connection must be known or assumed.
If a linear shear force vs. slip relation is assumed, then the continuum
analysis due to Newmark et al(lz)may be used. If a trilinear shear force
vs. slip relation is assumed, then the finite difference analysis of Dai
and Siess(g)may be used.

The analysis of test results is done in this paper at two levels
of load; working load and ultimate load. Working load is defined as
the live load at which the bottom fibre steel strain reaches the elastic
allowable strain. Ultimate load is the maximum static live load that

the compoéite bzam can carry.



77

4.2 Determination of Working Load

The elastic allowable strain for the steel beam is 0.66 of
the yield strain; Since the working load is the load causing the steel
strain to reach the elastic allowable strain, the designer must establish
a numerical value for the elastic allowable strain. This can be done if
the actual material properties of the steel are known, if the strain
in the steel caused by shrinkage of the concrete slab is known, and if
the strain in the steel due to the dead load of the wet concrete slab
is known.

A designer is usually equipped with only designbmaterial properties
rather than actual material properties (see Table 4.a). The designer can
usually calculate what strain in the bottom fibres of the steel beam is
caused by dead load, but he cannot estimate the strain induced in the
steel beam due to shrinkage of the concrete.

The difference between design and measured material properties

for the G40.12 steel beam used in these tests is as shown in Table 4.a.

Table 4.a
Design Measured by Coupon Tests
E 29 x 100 p.s.i. 33 x 106 p.s.i.
fy 44,000 p.s.i. 40,700 to 46,700 p.s.i. (see Table
3.a )
Ey 1510 x 1076 /1IN 1240 x 107% to 1410 x 1076 INAN

The shrinkage of the concrete slab, the application of the
dead load of the slab to the steel beam alone, and the application of live

load to the composite beam, all affect the allowable strain in the bottom
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fibre of the steel beam. This effect is shown schematically in Fig. 4.1.
The broken line on Fig. 4.1 indicates the beam response to

applied load. If shrinkage-induced strains are neglected, the designer

has a strain available up to yield for dead and live load of 44,000/

29 x lO6 = 1510 x 1076 IN/IN (abcissa A, Fig. 4.1). A strain of 0.66 of

this 1510, or 1000, is allowed to be used under working loads (abcissa B,

Fig. 4.1). If the strain caused by dead load is subtracted from the

6 -6

1000 x 10~ IN/IN is available for

IN/IN allowable, then only 780 x 10
live working load (abcissa B minus abcissa C, fig. 4.1, with the strain
due to dead load equal to 220 x 10™° IN/IN).

If shrinkage strains are included in this discussion, they
would reduce the allowable strain by a small amount (abcissa D, Fig. 4.1).
In the calculation of working loads to follow, shrinkage strains will be
neglected.

The tests of this report were performed in the live load range
(labelled on Fig. 4.1), and began at origin @' on Fig. 4.1. The straight
solid lines on JFig. 4.1 marked "complete interaction'", '"C.S.S.B.I." and
"A.I.S.C.", are three theoretically-computed load-strain relations. These
lines will be referred to again later.

In the live load region, the bottom fibre steel strains are as
shown in Fig. 4.2, as measured under one load point during the beam test.
The strains of Vig. 4.2 do not demonstrate a definite yield point as did
the coupon strains. The absence of a distinct yield point was very likely
caused by residual strains preéent in the steel before testing.

It should be noted that it is not absolutely necessary for the
steel to demonstrate a definite yield point as long as an adequate load

factor can be obtained on beam failure.
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On Fig.4.la are drawn vertical lines corresponding to line B
of Fig. 4.1. These lines would be drawn at the measured allowable
strains shown in Table 4.b for each of the beams.

Table 4.b

Determination of Working Load Inéluding Effect of Dead Load Strains

Beam ' 1 2 3 4 5

lower flange yield strain

(static yield from coupons) 1240 1240 1240 1240 1240
0.66 of yield strain | 820 820 820 820 820
less strain under load point due 208 208 208 208 264

to dead load of wet concrete

measured allowable strain for 612 612 612 612 556
live load

working live load from Fig. 4.1a  18.5 20.0 19.5 22.0 20.0
at measured allowable strain

From Table 4.b, the measured working total live loaas range
from 18.5 to 22,0 kips. These measured working loads can be compared
to design working loads. Design working loads can be calculated in
accordance with: |

(a) complete interaction,

(b) C.S.S.B.1. Composite Beam Manual(lo), and

(c) A.I1.S.C. effective section modulus(g).

The calculations (a), (b), and (c) above can be explained
as follows:

(a) Complete Interaction

Using Eg = 29 x 106 p.s.i., n = 9, calculate I of transformed section
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(see Appendix (a)). Using Fy = 44,000 p.s.i., calculate useable strain
difference between dead load strain and 0.66 of yield strain. Calculate
the live load on the beam which will give this useable strain difference.
This is the working live load.

(b) C.S.S.B.I. Composite Beam Manual
Using Eg = 29 x 106 p.s.i., n = 9, the procedure given in Reference 10
allows‘the designer to calculate stress and deflection efficiency factors.
These efficiency factors are less than 1.0 and are used to reduce the
section modulus and.the moment of inertia of the transformed section.
Using the reduced section modulus, the designer can calculate what live
load will cause the bottom fibre steel strain to equal the strain
difference available for live load. This load is the working live load
(see Appendix (b)).

(c) A.I.S.C. Effective Section Modulus
The A.I.S.C. effective section modulus is equal to that of the steel
beam alone plus a fraction of the difference between the transformed
section modulus and the section modulus of the steel beam alone. The
section modulus of the transformed section is calculated on the basis
of Eg = 29 x 10° p.s.i. and n = 9. Using this effective section modulus,
the designér can calculate what live load is required to cause the
bottom steel fibre strain to equal the strain difference available for
live load. This load is the working load (see Appendix (c)).

The measured and computed working loads are shown in Table
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Table 4.c
Beam Total Working Live Load (kips)
Measured Complete Interaction €.8:5.B:1. A:T58.0;
il 2 3
1 18.5 2576 22.6 18.0
2 20.0 25.6 22.6 1953
3 I 19.5 25.6 22.6 19.3
4 22.0 25,6 22.6 19.3
5 20.0 26.4 23.2 20.1

L, 253 =~
For calculations leading to these working loads, see

Appendices (a), (b), and (c¢) respectively.

Note that the four working logds as listed above for each of
the beams are all determined on the same basis. That is, dead load
strains are accounted for in each calculatioh. The measured working
loéd is low compared to the C.S.S.B.I. value because the flange

yield stress of the beams was only 41.6 ksi and not 44 ksi.
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4.3 Load-Strain Behaviour in the Working Load Range

Fig. 4.1 is a schematic representation of the complete load vs.
strain history of a composite beam through dead load, shrinkage, and
live load. Figures 4.2 to 4.6 show the measured load vs. strain behaviour
as the live load was applied to the five beams during testing. The origin
of the measured load vs. strain curves of Figs. 4.2 to 4.6 corresponds
to point 0' on Fig. 4.1. The bottom fibre strains plotted in Figs. 4.2
to 4.6 were measured under the load point at which failure finally
occurred.

On Figs. 4.2 to 4.6 are drawn four solid load vs. strain lines
that can be compared to the measured line. The four load vs. strain
lines are determined by:

(a) "complete interaction" (Es = 29 x 10% p.s.i., n=9,
transformed area section modulus)

(b) "in accordance with the C.S.S.B.I. design" (Eg = 29 x 106
p.s.i., n = 9, reduced section modulus) |

(c) "A.I.S.C. effective section modulus"

(d) "steel beam alone'.

The calculations leading to (a), (b) and (c) above are briefly
explained in section 4.2, and detailed calculations are listed in Appendices
(a), (b) and (c) of this report.

The dashed load-strain line on Figs. 4.2 to 4.6 represent the
line of complet: interaction if the measured values of Eg and E. are
used (Eg = 33 x 106 p.s.i., E. = 3.19 x 10% p.s.i.).

In addition to the four theoretical loa&—strain lines shown
in Figs. 4.2 to 4.6 are two horizontal lines at the upper and lower
theoretical working loads. These two lines represent the extremes of

the theoretical working loads calculated in Table 4.c.
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Fig. 4.2

Bottom Fibre Strain at Load Point vs. Applied Load - Beam 1

The efficiency of the beam at a particular load is measured
by the increase in strain from that for complete interaction divided
by the strain.for complete interaction. |

Beam ). demonstrated the lowest efficiency of any of the five
beams. This indicated that the shear connection of beam 1 was the
weakest of the five beams.

The strain calculated in accordance with the C.S.S.B.I. Manual
over-estimated the bottom fibre strain produced at a given load. 1In
other words, the C.S.S.B.I. is conservative in its strain calculation.
The C.S.S.B.I. Manual assumes AsFy/18.8 = 14 studs in each shear span.
Beam 1 had only 6 studs in each shear span, and therefore had a
comparatively weak shear connection. The fact that the C.S.S.B.I.
overestimated the strain produced at a given load for a beam with a
very weak shear connection speaks in its favour as a design procedure.

The A.I.S.C. effective section modulus overestimated the
measured bottom fibre strains by about 307% in the working load range.
This error, although on the conservative side, is too great, especiall&
when applied to a beam with a very weak shear connection such as beam 1.

Prediction of strains that are too high results in under-
estimation of working load (see discussion of Fig. 4.3).

Fig. 4.2 is somewhat misleading because the measured load-strain
curve follows the theoretical load-strain curve labelled ''complete
interaction". 7This fact is misleading because thé shear connection of
beam 1 is known to be very weak, consisting of only 6 single studs

in the shear span. Because the shear connection is very weak, some loss
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of interaction would have been expected for every apblied load. Up
to a load of 12 kips, however, no loss of interaction was measuredi

| The true steel and concrete properties méy not bé equal
to those used in calculating the strain predicted by the line labelled
"complete interaction'. In fact, the measured values for Eg and E.
were quite different from those assumed in calculating the strain of
the line labelled '"complete interaction" (see Table 4.a). The load-
strain line labelled 'complete interaction - measured material properties"
may in fact be &z truer representation of complete interaction. The
measured strain is seen from Fig. 4.2 to be greater than the strain
of the line labelled "complete interaction - measured material properties",
as would be expected.

However, the load-strain line labelled "in accordance with the
C.S.S.B.I. design" is dgrived from the complete interaction line and
therefore is based on design material properties. For this reason, the
load-strain line labelled "complete interaction' must be shown on

Fig. 4.2.
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Fig. 4.3

Bottom Fibre Strain at Load Point vs. Applied Load - Beam 2

Beam 2 had 12 studs in the shear span in 6 pairs. Beam 2
demonstrated a greater efficiency than that of beam 1. This is indicated
by the tendency for the lower fibre strains to be equal or below those
of complete interaction, whereas the strains of beam 1 were equal to
or above those of complete interaction.

The calculations based on the C.S.S.B.I. produce bottoﬁ fibre
strains about 157 greater than the measured strains through the working
load range.

The strains calculated using the A.I.S.C. effective section
modulus are about 30% greater than the measured strains.

Overestimation of theoretical strain values may lead to an
underestimation of working load. The theoretical allowable live load
strain difference for beam 2 is 792 x 107® in/in (see Appendix a.).
From Fig. 4.3, the theoretical load at which the strain reaches 792 x
10-6 in/in is 25.6 kips for complete interaction, 22.5 kips according
to the C.S.S.B.I., and 19.0 kips according to the A.I.S.C. effective
section modulus.

The measured allowable live load strain difference, however,
was only 612 x 1076 in/in, based on the coupon test yield (see Table
4.b). The measured load producing the bottom fibre strain of 612 x
1076 in/in was 20 kips. Therefore, because the steel used for these
tests had a low flange yield stress (41.6 ksi compared to a nominal
44,0 ksi) as measured by coupon tensile tests, the measured allowable
live load strain difference was lower than the design value. It

happened that the working load calculated by means of the A.I.S.C.
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effective section modulus was the closest approximation to the measured
working load detzrmined on the basis of the reduced yield strain.

If, however, the yield of the steel had been 44.0 ksi, then
the measured working load would have been about 25.0 kips, and both the
A.I.S.C. and C.S.S.B.I. calculations would have underestimated the
allowable load by 247 and 107 respectively. For most composite beams,
then, the A.I.S.C. and the C.S.S.B.I. metﬁods of analysis would be

expected to give very conservative values of working load.
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Fig. 4.4

Bottom Fibre Strain at Load Point vs. Applied Load - Beam 3

Beam 3 had 9 single shear connectors in the shear span.

The bottom fibre strains measured on beam 3 are lower than
those of beam 1 and higher (very slightly) than those of beam 2.

The shear connection of beam 3 must therefore be stiffer than

that of beam 1 and slightly weaker than the shear connection of beam 2.
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Fig. 4.5

Bottom Fibre Strains at Load Point vs. Applied Load - Beam 4

The shear connection of beam 4 consisted of 12 studs in
pairs in the shear span, arranged in two groups of 3 pairs. The
measured bottom fibre strains of beam 4 are lower through the working
load range than the strains measured for beam 2. Beam 2 had an equal
number of studs, but more evenly spaced. The bottom fibre strains of
beam 4 are seen to be less than those predicted by complete interaction
through the working load range. The groups of studs in beam 4, therefore,
provide a stiffer shear connection than do the evenly spaced studs of
beam 2.

The strains predicted by the C.S.S.B.I. calculation and the
strains predicted by the A.I.S.C. effective section modulus are both
higher than the strains measured by about 207% and 487% respectively.
This leads to an underestimation of working load if the latter is

calculated by either of these procedures.
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Fig. 4.6

Bottom Fibre Strains at Load Point vs. Applied Load - Beam 5

The slab of beam 5 is 1 in. deeper than the slabs of the other
4 beams, and the studs are 1 in. longer. The pattern of stud location
is the same as that of beam 4. There are 12 studs in the shear span
arranged in two groups of 3 pairs.

The strains measured on beam 5 were almost numerically identical
with the strains measured on beam 4. At 25 kips, the strain of beam 5
is 730 micro-inches, and of beam 4 is 710 micro—inches. Beam 5 had a
transformed area bottom fibre section modulus of 40.7 in.3, whereas
the bottom fibre section modulus of beam 4 was 36.9 in.3 (see Appendix
a). For this reason, beam 5 would have been expected to demonstrate

lower strains by a factor of 36.9/40.7 = 0.907.
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Fig. 4.7a

Bottom Fibre Strains at Load Point as Calculated by the Elastic Finite

Difference Method - Beams 1 and 3

9)

An elastic finite difference analysis' " ‘of beam 1 was done
using three trilinear shear force vs. slip relations. Interaction
force, slab strains, slip, stud forces, and steel fibre strains were
calculated by this method. The lower fibre steel strain for beam 1

is plotted in Fig. 4.7a, alongside the measured strains, for the three
. shear force vs. slip relations of Fig. 4.7b.

Curve 1 of Fig. 4.7b is closest to the push-out curve (Fig. 2.4).
Using shear force vs. slip curve 1 of Fig. 4.7 b in the elastic finite
difference analysis of beam 1 resulted in strains very close to those
measured (see Fig. 4.7a). However, the strains calculated using this
method were not sensitive to what shear force vs. slip relation was
assumed for the connection. This can be seen by noticing that a doubling
of the original modulus of the shear force vs. slip curve of Fig. 4.7b
caused only a few percent change in strain (Fig. 4.7a).

The elastic finite difference analysis of beam 3 using the
shear force vs. slip relation 2 of Fig. 4.7b resulted in a close
prediction of bottom fibre strains at the load point (Fig. 4.7d).

The stud forces calculated by the elastic finite difference
calculations at a total live load on the beam of 25 kips were as marked on
Fig. 4.7b. Above a load of 25 kips, the composite beam cannot safely
be assumed to act elastically. Therefore, the elastic finite difference

calculations were not used for loads on the beams greater than 25 kips.
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Fig. 4.7e

Bottom Fibre Strains at Load Point as Calculated by the Elastic Finite

Difference Method - Beams 2 and 4

The three shear force vs. slip relations of Fig. 4.7c were
used in the elastic finite difference analysis of beam 2, resulting in
the three theoretical load-strain curves of Fig. 4.7e. In this case,
curve 3 of Fig. 4.7c appeared to produce strains very close to those
measured. The strains so calculated were again insensitive as to which
of the three shear force vs. slip relations of Fig. 4.7c was used in
the analysis.

Beam 4 had the same number of studs as did beam 2 (12 in the
shear span) but arranged in 2 groups of 3 pairs. Using the shear force
vs. slip curve 2 of Fig. 4.7c, an elastic finite difference analysis
was made of beam 4.

The strains calculated by this analysis are shown in Fig. 4.7f,
and can be seen to be greater than the measured strains by about 10%.
Beam 4 was stiffer than beam 2 because the measured lower fibre strains
of beam 4 were less than the measured strains of beam 2.

It is evident from Fig. 4.7f that, if the elastic finite
difference method of analysis is to produce the measured strains, a
much stiffer shear connection will have to be used in the analysis. This
is further evidence that grouped pairs of shear connectors act more

rigidly than pairs of shear connectors more evenly spaced.
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Fig. 4:7g

Bottom Fibre Strains at Load Point as Calculated by the Elastic

Finite Difference Method - Beam 5

The two shear force vs. slip relations of Fig. 4.7h were
used in the elastic finite difference analysis of beam 5. The dashed
load vs. strain curve shown in Fig. 4.7g resulted from both shear force

vs. slip relations shown in Fig. 4.7h.
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4.4 Load-Deflection Behaviour in the Working Load Range

In Figs. 4.8 to 4.12, the measured mid-span deflections of
the five beams tested are presented as functions of the total applied
load. On the same figures are three theoretical load-deflection lines.
One, labelled 'complete interaction', is calculated on the basis of
the transformed section (Eg = 29 x 100 p.s.i., n = 9). Another
theoretical load-deflection line shown in Figs. 4.8 to 4.12 is calculated
on the basis of the C.S.S.B.I. Manual for Composite Construction. A
third load-deflection line is based on the transformed section calculated
using measured material properties (Eg = 33 x 10° p.s.i., E. = 3.19 x
106 BB oln) e

In addition to these three load-deflection lines is one point
marked ''deflection computed by finite difference analysis'. The latter
point was calculated by integrating the curvature calculated by the
elastic finite difference method of analysis. This was done at a load

within the working load range.
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Fig. 4.8

Mid-Span Deflection vs. Applied Load - Beam 1

Two load-deflection lines are drawn for complete interaction.
One is for Eg equal to 33 x 109 p.s.i. and E. = 3.19 x 106 p.s.i., as
measured in the coupon tests, and the other is for Eg equal to 29 x 100
pP.s.i. and n = 9. The latter represents the usual design value of E
and n. The two complete interaction lines are drawn to indicate the
sensitivity of the transformed section calculations.

The measured deflection is seen to be everywﬁere greater than
the deflection calculated on the basis of complete interaction using
either theoretical or measured material properties.

This measured result, when compared with the measured strains
of Fig. 4.2 which are approximately equal to those for complete interaction,
,shows a greater loss of efficiency for deflection than for strains.

The cdeflection calculated on the basis of the C.S.S.B.I. Manual
overestimates the deflection by only about 5%.

The finite difference elastic analysis of beam 1 gives the
top and bottom steel fibre strains everywhere along the beam, constant
through intervels of beam length between connectors. The curvature of
the steel beam was calculated from these steel strains, and piece-wise
integrated over half the length of the beam to yield deflection at mid-
‘span. This deflection is shown on Fig. 4.8 as a crossed square at a load
of 25 kips, anc¢ is seen to be 137 greater (0.61 in. compared to 0.525
in. measured) than the measured deflection at this load. This discrepancy
is very likely because the elastic finite difference method does not

predict the upper fibre steel strains accurately.
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Fig. 4.9

Mid-Span Deflection vs. Applied Load - Beams 2, 3, 4, 5

In this figure, and in the figures 4.10, 4.11, and 4.12 to
follow, the measured deflections wereslightly greater than the deflection
predicted by complete interaction. The deflections calculated by the
C.S.S.B.I. Manual are about 10%Z greater than the measured deflections.
The deflection calculated using the strains of the finite difference
elastic method of analysis agrees very closely with the measured deflection,

except for beam 5 where it is lower than the measured deflection.
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4.5 Curvature Along the Beam in the Working Load Range

The mecasured curvaturesalong the beam are presented for each
of the five beans tested in Figs. 4.13 to 4.17 to follow. The measured
curvature was calculated from the strain gauge data by dividing the
sgrain difference across the depth of the steel beam by the depth of the
steel beam. Therefore, the measured curvatures presented represent the
curvatures of the steel beam. However, the curvatures of the steel beam
and the concrete slab would be approximately equal, since they deflect
equally.

The measured curvatures are presented as broken lines in the
following figures.

The curvatures in Figs. 4.13 to 4.17 that are drawn by stepped
solid lines are a result of'analyses of the beams by the elastic finite
difference method. This analysis assumes the curvatures of the steel
beam and concre:e slab are equal, and that the strains and curvatures
remain constant over the intervals of length between studs. Hence, the
calculated curvatures presented as solid lines in the following figures

are stepped, increasing or decreasing at évery stud location.



117

Fig. 4.13

Curvature along the Beam at a Total Applied Live Load of 25 kips -

Beam 1

Curvature of the steel beam is the strain difference across
the depth of the steel beam divided by the depth of the steel beam.
Curvature is non-dimensional and is plotted as the ordinate of Fig. 4.13
incorporating a multiple of 106.

The dashed line connecting circular points represents the
curvature measured by strain gauges during testing of the beam. Strain
gauges were mounted on the top and bottom flanges of the steel beam at
the mid-interval point of every interval between studs.

The stepped solid line represents the curvature as calculated
by the finite difference elastic analysis of beam 1 (using the shear
force vs. slip relation 2 of Fig. 4.7b). This method assumes constant
strains and therefore constant curvature across an interval between
connectors.

The calculated curvature gradient through the shear span compares
well with the measured curvature gradient. Both the calculated and
measured curvatures reach a maximum slightly outward of the loadvpoint,
although the calculated curvature at the load point is 217 higher than
the measured curvature. This difference between calculated and measured
curvature in the region of the load point accounts for the discrepancy
between calculated deflection and measured deflection in Fig. 4.8.

The discrepancy between calculated and measured curvature in
the region of the load point on beam 1 indicates that a stiffer shear-
force vs. slip relation could have been used in this region of the beam.

No explanation was found for the sudden variations in measured

curvature through the shear span.
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Fig. 4.14, 4.15, 4.16, 4.17

Curvature Along the Beam at a Total Applied Live Load of 24 kips -

Beams 2, 3, 4, 5

The curvatures computed using the elastic finite difference
method for these four beams are in better agreement with the measured

curvatures than were the curvatures computed for beam 1.
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4.6 Stud Forces in the Working Load Range

The forces acting on the stud shear connectors could not be
measured explicitly. However, they can be measured implicitly by
measuring the strain profile of the steel beam on each side of the shear
connector. The strain profile was measured on each side of each shear
connector of beams 1 and 2. The strain gauges of beams 3, 4, and 5
were spaced several studs apart, so for beams 3, 4, and 5 the stud
forces could not be calculated from the measured strains.

For beams 1 and 2, the net axial force in the steel beam was
calculated from the measured strain data on each side of the shear
connectors. This was accomplished by summing the measured strain multiplied
by Young's Modulus and the area of the steel beam, and dividing the
product by the depth of the steel beam.

At any cross-section, the net axial force in the steel beam
must equal the net axial force in the concrete slab. The difference in
net axial forces between adjacent cross-sections is the (longitudinal
shear) force that must be acting on the stud.

For beams 1 and 2, the stud forces so calculated are written
in along the top of each graph (Fig. 4.18, 4.19) and represent forces
in kips.

It is possible to calculate the theoretical stud forces by
means of the elastic finite difference analysis, taking into account
different stud spacing and different connection shear force vs. slip
relations.

The stud forces calculated by means of the elastic finite
difference method are drawn as solid lines on the following five graphs,

Figs. 4.18 to 4.22,
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Fig. 4.18

Stud Forces as Calculated by the Finite Difference Elastic Analysis -

Beam 1

The stud forces in kips per stud at an applied load of 25 gips
on the beam are shown by the solid line. These stud forces were calculated
by means of the finite difference elastic analysis using the shear force
vs. slip relation for a single 3" stud as shown in Fig. The same
shear force vs. slip relation was used to calculate the strain, deflection,
and curvature of beam 1, Figs.

The stud forces as calculated at a load of 25 kips on the beam
show the force on the stud increases smoothly from zero at mid-span to
about 8 kips through the shear span.

The ordinates of the solid curve of Fig. 4.18 can be compared
to the stud forces as calculated from the measured ;teel strain data.

This was done by summing the measured strains multiplied by Young's
Modulus across the depth of the steel beam (negative for compressive
strains, positive for tensile strains). The net axial force so obtained
in the steel beam is equal to the axial force in the concrete slab. This
strain summation was done at all cross-sections where strain gauges were
applied and monitored (see Fig. 3.3).

The compressive force in the concrete slab, when calculated
in this manner, varied from cross-section to cross-section. Cleafly,
the shear connectors cause this change in compressive force. By sub-
tracting adjacent slab forces, the force on the intervening shear connector
was derived.

The stud forces, calculated from the measured steel strains,

are shown in Fig. 4.18 above the theoretically calculated curve. The



. <
w
|
_
w -
, Q
| J
1] m E
| v N
_ Sw
H 8
| N
_ W < o
w ~ W %
1} 5 A o
| u) m
| S 3

Hx=
| LR
| Luww

!
|
|
H
“ o (49} ~ O o
“ —
_ o o o

J

,,,,, LNIOd | YR
avoy |

Y

e oy |

| o

| T ool MM

| NN

™ Lg [ T

+e- owl [

METHOD |

)

140

(sdin) anis Vo Fozd
<

FORCES ON SHEAE CONNECTORS—

EIG. 4.18

BEAM

LOAD OF 25 KIPS,




127

measured stud forces apparently vary from 4.0 to 19.0 kips in the

shear span, while the calculated stud forces vary only from 7.4 to 8.3
kips. Such a scatter in the implicitly measured stud forces probably
means the measured strain data is faulty. Howeve;, this is not conclusive

proof.
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Fig. 4.19

Stud Forces as Calculated by the Finite Difference Elastic Analysis -

Beam 2

The éalculated stud forces for an applied load of 25 kips
are shown in Fig. 4.19 as the solid line, while the measured stud forces
are plotted as separate points. The measured values of stud forces
have some range because the measured strains varied across the bottom
flange. The extremes of stud forces were computed from the maximum
and minimum possible measured strain differences across the depth of
the steel beam.

The agreement between measured and calculated stud forces is
very good in beam 2 except in the shear span just outward of the load
point. In this area, the measured stud forces are as much as 60% higher

than those calculated.
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Fig. 4.20

Stud Forces as Calculated by the Finite Difference Elastic Analysis -

Beam 3

The calculated stud forces are almost constant through the
shear span at 6.4 kips. This figure can be compared to the shear force
of about 8 kips per stud in the shear span of beam 1 at the same applied
load on the beam.

| The strain pfofile of the steel beam was measured only in the
12" intervals (see Fig. 3.1), so the measured stud force per group of
3 connectors could only be calculated. These figures are shown on Fig.

4,20 averaged for 3 studs, and are written in above the calculated curve.
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4.7 Analysis of the Composite Beams at Ultimate Load

The ultimate load is the maximum total load that the beam
can sustain. The ultimate load of a composite beam is dependent on
fhe shear force that can be sustained by the shear connection. Using
the ultimate shear forces measured on the push-out specimens (Table 2.b),
and follow;ng the inadequate connection model of Reference 5, the ultimate
flexural capacity was calculated at each interval between studs along the
length of the five beams. An ultimate moment envelope is the plot of
ultimate flexural capacity versus length from one end éf the beam. The
ultimate flexural capacity envelopes for the five composite beams are
shown in Figs. 4.23 to 4.27. On the same figures is drawn the envelopes

of maximum applied moment, shown as the sum of moment caused by live

load and by dead load.
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Fig. 4.23 to 4.27

Ultimate Applied and Ultimate Theoretical Moment Envelopes - Beams 1,

2, 3, 4, 5

1

The envelope of ultimate flexural capacity is seen to be lower
towards the ends of the composite beam. This is because there are fewer
connectors between a point in the shear span and the support. During
a beam test, the attainment of ultimate load is recognized because it is-
followed by unloading as the deflection is increased. Flexural failure
has occurred at the stage when unloading begins.

Ideally, if the envelope of ultimate moment capacity could be
correctly calculated, flexural failure would occur when the applied
moment encroached on the theoretical moment capacity anywhere on the
envelope.

At the ultimate load of beam 1, the applied moment is seen
to be greater than the theoretically calculated flexural capacity between
the load point and mid-span. The theoretical ultimate moment is éeen
to be a conservative estimate of the measured capacity.

In the lower right-hand corner of Fig. 4.%@;13 shown the
measured strain across the depth of the steel beam at ultimate load
(dashed line) and at one post-ultimate load (chain line). In addition,
the stress blocks used to calculate the theoretical ultimate flexural
capacity are shown as solid lines. The measured strain at ultimate load
(dashed line, Fig. 4.23) is seen to involve elastic compressive steel
strains in the top steel fibres, while the bottom steel fibres are well-
yielded. The measured strain at the post-ultimate load (chain line,
Fig. 4.23) is in better agreement with the theoretical stress blocks,

the top steel fibres having yielded in compression.
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The ultimate load of the steel beam was observed to occur
before the measured strains could in fact develop the theoretical
stress blocks. This shows that it is possible to develop as much flexural
capacity from the strain distribution at ultimate load as it is from

the strain distribution at the post-ultimate load.
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4.8 Ductility of the Composite Beams

As the applied load was increased through the working load
range.and up to the ultimate load, no secondar& failures were observed.
Secondary failures would include lateral-torsional buckling and local
buckling of the steel beam, and shear lag failure of the concrete slab.

"Unloading followed the attainment of ultimate load in each case. No
secondary failures were observed until very late in the unloading stage.

No out-of-plane deformations cccurred during the unloading
stage.

Unloading of the composite beams after the attainment of
ultimate load cculd be due to two other influences. The falling branch
of the shear force vs. slip relation of the connections could have
reduced the shear force transferred across the beam-slab interface.
Also, the falling branch of the concrete stress-strain curve could have
reduced the capacity of the concrete slab to resist compression<21’ 22).

Very likely, unloading was caused by the influence of the falling branch
of the shear force vs. slip relation of the shear connection. The
influence of the shape of the concrete stress-strain curve on the moment

)

capacity of composite beams has been shown to be small(21 in conventional
composite beams with a solid slab. This fact has yet to be established
for composite beams with cellular steel floor.

The five beams tested had a large area of concrete relative
to the area of steel.

The neutral axis, based on the transformed section, is above

the top flange of the steel beam for all five beams. This neutral axis

location leads to the condition where yielding of the lower fibres of
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the steel beam governs the behaviour of the composite beamst The moment-
curvature and moment-deflection curves for the five beams (Figs. 3.18
and 3.7 ) are therefore similar in form to fhose of an under-reinforced
concrete beam. That is, the lower fibres of the steel beams are well
into the yielded range at the ultimate load of the beams.

The shape factor is defined as the ultimate moment divided
by the moment at first yielding of the bottom fibres. The shape factor,
MJVMy, was calculated for each of the beams. My is determined from
Fig. 4.1 at the yield strain of 1240 x 107° in/in. The shape factors
of Table 4 can be interpreted correctly only by examining the ratio of
M,/My, where M, is the working load moment. The ratios of Table 44

Yy
include the ratio My/Mw.

Table 4 d
Beam My/Hy My /M, My/My,
i 1700/1224 = 1.39 1224/792 = 1.55 2.16
2 1900/1324 = 1.44 1324/858 = 1.55 2.25%
3 1950/1339 = 1.45 1339/843 = 1.59 2:31
4 1950/1240 = 1.57 1240/941 = 1.32 2.07
5 2200/1458 = 1.51 1458/906 = 1.61 2.43

It can be seen from Table 4 that the ratios of My/MW are all
greater than ]1.32. This indicates that if yield strain is taken at
1240 x 1076 in/in, there is a sufficient margin of safety between working

load strain and yield strain.
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These shape factors from Table 4, Mu7M in the range of

y?
1.39 to 1.57, can be compared to a shape factor of 1.15 for a wide-

flange beam. Composite beams thus'ﬂave a much greater reéerve of strength
than do conventional flanged steél sections.(zl)

The ductility of the steel in the lower fibres of the composite
beam evidently contributes to its unloading characteristics. Under
loading conditions normally associated with simple beams, unloading
would not be possible. The applied load would increase to the ultimate
load of the beam and the beam would subsequently collapse. It is only
for continuous structures that th;\slope of the unloading curve becomes
important.

The ductility factor is a measure of the rate of unloading
of a beam. Ductility facfor is defined as(14)the deformation (curvature
or deflection) at 5% unload (v0.95Md) divided by the fictitious elastic

deflection at ultimate load (v ). This can be written as:

I/, elastic

(see Fig. 4.28)

Ductility Factor =.P = v (at 0.95 MJ) .
v (M, elastic)
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P

M, elastic

Fig. 4.28

—

DEFORMATION

The curvature and deflection ductility factors for the five beams tested

are as shown in the following table.

Beam P (Curvature) 3 (Deflection)
1 | 16.0 5.3
2 1Y 7 5.8
3 6.3 4.0
4 14.3 6.5
5 S 3.7
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These curvature figures can be compared to a curvature ductility
factor of 4 for an A-36 wide-flange compact beam with lateral bracing
spaced at 60 Ty, and to a curvature ductility factor of 11.5 for a bracing
spacing of 35 ry(lz).

The beams showing the lower values of curvature and deflection

ductility factors clearly demonstrate a greater relative rate of unloading.
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CHAPTER V

THEORETICAL GENERATION OF THE COMPLETE

MOMENT~CURVATURE CURVE

Sl Introductiol

An at:tempt was made to duplicate the work of Reference 9
and compute the moment-curvature curve of the composite beam from
zero load to ul:imate load. Up to first yielding of the steel beam,
this theoretical analysis has been referred to earlier in this paper
as the elastic Zinite difference method of analysis. After first
yiélding of the steel beam, the method is referred to as the inelastic

finite difference method of analysis.
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5.2 The Elastic Finite Difference Method of Analysis

The type of composite beam considered was that shown in
Fig. 1.2. The two elements were the concrete slab and the steel beam.:
These were considered separated by a flexible zone of depth equal to
the depth of the cellular steel floor.

The principal assumptions made in the elastic finite difference
analysis were as follows:

1. The steel beam and the concrete slab are assumed to deflect
equally at all points alcng their lengths.

2. The steel beam and the concrete slab are assumed to have
equal curvatures at any section.

3..The distribution of strains is linear throughout the
depth of the slab itself and of the steel beam itself. However, the
strains are not, in general, linear through a section of the composite
beam.

4. The shear connection between the slab and the steel beam
is assumed to be provided by shear connectors placed at discrete points
along the length of the beam. The shear-slip curve for a shear connector
is approximated by three straight-line segments as shown in Fig. 5.5.

5. The stress-strain relationship for the steel beam is as
shown in Fig. 5.1 and for the concrete slab is as shown in Fig. 5.2,
both linearly elastic. The stress-strain curves in tension and compression
are assumed to be the same.

Assuming that the strain distribution through the depth of the
composite beam (Fig. 5.3) can be produced by the three parameters F,

My, and Mg (Fig. 5.4), Dai and Siess derive the equation of equilibrium
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=
n

Foz + Mp + M, 5.1

]

where M the applied moment,

moment in the beamn,

=
o
]

=
9]
]

moment in the slab, and

interaction force.

o}
]

F is zssumed to act at the centroid of the steel beam and at
the solid part of the concrete slab. 2z is the vertical distance between
centroids.

The interaction force F is assumed to be constant throughout
the length of one interval, and so the equilibrium equation 6.1 is
satisfied at each mid-interval point along the beam.

Dai and Siess derive the difference equation of compatibility
at the interface of the beam and slab, which is

2"[4-1 - dy = ‘/;i(eb— €s) d el

Equation 5.2 states that the difference in slip between one
connector and ar adjacent connector ( x}+l-3} ) is equal to the
interfacial strzin difference (Ep - Es) integrated over the interval
length (S1).

Assuming the beam to be prismatic, Dai and Siess reduce

equations 5.2 ard 5.1 to the elastic difference equation of interaction

- Jiisn) +(_L_ + L 4 asi)[:m - fioy = 2| Mx) dx
kiwﬂ kh—l ki kl: ZEI
Si 5.3
I ! z:z

— +
EpAp EsAs SEI

where a =

and where

ZEI = EbIb <+ 55[5 *
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In equation 5.3, the bracketed subscripts refer to a mid-
interval point. The non-bracketed subscripts refer to a connector
point. k; refers to the modulus of the first line of the trilinear
shear-slip curve of Fig. 5.5.

A set of equations similar to equation 5.3 is set up for
the composite beam with F(i) as the array of unknowns.

Equation 5.3 represents the typical equation for the panel

bounded by the ith ang ivt?h

shear connectors. Therefore, the number
of panels, or intervals, determines the number of equations to be solved.
Equation 5.3 is applicable until the force on one or more
connectors becomes greater than Qp. When this occurs, the elastic
difference equations (5.3) for the intervals on each side of the offending
shear connector (connector i, say) must be modified. Dai and Siess outline
this modification as a substitution of k; for k; in the left-hand side
of both equations, and an addition of a term
- (EE. - KP) 5.4
k' {
in the right-hand side of both equations. The sign of the correction
term 5.4 is determined by whether the increase in rate of slip is tending
to shorten (negative corrective term 5.4) or to lengthen (positive
corrective term 5.4) the interval.
When the force on the connector i becomes greater than Qy
(Fig. 5.5), corrective terms similar to 5.4 are introduced into the
elastic finite difference equations for the intervals adjacent to connector
p 1"

For a composite beam having 4 shear connectors, a set of three
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elastic finite difference equations shown in Fig. 5.6 can be set up.
If the shear force Q on the outside shear connector became greater than
Q> the three equations of Fig. 5.6 would be modified to read as shown
in Fig. 5.7

In a similar manner, for each of the five beams tested, a
set of elastic finite difference equations was set up.

These were put in matrix form and solved for live loads of
4 kips to 40 kips in 1-kip increments. As each connector yielded (the
force on the connector became greater than Qp, Fig. 5.5) suitable
corrections were made and the solution re-computed for that load.
Similar corrections were made as the force on the connectors became
greater than Qy.(Fig. 5.7).

The computer programme that was used for the elastic finite
difference analysis is shown in Appendix (d) of this report. The theory
and assumptions used in setting up the computer programme were due to

(9) 1z, 13, 25)origina11y. Computed results

Dai and Siess , and others
of the elastic finite difference analysis have been presented earlier

in this report.
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5.3 The Inelastic Finite Difference Method of Analysis

The elastic finite difference computations described in part
5.2 above are capable of analysing a composite beam up to a load at
which the steel becomes inelastic. The steel beam will become inelastic
in only one interval initially. For all the other elastic intervals,
difference equations such as equation 5.3 will be applicable. For the
interval(s) in which the steel has begun to yield, Dai and Siess suggest
using a difference equation deri&ed from the equation of compatibility
(equation 5.2). The finite difference equation to be used for an interval
in which the steel has begun to yield is called the inelastic finite

difference equation, and is (for the iﬂ‘interval)

—Fi +1) ( / 1 ) Fri-1) d
e —— -+ —— + —_— F . - = - (Eb-— €5 %
ke ke ki k; # ) 5.5

The term on the right-hand side of equation 5.5 is not known.
This term must be arrived at by a trial and error procedure which will
be described below.

The assumptions for the inelastic analysis are:

1. All the assumptions relevant to the elastic finite difference
analysis apply except that the steel beam has an elasto-plastic (Fig. 5.8)
stress-strain curve. The concrete remains linearly elastic as in the
elastic analysis.

2. If at the end of a certain loading stage, the stress at the
bottom fibre of the steel beam is found to have reached the yield point
for one interval, the state of stress is considered to be in the inelastic

range for all higher load levels in this interval.
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3. The distributiorms of strain Eg and Ey are still linear along
the length of the intervals.
From assumption 3, above, the unknown term on the right-hand

side of equation 5.5 reduces to

€, - € = (€, - € .. Sz
‘[s-( b~ €s) (€4 5)(1) . 5.6

¢

The basic unknown in the inelastic analysis is the value of
(Gb - 65) at the mid-point of the inelastic intervals.

For example, the middle interval of the four-connector, three-
interval beam of Fig. 5.6 is just at the point of yielding for a load of
P kips. For a load of P + AP kips, the middle interval will have yielded.
At a load of P + AP kips, the three finite difference equations of Fig.
5.9 can be written. Note that the two equations written for the outside
(elastic) intervals are of the form of equation 5.3. The middle equation
is of the form of equation 5.5'bccause the middle interval has yielded.

The equations shown in Fig. 5.9 are written as if all the
connector forces were below QP of Fig. 5.5. Dai and Siess recommend that
if some connectors' forces have become greater than Qp or Qy’ then
corrections to the relevant equations must be made. These corrections
take the same form as those described in section 5.2 for the elastic
finite difference equations(g).

The set of elastic and inelastic finite difference equations
such as those of Fig. 5.9 cannot be solved until all the terms

(eb_ 6$)ﬁ)' S; 5.6
have been found. To determine the correct numerical value of the term

5.6 requires a trial and error procedure.
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The depéndence of F (interaction force), M (applied moment),
¢$ (curvature), and €,p (bottom fibre steel strain) for one interval can
be shown in schematic form by Fig. 5.10. This was first shown by Dai
and Siess, and was proven to be true by calculations made for this
report. One point on Fig. 5.10 represents one possible solution
satisfying equilibrium for one interval.

Not all the solutions on Fig. 5.10 will apply to an interval
of one particular composite beam at one particular loading level.

To the left of the sloping straight line labelled €p = €y
on Fig. 5,10, the strains are elastic. This is the domain of the elastic
finite difference solution. To the right of the same line is the domain
of the trial and error inelastic finite difference solution.

It should be pointed out that for each point on Fig. 5.10,
there is not only an F, M, §, and €yp as shown; but also
Mg, and Hb which are not shown.

Point O' on Fig. 5.10 represents the state of stress of an
interval under applied moment Mj. At O' the bottom fibre steel strain
is €y, the interaction force is F*, and the curvature in the concrete
slab and steel beam is equal to @;.

Point B on Fig. 5.10 represents the state of stress of an
interval under applied moment My = M; + A M at which the interaction
force is equal to F* also. Point A on Fig. 5.10 represents the state
of stress of an interval under applied moment M, at which the curvature
is equal to §,. The curvature at point B is 3 which is greater than
fpo. The interaction force at point A is F#** whicﬁ is greater than F¥,

Dai and Siess show that the correct state of stress for an
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interval under applied moment M, (Fig. 5.10) must lie on the vertical
line between points A and B. To find the correct point on line AB of
Fig. 5.10, Dai and Siess indicate that point A should be taken as a
first approximation.

The trial and error procedure subsequent to finding point A
as the first approximation is as follows:

1. Substitute the ( €Ep-E€g ); associated with point A of
Fig. 5.10 into the set of elastic and inelastic equations. Since the
first trial value of (€,- €g) is associated with a point on Fig. 5.10,
it represents an equilibrium condition.

2. Repeat step 1 for every interval that is to become inelastic.

3. Solve the set of inelastic and elastic finite difference
equations. The F generated by this solution represents an F that satisfies
compatibility.

4. Compare the equilibrium F initially tried with the compatible
F generated. 1If they are equal or reasonably close, the iteration
procedure goes to step 9. If they are not equal, step 5 is used next.

5. If the equilibrium F and the compatible F do not agree,
choose another (€,=€g). The new (€,-€g) is chosen at the point on
line AB of Fig. 5.10 that is associated with the compatible F generated.

6. Repeat steps 4 and 5 for every interval which is inelastic.

7. Substitute the (€p—€g) associated with the newly chosen
equilibrium F into the set of elastic and inelastic finite difference
equations and solve.

8. Compare the compatible F generated with the equilibrium F
chosen. If they are equal or reasonably close, the iteration procedure

goes to step 9. If not, steps 5 to 8 are repeated.
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9. The beam is checked for new yielding in some other intervals.
If it has yielded, suitable corrections must be made to the set of
elastic and inelastic equations. More trial and error steps must be
done.

By using this laborious trial and error procedure, the correct
strains and interaction forces can be found along the length of the
beam for one load increment. The load increment in the elastic range
can be as large or as small as convenient, because every new applied
load‘is solved as a new problem. In the inelastic range, the correct
solution at one loading stage is used as a beginning point for the next
loading stage. Therefore, each loading step must be as accurately solved
as possible.

It was found by this researcher that the largest loading
increment that could be used was a A I corresponding to about 200 lbs.
applied to the beam. If a larger increment were used, point A of Fig.
5.10 was too crude an approximation to the true solution.

Dai and Siess computed equilibrium points on Fig. 5.10 by
systematically varying € bb and @, and calculating €ys F, Mb’ Mo €5

andeS from ebb and $. Dai and Siess constructed a table of possible

s
equilibrium solutions and selected from the table to arrive at their

trial values of (€p-€g). The computations of Dai and Siess were more
comprehensive than the computations of this report in that they used

an elasto-plastic stress-strain curve for the concrete slab as well as for

the steel beam. For the computations of this report, the concrete was

assumed linearly elastic.
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5.4 Work Done in This Report Towards Duplicating the Inelastic Moment-

Curvature Curve

5.4a Finding Possible Equilibrium Solutions

Using the assumptions and theory outlined in Part 5.3 above,

a computer programme was written to calculate éb, E, Mb, Mg, €g, GSS
and M from a given €} and $. The calculation of all these parameters

at one point of Fig. 5.10 constitutes a definition of the state of stress
at the point. By varying €, and @, the state of stress at any point on
Fig. 5.10 could be computed.

Depending on how far into the steel beam yielding had progressed,
F and Mb were computed from the equations shown in Appendix (e). Ms’
€s> €0 and finally M were computed from F and My .

The computer programme that executed these computations was
called ITER, and is presented in Appendix (f). ITER deals with only
one interval at a time. Referring to Fig. 5.10, ITER has the ability
to go from point O' (incipient yielding of one interval) to point A
(given ;). ITER is furthermore capable of finding the state of stress
at point B or any point between A and B on Fig. 5.10. The programme
ITER was used every time the trial and error procedure called for a new
equilibrium point in Fig. 5.10. This obviated setting up a table of
possible equilibrium solutions as Dai and Siess did. Furthermore, use
of the programme ITER obviated extrapolation and interpolation between
values in a table of possible equilibrium solutions.

A typical sequence of iterative steps in ITER can be pictured

by following the numbered node points on the dotted line of Fig. 5.10.

To get from point A. of Fig. 5.10 to (say)
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point B of Fig. 5.11, the following steps were necessary:

1. Point 1 to
(calculated after every

2. Point 2 to

point 2 - increase @ by a.A® until F
increase in $) was less than F¥*.

point 3 - decrease €, by b.A€y, until M

(calculated after every decrease h1€bb) was less than M,.

(At this point the interval multipliers a and b were decreased

so the iteration became
3. Point 3 to
(calculated after every
4, Point 4 to
(calculated after every

Similar steps

In conclusion,

finer.)

point 4 - decrease § by a.A® until F

decrease in @) was greater than F*.

point 5 - increase€,, by b.A€, until M
increase hnebb) was greater than MZ‘

repeated many times finally converged on point B.

programme ITER was constructed to find possible

equilibrium solutions schematically shown as any point in the plane of

the axes of Fig. 5.11.

ITER used the assumptions of section 5.3 above

and the equations of Appendix (e).
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5.4b Checking Compatibility

A programme called INELAS was constructed which accepted
values of (ét;-és) for certain inelastic intervals, and solved the
set of elastic and inelastic finite difference equations. INELAS
thereby calculated the F for the inelastic interval which was compatible
with the (€,—-€g) fed in as a trial value. INELAS is listed in Appendix

(g).

5.4c Inelastic Computations

To test the above theory and programmes, beam 1 was taken from
a tofal live load of 35,000 lbs. to 35,400 1lbs. in two increments of 200
1b. éy was made equal to 1186 x 107 in/in.

Only the seventh interval (and because of symmetry, the ninth
interval) was expected to become inelastic under an applied load greater
than 35,000 1b., This was because at 35,000 1b. the bottom fibre steel
strain in the seventh interval was just below 1186 x lO_6 in/in.

ITER and INELAS were used three times each to get an acceptable
solution at 35,200 1b. satisfying both equilibrium and compatibility.

That is, three cycles of iteration were required. No other intervals
became inelastic at 35,200 1b.

From 35,200 1b. to 35,400 1b., three complete cycles of iteration
were required. No other intervals became inelastic at 35,400 1b.

The computat?onal results of these six iterative steps are
shown in Fig. 5.12. Fig. 5.12 represents the numerical results of the
calculations made on the one interval only.

Column 1 of Fig. 5.12 lists the applied load on the beam (35,000
1b), the results of the elastic finite difference analysis (ELAS), and

the moment applied to the mid-interval of interval No. 7 (1 = 1,155,000
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in-kips). Column 2 of Fig. 5.12 lists the state of stress of the first
trial equilibrium solution at a moment of 1,161,700 in-kips found by
ITER. The (€p— €s) term of column 2 (-418 x 10_6 in/in), when used
in INELAS, resulted in a computed F of 77,214 1lbs. listed in column 3.
Columns 4 and 5, and 6 and 7 are two other similar iterations. The
equilibrium F arrived at in column 7 (77,335 1lbs.) and the compatible F
arrived at in column 7 (77,249 lbs.) were judged to be close enough.
Columns 8 to 13 of Fig. 5.12 represent three similar iterations
rele&ant to interval 7 in taking the beam from a load of 35,200 1lbs. to
a load of 35,400 1lbs. The agreement between the last equilibrium F
tried (column 12, 77,509 1lbs.) and the compatible F produced by it
(column 13, 77,502 1bs.) was very good.
Column 14 of Fig. 5.12 shows the state of stress that would have
been calculated by the elastic finite difference method of analysis
(ELAS) at 35,400 1lbs.
The final state of stress at 35,400 lbs. is listed in column
12 of Fig. 5.12. Comparing column 12 with column 14, it can be seen
thaf the F calculated by the inelastic method (77,509 1lbs.) is considerably
greater than the F that would have been computed had no inelasticity been
taken into account (77,183 1lbs., column 14). This is contrary to what
would be expected because any inelasticity in the steel beam should tend
to reduce the interaction force compared to an elastic computation at
the same load.
The reason that the inelastic computations did not yield answers

as expected was very likely due to inaccuracieslaccumulated from the use
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"_5_5 Intermediate and End Results of Taking
? € Interval 7 of Beam 1 from a Load of
e 35,000 1b. to a Load of 35,400 1b.
€y= +1186.0 x 107® in/in
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M = Applied Moment at Mid-Interval
1 2 3 4 5 6 7 8 9 10 i 4 12 13 14
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of programme ITER. ITER was capable of finding locations on Fig. 5.10
to accuracies of z .001 of the moment M and to within % .601 of the |
interaction force F. To make ITER more accurate would have required
mdre time, and very likely would have made ITER unuseable in a general
inelastic finite difference analysis programme.

In conclusion, the theoretical investigation of this report
studying the inelastic finite differénce method of analysing composite
beams showed that: the theory was correct. This was not a new finding

(9)

because Dai and Siess had concluded this before. However, a clear
understanding of the theory was obtained by this researcher.

In the opinion of this researcher, the inelastic finite
difference method is apparently workable as a research tool even though
it is extremely sensitive. It is unlikely to be used for design because
of its complexity. Simpler methods are being studied(27) by other
researchers which are capable of generating the complete moment-curvature
curve.

It was‘intended to combine the elastic finite difference
programme (ELAS, App. (d)), ITER (App. (f)), and INELAS (App. (g)) into

a general analytical programme for composite beams. However, due to

anticipated programming difficulties and lack of time, this was not done.
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CONCLUSIONS
The conclusions are listed as they appear throughout this
report. There are, however, a few overall conclusions that should be
noted.

1. Push-Qut Tests:

The mode of failure of the shear connection in a push-out
specimen is very different from that observed in composite beams. However,
the ultimate strength of the shear connection as measured in a push-out
test can be used to calculate the ultimate strength of a composite beam.
The modulus of the shear connection as measured in a push-out test appears
to be different than the modulus of the composite beam's shear connection.
However, on the basis of the elastic finite difference method of analysis,
the performance of the beams tested was not sensitive to what shear force
vs. slip relation was chosen for the shear connection. Therefore, for
the composite beams of this report, the push-out test can be used as an
indicator of the performance of the shear comnection in the composite beam.

This conclusion may not apply to other composite beams.
2. Analysis of composite beams:

For the beams of this report, up to working load, analysis based
on complete interaction yielded strains which were approximately correct :
and deflections which were conservative. Analysis based on the C.S.S.B.I.
Composite Beam Manual, for loads up to working load, yielded strains close
to those measured and deflections which were conservatively high. The
calculations based on the C.S.S.B.I. Composite Beam Manual yielded results
which were a better approximation to the measured values of strain and

deflection at working load compared to the complete interaction calculations.
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3. Arrangement of shear connectors:

Grouping of shear connectors appeared to make very little
difference in beam performance.

4. Thickness of slab:

The ultimate load and elastic stiffness improved markedly with
a deeper slab. However, due to higher déad load strains, the working
load of the beam with the 5" slab was not appreciably higher than the
working loads of the other beams with the 4" slab.

5. The inadequate connection model yields conservative results
for the ultimate strengths of the composite beams. This calculation
is simple and could be recommended for use by designers for calculation of

ultimate strength of composite beams with cellular steel floor.

The fellowing results of the ultimate strengths of the composite

beams were obtained:

Beam 9y 2 qy Slab Thickness My (meas.) /M)
Shear Span :
1 11 .3 67.8 | 4 1.03
2 17.0 102.0 4 1.06
3 11.3 101:7 4 1.08
4 17.0 102.0 4 1.07
5 25.4 152.4 5 i 1

6. The inelastic finite difference method of composite beam

analysis is too complicated for use by designers.
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APPENDIX (a)

WORKING LOAD BASED ON COMPLETE INTERACTION

TRANSFORMED MOMENTS OF INERTIA

Beams 1-4 Beam 5
T E y I B j_‘t
16.16" I 2-31/2" 17.18" 3-1/2"
1 '
Ac/n 68 x. 2.5 _ 18.9 68 x 3.5 . 26.4
9 9
Moments of area 18.9 x 1.25 + 5.62 x 26.4 x 1.75 + 5.62 x 11.08
10.08 = 80.3 = 108.4
Transformed area 18.9 + 5.62 = 24.52 26.4 + 5.62 = 32.02
Centroid _ =80.3 = 3.29" _ =108.4 = 3.37"
y 24.52 y 32.02
Moment of inertia 18.9 x 2.52/12 = 10 26.4 x 3.52512 = 27
slab 18.9 x 2.142 86 26.4 x 1.62 69
beam 130 g - 130
5.62 x 6.792 = 259 5.62 x 7.71 = 335
485 561
Section modulus 485 3 561 _ 3
bottom steel 12,87 = 36.9 in Ty = 407 4n

fibre



Allowable Strain Difference for Live Load

Dead load, uniform moment, d.l. WL?
8

Bottom fibre stiress from dead load
M (Sb = 21.4)

Sb

Bottom fibre strain from dead load

e (E=29 x107)
E

Yield stress, minimum
Yield strain 44,000

29 x 10°
0.66 fy

Lower fibre strain from dead load
at 1/4 span = 3/4 x 277, etc.

Allowable live load strain difference

Working Load

Allowable live load stress =
allowable strain x E

Live load bendirg moment =
stress x Ss

Total allowable 2-pt live load
=M

33

Beams 1-4

259 pilf.
172 in-k

8040 p.s.i.
n
277 M /n

44,000
1510 M /.

1000

208

792

23.0 ksi
845 in-k

25.6 kips

Beam 5

329 pif.
218 in-k

10,200 p.s.i.

"
351 M /u

44,000
1510 M '/

1000

264

736

21.4 ksi
870 in-k

26.4
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WORKING LOAD BASED ON C.S.S.B.I. COMPOSITE DESIGN MANUAL

From table 6.2 of Manual, record properties of transformed section,

From
%
1/cL?

(1/L

(ALPHA) x 10

BETA

table 6.3 cf Manual,

2) X 109

9

GAMMA

From
F/F'
From
Cq

From
F/F'

From

F/F' nomograph Fig. 6.1 of Manual,
deflection

Fig. 6.2 of Manual,

F/F' nomograph Fig. 6.1 of manual,
stress

Fig. 6.3 of Manual,

Beams 1-4

68.
7.55
37.0
476.7
12.85

.1629

21'

.020

1.234

125.77

1.612

0.612

0.95

0.82

0.79

0.88

Beam 5
68.
7.55
40.7
559.5
13.73

.1384

21"

.020

0.994

119,27

1.623

0.622

0.95

0.79

0.79

0.88



C.S.S.B.I. effective section modulus
for stress = C_x S_ =

s s
C.S.S.B.1I. effective momedt of inertia
for deflection = Cy x IE =
Allowable live load strain
difference (from App.(a))
Allowable live load stress
= allowable strain x E
Live load bending moment
M = stress x Ss X Cs =
Total allowable 2-pt. live load

=M =

3

Beams 1-4

32.5 in3
391. in®
792.

23.0 ksi

748 in-k

22.6 kips

176

Beam 5

35.8 in>

443, in

736.

21.4 ksi

766 in-k

23.2 kips
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APPENDIX (c)

WORKING LOAD BASED ON A.I.S.C. EFFECTIVE SECTION MODULUS

= !
Seff = Sg * XE (8, = 8,0
Vh
Where Vh is the total horizontal shear to be resisted between the point

of maximum posit:ive moment and points of zero moment, and is the smaller

value of

= F | =
Vh 0.85 ucbt Vh AsFy

2 2

Vﬂ is the horizontal shear determined by multiplying the number
of connectors between the point of maximum moment and the point of zero
moment by q, the allowable connector load for working stress design.
There are no published allowable Qorking loads for stud connectors

in a composite ceam with cellular steel floor. Therefore, on the basis

of the push-out tests done in this report, Vﬂ and Vh can be redefined as:

Vﬂ = 25 q, » sum of the ultimate shear forces on the connectors
between thz load point and the end support of the beam.

V, = 0.85 Eébt or ASFy, whichever is smaller.
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a8

Beam 1 2 3 4 5
V! =2 qy, kips 67.8 102 101.7 102 153
Vy» kips 247. 247, 247. 247. 247.
Sy, in’ 36.9 36.9 36.9 36.9  40.7
vl
_h .28 W41 W41 41 .62
Vh
Sgs 1in 21.4 21.4 21.4 21.4 21.4
vl
L (@ -8 4.3 6.3 6.3 6.3 9.6
Vi
Seff> fu 25.7 27.7 27.7 27.7 31.0
Allowable live load 23.0 23.0 23.0 23.0 21.4
stress, App. (a)
Seff X stress = M 592 638 638 638 663
allowable load
=M 18.0 19.3 19.3 19.3 20.1
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APPENDTIX D

GENERAL PROGRAM TO ANALYSE COMPOSITE BEAM WITH FLEXIBLE SHEAR
CONNECTIONs UP TO THE POINT WHERE INELASTICITY OCCURS IN STEEL.
A MAXIMUM OF 301 GROUPS OF STUDS ARE ALLOWED (ONE STUD CAN BE
CALLED A GROUPs OR MORE THAN ONEs IF THEY ARE ADDED TOGETHER AT
EACH CROSS-SECTION)s AND ALL STUDS MAY BE DIFFERENT.

TRI-LINEAR MODULUS 1S USED FOR THE STUD FORCE-SLIP CHARACTERISTIC,

Y O O RO O O O Oy OO T D)

RUN(S9s9999922100)
LGOe
' 6400 END RECORD
PROGRAM TST (INPUTsOQUTPUT sTAPES=INPUTsTAPE6=0UTPUT)

M= NO OF STUDS (OR GROUPS OF STUDS !

N= NO OF INTERVALS BETWEEN STUDS

ES= E OF SLAB

EB= E OF BEAM

CS= DISTANCE INTERFACE TO CENTROID SLAB
CB= DISTANCE INTERFACE TO CENTROID BEAM
Z = SUM OF CS ANRP CB

AB = AREA BEAM

AS = AREA SLAB

Bl = I OF BEAM ALONE

sl = I OF SLAB ALONE

ZL = SPAN OF BEAM

P = TOTAL LOAD ON COMPOSITE BEAM DISTRIBUTED TO 2 POINTS

PZERO = INITIAL TOTAL LOAD

DELTAP= LOAD INCREMENT

PMAX = MAXIMUM TOTAL LOAD

CONST = Z OVER SIGMA EI

COUNT = COUNTER OF LOOPS REQsD TO STABILIZE STUDL FORCES

BURP = INDICATOR WHICH = 0 IF PO IS CHOSEN Low ENCUUGHs=1 IF NOT

OKAY 1«0 IF STUD FORCES ARE STASILIZLULs =00 IF NOT

B(IsJ) = STUSSI MULTIPLIER ARRAY

BlsB2sB3sB4(IeJ) =SEPARATELY-GENERATED ARRAYSs WHICH WHEN ADDEDe
SUM TO B(lsJ) WITH CORRECTED ELEMENTS

i

CKesCKPsCKPP(I) = STUD MODULUS ARRAYS

WP sQYsQU(I) = LIMITS OF APPLICABILITY OF CKsCKPsCKPP ARRAYS

SLIPsSLIPPsSLIPY(I) = SLIP AND SLIP LIMITS ARRAYSe (AND SLIPU(CI))

BENMOM(I) = IMPRESSED MOMENT ON BEAMs CAUSED BY PU UNLYe.

BADMOM(I) = BENMOM(I) * P/PO

AVGMOM s SUMMOMs DUMMOM (1) = ARRAYS OF IMPRESSED MOMENTS

BMOM2 sBMOM3 (1) = ARRAYS OF CORRECTIONS TO RHS OF STUSSI MATRIX
EQUATION

BENSLBsBENBEM(1I) ARRAYS OF MOMENTS IN SLABsBEAM
FURCEF sFORCEQ(TI) ARRAYS OF FORCES IN SLAB AND ON STUDS
FORCPR(1) = FORCE IN SLAB ASSUMING COMPLETE INTERACTIOUN

£ O DO O Y O 0y 0 O O 0 8 800 0 OO I Y08 000 1 S0 3 BY OO0 5 -0 58 Y

STRANS»STRANB(I) = STRAIN IN SLAB AND BEAM ARRAYSe
SPACE(I?! = ARRAY OF SPACES BETWEEN STUDS AND/OR SUPPORTS
TRACE(I) = TRACES STATE OF CORRECTIONS IN STUSSI MATRIX EQUATION
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C RANGE(I) = INDICATES RANGE OF STUD FORCE COMPUTED
C STUD FORCES ARE STARILIZED WHEN TRACE(I) = RANGE 1)
COMMON/BLOK1/B(39300)sB1(3s300)sB2(35300/)9sB3(3s300):B4(3+300!
COMMON/BLOK2/CK(301) sCKP(301) sCKPP (301!
COMMON/BLOK3/QP(301)sQY(301),QU(301!
COMMON/BLOK&4/SLIP(301) sSLIPP(301)sSLIPY(301)sSLIPUI30L)
COMMON /BLOKS /BENMOM( 301 ) s AVGMOM (300! s BADMOM( 301
COMMON /BLOK6 /SUMMOM( 300) s BMOM2 ¢ 300 ) s BMOM3 (300
COMMON/BLOK7/FORCEF (300) s FORCEQ(301!
COMMON /BLOK 8 /SPACE (300
COMMON /BLOK9/TRACE (301 ) s RANGE (301
DIMENSION BENSLB(300) sRENBEM(300)sFORCPR (300! 9sSTRANS (300!
DIMENSION STRANB(300)sEQUILM(30uU!
DIMENSION FORCRA(300) .
DIMENSION TITLE(13)
DIMENSION STRASS(300)sSTRABB(300)
DD = 14283
READ(5+4)TITLE
4 FORMAT(13A6)
READ(595)MsNsFSsERsCSsCBsABsASesBI oSI
5 FORMAT(21592E10e494FT7e392F10e4)
READ(5+10)PZEROsDELTAP sPMAX
10 FORMAT(3E1043)
P=PZERO
DO 25 I=1sM
READ(5915)QP (1) sSLIPP T)sQY(I)sSLIPY(I)sQU(TI)sSLIPU(T!
15 FORMAT(6E12e4)
CK(I) = QP(I)/SLIPP(I!
CKP(I)=(QY(I)=QP(I))/(SLIPY(1)=SLIPP(1))
CKPP(I)= (QU(TI)=QY(I))/(SLIPU(I)=SLIPY (1))
25 CONTINUE
READ(5930) (BENMOM(T)sI=19eM)
READ(5+35) (SPACE(I)sI=1sN)
30 FORMAT(8F1060)
35 FORMAT(8F10e2)
WRITE(6958) (TITLE(I) sl = 1+13)
58 FORMAT(1H1s13A6)
WRITE(6960)MsN
60 FORMAT(16H COMPOSITE BEAMssI15s7H STUDSss15s10H INTERVALS///)
WRITE(6s65)
65 FORMAT(50Xs19H SECTION PROPERTIES)
WRITE(6966)

66 FORMAT (4OX 84 1H == mm e e /77)
WRITE(6567)

67 FORMAT(111H ES EB CS cB AS
1AB 1S 18 PO DELTA P P MAX /)

WRITE(6968)FESeERsCSsCRsASsARsSI sBI sPZEROsDELTAP sPMAX
68 FORMAT(E1O0e391XsE10e39F86333F10e332F104493E10637/)

WRITE(6969)
69 FORMAT (48Xs22H CONNECTION PROPERTIES)

WRITE(6966)

WRITE(6s70)
70 FORMAT (82H STUD NO K QU Koo PRECELEL

1S SPACE (IN) ZERO MOMENT /)

IF(PZERO«EQ«500040)G0O TO 73

DO 2 I = 1M

RENMOM(I) = (PZERO/500040)%*BENMOM(T)
72 CONTINUE

R



nj7e

73

74
75

e

80

83
85

DO 75 I = 1N

WRITE(6s74)TsCK(I)oCKP(I)sCKPP(I)sSPACE(T) o+BENMOMI(T)

FORMAT (4X31393X93E12e496X9F10e2910X9F1040)
CONT INUE
WRITE(6sT7T7TIMeCKIM) sCKP (M) sCKPP (M) s BENMOM (M)

FORMAT 4Xs1393X93E12e4926XsF10e0///)

WRITE (6580)

FORMAT (84H STUD NO QP GAMMA P
e 2 QU GAMMA U )

DO 85 I = 1M

181,

WRITE(6983)I1sQP(1)sSLIPP(I)sQY(I)sSLIPY(I)eQU(TI!sSLIPUCT!

FORMAT (4Xs1394Xs6E12e4)
CONT INUE

WRITE(69992)
WRITE(6966)
WRITE(69992)

& = 05 «+ €B

SUMEI = EB#*BI + ES#%*SI
EABAR = (EB*AB*ES*AS)/(ES*AS + EB*AB)
EIBAR = SUMEI + EABAR¥Z¥¥2,0

AA = EIBAR/(FABAR#SUMET)
CONST = Z/SUMEI
WRITE(6986)1Z9sSUMET sEABARSEIBARsAAs CONST

GAMMA

86 FORMAT(3H Z=9F10e4s5X97H SUMEI=3E10e495Xs7H EABAR=9E1Qe4s7H EIBAR=

90

95

499

50
502

55
500
501

505
508
510

514
315

19E10e495Xs4H AA=9E1Oe495Xe7H CONST=9EL1Qe4 !

BURP 0«0
OKAY 1.0

DO 90 I = 143
DO 90 J = 1N
B(IsJ) = 00
CONT INUE

DO 95 I = 1M
RANGE(I) = 00

CONT INUE

COUNT = 040

DO 80 1| = 153
DO 50 J = 1N
Bl(IsJ)y = 040
B2 1sJ) = 040
B3lIsJ) = 040
B4(lasJ) = 040
CONT INUE

DO 55 J = 1lsN
BMOM2(J) = 040
BMOM3(J) = 040
CONTINUE

CALL ARAMOM(MsNsPZEROsP s CONST!

CALL ALTER(MsNsAA)

WRITE(69505)

FORMAT (30X s7H SUMMOMs13Xs6H BMOM2s14Xs6H BMOM3)
DO 510 I = 1sN
WRITE(6+508)SUMMOM(I) sBMOM2 (1) sBMOM3 (1)

FORMAT (29X sE1le499X9sE1lels B8XsElles)

CONTINUE

DO . B515. 1 = 1N

SUMMOM(I) = SUMMOM(I) + BMOM2(I1! + BMOM3(1!
CONT INUE

PO 517 J = 1sN



WRITE(69516)JsB(1sJ) sB(29J)sB(39J)sSUMMOM(JI 9J
516 FORMAT(20Xs1593E12e43510XsE12e4515)
517 CONTINUE
CALL DIAG3(BySUMMOMsN/
DO 520 J = 1N
FORCEF(J) = SUMMOM(J)
520 CONTINUE
CALL CALSTD(M)
CALL RANGER (M)
IF(P«GT«PZERO)GO TO 599
CALL CHECKI1 (MsBURP)
IF(BURP«GT«0s0) GO TO 9999
599 COUNT = COUNT + 1le0
600 CALL COMPAT (MsOKAY )
IF(OKAYeGTe0e0) GO TO 900

GO TO 502

900 DO 950 I = 1N
BRENSLB(I) = ((ES*SI)*(AVGMOM(1) = FORCEF(1)%#Z2))/SUMEI
RENREM(I) = ((EB*BI)*(AVGMOM(I) = FORCEF(I)%*Z))/SUMEI
STRANS(I) ==FORCEF(I)/(ES*AS) = BENSLB(I)*DD/(ES*SI)
STRASS(I) ==FORCEF(I1)/(ES*AS! + BENSLB(I!*DD/(ES*5T!
STRANB(I) = FORCEF(I)/(EB*AB) + BENBEM(I!*CB/(EB*BI)
STRABB(I) = FORCEF(I)/(EB*AB) — BENBEM(1/I*Cb/(Eb*BI1)
FORCPR(1) = (EABAR/EIBAR)*Z*AVGMOM(I)
FORCRA(I) = FORCEF(I)/FORCPR(I)
EQUILM(I) = BENSLBI(I) + BENBEM(I) + FORCEF(I)%Z

950 CONTINUE
PP = 240%P

WRITE(69975)1PP s COUNT

975 FORMAT(1H1939X s9HTOTAL LD=3sE10e394H LBSs5Xs8H COUNT =sF640’
WRITE(6966)
WRITE(69985)

985 FORMAT(125H INTERVAL F F/EY BEAM MOM SLAB MOM TU
1B SR SLE  BOT STR SLB' TOP STR BM BOT STR BM AVGMOM MS+MB
1xFEEy /)

DO 990 I = 14N

WRITE(69987) 1 sFORCEF(1)sFORCRA(IL) +sBENBEM(I? 9BENSLB(I/ 9STRANS(I) 95T

1RASS(I)sSTRABB(I) s STRANB(I) sAVGMOMI( 1) sEQUILM(I)
987 FORMATI(2XsI1393X9E12e43F5e231X92E12e491XoE126e491XoE12e4s1Xo12eb91X

192E12e491XsE12647)
990 CONTINUE

WRITE(6+992)
992 FORMAT(2Xs///7)

DO 1100 I = 1M

IF(ABS(FORCEQ(I))«GTeQP(I?) GO TO 1020

SLIP(I) = FORCEQ(I)/CK(I)

GO TO 1100
1020 IF(ABS(FORCEQ(I))eGT«QY(I)) GO TO 1040

SLIP(I) = SLIPP(I) 4+ (FORCEQ(I) = QP(I))/CKP(I)

GO TO 1100
1040 SLIP(I) = SLIPY(I) + (FORCEQ(I) =QY(I))/CKPP(I)
1100 CONTINUE

WRITE(69995)
995 FORMAT (48Xs29H STUD FORCE SLIP /7

DO 997 1 = 1M

WRITE(69996) 1 sFORCEQ(I)sSLIP(I)
996 FORMAT (47Xs13s2E12e4/ )
997 CONTINUE

Ni| 20



niloe

1000

9997
9998
9999

18%.

19

WRITE(6+66)

WRITE(65992)

IF(PeEQePMAX)IGO TO 9997

P =P + DELTAP

WRITE(691000)

FORMAT (24H LOAD HAS BEEN INCREASED!
WRITE(6+992)

GO TO 499

WRITE(699998)

FORMAT (40H SAY MANs YOU EVER HEARD OF AN ABACCUS 2!
5TOP

END

$IBFTC ALTER

C

m N

20

100

110
14

120

130
133

ALTER SETS UP ALL ELEMENTS IN THE MATRIX EQUATION DEPENDING ON
THE RANGE OF STUD FORCE CURRENTe THIS IS TAKEN INITIALLY AT ZERUe
THE VECTOR OF INTEGRATED IMPRESSED MOMENTS IS SFT UP IN ARAMOM.

SUBROUTINE ALTER(MsNsAA)

COMMON /BLOK1/B(35300)sB1(35300)sB2(3+300)+83(35300)9B4(3+300)

COMMON/BLOK2/CK(301) sCKP (301 ) sCKPP (301!

COMMON/BLOK3/QP(301) sQY(301)sQU(301)

COMMON/BLOK&4/SLIP(301)sSLIPP(301)sSLIPY(301)sSLIPU(301)!

COMMON /BLOKS5 /BENMOM( 301 ) s AVGMOM (300! ¢ BADMOM( 301/

COMMON /RLOK&/ZSUMMOM (300 ) s BMOM2 (3001 s BMOM3 (300
COMMON/BLOKT7/FORCEF (300) s FORCEQ(301)

COMMON /RLOKB8/SPACE (300)

COMMON/BLOK9/TRACE (301)sRANGE(301)

DO 500 J = 1lsN

IF(RANGE(J) eGTe0s0) GO TO 100

IF(JeGTel) GO TO 20

Bli2sJ) = 1.0/CK(J)

TRACE(J) = 040

GO TO 500

Bi(2sJ) = 1404CK(J)

B2(2sJ=1) = 1¢0/CK(J)

B4(1sJ) = =160/CK(J)

B4(39J=1) = B4(lsJ)

TRACE(J) = 040

GO TO 500

IF(RANGE(J) eGTele0) GO TO 200

IF(JeGTel) GO TO 120

Bl(2sJ) = 140/CKP(J)

TRACE(J) = 140

IF(FORCEQ(J) eGEe0«Q) GO TO 110

DC = =140

GO TO 111

DC = +1.0

BMOM2(J) = DC*(QP(J)/CKP(J) = SLIPP(J))

GO TO 500

R1(2sJ) = 1.0/CKP(J)

B2(2sJ=1) = leU/CKP(J!

B4(lsJd) = =1e0/CKPI(J)

B4(3ed=1) = B4(1lsJ)

TRACE(J) = 1.0

IF(FORCEQ(J) eGFe0e0) GO TO 130

DC = "'].QU

GO TO 131

DC = +1.0

BMOM2 (J=1) = =DC*(QP(J)/CKP(J) = SLIPP(J)) + BMOM2(J=-1)



132

200

210
211

230
231
232
500

560
561

575

580
581
610

620

650

BMOM2( J) = DCH(QP (I ACKP (U1 = SLIPPLJ2
GO TO 500

IF(RANGE(J) «GTe240) GO TO 500
IFCIRB T« 1) GO TO 220

B1(2eJ) = 140/CKPP(J)

TRACE(J) = 240

IF(FORCEQ(J) «GEeOUe0Q) GO TO 210

DC = ~740

GO TO 211

DC = 4160

BMOM3(J) = DC*¥(QY(J)/CKPP(J) = SLIPY(J))
GO TO 500

B1(2sJ) = 1e0/CKPP(J)

B2(2sJ=1) = 140/CKPP(J)

B4(lsJ) = =1e0/CKPP(J!

B4(3sJ=1) = B&4(1lsed)

TRACE(J) = 240

IF(FORCEQ(J) «GEe0e0) GO TO 230

RDC = -100

GO TO 231

D = $1led

BMOM3(J=1) = =DC*(QY(J)/CKPP(J) = SLIPY(J)) + BMOM3(J-1!
BMOM3 (J) = DC*¥(QY(J)/CKPP(J) = SLIPY(J))
CONTINUE

IF(RANGE (M) «GTe0e0O) GO TO 550
B2(2sN) = 140/CKI(M)

TRACE(M) = 0.0

GO TO 610

IF(RANGE(M)eGTele0O) GO TO 575
B2(2sN) = 140/CKP (M)

TRACE(M) = 140

IF(FORCEQ(M) eGE«0Oe0O) GO TO 560
DC = =140

GO TO 561

DC = +1.0

BMOM2(N) = =DC*(QP(M)/CKP(M) = SLIPP(M)) + BMOMZ2(NI
GO TO 610

IF(RANGE (M) «eGTe2e0) GO TO 610
B2(2sN) = 1«40/CKPP (M)

TRACE(M) = 240
IF(FORCEQ(M) «eGEeOe0O) GO TO 580

DC = =1.0

GG TO 58]

DC = +160

BRMOM3(N) = =DC*(QY(M)/CKPP(M) = SLIPY(M))+ BMOM3(N)
DO 620 I = 1N

B3(2s1)= AA%*SPACE(I)

CONT INUE

DO 650 I = 13

DO 650 J = 1N

BlIsJ) = Bl(IsJd) + B2(IsJ) + B3(IsJ) + B4(IsJ!)
CONTINUE

RETURN

END

$IBFTC ARAMOM

€
C

N 20

ARAMOM INTEGRATES IMPRESSED MOMENTS AND SETS UP RHS OF UNCORRECTED
STUSST MATRIX EQUATIONe
SUBROUTINE ARAMOM(MsNsPZERO P sCONST)



n)ze

50

100

(Seds

1320
150

COMMON /BLOKS /BENMOM(301) s AVGMOM (300} yBADMOM(301)
COMMON /BLOK 6 /SUMMOM( 300 ) s BMOM2 (300 s BMOM3 (300

COMMON /BLOK8 /SPACE (300)
IF(PeGT«PZERDY GO T8 100
DO 50 I = 1sN

) /240

1 /260

AVGMOM(I) = (BENMOM(I! + BENMOM(I+1!
SUMMOM(I) = CONST* AVGMOM(I1) % SPACE(I)
CONT INUE

GO TO 150

PG 226 I = 1laM

BADMOM(I) = (P/PZERO)*BENMOM(I)

CONT INUE

DO 130 I = 1sN

AVGMOM(1) = (BADMOM(1/ + BADMOM(I+1
SUMMOM(1) = CONST*AVGMOM(I)*SPACE(T)
CONT INUE

RETURN

END

$IBFTC CALSTD
CALSTD CALCULATES THE FORCES ON THE STUDS

€

20

40

45
50

SUBROUTINE CALSTD(M)
COMMON/BLOK7/FORCEF (300) sFORCEQ(301)
DO 50 I = 1sM

IF(I=14GTe0) GO TO 40

FORCEQ(I) = FORCEF(I)

GO TO 80

IF(I«EQeM) GO TO 45

FORCEQ(I) = FORCEF(I) = FORCEF(I=-1/
GO TO 50

FORCEQ(I) = ~FORCEF(I=1)

CONT INUE

RETURN

END

$IBFTC RANGER
RANGER KEEPS TRACK OF THE RANGE OF STUD FORCES CALCULATED

g

25

35

45

50
200

SUBROUTINE RANGER (M)
COMMON/BLOK3/QP(301)sQY(301)sQU(301)
COMMON /BLOK7/FORCEF (300) s FORCEQ(301
COMMON/BLOKS/TRACE (301 ) sRANGE(301)
DO 200 I = 1M
IF(ABS(FORCEQ(I))e«GT«QP(I)) GO TO 25
RANGE(I) = 00

GO TO 200
IF(ABS(FORCEQ(I))eGTeQY(L)) GO TO 35
RANGE(I) = 1a0

GO TO 200

IF(ABS(FORCEQ(1))eGE«QU(I)) GO TO 45
RANGE(I) = 240

GO TO 200

RANGE(I) = 3.0

WRITE(6+50) 1

185-

FORMAT (8H STUD NOs13s27H HAS REACHED ULTIMATE SHEAR//!

CONT INUE
RETURN
END

SIBFTC CHECK]

&
@

CHECK1 MAKES SURE THAT THE FIRST APPLIED MOMENT

YIELD STUD FORCES. IN THE ZERO RANGEs

IS LOW ENOUGH TO



NIi9oN

100

1 S0
200

SUBROUTINE CHECKL1 (MeBURP!
COMMON/BLOK9/TRACE (301 ) s RANGE (301

BURP = Oe

DO 100 1

IF(RANGE(I)eEQe0e0)

0]
= 1«M

BURP = BURP + 1.0

CONTINUE

IF(BURPeEQeCe0)

WRITE(6+150)
FORMAT (25H INITIAL LOAD IS TCO HIGH//!

RETURN
END

$IBFTC COMPAT

GO 10 100

GO TO 200

COMPAT COMPARES STUD FORCES CALCULATED AND LEVEL OF CORRECTIONS

C
SUBROUTINE COMPAT (MsOKAY)
COMMON /BLOK9/TRACE (301) sRANGE(301)
OKAY = 1.0
PO 100 I = 1asM
IF(RANGE(I)eEQeTRACE(I)) GO TO 100
OKAY = 040

100 CONTINUE
WRITE(69125)

125 FORMAT(21H RANGE OF STUD FORCES7Z)
WRITE(69150) (RANGE(I)sI=1eM)
WRITE(69135)

135 FORMAT(28H STATE OF CORRECTIONS SO FAR/)
WRITE(69150) (TRACE(I)sl=1sM)

150 FORMAT(30F440)

WRITE(69160)
160 FORMAT(2Xs///)
RETURN
END
' 6400 END RECORD
1968 MCMASTER TESTS -- BEAM NO 1(

6400 END FILE

16 15 ¢3190E+07 «2900E+08 2.750 64080 54620170000
«100F+04 o500E+03 +200E+05
«6000E+04 «2000E=02 «1100E+05 «2000E=01 «1200E+05
«6000E+04 «2000E~02 «1100E+05 «2000E=01 «1200E+05
«6000FE+04 «2000F=02 ¢«1100E+05 «2000E=01 «1200F4+05
«6000F4+04 «2000E=02 «1100F+05 «2000E=01 «1200E+05
«6000E+04 «2000F=02 «1100E+05 «2000E=01 «1200E+05
«6000E+04 «2000E=02 «1100E+05 «2000E-01 «1200E+05
«6000F+04 «2000E=02 «1100E+05 «2000E=-01 «1200E+05
e 6000F+04 «2000E=-02 «1100E+05 «2000E=-01 ¢« 1200E+05
«6000F+04 ¢ 2000F=02 «1100E+05 ¢« 2000E=01 «1200F+05
«60NNF+04 e 20NDF=02 «1100F+05 «2000E=01 «1200F+05
«6000FE+04 «2000E=02 «1100FE+05 «2000E=01 «1200F+05
«6000E+04 «2000E=D2 «1100E+05 «2000E=01 «1200FE+05
«6000E+04 «2000F=02 «1100FE+05 «2000E~01 «1200F+05
«6000F+04 «2000F=02 «1100E+05 «2000E=01 ¢« 1200E+405
«6000F+04 ¢ 2000F=02 «1100E+05 «2000E=-01 «1200E+05
6000E+04 «2000E=02 «1100F+05 «2000E=-01 «1200E+05
Oe 60000, 120000, 1800004 240000, 300000
330000, 2300004 300000, 2400004 180000 120000
12400 12400 12400 12400 12,00 244,00
24400 24400 12400 12400 12400 12400

SIX SINGLE STUDS IN SHEAR SPAN )
1301000

+ 1000E+0D!
e 1O00E+D
« 1000E4+0D
¢« 1N0DE+ND
« 100QE+00
« 1000E+00
¢ 1000E+D
« 1000E+0
+ JO00E+QC
«1000FE+00
¢« 1000E+0D
¢« 1000E+0D
¢ 1000FE40QC
¢« 1000E+00
« 1000E+0OC
¢ 1000E+0OC
3300004
60000
24400
1200
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APPENDIX (e)
BOTTOM FLANGE PARTIALLY YIELDED
€pp > Ey
lebl é Gy
-+ s
— N N N —
R X N
N |
- ¢
< | w_ | = +
Ll B BB
o | Y 1N

T
STRAIN STRESS é O
‘ [

¢h _ €pp-Ey

h [
c = Sbb-€y
&

Ep Al bl . zJ
2 [( bb ¥ b) PA (€bb-€y)

Mp= Eply| ¢ -— (5¢”—2 Epp + 2 Ey) (€4 - Ey)*
12¢ Ib
BOTTOM FLANGE AND PART OF WEB YIELDED
Epy ? €y
el & ey

S -
' | = 5\ + +
b v
| fLJ ‘ c= eb;_ o ¢ i

STRAIN  STRESS | N)
EpA b’ 2
F = T[(ébt'féb)-ﬁfébb‘ey) * Z;"(ebb"ey ¢t)] Le)
e'= gc-t)
_ z-:,,zm]' _(3oh-2Eupt28Y) b’
M= 2 12 rE (€vp - e) ¢I

(3h- 4t -2 €y +2&y) ot 2 (b-w)
+ 5 (css-€9-9t)" 2= ]
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BOTTOM FLANGE ENTIRELY YIELDED AND PART OF TOP FLANGE

l€bl > ey l€pi< €y + ot
Cob > €y + 6t / ﬁ?

NI =N

Ey iy .
STRAIN STRESS
_ E.,A[ | b’ 2 bw 4812
F 2 (€vy + €) -ﬁ(ébb—ev) *SA (€pp-€y - Ft)
b 2
—_— - €y~
FA (- €b—ey) ]
Mp= Ep1, €y)*(20h+ 2 €y~ 2€p)
(b-w) z
‘1¢1 ——— (€~ €y - -¢t) (5¢lﬁ 4¢t+26y—265b)
b 2 ’

l€pl> €y  [€p|>ey+ Pt € > Ey et

BOTTOM FLANGE ENTIRELY YIELDED AND ALL OF TOP FLANGE %

C = = By

Ey| &y

STRAIN STRESS

EpA b-w z]
F = As ABOVE + ——] . Z_—(-€y-€, -¢t
| z FA - 177F #t)
bw A

M= AS ABOVE - E_"_(.__l(-e.,..eb -¢t)1(a¢h-4¢t +2Ey-2€y)

12 ¢*
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€ AP REN D I: X F
C
C ___________________
G
e PROGRAM TO COMPUTE TRIAL SOLUTIONS SATISFYING EQUILIBRIUM e
<
C
RUN(S99990986200)
REDUCE «
LGOe
f 6400 END RECORD
PROGRAM TST (INPUTsOUTPUTsTAPES=INPUTsTAPE6=0UTPUT)
$JOB 003402 WALLACE I W 100 010 030
$IBJOB NODECK
$18F FC
£
& BEAM 1 == INTERVWAL 7
DIMENSION AVGMOM(2)
A = 140
B = 540
ES = 31900004
SI = 880500
H = 1216 $ D = 250 $ BPR = 4401 $ Z = 8483 ST = 0435 W = 024
AB = 54620 % EB = 29000000 $ BI = 130610
AS = 170
EPSBB = 0012029
EPSB = =,000250
EPSY = 001186
AVGMOM(1) = 1168200,

AVGMOM(2) = 1188000
FSTAR = 77461

DELEPS = ((AVGMOM(2)/AVGMUM(1/) = 1e0) * EPSERB
PELPHI = 4000005

COUNT = 160

COUNT1 = 140

COUNTZ2 = 10

COUNTI = 140

COUNT4 = 140

20 PHI = (EPSBB - EPSB)/H
22 IF(EPSBBeLTeEPSY) GO TO 50
IF(EPSBBeLEe (EPSY + PHI*T/IGO TO 40
30 F = (EB*AB/2e) * ( EPSBB+EPSB —((EPSBB=EPSY)#%240)#BPR/ (PHI*AB) +(
1(BPR=W)*(EPSBB~EPSY=PHI*T)%*%240)/(PHI*AB) )
31 BMB = EB*BI*¥PHI = (EB¥*BPR/(12¢0%¥PHI*%240)) * ((EPSBB-EPSY)%%2,0)*
1(340%PHI¥H = 2,0%EPSRB + 240%FEPSY) + (BPR=-WI)#FR/(12«0%PHI*%240/
2 ((EPSBB = EPSY = PHI#T)*#2,0)% (340%PHI*H = 440%PHI*T — 2.0%EPSHD
3+ 2e0%EPSY)
GO TO 60
40 F = (EB*AB/240) * ((EPSBB+EPSB) =(BPR/(AB*PHI ! )% (EPSBB=EPSY)*%2,0
41 BMB = EB*BI*PHI =((EB¥BPR/PHI)*(EPSBB=EPSY)#%#240)%(H/4e0 = (EPSHL
1-EPSY) /(6 0%PHI))
GO TO 60
50 F = EB*AB*(FPSBB + EPSB) /2.0
51 BMB = EB*BI*PHI
60 WRITE(6961)FsBMB
61 FORMAT(3H F=9E1l2eb4s4H MB=9E1l2e4!

| 1 2D



I ErEa

| 2o.

EPSSS = =F/(ES*AS) = PHI*D/2e0
BMS = ES#SI#*PHI
EPSS = EPSSS + PHI*4.00
65 BM = BMB + BMS + F#*Z
STRDIF = EPSB = EPSS
WRITE(6sT70/BMsEPSBBsPHI sEPSSSesSTRDIF sEPSBIEPSS
70 FORMAT( 8H MOMENT=9ElZe4s4HEBB=9ELlZe495H PHI=sElZet95H ESS=9E12 e
17H EB=ES=9E12e494H EB=sEl2eb494H ES=9E12e4)
IF(BMelLEs (1 0001%AVGMOM(2))) GO TO 101
A = OO?O*A
EPSBB = EPSBB = DELEPS*A
EPSB = EPSRB = PHI#*H
COUNT = COUNT + 140
IF(COUNT «GTe40e0) GO TO 636
ge 10 22
1U1 IF(BMeGEe (0e9999%AVGMOM(2))) GO TO 200
110 EPSBB = EPSBB + DELEPS*A
EPSB = EPSEB = PHI*H

COUNT = COUNT + 10
IF(COUNT «GTe40e0) GO TO 636
GO TO 22

200 A = 140

210 PHI ='BPHI + DELPHI%B
EPSB = EPSBB = PHI %
IF{UABS(EPSB) JaGTeEPSYY GO TO 251
ITFUEPSBRBaL.THEPSY) GO TO 250
IF(EPSRBeLE«(EPSY + PHI*#T))IGO TO 240

230 F = (EB*AB/2+ * ( FPSBB+EPSB =~((EPSBB=EPSY)#%240)*BPR/ (PHI*AB) +(
1 (BPR=W)* (EPSBB-EPSY=PHI*T ) ¥%240)/(PHI¥AB/ )
GO TO 260

240 F = (EB*AB/240) * ((EPSBB+EPSB) -(BPR/(AB¥*PHI ! )* (EPSBB=EPSY)#¥2,0
GO TO 260

250 F = EB*AB*(EPSBB + EPSB!/240
GO TO 260

251 IF(EPSEBBelLTe(EPSY + PHI*TI)J GO TO 640
252 IF((ABS(EPSB))eLEs(EPSY + PHI*T)) GO TO 258

253 F = (EB*¥AB/2+0) *(EPSBR + EPSB = (BPR/(PHI*AB) )% ((EPSBB-EPSY)¥%2¢0
1 - (EPSB-EPSY)*%¥2,0) + ((BPR=W)/(PHI*AB) /) * ((EPSBB=EPSY=PHIXTI®%.
2¢0 = (EPSY-EPSB=PHI*#T/%%240/)

GO TO 260

258 F = (EB*¥AB/2+0) *(EPSBB + EPSB = (BPR/(PHI*AB) )% ( (EPSBB-EPSY ) ¥*%24(
1 = (EPSB-EPSY)#*%2,0) + ((BPR=W)/(PHI*AB)) * ((EPSBB-EPSY=PHI*T)¥*#2
240 §%

260 WRITE(69261)F¢PHI

261 FORMAT(3H F=9sE1l2e495H PHI=9E12e4)
IF(FeLE«FSTAR) GO TO 310
COUNTL = COUNTL # 1a0
IF(COUNT1eGTe40e0) GO TO 636
GO TO 210

310 EPSBB = EPSBB ~ DELEPS*A
FPSB = EPSBB = PHI*H
IF((ABS(EPSB))«GT«EPSY) GO TO 351
IF(EPSBB+LTEPSY ) GO TO 350
IF(EPSBBeLE«(EPSY + PHI*TJIGO TO 340

330 F = (EB¥*AB/2e) * ( EPSBB+EPSB ~((EPSBB-EPSY)*%240/)%BPR/ (PHI*AB) +/{
1 (BPR=W)* (EPSBB=EPSY-PHI*T)%%240/)/(PHI*AB/)
33] BMB = EB#BI¥PHI = (EB*BPR/(12e0%PHI*#2,01)) % ((EPSEB-EPSY)#*%2401%

1(3.0%PHI¥H — 2,0%EPSBB + 2e0%EPSY) + (BPR=WI)*EB/(12e0%PHI*%240!



S

at.

2 ((EPSBR = EPSY = PHI®T)#*#2,0)% (30%PHI*H = 440%¥PHI*T = 2,0%"PSEH
3+ 2+0%EPSY)

GO 7O 380
340 F = (EB*AB/2.0) * ((EPSBB+EPSB! —(BPR/(AB*PHI ) )% (EPSBb—=EPSY ) *#2.0)
341 BMB = EB*BI*PHI —((EB*BPR/PHI)*(EPSBB—EPSY)#%¥240)*(H/4,0 = (EPSHB
1-EPSY) /(6 0%PHI))
GO TO 360

350 F = EB*AB¥(EPSRB + EPSB) /240
BMB = FR*BI*PHI
GO TO 360

351 IF(EPSBBeLTe(EPSY 4+ PHI*T!)) GO TO 358

352 IF((ABS(EPSB))eLEe(EPSY + PHI*T)) GO TO 358

353 F = (EB*¥AB/2e0) *(EPSBB + EPSB — (BPR/(PHI*AB! )*( (EPSBB-EPSY)##240
1 — (EPSB-EPSY)*%24,0) + ((BPR=-W)/(PHI*AB) ! % ((EPSBB-EPSY-PHI*T)¥%*2
2¢0 = (FEPSY-EPSB=PHI*T!#%2401))

355 RMB= ER*BI*PHI = (ERB¥BPR/(12¢0%PHI*#240)) * (((EPSBB—EPSY)*#2,0)%
1({3.0%PHI*H = 240%EPSRR + 2¢0%¥FPSY) +((EPSB=EPSY)#%240)%(340%PHI*H
2= 240%EPSY + 240%EPSB/) + ((BPR=-WI!*EB/(12+0%PHI*%240/) *(((EPSED
3 = EPSY = PHI#T)%%2,0) % (3,0%PHI¥H = 40#PHI*T — 240%EPSBB + 240
4 * EPSY) + ((EPSY=EPSB=PHI*TI*#240)%*(3¢0%PHI*H = 4e0%PHI*T
5 —240%EPSY + 240%EPSB))

GO TO 360

358 F = (EB¥AB/2.0) #(EPSBB + EPSB - (BPR/(PHI®AB))*((EPSBB-EPSY)#*%240
1 - (EPSB=EPSY)##240) + ((RPR=W)/(PHI*AB)) * ((EPSBB=EPSY=-PHI*T)#%2
250 ¥)

359 BMB= ER¥BI*PHI = (FB*BPR/(12e0%PHI*%¥2,0)) % (((EPSBB-EPSY)%%2,0/%
1(3e0%PHI%¥H = 240%EPSBB + 2e0%EPSY) +((EPSB=EPSY)#%240)3%#(3e0%PHI *H
2= 240%EPSY + 240%EPSB)! + ((BPR-WI!*EB/(12e0%PHI*¥240)/ *(((EPSEL
3 = EPSY = PHI#T)%#%24,0) # (3,0%PHI*H = 440%PHI*T = 240%EPSEB + 240
4 * EPSY))

360 EPSSS = —-F/(ES*AS) = PHI%*D/2e0

BMS = ES#SI#PHI
EPSS = EPSSS + PHI®*4,.,00
365 BM = BMB + BMS + F#*Z
WRITE(6s370)F sBMsEPSBBE
370 FORMAT(8H FORCE =9El2e499H MUMENT =9El2e49bh EobB=sEl2e4)
IF(BMeLEe (1e000L*AVGMOM(2))) GO TO 375

GO TO 390

375 IF(BMeGEe (0e9999%AVGMOM(2))) GO TO 376
GO TG 390

376 IF(FeGTe(0e9999%#FSTAR)) GO TO 377
GO TO .390

377 IF(FeLEe(140001%FSTAR!)) GO TO 630

390 IF(BMeLEeAVGMOM(2)) GO TO 410
COUNT2 = COUNTZ + 10
IF(COUNT2eGTe40e0) GO TO 636
GO TO 310

410 B = 0e80%B

411 PHI = PHI - DELPHI*B
EPSB = EPSBB - PHI%*H
IF((ABS(EPSB) ) «GT«EPSY) GO TO 451
IF(EPSBBeLTeEPSY) GO TO 450
IF{EPSBBeLESIEPSY # PHI*TY2GO TGO 440

430 F = (EB%AB/2e) * ( EPSBB+EPSB —((EPSBB—-EPSY)*#240)¥BPR/(PHI*ABR) +
1 (BPR=W)* (EPSRB=EPSY=PHI*#T)*¥#24,01)/(PHI*ABI)
GO TO 460

440 F = (EB*AB/2e0) % ((EPSBR4EPSB) —(BPR/(AB*PHI) )*(EPSBB=EPSY)¥¥%240)
GO TO 460



1.

450 F = EB®AB¥(EPSBB + EPSB1/240
GO TO 460
451 IF(EPSBBeLTe (EPSY + PHI*T)) GO TO 458

453 F = (EB¥AB/2.0) #(EPSBR + EPSB - (BPR/(PHI*AB))*((EPSBB-EPSY *%2,
1 - (EPSB=EPSY)#%#24,0) + ((BPR=W)/(PHI¥ABR)! * ((EPSBB<~EPSY=PHI*T }#¥2
2¢0 = (EPSY-CPSB=PHI*T)%*x2,01))

GO TO 460

458 F = (EB¥ABR/2.0) #(EPSBB + EPSB - (BPR/(PHI*AB! )*((EPSBB-EPSY )% .
1 - (EPSB-EPSY)##2,0) + ((BPR=W!/(PHI*AB)! % ((EPSBB=EPSY-PHI*T)*#,
240 )
460 WRITE(69461)F sPHI
461 FORMAT(3H F=sE12e496H PHII=9E12e4)
IF(FeGEeFSTAR) GO TO 510
COUNT3 = COUNT3 + 10
IF(COUNT34GTe40s0) GO TO 636
GO TO 411

510 A = A

511 EPSBB = EPSBB + DELEPS*A
EPSB = FPSBBE = PHI*H
IF((ABS(EPSB) ) «GT«EPSY) GO TO 551
IF(EPSBBeLT«EPSY) GO TO 550
IF(EPSRBeLFe (FPSY + PHI®*T)I)IGO TO 540

530 F = (EB¥*AB/2e¢) * ( EPSBB+EPSB = ((EPSBB=EPSY)*¥%240)%¥BPR/(PHI*AB) +
1 (BPR-W)* (EPSBB=EPSY=PHI*T ) %%24,0)/(PHI*AB})

531 BMB = EB*BI*PHI - (EB*BPR/(12e0%PHI%*%240)) % ((EPSBB-EPSY)*%2,01)%
1(360%PHI*H = 240%EPSBB + 2e0%EPSY) + (BPR=-WI/*EB/(1240%PH1*%¥240)
2 ((EPSBB = EPSY = PHI#T)#%2,01#% (340%PHI*H = 440#%PHI*T = 2+0%EPS|
3+ 24 0O%EPSY)

6O TO 560
540 F = (EB%AB/240) % ((EPSBB+EPSB) =(BPR/(AB*PHI!)*(EPSBB-EPSY)#%2,C(
541 BMB = EB*BI%PHI —((EB*BPR/PHI!*(EPSBB-EPSY I *#240)%(H/440 — (EPSHL
1-EPSY)/(6e0%PHI))
G0 TO 560

550 F = EB*AB*(EPSBB + EPSB1/240
BMB = EL*BI*PHI
59 TO 560

551 IF(EPSBB«LT&(EPSY + PHI*T)IGU TO 640

552 IF((ABS(FEPSR))eLFe(FPSY + PHI*T)) GO Tu 558

553 F = (EB*AR/240) *(EPSBB + EPSB = (BPR/(PHI*AB) )+ (EPSBB-EPSY)##240
1 - (EPSB-EPSY)#%#2,0) + ((BPR=W)/(PHI*AB)) * ((EPSBB-EPSY=i I%T)*x*2
2¢0 = (EPSY-EPSB=PHI*T/%*%240//

555 BMB= EB*BI*PHI = (EB*BPR/(12e0%PHI#¥240)) * (((EPSBB-EPSY)#%240/7
1(3,0%PHI*¥H = 2,0%EPSBB + 2e0%EPSY) +((EPSB=EPSY)#%240)%(340%0" J¥H
2= 2.0%EPSY + 240%EPSB!)) + ((BPR=WI/*EB/(12+0%PHI*#240// *(((EPSBB
3 - FPSY = PHI*T)%#%#2,0/) % (3.0%PHI¥H = 440%PHI*T = 240%EPSBB + 2.0
4 * EPSY) 4+ ((EPSY-EPSB=PHI*T)%%24,0)%(340#PHI¥*H = 4e¢0%PHI*T
5 ~240%EPSY + 2.0%EPSB))

GO TO 560

558 F = (EB*AB/240) *(EPSBE + EPSB = (BPR/(PHI*AB!)*((EPSBB-EPSY)*%*240
1 - (EPSB=EPSY)#%2,0) + ((BPR=-W)/(PHI*AB)) % ((EPSBB-EPSY-PHI*T)*%.
280 1)

559 BMB= EBR¥*BI*PH8 - (EB*BPR/(12.0%PHI¥*¥2,0)) * (((EPSBB=EPSY)¥%240/%
1(3e0%PHI*¥H = 2,0%EPSRB + 240%FEPSY) +((EPSB=EPSY)#%240) %(340%PHI*H
2= 2.0%EPSY + 240%EPSB)) 4+ ((BPR=W)XER/(12+0%PHI*#2,0)) *(((EPSBB
3 = EPSY = PHI*T)#%2,0) % (3,0%PHI¥H = 4 O0%PHI*T — 2,0%EPSBB + 2.0
4 * EPSY))

560 EPSSS = =F/(ES¥AS) - PHI*¥D/2.0
BMS = ES#SI*PHI

N



192

FPSS = EPSSS + PHI*4400
565 BM = BMB + RMS + F#%Z
STRDIF = EPSB = EPSS
WRITE(69570 FsBMsEPSBBSEPSBsEPSSesSTRDIF
570 FORMAT(8H FORCE =sF12e499H MOMENT =9FE12e496H EBBB=9E1l2e494H EB=»
1E12eb94H ES=9E1l2e497H EB~ES=9E12e4)
IF(BMeGE e (0e9999%AVGMOM(2))) GO TO 610
COUNT4 = COUNT4 + 1.0
IF(COUNT4eGTe40e0) GO TO 636
GO TO 511
610 A = 0e80O%A
COUNT1 0e0
COUNT?2 0e0
COUNT?3 0e0
COUNT4 0e0
IF(FeLEe(140001%FSTAR!) GO TO 611
GO TO 210
611 IF(FeGFe(0e9999%FSTAR)) GO TO 620
GO TO 210
620 IF(BMeLEe(1e0001%AVGMOM(2))) GO TO 630
GO TO 210
630 WRITE(69635)
635 FORMAT(47H HERE ARE YOUR COTTON-PICKING CONVERGED ANSWERS)
GO TO 690
636 WRITE(69637)
637 FORMAT(13H RATS-A-FRATS)
GO TO 690
640 WRITE(69641)
641 FORMAT(11lH SMARTEN UP)
690 CONTINUE
sTOP
END
NTRY

B

%

m

6400 END RECORD
6400 END FILE

- -

71190
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AMo T

PROGRAM T

IVINGROURS OF STUDLS ARE

194.

O CHECKN COMPATIBILITY OF TRIAL SOLUTIONS ee

RECORD
ST (INPUT«sOUTPUT s TAPES=INPUT s TAPEG6=QUTPUT)

ALLOWED

MULTILINEAR MODULUS PERMITTED
M= NO OF STUDS (OR GROWPS OF STUDS )
N= NO OF INTERVALS BETWEEN STUDS
ES5= kE QF SLApg
co= k& OF bEAM
CS5= DISTANCE INTERFACE TO CENTRQID SLAB
CB= DISTANCE INTERFACE TO CENTROID BEAM
Z = SUM OF €5 AND (B
A = AREA bpLAM
AS = AREA OLAL
BI = I OF BEAM ALONE
SI = 1 OF SLAB ALONE
ZL = SPAN UF BEAM
P = TOTAL LOAD ON CUYMPOSITE BEAYM DISTRIBUTED TO 2 POINTS
PZERO = INITIAL TOTAL LOADL
DELTAP= LOAL INCREMENT
PMAX = MAXImUM TUOTAL LOAD
CONST = Z OVER SIGMA EI
COUNT = COUNTER OF LOOPS REQsD TO STABILIZE STUD FORCES
BURP = INDICATOR WHICH = 0 IF PO IS CHOSEN LOW ENOQUGHs=1 IF NOT
QRAY = leU [F STUD FORCES ARE STABILIZEDs =00 IF NOT
BllIad) = S5TUSSI MULTIPLIER ARRAY
BleB29sB3sB4(19sJ) =SEPARATELY-GENERATED ARRAYSs WHICH wWHeN ADUEDs
SUM TQO B&IsJ) WITH CORRECTED ELEMENTS
CKesCKPsCKPP I) = STUD MODULUS ARRAYS
QPsQYsQUITI) = LIMITS OF APPLICABILITY OF CKosCKPsCKPP ARRAYS
SLIPsSLIPPaSLIPYLE) = SLIP. AND SLIP LIMITS ARRAYSe (AND SLIPL T3)
BENMOM(I) = IMPRESSED MOMENT ON BEAMsONE FOR EVERY STUD(GRQUP
LOCATION OR SUPPORT LOCATIONs FOR PO QONLY
BADMONM(I) = BENMOY4(I) * P/PC
AVGMOM 2 SUMMUK s DUMMOMAT = ARRAYS OF IMPRESSED MOMENTS
BMOM2 s BMOM3 (1) = ARRAYS OF CORRECTIONS TO RHS OF STUSSI MATRIX

BENSIEBSBENBEM( ) =
FOREEFSFORCEQLITI) =

FOURCF

STRANSsoTRANB I) =

SPACE
TRACE

REI

(1)
(1

EQUATION

QF MUMENTS IN SLABsBEANM
OF FORCES IN SEAB AND DM STUDS
ASSUMING COMPLETE INTERACTION
STRALN 1IN SLAZ AND BEAM ARRAYS.

= ARRAY OF SPACES BETWEEN STUDS AND/ZUR SUPPORTS
= TRACES STATE OF CORRECTIONS IN S5TUSSI

ARRAYS
ARRAYS
= FORCE IN SLAL

MATRIX EQUATION



(aNak»

195.

RANGE(I) = IADICATES RANGE OF STUD FORCE COMPUTED

STUD FORCES ARE STABILIZED .H'“ TRACEWT = RANGE(I}
EQUILM=MO*+Mb+F*Z
COMMON/BLOK1/B(39300U)sB1 393U0 »B2(3+30U)sB3(3>
COMMON/BLOR2/CK (301 sCkP(301 #CKPP(301)
COMMON/BLOKR3 /WP (301 ) suY(3uwl)sQu 301)
COunCN/bLCu4/bLIF(’Ul JSLIPPE3N 1 aSLIPY 301 4SLTPUL30L)

300) B4 35300

COMMON/BLOKS /BENR® (3'1)9AVGﬂu\(?Uu);HADmUm(Bul
LUIVlOIU\I/LJL\/I\O/\JU:l;;V (BVU)’J\]OII'_(JVU)’L—l IB(B'N'C

COMMON/BLOKT7/FORCEF(300) sFORCEQ(301)
COMMON/BLOKB/SPACE(300Q)
COMMOIN/BLORI /TRACE(3UL) sRANGE(3U1)
COMMON/BLORLIV/EXTENT(30U) s STRDIF(300)
UIMEnoION BENSLB(300) s BENBEM(300 1 s FORCPR 3001 »STRANS(300)
DIMENSION STRANB(30U sEQUILM(30U)
UI;'\LNJIUN Fu.\CI\/\(va)
DIMENSICN TITLE(L13)
DIMENSION STRASS(3UU sSTRABB(3UU)
B = ladb
READ(5s4 TITLE

4 FURMAT (1>A0)
READ(595)MsNIESsEBsCosCBs A ABsASsBI 951

) }'Ul\i"IHT(ZI)QZLluoL}SQFY 392F1lue4
READ(5s10Q)PZERO

1U FORMAT(Elve3)
P=PZERC
bu 15 I:‘l’;"‘
RtAu(SolS)GP(I)95LIPP(I)9;Y(I)-aLIPY(I)sGU(I)sﬁLIPU(I)

15 FORMAT(6ELZe4)
CEALY = QPLTL Y ESLIPRL)
CKP(I)=(@QY(I)=QP(I))/Z(SLIPY(I)=SLIPP(I))
CKPP(I)= (QUITI=QYLT1) ZUSLIPULT ) ~SLIPY(I})

25 CONTINUE
READ(S5930) (BENMOM(I)sI=19M)
READ(5935) (SPACE(I)sI=19sN)

3u FORMAT(BFlvev)

35 FORMAT (BFlued)
WRITE(G6958)(TITLE(I)»I = 1913)

58 FORMAT(1H1913A0)
WRITE(626uU)iiall

6u FORMAT(16F COMPOSITE BEAMssI5e7H STUDSs915910H INTERVALS//Z)
WRITE(6965)

65 FORMAT(BUX9+19F SECTION PROPERTIES])
WRITE(6966)

66 FORMAT (40X 34 1H ==mm=—mmm e o s e o i i e /77)
WRITE(6267)

67 FORMAT (111 ES EB cs 8 AS
1A 15 It PO DELTA P P MAX /)

WRITE(6268)ESsEBsCSsCBsASsAB9SI s BIsPZERODELTAP s PMAX
68 FORMATIE1Ve391XeE1Ue35F8e393F1lUe392F1Ua493E10e37//)
WRITE(&6969)
69 FORMAT {48X9s22H CONNECTION PROPERTIES)
WRITE(6966)
WRITE 6s7v)
7Y FORMAT (82H STUD N K K (Kre PRECEDE
15 SPACE (IN) ZEROQO nu\tHT /i)
IF(PZERO«EQe5uuuUeU)IGO TO 73



196.

DO 72 1 = Llai
DLHNQM(I = (PLEH;/SJUJ.‘)*;LU“U‘(I)
T2 CONTINUE
73 DO 75 .I = lsN
WRITE(EsT4) I sCK(T sCKP(I s CKPP({1)sSPACE(]) s BENMOM(TI)
74 FORMAT(4XeT1393X33E12e496XsF10e2910X9F100)
75 CONTINUE
WRITELSsTT W sCKIN sCKPLM) s CKPP (V) s BENVOM M)
77 FORMAT(4Xs1393X93E12e4226X9sF10e40/7/7)
WRITELE280)
8u FUORMAT (84H STUD NO QP GAMMA P QY
I ¥ Qu GAMMA U )
DO 85 I = 1M
WRITE(6983) 1sQP(1)aSLIPP(I)sQY(I)sSLIPY(I)sQUIT)sSLIPULI)
83 FORMAT(4A91394Xs6E12e4)
85 CONTINJE
WRITE 69992)
WRITE(6966)
WRITE(62992)

(®)

2 = C5 #+=°CB

SUMEI = EB¥BI + ES*SI

EABAR = (EB*AB#ES*AS)/(ES*AS + EB*AB)
EIBAR = SUMEI + EABAR#Z%%240

AA = EIBAR/(EABAR*SUMEL)
CONST = Z/SUMEIL
WRITE(6986)ZsSUMEL sEABARsEIBARsAAs CONST
86 FORMAT(3H Z=9E1Ue495XsTH SUMEI=9E1Ue4s5Xs7H cABAR=sL1Ue4s 7H LIDAR=
19ElVe&4s5Xs4H AA=9E1Ue495Xe7H CONST=3EL10e4 )
bURP = Ugu

OKAY = leU

DO 94 I = 1»3
bo 9u 4 = 13N
Bl(led) = Uev

9U CONTINUE
DO 95 I = TsM
RANGE(I) = veU
95 CONTINUE
COUNT = Uevu

499 DO 5U I = 193
DO 5V J = 1N
Bl(lsed) = Ueu
B2(Ied) = Ueu
B3{lsd) = UeU
B4(lsd) = Uev

50 CONTINUE

READ(5997) (EXTENT(I) eI = 1sN)
97 FORMAT (4012)
READ 5396)(STRDIF(I)sI = 1laN)

96 FORMAT (bElce5)

502 B@.BE J = lsN
BMOMZ2(J) = veu
BMOM3(J = UaeU

55 CONTINUE
500 CALL ARAMOM(1sNsPZEROsPsCONST)
501 CALL ALTER(MaNsAA)
CALL INELAS(MN»AAsCONST)
WRITE(695vD)



SUb
510

514
515

66UV

90U

9o

975

985

197.

FORMAT(3uXs TH SUMMOMs13Xs6H BMUM2 s 14Xe6H BMOM3)
DO 51v I = 1N
WRITE 63548 SUMMOM(I #BMOM2(I)sBYMOM3(1])

FORMAT (29X 9E1leb499XsE11les4s 8XsEl1le4)

CONTINUE

DG Sk& 1 = La

SUMMOMIT) = SUMMOM(TI + BMOM2(I) + BMOM3(I)
COUNTINUE

bO 68U I = 193

DO 654 J = lasN

Bllsd = Bl(Isdl + B2(IsJdl + B3(Isd} + B4llsJ)
CONTINUE

DO 517 J = 1lsN
WHITE(69516)J’B(19J)9U(29J)sB(39J)9JU~MUM(J)9J9EXTEHT(J)obTKUIF(J)
FORMAT (2UX91593E12e4910XsE12e4921592X9E1264)

CONTINUE

CALL DIAG3(BsoUMMOMIN)

DO 520 J = 1lsN

FORCEF(J) = SUMMOM(J)

CONTINUE

CALL CALSTR (M)

CALL RANGER (1)

COUNT = COUNT % 10

IF(COUNTeTe5e) GO TO 9997

CALL COMPAT( oCKRAY)

IF(OKAY «GTaUsV) GO TO 900

GO TO 5u2

LO 95u I = 1lsN

IF(IEXTENT(I))«GTaleb) GO TO 95C

BENaLE (1) ((ES*S5T ) ¥ (AVGHMOM(I) = FORCEF I)1#Z) /SUMEI
BENLEM (L) ((EB*BI)*(AVGHMOMILI = FORCEF(I)*Z))/SUMEL
STRANG(I) =-FORCEF(I)/(ES#AS) - BENSLB(I #DD/(ES*SI
5TRASS(I) ==FORCEF(I)/(LS*#AS) + BENSLB(I)*LD/(ES*ST)
STRANB (1) FORCEF(I /(EB*AB) + BENBEM(I)*Cb/(Eb*BIl)

STRABB(I) = FORCEF(I)/ EL*AB) = BENGEM I1)*#CB/(EB*BI)
FORCPR(I) = (EABAR/EIBAR)®*Z#AVGMOM(I)

FORCRA(I) = FORCEF(I)/FORCPR(I)

EQUILMII) = BENSLB(I) + oeNBEM I) + FORCEF(I)#*Z
CONTINUE

PP = ZeU#P

WRITE(692975)PPsCOUNT

FORMAT(1HI 939X s9HTOTAL LD=sElUs3s4H LBS35Xs8H COUNT =sFbel)
WRITE(6s66)

WRITE(69985)

FORMAT (115H INTERVAL F FAFE BEAM MOM SLAB MOM [ ¢
1P STR SLB BOT STR s5LB TuP STR BM goT STR BM AV G OM MG+ b
L#F#*L 1/ )

Dg 99u I = 1lasN

WRITE(69987)1sFORCEF(I)sFURCRA I)sbENCEMII) 9LENSLLI(I sSTRANS(I ) »&T

1RASS(I) sSTRABB(L) o STRANBUI) sAVGHOM(L ) sEQUILM(IY)

gu 7 FUNMAT(ZXQIB’BksLl£.49F5oLslX’Z[lZ-QalX9:LZ.4’lX!Ll:onlKailZ-Qalh

990V

992

ls2E 2 el sl X0 ELZ2 4]

CONTINUL

WRITE(B69952)

FORMAT (2R // /7))

DO F1lLL I = 1M
IF(ABS(FORCEG(I))«GTe@P(I) GO TO 1020



198.

SLPRPGEY = FORCEGL T ) /CKEE )
GO. TO 1100
1U2u IF(ABS(FORCLQ(I))«GTeQY(I)) GO TQO 1v4d
SLIBUEY = SLIPPLI. + (FORCEQLI = QP(IN)I/ZCKP(I)
GO TQ &1y
104U SLIPII) = SLIPY(I + (FORCEQ(I) =QY(I1))}/CKPP(I1)
1luu COUNTIRNJE
WRITE(69995)
995 FURMAT (48Xs29H oTUD FORCE SLIP Lol )
DO 997 I = 1M
WRITE(69996) I sFORCEQ(I sSLIP(I)
996 FURMAT (4 TRslo92EL12e47 )
997 CONTINUE
9997 WRITE(b9s9990)
9998 FORMAT (4UH SAY MANs YOU EVER HEARD OF AN ABACCUS 2)
9999 STGP
END
SIBETE ALTER
SUBROUTINE ALTER(MsNsAA)
COMMON/BLOK1/B(39300)9B1(3930U)sB2(39s30U)9B3(39300)984(39300)
COMMON/BLOKRZ2 /CK(I301) sCKP(3U1 sCKPP (301
COMMON/BLOKR3/QP(301)sQY(301) QU 301)
COMMON/ZBLOK4/SLIP(3uUl) sSLIPRPI301) sSLIPY (301 )eSLIPUT30L)
CUNHUH/bLURD/aiNHUH(BUl),AvbAJM(BLV)’UAUHUM(BVl)
COMMON/BLOKS& /5UMOMI300) s sMOM2 (300 »BMOM3(300)
COMMON/BLORT/FORCEF(300) s FORCEQ(301)
COMMON/BLOKE /5PACE(3uU)
COMMUN/BLURS/TRACE(3Vl) o RANGE(3v1)
bo 50U J = 1N
IFIRANGE(J) «GTosUeu) GO TO 100
IF{JeaGTal) GO TO 20
Bl(2sJ) = lebfCKLEJ
TRACE(J) = Vev
GO TG 540
20 Bli2sd) = leudCKid)
B2(2esJ~=1) = leu/CKI(J)

Ba(led) = =laL/CK ()
b4 (39Jd=1) = &(lsed)
TRACE(J) = ueU

GU TO 5vuy
1uu IF(RANGE(J) «GTelev) GO TO 20U
lF(JoUTol) GO J@ L2V
Bl{2sJ} = 1le«WZCKP(J)
TRACL(J) = leu
IF(FORCEQ(J oGEelUeslU) GO TO 11U
DL = —1leuU
60 TO 11l
110 BE = +1laU
111 BMOM2(J) = DC*(QP(J)/CKPI(J) = SLIPPLJ))

GO TO 500

120 8lU28d) = Leuv/ZCKP(J)
B2(2ed=1) = leu/CKP(J)
B4 lad) = =1aU/CKP(d)
B4 (3ed=1) = U4(1lsd)
TRACE(J) = lev

IF(FORGER(J) «+GE«U el GO TO 130
PC = =l



129.

6o TO 131
130 DE = “ilebd
131 BMUMZIJ=1) = —DC¥(wP JI/ZCKPlJ) — SLIPPLJ)] + B OM2{J—1
132 BMOM21J) = DCH¥(UWPLJI/ZCKP J) = OLIPP(J )

GU TO 54U

2UU IF(RANGE(J) «GTe24U) GO TQO 50
IF(JeGTel) LU TU 22u
BliZ2sd) = leu/CKPPIJ)

TRACE(J) = 2eb
IF(FORCEQ(J) «GEeuUelU) GO TU 21V
pbC = —1leU

GO T 211
210 DL = +1al
211 BMOM3(J) = DC¥(WYLJI/CRPP(J) — SLIPY(J))
G0 TO bHuu
220 Bit2sJ) = 1lesU/CKPRLJ]
B2(29J=1) = leu/CKPP(J)
Ba(lad) = =1laV/CKPP(J)
Ba(3eJd=1) = B4(1sd)
TKHQL(J) Z La¥
IF(FORCEQ(J) aGeveu) GO Tu 23U
LbC = —leuy
GQ T@ 231
23U DC = +1eU
231 BMOM3(J=1) = =DC¥IQY J)I/CKPPUJ) - SLIPY(J)) + BmGM3(J-1
232 BMOM3 J) = DCH*{WY(J)/CKPP(J) = SLIPY(J))
HUU CONTINUE
IF(RANGE (M) « GTeueu) GO TO 55U
B2l2eiN) = Leu/CK (M)
TRACE(M) = Leu
Gu T0 61u
55U IF(RANGE(M)eGTelel) GO TO 575
B2(2sN) = 1leU/CKP(M)
TRACC (M) = lev
IF(FORCEQ(M) «GEeUeU) GO TO 56UV
LC = —lev
GO TO 561
56U LC = +1leU
S& 1 pMUMZ (N) = —-PDCHR(QPIMYLCRP M) ~ SLIPP (™) + BMumr 2 (i
GO TOQ 610
575 IF(RANGE(M) «GTe2eU) GO TO 61U
B2i2slN = 1leU/CKPP (M)
TRACE(M) = Zeu
IF(FORCEQ(M) «GEaUsQ) GO TO 58V

bE = =10
@@ TQ 584
58U DC = +lev

581 BMOUM3(IN) -DCH(QY (M) /CKPP(M) = SLIPY(M))+ BMOM3(N)
610 DO 620 1 = 1N
B3(2s1)= AA*SPACE(L)
62U CONTINUE
RETURIN
END
S$IbFTC ARAMUM
SUBROUTINE ARAMOM(MeNsPLERQ P sCONST)
COMMONZBLOKS /BENMOMI3U1 ) s AVGHMUM (300 +BADMOMI3UL)
COMMON/ZBLOKG ZSUMMON (300) s BMONM2(3C0 +BMOM3 (30U



i,

L)

12v

130
15v

COMMUN/BLOKRB /SPACE(3uU
IF(P«GTaPLERU) GO 10 100

LU 54 1 = Lei

AVGHMOM. I) = (BENMOM(I) + SEAWNO¥(I+1l )1/2e0
SUMMOMICTLY = CONSTH® AVGHMOMII ) * SPACE(TY
CONTINUE

GO TO 150

Do I2W I = lasM

(P/PZERQ) *sENmom ()

BALMUM(])
CONTINUE

O 13U I = 1laN

AVGMOM(I) = (BADMOM(I) + cADMOMETI+1) ) /2 eU
SUMMOM(I = CONSTH*AVGHMOM(I)*SPACE(I
CONTINUE

RETURN

END

$IBFTC CALSTUL

L%

45
5V

SLBFTC

ke

35

45

Hu
2Vl

SUBROUTINL CALSTD(M
COMMON/BLOKT/FORCEF (3U0) sFORCEQW(301)
PO 55U I = LM

JF(l=1eGTleud) GO TO 4v

FORCEQ(I) = FORCEF(I)

GO TO b5v

IF(Il+EQuM) GO TQ 45

FORCERI( LY = FORCEF(I) = FORCEF I=117
GO TO 5v

FORCE@(I) = =FORCEF(i-1)

CUNTINUE

RETURN

END

RANGER
SUBRCUTINE RANGER (I
COMMON/BLOR3/ZGP (301 suwY(3ul)sWul301)
COMMON/BLURT/FORCEF (300 sFORCEW(301)
COUMMON/BLORI/TRACE(3Ul) sRANGE(3U1
DO 200 I = 1M

IF(ABS{FORCEQII) «GT«QP(1)) GO TO 25
RANGE(I) = JeU

GO TG 200

IFLABS{FORCEQII) «GT«QY(I ) GO TO 35
RF\NUt(I) = lsV
GO TO 2wu
IF(ABS(FORCEQ(I))sGE«QU(I)) GO TO 45

RANGE(I) = Zev
GO TG 200
RANGE(I) = 3ev

WRITE(B95U) I

FORMAT (8H STUD NOsI3s27H HAS REACHED ULTIMATE
CONTINUE

RETURIN

cib

$IpFTC COMPAT

SUBROUT INE COMPAT MeUKAY)
COMMON/BLOKS /TRACE(3U1) sRANGE(3U1)
OKAY = leu

DO 1w 1 = 1M
IF(RANGE( 1) e EQe TRACE(I)) GO TO 100

200.

] |L;I“\l\' l/ 7



Zol.

URAY = Jel
luu CONTInUE
WRITE ©8125) S
125 FORMAT (21H RANGE OF STUbL FORCES/) &
WRITEL69215v (RANGE I)sI=12i)
WRITE(E9L2D)
135 FORMAT (28H STATE CF CORRECTIONS 50 FARZ)
WRITE(6915u (TRACE(I sI=1sM)}
15U FORMAT (3UF4ev)
WRITE(E691l6U)
16U FORMAT(ZAs// /)
RETURN
CiINbE
SIBFTC LNELAS
SUBROUU H._.J:nl H:m_l}(ﬁfv:q.uﬁ...r\, ST )
COMMON/BLOR1/B(39300)9sB1(3s300 sB2(39300)sB3(3s300) 954
nCZ:CZ\Vr(7U\Ch?:C;Aw(HVo><C?CQRMC( sBADMUM (3U] )
COMMOIN/BLOKG /SUMMONM (300 ) 9 BMOM2(300) +BMOM3(300)
COMMON/BLURE/SPACE(30LU)
COMMON/BLOK1U/ZEXTENT(300) o»STRDIF(30V)
DO 2uu I = 1N
IFC(EXTENT(I))eEQeveu) GO 10U 2U0
B3(Rsl) = BA(2s1) = AAXSPACE I
SUMMOMI(I) = = SPACE(I)*STRDIF(I
2UU CUNTINUE
RETURN
LU
SENTRY
' 64UU ENU RECORD
1968 MCMASTER TEoTS —— BEAM NO 1( SIX SINGLE STuUDS IN SHEAR
16 15 «319UE+UT7 «2900E+08 24750 6eUBU 546201706000
e 1BUE+UD
e HBUVUUE+LL e 2UUUE=-U2 e 11VUE+US «2000E-01 «3500E+05
ebUUUE+UL e 2V UE=U2 «11JU0E+UD «2000E-C1L «3500E+05
.@Cccm..vr\b. 0N(CCﬁ|CN QHHCLm+CU IUCQle .wmr\rum*..}..
e HUUUE+UL 0 2UUVE=U2 ¢« 11UOE+UD + 200UE=01 « 3500E+05
eHUUUE+UL e 2UUUE=UZ ¢ 11UUE+US e 2G00E-0OL «+ 3B UREFQS

e 6UVUE4UL e 2VUUE=U2 e ]l l1UUVE+USB
e 6UVUE+UL e 2UUUE=U2 « 1 100E+O05
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