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Abstract

Monte Carlo is an important and well established research tool used in emission
tomography. While used extensively in research applications, these techniques are
not typically implemented clinically due to their low detection efficiency and long
acquisition times. In order to make this computational tool faster, the variance
reduction technique known as convolution-based forced detection (CFD) has been
implemented into the SIMIND MC code (CFD-SIMIND) by our group. Briefly, at
each site of interaction within the object, photons are forced to travel in a direction
perpendicular to the detector and are then convolved with a distance dependent
blurring kernel specific to that collimator and photon energy. A similar CFD method
has already been implemented as an option in the SIMIND Monte Carlo program.
The study presented in Chapter 2 performs a comparison between a well established,
non-VRT Monte Carlo program, GATE, with our accelerated CFD-SIMIND. The
intent of this work is to establish if CFD-SIMIND can either replace or be used in
conjunction with GATE in order to gain significant reduction in simulation times for
low and medium energy isotopes. A number of simulation studies were performed using
point sources in air and water, along with the 3D XCAT phantom and a rectangular
sheet source for 99mTc with low and medium energy collimator and 111In with medium
energy collimator. A comparison in the projection domain was then performed in
terms of spatial resolution, sensitivity, image profiles and energy spectra. The study
has shown percent differences of between 3−5% in sensitivity between CFD-SIMIND
and GATE with mean universal image quality index value of 0.994 ± 0.009 and spatial
resolution within 0.2 mm of each other. CFD-SIMIND offers a significant reduction
in simulation time by a factor of 5−6 orders of magnitude compared to GATE. This
acceleration time is useful for many applications. This study also provides an objective
tool that can help to determine if CFD-SIMIND can be used in place of GATE in
order to achieve images of sufficient quality within a reduced time and at much lower
computational cost.

Simultaneous multi-isotope SPECT imaging has a number of applications in cardiac,
brain and cancer imaging. The major concern however, is the significant crosstalk
contamination due to photon scatter between the different isotopes. The second study
(Chapter 3) focuses on a method of downscatter compensation between two isotopes
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in simultaneous dual isotope SPECT acquisition applied to cancer imaging using
99mTc and 111In. We have developed an iterative image reconstruction technique that
simulates the photon down-scatter from one isotope into the acquisition window of a
second isotope. Our approach uses CFD-SIMIND for the forward projection step in
an iterative reconstruction algorithm. The MC estimated scatter contamination of a
radionuclide contained in a given projection view is then used to compensate for the
photon contamination in the acquisition window of other nuclide. We use a modified
ordered subset-expectation maximization (OS-EM) algorithm named simultaneous
ordered subset-expectation maximization (Sim-OSEM), to perform this step. In this
study, we have undertaken a number of simulation tests and phantom studies to
verify this approach. The proposed reconstruction technique was also evaluated by
reconstruction of experimentally acquired phantom data. Reconstruction using Sim-
OSEM showed very promising results in terms of contrast recovery and uniformity
of object background compared to alternative reconstruction methods implementing
alternative scatter correction schemes (i.e., triple energy window or separately acquired
projection data). In this study the evaluation is based on the quality of reconstructed
images and activity estimated using Sim-OSEM. In order to quantitate the possible
improvement in spatial resolution and signal to noise ratio (SNR) observed in this
study, further simulation and experimental studies are required.

It is perceived that in simultaneous dual-isotope breast SPECT studies using
123I-labelled Z-MIVE and 99mTc-sestamibi, 123I-labelled Z-MIVE not only detects the
presence of estrogen receptor (ER) but, also thought to complement 99mTc-sestamibi
in differentiating between benign and malignant breast lesions for patients with breast
cancer (Chapter 4). The major concern in simultaneous 99mTc/123I SPECT is the
significant crosstalk contamination between the different isotopes used. The current
study focuses on a method of crosstalk (downscatter and spillover) compensation
between two isotopes with data acquired using Thallium activated Sodium Iodide
(NaI(Tl)) detector (Energy resolution 9.8% at 140 keV ) and Cadmium Zinc Telluride
(CZT) detector (Energy resolution 5% 140 keV ) respectively. The study uses Sim-
OSEM for crosstalk compensation between the isotopes. We have undertaken a
number of simulation studies using our modeled breast phantom to verify this approach.
Reconstruction using Sim-OSEM showed very promising results in terms of crosstalk
and scatter compensation and uniformity of background. In our case images obtained
using Sim-OSEM were comparable or even better than the images reconstructed from
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separately acquired projection data using analytical attenuation based reconstruction.
This may be due to better small angle scatter compensation in case of Sim-OSEM as
CFD-SIMIND based MC forward projector was used.

Compensation of the image degradation effects (i.e. attenuation, scatter and
collimator-detector response) is necessary for an accurate quantification in SPECT
imaging. We have previously proposed an accelerated Monte Carlo (MC) based iterative
SPECT reconstruction algorithm that accurately corrects for attenuation and scatter
once provided with attenuation information (Chapters 3 and 4). This algorithm uses
SIMIND MC program accelerated through the implementation of a variance reduction
technique known as, convolution forced detection (CFD), (CFD-SIMIND). With ever
increasing number of hybrid SPECT/CT systems, CT-based attenuation correction is
becoming a standard clinical protocol. This co-registered CT image with SPECT data
can also be used to incorporate anatomical information as a prior into a maximum
a-posteriori (MAP) SPECT image reconstruction algorithm. The study presented
in Chapter 5 proposes a MAP reconstruction algorithm that includes CFD-SIMIND
as a forward projector and a CT-image as an anatomical prior (CFD-AMAP) for
simultaneous compensation of scatter and attenuation and, enhancement of spatial
resolution during reconstruction. We have performed a number of simulation and
experimental studies to elaborate the advantages of CFD-AMAP. These studies show
an accurate quantification (within ±5% and ±8% for simulation and experimental
studies respectively) accompanied by a significant reduction in coefficient of variation
(CoV ). This reduction of CoV results in an improved boundary delineation and the
Gibbs artifact compensation. However, this compensation comes at the cost of loss of
an overall contrast in the reconstructed images due to a more uniform distribution of
estimated activity over the regions of interest (ROI’s).

Further studies with more complex phantoms and real patient data, task-based
ROC studies, improvement in CFD-SIMIND in terms of speed and use of better
Bayesian image reconstruction algorithms are needed to elaborate on the strengths
and weaknesses of this proposed MC based forward projector and to pave the way for
CFD-SIMIND based image reconstruction algorithms from research to clinic.
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Chapter 1

Introduction

D IAGNOSTIC imaging is all about bringing invisible to light in a non-invasive
or minimally invasive way. Diagnostic nuclear medicine is one such modality

that has been used to perform physiological imaging since 1950s [1]. Nuclear medicine
involves therapeutic and diagnostic use of radionuclides. The main classes of nuclear
medicine imaging involve i) 2D Planar imaging, ii). Single Photon Emission Computed
Tomography (SPECT) and iii). Positron Emission Tomography (PET). This work
mainly focuses on SPECT imaging that involves the use of gamma ray emitting
radionuclides. In diagnostic nuclear medicine trace amounts of radioactivity are
administered in order to provide information of diagnostic importance. Radioactivity
is generally administered in the form of a radiopharmaceutical (i.e. radioisotope tagged
with pharmaceutical to guide the radioisotope to target tissue, organ or system).
Activity administration to the patient is performed via intravenous, oral or inhalation
routes. With the decay of administered radioisotope, gamma rays are emitted and
detected using an external gamma camera. SPECT has number of applications,
examples of some such applications are scanning of bones for metastasis or other bone
anomalies, myocardial scan to study the function and perfusion of cardiac muscle and
brain imaging performed to look for the presence of tumor or to study different mental
conditions. This chapter encompasses a detailed description of the steps involved
in SPECT imaging and a brief description of the ideas and concepts used in this
work. SPECT imaging starts from the selection of a suitable radiopharmaceutical
(radionuclide + pharmaceutical) followed by administration to the patient, projection
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data acquisition using a gamma camera and finally, image reconstruction.

1.1 Tracer Principle and Radiopharmaceuticals

The tracer principle, developed by George de Hevesy forms the basis of SPECT
imaging [1]. This principle is based on the fact that physiologically/chemically gamma
emitting radionuclides behave like their non-radioactive counterparts in the body.
Therefore, the gamma emission associated with these radionuclides can be used to study
physiological processes in the body. After the development of first rectilinear scanner
and gamma camera in the 1960s by Benedict Casssen and Hal Anger respectively,
131I was one of the first radiotracers used to scan the thyroid. A radionuclide is
rarely administered to the patient in its elemental form these days, and almost always
the administration is performed in form of a radiopharmaceutical. 131I, used for
thyroid imaging, is one of very a few examples of radionuclides used in their elemental
form. This may be the reason that the United States Food and Drug Administration
(FDA) defines all the radio-labeled compounds and substances used for diagnosis as
radiopharmaceuticals [2].

Some of the considerations for a SPECT radiotracer can easily be derived by using
some basic knowledge of radiation physics. For example, a radiotracer should have a
type of emission that has range and energy large enough to make out of the patient’s
body to reach the the detector. The energy should also be small enough for the detector
to get fully absorbed in the detector to generate a response. These requirements can
easily be fulfilled by gamma emitters having high yield of emission in keV range (e.g.
70-511 keV). Another consideration is the half life of the tracer. The half life should be
large enough to allow the radiopharmaceutical to reach the tissue or organ of interest
for imaging. At the same time it should be small enough to allow quick removal from
the body through biological and physical routes. A half life in minutes to a few hours
is ideal for this purpose. High radionuclidic and radiochemical purity, non-toxicity
and high affinity for different pharmaceuticals are other important considerations for
a SPECT radiotracer [3].

A major breakthrough in the diagnostic nuclear medicine was the development of
99Mo→ 99mTc generator in 1960s [2, 3]. 99mTc meets most if not all of the expectations
described earlier. With 140 keV gamma emission and half life of 6 hours, 99mTc showed
flexibility to be labeled to an array of pharmaceuticals that allowed imaging of almost
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all the organs of the body [2, 3]. An equally important aspect is the ability of a
long lived 99Mo → 99mTc generator to allow on-site and easy access to 99mTc as per
requirement. These advantages have made 99mTc the most commonly used radionuclide
for SPECT imaging [3]. Table 1.1 provides a list of some commonly used SPECT
radiopharmaceuticals.

Table 1.1: Some commonly used SPECT radiopharmaceuticals in clinic [1].

Radiopharmaceutical Applications Physical
Half Life

99mTc-DTPAa Lung perfusion and renal obstruction 6.02 h
99mTc-MDPb Bone fracture and/or metastases −
99mTc-RBCsc Liver hemangioma detection −
99mTc-sestamibi or tetrofosmin Myocardial perfusion and/or viability, −

parathyroid localization
99mTc-sulfur colloid Liver spleen function −
123I (NaI) Thyroid function assessment 13.2 h
201Tl (TlCl) Myocardial perfusion and/or viability 73.1 h

a DTPA, diethylenetriamine pentaacetate; b MDP, methylene diphosphonate;
c RBCs, red blood cells.

1.2 Image Data Acquisition

The introduction of Anger scintillation camera in late 1950’s revolutionized the field
of nuclear medicine imaging. This camera uses a large area thallium activated sodium
iodide (NaI(Tl)) detector and photomultiplier tubes (PMTs), to significantly increase
detection efficiency and reduce acquisition time compared with rectilinear scanner with
film based image acquisition. The design of the Anger Camera or gamma camera has
significantly been refined since then and has evolved as the most widely used nuclear
medicine imaging system (Figure 1.1).

As depicted in Figure 1.1, in modern gamma cameras each PMT is equipped with
its own analogue to digital converter (ADC) to perform event positioning and energy
calculations using computer software and pre-determined look-up tables respectively.
Previously available gamma cameras used analog positioning and summing circuits
to perform these operations. These improvements in gamma camera design have
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Figure 1.1: Schematic of gamma camera in general.

enabled manufacturers to use fewer PMTs as close packing is not required due to use
of computer software.
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1.2.1 Collimators

Perhaps, the most important physical advantage of PET over SPECT is 2−3 orders of
magnitude higher sensitivity for PET [4]. The main reason for this lower sensitivity
in SPECT is the need of a collimator. In SPECT, administration and subsequent
deposition of a radiopharmaceutical into a target organ/tissue results in isotropic
x-rays or γ−emission. A collimator is thus required to develop a correspondence
between the position of the emission and position of detection on the NaI(Tl) detector.
A collimator is essentially a honeycomb made of lead (Pb) that presumably only allow
photons that are aligned along the collimator holes to reach the crystal. The photons
that hit the collimator walls (known as septa) are assumed to be absorbed. Collimators
are classified based on energy and hole orientation. On the basis of energy, collimators
are classified as, i) low energy (100−150 keV), ii) medium energy (150−400 keV) and
iii) high energy (350 keV and higher) [3]. Even though energy based categorization
implies larger collimator septal thickness for higher energy photons, desired collimator
sensitivity and amount of activity that can be administered to the patient are the
limiting factors for collimator septal thickness and hole size. In reality, septal thickness
and hole size are often based on a compromise between these factors and acceptable
collimator septal penetration. Based on hole orientation, collimators can be classified
as, i) parallel− ii) converging− iii) diverging− and iv) pin-hole collimators [3] as shown
in Figure 1.2.

(a) Parallel-hole Collimator (b) Converging-hole Collimator

(c) Diverging-hole Collimator (d) Pin-hole Collimator

Figure 1.2: Collimator classification based on hole orientation as, (a) parallel- (b) converging- (c)
diverging- and (d) pin-hole collimator.

It is evident from Figure 1.2 that converging-, diverging and pin-hole collimators
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have similar basic design with the only difference in hole orientation (i.e. converging
hole). Therefore, on the basis of design, collimators can be classified as i) parallel-hole
and ii) converging-hole collimator [4, 5].

In terms of image reconstruction and filtering, converging-hole collimator pose
more challenges compared with parallel-hole collimators but can result in enhanced
sensitivity or detection efficiency for given field of view (FOV) [3–5]. There are other
different collimator designs proposed with an intent to enhance sensitivity in SPECT
that are mainly in research and not in widespread clinical use. Important examples
of such collimators include i) rotating slat collimators, ii) multisegment slant-hole
collimators and iii) multipinhole collimators. The description of these collimators
is beyond the scope of this work and details and relevant references can be found
elsewhere in (e.g. [4, 6]).

Figure 1.3: Parallel-hole collimator with hexagonal holes in hexagonal array.

This work mainly focuses on parallel-hole collimators specifically, with hexagonal
holes in a hexagonal array (Figure 1.3). Parallel-hole collimators can be specified
completely by lattice structure of hole pattern and three parameters that include
i) septal thickness (T ), ii) hole separation and iii) the hole size (l). In the case of
hexagonal hole collimators, hole size is given as side length of the hole and is related
to face-face distance (f2f) as f2f =

√
3l. Parallel-hole collimators with hexagonal
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holes in a hexagonal array are the most commonly used collimator design in clinical
settings [3, 5].

1.2.2 Detector System

In SPECT imaging, regardless of the way the detection system is designed, the main
objective of the system is to convert γ-ray energy into a measurable electrical signal.
The number of information-carriers created by gamma-ray interactions in the detector
(e. g. visible light photons in case of inorganic scintillators) is the ultimate limiting
factor in detector system performance [7]. The relatively high density (ρ=3.67 g/cm3)
and atomic number (Z=53), high photon yield of about 3.3 × 10−2 photons/eV makes
NaI(Tl) an excellent candidate for γ- and x-rays detection in the 50-250 keV energy
range [3]. These crystals are also transparent to their own light. These physical
properties and the fact that it can be grown into relatively large and nearly defect-free
plates, have made NaI(Tl) the detector of choice for general purpose gamma cameras [3,
7].

The photomultipliers are an integral part of scintillator based gamma cameras
that convert scintillator output (in form of visible photons) into measurable electrical
signal. Almost all of the currently available general purpose gamma camera systems
use of vacuum tubes, known as photomultiplier tube (PMT). The PMT produces a
current pulse when activated by a weak light signal (schematic shown in Figure 1.4).
The internal surface of the entrance window (the photocathode) is coated with a
photo-emissive material that emits electrons when visible light photons interact with
it. The typical value of quantum efficiency for a photocathode, defined as number of
electrons emitted per photon absorbed, is 10-30% [3, 8].

The electrons emitted by the photocathode are then accelerated through an array
of metal plates, known as dynodes, with increasing potential. The internal surface of
each dynode is coated with material having high secondary emission. These electrons
get accelerated towards the end of the tube and get amplified to large pulse of current
due to the emission of secondary electrons at each dynode step. The overall gain, A,
with n number of dynode steps, having amplification factor δ per step, can be given
as in Equation 1.1 [8].

A = αδn (1.1)

where α is the fraction of photo-electrons collected by the first dynode step. A gamma
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Figure 1.4: Schematic of photomultiplier tube (PMT).

camera usually has an array of these PMT tubes. Despite their widespread use,
NaI(Tl)-PMT based gamma camera have following disadvantages.

• Due to its hygroscopic nature, NaI(Tl) usually requires an aluminum cover to
avoid moisture from reaching and damaging the crystal. These crystals can
easily be cracked through mechanical and thermal stress that might not make
the crystal unusable but raise the opacity of the crystal to its own light [3].

• The most commonly used photomultiplier tubes (PMTs) with their associated
electronics, make the system relatively bulky and large and that the whole system
needed to be magnetically shielded.

• NaI(Tl)-PMT based system have relatively limited energy resolution (≈ 10%).

These shortcomings and an urge to develop a better nuclear medicine imaging
system are the key factors that have lead scientific and engineering communities to
keep looking for better system in terms of spatial and energy resolution, sensitivity
and size. There are currently two areas are of interest in this regard, 1) semiconductor
based photomultiplier arrays and 2) Room temperature semiconductor detectors.

A Silicon photomultiplier (SiPM) consists of an array of avalanche photodiodes
working in Geiger mode. The details on working and development of SiPMs can be
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found in [8]. While, as an important area of research in SPECT imaging, use of SiPM
as photomultipliers not only offer the ability to make a SPECT system relatively more
compact but, also make the system suitable to work in large magnetic fields. The
SiPM based hybrid PET/MRI systems are now commercially available but, a hybrid
SPECT/MRI system is yet to become commercially available. However, the efforts to
build one are in progress [9, 10].

Cadmium Telluride (CdTe) and the Cadmium Zinc Telluride (CZT)
based semiconductor detectors offer direct transfer of deposited gamma ray energy
into measurable electric signal with no need of photomultipliers. Their higher atomic
number (Cd (Z= 48) and Te (Z=52)) compared to Silicon (Z=14) and Ge (Z=32)
and ability to work at room temperature have made these detector suitable to use for
emission tomography. These detectors offer higher carrier output with about 31,000
electron-hole pairs for each 140 keV 99mTc photon compared to 1000 photocathode
electrons in NaI(Tl)-PMT detector system [8, 11]. They also offer better energy (about
5% compared to about 10% for NaI(Tl)-PMT) and spatial resolution due to much
larger number of information carriers and ability to acquire images with much smaller
pixel sizes (about 0.5 mm × 0.5 mm × 0.5 mm) respectively [7, 11]. A more detailed
description on development and working of these detectors can be found in [7, 8, 11].

1.2.3 Gamma Camera Designs

Different gamma camera designs for general and/or dedicated use are standard imaging
devices in nuclear medicine imaging clinics worldwide [3]. On the basis of design
and usability, gamma cameras can be divided into three broad categories, namely i)
General purpose, ii) Dedicated and iii) Multimodality or hybrid systems.

General purpose single and dual-head gamma cameras are the work-horses
of most SPECT facilities. The working principle and construction of these NaI(Tl)-
PMT based systems have been described previously in Section 1.2. Theoretically,
more heads imply higher sensitivity and reduced imaging time. Reduced imaging time
in turn means enhanced patient comfort and reduced patient motion related image
artifacts. At the time of this writing, almost all the SPECT systems sold commercially
are dual-head gamma cameras.

As discussed at the end of Section 1.2.2, a desire to develop nuclear medicine
imaging systems with high resolution and with smaller footprints especially, in the new
imaging locales, have raised the interest in CdT and CZT based solid state systems.
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Recent developments in solid state detector design and image formation schemes or
collimation, and the importance of nuclear cardiology have lead to commercial CZT-
based dedicated cardiac scanners [11, 12]. A couple of such systems, one from
Spectrum Dynamics Inc. (D-SPECT®) and other from General Electric Systems Inc.
(Discovery NM 530c®), are shown in Figures 1.5(a) and 1.5(b) respectively. D-SPECT®

uses nine pixelated CZT detectors spanning over L-shaped 90o geometry (Figure 1.5(a))
with each detector fitted with parallel square-hole tungsten collimator. This camera
can perform cardiac acquisition from sitting to supine position without any detector
or patient-couch motion [12]. The camera is focused over left precordium (i.e. the
region or the thorax immediately in front of the heart) using a scout scan. On the
other hand, Discovery NM 530c®, camera employees 19 pixilated CZT detectors in a
similar L-shaped geometry (Figure 1.5(b) with each detector having its own tungsten
pinhole collimator [12]. A detailed description on anatomy and physiology (literally)
of these systems can be found in [12].

(a) D-SPECT® camera (Spectrum Dynam-
ics Inc.)

(b) Discovery NM 530c® (General
Electric Medical Systems Inc.)

(c) Discovery NM 750b® (General
Electric Medical Systems Inc.)

Figure 1.5: Cadmium Zinc Telluride (CZT) based solid state nuclear cardiology scanners (a) D-
SPECT® from Spectrum Dynamics Inc. (Image downloaded from http://www.spectrum-dynamics.
com on August 17, 2016) and (b) Discovery NM 530c® by General Electric Systems Inc. (Image
downloaded from http://www3.gehealthcare.ca on August 17, 2016). A CZT based dedicated dual
head molecular breast imaging (MBI) system (c) Discovery NM 750b® by General Electric Systems
Inc. (Image downloaded from http://www3.gehealthcare.ca on August 17, 2016).

A dedicated dual-head scintimammography scanner known as, molecular breast
imaging (MBI) system (Discovery NM 750b® by General Electric Systems Inc.) com-
posed of CZT detectors has been reported to have superior sensitivity for lesions as
small as 3 mm (Figure 1.5(c)) [13].

Despite its superior sensitivity and ability to measure concentrations in nanomolar

10

http://www.spectrum-dynamics.com
http://www.spectrum-dynamics.com
http://www3.gehealthcare.ca
http://www3.gehealthcare.ca


McMaster University — RADGRAD PhD Thesis — Muhammad I. Karamat

to picomolar range, nuclear medicine imaging suffers from the problem of poor spatial
resolution. Poor resolution compared to modalities like CT or MRI has earned nuclear
medicine the nickname, “unclear medicine” [14, 15]. As an attempt to transform
to “clearer medicine” and recent interest in multimodality imaging has resulted in
development of hybrid SPECT/CT and SPECT/MRI systems. Virtually all the PET
systems and an increasing number of SPECT systems are integrated with x-ray CT
scanners [16]. Hybrid SPECT/CT scanners provides co-registered SPECT and CT

Figure 1.6: Infinia Hawkeye 4® by General Electric Systems Inc. (Image downloaded from http:
//www3.gehealthcare.ca on August 17, 2016).

images that offer following advantages compared to conventional SPECT systems [17,
18]:

• Co-registered CT-based images provide anatomical reference to interpret poorly
resolved SPECT images when placed side by side or analyzed in fused form.

• CT images can be used for attenuation correction of SPECT images (described
later in Section 1.5.2).

• CT image information can also be incorporated into an iterative reconstruction
algorithm as a prior for SPECT to correct for partial volume effect (PVE) in
SPECT images (as discussed later in Section 1.5.1).
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An example of SPECT/CT system is shown in Figure 1.6. It is important to
describe here that the experimental studies presented in this thesis were performed
on one such system (GE Infinia Hawkeye® General Electric Systems Inc.) at our
department. For consistency, a similar system was also modeled in all the simulation
studies performed in this work.

1.3 Image Reconstruction

The data acquired using the gamma camera at a given projection angle gives a two
dimensional projection of three dimensional activity distribution. Each projection
represents the ray sum, line integral or Radon transform of an object at detector
position represented by a vector (s, θ). In this case, the projection (i.e. Radon
transform) of 2D activity distribution f(x, y) with no attenuation can be given by
Equation 1.2 and is depicted in Figure 1.7 for an object with two hot disk sources
within cold background.

p(s, θ) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x · θ − s)dxdy (1.2)

where x = (x, y) and θ = (cosθ, sinθ).

Figure 1.7: Projection view at an angle θ for an object f(x, y) with two disk sources in cold
background.

A two dimensional projection has no depth information, but in many cases it can
still be diagnostically useful. For example, a whole body bone scan image provides
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enough information as there is no tracer uptake in tissue lying above and below the
skeletal system. More commonly, however, in a SPECT acquisition data has to be
acquired at number of angles in step and shoot mode. These projections help in
estimating the 3D-activity distribution using image reconstruction methods.

The reconstruction methods can broadly be categorized as, i) analytical and ii)
iterative reconstruction methods.

1.3.1 Analytical Reconstruction Methods

At the heart of all the analytical reconstruction methods is the Fourier central slice
theorem that states, the 1−D Fourier transform P (ω, θ) of the parallel projection
data represents the 2−D Fourier transform, F (ωx, ωy) of object distribution f(x, y)
(see Appendix A.1 for derivation). This implies that inverse Fourier transform of a
complete 2−D noise-free projection set of 3−D activity distribution, should yield the
original activity distribution. However, this is not the case, backprojection results in a
blurry image due to scaling by a factor of 1/|ω| in frequency domain (see Appendix A.2
for details). This scaling in frequency domain can be represented as convolution of the
original distribution with blurring function 1/r (where r being the distance from the
center of point source location [19]. In mathematical form the blurry image obtained
through backprojection, f ′(x, y), can be written as Equation 1.3.

f
′(x, y) = f(x, y) ∗ 1

r
(1.3)

Therefore, it is important to remember here that the backprojection does not
represent exact inverse of projection operation and in linear algebra it is often referred
as conjugate transpose [19]. In order to recover the exact activity distribution, noise-
free projection data has to be filtered using |ω| (i.e. ramp filter) in frequency domain.
This filtering of projection data gives rise to one of the most commonly used analytical
reconstruction methods known as, filtered backprojection (FBP). In this method
the projection data is convolved with suitable filter in the spatial domain and then
backprojected. In order to avoid the convolution step in spatial domain, the Fourier
transform of projection data is used as convolution that implies a simple scaling in
frequency domain.

As described earlier, a high-pass ramp filter is required for reconstruction of noise-
free data. In case of noisy data, application of the ramp filter often results in the
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enhancement of high frequency noise (i.e. graininess) in the image. Therefore, in order
to achieve a balance between suppression of high and low-frequencies the ramp filter
is often replaced with a band-bass filter. Finally, an inverse Fourier transform of the
filtered data is taken to obtain the final image. The detail description of FBP and
other analytical image reconstruction algorithms and band-pass filters can be found
in [19, 20].

1.3.2 Iterative Reconstruction Methods

Filtered back projection (FBP) is a one-step process that leads to inaccuracies as
inclusion of more complex effects like the collimator-detector response or scatter is
not straight forward. In order to avoid the inaccuracy problem associated with Radon
model based reconstruction, modern iterative reconstruction algorithms can be used.
These algorithms describe the imaging problem as a system of linear equations and
perform reconstruction by minimizing an objective function (e.g. likelihood function).
It should be noted that in order to achieve accuracy, efficiency has to be sacrificed to
some extent as iterative algorithms are much more computation intensive compared
to FBP.

We can consider reconstruction of SPECT data as a linear inverse problem and
can represent projection data at a given angle as in Equation 1.4.

Hf = p (1.4)

Where, H is the system matrix which maps a 3D activity distribution f , to projection
space to form a projection p.

In 2D, the system matrix H, is generally a rectangular matrix and able to represent
effects such as attenuation and any other blurring mechanism. Each element hij of the
system matrix H, can be thought to represent the mean contribution of each pixel
j to each data bin i. The linear model can take into account different effects such
as, attenuation, detector response and scatter by considering the contribution from
many pixels into one imaging bin. Comparatively, Radon transform approach models
only the contribution from pixels along the line of response (LOR) into an imaging
bin. The system matrix is generally a large sized rectangular matrix that is difficult or
impossible to invert. However, a generalized inverse may be found using least-square
minimization and/or singular value decomposition method [19].
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There are number of iterative reconstruction techniques being used for emission
tomographic reconstruction, but maximum likelihood expectation (MLEM) and its
variations are the most used iterative algorithms. MLEM was first demonstrated for
use in SPECT in 1984 [21, 22]. Figure 1.8 shows a flow diagram of an iterative image
reconstruction algorithm in general.

Figure 1.8: Flow diagram of an iterative reconstruction algorithm in general.

1.3.2.1 Maximum Likelihood Expectation Maximization (MLEM)

The MLEM algorithm is based on the fact that the emission of photon within a certain
time interval from a radioactive source can be described by a Poisson distribution.
The detailed derivation of this algorithm can be found in reference [21]. MLEM for
SPECT can be expressed as Equation 1.5.

fnewj =
f oldj∑
i

HT
ij

∑
i

HT
ij

pi∑
j

Hijf
old
j

(1.5)
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The flow of MLEM is similar to the one shown in Figure 1.8 with comparison step
performed as ratio between measured data and corresponding projections of the current
estimate. Backprojection of these ratios determine the update factor for the current
estimated f oldj to get the new estimate fnewj .

There are two main shortcomings of MLEM, i) The convergence of the algorithm is
very slow. An acceptable solution may require many hundreds of iterations. ii) After
many iterations MLEM algorithm tries to fit the noise present in the measured data
thereby, degrading the reconstructed image quality. Therefore, the reconstruction has
to be interrupted before too much image degradation occurs. The selection of the
stopping point is usually subjective and based on user’s experience.

1.3.2.2 Ordered Subset Expectation Maximization (OSEM)

As discussed earlier, convergence of MLEM is slow due to the fact that the update of
the current object estimate is performed after going through the whole set of projection
data. One way to accelerate the reconstruction is to increase the number of updates per
iteration. This can be done by a method proposed by Hudson and Larkin [23], known
as ordered subset expectation maximization (OSEM). In this algorithm projection
data is divided into a number of sets known as ordered subsets and the current estimate
is updated to get a new estimate after going through each of the subset.

fnewj =
f oldj∑

aεs

HT
a

∑
aεs

HT
a

pi∑
aεs

Haf
old
j

(1.6)

where, s represents a ordered subset of the projection data. It is important to note
that, despite of all the similarities of OSEM with MLEM, it is quite different from
MLEM as, it has no proof of convergence for the data with noise. In OSEM, the speed
of convergence can be increased by increasing the number of subsets, by making the
subsets size small. However, the cost of improved speed is the increased noise level for
the same level of bias compared to MLEM [24]. In OSEM acceleration of about 8-10
time can be achieved with very little increase in noise levels. Members of an ordered
subset usually chosen at maximum possible angular displacement. One such example
is shown in Figure 1.9.
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Figure 1.9: Projection data consisted of 8 projections divided into 4 ordered subsets.

1.3.2.3 Green’s One-step -late (OSL) Algorithm

As described previously, MLEM estimates tend to become noisy as the number of
iterations increases. Therefore, improvements in criterion could be made on two
aspects, a) achieve a better match between estimated and measured data and b)
comparatively less noise in the reconstructed images. The regularization using a
prior knowledge can help to achieve a) and b). Hence, the goal of this Bayesian
reconstruction algorithm is to achieve maximization with penalization to achieve a)
and b). This kind of maximization leads to Green’s one-step-late (OSL) algorithm
(Equation 1.7).

fnewj =
f oldj∑

i

HT
ij + β

∂

∂fj
V (f oldj )

∑
i

HT
ij

pi∑
j

Hijf
old
j

(1.7)

here the prior term β(∂/∂fj)V (f oldj ), involves the derivative of an energy function
V (to enforce smoothing) and weighting factor β to modulate the importance of prior.
One way to avoid possible negative values in the denominator due introduction of
prior term in MLEM is to choose a low prior weight β.
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1.4 Monte Carlo Methods for SPECT Simulation

The idea of Monte Carlo (MC) simulation was conceived by Stanislaw Ulam in 1946 [25]
that he further developed in collaboration with another Manhattan project colleague
John V. Neumann [26]. Instead of solving complex differential equations and integrals,
these methods utilize random numbers and probability density/distribution functions
to generate results. The term Monte Carlo originated from a popular gambling place
known as Monte Carlo in Monaco. This is because probability (i.e. measurement
of chance) is closely related to random nature of these activities. The probability
functions and cross sections for photon/electron transport related physical processes
have been so accurately formulated that MC simulations can conveniently be used
to obtain results that are very close to reality. This has made MC a very important
research and clinical tool in emission tomography [27, 28].

One of the major advantages of MC technique is that they allow study and mea-
surement of parameters that are very difficult or impossible to measure in practical
situations. For example, the contribution and composition of scatter detected under
the photopeak energy window in a SPECT acquisition can only be calculated or esti-
mated accurately using these techniques. In MC methods different factors/parameters
(e.g scatter or attenuation) can be turned on and off to study the effect of these
factors/parameters on image quality or to create a reference image. These methods
also allow optimization and testing of novel equipment designs and effect of different
parts and parameter on the system design (e.g. crystal thickness, collimator hole shape
and dimensions and/or phantom size etc.) without performing a costly practical design
and manufacturing exercise.

A major limitation of these methods is that the results of these methods are as
accurate as the implementation of physical model in the computer. Therefore, one
important question to ask while using these methods is whether all the factors that
can affect the results have been included in the model. Even though MC techniques
offer endless opportunities in terms of testing a conceptual equipment design or a new
imaging technique or protocol, the long calculation times (often several hours to days)
has hampered the widespread use of theses techniques in clinical settings (e.g. for
image reconstruction). The main reason for this inherently long simulation time is the
low detection efficiency in SPECT. In a SPECT simulation, only 1 out of about 10,000
emitted photons are able to reach the detector (i.e a probability of 10−4) [27, 28].
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1.4.1 Variance Reduction Techniques

In order to improve the ratio of detected events to the actual number of photon
emissions, methods known as variance reduction techniques (VRTs) are employed.
These techniques involve modification of probability function(s) to improve that ratio.
The biasing introduced by modified probability function(s) is countered by changing
the weight of the simulated particle using a simple rule given in Equation 1.8.

wopo(x) = wmpm(x) (1.8)

where w and p(x) denote weight and probability function for a variable x respectively.
Correspondingly subscript o and m stand for original and modified. For example, in a
SPECT simulation each detected photon would mean addition of one event in detector
bin that is a weight, wo = 1. Now, if we modify the emission probability function
by simulating photons in only one hemisphere under the condition that there is no
scattering media or probability of scattering is very low in the other hemisphere. This
would make sense only if we now change the photon weight, wm, to 0.5.

One of the most efficient VRTs used in a gamma camera simulation is called as
forced detection (FD). In this method, either angular or spatial probability distri-
bution function is modified to increase the number of detected events (Figure 1.10(a)).
At each interaction site a copy of photon is forced towards detection system within
limited arc (i.e. angular with 0 ≤ θ ≤ θmax and 0 ≤ φ ≤ 2π) or limited range of photon
path length (i.e. spatial with 0 ≤ lpath ≤ lmax) [27].

The weight of each of the forced copy is also modified based on the probability of
scattering and reaching the detector system at sampled polar and azimuthal angles or
path-length. While, FD significantly reduces the simulation time, the time frame still
remains too long to be used in clinical settings [29].

Another VRT that has been extensively validated and used in this work is known as
convolution-based forced detection (CFD) that is very similar to FD. The CFD
is different from FD only in two aspects. i) the convolution of detection probability with
distance dependent collimator response function (Gaussian) and ii) forcing the photons
only along the paths perpendicular to the collimator as shown in Figure 1.10(b). It has
been shown that the detector response (represented as the distance dependent point
spread function, PSF) of collimator can be approximately modeled as a Gaussian as
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(a) Forced Detection (b) Convolution-based Forced Detection

Figure 1.10: Schematic of (a) forced detection and (b) convolution-based forced detection with
solid and dashed lines representing actual and forced paths in both the cases respectively. The
corresponding modeled responses shown above the detection system of gamma camera.

given in Equation 1.9.

PSF (x, y, z) = 1
2σx(z)σy(z) .e

− 1
2( x−xoσx(z))

2
−
(
y−yo
σy(z)

)2

(1.9)

where( xo, yo) is the center pixel where photons are detected on the collimator face. σx(z)
and σy(z) are standard deviation or spread in x− and y−direction respectively. The
standard deviation can easily be derived from spatial resolution (FWHM) of Gaussian
response function (discussed latter in Sections 2.1.1 and 3.1.1) using Equation 1.10.

σ = FWHM

2
√

2ln2
(1.10)

In general, Compton scattering and photoelectric effect are the main modes of photon
interaction in SPECT. In this case the sum of probabilities for Compton scattering and
photoelectric effect can be considered as unity and the relative probability of Compton
scattering can be determined approximately as (1 − Pphoto(E)), where Pphoto(E) is
probability of photon of energy E to undergo photoelectric effect. The probability
of photon detected by a detector at an angle, α using CFD can be evaluated using
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Equation 1.11 [29].

P (α) = wi × (1− Pphoto(E))×KN(φ)× e−
∫ lfd

0 µ(E) dl (1.11)

where,
wi = Photon history weight initially set at 1.
1− Pphoto(E) = Probability that photon is not absorbed by photoelectric
effect (approximately equal to probability of Compton scattering).
KN(φ) = Klein-Nishina cross-section based probability for a photon to scatter at an azimuthal angle φ.
e−
∫ lfd

0 µ(E) dl = Photon attenuation factor due to forced path length of lfd.

In this work convolution based force detection (CFD), is being used to accelerate
the Monte Carlo photon transport modeling in SIMIND MC program.

1.4.2 Monte Carlo Codes

With regards to SPECT, available MC codes can be divided into two broad categories, i)
general purpose and ii) dedicated. Table 1.2 provides a list of some well known general
purpose MC codes. It is important to note here that simulation studies involving nuclear
medicine imaging system with generalized codes often require extensive programming
skills. In order to address this issue some research groups have developed the MC
codes based on one of the codes, described in Table 1.2, as a core layer. These codes
provide developers with the opportunity to construct application specific modules in a
hierarchical layer architecture [30]. Sim-SPECT based on MCNP and GATE based on
GEANT-4 are the examples of such codes.

There are three types of dedicated MC software packages used in nuclear imaging
simulations namely, SPECT dedicated MC, PET dedicated MC (not discussed here),
and MC used in both. Table 1.3 provides a brief description of some dedicated MC
codes used in SPECT imaging.

The choice of MC code is generally made, based on the type of imaging application,
user’s programming abilities and ease of use. In fact, one of the major motivations
behind the development of dedicated MC codes, is to build user-friendly interface that
requires minimal level of programming skills. This ease of use may be the reason behind
the popularity of these codes in nuclear medicine imaging simulation studies [25].
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Table 1.2: A brief description of the available general purpose Monte Carlo Codes used in Nuclear
Medicine Imaging.

Code Brief Description

EGS [31] Simulates coupled photon/electron transport in any material
or geometry defined by the user. The nuclear medicine imaging
simulations require extensive programming skills in MORTRAN as
specific modeling is not included in the code

ETRAN [32] Ability to simulate coupled photon/electron transport but, with
limited geometry options. ETRAN is available as a part of MCNP
and ITS due to its capabilities to investigate a specific interaction.

ITS [33] Nuclear medicine imaging system simulations require extensive
programming skills in FORTRAN. The code is capable of coupled
electron/photon transport simulation in any material in
slabs, cylinders or combinatorials.

MCNP [34] Coupled neutrons/photons/electrons transport in any material
through user-defined generalized geometry. Simulation of nuclear
imaging systems not specifically included and requires
an extensive amount of user manipulation of input date
files to model complex geometries.

FLUKA [35] The code is capable to simulates coupled photons/electrons
transport in any material through combinatorial geometry.
Simulation of nuclear imaging systems not specifically
included and requires an extensive amount of user programming
in C/C++.

GEANT-4 [36] Coupled photons/electrons transport in any material through
combinatorial geometry. Simulation of nuclear imaging
systems not specifically included and requires an extensive
amount of user programming in C/C++.

1.5 Image Degradation Factors in SPECT

SPECT imaging has always been regarded as highly sensitive modality with limited
quantitative accuracy and relatively poor image quality. The image quality and
quantitative accuracy are affected by physical factors like, i) spatial resolution or
partial volume effects, ii) loss of photons due to photoelectric absorption and scatter
within patient’s body (i.e. attenuation), iii) contamination of detected photons due to
scattered photons either emitted from patient’s body or scattered in collimator and
remain available for detection. Therefore, correction of these factors is necessary for
obtaining a better image quality and improved quantification [37, 38].
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Table 1.3: A brief description of some of the available dedicated Monte Carlo Codes used in SPECT
Imaging.

Code Brief Description

SIMIND [39] Dedicated for SPECT. Simulates photon through transport
shape- or voxel-based phantom. A user module written in
FORTRAN could be linked.

SIMSET [40] Dedicated for SPECT or PET simulations written in C. Ability
to simulate photon transport in any material through voxelized
phantoms.

MCMATV [41] Ability to perform SPECT simulations. The code is written
in FORTRAN and can simulate photon transport in voxelized
phantom.

1.5.1 Partial Volume Effects

In SPECT imaging, it is possible to quantify a 3D activity distribution within a
patient. However, relatively poor resolution in SPECT (remember the moniker,“unclear
medicine”) limits the accuracy of quantification. These effects are often called as, partial
volume effects (PVE). In order to elaborate on PVE, a simple simulation exercise
using a uniform 99mTc sheet source (40 cm × 20 cm) as shown in Figure 1.11(b) within
non-radioactive water-bath (250 cm × 250 cm × 250 cm) was performed. SIMIND
Monte Carlo program was used to perform the simulation with setup depicted in
Figure 1.11(a). In this study all other effects except collimator response modeling were
turned off. From Figure 1.11(a), it can be seen that two representative photons A and
B emitted within the sensitive volume defined by spatial resolution of the instrument
(shown as a gray triangular region) will be detected at a given detector bin. That is
any emission within the sensitive region will generate similar response on the detector
in this case. This loss of location information within sensitive volume region results in
a loss of high frequency information (i.e. edges and boundaries) in the resulting image
as shown in Figure 1.11(c).

Another type of PVE is the sampling effect related to the voxel size in the image
(usually several mm3). This PVE results in inability to resolve sub-voxel structures in
the final image. Additional PVE may also be caused by cardiac, respiratory or patient
motion. Motion-correction is itself is a large area of research [42] but, beyond the
scope of this work.
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(a) Partial volume effect

(b) Simulated rectangular sheet source

(c) PVE only

Figure 1.11: Partial Volume Effect (PVE): photons A and B, depicted in (a), emitted within
the sensitive region defined by spatial resolution of gamma camera from (b) rectangular source will be
detected in a given detector bin. This loss of location information within the sensitive region caused
an overall loss of edges and boundary (i.e. high frequency information) in the image as shown in (c).

The partial volume correction (PVC) methods can broadly be divided into three
possible categories as, i) image enhancement (during or post reconstruction) with
resolution modeling and/or anatomical priors, ii) image domain-based and iii) projection
domain-based PVC methods [43].

The image enhancement based PVC methods rely on resolution recovery using
emission data and/or anatomical information to perform PVC. One such method that
performs PVC during reconstruction using higher resolution MRI imaging data has
been developed by Bowsher et.al. [44]. This algorithm promotes smoothing among
nearby voxels that have similar MRI signal. This method has been recently used
in cardiac SPECT using CT-based anatomical prior within Green’s one-step-late
algorithm to suppress noise in the image [45]. One major advantage of using this
method is that it does not require any image segmentation. The post-reconstruction
PVC methods involves deconvolution using point spread function (e.g. [46]) or applying
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high frequency information using blurred version of MRI or CT-based co-registered
image (e.g. [47]).

Shcherbinin and Celler [48] have presented a template based PVC. This method
iteratively corrects for PVE using correction factors generated through forward projec-
tion, reconstruction and smoothing of CT-based binary template and activity values
in initial image reconstructed without PVC in image domain.

In projection-domain the PVE can be corrected either using recovery coefficients
obtained through segmentation and reconstruction of region of interest (ROI) (e.g. [49])
or by using anatomical based PVC method described above (e.g. [50]). It is important
to note here that anatomical based methods in projection domain also require segmen-
tation [43]. A brief description of PVC methods in emission tomography and related
references can be found in [43].

1.5.2 Attenuation

Figure 1.12(a) depicts the loss of photons due to either photoelectric absorption in
the phantom (photon C) or Compton scattering (photon B) away from the gamma
camera that is attenuation. For this purpose, a simulation setup similar to the one
shown in Figure 1.11(a) was used to see the effect of inclusion of attenuation on the
image of a rectangular sheet source (Figure 1.12(b)). It is evident from Figure 1.12(c)
that attenuation increases the noise in the image by significantly reducing the number
of detected events (reduction of about 84% compared to the image in Figure 1.11(c)).

Considerable effort has been made to develop methods that perform attenuation
compensation in either i) image domain or ii) during analytical or iterative reconstruc-
tion.

The Chang algorithm [51], once the most commonly used attenuation correction
method clinically [37, 38], is used to perform post-filtered backprojection reconstruction
attenuation correction. In this method an attenuation correction factor (ACF) averaged
over number of projections (Equation 1.12) is used to perform attenuation compensation
on image reconstructed using FBP [38].

ACF =
(
M−1

M∑
i=1

e−µsi
)−1

(1.12)

Where M−1 is the number of projections and si is the distance from the object
center plane and the projection plane. A number of solutions for attenuated (i.e.
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(a) Effect of attenuation

(b) Simulated rectangular sheet source

(c) PVE + attenuation

Figure 1.12: Attenuation: photons A, B and C are lost due to attenuation as depicted in (a) after
emission from (b) rectangular source. The loss of photon results in significant reduction in number of
detected events in the image as shown in (c).

exponential) Radon transform have been proposed. However, these solutions do not
work for non-uniform attenuators and have poor noise properties [37].

Analytical solution of attenuated Radon transform in case of non uniform attenua-
tion has also been proposed. Description of these FBP based attenuation correction
method is beyond the scope of this work and can be found in [37].

Among many advantages of iterative reconstruction methods is the flexibility
to involve attenuation and scatter modeling into transition system matrix [37, 52].
Accurate determination of the attenuation map is critical in performing attenuation
correction using iterative image reconstruction methods. The methods used to calculate
the attenuation map can broadly be divided into two categories i) transmission-less
and ii) transmission-based methods. Transmission-less methods involve attenuation
map calculations using emission data. One such method has been developed for cardiac
perfusion imaging. In this method, patient is re-imaged after delayed imaging using
99mTc with macroaggregated albumin (MAA) to manually segment out lungs and
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body contours to calculate the attenuation map [53, 54]. In order to avoid additional
99mTc-MAA injection and patient re-imaging, the scatter energy window in addition
to the photopeak energy window (PEW) is acquired to segment the body contour
and lung in emission data respectively. Inability of this approximative method to
calculate attenuation maps for all the patients has made this method of limited clinical
use [55]. Iterative approach to solve for both attenuation and emission maps from
emission data has also been proposed [56, 57]. Transmission based attenuation map
determination methods involve either the use of registration and segmentation of
computed tomography (CT) or magnetic resonance imaging (MRI) images [37, 38]
or the use of a gamma camera with different source and collimator configurations to
calculate the attenuation map [37, 38, 52]. Even though suffering from emission data
crosstalk contamination, the use of line source scanning across the field of view (FOV)
with narrow energy window is dominant attenuation map calculation configuration in
currently available SPECT scanners [37]. With the availability of hybrid SPECT/CT
systems, CT based attenuation map determination is now becoming a standard clinical
protocol [38]. However, comparatively much shorter CT data acquisition times and
the presence of metal implants or CT contrast agents may affect the accuracy of these
attenuation maps [37, 38].

1.5.3 Scatter

Due to the limited energy resolution of the most commonly used NaI(Tl) detector
(≈10%) in gamma camera, significant image degradation is caused by the scattered
photons detected under PEW [37]. A simulation study using the rectangular sheet
source (Figure 1.13(b)) described for PVE and attenuation in Sections 1.5.1 and 1.5.2
respectively was repeated to see the effect of inclusion of scatter on the image. Fig-
ure 1.13(a) depicts the image degradation caused by erroneous detection of photons
A and B due to scattering away from their respective points of origin. It is clear
from Figure 1.13(c) that cause image degradation by erroneous positioning of detected
events. Some of such regions are indicated using circles on Figure 1.13(c).

The methods to correct for scatter detected under PEW can be categorized as, i)
energy spectrum based methods, ii) scatter distribution based scatter estimation and
correction and iii) reconstruction based scatter correction methods [37, 38, 58].

Scatter compensation in projection or image domain can be performed either by
subtraction of a scatter estimate or restoration through deconvolution of an approximate
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(a) Effect of scatter

(b) Simulated rectangular sheet source

(c) PVE + attenuation + scatter

Figure 1.13: Scatter: inclusion of scatter photons A and B in (a) caused these photons to be
detected at erroneous position after emission from the (b) sheet source and resulted in a more image
degradation as depicted in (c).

spatial scatter distribution function.
The energy-distribution based methods involve scatter estimation in a pixel and

subsequent subtraction from PEW data generally require acquisition of additional
energy windows (e.g. [59–62]). The triple energy window (TEW) scatter compensation
method is an example of subtraction based scatter compensation methods [60, 61].
TEW based compensation uses two narrow energy windows adjacent to each of the
PEWs in order to determine crosstalk contribution within each of the PEWs. In order
to get scatter Si,j contribution in ith PEW for jth pixel Equation 5.1 can be used.

Si,j =
(
Cil,j
Wil

+ Ciu,j
Wiu

)
Wil +Wiu

2 (1.13)

where, Wil and Wiu are window widths for scatter windows below and above the
ith PEW respectively, and Cil,j and Ciu,j are the total number of counts collected
in jth pixel of corresponding scatter windows respectively. The method is not only
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performs scatter compensation for a single isotope, but has also been used to correct
for downscatter between the two isotopes in simultaneous dual-isotope SPECT. One
such example of TEW based correction is simultaneous 99mTc/111In SPECT is shown in
Figure 1.14 with PEWs and scatter/crosstalk windows. It should be noted that W3u=0
and hence C3u,j=0 for 245 keV PEW that implies dual-energy window correction in
this case. Among many other energy window based scatter correction techniques only
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Figure 1.14: 99mTc/111In spectrum with windows used for TEW based scatter and crosstalk correction
of projection data.

TEW and dual energy window based scatter correction method withstood the test of
time [58]. The energy window based scatter correction methods have the advantage of
being simple, speedy and easy to implement [37, 58]. Undesired noise amplification
and approximative (i.e. not exact) scatter estimation are the disadvantages that may
be associated with these methods [37, 58].

More recent spectral distribution based scatter correction methods involve spectral
fitting [63] factor analysis (e.g. [64, 65]) and artificial neural network (e.g. [64, 66, 67]).
These methods promise to provide accurate scatter compensation but, require either
list mode or multiple-energy windows based (often ≥10) acquisition [37, 58, 68]. List
mode data and required multiple energy window acquisition facilities are currently not
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available on most of the SPECT imaging systems [37, 58].
Modeling of the scatter in PEW by some scatter function based on either line

source measurements [69, 70] or individualized patient based transmission point spread
function (PSF) through an attenuation map [71, 72] form the basis of convolution-
subtraction method. This method is an example of spatial scatter distribution based
methods. Rather than using a stationary scatter distribution based estimate, methods
other than Monte Carlo (MC), have been developed to incorporate a non-stationary
scatter estimate into iterative reconstruction algorithms (e.g. [73–76]). In these methods
transport through a non-homogeneous tissue is approximated by water-equivalent
depths represented by slabs. Effective scatter source estimation (ESSE) method
is an example of one such method, refined for Compton scatter based attenuation
correction [74, 77, 78].

The methods that involve inclusion of scatter model into the system matrix can be
categorized as reconstruction based scatter correction methods (RBSC) e. g. [79, 80].

Compared to other approximative methods for scatter estimation, MC methods are
expected to provide quite accurate estimation of scatter but, individualized patient-
based scatter estimation has always been considered computationally too demanding
to be practical. Especially, if it is to be incorporated into iterative reconstruction
algorithm [58]. The problem with these notoriously slow MC methods is there inherent
low detection efficiency in SPECT simulation studies [27]. In order to address this
issue a variance reduction technique (VRT), known as convolution forced detection
(CFD) [81], has previously been incorporated into SIMIND Monte Carlo Program
by our group with [29] and without [82] detailed collimator scatter and septal pene-
tration modeling. CFD implementation generates low-noise projections often within
a minute of acquisition time [29, 81]. In this VRT a weighted copy of photon at
each interaction site is forced in direction that is perpendicular to the gamma camera
head while convolving it with distance-dependent collimator response kernal modeled
as Gaussian [29, 81]. The CFD-based accelerated MC forward projector has been
successfully incorporated into iterative reconstruction framework to correct for scatter
and crosstalk between the isotopes in simultaneous dual-isotope SPECT [83–86].
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1.6 About This Work

This thesis work is written in sandwich form. Most of the basic concepts and ideas
related to the main work have been presented in this chapter (Chapter 1).

Chapter 2 presents a comparative study between convolution-based forced detec-
tion implemented in SIMIND Monte Carlo program (CFD-SIMIND) and GEANT-4
based simulation toolkit GATE. This work was based on an intent to perform an
exhaustive comparison between (or validation of) CFD-SIMIND and (using) an inde-
pendent gold standard Monte Carlo program like GATE, as such comparison has never
been reported. This work has been accepted for publication IEEE Transactions on
Nuclear Science.

The study presented in Chapter 3 of this work has been published in 5th issue
of Volume 62 (2015) of IEEE Transactions on Nuclear Science. The title of
the work is, “Simultaneous 99mTc/111In SPECT Reconstruction using Accelerated
Convolution-based Forced Detection Monte Carlo”. As the title suggests, this work
focuses on Simultaneous 99mTc/111In SPECT reconstruction using CFD-SIMIND
as forward projector to compensate for crosstalk, scatter and attenuation in the
corresponding images of 99mTc and 111In.

The work presented in Chapter 4 is based on a simulated application of simul-
taneous 99mTc/123I SPECT in breast imaging and reconstruction of simulation data
using CFD-SIMIND. This work, titled, “Accelerated Monte Carlo based Simultaneous
99mTc/123I SPECT Reconstruction” has already been published in Proceedings of
2012 IEEE Imaging Conference.

Chapter 5 is based on a recent submission to IEEE Transactions on Nuclear
Science. This study is based on the use of accelerated CFD-SIMIND MC and CT-
based anatomical prior to take care of the quantification and PVE respectively. This
work incorporates CFD-SIMIND as a forward projector and CT-based Bowher’s prior
in Green’s one-step-late algorithm to improve quantification.

Finally, the conclusion and some recommendations for future work are presented
in Chapter 6 of this work.
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Chapter 2

A Comparison between GATE and
Accelerated Convolution-based
Forced Detection SIMIND for Low-
and Medium-energy Collimators: A
Simulation Study

Accepted for publication in IEEE Transactions on Nuclear Science©, 2016

MONTE CARLO (MC) based photon transport modeling is commonly used
for simulation studies in emission tomography [25, 28, 87, 88] and is often

regarded as the gold-standard for photon modeling methods. One of the most precise
and accurate methods, GATE, was born out of high energy physics code (GEANT4)
and was initially developed for emission and transmission tomography simulations
in 2004 [89], but has since been extended to optical imaging and radiation therapy.
GATE is now a well established MC tool and extensively used in simulation studies in
nuclear medicine.

Assie et al, [90], validated GATE against experimental point and line source data for
99mTc with a LEHR collimator, 99mTc with a MEGP collimator, and 111In with a MEGP
collimator in both air and water. The comparison for 99mTc and 111In was performed
using different dual head gamma cameras for each isotope. A comparison between
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experimental and GATE simulation data was performed using spatial resolution, count
sensitivity and the measured energy spectra. The study showed that GATE simulation
results that are very similar to those obtained from experimental data with spatial
resolution measurements within 0.1 mm and sensitivity values within 4−5%. In a
subsequent study the accuracy of GATE was compared with experimental data for
111In SPECT and indicated an overall difference of 2% and 4% in spatial resolution
and sensitivity respectively for line source simulations on a GE DST-XLi camera [91].
This also showed that the GATE SPECT simulation of a cylindrical phantom with
spheres and bony inserts closely reproduced experimental results. It is important to
mention here that both these studies were performed with the first version of GATE
and that additional improvements in geometrical design and physics implementation
have been made since.

While MC has some potential clinical applications (e.g. model based single and
simultaneous dual-isotope SPECT image reconstruction [85, 86, 92–94]), conventional
MC methods are too slow to implement in clinically useful times. As a result, our
group has previously implemented a number of different variance reduction techniques
(VRT’s) using the SIMIND MC code to make it feasible to use in reduced time frames.
These VRT’s include convolution forced detection (CFD) [95], multiple projection
sampling [29] and accelerated collimator penetration modeling [82]. We have shown
very good agreement between our simulation methods and experimental data for
simple phantoms, but a systematic study of the accuracy of our approach to other MC
programs has not previously been performed.

The current study focuses on a comparison between our CFD-accelerated SIMIND
MC program (CFD-SIMIND) and a well established GEANT4 based Monte Carlo
code, GATE (version 7.1). A similar CFD implementation based on the work of [29]
has already been incorporated as an option in the standard SIMIND Monte Carlo
program. The motivation behind this work stems from previously reported simulation
and experimental studies that have shown detailed collimator scatter and septal
penetration modeling has negligible impact for medium and low energy isotopes (e.g.
[96–98]). Thus, there is a question of whether CFD-SIMIND can be used in place of
GATE in certain applications utilizing low to medium energy nuclides with little or
no loss of accuracy. CFD-SIMIND does not include detailed collimator scatter and
septal penetration modeling, and by doing so, offers significant reductions in simulation
times. Also, the use of two or more independent codes is often required for simulation
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studies involving single photon emission tomography [99]. Simulation studies involving
model-based correction of image degradation factors like scatter and attenuation in
single or dual-isotope SPECT during iterative reconstruction process are the examples
of such studies (e.g. [86, 93, 100]).

2.1 Methods

2.1.1 Convolution based Forced Detection

In the CFD method, at each photon interaction location, a weighted copy of the
interaction photon is forced to undergo a scatter in the direction of the detector.
The detection location on the camera is then convolved with an energy and distance
dependent collimator response kernel. The detailed description of CFD can be found
in [81]. It should be noted that in the current implementation, collimator scatter
and septal penetration have not been modeled, although our group has developed a
method to model these effects [82] at the expense of longer simulation times. Neglecting
these effects, the overall geometric response can be modeled as an energy and depth
dependent Gaussian with FWHM (F (z, E)) given by Equation 2.1.

F (z, E) =

√√√√Fi(E)2 +
(
d(le(E) + z)

le(E)

)2

(2.1)

where Fi(E) is the energy dependent intrinsic FWHM system resolution, d is the
collimator hole diameter, le is the effective septal length for a specific photon energy
and for a hole length l equivalent to le = l − 2/µ(E) and z is the distance from the
detector. Equation 2.1 depicts an overall response in CFD that includes both intrinsic
and geometric response of the detector and collimator respectively. Further details on
the implementation can be found in [29, 86].

2.1.2 Point Source Simulations

For comparison purposes, a GE Infinia gamma camera (General Electric, USA) with a
9.5 mm thick NaI(Tl) crystal was modeled with both CFD-SIMIND and GATE for all
simulation studies. Both Low Energy High Resolution (LEHR) and Medium Energy
General Purpose (MEGP) collimators were used to acquire point source data for 99mTc

35



PhD Thesis — Muhammad I. Karamat McMaster University — RADGRAD

(photopeak energy window (PEW) 126-154 keV) and in the case of 111In (PEW 154-188
keV and 221-270 keV) only, a MEGP collimator was modeled. A summary of the
simulation setups used in the study is given in Table 2.1.

It is important to mention slight differences in the way photons are detected in
GATE and SIMIND. In CFD-SIMIND, forced detection occurs by sending a weighted
photon from the point of last interaction in the direction of the detector system [101].
The probability of detection is then determined based on the detector geometry
(ie, thickness and material composition) and the photon detection weight is altered
according to the detection probability. The overall spatial resolution is then modeled
as an energy dependent Gaussian kernel with FWHM, F (z, E), given by Equation 2.1.
The intrinsic spatial resolution, Fi of the detector in Equation 2.1 is based on a fixed
value at 140 keV and varies as 1/

√
E [39, 101]. We have used the value Fi = 4.8 mm

as measured on the GE Infinia camera with 9.5 mm crystal.
In GATE, the detector material is treated as any other object material and photon

interactions are modeled in this material [91]. Each detected event in GATE is placed
at the centroid of all the interaction points in the crystal weighted by the ratio of
deposited energy to the total energy deposited in the crystal [91, 102]. GATE uses
a fixed intrinsic spatial resolution value (ie, Fi = 4.8 mm in this study) to model
Gaussian blurring kernel at each interaction location within the detector unless optical
photon simulation is enabled [102, 103]. The use of this option, while increasing
realism, greatly adds to the simulation time and hence, is not usually performed when
not investigating optical photon transit [103]. For both methods, we have made no
attempt to improve the intrinsic detection model as we feel this aspect is relatively
minor component compared to geometric (ie, collimator) response and object scatter.

Table 2.1: Summary of point source simulation setups.

Isotope Energy Collimator Photopeak Energy
(keV) Window (PEW)

99mTc 140 LEHR, MEGP 126-154 keV
111In 171, 245 MEGP 154-188 keV

221-270 keV

A comparison is performed, in terms of detection sensitivity and spatial resolution
for point source simulations in air. For point source simulation studies in water, the
comparison between GATE and CFD-SIMIND was based on image profiles and energy
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(a) (b)

Figure 2.1: XCAT Phantom simulation setup showing camera head position with respect to (a)
activity map and (b) electron density map respectively.

Figure 2.2: Attenuation coefficient, µ (cm−1) versus density, ρ (gcm−3) for different organs and
tissues used for CFD-SIMIND simulation setup of XCAT Phantom.

spectra obtained through both the MC codes. An image profile based comparison was
performed along the central lines on logarithmic and linear scales and Universal Image
Quality Index (QUI) values for all the source depths in water [104]. This metric can
be described by Equation 2.2.

QUI =
4ḡs̄

(
N∑
i=1

gisi −Nḡs̄
)

(ḡ2 + s̄2)
(

N∑
i=1

(g2
i + s2

i )−N(ḡ2 + s̄2)
) (2.2)

where ḡ and s̄ are the mean pixel content of images g and s, with each having N pixels
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respectively. With QUI ε [−1, 1], a value of QUI = 1 indicates a perfect match that is
g = s. We have chosen this metric as it has shown to outperform mean square error
(MSE) under different image distortion conditions [104, 105].

It is pertinent to mention here that all the simulation studies presented in this
work use only projection data with no corrections, filtering or reconstruction algorithm
applied for comparison between CFD-SIMIND and GATE.

For the case of CFD-SIMIND, low-noise images, totaling 2.5×108 photon histories
were simulated, whereas GATE simulated a 40 minute acquisition of a 10 MBq point
source, thereby approximating low-noise projection data in all the cases.

2.1.3 XCAT Phantom Simulation

Simulation setups similar to the point source data acquisition (described in Section 2.1.2
and Table 2.1) were used to obtain low-noise projection data for an extended source
distribution and non-uniform attenuation map of the 4D extended cardiac torso
(XCAT) phantom [106]. XCAT phantom with grid size of 256× 256× 256 (voxel size
of 2.21× 2.21× 2.21 mm3) was used for the simulations with activity concentration
ratios of 1:2:10 between the background, the lungs and the myocardium respectively.
Figure 2.1 depicts the camera and phantom position used in the XCAT phantom
simulation.

For the case of CFD-SIMIND, about 3.9× 1010 photon histories were simulated for
all the isotope/collimator combinations described in Table 2.1 for the XCAT simulation,
whereas for GATE, corresponding PEW projections consisted of about 4.2, 4.3 and 6.9
million counts in the case of 99mTc with LEHR collimator, 99mTc with MEGP collimator
and 111In with MEGP collimator, respectively. For 111In, both the photopeak windows
(i.e. 171 keV and 245 keV respectively) were summed together to provide 6.9 million
counts, thus representing low noise data in all the cases. It is important to mention
here that the XCAT code provides the attenuation map in units of cm−1 and in order
to convert to density as needed for CFD-SIMIND simulations, a conversion using two
distinct linear regions with inflection point at 1.0 gcm−3 (Figure 2.2) is necessary. The
conversion factors between attenuation coefficient and tissue density are shown in
Figure 2.2. For the GATE simulations, the required density map is created using a
range of attenuation coefficients associated with each of the organ tissues from the
GATE material database.
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A comparison similar to the point source simulation data in water, as described
in Section 2.1.2, was performed using the XCAT phantom projection data between
image profiles and energy spectrum.

Also, in order to evaluate the applicability of CFD-SIMIND for simultaneous dual-
isotope SPECT, an additional down-scatter energy window data was acquired for 111In
using both CFD-SIMIND and GATE. The width of the additional window was set equal
to the photopeak energy window width used for the 99mTc study. XCAT projection
data obtained using GATE consisted of about 3 million counts. A comparison similar
to the one performed for XCAT phantom PEW data, described above, was also carried
out for the downscatter projection data (i.e., in the 99mTc window).

2.1.4 Sheet Source Simulations

Projection data using a uniform rectangular sheet source (40× 24 cm2) of 100 MBq or
99mTc or 111In was acquired in order to compare the image noise properties (coefficient
of variation (CoV) and QUI) and simulation times between GATE and CFD-SIMIND.
Twenty consecutive projections with acquisition time of 30 s were acquired using GATE
for all the isotope and collimator combinations. Approximately the same number of
source photons were simulated for the corresponding CFD-SIMIND based projections.
Acquisition energy windows similar to that used for the XCAT phantom were used
for the simulations. A rectangular region of interest (ROI) of size 20× 10 cm2 with
relatively uniform count distribution within the central part of the sheet source was
used for CoV determination. A comparison of the CoV as a function of number of
detected photons and simulation time was then performed. The variation in QUI as
function of number of detected photons was also studied.

2.2 Results

2.2.1 Point Source Simulations in Air

Table 3.1 depicts the sensitivity values at a source to collimator distance of 10 cm for
point source of 99mTc and 111In respectively. Slightly lower sensitivity values are seen
for CFD-SIMIND, with percentage difference between CFD-SIMIND and GATE from
-3.0 to -4.9%, likely due to the absence of septal penetration and collimator scatter
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when using CFD-SIMIND. Sensitivity values for 99mTc with the MEGP have closer
agreement likely due to negligible septal penetration effect in this case.

Table 2.2: Comparison of sensitivity values (cps/MBq) at source to collimator distance of 10 cm for
point source in air.

Isotope Collimator CFD-SIMIND GATE % Difference

99mTc LEHR 73.8 76.4 -3.4
99mTc MEGP 74.0 76.3 -3.0
111In MEGP 64.4 67.1 -4.0
(171 keV)
111In MEGP 40.6 42.7 -4.9
(245 keV)

Figure 2.3 depicts fitted FWHM values in the horizontal and vertical directions
for each of the source to collimator distances of CFD-SIMIND as a function of the
corresponding values obtained in the GATE simulation. A comparison to the ideal
line of unity (shown in the dotted gray line in Figure 2.3) and in terms of correlation
coefficient (r) (ranges from 0.9997 to 1.000) is depicted on each of the plots. The
comparison shows FWHM values for CFD-SIMIND that are within 0.2 mm of the
corresponding values for GATE for both LEHR and MEGP collimators in both the
horizontal and vertical directions.
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Figure 2.3: Point source in air: Comparison of Full Width Half Maximum (FWHM) values shown
in terms of CFD-SIMIND values as a function of GATE based FWHM values obtained at different
source to collimator distances (5-25 cm in steps of 5 cm) in both horizontal and vertical directions.
The comparison in horizontal direction is shown in (a) for 140 keV with LEHR, (a) for 140 keV with
MEGP,(c) for 171 keV and (c) for 245 keV with MEGP collimator respectively whereas, (e), (f), (g)
and (h) depict the corresponding comparison in vertical direction respectively.

2.2.2 Point Source Simulations in Water

Figure 3.1 depicts image profiles on both logarithmic and linear scales obtained from
representative CFD-SIMIND and GATE point source simulations in water at different
depths for i) 99mTc PEW with a LEHR collimator, ii) 99mTc PEW with a MEGP
collimator and iii) 111In PEW with a MEGP collimator. It should be noted here that
111In data for 171 keV and 245 keV windows have been summed together in accordance
with our routine clinical practice. It is evident from Figure 3.1 that the CFD-SIMIND
based image profiles match well with corresponding profiles obtained using GATE.

The QUI values and percent difference in sensitivity obtained between CFD-SIMIND
and GATE MC projection data at different depths in water with respect to the
collimator surface are given in Table 3.2. Close agreement between the CFD-SIMIND
and GATE MC based PEW projections for i) 99mTc with LEHR (0.986−0.999), ii)
99mTc with MEGP (0.985−0.997) and iii) 111In with MEGP (0.988−0.996) collimators
in terms of QUI is evident from Table 3.2. The percent difference between the
CFD-SIMIND and GATE ranges from -1.8 to -4.9% for all the isotope/collimator
combinations.

Figure 2.5 depicts a comparison of energy spectra obtained from CFD-SIMIND
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Figure 2.4: Point source in water: Image profiles obtained at different depths in water with GATE
MC and CFD-SIMIND base point source simulations for (a) 99mTc PEW with LEHR collimator, (b)
99mTc PEW with MEGP collimator and (c) 111In PEW with MEGP collimator on logarithmic scale,
whereas corresponding profiles are shown in (d), (e) and (f) on linear scale respectively.
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Figure 2.5: Point source in water: Comparison between CFD-SIMIND and GATE based energy
spectrum at different depths in water in case of (a) 99mTc with LEHR, (b) 99mTc with MEGP and (c)
111In with MEGP collimator respectively.

and GATE programs, for the energy range of 30-170 keV for 99mTc and 30-300 keV for
111In, at different depths in water for all the isotope/collimator combinations used in
this study. It is evident from this figure that the spectra obtained using CFD-SIMIND
match closely with the corresponding energy spectra obtained from GATE albeit with
slightly lower counts per second per MBq for energies below about 80 keV. This is
likely due to the absence of collimator scatter in the CFD-SIMIND modeling approach.

A comparison of scatter order as a percentage of total scatter for a source depth of
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Table 2.3: Universal image quality index (QUI) at different depths in water for SIMIND-CFD
compared to GATE MC.

QUI Value (% Difference in Sensitivity)

Depth 99mTc with 99mTc with 111In with
(cm) LEHR collimator MEGP collimator MEGP collimator

5 0.999 (-3.9) 0.997 (-3.2) 0.996 (-2.9)
10 0.999 (-4.2) 0.998 (-3.7) 0.998 (-2.7)
15 0.996 (-4.7) 0.996 (-4.3) 0.997 (-2.4)
20 0.993 (-4.9) 0.992 (-4.4) 0.994 (-1.8)
25 0.986 (-4.9) 0.985 (-4.5) 0.988 (-2.2)

Table 2.4: Composition of scatter in photopeak energy window data for different isotope and
collimator combinations.

Percentage of total scatter under PEW
Order of scatter 1 2 3 4 5 >5

Acquisition Code

99mTc with GATE 75.38 20.93 3.30 0.35 0.04 0.00
LEHR CFD- 72.79 22.42 4.18 0.55 0.06 0.00
collimator SIMIND

99mTc with GATE 75.03 21.22 3.36 0.36 0.03 0.00
MEGP CFD- 73.07 22.30 4.05 0.52 0.06 0.00
collimator SIMIND

111In (171 keV) GATE 50.87 31.11 13.30 3.81 0.78 0.13
with MEGP CFD- 49.57 30.88 14.24 4.16 0.95 0.20
collimator SIMIND

111In (245 keV) GATE 84.83 13.93 1.17 0.07 0.00 0.00
with MEGP CFD- 84.37 14.32 1.23 0.08 0.00 0.00
collimator SIMIND

15 cm is given in Table 2.4. For each scatter order, the contribution is very consistent
between CFD-SIMIND and GATE, thus suggesting that CFD-SIMIND provides very
similar interaction modeling to GATE.
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2.2.3 Comparison using XCAT Phantom

Figures 2.6 and 2.7 show projections and corresponding image profiles (Figure 2.6(c)
and 2.7(c)) for 99mTc with i) LEHR and ii) MEGP collimator respectively, along the
lines depicted in the corresponding projections for GATE and CFD-SIMIND of the
XCAT phantom. The corresponding projections obtained through CFD-SIMIND and
GATE show very good agreement with respective QUI values of 0.988 for both 99mTc
with LEHR and 99mTc with MEGP collimator.
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Figure 2.6: 99mTc with LEHR collimator: XCAT images obtained in case of 99mTc with LEHR
collimator through (c) GATE and (d) CFD-SIMIND simulations whereas, (c) shows image profile
along the line depicted in both the projections shown in (c)and (d).

A comparison similar to that performed for 99mTc is depicted for 111In XCAT
simulations in Figure 2.8. The XCAT projections acquired using GATE and CFD-
SIMIND for i) 111In PEW (i.e. sum of 171 keV and 245 keV PEW) and, ii) 111In
down-scatter energy window, with window width equal to that used for 99mTc, with
MEGP collimator. The respective GATE and CFD-SIMIND projections for i) are
shown in Figure 2.8(a) and 2.8(b) whereas, the projections for ii) are depicted in
Figure 2.8(c) and 2.8(d). A comparison of image profiles for 111In for data sets i) and
ii) along the lines depicted in projections is shown in Figure 2.8(e) and 2.8(f). The
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(a) GATE (b) CFD-SIMIND
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Figure 2.7: 99mTc with MEGP collimator: XCAT images obtained in case of 99mTc with MEGP
collimator through (a) GATE and (b) CFD-SIMIND simulations whereas, (c) shows image profile
along the line depicted in both the projections shown in (a) and (b).

XCAT phantom projection data sets i) and ii) acquired for 111In using GATE and
CFD-SIMIND show close agreement between the two MC simulators with QUI values
of 0.993 and 0.983 for i) and ii) respectively.

A comparison of energy spectra for all tested isotope/collimator combinations given
in Table 2.1, is shown in Figure 2.9. Table 2.5 compares GATE and CFD-SIMIND
based XCAT energy spectra depicted in Figure 2.9 in terms of scatter to total counts
in PEW and scatter-to-total spectrum area ratios for all the spectra. A comparison
of XCAT spectra for all the energy windows described previously in Section 2.1.3, in
terms of scatter composition is given in Table 2.6.

45



PhD Thesis — Muhammad I. Karamat McMaster University — RADGRAD

(a) GATE (b) CFD-SIMIND (c) GATE (d) CFD-SIMIND
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(e) XCAT image profile
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Figure 2.8: 111In with MEGP collimator: XCAT images obtained with MEGP collimator for in
case of i). summed 111In PEWs (171 keV + 245 keV PEW) ii). 111In in 99mTc down-scatter window
obtained through (a) & (c) GATE and (b), & (d) CFD-SIMIND simulation for i) & ii) respectively.
whereas, (e) and (f) show corresponding image profiles along the lines depicted in the projections for
i) and ii) respectively.

(a) 99mTc with LEHR (b) 99mTc with MEGP (c) 111In with MEGP

Figure 2.9: XCAT simulations: Energy spectra for XCAT simulation of (a) 99mTc with LEHR
collimator (b) 99mTc with MEGP collimator and (c) 111In with MEGP collimator using GATE and
CFD-SIMIND respectively.
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Table 2.5: A summary of GATE and CFD-SIMIND quantitative spectral comparison for XCAT
phantom simulations.

Quantity
Scatter-to-total Scatter-to-PEW

counts ratio (PEW) area ratio
Acquisition MC Code

99mTc with GATE 0.25 1.59
LEHR CFD- 0.25 1.59
collimator (PEW) SIMIND

99mTc with GATE 0.25 1.60
MEGP CFD- 0.25 1.60
collimator (PEW) SIMIND

111In GATE 0.32 2.62
with MEGP CFD- 0.32 2.67
collimator (PEW) SIMIND
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Table 2.6: Composition of scatter in all the acquired energy windows data for different isotope and
collimator combinations used for XCAT phantom simulation.

Percentage of total scatter
Order of scatter 1 2 3 4 5 >5

Acquisition Code

99mTc with GATE 84.87 13.47 1.51 0.14 0.01 0.00
LEHR CFD- 83.48 14.46 1.85 0.19 0.02 0.00
collimator (PEW) SIMIND

99mTc with GATE 84.83 13.51 1.52 0.13 0.01 0.00
MEGP CFD- 83.43 14.48 1.87 0.20 0.02 0.00
collimator (PEW) SIMIND

111In (171 keV) GATE 66.22 24.57 7.26 1.62 0.28 0.05
with MEGP CFD- 66.51 24.41 7.14 1.61 0.28 0.05
collimator (PEW) SIMIND

111In (245 keV) GATE 90.58 8.84 0.55 0.03 0.00 0.00
with MEGP CFD- 90.12 9.23 0.61 0.04 0.00 0.00
collimator (PEW) SIMIND

111In with GATE 49.01 32.65 13.07 4.00 1.02 0.25
MEGP collimator CFD-SIMIND 49.56 31.99 13.06 4.07 1.04 0.28
99mTc PEW
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2.2.4 Uniform Sheet Source Simulations

A plot of CoV as a function of the number of detected photons for projections of a
uniform sheet source is shown in Figure 2.10(a). The plot shows that GATE based
CoV drops in accordance with the Poisson noise distribution with an increase in the
number of counts in the projections, as expected. Comparatively, much lower and
relatively constant CoV (3.13 ± 0.09 for 99mTc with LEHR, 3.86 ± 0.14 for 99mTc
with MEGP and 3.83 ± 0.06 111In respectively) is seen for the CFD-SIMIND based
projections, in spite of a lower number of simulated source photons. It is important
to note here that CFD-SIMIND not only generated low-noise projections for each
photopeak window, but also produced similar low-noise projections for 99mTc down-
scatter window for 111In (CoV = 3.10 ± 0.21), whereas the corresponding GATE
based projection requires much larger number of detected photons to generate the
projection with similar CoV. Similar results can also be seen from Figure 2.10(b),
that depicts improvement in QUI with an increase in the number of counts in GATE
based projections while noise properties of CFD-SIMIND based projections remain
relatively constant (Figure 2.10(a)). The reduced CoV manifests itself as significantly
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Figure 2.10: Sheet source simulations: Comparison of different aspects for sheet source simula-
tions between CFD-SIMIND and GATE in terms of (a) CoV and, (b) QUI as a function of number
of detected photons. A plot of CoV versus simulation runtime on CPU is shown in (c).

lower simulation run-times for CFD-SIMIND compared with GATE for a given noise
realization as evident from Figure 2.10(c). In round numbers, a single projection in
GATE took 54 hours to generate a projection, whereas a similar, or higher quality
image can be obtained in just 2-3 minutes with CFD-SIMIND.
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2.3 Discussion

In this study, our accelerated CFD-SIMIND Monte Carlo program has been compared
to GEANT4 based GATE for low and medium energy isotopes. Notably, CFD-SIMIND
and GATE are similar in their use of Gaussian blurring for spatial resolution, but the
way these blurring kernels are modeled is different for both. GATE uses real physics
based probability distribution functions to model the response compared to CFD that
uses modified response function and consequently different photon weight. Because
once the photon leaves the phantom in CFD, it is forced to travel in a direction that
is perpendicular to the detection system. It is also important to describe here that we
have made no attempt to improve the intrinsic detection model in either CFD-SIMIND
or GATE. Because we feel, this aspect is a minor in comparison to the geometric
response and object scatter. An additional 99mTc acquisition in this study with MEGP
collimator was performed to evaluate the compatibility between CFD-SIMIND and
GATE for 99mTc with MEGP for possible applications of simultaneous 99mTc/111In
SPECT in cardiac, cancer, infection and gastric imaging ([86, 107–112]).

It is important to mention here that our implementation of CFD does not require
a three dimensional sub-projection map and use of average attenuation coefficient
as is the case with the CFD implementation reported by deJong et al [81]. This is
due to the fact that in our case, a weighted copy of photon at each interaction site is
directly convolved with the appropriate distance dependent Gaussian response kernel
after corresponding photon energy based attenuation correction [29]. Also, CFD is
implemented in such a way that the simulation is independent of a base projection
and it only depends on the photon path and previous weighting.

Point source simulations in air yielded sensitivity values with percentage differences
of 3−5% between CFD-SIMIND and GATE for all the isotope/collimator combinations
used in this study. Slightly lower sensitivity values observed for the case of CFD-
SIMIND, may be due to the absence of collimator scatter and septal penetration
modeling.

It is also evident from Figure 2.3 that CFD-SIMIND has spatial resolution that is
within 0.2 mm of the corresponding values for GATE at different source to collimator
distances. These results are consistent with our previously reported data for CFD-
SIMIND with detailed collimator scatter and septal penetration modeling [29, 82].

A comparison of image profiles, energy spectra and quantitative analysis of spectra
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in terms of scatter-to-PEW area ratio, scatter-to-total counts ratio in PEW and scatter
composition in the photopeak window for all the isotopes and collimator combinations
used in the study indicate very good agreement between CFD-SIMIND and GATE for
low and medium energy isotopes. A slight reduction in QUI values with increasing
depth in water is evident from Table 3.2 and may be caused by lower counts and
hence higher noise level at larger source depth in GATE based projection data. Also,
slightly lower values of QUI at source depths of 5 cm in Table 3.2 may indicate a
more significant contribution from collimator scatter in the overall scatter contribution
detected within the photopeak at this depth. All point source simulations in water
yielded an average value of 0.994 ± 0.009 for QUI . Table 3.2 also indicates an overall
percent difference of 4.5 ± 0.6, 4.0 ± 0.8 and 2.4 ± 0.6 in sensitivity for 99mTc with
LEHR, 99mTc with MEGP and 111In respectively with CFD-SIMIND on the lower side.

In order to compare CFD-SIMIND to GATE for extended source distribution and
non uniform density map, simulation studies using the XCAT phantom were performed.
It is important to note here that conversion of attenuation to density, required for
CFD-SIMIND simulation, is based on two distinct linear regions with inflection point
at 1.0 gcm−3 as shown in Figure 2.2. Our previous linear conversion from attenuation
coefficient to density (with body (water) density of 1 g/cm3 ⇒ µ = 0.1494 cm−1

for 99mTc) using a single slope results in about 15% and 24% lower density values
for spine and rib bone respectively. Therefore, care must be taken while performing
this conversion for bones or other high density materials like iodine based contrast
agents [113]. A comparison in terms of a global parameter like QUI and localized
comparison using line profiles shown in Figures 2.6(c), 2.7(c), 2.8(e) and 2.8(f) show
a good agreement between CFD-SIMIND and GATE based projections. The data
presented in Section 2.2.3 show similarity between GATE and CFD-SIMIND images
with a mean QUI value of 0.988 ± 0.005 for all photopeak images. The corresponding
energy spectra for all the isotope/collimator combinations used in the study appears to
match well with a mean percent difference of 4.8 ± 0.8 in sensitivity with CFD-SIMIND
on the lower side. The comparison of an additional down-scatter window (= 99mTc
PEW) acquired for 111In showed a value of 3.0% (with GATE on the lower side) and
0.983 for percent difference in sensitivity and QUI respectively. The CFD-SIMIND
based XCAT images acquired for PEW shown in Figures 2.6, 2.7 and 2.8 appear to
match well with corresponding GATE images possess slightly more graininess (i.e.,
more Poisson noise). This graininess is also evident in the GATE based image for
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99mTc downscatter window in Figure 2.8(c). Notably, Figure 2.8(d) shows correlated
lumpy-noise texture that is typical for CFD and indicative of insufficient number of
detected photons in given energy window [81]. The main reason for this low frequency
lumpy-noise is the projection of each photon as a blurring kernel. The difference in
noise properties and insufficiency of detected counts could be the main causes for the
visual differences between the images in Figures 2.8(c) and 2.8(d).

The results of the uniform sheet source simulation (Figure 2.10) has shown that
relatively low-noise images can be acquired using CFD-SIMIND with much lower
number of photon histories and with a subsequent reduction of about 5−6 orders of
magnitude in simulation time compared to GATE.

2.4 Conclusion

It is evident from the point source simulation results that CFD-SIMIND agrees well
with GATE with detection sensitivity differences ranging from (3−5%), resolution
within 0.2 mm and overall image quality similarly, QUI value, of 0.994 ± 0.009. More
complex simulations using the XCAT phantom also showed similar results. Based
on the coefficient of variation measurements as a function of number of counts and
simulation time, a reduction by a factor of 5−6 orders of magnitude in time can be
achieved with CFD-SIMIND compared to GATE while maintaining very similar photon
transport accuracy.
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Chapter 3

Simultaneous 99mTc/111In SPECT
Reconstruction using Accelerated
Convolution-based Forced
Detection Monte Carlo

Published in IEEE Transactions on Nuclear Science©, Volume 62 (5), Pages 2085-2095, 2015

S IMULTANEOUS 99mTc/ 111In SPECT imaging has potential applications in
cardiac, cancer, infection and gastric imaging. For example, 99mTc-sestamibi and

111In-labelled cardiomyoblasts have been used to simultaneously monitor myocardial
perfusion and stem cell localization following cellular cardiomyoplasty [108, 109]. In
prostate cancer imaging, Blend et al has proposed the use of 99mTc/ 111In imaging to
distinguish prostate and lymph node involvement from the vascular component [111,
112]. SPECT imaging using 99mTc-hydroxymethylene diphosphonate and 111In-labelled
white blood cells has been recently reported as a useful tool in localization of diabetic
foot infection [114]. A feasibility study of gastric volume and gastric emptying measure-
ments using 99mTc-pertechnetate and 111In-DTPA respectively, have been performed
by Siomonian et al [110].

When performing dual isotope imaging, serial imaging of 99mTc followed by 111In not
only prolongs imaging time but may also result in misregistration of images as a result
of patient movement between scans. Therefore, in order to avoid these problems and
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to improve system throughput, it is advantageous to perform simultaneous imaging of
both radionuclides. The major concern in such an acquisition however, is the significant
crosstalk contamination as a result of photon scatter.

Different crosstalk compensation methods developed for the precorrection of SPECT
projection data typically either subtract a crosstalk estimate from the projection data
prior to image reconstruction or attempt to improve projection data by means of
deconvolution with a crosstalk blurring function [115–119]. Feng, et al, compared triple
energy window (TEW) based correction method [119] to their proposed convolution
based method to correct for 111In down-scatter detected in the 99mTc photopeak energy
window (PEW). Their study showed marked reduction in 111In source intensity in the
99mTc image [118]. However, the problem with pre-reconstruction crosstalk correction
methods is the ad hoc determination of parameters like scaling factors or blurring
functions necessary for more accurate compensation.

In contrast to pre-corrective strategies, other researchers have proposed to in-
corporate model based crosstalk compensation during the image reconstruction pro-
cess (c.f. [92–94, 120–123]). Frey, et al has developed and used a method of model-based
crosstalk compensation known as effective source scatter estimation (ESSE) [120–
123]. Song et al, [121], evaluated ESSE-based crosstalk compensation in simultaneous
99mTc/201Tl myocardial SPECT and showed that this model yielded good estimates of
crosstalk and Pb x-rays produced in the collimator.

Another modeling method has been developed by Ouyang et al [93]. This method
initially reconstructs both isotopes without any scatter correction (NSC-OSEM) us-
ing simulated detector PSF’s at 32 detector to source distances in air. The data
reconstructed using five iterations of NSC-OSEM was then corrected for scatter and
crosstalk using an accelerated Monte Carlo method in a joint ordered subset expecta-
tion maxmimization (JOSEM) algorithm. The Monte Carlo method employed was a
modified version of the accelerated method proposed by deJong et al [81].

In order to evaluate the scatter and crosstalk compensation of this technique, a
simulation study involving the simultaneous imaging of 99mTc/ 111In of infection was
performed by Cervo et al [94]. Results of this study indicate a bias in the range of
-3.9 to 34.8% in activity quantitation with overall precision of 12.8%. deJong et al [92]
has proposed a method for down-scatter correction in simultaneous 99mTc/201Tl dual-
isotope cardiac SPECT. In this approach, a stable down-scatter estimate is calculated
using an accelerated Monte Carlo simulation technique along with a simulation of lead
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x-ray production. From their study, they found that “Monte Carlo-based down-scatter
correction recovers lesion contrast and quantitative accuracy in 201Tl images almost
perfectly”.

More recent approaches used for crosstalk compensation in simultaneous dual-
isotope SPECT, involved the use of artificial neural networks (e.g. [124, 125]) or
independent component analysis [126]. In a study performed by Zheng et al [124],
experimentally acquired projection data consisting of 24 energy windows was used
to train an artificial neural network (ANN) for crosstalk correction in simultaneous
99mTc/123I brain imaging. In this study they were not able to train the ANN for self
scatter correction but the system was able to reduce crosstalk significantly. Chang et
al applied independent component analysis in order to correct for the crosstalk in
simultaneous 99mTc/123I planar imaging [126]. This study reported a percent bias
(Mean Square Error (MSE)) of <-11% (80.48) and <-18% (104.63) in 99mTc and 123I
respectively. These techniques are both very good at compensating for crosstalk,
however, the major limitation in these methods is the requirement for a large number
of energy windows, whereas many commercially available SPECT systems only provide
limited numbers of energy windows.

In this work, we present an alternative method of crosstalk compensation applied
to simultaneous 99mTc and 111In SPECT for cancer imaging. This technique uses a
Monte Carlo-based photon transport model during the reconstruction process. Monte
Carlo (MC) based scatter compensation has the potential to offer the most realistic
crosstalk and scatter compensation modeling compared to approximative methods.
However, the inherently low detection efficiency and resultant long calculation times
(often several hours or days) associated with this technique makes it unsuitable for most
clinical applications [127]. As a result, previously reported methods which involved
the use of MC based scatter and crosstalk estimates either used a stable estimate [92]
obtained after several iterations and held constant, or applied the scatter estimate only
in the latter stages of image reconstruction [93]. While the advent of increasingly fast
computers has reduced computation times, we have taken an alternative approach to
improve simulation times. Our group has previously incorporated convolution based
forced detection (CFD) into the SIMIND Monte Carlo program (SIMIND-CFD), which
has made MC modeling feasible to use in clinical time frames [29]. We have developed
an iterative Monte Carlo-based image reconstruction technique that simulates the
photon down-scatter from one isotope into the acquisition window of a second isotope.
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By accurately modeling the photon transport through the object of interest using Monte
Carlo, we can accurately estimate the amount of scatter contamination contained in a
given projection view within an arbitrary energy range. Once known, we then use this
information in an iterative algorithm to compensate for the photon contamination
using updated scatter estimates for each image update during reconstruction. We use
a modified ordered subset-expectation maximization (OS-EM) algorithm [128], named
simultaneous ordered subset-expectation maximization (Sim-OSEM) to perform this
step.

In this study, a comparison between the quality of images reconstructed from
simulated and experimentally acquired projection data in terms of contrast, activity
deposition and uniformity of background was performed. The use of MC also facilitates
quantitative estimation using the method mentioned in following Section 3.1.1, although
this was not the primary purpose of this study.

3.1 Methods

The main objective of this work is to evaluate our proposed reconstruction algorithm,
Sim-OSEM for use in simultaneous 99mTc/111In SPECT and to test the results of this
method against other methods. Our approach uses the standard OSEM algorithm
modified for multiple acquisition windows, along with a quantitation estimation step.
The description of this technique follows.

3.1.1 The Sim-OSEM Reconstruction Method

Consider an object containing two different isotopes, x and y with differing in vivo
distributions. The distribution of nuclide x is given by fx and that of nuclide y by fy.
In a simultaneous acquisition, the resultant projection data acquired for each nuclide
(px and py) can be represented by the linear Equations (3.1) and (3.2).

Hxxfx +Hyxfy = px (3.1)

and
Hxyfx +Hyyfy = py (3.2)

where Hxx and Hyy are the photopeak photon geometric system matrices for each
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respective isotope, Hyx and Hxy are the scatter photon system matrices for the isotope
y (or x) into the acquisition window for isotope x (or y). Note that px and py are
the projections acquired in a single photopeak window for each nuclide. In the case
of multiple energy photons, such as 111In, py is the resultant sum of the individual
photopeak projections. That is, for y=111In,

pIn = H171,171fIn,171keV +H245,171fIn,245keV + ...

H245,245fIn,245keV +H171,245fIn,171keV
(3.3)

Note that the scatter system matrix Hxy or Hyx, for example, can be considered
comprised of two parts, i) a system matrix that models photon transport through the
object, and ii) a system matrix that models photon transport through the collimator
and imaging system. In the CFD-MC implementation, the former component is
modeled for each isotope using standard Monte Carlo up to the last scatter location
in the object. At this point, the latter component is performed using an analytical
projection of the photon on to the detector surface. The geometric response projected
is modeled by a depth dependant Gaussian with FWHM given by:

Gx(z, E) = d(leff (E) + z)
leff (E) (3.4)

where d is the collimator hole diameter, leff is the effective septal length for a
specific photon energy equivalent to leff = l − 2/µ(E) and z is the distance from the
collimator face. It should be noted here that detailed septal penetration and collimator
scatter modeling have not been implemented in CFD-MC in this study. We have used
an exponential relationship for µ(E) as the attenuation coefficient for lead follows
an exponential function over the range of energies appropriate for 99mTc and 111In as
shown in Equation 3.5. The expression shown in Equation 3.5 is the function of energy,
E, in keV obtained by curve fitting the attenuation data from National Institute of
Standards and Technology (NIST) website (http://www.nist.gov).

µ(E) = 0.2483× exp
( 1233.8487
E + 122.92

)
(cm−1) (3.5)

The Sim-OSEM reconstruction algorithm for 99mTc can be written as Equations
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3.6 with a similar expression for 111In.

fnewTc = f oldTc∑
aεs

HT
a,Tc

∑
aεs

HT
a,Tc

p̄a,T c
pa,T cR

new
Tc tacq

(3.6)

where p̄Tc is the measured projection data for 99mTc and p is the Monte Carlo
estimated projection data for 99mTc as per Equation 3.1. Notice that in the forward
projection step (denominator), there is an additional factor, Rnew

i tacq. Because of the
forced detection variance reduction technique used in CFD-MC, each detected count
is scaled by the probability of detection in order to provide units of cps/MBq. Hence
the list-mode projection data must be scaled to account for the actual acquisition
times, tacq and the absolute quantitative activity Rnew

i . This scaling factor, Rnew
i is

determined through an iterative process based on the total number of counts acquired
in the experimental projection data, p, and the MC simulated projection as shown in
Equation (3.7) for 99mTc.

Rnew
Tc = Rold

Tc

∑
aεs

p̄a,T c∑
aεs

(H ′a,T cTcf oldTc +H
′

a,InTcf
old
In )× tacq

(3.7)

In the backprojection step, we have implemented an analytical backprojector,
HT , that includes both energy specific attenuation and geometric collimator response
compensation, but does not include scatter compensation. For each forward projection,
a low noise projection consisting of 5× 106 photon histories were simulated using the
MC based forward projector. This forward projector uses intrinsic camera resolution
and attenuation weighted distance dependent collimator resolution to model overall
detector response [29]. As previously mentioned, we have not included the effects
of septal penetration, collimator scatter or Pb x-ray production, although we have
previously implemented an accelerated version of septal penetration using ray tracing
[82]. In CFD, the computationally intensive task of photon transport through the
object needs to be performed only once for each photon while maintaining the accuracy
to an acceptable level [29, 129].
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3.1.2 CFD Monte Carlo Model Validation

All subsequent experiments to test the proposed reconstruction method utilized a GE
Infinia SPECT/CT camera (General Electric, USA). This camera first had to be
accurately modeled with our accelerated Monte Carlo program. In order to model
the geometric response of the combined camera/collimator system, point sources (<3
mm diameter) of both 99mTc and 111In were used to measure the depth dependent
spatial resolution of the medium energy, general purpose collimator (MEGP). For each
isotope, the point source was positioned at five different distances from the collimator
surface (5, 10, 15, 20, 25 cm) and low noise projection data acquired into a 1024×1024
pixel array (1.1 mm × 1.1 mm). Profiles in both X and Y directions of the obtained
point spread function was measured and FWHM determined and plotted as a function
of distance. A best-fit line was fit to these 5 points in order to determine the depth
dependant spatial resolution.

The obtained distance-dependent resolution model described in Section 3.1.1 was
then implemented into our CFD version of the SIMIND Monte Carlo program. To
confirm the geometric modeling matched the actual camera, a simulation was performed
using point sources of 99mTc and 111In positioned at various distances from the simulated
camera, emulating the experiment performed previously. Low noise Monte Carlo
projections were acquired and the resultant FWHM of projection image again fit with
a depth dependent Gaussian function. A comparison in terms of overall detector
sensitivity was also performed. The detection efficiency (counts s−1MBq−1) was
measured for projection data acquired at a source to collimator distance of 10 cm.

In addition to experimentally measured efficiency values, a comparison between
SIMIND-CFD and GEANT4 Monte Carlo (i.e., GATE) [89] code was also performed in
order to validate the SIMIND Monte Carlo program with another, previously validated
method. GATE scatter estimates have previously been compared to experimental data
for 111In in a study performed by Assie et al [91]. In this study, a difference of 2%
and 4% in spatial resolution and sensitivity values, respectively, has been reported
for GATE simulation results compared to experimental data. Thus, if SIMIND-CFD
projection estimates are similar to GATE, then we can assume SIMIND-CFD will
provide appropriate scatter estimations for experimental data. An identical setup
for the GATE simulation was used as for the experimental and SIMIND-CFD based
measurements mentioned above.
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In order to evaluate the ability of SIMIND-CFD to model and estimate 111In
downscatter in 99mTc PEW more quantitatively, a point source of activity was simulated
at different depths in water using both GATE and the SIMIND Monte Carlo methods.
For both simulations, the same GE Infinia gamma camera model was implemented and
acquisition using 111In and 99mTc point sources (4.4 mm diameter) in a cubic water
bath (56.576 × 56.576 × 56.576 cm3) was performed at 5 different depths in water
(5, 10, 15, 20, 25 cm). For the case of SIMIND, a total of 1.1× 107 photon histories
were simulated, whereas GATE simulated a 10 minute acquisition of a 1MBq source,
thereby approximating low-noise projection data.

It is important to note here that in the case of 111In, two projection data sets are
obtained: i) the summed photopeak window (i.e. 171 keV + 245 keV windows) and ii)
the 99mTc downscatter energy window data. We chose to sum together the 171 and
245 keV 111In photopeak data as this is identical to our clinical SPECT acquisition
protocol.

Similarly, for the case of 99mTc, again, two projection images are obtained. These
consist of, i) the 99mTc PEW without any 111In downscatter present and ii) the 99mTc
PEW with 111In downscatter image added. The GATE MC and SIMIND-CFD results
were then compared in terms of Normalized Mean Square Error (NMSE) for i) 111In
photopeak, ii) 99mTc photopeak without 111In downscatter and iii) 99mTc photopeak
with 111In downscatter energy window projections respectively.

3.1.3 Sim-OSEM Feasibility

In order to test the feasibility of the proposed Sim-OSEM reconstruction algorithm, a
phantom simulation study based on the NEMA IEC body phantom (Data Spectrum
Corporation) was performed. Three of six spheres (diameter (φ) = 13 (S1), 22 (S3)
and 37 mm (S5) respectively) were filled with 7.75 MBq of 99mTc (concentration =
0.151 MBq/ml) while the remaining three spheres (φ = 10 (S2), 17 (S4) and 28 mm
(S6)) contained a total of 7.56 MBq of 111In (concentration = 0.302 MBq/ml). The
activity values were calculated to obtain an activity concentration ratio of 1:2 between
99mTc and 111In respectively. For each radionuclide, a simulated SPECT acquisition
was performed using 120 projections with 128×128 matrix size (4.4 mm x 4.4 mm
pixels). Projection data were obtained using the CFD-MC method implemented
into SIMIND. A total of 480 million photon histories were simulated for each of
the isotopes, thus approximating low-noise projections. The current implementation
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of CFD SIMIND provides relative projection images in units of cps/MBq, therefore
scaling of the low-noise projection data to actual activity levels and acquisition time
was performed and then Poisson distributed noise added. Both for acquisition and
reconstructions, the attenuation map was obtained from a transmission CT scan of
the phantom acquired on the GE Infinia Hawkeye 4 SPECT camera. It is noted here
that while it would be preferable to utilize a different simulation method (e.g., GATE)
to obtain simulated projection data, our goal at this point was to simply evaluate
the application and feasibility of the proposed reconstruction method, rather than
to perform a rigorous evaluation. As described below, our reconstruction technique
uses a mis-matched projector/backprojector pair, of which the combined effect in the
reconstruction procedure is unknown.

The simulation used an acquisition time of 15 s/projection, thus yielding 1.2 and
1.4 million counts over all 99mTc (with 111In downscatter added) and 111In (summed
photopeak window) projections respectively. Projection data were acquired with 20%
wide windows for all photopeaks, with additional 3 keV wide scatter windows adjacent
to each photopeak in order to perform triple energy window (TEW) based scatter
correction [119]. It should be noted that the 245 keV photopeak energy for 111In
utilized only a single, lower scatter window.

The Sim-OSEM based reconstructed images were compared to images obtained
using i) conventional reconstruction of SPECT data without any scatter compensation,
ii) data corrected using TEW compensation in the forward projection step and iii) single
isotope data without any crosstalk contribution from other isotope and reconstructed
without scatter compensation. In all these other cases, the image reconstruction process
uses a matched projector/backprojector pair that includes both photon attenuation and
geometric response compensation incorporated into the standard OSEM reconstruction
algorithm. In the case of Sim-OSEM, the reconstruction algorithm produces estimates
of activity concentration in units of (Bq/cc). The other reconstruction methods do not
yield quantitative images unless calibrated using a standardized source. No calibration
was performed for these experiments as the goal of this work was not to perform
an evaluation of quantitative accuracy of each method. All the reconstructions were
performed with 2 iterations and 30 subsets.

In order to evaluate and compare the improvement in contrast, the peak to valley
ratios (PVR) were calculated using Equation 3.8 from the circular profiles for both
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the isotopes.
PV R = x̄p

x̄v
(3.8)

where x̄p and x̄v are the three point average at the peak and at the bottom of valley
succeeding the peak respectively. In order to compare the reduction in background
scatter mean content of normalized data sets in a spherical VOI of radius 2.2 cm in
the background region, away from the spheres with activity, was also compared.

After reconstruction of simulated data, while not the purpose of this work, using
Sim-OSEM, a 3D volume of interest (VOI) was drawn over each phantom sphere and
the mean reconstructed activity concentration (kBq/cc) was determined. In this work
the VOI was selected based on the actual volume of spheres without any partial volume
correction.

3.1.4 Experimental Validation of Sim-OSEM

Once evaluated for feasibility, we have performed a series of experimental dual-isotope
111In/99mTc SPECT studies using a similar design to the simulation study as described
in Section 3.1.3. The amount of activity used was calculated to obtain an activ-
ity concentration ratio for 99mTc : 111In of 1:2. We have performed the following
experiments:

i) Simultaneous 111In/99mTc with non-radioactive water background.
ii) Simultaneous 111In/99mTc with a 99mTc background.
Initially, 99mTc was injected into 3 spheres and SPECT projection data of these

spheres was obtained. Then 111In was injected into the remaining 3 spheres while
the phantom was positioned on the patient bed. As the cross-contamination from
99mTc to 111In is considered negligible, this permitted us to obtain both 99mTc and
111In projection data essentially free of cross-talk from the other nuclide.

In the case of the warm background, 99mTc was deposited into the phantom
background in order to obtain an activity concentration ratio 99mTc in background:99mTc
in spheres:111In as 1:20:40.

For both the experimental acquisitions, 120 projections were acquired with a matrix
size of 128× 128 pixels (pixel size = 4.4 mm) with 20 s/projection. The same energy
window widths used in simulation study described in Section 3.1.3 were also used for
both the experiments.

Similar to the simulation study, Sim-OSEM based reconstructed images were
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compared in terms of circular profiles, PVRs and uniformity of background to images
obtained using i) conventional reconstruction of SPECT data without any scatter
compensation, ii) data corrected using TEW compensation in the forward projection
step and iii) single isotope data without any crosstalk contribution from other isotope
and reconstructed without scatter compensation. In all these other cases, the image
reconstruction process used a matched projector/backprojector pair that included
both photon attenuation and geometric response compensation incorporated into the
standard OSEM reconstruction algorithm. In presence of warm 99mTc background, the
comparison with the single isotope data without any crosstalk contribution from other
isotope and reconstructed without scatter compensation was not performed, as single
isotope data was not acquired in this case. All the reconstructions were performed
using 2 iterations and 30 subsets in accordance with our current clinical protocol.

3.2 Results

3.2.1 Monte Carlo Validation

A comparison between experimental and simulated FWHM values, measured using the
method described in Section 3.1.2, shows that the experimental and simulated FWHM
values are very close and within ± 1 mm over all source distances. The results were
consistent with our previously reported validation of SIMIND-CFD [29].

Table 3.1 shows the detection efficiency values for 111In and 99mTc energies respec-
tively at a source to collimator distance of 10 cm for experimental, SIMIND-CFD
and GATE data. The values in Table 3.1 were used to calculate an overall efficiency
correction factors of 1.06, 1.12 and 1.00 for SIMIND based projections of 111In (171 kev),
111In (245 keV) and 99mTc (140 kev) when modeling our Infinia camera. SIMIND-CFD
based efficiency values match well with the values obtained from GATE (typically
< 5% in all cases).

The NMSE values obtained for a comparison of SIMIND-CFD to GATE MC
projection data at different depths in water with respect to the collimator surface
are given in Table 3.2. There is a very good agreement between the SIMIND-CFD
and GATE MC based 111In photopeak (0.009-0.040), 99mTc photopeak without (0.015-
0.045) and with 111In downscatter added (0.010-0.069) energy window projections in
terms of NMSE values, especially at lesser water depths (i.e., less photon scatter).
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Table 3.1: Detection efficiency values for medium energy general purpose (MEGP) collimators at
source to collimator distance of 10 cm in air.

Sensitivity (cps/MBq)
Isotope Head 1 Head 2 SIMIND-CFD GATE MC

111In (171 keV) 69.5 68.5 65.1 64.4
111In (245 keV) 45.9 45.5 40.6 42.7
99mTc (140 keV) 75.0 72.8 74.0 76.3

Figure 3.1 shows image profiles on both logarithmic and linear scales obtained from a
representative SIMIND-CFD and GATE MC point source simulation in water (shown
at 10 and 15 cm depths) for i) 111In photopeak, ii) 99mTc photopeak without and iii)
with 111In downscatter added projections respectively as example. It is evident from
these data that SIMIND-CFD provides very similar photon transport modeling to
GATE and should be applicable to use for experimental SPECT implementation.

Table 3.2: Normalized mean square error (NMSE) at different depths in water for SIMIND-CFD
compared to GATE MC.

NMSE Value

Depth 111In Photopeak 99mTc Photopeak 99mTc window
(cm) energy window energy window with downscatter

5 0.016 0.019 0.018
10 0.009 0.015 0.010
15 0.013 0.020 0.014
20 0.020 0.027 0.029
25 0.040 0.045 0.069
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Image profiles obtained at source to collimator distance of 10 and 15 cm with GATE
MC and SIMIND-CFD simulation for (a) 111In photopeak, (b) 99mTc photopeak and (c) 99mTc
photopeak plus 111In downscatter energy window images on logarithmic scale, whereas corresponding
profiles are shown in (d), (e) and (f) on linear scale respectively.

3.2.2 SPECT Simulation Results

A slice through the image reconstructed from the simulation data acquired with no
background activity is shown in Figure 3.2. From Figure 3.2, it can be seen that
the image reconstructed using conventional OSEM algorithm with no crosstalk com-
pensation (Figure 3.2c) shows significant crosstalk compared to scatter compensated
reconstructions (i.e., TEW (Figure 3.2d) and Sim-OSEM based dual isotope recon-
structions (Figure 3.2e)). Furthermore, the proposed Sim-OSEM based dual-isotope
reconstruction yields a more uniform background and improved contrast for 99mTc
compared to TEW scatter compensation. Improved contrast with reduced and more
uniform background is also evident for the 111In image as seen in Figures 3.2.

Figure 3.3(a) and Figure 3.3(b) depict circular profiles through the central region
of the 99mTc and 111In images as shown in Figure 3.2. It is evident that both TEW and
the proposed Sim-OSEM reconstruction methods result in less crosstalk contamination
in the 99mTc image compared to no crosstalk compensation (most noticeable in spheres
S2 and S4 in Figure 3.3(a)). Apparent on the log plot, the Sim-OSEM method further
reduces the background scatter contamination beyond that even the no crosstalk
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Figure 3.2: Infinia Simulation cold background: Top row) Reconstructed images for 99mTc
using different reconstruction algorithms. Bottom row) Reconstructed 111In images from the same
reconstruction methods. (a) is the true simulated object, (b) image reconstructed using separately
acquired data with no crosstalk (c) is the image reconstructed without crosstalk compensation, &
(d) image reconstructed using TEW based correction of data with the help conventional analytical
reconstruction method and (e) image reconstructed using Sim-OSEM. Note that images have been
thresholded to accentuate the background.

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Infinia Simulation cold background: Circular profiles through the central regions
(indicated by blue circles in Figure 3.2) of the reconstructed image slices shown in Figure 3.2. (a)
and (b) shows the respective profiles through the central region of normalized pixel values for 99mTc
and the 111In image in Figure 3.2 with corresponding profiles on log scale are shown in (c) and (d).
(e) and (f) show the peak-to-valley ratios and mean voxel content of background VOI for all the
normalized reconstructed data sets respectively.

present method. This is likely a result of the fact that no scatter compensation was
performed for the no crosstalk contamination, yet the Sim-OSEM method does model
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self-scatter within each photopeak window. All data sets have been normalized with
respect to their respective global maxima for comparison purpose.

Figure 3.4: Infinia Experiment cold background: Top row) Reconstructed images for 99mTc
using different reconstruction algorithms. Bottom row) Reconstructed 111In images from the same
reconstruction methods. (a) image reconstructed using separately acquired data with no crosstalk (b)
is the image reconstructed without crosstalk compensation, & (c) image reconstructed using TEW
based correction of data with the help conventional analytical reconstruction method and (d) image
reconstructed using Sim-OSEM. Images have again been scaled to accentuate background activity.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Infinia Experiment cold background: Circular profiles through the central regions
(indicated by blue circles in Figure 3.4) of the reconstructed image slices shown in Figure 3.4 for
experimental data in cold background. (a) and (b) shows the respective profiles through the central
region of normalized pixel values for 99mTc and the 111In image in Figure 3.4 with corresponding
profiles on log scale are shown in (c) and (d). (e) and (f) show the peak-to-valley ratios and mean
voxel content of background VOI for all the normalized reconstructed data sets respectively.
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The PVR values, calculated using Equation 3.8, indicate a drastic improvement in
case of Sim-OSEM (PVR (3.3 ± 0.3) ×103 to (8.9 ± 0.4) ×103) compared to TEW
(PVR (3.92 ± 0.03) ×101 to (2.3 ± 0.1) ×102), no crosstalk present (PVR (2.590 ±
0.004) ×102 to (1.04 ± 0.06) ×103) and with no crosstalk compensation (PVR (8.3
± 0.5) ×101 to (1.23 ± 0.04) ×102) 99mTc images respectively. The improvement
seen with Sim-OSEM for 99mTc images is also evident for 111In images. Figure 3.3(f)
shows comparison of background scatter mean content of normalized data sets in
spherical VOI described in Section 3.1.3. The reduction in background scatter in
case of Sim-OSEM (Mean (8 ± 3) ×10−6 and (2.7 ± 3.0) ×10−6 for 99mTc and 111In
respectively.) compared to TEW (Mean (2.5 ± 1.0) ×10−3 and (4.7 ± 3.7) ×10−4 for
99mTc and 111In respectively.), no crosstalk present (Mean (8.96 ± 5.36) ×10−4 and
(3.1 ± 1.6) ×10−4 for 99mTc and 111In respectively.) and no crosstalk compensation
(Mean (2.76 ± 0.84) ×10−3 and (4.4 ± 3.0) ×10−4 for 99mTc and 111In respectively.)
based reconstructed data sets respectively is evident from the Figure 3.3(f). It also
appears that the Sim-OSEM reconstruction produces a more uniform background
appearance compared to TEW scatter compensation.

Figure 3.6: Infinia Experiment warm 99mTc background: Top row) Reconstructed images for
99mTc using different reconstruction algorithms. Bottom row) Reconstructed 111In images from the
same reconstruction methods. (a) is the image reconstructed without crosstalk compensation, (b)
image reconstructed using TEW based crosstalk correction with the help of conventional analytical
reconstruction method and (c) image reconstructed using Sim-OSEM.
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3.2.3 Experimental Results

The images reconstructed from experimental phantom data acquired (hot spheres
in cold background) using the GE Infinia dual head SPECT/CT camera are shown
in Figure 3.4. Similar to simulation studies, improved contrast and more uniform
background is observed in the 99mTc image for the Sim-OSEM based reconstruction
(Figure 3.4d). Similar results can also be seen in case of 111In. The results of the
proposed method of reconstruction appear to be superior in terms of better contrast
and more uniform background compared to reconstruction of separately acquired data
for each isotope, again, likely due to the lack of scatter compensation for the alternative
reconstruction processes.

For the case of warm 99mTc background, similar results can be seen in Figure 3.6. It
can be seen in the bottom Figure 3.6(c) that the 111In image has improved contrast and
more uniform background for the case of Sim-OSEM reconstruction compared to TEW.
In the case of warm 99mTc background, not only more uniform activity deposition
in background and spheres as well as better contrast is evident in 99mTc image for
Sim-OSEM compared to TEW, as can be seen from top Figure 3.6. Figures 3.5 and 3.7
depict circular profiles through the central region of the 99mTc and 111In images shown
in Figures 3.4 and 3.6 respectively on both linear and logarithmic scales. All the
data sets for experimental studies, like simulation study, have been normalized with
respect to their global maxima in order to compare the reconstruction results. These
profiles show reduced background for Sim-OSEM compared to other methods similar
to simulation results.

The PVR values were also calculated for experimental data using Equation 3.8.
The PVR values for data reconstructed from acquisition in cold background are shown
in Figure 3.5(e) and indicate superiority of Sim-OSEM (PVR (2.64 ± 0.13) ×103 to
(1.1 ± 0.9) ×104) in terms of contrast to TEW (PVR (2.03 ± 0.24) ×102 to (1.45
± 0.13) ×103, no crosstalk present (PVR (3.11 ± 0.36) ×102 to (3.6 ± 1.3) ×103)
and with no crosstalk compensation (PVR (3.34 ± 0.34) ×102 to (4.59 ± 0.31) ×102)
reconstructed 99mTc images respectively. The improvement in case of Sim-OSEM
similar to 99mTc images is also evident for 111In except the larger diameter sphere S6,
which shows slightly better contrast in case of TEW compared to Sim-OSEM. The
reduction in background scatter in terms of mean content of normalized data sets using
VOI described in Section 3.2.2 was compared and shown in Figure 3.5(f). Sim-OSEM
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Infinia Experiment warm 99mTc background: Circular profiles through the central
regions (indicated by blue circles in Figure 3.6) of the reconstructed image slices shown in Figure 3.6
for experimental data in warm 99mTc background. (a) and (b) shows the respective profiles through
the central region of normalized pixel values for 99mTc and the 111In image in Figure 3.6 with
corresponding profiles on log scale are shown in (c) and (d). (e) shows the peak-to-valley ratios in
case normalized reconstructed data sets. Top (f) depicts the standard deviation in voxel contents
in background VOI in case of normalized 99mTc data sets, whereas mean voxel content in case of
normalized 111In data sets is shown in bottom (f).

(mean (1.4 ± 1.8) ×10−5 and (3.8 ± 3.0) ×10−5 for 99mTc and 111In respectively.)
seems superior to TEW (mean (5.36 ± 2.94) ×10−4 and (1.5 ± 0.9) ×10−4 for 99mTc
and 111In respectively.), no crosstalk present and (1.5 ± 0.9) ×10−4 for 111In) and no
crosstalk compensation (mean (6.6 ± 3.5) ×10−4 and (1.5 ± 0.9) ×10−4 for 99mTc
and 111In respectively.) data respectively as evident from the Figure 3.5(f). Even no
crosstalk present data show slightly higher background (0.7 ± 1) ×10−4) compared to
Sim-OSEM in case of 99mTc.

In the case of warm 99mTc background the Sim-OSEM (8.7 ± 0.3 to 39.4 ± 2.6)
shows better contrast compared to TEW (5.9 ± 0.2 to 24 ± 2) and no crosstalk
compensation (6.8 ± 0.2 to 20.1 ± 1.2) in case of respective 99mTc images can be
seen in Figure 3.7(e). In case of 111In the contrast similar to the the cold background
acquisition is evident from Figure 3.7(e). The standard deviation of voxel content
in normalized 99mTc reconstructed data is shown in top Figure 3.7(f). More uniform
background in case of Sim-OSEM compared to other reconstructed data sets is evident
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from Figure 3.7(f) for 99mTc images. The reduced background scatter in case of 111In
is also evident from Figure 3.7(f).

3.2.4 Activity Estimation

While not the purpose of this work, we have nevertheless determined accuracy values
for activity quantitation for the simulations and experiments performed. Table 3.3
shows the total determined activity over the entire FOV for both simulation exercises
and experimental data. In general, errors are within 0.1 − 7.6% of the true total
activity, with an apparent bias towards underestimation. However, in the experiment
with warm 99mTc background, the Sim-OSEM methods tends to overestimate the
amount of 99mTc present. The exact reason for this overestimation is presently under
investigation.

Table 3.3: Comparison of actual injected and estimated activities using Sim-OSEM within recon-
structed images.

Activity (MBq)
Acquisition Isotope Deposited Estimated Error (%)

MC Simulation 99mTc 7.75 7.73 -0.3
111In 7.56 7.57 0.1

99mTc/111In 99mTc 5.40a 5.13b -5.0
in cold 111In 6.70 6.19b -7.6
background

99mTc/111In 99mTc 118.0a 131.1b 11.1
in 99mTc 111In 6.70 6.57b -2.0
background

a activity values after decay correction.
b activity values after sensitivity correction.

Reconstructed activity concentration values for the simulation study for each sphere
along with percent (%) error are shown in Table 3.4. As expected, larger errors in the
reconstructed activity concentration are present for smaller volumes due to the lack of
partial volume correction. It should be noted that VOI selection was based on the
actual volume of the spherical sources and does not take into account blurring effects in
the reconstruction, thus it would be likely to underestimate activity values [107, 130].
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These results indicate that, even for the case of a mis-matched projector/backprojector
pair, quantitative accuracy is maintained by the Sim-OSEM method. Quantitative
results were not evaluated for experimental data due to the lack of a calibration source
for use with other reconstruction methods.
Table 3.4: Comparison of actual and VOI based estimation of mean activity concentration values
for the images reconstructed using Sim-OSEM from simulated projection data.

Activity Concentration (kBq/cc)
Isotope VOI Volume Actual Reconstructed % Error

Mean
S1 2.94 ml 151.1 56.2 -62.8

99mTc S3 10.19 ml 151.1 118.4 -21.6
S5 38.17 ml 151.1 148.2 -1.9

S2 1.55 ml 301.9 129.4 -57.1
111In S4 5.53 ml 301.9 222.1 -26.4

S6 17.96 ml 301.9 302.4 0.2

3.3 Discussion

We have developed a reconstruction method for simultaneous dual-isotope SPECT using
an accelerated Monte Carlo projector. It differs from the joint iterative reconstruction
method proposed by Ouyang et al [93] in that scatter and crosstalk estimates are
obtained at each iteration in the reconstruction process, and so is continually refined
throughout the reconstruction procedure. It should also be noted that compared
with crosstalk correction using artificial neural networks and independent component
analysis, Sim-OSEM only requires the PEW data for reconstruction rather than data
acquired using multiple energy windows. Sim-OSEM took approximately 3-5 hours for
reconstruction of 120 projections of size of 128×128, using 30 subsets and 2 iterations on
a single CPU 2.66 GHz Intel Core i5 processor. It is expected that significant increases
in speed are possible by applying further variance reduction techniques called multi-
projection sampling (MPS) [29] or with relatively simple parallel processing techniques.
It should also be noted that, for the simulation studies, a SIMIND-CFD based forward
projector was used for both the data acquisition and subsequent reconstruction using
Sim-OSEM. Even though good agreement between SIMIND-CFD and experimentally
acquired data has been reported previously [29], further tests are planned in order to
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validate the scatter model in SIMIND-CFD and to perform simulation studies using
different MC based forward projectors such as GATE.

Differences seen between experimental and SIMIND-CFD sensitivity values seen
in Table 3.1 was compensated by applying an sensitivity correction factor of 1.1 for
111In to Monte Carlo projections. We expect this to be caused by septal penetration
increasing the counts in experimental data. As noted, this effect has not been modeled
in the present Sim-OSEM implementation, although we have developed a technique to
model this effect [82]. A slight increase in the NMSE values with increasing depth of
point source in water is evident from Table 3.2. This may be caused by lower counts,
and hence higher noise level, at larger source depth in case of GATE based projection
data due to fixed acquisition time. Also, slightly larger values of NMSE at a source
depth of 5 cm in Table 3.2 may indicate a more significant contribution from collimator
scatter in the overall scatter contribution detected within the PEW at this depth.

As can be seen in Figure 3.3, there appears to be a slight improvement in spatial
resolution in Sim-OSEM compared to other techniques, presumably due to better
correction of small angle photon scattering. These small angle scatters are detected
under the PEW due to the relatively poor energy resolution of NaI(Tl) (9.8% in our
case) and may result in slight spatial resolution degradation if not compensated properly.
As Sim-OSEM uses a more realistic MC based scatter correction, these photons are
modeled and so may be removed from the reconstructed image, thus resulting in slightly
improved spatial resolution in the final reconstructed image. However, a quantitative
assessment on the improvement in resolution due to improved small angle scatter and
crosstalk correction is required to justify the claim.

3.4 Conclusion

In this work, we have introduced a Monte Carlo-based reconstruction method, Sim-
OSEM, which has shown some promising results in separating the images in simultane-
ously acquired dual-isotope, namely 99mTc and 111In, SPECT by correcting the crosstalk
between the isotopes. While both triple energy window (TEW) and Sim-OSEM provide
higher contrast and reduction of crosstalk artifacts compared to no scatter compen-
sation, the proposed Sim-OSEM technique yields slightly better crosstalk correction
compared to the TEW method. Sim-OSEM also performs reasonably accurate activity
estimation, although a rigorous analysis of quantitation with multiple noise realizations
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was not performed here. Further studies in order to quantitate the scatter correction
and possible improvement in SNR and spatial resolution are required and are presently
being performed. While it appears the Sim-OSEM method may improve image contrast
and reduce crosstalk contamination, a more rigorous ROC study is planned to evaluate
the exact impact of the Sim-OSEM method on lesion detection.
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Chapter 4

Accelerated Monte Carlo based
Simultaneous 99mTc/123I SPECT
Reconstruction for Molecular
Breast Imaging

Published in Proceedings of IEEE Imaging Conference© 2012, Pages:3337-3343, 2012

Note: content is modified for consistency

ESTROGEN receptor (ER) status is an important parameter in prediction of
patient prognosis and in decisions about hormonal treatment in patients with

metastatic breast cancer. Clinical studies involving in vivo estrogen receptor SPECT
have shown that 123I labelled cis-11β-methyoxy-17α-iodovinyl estradiol (Z-MIVE) is a
sensitive noninvasive tool for detection of ER in patients with breast cancer ([131–133]).
99mTc-sestamibi is commonly used for scintimammography with high sensitivities for
benign and malignant lesions. In dual isotope SPECT studies using 123I labelled Z-
MIVE and 99mTc-sestamibi, 123I labelled Z-MIVE not only detects the presence of ER
but also thought to complement 99mTc-sestamibi in differentiating between benign and
malignant breast lesions in patients with breast cancer. Scanning the two radionulides,
99mTc and 123I, separately not only increases the patient discomfort but also results
in the misregistration of images, caused by patient motion. Therefore in order to
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improve system throughput, reduce patient discomfort and to avoid misregistration,
simultaneous acquisition of both the radionuclides is the option. The major concern in
simultaneous dual isotope SPECT is the significant crosstalk contamination between
the two isotopes used. In order to understand the severity of cross-contamination issue
in simultaneous dual isotope SPECT, 3.2× 107 photons were simulated for a source
(radius = 0.88 cm) containing 99mTc and 123I in equal amounts, placed at the center of
a non-radioactive water filled cylinder (radius = 14 cm, height= 28 cm). The spectrum
obtained for energy resolutions of 9.8% ( Thallium activated Sodium Iodide NaI(Tl)
detector) and 5% (Cadmium Zinc Telluride (CZT) detector) at 140 keV respectively
as shown in Figure 1. At 9.8% and 5% energy resolution about 20% and 14% of
the counts collected within the 99mTc photopeak were actually down-scattered from
123I respectively. However spillover was negligible that is about 0.04% at 5% energy
resolution compare to about 6% at energy resolution of 9.8%. It should be noted
that in order to avoid overlap of acquisition windows calculations were performed for
asymmetric primary energy windows that is 126-150 keV and 151-175 keV for 99mTc
and 123I respectively.

(a) (b)

Figure 4.1: Energy spectrum for 99mTc and 123I. Spill over of 99mTc into 123I window and contami-
nation of 123I into 99mTc at energy resolutions of (a) 9.8% (NaI(Tl)) and (b) 5% (CZT).

Many researchers have previously developed different pre-reconstruction crosstalk
compensation methods, which involved subtraction of crosstalk estimate or restoration
by deconvolution of crosstalk blurring function (e.g., [115–117]). Some proposed model
based crosstalk compensation methods in dual isotope SPECT applied during recon-
struction (e.g., [120–122]). More recent approaches used for crosstalk compensation in
simultaneous mutli-isotope SPECT, involved the use of artificial neural networks (e.g.,
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[124, 125]) and independent component analysis [126]. These techniques are very good
at compensating for the crosstalk. However the major limitation in these methods is
the large number of energy windows required, whereas commercially available systems
provide only 3-8 energy windows.

The current study focuses on a method of crosstalk compensation between two
isotopes in dual isotope SPECT imaging, developed by us, applied to simultaneous
breast SPECT using 99mTc and 123I. Monte Carlo (MC) based scatter compensation
is thought to offer the most realistic crosstalk and scatter compensation modelling.
However, in typical implementations, the inherent long calculation times (often several
hours or days) associated with this technique makes it unsuitable for clinical applications.
This is mainly due to low detection efficiency MC base SPECT simulation programs [27].
While the advent of ever increasingly fast computers has reduced the computation
times, we have taken an alternative approach to improve simulation times. Our group
has previously incorporated convolution based forced detection (CFD) into SIMIND
Monte Carlo program which have made MC feasible to use in clinical time frames [29].
We have developed an iterative Monte Carlo-based image reconstruction technique
that simulates the photon downscatter from one isotope into the acquisition window
of a second isotope. By accurately modeling the photon transport through the object
of interest using MC, we can accurately estimate the amount of scatter contamination
contained in a given projection view. Once known, we then use this information in an
iterative algorithm to compensate for the photon contamination. We use a modified
ordered subset-expectation maximization (OS-EM) [128], we named it as simultaneous
ordered subset-expectation maximization (Sim-OSEM) to perform this step.

4.1 Materials and Methods

MC based scatter compensation is thought to offer the most realistic crosstalk com-
pensation was used in this study for crosstalk between the two isotope involved that
is 99mTc and 123I. However, in typical implementations, the inherent long calculation
times (often several hours or days) associated with this technique makes it unsuitable
for clinical applications. Our group has previously developed a number of different
variance reduction techniques (VRT) that have made Monte Carlo-based crosstalk
compensation feasible to use in clinical time frames. Accelerated SPECT Monte Carlo
simulation using convolution based forced detection (CFD), is being used to accelerate
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the Monte Carlo photon transport modelling [29].

4.1.1 Data acquisition

In simulation SPECT studies the projection data acquired using MC for both the
isotopes (x and y) simultaneously and can be represented by the linear Equations 4.1
and 4.2.

Hxxfx +Hyxfy = px (4.1)

and
Hxyfx +Hyyfy = py (4.2)

where Hxx and Hyy are the photopeak photon geometric system matrices for each
respective isotope, Hyx and Hxy are the scatter photon system matrices for the isotope
y (or x) into the acquisition window for isotope x (or y).

In order to simulate dual-isotope imaging for breast cancer, a mathematical breast
phantom was developed. Three different breast sizes, small, medium and large, were
modelled. The breast soft tissue was modelled as half ellipsoid with semi spherical
nipple [134] as shown in Figure 4.2. Table 4.1 shows the length of semi axis and tilt

Figure 4.2: Breast shape modelling as tilted half ellipsoidal breast and semi spherical nipple

introduced in the breast phantom [135]. In this case the coordinates (x, y, z) rotated
at an angle θ were calculated from the standard Cartesian coordinates (xo, yo, zo)
using Equation set 4.3
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Table 4.1: Parameters used in pixelated breast modelling of different sizes

Semi-axis length (cm)

Breast Size a b c Tilt (θ)

Small 4.0 4.0 4.0 10o
Medium 6.5 5.5 5.5 7.5o
Large 8.0 7.0 7.0 5o

Table 4.2: Radii of spherical lesions used for different breast size phantoms

Lesion
Breast Size Radius (mm) Number

Small
2.4 5
4.0 4
5.6 4

Medium
3.3 5
5.5 4
7.7 4

Large

4.2 4
7.0 4
9.8 3
12.6 2

x = x2
o

y = (yo cos θ − (zo − zc) sin θ)2

z = (−yo sin θ + (zo − zc) cos θ)2
(4.3)

In this case the center was taken at (0, 0, zc) where zc was taken in the middle of
the imaging grid. With (x, y, z) values calculated using Equation set 4.3 half ellipsoid
satisfy conditions given in inequality 4.4.

x2

a2 + y2

b2 + z2

c2 ≤ 1 and zo ≥ zc (4.4)

For each breast size 13 spherical lesions of different sizes were randomly generated
(described in Table 4.2). From the generated lesions 10 combinations for each breast
size with 3 lesions per combination were selected randomly. For each of the randomly
selected set of three lesions uniform activity of 99mTc, 123I and both 99mTc & 123I was
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deposited respectively.
In this work low noise Monte Carlo-based projection data were acquired using

SIMIND and modelling a low energy high resolution (LEHR) collimator with both
NaI(Tl) and CZT detectors. 120 projections at matrix size of 128× 128 were acquired
for a total of 5× 106 counts per study. In order to avoid overlap of primary energy
windows, asymmetric primary energy windows (126-150 keV for 99mTc and 151-174.9
keV for 123I) were used. 150 MBq activity uniformly distributed in total to give
specific activity ratio between 99mTc background in breast soft tissue, 99mTc in lesions
and 123I as 1:5:10 respectively.

4.1.2 Reconstruction and activity estimation

We have developed an iterative MC based image reconstruction technique Sim-OSEM
that simulates the photon down-scatter and spillover in case of overlapping full energy
peaks, from one isotope into the acquisition window of a second isotope. We use a
modified ordered subset-expectation maximization, Sim-OSEM to perform this step
as given in Equations 4.5 and 4.6.

fnewx = f oldx∑
aεs

HT
a,x

∑
aεs

HT
a,x

p̄a,x
pa,xR

new
x tacq

(4.5)

fnewy =
f oldy∑

aεs

HT
a,y

∑
aεs

HT
a,y

p̄a,y
pa,yR

new
y tacq

(4.6)

where p̄x and p̄x are the measured projection data for isotope X =99mTc and y =123I
respectively with p̄a,x and p̄a,y as corresponding measured projections respectively. Cor-
respondingly, pa,x and pa,y denote the estimated projections acquired using respective
Monte Carlo based forward projectors. Notice that in the forward projection step
(denominator), there is an additional factor, Rnew

i tacq with subscript i equal to either
x or y. Because of the forced detection variance reduction technique used in CFD-MC,
each detected count is scaled by the probability of detection in order to provide units
of cps/MBq. Hence the list-mode projection data must be scaled to account for the
actual acquisition times, tacq and the absolute quantitative activity Rnew

i . This scaling
factor, Rnew

i is determined through an iterative process based on the total number of
counts acquired in the measured projection data, p̄i, and the MC simulated projection
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as shown in Equations 4.7 and 4.8.

Rnew
x = Rold

x

∑
aεs

p̄a,x∑
aεs

(H ′a,xxf oldx +H
′

a,yxf
old
y )× tacq

(4.7)

Rnew
y = Rold

y

∑
aεs

p̄a,y∑
aεs

(H ′a,xyf oldTc +H
′

a,yyf
old
In )× tacq

(4.8)

Where tacq is acquisition time per projection in seconds. Figure 4.3 shows the flow
chart diagram of Sim-OSEM based simultaneous dual isotope reconstruction.

Figure 4.3: Flow chart diagram of Sim-OSEM based dual isotope image reconstruction.

Sim-OSEM based reconstructed images were compared to the images obtained
using analytical attenuation based reconstruction of data uncorrected for crosstalk,
and single isotope data without any crosstalk contribution from other isotope. An-
alytic attenuation based reconstruction uses analytical projector/backprojector pair
incorporated into standard OSEM reconstruction algorithm that include attenuation
and geometric collimator response modeling.
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Figure 4.4: NaI(Tl) detector: At top, in the middle and at bottom are the slices through lesions
with 99mTc only and with both 99mTc/123I and 123I only respectively (99mTc and 123I shown on
separate rows). (a) is the true image, (b) is the image reconstructed using conventional analytical
reconstruction method without crosstalk compensation (c) image reconstructed using separately
acquired data with no crosstalk using conventional reconstruction (d) image reconstructed using
Sim-OSEM.
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(a) Lesion to background ratios for lesions with 99mTc
only

(b) Lesion to background ratios for lesions with 123I only

(c) 99mTc lesion to background ratios for lesions with
99mTc/123I

(d) 123I lesion to background ratios for lesions with
99mTc/123I

Figure 4.5: NaI(Tl) detector: A comparison of lesion to background ratios estimated for different
reconstruction methods with the true values of lesion to background ratios in the case of small breast
size.

(a) Total 99mTc activity in small breast. (b) Total 123I activity in small breast.

Figure 4.6: NaI(Tl) detector: A comparison of total 99mTc and 123I activity estimated using
Sim-OSEM with actually administered activity for all the lesion combinations for small breast size.
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4.2 Results

It has been mentioned previously that 123I labelled Z-MIVE is thought to complement
99mTc-sestamibi in breast SPECT in order to distinguish between benign and potentially
malignant lesions non-invasively [131]. In order to evaluate SPECT reconstruction of
simultaneously acquired 99mTc/123I projection data three different breast size phantoms
with spherical lesions were designed. Details of the designed phantoms can be seen
in Section 4.1.1. For each of the breast sizes (i.e. small, medium and large) three
lesions were simulated with 99mTc only, both 99mTc/123I and 123I only respectively.
Ten different combination of lesions with three lesions per combination were selected
randomly for simulation of each of the breast sizes.

4.2.1 Energy Resolution 9.8% (NaI(Tl) detector)

For all the SPECT simulation studies performed in this work Sim-OSEM based recon-
structed images were compared with the images obtained using analytical attenuation
based reconstruction of data uncorrected for crosstalk, single isotope data without any
crosstalk contribution from other isotope. In case of Sim-OSEM as well as analytical
reconstruction algorithm, dual isotope reconstruction was performed using 30 subsets
and 2 iterations. Figure 4.4 shows a representative example of medium breast size.
The results shown in Figure 4.4 are slices through the different lesions in the images
obtained from i) analytical attenuation based reconstruction of data uncorrected for
crosstalk, ii) single isotope data without any crosstalk contribution from other isotope
and iii) reconstruction using Sim-OSEM.

In order to compare different reconstruction methods used for breast data recon-
struction, lesion to background ratios were calculated for all the lesion combinations
for each of the breast sizes. Figure 4.5 shows graphical representation of lesion to
background ratios for lesions with 99mTc only, 123I only and both 99mTc/123I respectively
in the case of small breast size.

As described in Section 4.1.2 that estimation of deposited activity is also possi-
ble with our proposed Sim-OSEM based reconstruction method. Figure 4.6 shows
comparison between actual administered activities to the activity values estimated
using Sim-OSEM for all the lesion combinations simulated for small breast size. The
percentage error in total activity values observed in case of NaI(Tl) detector was 0.02
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Figure 4.7: CZT Detector: At top, in the middle and at bottom are the slices through lesions
with 99mTc only and with both 99mTc/123I and 123I only respectively (99mTc and 123I shown on
separate rows). (a) is the true image, (b) is the image reconstructed using conventional analytical
reconstruction method without crosstalk compensation (c) image reconstructed using separately
acquired data with no crosstalk using conventional reconstruction (d) image reconstructed using
Sim-OSEM.

to 0.36% and 0.18 to 16.39% for 99mTc and 123I respectively.
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4.2.2 Energy Resolution 5% (CZT detector)

From the generated lesions 10 combinations for each of breast size with 3 lesions per
combination were selected randomly for acquisition and reconstruction for each of the
breast sizes in case of CZT detector. Similar reconstruction algorithms as described in
case of NaI(Tl) detector in Section 4.2.1 were used in case of CZT.

A representative example of medium breast size in case of CZT detector is shown
in Figure 4.7. The results shown in Figure 4.7 are slices through the different lesions
in the images obtained from i) analytical attenuation based reconstruction of data
uncorrected for crosstalk, ii) single isotope data without any crosstalk contribution
from other isotope and iii) reconstruction using Sim-OSEM.

(a) Lesion to background ratios for lesions with 99mTc
only (b) Lesion to background ratios for lesions with 123I only

(c) 99mTc lesion to background ratios for lesions with
99mTc/123I

(d) 123I lesion to background ratios for lesions with
99mTc/123I

Figure 4.8: CZT Detector: A comparison of lesion to background ratios estimated for different
reconstruction methods with the true values of lesion to background ratios in the case of small breast
size.
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(a) Total 99mTc activity in small breast. (b) Total 123I activity in small breast.

Figure 4.9: CZT Detector: A comparison of total 99mTc and 123I activity estimated using Sim-
OSEM with actually administered activity for all the lesion combinations for small breast size.

Figure 4.8 shows comparison of different reconstruction methods in terms of lesion
to background ratios, calculated for all the lesion combinations for each of the breast
sizes in case of CZT.

A comparison between administered and estimated total activities using Sim-OSEM
in case of CZT is shown in Figure 4.9. The percentage error in activity values observed
in this case was 0.03-0.26% and 0.41-14.23% for 99mTc and 123I respectively.

4.3 Discussion

We have developed a reconstruction method, which realistically corrects for crosstalk
as well as scatter in simultaneous multi-isotope SPECT different from fast Monte
Carlo based joint iterative reconstruction method used by Ouyang et al [93]. In
the method proposed by Ouyang et al scatter and crosstalk corrections applied on
the images reconstructed using standard OS-EM for number of iteration without
scatter correction at first, then on images reconstructed with scatter correction and
finally on images reconstructed jointly using joint OS-EM (JOSEM). It should also
be noted that compare to crosstalk correction using artificial neural networks and
independent component analysis, Sim-OSEM requires only primary energy window
data for reconstruction rather than data acquired using multiple energy windows.

It can be seen from Figure 4.4 that Sim-OSEM based reconstruction gives im-
ages comparable to crosstalk-free single isotope reconstructed images. In most of
the cases Sim-OSEM based reconstruction gives even better images when compared

87



PhD Thesis — Muhammad I. Karamat McMaster University — RADGRAD

with crosstalk-free single isotope images reconstructed using analytical attenuation
correction based reconstruction method. This may be due to the fact that the MC
based forward projector corrects for the photons scattered at small angles and detected
under the photo peak.

From Figure 4.5 and Figure 4.8 it can be seen that the Sim-OSEM gives much
better and much more realistic lesion to background ratios when compared with those
for images reconstructed using attenuation based analytical reconstruction. It should
also be noted from the Figure 4.5(c) and Figure 4.8(c) that in case of lesion with both
99mTc/123I show higher lesion to background ratios for 99mTc when images reconstructed
without crosstalk correction. This may be due to downscatter from 123I. This is also
evident from Figure 4.8(c) where 99mTc lesion to background ratios are comparatively
lower than those shown in Figure 4.5(c) for NaI(Tl) detector when images reconstructed
without crosstalk correction. It can also be seen from the Figure 4.6 and Figure 4.9
that the Sim-OSEM gives quite accurate estimates of total activities. However, due
to the involvement of smaller activities relatively larger percentage error in activity
values for 123I was observed in case of both NaI(Tl) and CZT. It can also be seen
from Figure 4.7, which shows an example of medium breast size that the effect of
downscatter is reduced by the use of better energy resolution detector like CZT but
still needs to be corrected using Sim-OSEM in order to get crosstalk-free images.

4.4 Conclusion

In this work, we have introduced a MC based reconstruction method, Sim-OSEM.
The simulation studies performed in this work have shown that Sim-OSEM not only
corrects the crosstalk between the isotopes in simultaneous 99mTc and 123I SPECT but
performs activity estimation as well. It has also been shown that using the higher
resolution detector like CZT reduces the crosstalk between the isotopes significantly
in case of simultaneous 99mTc/123I SPECT but downscatter from 123I still needs to be
corrected using Sim-OSEM.
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Chapter 5

Quantitative Maximum
A-Posteriori SPECT
Reconstruction using Accelerated
Convolution-based Forced
Detection Monte Carlo and
CT-based Anatomical Prior

Submitted for publication in IEEE Transactions on Nuclear Science©, 2016

S INGLE photon emission computed tomography (SPECT) imaging has always
been regarded as a highly sensitive modality with a limited quantification accuracy

and relatively poor image quality. The image quality and quantification accuracy is
affected by physical factors like a) a loss of photons due to photoelectric absorption
and scatter within the patient’s body (i.e. attenuation), b) contamination of the
detected photons due to the scattered photons, either emitted from the patient’s
body or scattered within the collimator, that remain available for detection, and c)
spatial resolution or partial volume effects (caused either by the detection system and
collimator or limited voxel size in the image domain). Therefore, correction of these
factors is necessary for obtaining better image quality and improved quantification [37,
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38].
Considerable effort has been made to develop methods that perform attenuation

compensation either a) in the image domain or b) during the analytical or iterative
reconstruction process. The Chang algorithm [51], once the most commonly used
attenuation correction method clinically [37, 38], is used to perform post filtered
backprojection reconstruction attenuation correction. In this method an attenuation
correction factor (ACF) averaged over number of projections is used to perform
attenuation compensation on the image reconstructed using FBP. An analytic solution
of the attenuated Radon transform in case of non uniform attenuation has also been
proposed. A description of these FBP based attenuation correction methods is beyond
the scope of this article and related references can be found in [37].

Accurate determination of the attenuation map is critical in performing the at-
tenuation correction. With the availability of hybrid SPECT/CT systems, CT-based
attenuation map determination is now becoming a standard clinical protocol [38].
However, comparatively much shorter CT data acquisition times, the presence of metal
implants and/or CT contrast agents may affect the accuracy of these attenuation
maps [37, 38].

Among many advantages of iterative reconstruction methods is the flexibility to
involve attenuation modeling and other image degradation effects into the transition
system matrix [37, 52].

Due to the limited energy resolution of the most commonly used NaI(Tl) detector
(≈10%) in gamma camera, significant image degradation is caused by the scattered
photons detected in the photopeak energy window (PEW) [37]. The methods to
correct for scatter detected under PEW can be categorized as a) Energy spectrum
based methods, b) Scatter distribution based scatter estimation and correction and c)
Reconstruction based scatter correction methods [37, 38, 58]. Scatter compensation
in the projection or the image domain can be performed either by subtraction of a
scatter estimate or restoration through deconvolution of an approximate spatial scatter
distribution function.

The energy-distribution based methods involve scatter estimation in a pixel and
subsequent subtraction from photopeak data that generally requires acquisition of
additional energy windows (e.g. [59–62]). The triple energy window (TEW) based
scatter compensation method is an example of these methods [60, 61]. The TEW
based compensation method uses two narrow energy windows adjacent to each of the
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PEW’s in order to determine scatter contribution within the PEW. In order to obtain
the scatter contribution Sj in a given PEW for the jth pixel Equation 5.1 can be used.

Sj =
(
Cl,j
Wl

+ Cu,j
Wu

)
Wl +Wu

2 (5.1)

where, Wl and Wu are the window widths of scatter windows below and above the
PEW respectively, and Cl,j and Cu,j are the total number of counts collected in the
jth pixel of corresponding scatter windows respectively. The energy window based
scatter correction methods have the advantage of being simple, speedy and easy
to implement [37, 58]. An undesired noise amplification and approximative scatter
estimation are the disadvantages that may be associated with these methods [37, 58].

More recent spectral distribution based scatter correction methods involve spectral
fitting (e.g. [63]), factor analysis (e.g. [64, 65]) and the use of artificial neural networks
(e.g. [64, 66, 67]). These methods offer to provide accurate scatter compensation
but, require either a list mode or multiple-energy window (often ≥10) based data
acquisition [37, 58, 68]. Neither access to the list mode data nor required number of
multiple-energy window acquisition facilities are currently available on most of the
commercially available SPECT imaging systems [37, 58].

Modeling of the scattered photons within the PEW by some scatter function based
either on a line source measurements (e.g. [69, 70]) or an individualized patient based
transmission point spread function (PSF) through the attenuation map (e.g. [71, 72])
form the basis of convolution-subtraction methods.

The methods that involve inclusion of a scatter model into the system matrix can be
categorized as reconstruction based scatter correction methods (RBSC) (e. g. [79, 80]).
These methods make use of all the detected photons and therefore result in a lesser
noise compared to convolution subtraction and energy window based methods [37].
Effective scatter source estimation (ESSE) method that has been refined for Compton
scatter correction is an example of RBSC methods [74, 77, 78]. The Monte Carlo (MC)
methods are expected to provide accurate estimates of the scatter compared to other
more approximative methods. Individualized patient-based scatter estimation, using
MC, has always been considered computationally too demanding to be practical with
iterative RBSC methods [58]. The problem with these notoriously slow MC methods
is their inherent low detection efficiency in SPECT simulation studies [27]. In order to
address this issue, a variance reduction technique (VRT), known as convolution forced
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detection (CFD) [81], has previously been incorporated into SIMIND Monte Carlo
Program (CFD-SIMIND) by our group with [29] and without [82] detailed collimator
scatter and septal penetration modeling. CFD implementation generates low-noise
projections often within a minute of acquisition time [29, 81]. In this VRT, a weighted
copy of each photon at each interaction site is forced in a direction that is perpendicular
to the gamma camera head while convolving it with a distance-dependent collimator
response kernel modeled as Gaussian [29, 81]. We have shown very good agreement
between our simulation methods and experimental data for simple phantoms [29, 82].
A systematic study to evaluate the accuracy of our approach compared to GEANT-4
based MC code GATE has also been performed [136]. The study has shown that the
GATE and CFD-SIMIND match well (with sensitivity difference of 3−5% and spatial
resolution within 0.2 mm for point source depth of 0−250 mm) for the isotopes with
low and medium energy gamma emissions.

This CFD-based accelerated MC forward projector has successfully incorporated
previously into an iterative reconstruction framework to correct for scatter and crosstalk
between the isotopes in simultaneous dual-isotope SPECT [83–86]. With the inclusion
of attenuation-map information, CFD-SIMIND based forward projector performs
accurate compensation of the attenuation and scatter during reconstruction [85, 86].

Figure 5.1 depicts the effect of geometric response of the collimator on a 40 cm
wide rectangular activity profile that is spread over several pixels/sampling bins. This
effect causes spill-in and spill-out effect among the neighboring voxels. Depending on
the size of the object, relative activity concentration and sampled voxel size in the
image either spill-out or spill-in effect becomes dominant. It is important to note in
this depiction that both the profiles have same area under the curve. The correction or
compensation of collimator response effects can broadly be divided into three possible
categories as, a) image enhancement (during or post reconstruction) with resolution
modeling and/or anatomical priors, b) image domain-based e.g. [48] and c) projection
domain-based methods (e.g. [49, 50]).

The image enhancement based methods rely on the resolution recovery using
emission data and/or anatomical information. One such method that performs image
enhancement during the image reconstruction using higher resolution MRI data has
been developed by [44]. This algorithm promotes smoothing among nearby voxels
that have similar MR image intensity. This method has recently been used in cardiac
SPECT using a CT-based anatomical prior within the Green’s one-step-late algorithm
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Figure 5.1: A depiction of geometric collimator response on a 40 cm wide rectangular activity profile
(black) is shown in form of a curve (gray) caused mainly by spill-in and spill-out effect. Both the
profiles have same area under the curve.

to suppress noise in the reconstructed image [45]. One major advantage of using this
method is that it does not require segmentation of the anatomical image (i.e. CT or
MRI). A more detailed description of these spatial resolution enhancement methods
in emission tomography and related references can be found in [43].

The maximum a-posteriori (MAP) algorithm with a CT based anatomical prior,
in one-step late framework, has previously been proposed to compensate for noise
in cardiac SPECT [45]. This reconstruction algorithm with an analytical forward
projector has been reported to produce visually striking results but, with limited
quantitative accuracy. The current study focuses on the development of a quantitative
MAP SPECT reconstruction algorithm that uses a CT based anatomical prior and
CFD-SIMIND as a forward projector for image reconstruction. With the inclusion
of CFD-SIMIND and the CT-based anatomical prior, this algorithm is expected
to provide quantitatively accurate (due to CFD-SIMIND) SPECT images with an
improved spatial resolution (because of CT-based anatomical prior).
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5.1 Material and Methods

5.1.1 Reconstruction Algorithm

In this study, we propose to use an anatomical prior based maximum a-posteriori
(AMAP) algorithm with accelerated convolution-based forced detection Monte Carlo
as a forward projector (CFD-AMAP). This ordered subset expectation maximization
(OSEM) algorithm uses the Green’s one-step-late approach to find a new estimate fn+1

j

using the current estimate fnj of activity distribution in a voxel j using Equation 5.2.

fn+1
j =

fnj∑
aεs

HT
a + β

∂

∂fnj
V (fnj )

∑
aεs

HT
a

p̄ij

p
′

ijR
ntacq

(5.2)

where HT
a is the analytical backprojector, p̄ij and p

′
ij are the measured and CFD

Monte Carlo based projections of voxel j in ith bin respectively. Rn and tacq, are the
activity factor and acquisition time per projection respectively (required due to current
implementation of MC based forward projector). V (fnj ), is the Gibbs energy function
defined for a neighborhood size of Nj in Equation 5.3 [45].

V (fnj ) =
∑
j

∑
kεNj

djksjk
(
fnj − fnk

)2
(5.3)

here djk is the distance dependent weighting factor for neighboring voxels kεNj that is
set equal to 1 for approximately spherical neighborhood of size 18 voxels. As depicted in
Equation 5.2, the tuning of reconstruction algorithm is limited to varying weight of the
prior β. In order to incorporate CT based anatomical information, a segmentation-free
Bowsher’s prior was used [44]. The essential parameters for Bowsher’s prior include a)
a definition of neighborhood (Nj), b) anatomical image based similarity metric, sjk
(either 0 or 1) and c) the number of neighbors, b, that must be selected for each voxel j.
In this study, an approximately spherical neighborhood, consisted of Nj = 18 closest
neighbors in a 3 × 3 × 3 neighborhood, was used [45, 137]. The similarity metric, sjk
was based on the absolute intensity difference between the neighborhood voxels and
a voxel j in the CT image. Based on the similarity metric either b = 4 or b = 6 was
used respectively for the prior calculation. It is important to mention here that the
choice of number of most similar neighbors, b, in the study is purely subjective and
based on the studies reported previously (e.g [137]).
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5.1.2 CFD-AMAP Feasibility

A simulation study using an analytic phantom with six spheres of different radii within
a cylindrical background was performed to test the feasibility of CFD-AMAP. The
radii and placement of spheres (diameters (φ) = 37 mm (S1), 28 mm (S2), 22 mm (S3),
17 mm (S4), 13 mm (S5) and 10 mm (S6)) were adapted from the NEMA IEC body
phantom® (Data Spectrum Corporation) with external body replaced by a cylindrical
background. An activity concentration of about 10:1 was achieved by simulating
227.7 kBq/cc and 22.8 kBq/cc of 99mTc (PEW width of 126−154 keV) in the spheres
and the background respectively. A simulated SPECT acquisition, consisted of 120
projections (about 3.3×107 counts in total) with 128 × 128 matrix size (4.42 × 4.42
mm pixels), was performed using the GEANT-4 based MC code, GATE. A GE Infinia®

SPECT/CT camera (General Electric, USA) with low-energy high resolution (LEHR)
collimator was modeled for this study. The use of GATE for data acquisition is based
on our previous study described earlier in beginning of this chapter [136]. Twenty
noise realizations, with an acquisition time of 30 s per projection, were reconstructed
using CFD-AMAP. The CFD-AMAP algorithm used a voxelized attenuation map
(128 × 128 × 128, 4.42 mm isotropic) and CT image (512 × 512 × 512, 1.105 mm
isotropic) for the reconstruction (Figure 5.2).

(a) Voxelized CT image (512 × 512 × 512, 1.105 mm
isotropic)

(b) Voxelized attenuation map (128 × 128 × 128, 4.42
mm isotropic)

Figure 5.2: Simulation study: Voxelized (a) CT image and (b) attenuation map (obtained through
linear interpolation of (a)) used respectively for prior determination and as the attenuation map in
CFD-AMAP based reconstruction of simulation data.
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Reconstruction of data with our proposed CFD-AMAP algorithm was performed
using four prior weights, β = 0.0, 1×10−6, 5×10−6, 1×10−5 respectively, and five
iterations. The choice of the prior weight, β, was based on the non-negativity constraint
in the image estimate. A value of β = 0.0 implies simple OSEM-based reconstruction
with no prior included within the reconstruction algorithm. The algorithm used 30
subsets (i.e. 30 image updates per iteration) for the reconstruction.

5.1.3 CFD-AMAP Validation

After feasibility evaluation, we performed a SPECT/CT acquisition with NEMA IEC
body phantom® on GE Infinia® SPECT/CT system with LEHR collimator to validate
the CFD-AMAP. An activity concentration ratio of about 11.5:1 is obtained by
depositing approximately 260 kBq/cc and 22.7 kBq/cc of 99mTc in the spheres and the
background respectively. Twenty noise realizations, each with a set of 120 projections
(acquisition time of 30 s/projection and about 2.3×107 counts in total) were acquired.
An attenuation map (128 × 128 × 128, 4.42 mm isotropic) was calculated by the
system using CT image (512 × 512 × 128, 1.105 mm × 1.105 mm × 4.42 mm) for the
reconstruction. The same CT image was used for the anatomical prior calculations
in CFD-AMAP. Four values of the prior weights, β =0.0, 1×10−7, 5×10−7, 1×10−6

respectively, were used for the reconstruction. The reconstruction parameter values,
except the prior weight, were similar to those used for simulated data reconstruction
(described in Section 5.1.2). It is important to mention here that the CT image
obtained from the system was aligned to the SPECT data manually using the system
based attenuation map as a reference.

5.1.4 Data Analysis

In order to assess the bias and the effect of inclusion of Bowsher’s prior on Monte
Carlo based activity estimation, percent total activity ratio (PTAR) in the spherical
ROI was determined using the true object ROI as follows [138]:

PTAR = 100×


∑

jεSphere

Aoj∑
jεSphere

Atj × wj

 (5.4)
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here, Aoj and Atj, denotes observed and true activity in jth voxel. Figure 5.3 shows
the true spherical ROI’s used in the experimental study. A weighting factor wj
(Equation 5.5) is used to account for the partially occupied voxels at the boundary or
edges (i.e. tissue fraction) of the sphere for a given voxel size.

wj = True counts in voxel j
True maximum counts in sphere (5.5)

It should noted here that this partial counting of the edge voxels may lead to an
underestimation as geometric response of the collimator is not included [139].

Figure 5.3: Experimental study: True object masks determined using Equations 5.4 and 5.5 for
spherical ROI’s in simulation study.

To assess the improvements in noise properties, effect on the Gibbs artifact and
precision of the estimates, the coefficient of variation (CoV ) was determined within
each sphere using the above-mentioned mask.

This study also presents a comparison in terms of contrast (Equation 5.6) in order
to evaluate the effect of inclusion of Bowsher’s prior. For this purpose two spherical
ROI’s in the background were selected away from the central region with the hot
spherical ROI’s.

C = 100×
(
ms/mb − 1
TR− 1

)
(5.6)

where ms and mb are the mean activity in the spherical and and background ROI’s
respectively. TR defines true activity ratio in the true object ROI’s shown in Figure 5.3.

A visual comparison between center slice images for one of the noise realizations,
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in the feasibility and validation studies, is also presented to see the effect of parameter
β and the number of iterations on the reconstructed images.

A comparison of the inter-noise realizations variability or precision is presented
in terms of an overall mean values of ensemble standard deviation images calculated
using all the noise realizations in the study. This comparison is performed for all the
simulation and experimental studies included in this work.

5.2 Results

5.2.1 Simulation Study

Figures 5.4(a) and 5.4(c) depict the plots of PTAR as a function of number of iterations
for the spheres S1 (φ = 37 mm), S3 (φ = 22 mm), S5 (φ = 13 mm) and S6 (φ =
10 mm) with the prior calculation using i) 4 and ii) 6 nearest neighbors out of 18
respectively. The figures show PTAR values that are within ±5%, for each spherical
ROI in the plots, for all the prior weights after a given number of iterations. This
number (i.e. ±5%) holds for all the spherical ROI’s including spheres S2 (φ = 28 mm)
and S3 (φ = 22 mm) that show relatively larger reduction of PTAR with increase in
β.

A significant reduction of CoV over each spherical ROI in the plots with increase
in prior weight, β, for a given number of iterations is evident from the Figures 5.4(b)
and 5.4(d) representing i) and ii) respectively. Figures 5.4(b) and 5.4(d) show a more
or less uniform CoV after the first iteration for each non-zero value of β. A simple
OSEM based reconstruction (i.e. β = 0.0) is the only exception that shows an increase
in CoV with number of iterations for all the ROI’s (except sphere S1) in both the
cases. Table 5.1 depicts a comparison between CoV values obtained after 2 and 5
iterations for all the prior weights for i). A trend similar to Figure 5.4(b) is evident
from the Table 5.1.

A more uniform activity distribution over the spherical ROI’s (i.e. better noise
regularization) and a better depiction of the boundaries with increase in the value of β
is evident from the Figures 5.5 and 5.6. Figures 5.5 and 5.6 show a noticeable change
in contrast with increase in the prior weight for a given number of iterations. This
reduction is also depicted in the Figure 5.7 for i) and ii) respectively.

Figure 5.7 shows a loss of contrast with increase in β that is less than 5% for larger
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Figure 5.4: Simulation Study: A comparison of CFD-AMAP with different prior weights in terms
of (a), (c) percent total activity ratio (PTAR) and (b), (d) coefficient of variation (CoV ) for spheres
S1 (φ = 37 mm), S3 (φ = 22 mm), S5 (φ = 13 mm) and S6 (φ = 10 mm) as a function of number of
iterations for prior determination with 4 and, 6 nearest neighbors out of 18 respectively.

spheres (i.e. S1 (φ = 37 mm) and S3 (φ = 22 mm)) accompanied by corresponding
gain in contrast for the smaller spheres (i.e. S5 (φ = 13 mm) and S6 (φ = 10 mm)).
This implies that the CFD-AMAP provides percentage contrast within ± 5% for each
sphere for all the prior weights after a given number of iterations. This is also evident
from Table 5.2 for the case i). Table 5.2 shows a comparison of contrast for all the
spherical ROI’s after two and five iterations. Both Figure 5.7 and Table 5.2 show a
significant gain in contrast, especially for spherical regions other than S1 (φ = 37 mm)
and S2 (φ = 28 mm) after five iterations compared to two for a given value of β.

As an example, circular profiles obtained after five iterations for one of the noise
realizations are depicted in Figure 5.8. Figure 5.8 indicates a more uniform activity
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Table 5.1: Simulation: CoV for all the spheres and background with prior weight β for 2
and 5a iterations of CFD-AMAP (4 out of 18 neighbors).

CoV
Region\β-value 0.0b 1× 10−6 5× 10−6 1× 10−5

S1 71.6 ± 1.1 65.3 ± 0.8 51.1 ± 0.6 42.3 ± 1.4
(68.2 ± 1.4) (60.0 ± 0.8) (47.4 ± 0.5) (42.0 ± 0.4)

S2 69.8 ± 1.4 59.8 ± 1.0 39.8 ± 0.5 27.8 ± 0.5
(84.3 ± 2.6) (58.6 ± 1.4) (31.7 ± 0.6) (30.4 ± 0.6)

S3 48.4 ± 1.9 42.9 ± 1.5 29.7 ± 1.0 21.0 ± 0.7
(71.1 ± 4.3) (48.4 ± 2.5) (24.1 ± 1.1) (22.1 ± 0.6)

S4 25.5 ± 1.0 22.7 ± 0.9 16.4 ± 0.5 13.8 ± 0.6
(42.8 ± 2.1) (28.9 ± 1.0) (19.8 ± 1.1) (21.3 ± 0.9)

S5 12.1 ± 0. 9 11.2 ± 1.0 8.7 ± 0.9 7.5 ± 0.8
(21.2 ± 1.8) (16.0 ± 1.3) (11.1 ± 1.0) (12.2 ± 1.1)

S6 4.6 ± 0. 9 4.3 ± 0.8 3.6 ± 0.7 3.2 ± 0.9
(8.2 ± 2.2) (6.8 ± 2.0) (4.9 ± 1.5) (5.7 ± 1.5)

Background 5.4 ± 0.9 5.2 ± 0.7 5.0 ± 0.7 4.9 ± 0.6
(10.6 ± 1.4) (10.1 ± 1.2) (8.7 ± 1.1) (7.5 ± 0.9)

a CoV values for 5th iteration are within parenthesis. b A prior weight, β = 0.0, indicates
simple OSEM based reconstruction.

and hence better boundary delineation with increase in the prior weight, β. A more
gradual decrease in activity away from the center of ROI in case of simple OSEM based
reconstruction is again evident in the Figure 5.8. Figure 5.8 shows a slightly better
spatial resolution enhancement in the case of ii) compared to i) for a given value of the
prior weight and the number of iterations. This is also evident from Figure 5.9 that
shows a comparison between i) and ii) for β = 1× 10−5 as magnified images. A slightly
better boundary definition in corresponding images, when the 6 most similar neighbors
are selected, indicates relatively more speedy enhancement in spatial resolution in this
case.

A comparison of inter-noise realizations dispersion is presented in Figure 5.10. The
figure shows mean of ensemble standard deviation images in simulation study for i)
and ii). A relatively higher precision with increase in the prior weight for i) and ii) for
a given number of iterations is evident from the figure. Correspondingly, lower values
of mean standard deviation in the case of ii) compared to i) are also visible in 5.10(a)
and 5.10(b) respectively.
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Figure 5.5: Simulation Study (4 out of 18 Neighbors): Depiction of images for one of the
noise realizations an an example. The figure show the variation in visual perception of images with
number of iterations (horizontal) and the prior weight, β (vertical).
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Figure 5.6: Simulation Study (6 out of 18 Neighbors): Depiction of images for one of the
noise realizations an an example. The figure show the variation in visual perception of images with
number of iterations (horizontal) and the prior weight, β (vertical).
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Figure 5.7: Simulation Study: A comparison of CFD-AMAP with different prior weights in terms
of contrast as a function of number of iterations for spherical ROI’s, S1 (φ = 37 mm), S3 (φ = 22
mm), S5 (φ = 13 mm) and S6 (φ = 10 mm) in the case of (a) 4 and (b) 6 nearest neighbors out of
18 respectively.

Table 5.2: Simulation: Contrast, C (%) for all the spheres and background with prior weight β
for 2 and 5* iterations of CFD-AMAP (4 out of 18 neighbors).

C (%)
Region\β-value 0.0† 1× 10−6 5× 10−6 1× 10−5

S1 99.1 ± 2.1 98.8 ± 2.1 97.7 ± 1.9 97.2 ± 8.0
(101.8 ± 3.8) (102.6 ± 3.3) (102.4 ± 2.8) (101.6 ± 2.8)

S2 98.4 ± 2.1 97.0 ± 2.1 91.5 ± 1.7 87.1 ± 1.9
(103.9 ± 3.4) (103.1 ± 2.6) (100.1 ± 2.4) (96.7 ± 2.4)

S3 90.6 ± 1.7 89.6 ± 2.0 84.9 ± 1.9 82.0 ± 1.5
(105.3 ± 3.1) (102.7 ± 2.1) (100.2 ± 2.4) (101.7 ± 2.2)

S4 71.2 ± 3.7 69.7 ± 4.7 69.8 ± 3.2 69.1 ± 4.4
(98.3 ± 5.7) (95.6 ± 5.3) (95.9 ± 4.8) (98.3 ± 4.9)

S5 46.7 ± 2.8 46.5 ± 3.3 47.1 ± 2.9 47.1 ± 1.9
(72.6 ± 3.3) (71.2 ± 4.3) (73.5 ± 3.5) (77.4 ± 3.3)

S6 16.4 ± 1.7 16.0 ± 1.5 16.6 ± 1.3 16.8 ± 1.4
(25.5 ± 2.5) (25.3 ± 2.0) (26.4 ± 2.5) (26.5 ± 3.1)

* Values of contrast for 5th iteration are within parenthesis. †A prior weight, β = 0.0, indicates
simple OSEM based reconstruction.
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Figure 5.8: Simulation Study: A comparison of circular profiles, at 5th iteration, through the
spherical ROI’s for the images reconstructed with selection of (a) 4 and (b) 6 nearest neighbors in
CFD-AMAP.

Simulation Study: Comparison between 4 and 6 out of 18 neigbors (β = 1× 10−5)

Iterations 1 2 3 4 5

4 out of 18 neighbors

6 out of 18 neighbors

Figure 5.9: Simulation Study: Difference in image perception due to choice of either 4 or 6 out
18 most similar neighbors, for spheres S1 (φ = 37 mm) and S2 (φ = 28 mm), shown through the
magnification of images.
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5.2.2 Experimental Evaluation

An analysis similar to simulation study described in Section 5.2.1 was also performed
for experimental data. Figures 5.11(a) and 5.11(c) depict plots of PTAR as a function
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Figure 5.10: Simulation Study: A comparison of mean of the ensemble standard deviation images
of 20 noise realizations for (a) 4 and (b) 6 nearest neighbors in CFD-AMAP.

of number of iterations for the spheres S1 (φ = 37 mm), S3 (φ = 22 mm), S5 (φ =
13 mm) and S6 (φ = 10 mm) respectively with prior calculation using i) 4 and ii) 6
nearest neighbors. After a given number of iterations, the figures show PTAR values
for all the prior weights that are within ±8%. Based on the error bars, a PTAR of
within ±8% applicable to all the spherical ROI’s including spheres S2 (φ = 28 mm)
and S3 (φ = 22 mm) as these ROI’s show relatively larger reduction of PTAR with
an increase in the value of β for a given number of iterations.

A significant reduction of CoV with increase in the prior weight, β, for a given
number of iterations is evident from the Figures 5.11(b) and 5.11(d) representing i)
and ii) respectively. An overall rising trend in CoV with number of iterations is visible
in the Figures 5.11(b) and 5.11(d). However, Figures 5.11(b) and 5.11(d) depict a
reduction is steepness of the CoV curves with increase in importance of the prior, β,
in CFD-AMAP. Table 5.3 depicts a comparison in terms of CoV for different regions
including the background ROI as a function of prior weight, β obtained after 2 and 5
iterations for ii). A trend similar to Figure 5.11(d) is evident from the Table 5.3.

Figures 5.12 and 5.13 depict a slightly more uniform activity distribution over
spherical ROI’s and better boundary delineation with increase in the value of β. A slight
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Figure 5.11: Experimental Study: A comparison of CFD-AMAP with different prior weights in
terms of (a), (c) percent total activity ratio (PTAR) and (b), (d) coefficient of variation (CoV ) for
spheres S1 (φ = 37 mm), S3 (φ = 22 mm), S5 (φ = 13 mm) and S6 (φ = 10 mm) as a function of
number of iterations for prior determination with 4 and, 6 nearest neighbors out of 18 respectively.

loss of contrast with increase in the prior weight for a given number of iterations is also
evident from the Figures 5.12 and 5.13 representing i) and ii) respectively. Figure 5.14
also depicts this reduction in contrast for i) and ii) respectively. Figure 5.14 shows a loss
of contrast with increase in β-value with largest reduction of about 8% for the spheres
S1 (φ = 37 mm), S3 (φ = 22 mm), S5 (φ = 13 mm) and S6 (φ = 10 mm) respectively
after a give number of iterations. In short, CFD-AMAP provides percentage contrast
within ± 8% for all the prior weights for a given number of iterations. Table 5.4 shows
a comparison of contrast for all the ROI’s after two and five iterations for ii). Both
Figure 5.14 and Table 5.4 indicates a significant gain in contrast after five iterations
for a given value of β compared to two.
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Figure 5.12: Experimental Study (4 out of 18 Neighbors): Depiction of images for one of the
noise realizations an an example. The figure show the variation in visual perception of images with
number of iterations (horizontal) and the prior weight, β (vertical).

Circular profiles obtained after five iterations for one of the noise realizations are
depicted in Figure 5.15. Figure 5.15 indicates a more uniform activity and better
boundary depiction with increase in value of β. Figure 5.15 also shows a slightly
better enhancement of spatial resolution in the case of six most similar neighbors for
corresponding prior weights compared to four most similar neighbors.

A comparison of inter-noise realizations dispersion is presented in Figure 5.16. The
figure shows mean of ensemble standard deviation images in simulation study for
i) and ii). A noticeable increase in the precision with increase in the prior weight
in only evident for i) with β = 1.0 × 10−6 and ii) for a given number of iterations.
Correspondingly, lower values of mean standard deviation in the case of ii) compared
to i) are also visible in 5.16(a) and 5.16(b) respectively.

107



PhD Thesis — Muhammad I. Karamat McMaster University — RADGRAD

Figure 5.13: Experimental Study (6 out of 18 Neighbors): Depiction of images for one of the
noise realizations an an example. The figure show the variation in visual perception of images with
number of iterations (horizontal) and the prior weight, β (vertical).
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Figure 5.14: Experimental Study: A comparison of CFD-AMAP with different prior weights in
terms of contrast as a function of number of iterations for spherical ROI’s, S1 (φ = 37 mm), S3 (φ =
22 mm), S5 (φ = 13 mm) and S6 (φ = 10 mm) in the case of (a) 4 and (b) 6 nearest neighbors out
of 18 respectively.
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Table 5.3: Experimental: CoV for all the spheres and background with prior weight β for
2 and 5a iterations of CFD-AMAP (6 out of 18 neighbors).

CoV
Region\β-value 0.0b 1× 10−6 5× 10−6 1× 10−5

S1 63.8 ± 0.8 62.5 ± 0.7 59.4 ± 0.6 56.6 ± 0.5
(61.1 ± 0.7) (59.0 ± 0.7) (55.2 ± 0.6) (51.5 ± 2.0)

S2 82.9 ± 1.3 81.2 ± 1.2 76.1 ± 1.2 71.7 ± 1.2
(90.1 ± 2.0) (85.5 ± 2.0) (75.5 ± 1.7) (67.2 ± 4.5)

S3 70.6 ± 1.9 68.8 ± 1.7 63.7 ± 1.5 59.8 ± 1.4
(90.7 ± 2.9) (81.9 ± 2.4) (67.5 ± 1.7) (58.6 ± 4.0)

S4 59.9 ± 1.9 59.2 ± 1.8 56.7 ± 1.9 54.1 ± 1.8
(81.82 ± 2.4) (76.8 ± 2.3) (65.5 ± 2.3) (58.0 ± 3.4)

S5 27.9 ± 1.6 27.8 ± 1.7 27.3 ± 1.6 26.1 ± 1.9
(41.6 ± 3.0) (40.4 ± 2.7) (36.4 ± 2.1) (33.8 ± 1.8)

S6 8.9 ± 2.8 8.8 ± 2.7 8.8 ± 2.9 8.8 ± 2.7
(15.5 ± 5.4) (15.1 ± 5.2) (14.5 ± 4.9) (13.9 ± 4.6)

Background 9.6 ± 1.0 9.5 ± 1.0 9.4 ± 1.1 9.3 ± 1.2
(17.5 ± 1.2) (17.2 ± 1.1) (16.5 ± 1.1) (15.8 ± 1.3)

a CoV values for 5th iteration are within parenthesis. b A prior weight, β = 0.0, indicates
simple OSEM based reconstruction.

Table 5.4: Experimental: Contrast, C (%) for all the spheres and background with prior
weight β for 2 and 5* iterations of CFD-AMAP (6 out of 18 neighbors).

C (%)
Region\β-value 0.0† 1× 10−6 5× 10−6 1× 10−5

S1 101.7 ± 1.7 101.4 ± 1.8 100.3 ± 1.7 99.1 ± 1.8
(105.6 ± 2.0) (105.2 ± 2.0) (104.4 ± 1.9) (100 ± 6.2)

S2 86.9 ± 2.0 86.0 ± 1.8 83.1 ± 1.8 80.0 ± 1.9
(91.2 ± 2.5) (89.7 ± 2.7) (85.6 ± 2.1) (80.5 ± 6.3)

S3 89.2 ± 1.9 87.7 ± 2.2 82.7 ± 1.9 77.7 ± 1.8
(98.2 ± 2.4) (94.8 ± 2.2) (85.3 ± 2.0) (76.2 ± 7.8)

S4 80.8 ± 1.9 79.7 ± 1.6 76.5 ± 1.8 72.7 ± 1.6
(96.3 ± 2.3) (93.3 ± 2.3) (84.6 ± 1.9) (75.7 ± 8.2)

S5 64.9 ± 4.6 64.8 ± 4.3 63.2 ± 4.6 61.8 ± 4.1
(92.9 ± 6.9) (90.9 ± 6.6) (84.9 ± 5.8) (77.8 ± 5.4)

S6 20.4 ± 2.4 20.4 ± 2.2 19.8 ± 2.1 19.3 ± 2.2
(34.0 ± 4.6) (33.7 ± 3.9) (31.5 ± 3.6) (28.2 ± 4.1)

* Values of contrast for 5th iteration are within parenthesis. †A prior weight, β = 0.0, indicates
simple OSEM based reconstruction.

109



PhD Thesis — Muhammad I. Karamat McMaster University — RADGRAD

-300 -250 -200 -150 -100 -50 0 50
0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

4.0x105
4 nearest neighbours out of 18 (5th iteration)

 

 

M
B
q/
cc

Angleo

 Object mask
 β = 0.0
 β = 1x10-7

 β = 5x10-7

 β = 1x10-6

S4

S1

S2S3

S5

S6

(a)

-300 -250 -200 -150 -100 -50 0 50
0.0

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

4.0x105
6 nearest neighbours out of 18 (5th iteration)

M
B
q/
cc

Angleo

 Object mask
 β = 0.0
 β = 1x10-7

 β = 5x10-7

 β = 1x10-6

S1

S2S3

S4

S5

S6

(b)

Figure 5.15: Experimental Study: A comparison of circular profiles, at 5th iteration, through
the spherical ROI’s for the images reconstructed with selection of (a) 4 and (b) 6 nearest neighbors
in CFD-AMAP.
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Figure 5.16: Experimental Study: A comparison of mean of the ensemble standard deviation
images of 20 noise realizations for (a) 4 and (b) 6 nearest neighbors in CFD-AMAP.
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5.3 Discussion

Experimental study uses relatively smaller values of prior weight, β, compared to
simulations (given in Sections 5.2.1 and 5.2.2) based on the non-negativity constraint.
The choice of β limits the enhancement of the spatial resolution and noise regularization
that can be achieved in both the cases. Even though this adhoc determination of β-value
is a well-known issue with Green’s OSL algorithm [140], the study uses this algorithm
due to ease of implementation and to evaluate the interplay between mismatched
forward/backprojector pair (i.e. CFD-SIMIND based forward projector and analytical
backprojector with attenuation and the geometric collimator response modeling) and,
quantification capabilities of CFD-SIMIND and the CT based anatomical prior. For
the reason described latter, relatively low-noise projection data (about 3.3×107 and
2.3×107 total counts in simulation and experimental study respectively) were acquired
in both the studies.

A slight reduction of PTAR, depicted in Figures 5.4 and 5.11 with increase in the
prior weight (especially, for spherical ROI’s S2, S3 and S4) may indicate the limitation
of proposed true object mask as mentioned in Section 5.1.4. Despite of a sincere
efforts to include partially occupied boundary pixels into the object mask, the blurring
caused by geometric response of the collimator was not included in the mask. This
under-estimation of volume of ROI’s by the mask (depicted in circular profiles shown
in Figures 5.8 and 5.15) and more uniform activity distribution over the blurred ROI’s
with increase in β may be the main causes of this reduction of PTAR.

The main reasons for increase in CoV as depicted in Figures 5.4 and 5.11 for
simulation and experimental studies respectively, in particular for OSEM (i.e. β =
0.0) based reconstruction, with number of iterations may include, a) a typical noise
amplification with increase in number of iterations, associated with maximum likelihood
expectation maximization based algorithms [19] and b) Gibbs artifact (loss of apparent
activity in the central region of the spheres) indicated in Figure 5.17 for a simulation
study. A slightly reduction (i.e. a more or less uniform trend) in CoV depicted in
Figures 5.4(b) and 5.4(d) in simulation and reduction in steepness of the curve with
increase in value of β for experimental study (Figures 5.11(b) and 5.11(d)) depicts
improved noise regularization and compensation of the Gibbs artifact.

This trend for OSEM based reconstruction is also evident from the Tables 5.1 and 5.3.
Both the tables indicate that the inclusion of the anatomical prior in the CFD-AMAP
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Figure 5.17: Simulation Study:Magnified image of sphere S1 (φ = 37mm) showing Gibbs artifact.

not only provides a mean for noise regularization but, also performs compensation
of Gibbs artifact. A reduction in CoV with increase in β, as previously shown in
Figures 5.4 and 5.11, with relatively uniform background is also depicted in Tables 5.1
and 5.3 respectively. This reduction of CoV and relatively negligible impact (±5%
and ±8% for each spherical ROI in simulation and experimental studies respectively)
on quantification capabilities of CFD MC indicate a better noise regularization, an
improved boundary delineation and a relatively good activity quantification with
CFD-AMAP based reconstruction.

Comparatively higher CoV and lower PTAR in experimental study may be caused
by the much lower number of counts (about 10 million less counts) in this case.

In simulation study, the enhancement of spatial resolution (as indicated by reduction
of CoV ) with CFD-AMAP is evident from the Figures 5.5 and 5.6 for i) and ii)
respectively. This improvement in boundary delineation is also evident from the
circular profiles shown in Figure 5.8. Figure 5.8 depicts a better uniformity within
the spherical ROI’s and a more rapid fall of the activity at the edges with increase
in β. This indicates a better spatial resolution with increase in β. Corresponding
Figures 5.12, 5.13 and 5.15 for experimental study show results that are very similar to
simulation study except, the extent of noise regularization and enhancement of spatial
resolution is slightly less due to reasons described at the beginning of this section. A
comparatively better boundary depiction for ii) compared to i), for a give value of β
and number of iterations, is also depicted in Figures 5.8 and 5.15.

It is important to note here that in simulation study the sphere S1 (φ=37mm)
shows a relatively flat inner (left) edge. The reason for this flatness is the boundary
wall definition (2.210 mm thick) in the presumed noise-free CT image (Figure 5.2(a)).
The same side also appears slightly flat in Figure 5.2(a). This problem could easily be
tackled by using the real CT image of a non-voxelized phantom rather than writing
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a MATLAB code to create a barely 2-pixels thick spherical boundary wall. This
also implies that the attainable spatial resolution in the reconstructed image for
CFD-AMAP is defined by the spatial resolution of the anatomical prior.

In simulation study, a small gain in uniformity with CFD-AMAP (i.e. reduction
of CoV ) for the bigger spheres, S1, S2 and S3 is accompanied by corresponding loss
in the smaller spheres, S4, S5 and S6 in case of five compared to two iterations as
depicted in Table 5.1. Correspondingly, Table 5.3 shows a slight loss of CoV for five
iterations of CFD-AMAP compared to two in experimental study. Therefore, based
on the data presented in these tables, it may be concluded that there is no significant
difference between the images reconstructed using two or five iterations in terms of
CoV . In other words two iterations of CFD-AMAP may be suffice to provide an
acceptable image in terms of uniformity. Each iteration usually takes 2-4 hours on a
dual core CPU (2.66 GHz Intel Core i5 processor), thus implying significant reduction
in reconstruction time with two iterations. However, this reduction in the number
of iterations (i.e. two compared to five) and hence a gain in terms of time comes at
the cost of loss of contrast as depicted in Tables 5.2 and 5.4 for the simulation and
experimental study respectively.

Figures 5.10 and 5.16 depict plots of mean of the ensemble standard deviation
images as a function of number of iteration for simulation and experimental studies
respectively. Based on the data presented in these figures two important observations
can be made a) a much less improvement in the inter-noise realizations variability or
precision for experimental data compared to the simulation study and b) both the
studies show a slightly more precision for ii) compared to i) for a given value of the
prior weight and the number of iterations. The use of relatively lower prior weight in
the experimental study may be the reason behind observation a).

5.4 Conclusion

In this work, we proposed a MAP reconstruction algorithm that uses CFD Monte Carlo
as a forward projector and a CT-based anatomical prior for accurate quantification and,
noise regularization respectively. Even though adhoc determination of the prior weight
to avoid negative voxel values in the reconstructed image and possible divergence
are the major limitations of this algorithm, this work uses the algorithm due to ease
of implementation and to study the interplay between quantification capabilities of
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CFD-SIMIND based forward projector and the anatomical prior. The proposed CFD-
AMAP algorithm generates images that are spatially better resolved with comparable
quantitative accuracy (within ±5% and ±8% for simulation and experimental studies
respectively) to simple OSEM based reconstruction (i.e. β = 0.0). The use of six
compared to four most similar neighbors in the neighborhood for the prior calculation
has resulted in a better boundary depiction. The choice of number of iterations in
CFD-AMAP is based on the trade-off between the time taken for image reconstruction
and an acceptable contrast in the image. A study with CFD MC incorporated into a
better Bayesian reconstruction algorithm (e.g. [140]) to overcome major limitations of
CFD-AMAP is planned in the near future.
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Chapter 6

Conclusion and Future Work

IN this work, we performed a detailed comparison between previously reported
CFD implementation into SIMIND Monte Carlo program (i.e. CFD-SIMIND) and

GEANT-4 based MC code GATE. The study was intended to perform an exhaustive
comparison between CFD-SIMIND and a well-known standard MC code like GATE
as i) such study has not been reported earlier and ii) in order to see whether the
CFD-SIMND can be replaced or used in conjunction with GATE in the studies where
collimator interactions are not important (e.g. for isotopes with low and medium
energy gamma emissions like 99mTc and 111In). It is evident from the point source
simulation results presented in Chapter 2 of this work that CFD-SIMIND agrees well
with GATE with detection sensitivity difference ranging from 3−5%, spatial resolution
within 0.2 mm and overall image quality similarly, QUI value, of 0.994 ± 0.009. More
complex simulations using the XCAT phantom also showed similar results. A reduction
by a factor of 5−6 orders of magnitude in time can be achieved with CFD-SIMIND
compared to GATE while maintaining very similar photon transport accuracy.

In Chapters 3 and 4 of this work, we have introduced a Monte Carlo-based
reconstruction method, Sim-OSEM that has shown some promising results in separating
the corresponding isotope images in simultaneously acquired 99mTc/111In and 99mTc/123I
projection data. This is achieved through crosstalk compensation by incorporating
accelerated CFD-SIMIND MC as a forward projector into iterative reconstruction
algorithm. It is evident from the results shown in Chapter 3 that while both triple energy
window (TEW) and Sim-OSEM provide higher contrast and reduction of crosstalk

115



PhD Thesis — Muhammad I. Karamat McMaster University — RADGRAD

artifacts compared to no scatter compensation, the proposed Sim-OSEM technique
yields slightly better crosstalk correction compared to the TEW method. The study
shows that Sim-OSEM performs reasonably accurate activity estimation, although a
rigorous analysis of quantitation with multiple noise realizations was not performed.
In Chapter 4, we have presented our perceived application of simultaneous 99mTc/123I
SPECT in breast imaging that has not yet been reported in patients. We believe
that this kind of dual-isotope SPECT imaging can help in distinguishing between
benign, malignant and potentially malignant lesions in breast. The simulation studies
presented in Chapter 4 yielded promising results in terms of accurate quantitation for
simultaneous 99mTc/123I SPECT.

Simulation and experimental studies in order to quantify possible improvement in
SNR and spatial resolution are presented in Chapter 5. The study shows that the
inclusion of CT-based anatomical prior (i.e. Bowsher’s prior) in Sim-OSEM [44] using
one-step-late approach, improve boundary delineation without interfering too much
with quantification ability of CFD-SIMIND based forward projector. It is important to
mention here that the prior weight, β limits amount of spatial resolution enhancement
achieved through this algorithm. This limit on the maximum possible value of β in
the algorithm is due to the non-negativity constraint on a voxel content in the image
and to avoid divergence.

6.1 Future Work

The recommendations for future work can be based on the existing shortcomings of
the studies presented in this work and the ideas to remedy them. These may include i)
more studies to further evaluate the current work ii) receiver operating characteristics
(ROC) analysis, iii) further acceleration of CFD-SIMIND and iv) use of better image
reconstruction algorithms.

6.1.1 Studies to Evaluate the Current Work

So far, simulation and experimental evaluations have been performed using a uniform
attenuation map in form of a point source and NEMA IEC body phantom set for
99mTc/111In simultaneous SPECT. In the future, some additional experiments using
more complex phantoms with non-uniform attenuation may be performed to further
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elaborate on the strength and effectiveness of Sim-OSEM.
In the study involving simultaneous 123I/99mTc, experimental validation of Sim-

OSEM has yet to be performed. The reason for the absence of experimental results in
the study was unavailability of the breast phantom at our department. We initially
planned to design and print these phantoms for all the breast sizes using a 3-D printer
for experimental validation. However, due to diversion to another isotope duo that
is 99mTc/111In, this plan could not be followed.

It should be noted that simulations described in both of above-mentioned studies
were done using a non-uniform attenuation map in the form of the XCAT phantom. The
strength of the simulation studies can be further improved by performing acquisition
on an independent MC code like GATE because in these simulation studies the
same forward projector (i.e. CFD-SIMIND) was used for acquisition and subsequent
Sim-OSEM based reconstruction.

Similar studies may also be performed for other candidates of simultaneous multi-
isotope SPECT imaging. One of the prime example of such isotope duos is 201Tl/99mTc
which, is used in cardiac imaging (e.g. [83, 121]). It has been reported earlier in
Chapters 3 and 4 that Sim-OSEM based reconstruction provides quantitatively accurate
images with possible improvements in SNR and resolution. This implies simultaneous
201Tl/99mTc cardiac SPECT reconstruction using Sim-OSEM promises not only to
improve 201Tl based quantitation, but may also be able to generate better resolved
99mTc images.

One of the main goals of this work was to use and separate images from simultane-
ously acquired dual-isotope data using NaI(Tl)-PMT based gamma cameras. Currently,
Cadmium Zinc Telluride (CZT) based dedicated cardiac and scintimammography scan-
ners are becoming popular. The costly CZT scanners (e.g. D-SPECT®) provide
list-mode data that can be corrected for scatter and crosstalk [141] and believed to
provide simultaneous dual-radionuclide images comparable to those obtained from
reconstruction of separately acquired data as described by Haim et.al. [142] in cardiac
SPECT. In future, a study can be performed to compare the quality of images obtained
using CZT scanners to the NaI(Tl) based images reconstructed using Sim-OSEM.
Such studies would provide an objective tool to see if standard gamma cameras (with
no access to list-mode data) in combination with Sim-OSEM can provide simultane-
ously acquired multi-isotope SPECT images comparable to dedicated and expensive
CZT-based systems.
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In order to improve the accuracy and performance of the proposed algorithms (i.e.
Sim-OSEM), experiments to optimize acquisition parameters for different simultaneous
dual-isotope SPECT candidates as, described by Wang et.al. [143] and Du et.al. [144],
may also be performed.

One of the ultimate goals and tests of strength of any reconstruction algorithm
would be the real patient data. Real patient studies may be possible in the future after
a rigorous task-based ROC analysis of Sim-OSEM, described briefly in Section 6.1.2.

6.1.2 Receiver operating characteristics (ROC) Analysis

The assessment of image quality is an important tool in medical imaging research. This
tool can be used to compare two competing systems or image processing algorithms.
The most useful, meaningful and reproducible way to evaluate image quality either
on a detection or detection plus localization task performed by a human observer
is receiver operating characteristic (ROC) or localization based receiver op-
erating characteristic (LROC) analysis respectively. In ROC analysis a plot between
true positive (i.e. sensitivity) as a function of false positive (i.e. 1-specificity) is used
to compare different systems, protocols or image processing algorithms. ROC analysis
of task based image quality assessment for Sim-OSEM based reconstruction compared
to other dual isotope reconstruction algorithms may also be performed in future.

Rather than using human observer, a mathematical observer, implemented in
the form of a computer algorithm, can also be used to perform the image quality
assessment task. After establishing the accuracy and applicability of the proposed
reconstruction method, mathematical observer studies may also be performed as
done by Song et.al. [145]. In this work by Song et.al., mathematical observer studies
were performed for evaluation of their model-based crosstalk compensation method in
simultaneous 99mTc/201Tl myocardial perfusion SPECT. The image quality assessment
tasks should be performed for all the different isotope combinations, which are either
being used or are potential candidates for multi-isotope SPECT in future.

The work presented in Chapter 5 depicts an improvement in spatial resolution that
may not be helpful in the imaging tasks related to lesion detection as this compensation
may result in an overall reduction in contrast due to noise regularization. However,
enhancement in the spatial resolution plays an important role in the studies that
require accurate boundary delineation and quantitation. Quantitative simultaneous
99mTc/201Tl myocardial perfusion SPECT [120, 145] and the recent studies involving
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targeted radionuclide therapy with 177Lu-DOTATATE (for neuroendocrine tumors) [146,
147] and 177Lu-PSMA (for prostate cancer) are the examples of such studies [148]. In
these studies target delineation and accurate quantitation (e.g. accurate depiction
and amount of perfusion in myocardium in simultaneous 99mTc/201Tl cardiac SPECT
imaging or accurate quantification and boundary depiction of the target in 177Lu
therapy) are of prime importance. Therefore, a task-based LROC analysis of CFD-
AMAP based image reconstruction may prove helpful in these applications.

6.1.3 Further Acceleration of CFD-SIMIND

Sim-OSEM based dual-isotope reconstruction takes 3-5 hrs for 2 iterations and 30
subsets. Therefore, there is clearly a room for improvement in terms of speed. Kinsman
and Nicolici [149] have able to double the speed of SPECT simulations using a modestly
sized FPGA compared with a 2 GHz Intel Core 2 Duo Processor. This implies that
CFD-SIMIND could be accelerated further by implementation on a newer and better
version of FPGA and that a collaboration with Dr. Nicolici’s group in future could be
a great help in this regard.

6.1.4 Better Image Reconstruction Algorithms

The study presented in Chapter 5 of this work, simply incorporates anatomical
information into OSEM algorithm in one-step-late (OSL) framework. One major
limitation as described in Section 1.3.2.3, is the conservative choice of prior weight to
avoid possible negative value in the denominator or even divergence [140]. Alternatively,
in order to handle this OSL-trick better, a gradient ascent algorithm with block or
patchwork structure can be used [150]. Vunckx et.al. [140] have recently proposed a
novel, simple and flexible approach to handle prior weight called balanced update steps
MAP (BUS-MAP) reconstruction. In this algorithm the new estimate fnewj can be
found using the separate current estimate for data, f old,DATAj and the prior, f old,PRIORj

as:
fnewj = f oldj + (1− α)4 f old,DATAj + α4 f old,PRIORj (6.1)
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with quadratic energy function used in the study (Chapter 5), 0 ≤ α ≤ 1 and

4 f old,DATAj = f old∑
i

HT
ij

∑
i

HT
ij

 pi∑
j

Hijf
old
− 1

 (6.2)

also

4 f old,PRIORj =
f oldj +

∑
k

f oldk

K + 1 − f oldj (6.3)

here K is the number of similar neighbors compared with voxel j. It is important to
mention here that even though the algorithm promises more flexibility on choice of
prior term weight, α in this case, but tuning of this parameter still has to be performed
by the user.

6.2 Summary and Outlook

In summary, we were able to perform a comprehensive comparison between CFD-
SIMIND and GATE for low and medium energy isotopes. This study could be used as
an objective tool to choose either between or both the codes depending on the nature
of the study. We were also able to successfully incorporate CFD-SIMIND into OSEM
based iterative reconstruction algorithms to correct for crosstalk between simultane-
ously acquired 111In/99mTc and 123I/99mTc SPECT data respectively. The proposed
reconstruction algorithm performs a reasonably accurate activity quantification. A
study presented in this work uses a CT-based anatomical prior for noise regularization
and compensation of PVE incorporated into a maximum a-posteriori (MAP) algorithm
that uses CFD-SIMIND (for quantification) as the forward projector. The proposed
algorithm generates quantitatively accurate images that has been compensated for
PVE. It is important to describe here that the choice of prior weight, β, based on the
non-negativity constraint on the voxel content, limits the PVC attainable through this
algorithm.

Further studies with more complex phantoms and real patient data, task-based
ROC studies, improvement in CFD-SIMIND in terms of speed and use of better
Bayesian image reconstruction algorithms are needed to elaborate on the strengths
and weaknesses of this proposed MC based forward projector and to pave the way for
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CFD-SIMIND based image reconstruction algorithms from research to clinic.
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Appendix A

A.1 Center Slice Theorem

P (ω, θ) =
∫ ∞
−∞

p(s, θ)exp(−j2πωs)ds

Using Equation 1.2

=
∫ ∞
−∞

[∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x · θ − s)dxdy
]
exp(−j2πωs)ds

=
∫ ∞
−∞

∫ ∞
−∞

f(x, y)
[∫ ∞
−∞

δ(x · θ − s)exp(−j2πωs)ds
]
dxdy

=
∫ ∞
−∞

∫ ∞
−∞

f(x, y)exp(−j2π(x · θ)ω)dxdy = F ((x · θ)ω) = F (ωx, ωy)

where ωx = ωcosθ and ωy = ωsinθ.

A.2 Backprojection

By definition of inverse Fourier transform, a 2−D activity distribution f(x, y) can be
obtained from its Fourier transform F (ωx, ωy), as:

f(x, y) =
∫ ∞
−∞

∫ ∞
−∞

F (ωx, ωy)ej2π(ωx+ωy)dωxdωy
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Conversion to polar coordinates ω and θ yields

=
∫ 2π

0

∫ ∞
−∞

F (ωcosθ, ωsinθ)ej2π(ωcosθ+ωsinθ)ωdωdθ

Use of center slice theorem from Appendix A.1 gives

=
∫ 2π

0

∫ ∞
−∞

P (ω, θ)ej2π(ωcosθ+ωsinθ)ωdωdθ

We know that in frequency domain P (ω, θ + π) = P (−ω, θ) which implies above
Equation can also be written as:

=
∫ π

0

∫ ∞
0

P (−ω, θ)ej2π(ωcos(θ+π)+ωsin(θ+π))ωdωdθ

or

=
∫ π

0

∫ 0

−∞
P (ω, θ)ej2π(ωcosθ+ωsinθ)(−ω)dωdθ

i.e.

=
∫ π

0

∫ ∞
−∞

P (ω, θ)ej2π(ωcosθ+ωsinθ)|ω|dωdθ

This shows that object activity distribution, f(x, y), can only be recovered through
backprojecting a version of inverse Fourier transform F (ωx, ωy) (i.e. inverse Fourier
transform of projection data according to center slice theorem) scaled by |ω| in frequency
domain.
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