BIPOLAR JUNCTION TRANSISTOR STATIC LARGE-SIGNAL COMPACT MATHEMATICAL MODELS

By
KOK PAN TANG

A Thesis
Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Master of Engineering

```
McMaster University
    May 1972
```

MASTER OF ENGINEERING (1972)
(Electrical Engineering)

McMASTER UNIVERSITY
Hamilton, Ontario

Bipolar Junction Transistor Static Large-Signal Compact Mathematical Mode1s

AUTHOR: Kok Pan Tang, B.E.Sc. (University of Western Ontario)

SUPERVISOR: Dr. S. H. Chisholm

NUMBER OF PAGES: xvii, 157

SCOPE AND CONTENTS:
Compact mathematical models used to simulate the static V-I characteristics of bipolar junction transistors are investigated. An abbreviated Gummel-Poon model and various modified Ebers-Moll models employed in computer network analysis programs are compared on the basis of their ability to simulate the common-emitter static characteristics of a silicon double-diffused transistor, the ease of the model parameter evaluation, the compromise between simplicity of model and accuracy of simulation and the ability to represent physical processes of transistor.

ACKNUWLEDGEMENTS

The author wishes to extend his sincerest thanks to Dr. S. H. Chisholm, his faculty supervisor, for his invaluable guidance, continuous encouragement and assistance during the course of this investigation.

The author is much obliged to Dr. J. W. Bandler and Mr. C. Charalambous for their stimulating and helpful discussion in computer-aided circuit analysis and optimization theory. Thanks are also due to Mir. E. Johnston for the permission to use his optimization subroutine.

TABLE OF CONTENTS

PAGE

CHAPTER I: INTRODUCTION -----------------------------------1 1
$\begin{array}{ll}\text { CHAPTER II: } & \text { BIPOLAR JUNCTION TRANSISTOR LARGE-SIGNAL } \\ & \text { STATIC MODELS }\end{array}$

2.1.1 The Basic Ebers-Moll Model ------------------ 5
2.1.2 The Modified Ebers-Moll Models --n-.-.-.-.-. 10
2.1.2(a) The Modified Ebers-Moll Model Used in ECAP II- 10
2.1.2(b) The Modified Ebers-Moll Model Used in SCEPTRE- 12
2.1.2(c) The Modified Ebers-Moll Model Used in NET-1 - 15
2.2 The Abbreviated Gummel-Poon Model ----------- 19
2.2.1 Consideration of Various Current Components in Transistor Operation ----------------------19
2.2.2 Modelling the Base Current ------------------- 23
2.2.3 Modelling the Collector Current -------------- 29
2.2.4 The Emitter, Collector and Base Resistances - 43
.CLLAPTER III: DETERMINATION OF MODEL PARAMETERS ------------ 48

3.1.1 The Intrinsic Model Parameters -------------- 49
3.1.2 The Extrinsic Modnl Parameters --n-.............. 63
3.2 The Parameters of the Abbreviated Gummel- Poon Model 69
3.2.1 Conventional Method (Method I) 70
3.2.2 Method of Automated Model Parameter
Determination (Method II) 92
CHAPTER IV: SIMULATION RESULTS 103
4.1 The Output Characteristics 104
4.2 The Dependence of Common-Emitter D. C. Current Gain on the Collector Current 122
4.3 The Input Characteristics 125
CHAPTER V: CONCLUSIONS 137
APPENDIX A: MICROSCOPIC MEASUREGENY OF DEVICE GEOMETRY- 140
APPENDLX B: COmPUTER PROGRAMMES 141
APPENDIX C: COMPARISON OF TIE MEASURED WITH THE SMULATED α_{F} AND α_{R} VERSUS I_{BM} 151
REFERENCES 154

LIST OF FIGURES

FIGURE

PAGE
2.1 Definition of Terminal Currents and their Forward
and Reverse Components, based on the Two-Port
Network Configuration

2.3 The Modified Ebers-Moll Model used in ECAP II with
omission of Junction Capacitances and Dumay Resistors
$R_{1 \mathrm{C}}$ and $R_{2 E}$ equal to zero

2.5 The Modified Ebers-Mioll Molel used in NET-1 with
omission of Junction Capacitances and Junction
Leakage Resistances
2.6 Illustration of the Terminal Currents and their Current Componeats of an N-P-N Transistor assumed one-dimensional structure for Active Mode Operation-

2.7 The Distribution of the Internal Potentials
corresponding to the Intrinsic Fermi-level of an
N-P-N Transistor 34
2.8 Circait Representation of the Abbreviated Gummel-Poon Model 47
3.1 Test Conficuration for detemination of $I_{E S}$ 50
3.2 Seni-lof mot of I_{E} versus $V_{B E}$ for $V_{B C}=0$ 52

FIGURE

PAGE
3.3 Test Configuration for determination of $I_{C S}$ 55
3.4 Semilog Plot of I_{C} versus $V_{B C}$ for $V_{B E}=0$ 57
3.5 Test Configuration for determination of α_{F} 60
3.6 Test Configuration for determination of α_{R} 60
3.7 Test Configuration for determination of R_{E} 64
3.8 Test Configuration for determination of R_{C} 64
3.9 I_{B} versus $V_{C \prime E}$ for $I_{C}=0$ 65
3.10 I_{B} versus $V_{E \prime C}$, for $I_{E}=0$ 66
3.11 Curve Tracer Schematic Diagram for Measurement of I_{C} versus $V_{B E}$ for $V_{B C}=0$ 71
3.12 Senilog Plot of I_{C} versus $V_{B E}$ for $V_{B C}=0$ 73
3.13 Test Configuration for determination of $I_{1}, N_{E 1}, I_{2}$ and $\mathrm{N}_{\mathrm{E} 2}$ 75
3.14 Semilog Plot of I_{B} versus $V_{B E}$ for $V_{B C}=0$ 77
3.15 Curve Tracer Schematic Diagram for Measurement of I_{B} versus $V_{B C}$ for $V_{B E}=0$ 80
3.16 Seailog Plot of I_{B} versus $V_{B C}$ for $V_{B E}=0$ 82
3.17 Measurenents of τ_{F} and τ_{R} 84
$3.18 \quad C_{B E}\left(\doteq C_{E}\right)$ versus $V_{B E}$ for $I_{C}=0$ 89
$3.19 \quad C_{C B}$ and C_{C} versias $V_{C B}$ for $I_{E}=0$ 90
3.20 Flow Chart for Automated Model Parameters Determination 93
4.1 Comparison of the Measured with the Simulated Output Caracteristics by Model EMM 1 106
4.2 Comparison of the Measured with the Simulated Output Characteristics by Model EM 2 107

4.3	Comparison of the Measured with the Simulated Output Characteristics by Model EMM 3	108
4.4	Comparison of the Measured with the Simulated Out put	
		109
4.5	Comparison of the Measured with the Simulated	
	Dependence of D. C. Current Gains on Collector	
	Currents at Collector-Emitter Terminal Voltage equal	
	to 1.0 volt, by Models EMM 1, EMM 2, EMM 3 and AGPM-	123
4.6	Comparison of the Measured with the Simulated Input	
		127
4.7	Comparison of the Measured with the Simulated Input	
		128
4.8	Comparison of the Measured with the Simulated Input	
		129
4.9	Comparis on of the Measured with the Simulated Input	
		130
4.10	Current Distribution below the Emitter ------------10-m	136
A-1		140
C-1	Comparison of the Measured with the Simulated α_{F}	
		152
C- 2	Comparison of the Measured with the Simulated α_{R}	
		153

LIST OF TABLES

TABLE
PAGE

3-3 Measurement of I_{B} and I_{C} for use in determination

3-4 Measurement of I_{B} and I_{E} for use in determination

3-5 Values of Coefficients of two Third Order Polynoai-

3-7 Measured Data for determination of $R_{C} \ldots-\ldots-\ldots$
3-8 $\quad I_{C}$ versus $V_{B E}$ for $V_{B C}=0 \quad 72$

3-10 $\quad I_{B}$ versus $V_{B C}$ for $V_{B E}=0$.-.. 81
3-11 Measured $\mathrm{C}_{\mathrm{BE}}\left(\doteq \mathrm{C}_{\mathrm{E}}\right)$ versus V_{BE} for $\mathrm{I}_{\mathrm{C}}=0$............... 88
3-12 Measured $C_{C B}$ versus $V_{C B}$ for $I_{E}=0$.-........................ 88

3-14 Measured Data for Automated Parameter Determination - 95
3-15 The Initial Parameter Values obtained by Method I - 94
$\begin{array}{lll}\text { 3-16 Comparison of Model Parameter Values obtained by } \\ & \text { Method I and Method II } & 102\end{array}$
4-1 Comparison of the Measured with the Simulated Output Characteristics by Models EMM 1, EMM 2, EMM 3 and AGPM for Transistor 2 N1613112
4-2 Comparison of the Measured with the Simulated Collector-Emitter Terminal Voltages, at Collector Current equal to zero, by Models EMM 1, EMM 2, EMM 3 and AGPM for Transistor 2N1613
4-3 Comparison of the Measured with the Simulated Dependence of D. C. Current Gains on Collector Currents at Collector-Enitter Terminal Voltage equal to 1.0 volt, by Models EMM 1, EMM 2, EMIN 3 and AGPM for Pransistor 2N1613
4-4 Comparison of the Measured with the Simulated Input Characteristics by Models EMM 1, EMM 2, EMM 3 and AGPM for Transistor 2N1613

LIST OF SYMBOLS

A_{0}	coefficient of the third order polynomial for α_{F}
${ }^{\text {A }} 1$	coefficient of the third order polynomial for α_{F}
A_{2}	coefficient of the third order polynomial for α_{F}
A_{3}	coefficient of the third order polynomial for α_{F}
$\mathrm{A}_{\text {B }}$	base cross-sectional area of the device
A_{J}	device junction cross-sectional area, either $A_{J C}$ or $A_{J E}$; whichever is sinaller
A_{JC}	collector-base junction cross-sectional area of the device
A_{JE}	emitter-base juaction cross-sectional area of the device
B_{0}	coefficient of the third order polynomial for α_{R}
B_{1}	coefficient of the third order polynomial for α_{R}
B_{2}	coefficieat of the third order polymonial for α_{R}
B_{3}	coefficient of the third order polynomial for α_{R}
BP	base "push-out" factor
$\mathrm{C}_{\text {BE }}$	base-emitter junction capacitance
${ }^{C} \mathrm{C}$	total collector capacitance
${ }^{\text {c }}$ CB	collector-base junction capacitarice
C_{E}	total emitter capacitance
$\mathrm{d}_{\text {JE }}$	diameter of the circular enitter region
${ }^{\text {d }}$ JB	diameter of the circular base region
D	diffusion constant of the carrier

D_{e}	diffusion constant of electron
$\mathrm{D}_{\text {eo }}$	diffusion constant of electron corresponding to the low field mobility of electron
$E(x)$	electric field at position x
E_{1}	error function as defined by equation (3.17)
E_{2}	error function as defined by equation (3.18)
h_{FE}	common-emitter d. c. current gain
$\mathrm{h}_{\text {FEM }}$	measured common-emitter d. c. current gain
$\mathrm{h}_{\mathrm{FES}}$	simulated common-emitter d. c. current gain
I_{1}	intercept current associated with base curreat component 1
I_{2}	intercept current associated with base current component 2
I_{3}	intercept current associated with base current component 3
I_{B}	terminal base current
I_{Bl}	terminal base current component 1
$\mathrm{I}_{\mathrm{B} 2}$	terminal base current component 2
$\mathrm{I}_{\mathrm{B} 3}$	terminal base current component 3
I_{BC}	terminal base current component flowing through the basecollector junction
I_{BD}	intercept current associated with $\mathrm{I}_{\text {BDIF }}$
$\mathrm{I}_{\text {BUIF }}$	diffusion current of terminal base current component 1
I_{BE}	terminal base current component flowing through the baseemitter junction
$\mathrm{I}_{\text {BM }}$	measured terminal base current
I_{BR}	intercept current associated with $\mathrm{I}_{\text {BREC }}$
$\mathrm{I}_{\text {BREC }}$	recombination current of terminal base carrent component 1
I_{C}	terwinal collector current
${ }^{\text {I }} \mathrm{CC}$	priacianl carront
$I_{\text {CMI }}$	measured terainal collector current

$I_{C F}$
$I_{C R}$
$I_{\text {CSS }}$
I_{E}
$I_{E F}$
$I_{E R}$
$I_{\text {ES }}$
I_{F}
I_{R}
I_{S}
$J_{B C}$
$J_{B E}$
J_{C}
$J_{C C}$ principal current density
$\mathrm{Je}(\mathrm{x})$ electron current density at position x
$J_{E} \quad$ base-emitter diode current of SCEPTRE Ebers-Moll model
J_{F} forward current source of SCEPTRE Ebers-Moll model
$J_{\text {FWD }}$ forward current source of ECAP II EDers-Moll model
$J_{R} \quad$ reverse current source of SCEPTRE EDers-Moll model
$J_{\text {REV }}$ reverse current source of ECAP II Ebers-Moll model
K Bolt, zmann constant
$M_{C} \quad$ collector-junction emission constant
$M_{E} \quad$ emitter-junction emission constant
n(x) electron density at position x
${ }^{n}$ i \quad intrineic carrier density

Q_{E}	total excess stored charges associated with the baseemitter junction capacitance
$\mathbf{R}(\mathrm{x})$	ratio of electron current density to principal current density at position x
$(\mathrm{H})_{\text {ave }}$	average value of $R(x)$
R_{B}	series resistance of the base
R_{BA}	active base resistance
$\mathrm{R}_{\text {BA0 }}$	active base resistance at zero-bias condition
R_{BI}	inactive base resistance
R_{BT}	total base resistance
R_{C}	series resistance of the collector
R_{E}	series resistance of the emitter
R_{m}	maximum value of $R(x)$ occuring at x_{m}
T	junction operating temperature of the device
\mathbf{U}	objective function
V_{BE}	base-emitter voltage
$\mathrm{V}_{\text {B'E }}$,	terminal base-emitter voltage
$\mathbf{v}_{\mathrm{BE}} \text { centre }$	base-emitter voltage at the centre of the emitter
$V_{\text {BE }}$ edge	base-emitter voltage at the edge of the emitter
$\mathrm{V}_{\text {BEM }}$	measured terminal base-emitter voltage
$\mathrm{V}_{\text {BES }}$	simulated terminal base-emitter voltage
V_{BC}	base-collector voltage
$\mathrm{V}^{\prime} \mathrm{C}^{\prime}$	terminal base-collector voltage
$\mathrm{V}_{\text {CE }}$	collector-emitter voltage
$\mathrm{V}_{\mathrm{C}} \mathrm{E}^{\prime}$	terminal collector-emittor voltage
$\mathrm{V}_{\mathrm{CEM}}$	measured torninal collector-enitter volthge
$\mathrm{V}_{\text {CES }}$	simalated terminal collector-emitter voltage
$\mathbf{v}_{\text {S }}$	signal level of the pulse generator

$\mathrm{V}_{\mathbf{S}}$	scattering limited velocity
$\mathbf{v}_{\text {th }}$	thermal velocity of carrier
W_{B}	base width, difference between X_{C} and x_{E}
W_{EB}	width of space-charge region of the base-emitter junction
W_{H}	weighting factor
${ }^{W}$ I	weighting factor
x	device structural dimension (Figure 2.6)
$\mathrm{x}_{1}, \mathrm{x}_{2}$	arbitrary position along x-direction
${ }^{\text {x }}$ C	boundary between base-collector space-charge region and the base
$\mathbf{x}_{\text {E }}$	boundary between base-emitter space-charge region and the base
$\mathbf{x}_{\mathbf{m}}$	a position, inside the base region where maximum potential occurs
α_{F}	d. c. forward short-circuit common-base current gain
α_{R}	d. c. reverse short-circuit common-base current gain
Δ	a change but not necessarily a small change
${ }^{\theta} \mathrm{C}$	collector-junction exponential factor used in SCEPTRE EbersMoll model
θ_{E}	enitter-junction exponential factor used in SCEPTRE EbersMoll model
λ	"ideal" junction exponential factor
$\lambda_{\text {C }}$	collector-junction exponential factor used in ECAP II EbersMoll model
λ_{E}	emitter-junction exponential factor used in ECAP II EbersMoll model
J	mobility of carrier
H_{e}	monility of electron
$\mathrm{Heo}_{\text {eo }}$	low ficha mobility of electron

σ_{n}	capture cross-sectional area for electron
σ_{p}	capture cross-sectional area for hole
τ_{B}	lifetime of the base
${ }^{\tau}{ }_{F}$	forward transit time
${ }^{\tau} \mathrm{n}$	lifetime of electron
${ }^{\tau} \mathbf{p}$	lifetime of hole
${ }^{\boldsymbol{\tau}} \mathrm{R}$	reverse transit time
$\phi(x)$	potential in units of Boltzmann voltage corresponding to the intrinsic Fermi-level at position x
ϕ_{m}	maximum potential in units of Boltzmann voltage occuring at x_{m}
$\phi_{\mathrm{n}}(\mathrm{x})$	potential in units of Boltzmann voltage corresponding to the quasi-Fermi-level of electron at position x
ϕ_{pB}	potential in units of Boltzmann voltage corresponding to the quasi-Fermi-level of hole in the base

CHAPTER I

INTRODUCTION

A large-signal model is a mathematical model used to simulate the electrical behaviour of a transistor over a wide range of operating conditions. Such a model should be in a compact form which will approximate the internal electrical behaviour of a transistor at its terminals. Its main usefulness is in transistor circuit design and analysis, especially in integrated-circuits where tolerance calculations are often of interest. Thus an accurate and efficient compact mathematical model is desired.

Over the past twenty years, a number of models have been proposed. In 1954, the first bipolar junction transistor largesignal model, the Ebers-Moll model, was developed and later became widely used. It is based on device physics and covers all operating regimes, that is, active, saturated and cutofi operations. But, various approximations limit the accuracy of the model. Hence, over the past few years, a number of modified Ebers-Moll models have been proposed; those which have received the most attention are the ones employed in ECAP $I I(1)$, $\operatorname{SCEPTRE}(2)$ and NET-1(3) circuit analysis computer programs and the one recently proposed by John Logan(4) in 1972. Basically, the common agroach in these modified Eoers-Moll models conatsts of retainiug the form of the equations of the bacic

Ebers-Moll model but increasing the accuracy by allowing certain model parameters to vary with voltages and currents. The functional dependence of these parameters is determined by curve-fitting and by using measurements made at the device terminals. The characterization thus consists of tabulations or empirically defined mathematical functions describing the dependence of such parameters as current gains on revelant voltages and currents.

In 1957, Beaufoy and Sparkes(5) analysed the bipolar junction transistor from a charge control point of view. Their charge control model or the equivalent charge control form of the Ebers-Moll model is directly useful for transient analysis.

In 1970, Gumel and Poon(6) proposed an integral charge control model described by twenty-one parameters (excluding the parasitic resistances) which offers significant advantages in static analysis and does not depend for its validity on many of the approximation upon which the basic Ebers-Moll model is based. Moreover, their model enables trading simplicity for accuracy thereby generating a progression of simpler models; in its simplest form, the GummelPoon model can reduce to the basic Ebers-Moll model.

A considerable volume of literature exists
doaling with the above-nentioned models, yet very fow comprehensive studies comparing the models are available in the literature(7), (8). Hence, it is the purpose of this thesis to present the detailed studies of each of the models; those which will be investigated are the basic Ebers-Moll model and the modified ones used in ECAP II, SCEPTAL and Nep-1, ma an abreviared Gemel-Poon model (an abbrevi-
ated form of the integral charge control model originally proposed by Gummel and Poon). The models are compared on the bases of (i) their ability to simulate the common-emitter static characteristics of a silicon double-diffused transistor, (ii) the ease of model parameter evaluation, (iii) the compromise between simplicity of the model and accuracy of simulation and (iv) the ability to represent the physical processes of transistor.

The thesis is divided into four main parts. In Chapter II, the development of the large-signal models under inyestigation is described. In Chapter III, measuring techniques for determining the parameters of the models described in Chapter II are presented. In Chapter IV, computer simulations of the common-emitter static characteristics of a silicon double-diffused transistor by means of different models, are compared with the corresponding characteristics obtained experimentally. In Ciapter V, results of the thesis are summarized and discussed, and further studies are suggested.

CHAPTER II

BIPLOAR JUNCTION TRANSISTOR LARGE-SIGNAL STATIC MODELS

2.1 THE EBERS-MOLL MODEL

The Ebers-Moll model is based on the idea of superimposing a "normal" and an "inverse" transistor to which the direct solution of the simplified transport equations for carriers of a $p-n$ junction diode can be applied. The Ebers-Moll's approach is based on device physics but has little direct contact with all of the physical processes, (e.g. the effect of base-width modulation(9), the effects of generation and recombination of carriers in space-charge regions(10), the effect of conductivity modulation in the base(11) and in the collector (12) and the effect of emitter crowding(13), (14)).

Contrary to usual practice, the defining equations of the Ebers-Moll model are formulated here for the $n-p-n$ rather than for the $p-n-p$ transistor with voltage and current reference conditions based on the usual two-port network practice. However, the results apply equally well to $p-n-p$ transistors.

The development of the model begins with some important assumptions (or approximations) which are as follows:
(a) The resistivities of the semiconductor neutral regions are low enough to be negligible.
(b) Low-level injection of carriers holds true. This implies that the
injected current densities are low.
(Assumptions (a) and (b) insure that there are no voltage drops within the semiconductor neutral regions other than those across the junctions, and that the emitter efficiency is not a function of emitter current).
(c) The electric field in the neutral regions is independent of currents(15), (16).
(d) Space-charge region widening effects(17) are neglected.
(e) Generation and recombination effects in the space-charge regions(10) are neglected.
(f) Conductivity modulation in the base(11) and in the collector(12) is negligible.
(g) There is a uniform injection of carriers across the emitter area, that is, the emitter crowding(13), (14) is negligible.
(h) The emitter-base and collector-base junctions, respectively, have voltage-current relations of the form given by ($I=I_{S}\left(e^{q V / K T}-1\right)$), (18) i.e. the V-I characteristics of "ideal" p-n junction diodes. (i) The transistor is a one-dimensional structure in the direction of major current flow.

2.1.1 The Basic Ebers-Mol1 Model

The development of the basic Ebers-Moll model(19) is based on the fact that one can consider two separate excitations to stand for the result of a general excitation (a given emitter-base voltage and a given collector-base voltage) of the transistor when they are applied in comination. Eaitter-base and collector-wase voltages
determine the minority carrier densities at the edges of the spacecharge regions and thus prescribe the boundary conditions for carrier densities in the base region. The same total carrier currents described by the carrier transport equations can be found by the application first of the prescribed emitter-base voltage and zero collector-base voltage and second of the prescribed collector-base voltage and zero emitter-base voltage as by both voltages applied simultaneously. This results in the validity of the use of "superposition" of the carrier current densities. By the principle of "superposition", the emitter and collector currents, I_{E} and I_{C} in terms of their components under forward and reverse voltage conditions can be written as follows:

$$
\begin{align*}
& I_{E}=I_{E F}+I_{E R} \tag{2.1}\\
& I_{C}=I_{C F}+I_{C R} \tag{2.2}
\end{align*}
$$

Where the subscripts F and R denote the forward and reverse components respectively.

The definition of terminal currents and their current components are shown in Figure 2.1.

Making use of "ideal" p-n junction theory(18), one can write for the forward component of the emitter current, under the condition that the emitter-base junction is forward-biased with zero collector-base junction voltage,

$$
\begin{equation*}
\left(-I_{E F}\right)=I_{E S}\left(e^{q\left(-U_{E B}\right) / K P}-1\right) \tag{2.3}
\end{equation*}
$$

Where $I_{E S}$ is the magnitude of the emitter-base junction short-circuit reverse-saturation current with zero collector-base junction voltage. The forward component of the collector current denoted by $I_{C F}$ is smaller than $I_{E F}$ because not all of the minority carriers that are injected into the base from the emitter can reach the collector. If the fraction of the minority carriers that reach the collector is denoted by α_{F}, termed the d. c. forward short-circuit common-base current gain, then the forward component of the collector current is,

$$
\begin{equation*}
I_{C F}=-\alpha_{F} I_{E F}=\alpha_{F} I_{E S}\left(e^{q\left(-V_{E B}\right) / K T}-1\right) \tag{2.4}
\end{equation*}
$$

Similarly, one can write for the reverse components of the collector and the emitter currents under the condition that the collector-base junction is forward-biased with zero emitter-base junction voltage

$$
\begin{align*}
& \left(-I_{C R}\right)=I_{C S}\left(e^{q\left(-V_{C B}\right) / K P}-1\right) \tag{2.5}\\
& I_{E R}=-\alpha_{R} I_{C R}=\alpha_{R} I_{C S}\left(e^{q\left(-V_{C B}\right) / K T}-1\right) \tag{2,6}
\end{align*}
$$

where $I_{C S}$ is the magnitude of the collector-base junction shortcircuit reverse-saturation current with zero emitter-base junction voltage and α_{R} is termed the d. c. reverse short-circuit commonbase current gain.

The negative signs wherever they appear in equations (2.1)
to (2.6) inclusive denote that the directions of the quantities
(either voltage or current) are opposite to those defined on the basis of two-port active network convention.

Substitution of equations (2.3) to (2.6) inclusive into equations (2.1) and (2.2), yields

$$
\begin{align*}
& I_{E}=-I_{E S}\left(e^{q\left(-V_{E B}\right) / K T}-1\right)+\alpha_{R} I_{C S}\left(e^{q\left(-V_{C B}\right) / K T}-1\right) \tag{2.7}\\
& I_{C}=-I_{C S}\left(e^{q\left(-V_{C B}\right) / K T}-1\right)+\alpha_{F} I_{E S}\left(e^{q\left(-V_{E B}\right) / K T}-1\right) \tag{2.8}
\end{align*}
$$

If the transistor structure is symmetrical, which however is not $\dot{\text { usually }}$ the case in a planar-diffused type, $\alpha_{F}=\alpha_{R}$. But, even for a non-symmetrical structure, it is usually assumed that $\alpha_{\mathrm{F}} \mathrm{I}_{\mathrm{ES}}=\alpha_{\mathrm{R}} \mathrm{I}_{\mathrm{CS}}$ as proposed by Ebers-Moll(19). By use of this reciprocity relationship, equations (2.7) and (2.8) can be rewritten as,

$$
\begin{align*}
& I_{E}=-I_{E S}\left(e^{q\left(-V_{E B}\right) / K T}-1\right)+\alpha_{F} I_{E S}\left(e^{q\left(-V_{C B}\right) / K T}-1\right) \tag{2.9}\\
& I_{C}=-I_{C S}\left(e^{q\left(-V_{C B}\right) / h T}-1\right)+\alpha_{F} I_{E S}\left(e^{q\left(-V_{E B}\right) / K T}-1\right) \tag{2.10}
\end{align*}
$$

The form of equations (2.9) and (2.10), except for the $n-p-n$ formalation and choice of reference conditions for voltages and currents, is the one most commonly referred to as the Ebers-hioll equations and used to define tine Ebers-moll model. A circuit representation of the Ebers-holl model is shonn in Figure 2.2 .

Figure 2.1 Definition of Terminal Currents and Their Forward and Reverse Components, Based on the Two-Port Network Configuration.

Figure 2.2 The Basic Ebers-Moll Model

2.1.2 The Modified Ebers-Moll Models

The basic Ebers-moll model just developed in Section 2.1.1, is known to involve considerable errors if the parameters α_{F} and α_{R} are considered to be constant and the reciprocity relationship (i.e. $\alpha_{F} I_{E S}=\alpha_{R} I_{C S}$) is assumed. Because the model is based on the low-level injection theories introduced by Shockley (18), the greatest error for modern diffused silicon transistors is in the normal active (or quasi-linear) region where processes not accounted for, such as high-level injection of minority carriers, carrier generation and recombination in the space-charge regions, base-width modulation as a function of collector-base junction voltage, conductivity modulation in the base and in the collector at high current levels, surface leakage across the collector-base junction and ohmic resistances of the neutral regions, can contribute substantially to the overall characteristics. For example, without consideration of these processes, variation of d. c. common-emitter current gain will not appear in the model. Modification of the basic Ebers-Moll model is therefore necessary in order to improve the model accuracy. Three common modified Ebers-Moll models are chosen for investigation.

2.1.2(a) The Modified Ebers-Moll Model used in ECAP II

This model is basically the same as the basic Ebers-Mioll model. Constant d. c. short-circuit common-base current gains, α_{F} and α_{R} are still assumed, bat reciprocity is not assumed. The model includes junction space-charge region and diffusion capacitances, but since the investigation of the model here has been restricted to
the static case, these capacitances are deleted.

The modifications made to the model can be described
as follows:
(i) A base resistance used to account for the finite resistivity of the semiconductor of the base region is simulated by a fixed resistor in series with the base lead in the model.
(ii) Two current generators have been modified by replacing the"ideal' junction exponential factors, $q / K T$ with empirical collector and emitter junction exponential factors, λ_{C} and λ_{E} respectively, which take into account the fact that practical transistors do not have "ideal" $p-n$ junction diode exponential factors but some value between $q / K T$ and $q / 2 K T$. Non-ideality is considered to be due to surface recombination, recombination in the interfaces between the substrate and the epitaxial layers as well as in the space-charge regions and the enhanced recombination due to the lattice imperfection in the heavily doped emitter region. The basic Ebers-Moll's equations (2.7) and (2.8) are then written in the form of,

$$
\begin{align*}
& I_{E}=-I_{E S}\left(e^{\lambda_{E} V_{B E}}-1\right)+\alpha_{R} I_{C S}\left(e^{\lambda_{C} V_{B C}}-1\right) \tag{2.11}\\
& I_{C}=-I_{C S}\left(e^{\lambda_{C} V_{B C}}-1\right)+\alpha_{F} I_{E S}\left(e^{\lambda_{E} V_{B E}}-1\right) \tag{2.12}
\end{align*}
$$

Transformation of equations (2.11) and (2.12) into the form as appeared in the ECAP II program, gives
the diode currents
$J_{B E}=I_{E S}\left(e^{\lambda} \mathrm{V}_{B E}-1\right)$
$J_{B C}=I_{C S}\left(e^{\lambda_{C} V_{B C}}-1\right)$
the current generators
$J_{\text {FWD }}=\alpha_{F} \mathbf{J}_{\text {BE }}$
$J_{\text {REV }}=\alpha_{R} J_{B C}$
the terminal currents
$I_{E}=-J_{B E}+J_{R E V}$
$I_{C}=-J_{B C}+J_{F W D}$
A circuit representation of the model is shown in Figure 2.3.
This modified Ebers-Moll model has a total of seven model
parameters, viz. $I_{C S}, I_{E S}, \alpha_{F}, \alpha_{R}, \lambda_{C}, \lambda_{E}$ and R_{B}.
2.1.2(b) The Modified Ebers-Moll Model used in SCEPTRE

The modifications made to this model are essentially the same as those to the model in' ECAPII. The reciprocity is also not assumed. The junction exponential factors are denoted by θ_{C} and θ_{E}, respectively, which are identical to λ_{C} and λ_{E} in the model of ECAPII. The junction capacitances are included in this model but do not feature in the static case.

The main features of this model can be stated below:

Figure 2.3 The Modified Ebers-Moll Model Used in ECAP II with Omission of Junction Capacitances and Dunmy Resistors $R_{1 C}$ and $R_{2 E}$ equal to zero
(i) The d. c. forward and reverse short-circuit common-base current gains, α_{F} and α_{R} are not considered to be constant but allowed to vary with both junction voltages and currents. The functional dependence of these parameters is determined by measurements made at the transistor terminals. The characterization thus consists of tabulations of the dependence of these parameters on the relevant voltages and currents. The accuracy of the model can be increased by increasing the number of data points obtained from the terminal -measurements in constructing the tables for such parameters.
(ii) In-addition to the base resistance, R_{B}, a series collector resistance, R_{C} is included in this model to account for the finite resistivity of the semiconductor of the neutral collector region. This R_{C} is significant while the transistor is operating at high current levels.

The model defining equations are written in the form of,

$$
\begin{align*}
& I_{E}=-I_{E S}\left(e^{\theta_{E} V_{B E}}-1\right)+\alpha_{R} I_{C S}\left(e^{\theta_{C} V_{B C}}-1\right) \tag{2.19}\\
& I_{C}=-I_{C S}\left(e^{\theta} C^{V_{B C}}-1\right)+\dot{\alpha}_{F} I_{E S}\left(e^{\theta_{E} V_{B E}}-1\right) \tag{2.20}
\end{align*}
$$

Transformation of equations (2.19) and (2.20) into the form as appeared in the SCEPTRE program yields,

The diode currents

$$
\begin{equation*}
J_{E}=I_{E S}\left(e^{\theta_{E} V_{B E}}-1\right) \tag{2.21}
\end{equation*}
$$

$$
\begin{equation*}
J_{C}=I_{C S}\left(e^{\theta_{C} \mathbf{V}_{B C}}-1\right) \tag{2.22}
\end{equation*}
$$

The current generators

$$
\begin{equation*}
J_{F}=\alpha_{F} J_{E} \tag{2.23}
\end{equation*}
$$

$$
\begin{equation*}
J_{R}=\alpha_{R} J_{C} \tag{2.24}
\end{equation*}
$$

Where α_{F} and α_{R} are functions of junction operating conditions and their values are determined experimentally.

The terminal currents

$$
\begin{equation*}
I_{E}=-J_{E}+J_{R} \tag{2.25}
\end{equation*}
$$

$$
\begin{equation*}
I_{C}=-J_{C}+J_{F} \tag{2.26}
\end{equation*}
$$

This model contains eight model parameters. They are $I_{C S}$, $I_{E S}, \alpha_{F}, \alpha_{R}$ (their values entered in a tabulated form), $\theta_{C}, \theta_{E}, R_{B}$ and R_{C}.

The circuit representation of the model is shown in
Figure 2.4.
2.1.2(c) The Modified Ebers-Moll Model used in NET-1

This model is essentially the same as the first two modified Ebers-Moll models. The reciprocity and constant current gains are also not assumed. The junction capacitances are also deleted in the static case. The features different from that of the previous two modified Ebers-Moll model can be described as follows:

Figure 2.4 The Modified Ebers-Moll Model Used in SCEPTRE Prograin with Omission of Junction Capacitances and Junction Leacage Rosistances
(i) The expressions for d. c. forward and reverse short-circuit common-base current gains, α_{F} and α_{R} are modelled by means of two third order polynomials, shown below:

$$
\begin{align*}
& \alpha_{F}=A_{0}+A_{1}\left(V_{B E}\right)+A_{2}\left(V_{B E}\right)^{2}+A_{3}\left(V_{B E}\right)^{3} \tag{2.27}\\
& \alpha_{R}=B_{0}+B_{1}\left(V_{B C}\right)+B_{2}\left(V_{B C}\right)^{2}+B_{3}\left(V_{B C}\right)^{3} \tag{2.28}
\end{align*}
$$

(ii) The expressions for the two current generators are also modelled by means of empirical expressions which are the same as those in the models of ECAPII and SCEPTRE, but different notations for the junction exponential factors are used. The janction exponential factors which are denoted by θ_{C} and θ_{E} in the model of SCEPTRE are expressed here in the forms of $q / K T M_{C}$ and $q / K T M_{E}$ respectively. Hence, two model parameters, M_{C} and M_{E} termed the junction emission constants for the collector-base janction and the emitter-base junction are introduced.
(iii) Besides R_{B} and R_{C}, R_{E} is also included in this model to account for the finite resistivity of the semiconductor of the emitter neutral region.

Based on the above-mentioned modifications, equations (2.7)
and (2.8) can be rewritten as follows:

$$
\begin{equation*}
I_{E}=-I_{E S}\left(e^{q V_{B E} / K T M_{E}}-1\right)+\alpha_{R} I_{C S}\left(e^{q V_{B C} / K T M_{C}}-1\right) \tag{2.29}
\end{equation*}
$$

$I_{C}=-I_{C S}\left(e^{q V_{B C} / K T M_{C}}-1\right)+\alpha_{F} I_{E S}\left(e^{q V_{B E} / K T M_{E}}-1\right)$

Where α_{F} and α_{R} are given by equations (2.27) and (2.28).

This model consists of fifteen model parameters. That is, $I_{\text {CS }}, I_{E S},{ }^{M}{ }_{C}, M_{E}, R_{C}, R_{B}, R_{E}$ and two sets of coefficients of the third order polynomials (i.e. $A_{0}, A_{1}, A_{2}, A_{3}$ and $B_{0}, B_{1}, B_{2}, B_{3}$). The circuit representation is shown in Figure 2.5 .

Figure 2.5 The Modified Ebers-Moll hlodel Used in NET-1 program with Omission of Junction Capacitances and Junction Leakage Resistances

2.2 THE ABBREVIATED GUMMEL-POON MUDEL

As noted in Section 2.1, the static behaviour of a bipolar junction transistor is characterized in terms of the flow of minority carrier currents in the various parts of the device structure. The currents flow in response to excess carrier concentrations established by the individual actions of the emitter-base and collector-base junctions. Un the other hand, the device characterization may be visualized in terms of the charge in the base region for the various operating regimes. This leads to the basic idea behind the development of the Gummel-Poon model (or the integral charge-control model) which is based on the charge-control concept(20) and Gummel's new charge-control relation for the bipolar junction transistor(21). The original Guminel-Poon model(22) describes the static and lowfrequency behaviour of the transistor and in its most general form contains twenty -one parameters excluding the extrinsic parameters. The model presented here is an abbreviated form of the original model and contains only thirteen parameters excluding the extrinsic parameters, such as the series resistances of the semiconductors.

2.2.1 Consideration of Various Current Components in Transistor Operation

Figure 2.6 illustrates the various current components involved in an $n-p-n$ transistor operating in the norinal active mode. The current carried by electrons, called the principal current and denoted by $I_{C C}$ is shown schematically as a function of distance from the emitter through the oase to the collector regions. This

Figure 2.6 Illustration of the Terminal Currents and Their Current Components of an N-P-N Transistor assumed one-dimensional structure for Active Mode Operation
principal current is caused by the injection of minority carriers from the emitter to the base because of the action of the forwardbiased emitter-base junction. Most of the carriers (electrons) can travel across the narrow base region, through the collector-base junction to the collector. A small fraction of these carriers recombine with the majority carriers (holes) in the base. This fraction contributes to the recombination current, in the base, which is a component of the total base current and denoted by $I_{\text {BREC }}$. Moreover, this recombination current can be minimized by making the base as thin as possible and by using, for the base, semiconductor material which has a relatively large lifetime. On the other hand, at the boundary between the emitter-base space-charge region and the p-type base, designated by plane x_{E} (referred to Figure 2.6), it can be shown that as a consequence of the forward-biased emitterbase junction, the majority carriers (holes) of the base are backinjected into the emitter through the emitter-base junction. The current carried by the holes due to the back-injection into the emitter yields another component of the base current. This current component can be separatedinto two parts: part 1 , denoted by $I_{B D I F}$, is the diffusion current due to holes which are back-injected into the emitter then diminished by recombination there, while part 2 , symbolized by $I_{B 2}{ }^{*}$, is a recombination current representing recombination in the emitter-base space-charge region. In addition,

[^0]because the collector-base junction is reverse-biased, holes are extracted from the collector into the base which yields one more component of the base current, denoted by $I_{B 3}$. The recombination in the space-charge region of the collector-base junction is negligible. This occurs because the electric field in the spacecharge region is directed from the collector to the base (in the $n-p-n$ case) so that all the minority carriers (electrons) that reach the edge of the space-charge region are swept out of the base into the collector where they are collected. The generation in the space-charge region is also negligible because of the suppression resulting from the presence of mobile carriers injected from the emitter.

The terminal emitter current is the flow of the total charge carriers across the boundary plane, x_{E} per unit time, that is, the principal current, $I_{C C}$ plus the sum of the base current components, $I_{B R E C}, I_{B D I F}$ and $I_{B 2}$. Likewise, the collector current is given by the sum of the principal current and base carrent component $I_{B 3}$. The base current is obviously the sum of $I_{\text {BREC }}, I_{\text {BDIF }}$, $I_{B 2}$ and $I_{B 3 .}$. Both the currents $I_{B R E C}$ and $I_{\text {BDIF }}$ are typically "ideal" currents, that is, they are proportional to (e) respectively and can therefore be combined in the form of,

$$
\begin{equation*}
I_{\mathrm{B} 1}=I_{\mathrm{BREC}}+I_{\mathrm{BDIF}} \tag{2.31}
\end{equation*}
$$

Furthermore, since the components $I_{B 1}$ and $I_{B 2}$ are emitter contri-
butions while component $I_{B 3}$ is collector contribution, it can be written that,

$$
\begin{align*}
& I_{B E}=I_{B 1}+I_{B 2} \tag{2.32}\\
& I_{B C}=I_{B 3}
\end{align*}
$$

To facilitate the development of the transistor model, using the assumed current conventions shown in Figure 2.6, the terminal currents can be expressed in explicit forms as follows:

$$
\begin{gather*}
I_{B}=I_{B E}+I_{B C} \tag{2.34}\\
I_{C}=I_{C C}-I_{B C} \tag{2.35}\\
\left(-I_{E}\right)=I_{C C}+I_{B E} \tag{2.36}
\end{gather*}
$$

2.2.2 Modelling the Base Current

Having understood the base current components in transistor operation with reference to Figure 2.6, one can model the base current components first, thence the sum of them gives the total base current I_{B}.
(a) The Base Current Component $I_{B 1}$

As defined by equation (2.31). this current component is the sum of $I_{B R E C}$ and $I_{B U I F} . I_{B U I F}$, the hole current back-injected
into the n-type emitter can be determined by means of the static p-n junction theory (18) by considering the emitter-base junction as an isolated p-n junction, under forward-biased condition. Since the emitter is more heavily doped than the base, this implies that the low-level injection of carriers from the base can be achieved. As a result, this current is dominated by the "ideal" current which follows the "ideal" p-n junction theory. If the emitter is several diffusion length wide, this current is given by,

$$
\begin{equation*}
I_{B D I F}=I_{B D}\left(e^{q V_{B E} / K T}-1\right) \tag{2.37}
\end{equation*}
$$

$I_{\text {BREC, }}$ the hole current which supports recombination in the base can be evaluated provided the approximate form of the minority carrier distribution and the doping profile in the base is known. For low recombination rate in the base, the per unit volume recombination rate is $n_{p B}{ }^{\prime} / \tau_{B}$ where $n_{p B}{ }^{\prime}=n_{p B}-n_{0 B}$ is the excess minority carrier (electron) concentration and τ_{B} is the lifetime of the base. The total number of electrons which recombine in the base per unit time is the integral of $n_{p B}{ }^{\prime} / \tau_{B}$ over the volume of the neutral base region. Inasmuch as a hole is required for each electron which vanishes in the base, the current $I_{B R E C}$ is given by,

$$
\begin{equation*}
I_{B R E C}=q^{A}{ }_{J E} \int\left(n_{p B}{ }^{\prime}(x) / \tau_{B}\right) d x \tag{2.38}
\end{equation*}
$$

However, in practical diffused transistors, the recombination
properties in the base are not known to the detail required for the evaluation of the integral in equation (2.38). The assumption of the linear minority carrier distribution in the base is a gross simplification. But the detailed studies have confirmed that the base recombination current can be given by

$$
\begin{equation*}
I_{B R E C}=I_{B R}\left(e^{q V_{B E} / K T}-1\right) \tag{2.39}
\end{equation*}
$$

Where $I_{B R}$ is a constant of proportionality. The combination of equations (2.37) and (2.39) gives $I_{B 1}$ as defined by equation(2.31), viz.

$$
\begin{align*}
I_{B 1} & =\left(I_{B D}+I_{B R}\right)\left(e^{q V_{B E} / K T}-1\right) \tag{2.40}\\
\text { or } \quad I_{B 1} & =I_{1}\left(e^{q V_{B E} / K T}-1\right) \tag{2.41}
\end{align*}
$$

Where I_{1} can be considered as a physical parameter of the model and its value can be determined experimentally.

In a real transistor, the lack of lattice perfection in the semiconductor causes enhanced local recombination as well as surface recombination in the p - and n - regions. This current and the junction voltage, $V_{B E}$ are therefore not exactly related through the "ideal" junction exponential factor, $q / K T$ but some value which may vary between $q / K T$ and $q / 2 K T$. From the practical point of view, equation (2.41) is tims replaced by a more general function of $V_{B E}$
which is characterized by an emitter emission coefficient, $N_{E 1}$ associated with the emitter-base junction. Equation (2.41) then becomes,

$$
\begin{equation*}
I_{B 1}=I_{1}\left(e^{q V_{B E} / K T N_{E 1}}-1\right) \tag{2.42}
\end{equation*}
$$

For a typical transistor of good quality, the emitter emission coefficient, $N_{E 1}$ should have a value very close to unity. In general, its value lies between 1.0 and 1.5 .
(b) The Base Current Component $I_{B 2}$

The hole current which supports recombination in the spacecharge region of the emitter-base junction is typically "non-ideal" current. Since the space-charge region is the volume well-defined by the width of the space-charge layer (for a given junction crosssectional area) which is a function of the junction voltage, for single-level recombination centres in the space-charge region, this recombination current can be expressed(23), (24), (25), (26), (27), as

$$
\begin{equation*}
I_{B 2}=\frac{q n_{i} W_{E B}{ }^{A} J E}{\sqrt{\tau} n^{\tau} p}\left(e^{q V_{B E} / 2 K T}-1\right) \tag{2.43}
\end{equation*}
$$

with

$$
\begin{align*}
& \tau_{n}=\left(\sigma_{n} v_{t h} N_{t}\right)^{-1} \tag{2.43a}\\
& \tau_{p}=\left(\sigma_{p} v_{t h} N_{t}\right)^{-1} \tag{2.43b}
\end{align*}
$$

For practical purposes, the junction exponential factor, (q/2KT) appearing in equation (2.43) is modified in a way similar to that for $I_{B 1}$, by introducing one more emitter emission coefficient, denoted by $\mathrm{N}_{\mathrm{E} 2}$ having a value typically between 1.5 and 2.0. If the quantity $\left(\left(q_{i} W_{E B} A_{J E}\right) /\left(\tau_{n} \tau_{p}\right)^{1 / 2}\right)$ is interpreted as an intercept current, symbolized by I_{2}, equation (2.43) then becomes

$$
\begin{equation*}
I_{B 2}=I_{2}\left(e^{q V_{B E} / K T N_{E 2}}-1\right) \tag{2.44}
\end{equation*}
$$

(c) The Base Current Component $I_{B 3}$

Likewise, the current carried by holes extracted from the collector region can be evaluated by means of the static p-n junction theory. For the practicaltransistors, the reverse-biased collectorbase junction does not obey the "ideal" p-n junction theory. It is for this reason that a collector emission coefficient, N_{C} is introduced in a way similar to that for $I_{B 1}$ to account for the effects of surface recombination, recombination in the interfaces between substrate and epitaxial layers.

If the collector region is several diffusion length wide, this component is given by

$$
\begin{equation*}
I_{B 3}=I_{3}\left(e^{q V_{B C} / K T N_{C}}-1\right) \tag{2.45}
\end{equation*}
$$

Where I_{3} is considered as model parameter and its value can be determined experimentally.

In addition, it can be shown that $I_{B 3}$, in the active mode of transistor operation, is a negative quantity which agrees with the assumed direction of the carrier flow shown in Figure 2.6. Since the collector-base junction is reverse-biased, for large reverse-bias voltage, the exponential term ($\left.e^{q V_{B C} / K T N_{C}}\right)$ is sufficiently small compared with the unity in equation (2.45). This aut omatically implies that $I_{B 3}$ is a negative quantity. Nevertheless, without the loss of generality, $I_{B 3}$ is expressed in the form appearing in equation (2.45).

The base current components having been formulated, the base current can now be expressed in an explicit form as follows:

$$
\begin{align*}
I_{B E} & =I_{1}\left(e^{q V_{B E} / K T N_{E 1}}-1\right)+I_{2}\left(e^{q V_{B E} / K T N_{E 2}}-1\right) \tag{2.46}\\
I_{B C} & =I_{3}\left(e^{q V_{B C} / K T N_{C}}-1\right) \tag{2.47}\\
I_{B} & =I_{1}\left(e^{q V_{B E} / K T N_{E 1}}-1\right)+I_{2}\left(e^{q V_{B E} / K T N_{E 2}}-1\right) \\
& +I_{3}\left(e^{q V_{B C} / K T N_{C}} C-1\right) \tag{2.48}
\end{align*}
$$

2.2.3 Modelling the Collector Current

In this section, the collector current will be developed on the basis of a charge-control concept in conjunction with the mathematical theory of the $\mathrm{p}-\mathrm{n}$ junction. (a) The Principal Current $I_{C C}$

In order to implement the derivation of $I_{C C}$ in a simple fashion, the following important assumptions are made:
(i) The diffusion constant, D and the mobility, J of the carriers are related through Einstein relationship, that is,

$$
\begin{equation*}
D=\frac{K T}{q} \mu \tag{2.49}
\end{equation*}
$$

(ii) The built-in field E, and the built-in potential ϕ (in units of Boltzmann voltage), being functions of distance from the collector, are related by

$$
\begin{equation*}
E(x)=-\frac{K \Gamma}{q} \cdot \frac{d \phi(x)}{d x} \tag{2.50}
\end{equation*}
$$

(iii) The velocity-field relation is idealized by the field dependent mobility expression, that is,

$$
\begin{equation*}
\mu=\frac{\mu_{o}}{1+\frac{\mu_{o}|E(x)|}{V s}} \tag{2.51}
\end{equation*}
$$

By assumption (i), the low field mobility, No_{o} is equal to $q D_{0} / K T$ in which Do is the corresponding diffusion constant. $|E|$ is the magnitude of the built-in field and $V s$ is the scattering-limited velocity approximately equal to $10^{7} \mathrm{~cm} / \mathrm{sec}$.
(iv) The low-field mobility, Ho is independent of doping of the background material.
(v) The electric fields are low enough for a valanche multiplication of carriers to be negligible.

As a starting point, the carrier transport equation(28) describing the electron current density $J e(x)$ carried by the injected carriers (electrons) from the emitter through the base to the collector is

$$
\begin{equation*}
J e(x)=q \operatorname{JeE}(x) n(x)+q D e \frac{d n(x)}{d x} \tag{2.52}
\end{equation*}
$$

Since the electron current density $\operatorname{Je}(x)$ is a function of distance, a quantity $R(x)$, which is a ratio of the current density at position x to the principal current density Jcc entering the collector terminal, is defined by

$$
\begin{equation*}
R(x)=\frac{\mathrm{Je}(x)}{\mathrm{Jcc}} \tag{2.53}
\end{equation*}
$$

Application of appropriate subscript "e" representing

$$
\text { electron to the parameters } D, \mu \text {, Do and Ho in equations }(2.49),(2.50)
$$ and (2.51) and substitution of those equations into equation (2.52)

yield

$$
\begin{equation*}
\frac{d n(x)}{d x}-n(x) \frac{d \phi(x)}{d x}-\frac{\operatorname{JccR}(x)}{\operatorname{KT}\left[\frac{\operatorname{Deo}}{\left.1+\frac{\operatorname{Deo}|E(x)|}{V_{s}}\right]}\right]}=0 \tag{2.54}
\end{equation*}
$$

Further simplification of equation (2.54) leads to,

$$
\begin{equation*}
\frac{d n(x)}{d x}-n(x) \frac{d \phi(x)}{d x}-\frac{J c c}{q D e o} R(x)-\frac{J c c}{q V s}\left|\frac{d \phi(x)}{d x}\right| R(x)=0 \tag{2.55}
\end{equation*}
$$

In order to solve the differential equation (2.55), the specified upper and lower limits for the integral are required. They are x_{1} and x_{2} which are arbitrary but confined in a feasible region of integration. Nultiplication of both sides of equation (2.55) by $e^{-\phi(x)}$ and integration from x_{1} to x_{2} with respect to x, give

$$
\begin{align*}
& \int_{x_{1}}^{x_{2}} \frac{d n(x)}{d x}\left(e^{-\phi(x)}\right) d x-\int_{x_{1}}^{x_{2}} n(x) \frac{d \phi(x)}{d x}\left(e^{-\phi(x)}\right) d x \\
& -\frac{J c c}{q \operatorname{Deo}} \int_{x_{1}}^{x_{2}} R(x)\left(e^{-\phi(x)}\right) d x-\frac{J c c}{q V s} \int_{x_{1}}^{x_{2}} R(x)\left|\frac{d \phi(x)}{d x}\right|\left(e^{-\phi(x)}\right) d x=0
\end{align*}
$$

Application of integral calculus technique to first two terms of equation (2.56), yields

$$
\begin{align*}
& \int_{x_{1}}^{x_{2}} \frac{d n(x)}{d x}\left(e^{-\phi(x)}\right) d x+\left[\left.n(x)\left(e^{-\phi(x)}\right)\right|_{x_{1}} ^{x_{2}}-\int_{x_{1}}^{x_{2}} \frac{d n(x)}{d x}\left(e^{-\phi(x)}\right) d x\right] \\
& -\frac{J c c}{q \operatorname{Deo}} \int_{x_{1}}^{x_{2}} R(x)\left(e^{-\phi(x)}\right) d x-\frac{J c c}{q V s} \int_{x_{1}}^{x_{2}} R(x)\left|\frac{d \phi(x)}{d x}\right|\left(e^{-\phi(x)}\right) d x=0
\end{align*}
$$

or

$$
\begin{align*}
& n\left(x_{2}\right)\left(e^{-\phi\left(x_{2}\right)}\right)-n\left(x_{1}\right)\left(e^{-\phi\left(x_{1}\right)}\right)= \\
& \frac{\operatorname{Jcc}}{q \operatorname{Deo}} \int_{x_{1}}^{x_{2}} R(x)\left(e^{-\phi(x)}\right) d x+\frac{J c c}{q V s} \int_{x_{1}}^{x_{2}} R(x)\left|\frac{d \phi(x)}{d x}\right|\left(e^{-\phi(x)}\right) d x
\end{align*}
$$

Since equation (2.57a) is valid for any region defined by x_{1} and x_{2}, x_{1} and x_{2} can be chosen to be x_{C} and x_{E} respectively, where x_{C} and X_{E} are the outside edges of space-charge regions of collector-base and emitter-base junctions respectively. This is done in agreement with the assumed convention of current flow in Figure 2.6, i.e. the direction of flow of the principal current, $I_{C C}$ is positive while flowing from the collector to the emitter and its direction is opposite to that of the flow of its carriers (electrons).

Hence,

$$
\begin{align*}
& n\left(x_{E}\right)\left(e^{-\phi\left(x_{E}\right)}\right)-n\left(x_{C}\right)\left(e^{-\phi\left(x_{C}\right)}\right)= \\
& \frac{J c c}{q \operatorname{Deo}} \int_{x_{C}}^{x_{E}} R(x)\left(e^{-\phi(x)}\right) d x+\frac{J c C}{q V S} \int_{x_{C}}^{x_{E}} R(x)\left|\frac{d \phi(x)}{d x}\right|\left(e^{-\phi(x)}\right) d x \tag{2.57b}
\end{align*}
$$

The Boltzmann relation gives,

$$
\begin{equation*}
n(x)=n_{i}\left(e^{\phi(x)-\phi_{n}(x)}\right) \tag{2.58}
\end{equation*}
$$

At the outside edges of the space-charge regions of the emitter-base and the collector-base junctions, equation (2.58) becomes

$$
\begin{align*}
& n\left(x_{C}\right)=n_{i}\left(e^{\phi\left(x_{C}\right)-\phi_{n}\left(x_{C}\right)}\right) \tag{2.58a}\\
& n\left(x_{E}\right)=n_{i}\left(e^{\phi\left(x_{E}\right)-\phi_{n}\left(x_{E}\right)}\right) \tag{2.58b}
\end{align*}
$$

Substitution of equations (2.58a) and (2.58b) into equation (2.57b) and simplification of the resulting equation gives,

$$
J_{C C}=\frac{q D_{e o n_{i}}^{2}\left(e^{-\phi_{n}\left(x_{E}\right)}-e^{-\phi_{n}\left(x_{C}\right)}\right)}{\int_{x_{C}}^{x_{E}} R(x)_{n_{i}}\left(e^{-\phi(x)}\right) d x+\frac{n_{i} D_{e o}}{V_{S}} \int_{x_{C}}^{x_{E}} R(x)\left|\frac{d \phi(x)}{d x}\right|\left(e^{-\phi(x)}\right) d x}(2.59)
$$

Owing to lack of details in the function behaviour of $\phi(x)$ appearing in both terms of the denominator of equation (2.59), the assessment of the relative magnitude of these terms is necessary so as to show that the second term is much less than the first term and hence the second term is negligible. With reference to Figure 2.7, it can be realized that, inside the base region, there exists a

$\begin{aligned} \mathrm{O}= & \text { Space-Charge } \\ & \text { Region }\end{aligned}$

Figure 2.7 The Distribution of the Internal
Potentials Corresponding to the
Intrinsic Fermi-level of an $\mathrm{N}-\mathrm{P}-\mathrm{N}$
Transistor
maximum built-in potential, ϕ_{m} at $x_{m} . \phi_{m}\left(=\phi\left(x_{m}\right)\right)$ can have a finite value. Similarly, $R(x)$ can have a value $R_{m}\left(=R\left(x_{m}\right)\right.$, corresponding to ϕ_{m}, which is also a finite value. Furthermore, in the base region, $\phi(x)$ and $R(x)$ do not differ markedly from ϕ_{m} and R_{m} respectively, the first integral then becomes,

$$
\begin{align*}
\int_{x_{C}}^{x_{E}} R(x) n_{i}\left(e^{-\phi(x)}\right) d x & \doteq R_{m} B_{i}\left(e^{-\phi_{m}}\right) \int_{x_{C}}^{x_{E}} d x \\
& \doteq W_{B} R_{m} n_{i}\left(e^{-\phi_{m}}\right) \tag{2.60}
\end{align*}
$$

and the second integral becomes,

$$
\frac{n_{i} D_{e o}}{V_{S}} \int_{x_{C}}^{x_{E}} R(x)\left|\frac{d \phi(x)}{d x}\right|\left(e^{-\phi(x)}\right) d x \doteq \frac{D_{e o} n_{i} R_{m}}{V_{s}}\left(e^{-\phi} \boldsymbol{m}_{m^{\prime}}^{x_{C}} \int_{x_{E}}^{x_{E}} d|\phi(x)|\right.
$$

$$
\begin{align*}
& \doteq \frac{D_{e o}}{V_{s}}\left[\left|\phi\left(x_{E}\right)\right|-\left|\phi\left(x_{C}\right)\right|\right] R_{m} n_{i}\left(e^{-\phi_{m}}\right) \\
& \doteq \frac{D_{e o}}{v_{s}} \Delta|\phi| R_{m} n_{i}\left(e^{-\phi_{m}}\right) \tag{2.61}
\end{align*}
$$

Also, in the base region between X_{E} and x_{C}, the potential $\left|\phi\left(x_{E}\right)\right|$ does not differ markedly from $\left|\phi\left(x_{C}\right)\right|$ but they are close to each other in magnitude. $\Delta|\phi|$ is approaching to an infinitesimal value. The value of ($\mathrm{D}_{\mathrm{e}} / \mathrm{V}_{\mathrm{S}}$) is approximately equal to 100 A which is small compared with the base width W_{B} of the most advanced transistors at the present time. Hence, the second integral in the rest of the derivation can be neglected. Equation (2.59) then becomes,

$$
\begin{equation*}
J_{C C}=\frac{q D_{e o_{i}}{ }^{2}\left(e^{-\phi_{n}\left(x_{E}\right)}-e^{-\phi_{n}\left(x_{C}\right)}\right)}{\int_{x_{C}}^{x_{E}} R(x) n_{i}\left(e^{-\phi(x)}\right) d x} \tag{2.62}
\end{equation*}
$$

If the quasi-Fermi-level of holes in the base region is assumed to be constant, the corresponding electrostatic potential of holes, \oint_{pB} will be constant. The emitter-base and collector-base junction voltages can be defined by the differences of the electrostatic potentials across the junctions. That is,

$$
\begin{equation*}
v_{B E}=\frac{\mathrm{KT}}{\mathrm{q}}\left(\phi_{\mathrm{pB}}-\phi_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{E}}\right)\right) \tag{2.63}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{V}_{\mathrm{BC}}=\frac{\mathrm{KT}}{\mathbf{q}}\left(\phi_{\mathrm{pB}}-\phi_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{C}}\right)\right) \tag{2.64}
\end{equation*}
$$

or

$$
\begin{align*}
& -\phi_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{E}}\right)=\frac{q}{\mathrm{KT}} \mathrm{v}_{\mathrm{BE}}-\phi_{\mathrm{pB}} \tag{2.63a}\\
& -\phi_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{C}}\right)=\frac{q}{\mathrm{KT}} \mathrm{v}_{\mathrm{BC}}-\phi_{\mathrm{pB}} \tag{2.64a}
\end{align*}
$$

The junction voltages, $V_{B E}$ and $V_{B C}$ are positive quantities differing from the terminal junction voltages by ohmic drops.

> Substitution of equations (2.63a) and (2.64a) in equation (6.62) gives,

$$
\begin{equation*}
J_{C C}=\frac{q D_{e o} n_{i}^{2}\left(e^{q V_{B E} / K T}-e^{q V_{B C} / K T}\right)}{\int_{x_{C}}^{x_{E}} R(x) n_{i}\left(e^{\emptyset_{p B}-\phi(x)}\right) d x} \tag{2.65}
\end{equation*}
$$

Again, substitution of equation (2.66), the Boltzmann
relation

$$
\begin{equation*}
p_{B}(x)=n_{i}\left(e^{\phi_{p B}-\phi(x)}\right) \tag{2.66}
\end{equation*}
$$

in equation (2.65) gives,

$$
\begin{equation*}
J_{C C}=\frac{q D_{e o} n_{i}^{2}\left(e^{q V_{B E} / K T}-e^{q V_{B C} / K T}\right)}{\int_{x_{C}}^{x_{E}} R(x) p_{B}(x) d x} \tag{2.67}
\end{equation*}
$$

If an average value of $R(x)$ is defined by,

$$
\begin{equation*}
(R)_{\text {ave }}=\frac{\int_{x_{C}}^{x_{E}} R(x) p_{B}(x) d x}{\int_{x_{C}}^{x_{E}} p_{B}(x) d x} \tag{2.68}
\end{equation*}
$$

then the expression in the denominator of equation (2.67) becomes,

$$
\begin{align*}
\int_{\mathbf{x}_{C}}^{x_{E}} R(x) p_{B}(x) d x & =(R) \text { ave } \int_{x_{C}}^{x_{E}} p_{B}(x) d x \\
& =(R) \text { ave }\left(\frac{q_{B}}{q}\right) \tag{2.69}
\end{align*}
$$

with q_{B} termed the base charge density (i.e. the base charge per unit area) in units of electric charge q, defined by the integration of hole density (in units of per volume) over the region from X_{C} to x_{E} with respect to x.

If the base charge and current densities are changed to the total base charges and current in accordance with the sign convention in Figure 2.6, then

$$
\begin{align*}
& \mathrm{I}_{\mathrm{CC}}=\mathrm{J}_{\mathrm{CC}} \mathrm{~A}_{J} \tag{2.70}\\
& \mathbf{Q}_{B}=\mathbf{q}_{B} A_{J} \tag{2.71}
\end{align*}
$$

where A_{J} is the device junction cross-sectional area, either $A_{J E}$ or $A_{J C}$ whichever is smaller.

Substitution of equations (2.69) to (2.71) inclusive into equation (2.67) yields,

$$
\begin{equation*}
I_{C C}=\frac{\left(q A_{J} n_{i}\right)^{2} D_{e_{0}}\left(e^{q V_{B E} / K T}-e^{q V_{B C} / K T}\right)}{Q_{B}(R)} \tag{2.72}
\end{equation*}
$$

For large current gain (i.e. $h_{F E} \gg 1$), (R) ave is nearly unity and varies little with bias. Equation (2.72) then reduces to

$$
\begin{equation*}
I_{C C}=\frac{\left(q A J_{i}\right)^{2} D_{e O}}{Q_{B}}\left(e^{q V_{B E} / K T}-e^{q V_{B C} / K T}\right) \tag{2.72a}
\end{equation*}
$$

At zero-bias condition, the total amount of base charges, denoted by $\mathcal{Q}_{B O}$ is approximately given by

$$
\begin{equation*}
Q_{B 0} \doteq q^{A} J_{B} \tag{2.73}
\end{equation*}
$$

Where the sign of $Q_{B O}$ is in agreement with that of the total number of impurities (excess acceptor for p-type base region), N_{B} per unit
area in the base.
Substitution of equation (2.73) in equation (2.72a) gives,

$$
\begin{equation*}
I_{C C}=\frac{q A_{J} n_{i}^{2} D_{e O}}{N_{B}}\left(e^{q V_{B E} / K T}-e^{q V_{B C} / K T}\right) \frac{Q_{B O}}{Q_{B}} \tag{2.74}
\end{equation*}
$$

If the quantity $\left(\left(q_{A} n_{i}{ }^{2} \mathrm{D}_{\mathrm{eo}}\right) / \mathrm{N}_{\mathrm{B}}\right)$ is interpreted as an intercept current, denoted by I_{S}, equation (2.74) can be written as,

$$
\begin{equation*}
I_{C C}=I_{S}\left(e^{q V_{B E} / K T}-e^{q V_{B C} / K T}\right) \frac{Q_{B O}}{Q_{B}} \tag{2.75}
\end{equation*}
$$

Equation (2.75) defines the principal current in which the intercept current can be deterinined experimentally.
(b) The Base Charge Q_{B}

The principal current, $I_{C C}$ can be separated into an emitter and a collector component or a forward and a reverse component, I_{F} and I_{R}, as follows:

$$
\begin{align*}
I_{C C} & =\frac{I_{S} Q_{B O}}{Q_{B}}\left(e^{q V_{B E} / K T} \cdot-1\right)-\frac{I_{S} Q_{B O}}{Q_{B}}\left(e^{q V_{B C} / K T}-1\right) \\
& =I_{F}-I_{R} \tag{2.76}
\end{align*}
$$

thence

$$
\begin{equation*}
I_{F}=\frac{I_{S} Q_{B O}}{Q_{B}}\left(e^{q V_{B E} / K T}-1\right) \tag{2.76a}
\end{equation*}
$$

$$
\begin{equation*}
\left(-I_{R}\right)=\frac{I_{S} Q_{B O}}{Q_{B}}\left(e^{q V_{B C} / K T}-1\right) \tag{2.76b}
\end{equation*}
$$

The total base charge, Q_{B} represents the sum of the zerobias base charge, $Q_{B O}$, the excess stored charges Q_{E} and Q_{C} associated with the emitter-base and collector-base junction space-charge capacitances, and the negative charges, $\tau_{F} I_{F}$ (due to the injected electrons from the emitter while the transistor is in normal operation) and $\tau_{R}\left(-I_{R}\right)$ (due to the injected electrons from the collector while the transistor operates in an reverse mode). That is,

$$
\begin{equation*}
Q_{B}=Q_{B O}+Q_{E}+Q_{C}+(B P) I_{F} \tau_{F}+\left(-I_{R}\right)\left(-\tau_{R}\right) \tag{2.77}
\end{equation*}
$$

It should be noted, in equation (2.77) that at low-level injection condition, the base "push-out" factor, BP can be taken as unity since the base-width is approximately equal to the metallurgical base-width. At high levels, when base "push-out" occurs, BP is greater than unity. For details, reference(22) can be referred to.

In the modelling of the base charge, accuracy and simplicity may be traded. For a simple representation, the base "push-out" factor may be assumed to be unity, and the emitter-base and collector-base space-charge region capacitances C_{E} and C_{C}, and the forward and the reverse transit times τ_{F} and τ_{R}, are assumed to be constant in equation (2.77). The assumed value of BP equal to unity leads to the rapid falloff of the d.c. comnon-emitter current gain, $h_{F E}$ at ingh
collector current levels due to the rapid increase of Q_{B}. The assumption of constant emitter-base and collector-base space-charge region capacitances means that the modelling equations for Q_{E} and Q_{C} are linear functions of the emitter-base and collector-base junction voltages respectively. That is,

$$
\begin{align*}
& C_{E}=\frac{d Q_{E}}{d V_{B E}} \tag{2.78}\\
& \mathcal{Q}_{E}=\int C_{E} d V_{B E}=C_{E} V_{B E} \tag{2.78a}\\
& C_{C}=\frac{d Q_{C}}{d V_{B C}} \tag{2.79}\\
& Q_{C}=\int C_{C} d V_{B C}=C_{C} V_{B C} \tag{2.79a}
\end{align*}
$$

The above assumptions afford significant simplification in modelling the base charge. If the properly averaged values of $\tau_{\mathrm{F}},{ }^{\tau_{R}}, \mathrm{C}_{\mathrm{E}}$ and C_{C} are obtained, the errors due to these assumptions are not expected to exceed a few percent for typical situations.

The minus sign before τ_{R} appearing in equation (2.77)
arises because the total base charge contains holes neutralizing the negative charges, $\tau_{F} I_{F}$ and $\tau_{R} I_{R}$.

For modelling Q_{B}, it is convenient to normalize all charges
in equation (2.77) with respect to the zero-bias base charge, $Q_{B O}$ and replace I_{F} and ($-I_{R}$) in accordance with equations (2.76a) and (2.76b), thence

$$
\begin{equation*}
q_{b}=1+q_{e}+q_{c}+\frac{I_{S}}{q_{b} Q_{B 0}}\left(\tau_{F}\left(e^{q V_{B E} / K T}-1\right)+\tau_{R}\left(e^{q V_{B C} / K T}-1\right)\right) \tag{2.80}
\end{equation*}
$$

For convenience, let

$$
\begin{align*}
& q_{1}=1+q_{e}+q_{c} \tag{2.81}\\
& q_{2}=\frac{I_{S}}{Q_{B 0}}\left(\tau_{F}\left(e^{q V_{B E} / K T}-1\right)+\tau_{R}\left(e^{q V_{B C} / K T}-1\right)\right) \tag{2.82}
\end{align*}
$$

Solution to equation (2.80) for q_{b}, gives

$$
\begin{equation*}
q_{b}=1 / 2\left(q_{1}\right)+\left(\left(q_{1} / 2\right)^{2}+q_{2}\right)^{1 / 2} \tag{2.83}
\end{equation*}
$$

Multiplication of equation (2.83) by $Q_{B 0}$, yields

$$
\begin{equation*}
\left.Q_{B}=Q+\sqrt{Q^{2}+\frac{I_{S}}{Q_{B 0}-1}\left(\tau_{F}\left(e^{q V_{B E} / K T}-1\right)+\tau_{R}\left(e^{q V_{B C} / K T}-1\right)\right.}\right) \tag{2.84}
\end{equation*}
$$

Where $Q=1 / 2\left(q_{1} Q_{B O}\right)$

Substitution of equations (2.78a), (2.79a) and (2.81) into equation (2.85) yields,

$$
\begin{equation*}
Q=\frac{Q_{B O}+V_{B E} C_{E}+V_{B C} C_{C}}{2} \tag{2.86}
\end{equation*}
$$

The principal current, $I_{C C}$ is therefore defined by equations (2.75), (2.84) and (2.86). According to equation (2.35), the collector terminal current can be expressed as,

$$
\begin{equation*}
I_{C}=I_{S}\left(e^{q V_{B E} / K T}-e^{q V_{B C} / K T}\right) \frac{Q_{B 0}}{Q_{B}}-I_{3}\left(e^{q V_{B C} / K T N_{C}}-1\right) \tag{2.87}
\end{equation*}
$$

with Q_{B} defined by equations (2.84) and (2.86).
Eventually, the defining equation for the terminal emitter current is unnecessary, since it is not independent and can be obtained by Kirchhoff's current law, i.e. $I_{E}=-\left(I_{B}+I_{C}\right)$ on the basis of the assumed current directions in Figure 2.6.

Equations (2.48) and (2.87) are used to define the abbreviated Gummel-Poon model of the intrinsic portion of the transistor.

2.2.4 The Emitter, Collector and Base Resistances

(a) The Emitter and Collector Resistances R_{E} and R_{C}

To the intrinsic transistor model described, the series resistances of the emitter and collector should be included to
account for the finite resistivities of the semiconductor materials of those regions. In a way similar to that in the modified EbersMoll models, the series resistances can be modelled to a first order approximation by the lumped resistors having constant values in series with the emitter and collector leads respectively. The values of these series resistances can be determined experimentally.
(b) The Base Resistance $R_{B T}$

In view of the lateral current flows in the base region, the base region can be divided into two regions of interest: (i) the inactive base region, under the base contact, through which the total base current must flow and (ii) the active base region, under the emitter, through which the minority carrier current flows longitudinally. Hence, the base resistance should be the combination of two resistances which account for the effect of the voltage drops in the inactive and active base regions respectively.

The inactive base resistance, $R_{B I}$ can be simulated by a fixed resistor in series with the base lead since the total base current must flow through the inactive base region and the current path is through the material of finite conductivity.

The active base resistance, $R_{B A}$ is a variable because of conductivity modulation of the active base region. From the chargecontrol concept, the active base resistance can be modelled as a function of the base charge. For circular geometry and non-uniform base layer of the device, $R_{B A}$ is given(29) by

$$
\begin{equation*}
R_{B A}=\frac{1}{8 \pi q \mu_{h} \int_{x_{C}}^{x_{E}} N(x) d x} \tag{2.88}
\end{equation*}
$$

Where $N(x)$ is the excess acceptor density in the base region as a function of distance x.

If $N(x) \gg n_{i}$, it is true that $p(x) \doteq N(x)$. Hence,

$$
\begin{equation*}
R_{B A}=\frac{1}{8 \pi q \mu_{h} \int_{x_{C}}^{x_{E}} p(x) d x} \tag{2.89}
\end{equation*}
$$

As stated in the previous section, the $\int_{x_{C}}^{x_{E}} p(x) d x$ gives the total base charge, q_{B} per unit area in units of ${ }^{C}$ electric charge, q. Therefore,

$$
\begin{equation*}
R_{B A}=\frac{1}{8 \pi q \mu_{h}\left(q_{B} / q\right)}=\frac{1}{8 \pi \mu_{h} q_{B}} \tag{2.90}
\end{equation*}
$$

Multiplication of q_{B} by A_{J} gives

$$
\begin{equation*}
R_{B A}=\frac{A_{J}}{8 \pi \mu_{h} Q_{B}} \tag{2.91}
\end{equation*}
$$

At zero-bias condition, equation (2.91) becomes,

$$
\begin{equation*}
\mathbf{R}_{\mathrm{BAO}}=\frac{\mathrm{A}_{\mathrm{J}}}{8 \pi \mathrm{H}_{\mathrm{h}} \mathrm{Q}_{\mathrm{BO}}} \tag{2.92}
\end{equation*}
$$

Where $R_{B A 0}$ is the inactive base resistance at zero-bias condition. Combination of equations (2.91) and (2.92) yields,

$$
\begin{equation*}
R_{B A}=R_{B A 0} \frac{Q_{B 0}}{Q_{B}} \tag{2.93}
\end{equation*}
$$

with $R_{\text {BA } 0}$ defined by equation (2.92) which is considered as one of the intrinsic model parameters because it accounts for the effect in the active base region.

The total base resistance, $R_{B T}$ is therefore given by,

$$
\begin{equation*}
R_{B T}=R_{B I}+R_{B A O} \frac{Q_{B O}}{Q_{B}} \tag{2.94}
\end{equation*}
$$

The total number of parameters of the abbreviated GummelPoon model is sixteen which are $I_{1}, I_{2}, I_{3}, I_{S}, N_{C}, N_{E 1}, N_{E 2},{ }^{\tau}{ }_{F},{ }^{\tau}{ }_{\mathrm{a}}$, $C_{C}, C_{E,} Q_{B 0}, R_{B A O}, R_{B I}, R_{E}$ and R_{C}. The circuit representation of the model is shown in Figure 2.8 .

Figure 2.8 Circuit Representation of the Abbreviated Gummel-Poon Model

CHAPTER ITI

DETERMINAT ION OF MODEL PARAMETERS

Transistor models have been presented in Chapter II. The detailed methods for determination of both intrinsic (including static and transient charge-control parameters) and extrinsic (including series resistances of the emitter, collector and inactive base regions) model parameters are presented in this chapter. The sample transistor chosen for measurements is a type 2N1613, $n-p-n$ silicon, double-diffused, annular structural configuration, for high-speed switching and d. c. to U.H.F. amplifier applications.

Some of the geometric dimensions of the transistor structure are obtained microscopically.

All electrical measurements are carried out at room temperature of $25^{\circ} \mathrm{C}$ (or $298^{\circ} \mathrm{K}$) and measured values are expressed in M.K.S. units.
3.1 THE PARAMETERS OF THE MODIFIED EBERS-MOLL MODELS

Since the model parameters of the three modified Ebers-Moll models are basically the same, the separate evaluation of parameters of each model will not be presented. All the model parameters are determined experimentally.

3.1.1 The Intrinsic Model Parameters

There are six intrinsic model parameters, viz. $I_{E S}, I_{C S}$, λ_{E} or $\theta_{E}\left(\Rightarrow M_{E}\right), \lambda_{C}$ or $\theta_{C}\left(\Rightarrow M_{C}\right), \alpha_{F}$ and α_{R} to be determined.

(a) Emitter-Junction Short-Circuit Reverse-Saturation Current, $I_{E S}$,

 Emitter-Junction Exponential Factor, λ_{E}, Emitter-Junction Constant, θ_{E} and Emitter-Junction Emission Constant, M_{E}In view of equation (2.11) or (2.19) or (2.29), I_{ES} can be determined from the active region measurements of the emitterbase terminal junction voltage as a function of emitter current with zero collector-base terminal junction voltage. The equation on which this measurement is based is,

$$
\begin{equation*}
\left|I_{E}\right|=I_{E S}\left(e^{\lambda_{E} V_{B E}}-1\right) \tag{3.1}
\end{equation*}
$$

The test configuration used in obtaining this measurement is shown in Figure 3.1. The measured data are listed in Table 3-1.

Figure 3.2 shows a semi-log plot of $\left|I_{E}\right|$ versus $V_{B E}$ in which the intercept current obtained by extrapolation from the high current region of this plot gives the value of $I_{E S}$. Besides the graphical extrapolation, analytical manipulation is also available, hence the graphically obtained value of $I_{E S}$ is not shown in Figure 3.2. The slope of the straight line portion yields the value of λ_{E} (or θ_{E}) from which M_{E} can be obtained.

Figure 3.1 Test Configuration for determination of $I_{E S}$

$I_{\mathrm{B}}(\mathrm{A})$	$\nabla_{\mathrm{BE}}(\mathrm{V})$	$I_{\mathrm{B}}(\mathrm{A})^{*}$
1.00×10^{-6}	0.4284	--
2.00×10^{-6}	0.4448	--
5.00×10^{-6}	0.4696	--
8.00×10^{-6}	0.4825	--
1.00×10^{-5}	0.4881	--
2.00×10^{-5}	0.5079	--
5.00×10^{-5}	0.5345	--
8.00×10^{-5}	0.5475	--
1.00×10^{-4}	0.5538	--
2.00×10^{-4}	0.5731	--
5.00×10^{-4}	0.5975	--
8.00×10^{-4}	0.5098	--
1.00×10^{-3}	0.6157	--
2.00×10^{-3}	0.5350	--
5.00×10^{-3}	0.6618	--
8.00×10^{-3}	0.6765	--
1.00×10^{-2}	0.6829	--
2.00×10^{-2}	0.7025	--
3.00×10^{-2}	0.7176	--
4.00×10^{-2}	0.7290	--
8.00×10^{-2}	0.7650	--
1.00×10^{-1}	0.7881	2.05×10^{-3}

Table 3-1 I_{E} versus $V_{B E}$ for $V_{B C}=0$ volt

* For use in determining the inactive base resistance, R_{B}

$$
\begin{align*}
& \text { Calculations of } I_{E S}, \lambda_{E}, \theta_{E} \text { and } M_{E} \\
& \lambda=\frac{q}{K T}=38.9 \text { volts }^{-1} \tag{3.2}
\end{align*}
$$

Choose two data points shown below from Figure 3.2 (or Table 3-1). These points should be chosen in the microampere region to avoid the effect of ohmic drops due to the resistances of the transistor neutral regions.

$$
\begin{array}{ll}
\left|\mathrm{I}_{\mathrm{E} 2}\right|=10^{-2} \mathrm{~A} . & \mathrm{V}_{\mathrm{BE} 2}=0.6829 \mathrm{volt} \\
\left|\mathrm{I}_{\mathrm{E} 1}\right|=10^{-6} \mathrm{~A} . & \mathrm{V}_{\mathrm{BE} 1}=0.4284 \mathrm{volt}
\end{array}
$$

Use of equation (3.1) gives,

$$
\lambda_{E}=\frac{\ln \left(\left|\mathrm{I}_{\mathrm{E} 2}\right| /\left|\mathrm{I}_{\mathrm{E} 1}\right|\right)}{\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}}=36.2 \text { volts }{ }^{-1}
$$

Likewise,

$$
\theta_{E}=36.2 \text { volts }^{-1}
$$

The value of M_{E} is given by

$$
M_{E}=\frac{K T}{q} \lambda_{E}=1.075
$$

The value of $I_{E S}$ is given by

$$
I_{E S}=\frac{\left|I_{E 2}\right|}{e^{\lambda_{E} V_{B E 2}-1}}=\underline{1.6 \times 10^{-13}} \mathrm{~A} .
$$

(b) Collector-Junction Short-Circuit Reverse-Saturation Current, $I_{C S}$, Collector-Junction Exponential Factor, λ_{C} Collector-Junction Constant, θ_{C} and Collector-Junction Emission Constant, M_{C} By using equation (2.12) or (2.20) or (2.30), $I_{C S}$ can be determined from the measurement of the collector-base terminal junction voltage as a function of collector current under the condition that the transistor operates in the reverse mode with zero base-emitter terininal junction voltage. The equation on which this measurement is based is,

$$
\begin{equation*}
I_{C}=I_{C S}\left(e^{\lambda_{C} V_{B C}}-1\right) \tag{3.3}
\end{equation*}
$$

By means of the same measurement techniques employed in Section (a) with test configuration shown in Figure 3.3, the measured data are obtained and listed in Table 3-2. The semi-log plot of I_{C} versus $V_{B C}$ is shown in Figure 3.4.

Similarly, the analytical manipulation for obtaining the values of $I_{C S},{ }^{\lambda} C,{ }^{C}$ and M_{C}, on the basis of two data points from Table 3-2 are given as follows:

Figure 3.3 Test Configuration for determination of $I_{\text {CS }}$

$I_{C}(A)$	$V_{B C}(V)$
1.00×10^{-6}	0.4033
2.00×10^{-6}	0.4237
5.00×10^{-6}	0.4507
8.00×10^{-6}	0.4653
1.00×10^{-5}	0.4715
2.00×10^{-5}	0.4922
5.00×10^{-5}	0.5195
8.00×10^{-5}	0.5335
1.00×10^{-4}	0.5399
2.00×10^{-4}	0.5600
5.00×10^{-4}	0.5874
8.00×10^{-4}	0.6029
1.00×10^{-3}	0.6105
2.00×10^{-3}	0.6350
5.00×10^{-3}	0.6776
8.00×10^{-3}	0.7052
1.00×10^{-2}	0.7166

Table 3-2 I_{C} versus $V_{B C}$ for $V_{B E}=0$ volt

Figure 3.4 Senilog Plot of I_{C} versus $V_{B C}$ for $V_{B E}=0$

Two data points chosen for calculation are:

$$
\begin{array}{ll}
I_{C 2}=5 \times 10^{-4} & A .
\end{array} \quad \mathrm{V}_{\mathrm{BC} 2}=0.5874 \text { volt }
$$

The calculation results are:

$$
\begin{aligned}
& \lambda_{C}=\underline{33.75} \text { volt }^{-1} \\
& \theta_{C}=\underline{33.75} \text { volt }-1 \\
& M_{C}=\underline{1.155} \\
& I_{C S}=1.18 \times 10^{-12} \mathrm{~A} .
\end{aligned}
$$

(c) D. C. Forward Short-Circuit Common-Base Current Gain, α_{F}
α_{F} can be determined as a function of emitter current for different values of base current, I_{B}. To obtain α_{F}, the test configuration of Figure 3.5 is utilized. The base current varies over a wide range from 50 nA to $500 \mu \mathrm{~A}$. The collector current corresponding to each value of I_{B} for fixed collector-emitter voltage is recorded. Knowing the collector and base currents, the emitter current is then calculated from $I_{E}=-\left(I_{C}+I_{B}\right) . \alpha_{F}$ is given by,

$$
\begin{equation*}
\alpha_{F}=-\frac{I_{C}}{I_{E}} \tag{3.4}
\end{equation*}
$$

Values of I_{B}, I_{C}, I_{E} and α_{F} are tabulated in Table 3-3. An averaged value of α_{F} 's equal to 0.9857 , over the base current ranging from $10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$ will be used as the constant parameter value in the ECAP II Ebers-Moll model to approximate the static characteristics over a wide range of base current of the transistor operation.

All the calculated values of α_{F} are listed in Table 3-3, to be used later in the SCEPTRE Ebers-Moll model.

The reason for utilizing the low collector-emitter voltage is to insure that the transistor is operating in the active mode so as to obtain the best possible fit of the Ebers-Moll models.
(d) D. C. Reverse Short-Circuit Common-Base Current Gain, α_{R}
α_{R} can be determined in a way similar to that employed in Section (c). The test configuration for use in determining α_{R} is shown in Figure 3.6. Table 3-4 shows the measured data and the values of α_{R} calculated by means of

$$
\begin{equation*}
\alpha_{R}=-\frac{I_{E}}{I_{C}} \tag{3.5}
\end{equation*}
$$

All those calculated values of α_{R} are useful for the SCEPTRE Ebers-Moll model and will be entered in a tabular form to the computer analysis program.

An averaged value of α_{R} 's equal to 0.5112 , over the base current ranging from $10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$ will be used as the constant. parameter value in the ECAP II Ebers-Moll model to approximate the

Figure 3.5 Test Configuration for determination of α_{F}

Figure 3.6 Test Configuration for determination of ${ }^{\alpha} R$

$I_{B}(A)$	$I_{C}(A)$	$-I_{E}=I_{B}+I_{C}$ (A)	$\alpha_{F}=-\left(I_{C} / I_{E}\right)$
5.00×10^{-8}	4.95×10^{-7}	5.45×10^{-7}	0.9082
1.00×10^{-7}	1.36×10^{-6}	1.46×10^{-6}	0.9315
2.00×10^{-7}	3.75×10^{-6}	3.95×10^{-6}	0.9494
5.00×10^{-7}	1.36×10^{-5}	1.41×10^{-5}	0.9645
1.00×10^{-6}	3.42×10^{-5}	3.52×10^{-5}	0.9716
2.00×10^{-6}	8.23×10^{-5}	8.43×10^{-5}	0.9763
5.00×10^{-6}	2.52×10^{-4}	2.57×10^{-4}	0.9805
1.00×10^{-5}	5.74×10^{-4}	5.84×10^{-4}	0.9828
4.00×10^{-5}	2.70×10^{-3}	2.74×10^{-3}	0.9854
6.00×10^{-5}	4.15×10^{-3}	4.21×10^{-3}	0.9857
1.20×10^{-4}	8.65×10^{-3}	8.77×10^{-3}	0.9863
5.00×10^{-4}	3.58×10^{-2}	3.63×10^{-2}	0.9862

Table 3-3 Measurement of $I_{B} \& I_{C}$ for use in determination of α_{F} at constant $V_{C E}=2$ volts

$I_{B}(A)$	$I_{E}(A)$	$-I_{C}=I_{B}+I_{E}$ (A)	$\alpha_{R}=-\left(I_{B} / I_{C}\right)$
5.00×10^{-8}	1.00×10^{-8}	6.00×10^{-8}	0.1667
1.00×10^{-7}	3.00×10^{-8}	1.30×10^{-7}	0.2308
2.00×10^{-7}	7.00×10^{-8}	2.70×10^{-7}	0.2593
5.00×10^{-7}	2.40×10^{-7}	7.40×10^{-7}	0.3243
1.00×10^{-6}	5.70×10^{-7}	1.57×10^{-6}	0.3631
2.00×10^{-6}	1.34×10^{-6}	3.34×10^{-6}	0.4012
5.00×10^{-6}	3.95×10^{-6}	8.95×10^{-6}	0.4413
1.00×10^{-5}	8.90×10^{-6}	1.89×10^{-5}	0.4709
4.00×10^{-5}	4.19×10^{-5}	8.19×10^{-5}	0.5116
6.00×10^{-5}	6.40×10^{-5}	1.24×10^{-4}	0.5161
1.20×10^{-4}	1.33×10^{-4}	2.53×10^{-4}	0.5257
5.00×10^{-4}	5.02×10^{-4}	1.00×10^{-4}	0.5010

Table 3-4 Measurement of $I_{B} \& I_{E}$ for use in detemination of α_{R} at constant $V_{E C}=2$ volts
static characteristics over a wide range of base current of the transistor operation.
(e) The Coefficients of the Third Order Polynomials used to determine the D. C. Forward and Reverse Short-Circuit Common-Base Current

Gains

The coefficients $A_{0}, A_{1}, A_{2}, A_{3}, B_{0}, B_{1}, B_{2}$ and B_{3} can only be determined theoretically by means of curve-fitting techniques. The values of those coefficients are to be adjusted such that the shape of the curves described by the third order polynomials can best fit the shape of the curves of α_{F} versus I_{B} and α_{R} versus I_{B} defined by Tables 3-3 and 3-4 respectively. For curve-fitting technique, Section 3.2 .2 can be referred to. The initial values of A_{0}, $A_{1}, A_{2}, A_{3}, B_{0}, B_{1}, B_{2}$, and B_{3} are equal to unity. The error criteria for α_{F} and α_{R} are given by $\sum_{j=1}^{12}\left(\alpha_{F S j}-\alpha_{F j}\right)^{2}$ and $\sum_{j=1}^{12}\left(\alpha_{R S j}-\alpha_{R j}\right)^{2}$ respectively, where $\alpha_{F S}$ and $\alpha_{R S}$ are the simulated α_{F} and α_{R} calculated by using equations (2.27) and (2.28), and the modified Ebers-Moll model used in NET-1. Pattern Search is used to minimize the deviation (described by the error criteria) between the measured and the simulated current gains. The simulated current gains based on the optimal values of coefficients of two third order polynomials shown in Table 3-5 are given in Appendix C.

	For α_{F}		For α_{R}
A_{0}	0.839760	B_{0}	0.318899
A_{1}	0.268489	B_{1}	0.312386
A_{2}	0.143319	B_{2}	0.186316
A_{3}	-0.324963	B_{3}	-0.266397

TABLE 3-5 Values of Coefficients of two Third Order Polynomials used to determine α_{F} and α_{R}

3.1.2 The Extrinsic Model Parameters

There are three extrinsic parameters (i.e. $R_{E,} R_{C}$ and R_{B}). In the modified Ebers-Moll model employed in ECAP II, only R_{B} is included while the one in SCEPTRE, both R_{B} and R_{C} are included. All three are included in the modified Ebers-Moll model in NET-1.
(a) The Series Resistances of the Emitter and Collector Regions, R_{E} and R_{C}

A static method is used to determine these resistances. It is based on a model of the transistor consisting of an ideal device whose paths have no resistances with additional path resistances shown in Figures 3.7 and 3.8.

The basic principal used to develop this measuring technique is that when a base current is supplied to the base terminal and one of the other two terminals is left open-circuited, then with reference to Figure 3.7, the terminal collector-emitter voltage is given by,
for $I_{C}=0, \quad V_{C^{\prime} E^{\prime}}=V_{C E}+I_{B} R_{E}$
and a plot of $V_{C^{\prime}}$, versus I_{B} in Figure 3.9 yields the value of R_{E}, the slope of the linear portion of this plot.

Similarly, with reference to Figure 3.8 , the terminal
emitter-collector voltage is given by,
for $I_{E}=0, \quad V_{E^{\prime} C^{\prime}}=V_{E C}+I_{B} R_{C}$

Figure 3.7 Test Configuration for determination of R_{E}

Figure 3.8 Test Configuration for determination of R_{C}
$V_{C^{\prime} E^{\prime}}(m V)$
30

$$
\text { Figure } 3.9 \quad I_{B} \text { versus } V_{C^{\prime}} E^{\prime} \text { for } I_{C}=0
$$

The value of R_{C} is given by the slope of the linear portion of the $\mathbf{V}_{\text {E'C }}$ versus I_{B} plot in Figure 3.10.

The measured data are shown in Tables 3-6 and 3-7 respective1y. The estimated value of R_{E} and R_{C} are equal to 0.0724 ohm and 0.291 ohm respectively.
(b) The Series Resistance of the Base Region, R_{B}

Based on the assumption that R_{E} is small enough to be negligible (actually, ${\underset{E}{E}}=0.0724$ ohm is sufficiently small compared with R_{B}), R_{B} can be determined from the $V_{B E}$ versus $\log I_{E}$ plot in Figure 3.2. At high emitter current levels, this curve deviates from the straight line partion of the curve valid at lower current levels. The deviation at high current levels can be ascribed to the effect of R_{B}. Hence, R_{B} can be calculated from,

$$
\begin{equation*}
R_{B}=\frac{\Delta V}{I_{B}} \tag{3.8}
\end{equation*}
$$

where ΔV is the difference between the measured emitter-base drop and the value extrapolated from the straight line portion of the plot at low current levels.

The calculation of R_{B} based on the data obtained from Figure 3.2 and Table 3-1, is as follows:

At $I_{B}=2.05 \mathrm{~mA}$, while $I_{E}=100 \mathrm{~mA}$

$$
\Delta V=0.788-0.746=0.042 \text { volt }
$$

Hence, $R_{B}=20.49$ ohms

$I_{B}(\mathrm{~mA})$	$\mathrm{V}_{\text {C }}{ }^{\prime}(\mathrm{mV})$	$I_{B}(\mathrm{~mA})$	$\mathrm{V}_{E^{\prime} C^{\prime}}(\mathrm{mV})$
3.5	30.0	1.0	1.1
4.0	31.2	2.0	1.5
4.5	32.2	3.0	1.9
5.0	33.2	4.0	2.2
6.0	35.0	5.0	2.6
7.0	36.8	6.0	2.9
8.0	38.6	7.0	3.3
9.0	39.8	8.0	3.6
10.0	41.2	9.0	3.9
12.0	43.6	10.0	4.2
14.0	46.0	12.0	4.9
16.0	48.1	14.0	5.5
18.0	50.0	16.0	6.1
20.0	51.6	18.0	6.7
25.0	55.8	20.0	7.3
30.0	59.5	25.0	8.7
35.0	63.3	30.0	10.1
38.0	65.2	35.0	11.6
40.0	66.6	40.0	13.0

Table 3-6 Measured Data for Determination of R_{E}

Table 3-7 Measured Data for Deterinination of R_{C}

3.2 THE PARAMETERS OF THE ABBREVLATED GUMMEL-POON MODEL

There is a total of thirteen intrinsic model parameters. In this section, the intrinsic model parameters will be determined by two methods, that is: (I) Conventional (Experimental) method, (II) Method of automated model parameter determination. The latter method is used since the experimental method involves some uncertainties such as the exact nature of the impurity doping profiles in the transistor regions, the minority-carrier diffusion constant (actually it is not a constant but depends to some extent on the impurity concentration of the semiconductor), the variation of charge-control parameters with the operating conditions and so forth. Method II is, therefore, employed to obtain more precise values of the parameters in order to get the best possible fit to the static characteristics of the transistor.

The extrinsic model parameters, R_{E}, R_{C} and R_{B} described in Section 3.1 .2 are used to account for the finite resistivities of the semiconductor materials of the emitter, collector and base regions respectively, therefore they can be applied equally well to the abbreviated Gummel-Poon model without any necessary modifications. In addition, R_{B} of the modified Ebers-Moll models is identical to $R_{B I}$ of the abbreviated Gummel-Poon model but they are different only in notation. By taking the experimental results directly from Section 3.1.2, the values of R_{E}, R_{C} and $R_{B I}$ are 0.0724 ohm, 0.291 ohin and 20.49 onms respectively.

3.2.1 Conventional Method (Method I)

(a) The Intercept Current, I_{S}

By viewing equation (2.87), the following approximations and condition are assumed so as to determine I_{S}.
(i) Short-circuit base-collector terminals.
(ii) Measure $I_{C}-V_{B E}$ characteristics of transistor under low-bias condition.
(iii) Approximate the ratio of $Q_{B 0} / Q_{B}$ to unity. Subject to condition (ii); this approximation is reasonable.

Based on the above, equation (2.87) reduces to,

$$
\begin{equation*}
I_{C}=I_{S}\left(e^{q V_{B E} / K T}-1\right) \tag{3.9}
\end{equation*}
$$

From equation (3.9), a measurement of I_{C} versus $V_{B E}$ would be sufficient to determine I_{S}. The schematic diagram of Curve Tracer for this measurement is shown in Figure 3.11. The measured data are shown in Table 3-8.

A semi-log plot of I_{C} versus $V_{B E}$ shown in Figure 3.12 results in a straight line whose intercept on the I_{C}-ordinate gives the value of I_{S}. Analytical manipulation for determining I_{S} is given as follows:

Verify the slope of the plot, first, by choosing two points within the microampere region from Table 3-8.

$$
I_{\mathrm{C} 2}=1 \mathrm{~mA} \quad V_{\mathrm{BE} 2}=0.6189 \mathrm{~V}
$$

$$
\begin{aligned}
& \text { Figure 3-11 Curve Tracer (Telstronix } 576 \text {) Schematic } \\
& \text { Diagram for Measurement of } I_{C} \text { versus } V_{B E} \\
& \text { for } V_{B C}=0 . \text { (Usins Comnon-Base Con- } \\
& \text { figuration on Curve Tracer) }
\end{aligned}
$$

$I_{C}(\mathrm{~A})$	$\mathrm{V}_{\mathrm{BE}}(\mathrm{V})$
1.0×10^{-6}	0.4360
2.0×10^{-6}	0.4529
5.0×10^{-6}	0.4759
8.0×10^{-6}	0.4877
1.0×10^{-5}	0.4933
2.0×10^{-5}	0.5112
5.0×10^{-5}	0.5348
8.0×10^{-5}	0.5468
1.0×10^{-4}	0.5525
2.0×10^{-4}	0.5706
5.0×10^{-4}	0.5942
8.0×10^{-4}	0.6068
1.0×10^{-3}	0.6189
2.0×10^{-3}	0.6376
5.0×10^{-3}	0.6651
8.0×10^{-3}	0.6795

Table 3-8 $\quad I_{C}$ versus $V_{B E}$ for $V_{B C}=0$ volt

Figure 3.12 Semilog Plot of I_{C} versus $V_{B E}$ for $V_{B C}=0$

$$
I_{\mathrm{C} 1}=10 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{BE} 1}=0.4933 \mathrm{~V}
$$

then using equation (3.9),

$$
(q / \mathrm{KT})_{\exp .}=\frac{\ln \left(I_{\mathrm{C} 2} / I_{\mathrm{C} 1}\right)}{\mathrm{v}_{\mathrm{BE} 2}-\mathrm{v}_{\mathrm{BE} 1}}=36.67 \mathrm{volt}^{-1} \mathrm{vs} .(\mathrm{q} / \mathrm{KT})=38.9 \mathrm{volt}^{-1}
$$

Calculate I_{S} by means of equation (3.9),

$$
I_{S}=\frac{I_{\mathrm{C} 2}}{e^{(q / \mathrm{KT})} \exp ^{V_{\mathrm{BE} 2}}-1}=1.396 \times 10^{-13} \mathrm{~A}
$$

(b) The Intercept Currents, I_{1} and I_{2} and the Emitter Emission Coefficients, $N_{E 1}$ and $N_{E 2}$

In view of equation (2.48), by short-circuiting the collectorbase terminals, the equation reduces to the form of,

$$
\begin{equation*}
I_{B}=I_{1}\left(e^{q V_{B E} / K T N_{E 1}}-1\right)+I_{2}\left(e^{q V_{B E} / K T N_{E 2}}-1\right) \tag{3.10}
\end{equation*}
$$

Hence, a measurement of I_{B} as a function of $V_{B E}$ is required. The schematic diagram for this measurement is shown in Figure 3.13. The measured data are tabulated in Table 3-9.

$$
\text { A semi-log plot of } I_{B} \text { versus } V_{B E} \text { is shown in Figure } 3.14
$$ from which two straight line sections marked (1) and (2) respectively can be observed. The intercept current, I_{1} can be obtained by

(a) Test Configuration for low base current levels (below $1 \mu \mathrm{~A}$)

(b) Test Configuration* for high base current levels (above $1 \mu \mathrm{~A}$), using Curve Tracer, Tektronix type 576

* - (1) Use Common-Base Configuration on Curve Tracer.
(2) Interchange ' B ' and ' C ' leads of the tested transistor.

Figure 3.13 Test Configuration for determination of I_{1}, $\mathrm{N}_{\mathrm{E} 1}, \mathrm{I}_{2}$ and $\mathrm{N}_{\mathrm{E} 2}$

$I_{B}(\mathrm{~A})$	$\mathrm{V}_{\mathrm{BE}}(\mathrm{V})$	$I_{B}(\mathrm{~A})$	$\mathrm{V}_{\mathrm{BE}}(\mathrm{V})$
6.000×10^{-13}	0.0100	8.0×10^{-6}	0.5915
7.500×10^{-13}	0.0179	1.0×10^{-5}	0.5970
1.300×10^{-12}	0.0200	1.5×10^{-5}	0.6100
2.300×10^{-12}	0.0300	2.0×10^{-5}	0.6180
5.200×10^{-12}	0.0500	2.5×10^{-5}	0.6240
8.950×10^{-12}	0.0700	3.0×10^{-5}	0.6300
2.140×10^{-11}	0.1000	3.5×10^{-5}	0.6340
7.640×10^{-11}	0.1500	4.0×10^{-5}	0.6393
2.674×10^{-10}	0.2000	4.5×10^{-5}	0.6425
8.724×10^{-10}	0.2500	5.0×10^{-5}	0.6458
2.857×10^{-9}	0.3000	5.5×10^{-5}	0.6475
9.510×10^{-9}	0.3500	6.0×10^{-5}	0.6505
3.100×10^{-8}	0.4000	6.5×10^{-5}	0.6545
1.150×10^{-7}	0.4500	7.0×10^{-5}	0.6555
4.400×10^{-7}	0.5000	8.0×10^{-5}	0.6595
2.050×10^{-6}	0.5500	9.0×10^{-5}	0.6530
1.010×10^{-6}	0.5250	1.0×10^{-4}	0.6665
1.000×10^{-6}	0.5240	1.5×10^{-4}	0.6810
1.500×10^{-6}	0.5380	2.0×10^{-4}	0.6900
2.000×10^{-6}	0.5470	2.5×10^{-4}	0.6980
3.000×10^{-6}	0.5595	3.0×10^{-4}	0.7050
4.000×10^{-6}	0.5685	3.5×10^{-4}	0.7140
6.000×10^{-6}	0.5815	4.0×10^{-4}	0.7200

Table 3-9 $\quad I_{B}$ versus $V_{B E}$ for $V_{B C}=0$ volt

$$
\begin{aligned}
& \text { for } V_{B C}=0 \\
& \text { (2) } \\
& 0.3 \\
& 0.4 \\
& 0.5 \\
& 0.6 \\
& \mathrm{~V}_{\mathrm{BE}}(\text { volts) }
\end{aligned}
$$

extrapolation of straight line section (1) back to $V_{B E}=0$ and the slope of this straight line section yields the value of ($q / K T N_{E 1}$) from which the value of $N_{E 1}$ can be computed. The intercept current, I_{2} can be determined by extrapolation of straight line section (2) back to $V_{B E}=0$ and the slope of this straight line section gives the value of ($q / K T N_{E 2}$) from which the second emitter emission coefficient, $N_{E 2}$ can be calculated.

$$
\text { Calculation of } I_{1}, N_{E 1}, I_{2} \text { and } N_{E 2} \text { is shown below: }
$$

(i) To find I_{1} and $N_{E 1}$

Pick two points from the straight line section (1) in Figure 3.8.

$$
\begin{array}{ll}
I_{B(1) 2}=1.5 \times 10^{-5} \mathrm{~A} . & V_{B E(1) 2}=0.610 \text { volt } \\
I_{B(1) 1}=1.5 \times 10^{-6} \text { A. } & V_{B E(1) 1}=0.538 \text { volt }
\end{array}
$$

Use equation (3.10) with second term dropped out,

$$
\begin{aligned}
& \left(q / \operatorname{KTN}_{E 1}\right)=\frac{\ln \left(I_{B(1) 2} / I_{B(1) 1}\right)}{V_{B E(1) 2}-V_{B E ~(1) ~ 1}}=31.98 \mathrm{volt}^{-1} \\
& I_{1}=\frac{I_{B(1) 2} .}{e^{V_{B E(1)} 2^{\left(q / K T N_{E 1}\right)}-1}}=\underline{5.0567 \times 10^{-14}} \mathrm{~A} . \\
& \mathrm{N}_{\mathrm{E} 1}=\frac{\lambda}{\mathrm{q} / \mathrm{KTN}_{\mathrm{E} 1}}=\underline{1.217} \quad \text { for } \lambda=\underline{38.9} \operatorname{volt}^{-1}
\end{aligned}
$$

(ii) To find I_{2} and $N_{E 2}$

Pick two points from the straight line section (2) in Figure 3.8.

$$
\begin{array}{ll}
I_{B(2) 2}=3.10 \times 10^{-8} \mathrm{~A} . & V_{B E}(2) 2=0.4 \quad \text { volt } \\
I_{B(2) 1}=7.64 \times 10^{-11} \mathrm{~A} . & V_{B E(2) 1}=0.15 \quad \text { volt }
\end{array}
$$

Use equation (3.10) with the first term dropped out and compute I_{2} and $N_{E 2}$ in the way shown in part (i), thence

$$
\begin{aligned}
& I_{2}=2.065 \times 10^{-12} \mathrm{~A} \\
& N_{E 2}=1.618
\end{aligned}
$$

(c) Intercept Current, I_{3} and Collector Emission Coefficient, N_{C}

By specifying the condition that the base-emitter terminals are short-circuited, equation (2.48) reduces to,

$$
\begin{equation*}
I_{B}=I_{3}\left(e^{q V_{B C} / K T N_{C}}-1\right) \tag{3.11}
\end{equation*}
$$

To obtain I_{3}, a measurement of I_{B} versus $V_{B C}$ is required. The schematic diagram for this measurement is shown in Figure 3.15 . The measured data are tabulated in Pable 3-10.

A semi-log plot of I_{B} versus $V_{B C}$ is shown in Figure 3.16

Figure 3.15 Curve Tracer (Tektronix type 576) Schematic Diagram for Measurements* of I_{B} versus $\nabla_{B C}$ for $V_{B E}=0$.

* (1) Use Common-Base Configuration on Curve Tracer.
(2) Modify the normal terminal-connections of the transistor to the socket of the Curve Tracer, by connecting ' E ' of the socket to 'C'-lead of the transistor; ' B ' to ' E ' and ' C ' to ' B '.

$\mathrm{I}_{\mathrm{B}}(\mathrm{A})$	$\mathrm{V}_{\mathrm{BC}}(\mathrm{V})$
1.0×10^{-6}	0.4210
2.0×10^{-6}	0.4425
4.0×10^{-6}	0.4630
6.0×10^{-6}	0.4755
1.0×10^{-5}	0.4920
2.0×10^{-5}	0.5120
4.0×10^{-5}	0.5320
6.0×10^{-5}	0.5425
1.0×10^{-4}	0.5590
2.0×10^{4}	0.5790
4.0×10^{-4}	0.5990
6.0×10^{-4}	0.6105
1.0×10^{-3}	0.6290
2.0×10^{-3}	0.6540
4.0×10^{-3}	0.6810
1.0×10^{-3}	0.6980

Table 3-10 I_{B} versus $V_{B C}$ for $V_{B E}=0$ volt

Figure 3.16 Senilog Plot of I_{B} versus $V_{B C}$ for $V_{B E}=0$
in which the intercept on I_{B}-axis extrapolated from the straight line portion of the plot gives the value of I_{3}. The slope of this straight line gives the value of $\left(q / K T N_{C}\right)$ from which the collector emission coefficient, N_{C} can be evaluated.

A similar analytical manipulation to that shown in
Section 3.1.1(a) is used to calculate I_{3} and N_{C}.
Two data points chosen for calculation are:

$$
\begin{array}{ll}
I_{B 2}=200 \mu \mathrm{~A} & \mathrm{~V}_{\mathrm{BC} 2}=0.579 \text { volt } \\
I_{\mathrm{B} 1}=20 \mu \mathrm{~A} & \mathrm{~V}_{\mathrm{BC} 1}=0.512 \text { volt }
\end{array}
$$

The calculated results are:

$$
I_{3}=4.563 \times 10^{-13} \mathrm{~A}
$$

$$
N_{c}=1.133
$$

(d) The Forward and Reverse Transit Times, τ_{F} and τ_{R}

The basic measurement technique for τ_{F} and τ_{R} is indicated in Figure 3.17(a). The schematic diagram shown is principally for the measurement of forward transit time when switching the base current through a step change Δi_{B}. The magnitude of the input voltage step is made much larger than the change in $v_{B E}$ so that the step change in base current is given by,

(a) Test Configuration for Determination of τ_{F} and τ_{R}

(b) Waveform of v_{s}
as a function of time

(c) Naveform of $V_{C E}\left(V_{E C}\right)$
as a function of time

Pigure 3-17 Measureqents of τ_{g} and τ_{R} (Symbols and quantities inside the brackets are for τ_{R})

$$
\begin{equation*}
\Delta i_{B}=\frac{\Delta V_{F}}{\mathbf{R}_{2}} \tag{3.12}
\end{equation*}
$$

During measurement, R_{2} and C should be appropriately adjusted such that $v_{C E}$ and i_{C} undergo step changes. Figure 3.17(c) shows the step $v_{C E}$ response at the condition that R_{2} and C are appropriately adjusted.

The transit time is approximately given(30) by,

$$
\begin{equation*}
\tau_{F}=R_{3} c\left|\frac{\Delta v_{F}}{\Delta v_{C E}}\right| \tag{3.13}
\end{equation*}
$$

In order to insure the best possible accuracy, the transistor should operate in the forward active mode since τ_{F} is associated with the forward injection of the charges across the emitter-base junction.

The reverse transit time, τ_{R} can be measured by using the same technique described. Minor changes in the schematic diagram shown in Figure 3.17(a) are: (i) Interchange the collector and emitter leads of the transistor; (ii) Reducing the magnitude of the collectoremitter voltage $\left|V_{C E}\right|$ to 3 volts with the polarities remaining unchanged, to avoid base-emitter junction breakdown since the baseemitter junction, in this case, is reverse-biased.

The measured data and calculations of the forward and reverse transit times are as follows:

$$
\mathrm{R}_{3} \mathrm{C}=2 \times 10^{-8} \quad \text { ohr-farads }
$$

For forward transit time:

$$
\begin{aligned}
\Delta \mathrm{V}_{\mathrm{F}} & =0.60 \text { volt } \\
\Delta \mathbf{v}_{\text {CE }} & =4.53 \text { volt }
\end{aligned}
$$

Use of equation (3.13) gives,

$$
\tau_{\mathrm{F}}=\underline{2.65 \times 10^{-9}} \mathrm{sec}
$$

For reverse transit time:

$$
\begin{aligned}
\Delta v_{R} & =3.600 \quad \text { volt } \\
\Delta v_{E C} & =0.025 \cdot \text { volt }
\end{aligned}
$$

Use of equation (3.13) with modifications that subscript F is changed to R; and $\Delta v_{C E}$ to $\Delta v_{E C}$, gives,

$$
\tau_{R}=\underline{2.88 \times 10^{-6}} \mathrm{sec}
$$

(e) The Emitter and Collector Capacitances, C_{E} and C_{C}

According to equation (2.77), the charges Q_{E} and Q_{C} are the excess stored charges associated with the emitter-base and collectorbase junction capacitances respectively. These are space-charge region capacitances as defined by Chawla and Gummel(31) and depend
only on doping profile of the impurities and applied junction voltages and are independent of frequency.

The space-charge region capacitance measurements were done by means of a Boonton model 71A capacitance meter, at a reference frequency 1 MHz for different applied junction voltages. The measured emitter-base junction capacitance, $C_{B E}$ is the emitter-base input capacitance with emitter-base junction forward-biased and the output open (i.e. $I_{C}=0$). The measured collector-base capacitance, $C_{C B}$ is the collector-base output capacitance with collector-base junction reverse-biased and the input open (i.e. $I_{E}=0$). The measured data are shown in Tables 3-11 and 3-12 and Figures 3.18 and 3.19.

In the abbreviated Gummel-Poon model, the collector capacitance, C_{C} refers only to the capacitance between collector and the active base region under the emitter. The measured $C_{C B}$ is larger by approximately the ratio of the base to the emitter area. The reduction of $C_{C B}$ by the ratio of the base to the emitter area gives the measured collector capacitance, C_{C} shown in Figure 3.19 and Table 3-13. The emitter capacitance, C_{E} is approximately equal to $C_{B E}$ without involving considerable error as one can realize from the device geometry of the planar'diffused transistor. For the geometry of the sample transistor, 2 N1613, one can refer to Appendix A.

As mentioned previously, C_{E} and C_{C} are assumed to be constant. For a silicon transistor, conduction commences when $V_{B E}$ reaches approximately 0.5 volt and reaches perhaps a peair of 0.7 volt during conduction. Hence, $V_{B E}$ will average very closely to 0.6 volt.

Therefore, it will be assumed that the capacitance of emitter at $V_{B E}=0.6$ volt is a reasonable approximation to use in the model. From Table 3-11, $C_{E}\left(\doteq C_{B E}\right)$ is 387 pf at $V_{B E}=0.6$ volt. The value of $C_{C}\left(=\left(A_{J E} / A_{B}\right) x C_{C B}\right)$ equal to 3.67 pf at $V_{C B}=16.0$ volts from

Table 3-13 is chosen to approximate the overall average capacitance over the range of collector-base junction voltage from 0 volt to 30 volts.

$\mathrm{V}_{\mathrm{BE}}(\mathrm{V})$	0.00	0.10	0.20	0.30	0.40	0.50	0.55	0.58	0.60	0.65
$\mathrm{C}_{\mathrm{BE}}(\mathrm{pf})$	74.2	77.9	82.9	89.5	99.0	120.0	180.0	300.0	387.0	830.0

Table 3-11 Mieasured $C_{B E}\left(\doteq C_{E}\right)$ versus $V_{B E}$ for $I_{C}=0$.

$\mathrm{V}_{\mathrm{CB}}(\mathrm{V})$	0.00	0.50	1.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	16.0	18.0
$\mathrm{C}_{\mathrm{CB}}(\mathrm{pf})$	35.0	27.7	24.4	20.6	17.0	15.0	13.7	12.7	12.0	11.4	10.9	10.5

Table 3-12 Measured $C_{C B}$ versus $V_{C B}$ for $I_{E}=0$.

$\mathrm{V}_{\mathrm{CB}}(\mathrm{V})$	0.00	0.50	1.00	2.00	4.00	6.00	8.00	10.0	12.0	14.0	15.0	18.0
$\mathrm{C}_{\mathrm{C}}(\mathrm{pf})$	11.8	9.34	8.23	6.95	5.73	5.06	4.62	4.23	4.05	3.84	3.67	3.54

Table 3-13 Reduced $C_{C B}\left(=C_{C}\right)$ versus $V_{C B}$ for $I_{E}=0$.

Figure $3.18 \quad C_{B E}\left(\doteq C_{E}\right)$ versus $V_{B E}$ for $I_{C}=0$

Figure $3.19 \quad C_{C B}$ and C_{C} versus $V_{C B}$ for $I_{E}=0$

(f) The Zero-Bias Base Charge, $Q_{B 0}$

This parameter is to be determined theoretically in an approximate way since an available experimental method does not exist so far. The detailed calculations are carried out as follows: From Appendix A,

$$
A_{J}=A_{J E}=\frac{\pi}{4}\left(d_{J E}\right)^{2}=1.0179 \times 10^{-3} \mathrm{~cm}^{2}
$$

By comparison of equation (2.74) with equation (2.75), the number of impurities per unit area in the base is,

$$
\begin{equation*}
N_{B}=\frac{q A_{J} D_{e o} n_{i}^{2}}{I_{S}} \tag{3.14}
\end{equation*}
$$

Use of Einstein relation in conjunction with equations (2.73) and (3.14) gives,

$$
\begin{equation*}
Q_{B O}=\frac{A_{J}^{2}{ }^{2} K T H}{e o n_{i}^{2}} I_{S} \tag{3.15}
\end{equation*}
$$

For $C_{B E}=74.2 \mathrm{pf}$ (from Table 3-11) at zero-bias condition and $A_{J}=1.0179 \times 10^{-3} \mathrm{~cm}^{2}$, reference (32) gives

$$
\mu_{\mathrm{eo}}=800 \mathrm{~cm}^{2} / \mathrm{v}-\mathrm{sec} . \quad \text { and } \quad \mu_{\mathrm{h}}=390 \mathrm{~cm}^{2} / \mathrm{v}-\mathrm{sec}
$$

From reference (33), $\quad n_{i}=1.3321 \times 10^{10} \mathrm{~cm}^{-3}$
From Section 3.2.1(a), $\quad I_{S}=1.396 \times 10^{-13} \mathrm{~A}$.

Hence, $\quad Q_{B O}=6.690 \times 10^{-10}$ Coulombs
(g) The Zero-Bias Active Base Resistance, $\mathrm{R}_{\text {BA0 }}$

The value of $R_{B A D}$ is to be determined theoretically for the same reasons as stated in (f).

Repetition of equation (2.92) yields,

$$
\begin{equation*}
\mathbf{R}_{B A O}=\frac{A_{J}}{8 \pi J_{h} Q_{B O}} \tag{3.16}
\end{equation*}
$$

Substitution of the values of $Q_{B O}, A_{J}$ and μ_{h} from Section 3.2.1(f) in equation (3.16) yields

$$
R_{\mathrm{BAO}}=1530 \mathrm{hms}
$$

[^1]

Figure 3-20 Flow Chart for Automated Model Farameters Determination

(a) The Required Model Performance Criteria

The transistor is considered to be in the common-emitter configuration. Moreover, it is a three-terminal device and for the static case is described by four terminal variables (i.e. $V_{B E}, I_{B}$, $V_{C E}$ and I_{C}). Two criteria are therefore required to describe the device performance. By choosing I_{B} and $V_{C E}$ as independent variables and regarding $V_{B E}$ and I_{C} as dependent variables, two criteria, i.e. $V_{B E}$ and $h_{F E}\left(=I_{C} / I_{B}\right)$ can be established. A set of points defining the shapes of $V_{B E}$ and $h_{F E}$ as functions of I_{B} and $V_{C E}$ are required and shown in Table $3-14$. Those points can be obtained by performing terminal measurements made on the transistor by means of a curve tracer. A suitable choice of the number of measuring points can save computer time. In this case, 128 points are measured over the active, saturation and cutoff regions of transistor operation.
(b) The Initial Parameter Values

Table $3-15$ shows the best initial parameter values which are obtained by the experimental method (Method I). Those parameter

$I_{1}(A)$	5.057×10^{-14}	$\tau_{F}(\mathrm{~S})$	2.650×10^{-9}
$I_{2}(A)$	2.065×10^{-12}	$\tau_{A}(\mathrm{~S})$	2.880×10^{-6}
$I_{3}(\mathrm{~A})$	4.563×10^{-13}	$\mathrm{C}_{\mathrm{C}}(\mathrm{F})$	3.670×10^{-12}
$\mathrm{I}_{\mathrm{S}}(\mathrm{A})$	1.396×10^{-13}	$\mathrm{C}_{\mathrm{E}}(\mathrm{F})$	3.870×10^{-10}
$\mathrm{~N}_{\mathrm{C}}$	1.133	$\mathrm{Q}_{\mathrm{BO}}(\mathrm{C})$	6.690×10^{-10}
$\mathrm{~N}_{\mathrm{E} 1}$	1.217	$\mathrm{R}_{\mathrm{BA}}(\Omega)$	153.0
$\mathrm{~N}_{\mathrm{E} 2}$	1.618		

Table 3-15 The Initial Parameter Values obtained by Method I

TABLE. 3-14 MEASURED DATA FOR AUTCMATED PARAMETER DETERMINATION

vCEm (V)	Ibll (4)	ICM(A)	HFEN	$\operatorname{VBEM}(\mathrm{V})$
0.	5.000才E-09	-4.8000E-08	-9.6000E-01	3.1000E-01
0 。	1.0000E-15	-9.2000E-06	-9.2000E-01	4.8600E-01
)	4.0000E-05	-3.4300E-05	-9.5750E-01	5.3000E-01
$0 \cdot$	1.2000E-04	-1.0800E-04	-9.0000E-01	5,6000E-01
$0 \cdot$	$5.00 \cup 0 E-0 / 4$	-4.5500E-04	-9.1000E-01	6.1200E-01
3.0000E-02	5.0000E-08	$-3.9000 E-08$	-6.000UE-01	3.3300E-01
3.0.00E-02	1.0000E-05	7.80C0E-05	$7.8000 \mathrm{E}-01$	5.1300E-01
3.0000E-02	$4.0000 \mathrm{E}-05$	$3.55 C C E-05$	8.8750E-01	$5.5300 \mathrm{E}-01$
3.0CDOE-O2	1.2000E-04	1.280CE-04	$1.0667 E+00$	5.8500E-01
3.0nOUE-02	S.0000E-04	3.58CCE-04	$7.3600 t-01$	6.4000E-01
6.0000E-02	5.0000E-08	1.0000E-08	2.0000E-01	3.6000E-01
6.0000E-02	1.0000E-05	5.50CCE-05	$5.5000 \mathrm{E}+00$	5.4300E-01
6.0000t-02	4.0000E-05	2.7000E-04	$6.7500 E+00$	5.8300E-01
6. $\operatorname{SoO} 0 \mathrm{E}-02$	1.2000E-04	B,000CE-04	$6.6667 E+00$	$6.1300 E-01$
G.OOOUE-02	5.0000E-04	2.30 CCE-03	$4.6000 \mathrm{E}+00$	6.6700E-01
8.0000E-02	5.0000E-08	5.800CE-08	$1.1600 E+00$	3.7500E-01
8.0000E-02	1.0000E-05	1.1600E-04	$1.1600 E+01$	5.5ROOE-01
8.0000E-132	4.0000E-05	5.50CCE-04	$1.3750 E+01$	5.9900E-01
8.0000E-02	1.2000E-04	1.56CCE-03	$1.3000 \mathrm{E}+01$	$6.2900 E=01$
$8.0000 \mathrm{E}-02$	5.0000E-04	4.400 CE-03	8.8000E+00	6.7200E-01

TABLE 3-14 NEASURED DATA FOR AUTOMATED DARAMETER DETERMINATION (Cont.)

$\operatorname{VCEM}(\mathrm{V})$	$I E M(A)$	ICM(${ }^{\text {a }}$)	HFEN	$V \mathrm{CEM}(\mathrm{V})$
1.j000E-01	5.0000E-08	1.1000E-07	$2.2000 E+00$	3.8300E-01
1.0000c-01	1.0000E-05	P. $0500 \mathrm{E}=04$	$2.0500 E+01$	$5.7500 \mathrm{E}-01$
1.0.000E-01	4.1)OUOE-05	9.5000E-04	$2.3750 E+01$	6.1500E-01
1.000UE-01	1.20U0E-04	2.18000E-03	$2.3333 E+01$	6.4600E-01
1.000ut-01	S.0V00E-104	$7.1500 \mathrm{E}-03$	$1.4300 E+01$	6.9500E-01
3.0000E-01	S.00VOE-08	$4.8000 \mathrm{E}-07$	$9.6000 E+00$	4.1200E-01
3.000リヒ-01	1.0000E-05	5.6000E-04	$5.6000 E+01$	6.0000E-01
3.3000E-01	4.0000E-05	2.6800E-03	$6.7000 \mathrm{E}+01$	6.4100E-01
3.0n00E-01	1.2000E-04	8.5500E-03	$7.1250 E+01$	6.7500E-01
3,9000E-01	5.0000E-04	3.0100E-02	$6.0200 E+01$	$7.3000 E-01$
5.0000E-01	5.0000E-08	$4.9000=-07$	$9.8000 E+00$	4.1200E-01
5.jnose-01	1. OOUOE-05	5.7000E-04	$5.7000 \mathrm{E}+01$	6.0000E-01
5.0000E-01	$4.0000 \mathrm{E}-05$	2.6900E-03	6.7250E+01	$6.4100 \mathrm{E}-01$
5.ncoue-ul	1.20U0E-04	8.5800E-03	$7.1500 E+01$	6.7600E-01
5.000UE-01	5.0000E-04	3.5003E-02	$7.0000 \mathrm{E}+01$	7.3000E-01
1.0000t+00	5.0000E-08	4.9200E-07	$9.8400 \mathrm{E}+00$	4.1200E-01
1.0000E+00	1.0000E-05	$5.700)=-04$	$5.7000 \mathrm{E}+01$	$6.0000 \mathrm{E}-01$
$1.00006+00$	$4.0000 \mathrm{E}-05$	2.690) -03	$6.7250 E+01$	6.4100E-01
1.0000E+00	1.2000E-04	8. $6000 \mathrm{E}-03$	7.1667E 01	6.7600E-01
1.0000E+00	5.0000E-04	3.5500E-02	$7.1000 E+01$	7.3000E~01

TABLE 3-14 mEaSURED dATA FOG aUTOMATED PARAMETER DETERMINATION (Cont.)

VCEM (V)	IGM(A)	$\operatorname{ICM}(A)$	HFEM	VREM (V)
$4.0000 \mathrm{E}+00$	5.0000E-08	5.0000E-07	$1.0000 \mathrm{E}+01$	4.1200E-01
$4.0000 E+00$	1.0000E-05	$5.7500 \mathrm{E}-04$	$5.7500 E+01$	6.0000E-01
$4 \cdot 0000 \mathrm{E}+60$	4.0000E-05	2.7000E-03	$6.7500 \mathrm{E}+01$	6.4100E-01
$4.3000 L+00$	1.20U0E-04	H. $7000 \mathrm{E}=03$	$7.2500 E+01$	6.7600E-01
B. 6 ȮDUE +00	5.0000E-1)8	S.0000E-07	$1.0000 E+01$	4.1200E-01
- 0 COUE +00	1.0000E-05	5.3200E-04	$5.8200 E+01$	6.0000E-01
B. $00005+00$	4.0000 E -05	2.7200E-03	$6.8000 E+01$	$6.4100 \mathrm{E}-01$
1.0000t+01	S.0000E-08	$5.0500 \mathrm{E}-07$	$1.0100 E+01$	4.1200E-01
1-0900E+01	1.0000E-05	¢.0000E-04	$6.0000 E+01$	6.0000E-01
1.0.003E+01	$4.0000 \mathrm{E}-05$	2.4000E-03	$7.0000 E+01$	6.4100E-01
1.500UE+01	5.0000E-08	$5.1000 \mathrm{E}-07$	$1.0200 E+01$	4.1200E-01
$1.5000 E+01$	1.0000E-05	S.2000E-04	$6.2000 E+01$	$6.0000 \mathrm{E}-01$
1.5000E+01	$4.0000 \mathrm{E}-05$	2.8750E-03	$7.1875 E+01$	$6.4100 \mathrm{E}-01$
$2.0000 E+01$.	$5.0000 \mathrm{E}-08$	5.2000 -07	$1.0400 E+01$	4.1200E-01
2.0000E+01	1.0000E-05	(.220) -204	$6.2200 E+01$	6.0000E-01
2.5000E+01	5.0000E-08	5.2503E-07	1.0500E+01	4.1200E-01
2.5000E+01	1.0000E-05	6.4500 $40-04$	$6.4500 E+01$	6.0000E-01
3.0000E+01	5.0000E-08	$5.3500=-07$	1.0700E+01	4.1200E-01
$3.0 r 00 \mathrm{erol}$	1.0000E-05	7.0000E-04	$7.0000 E+01$	6.0000E-01

values are not very precise since some device physics and structure are not known in detail while determining them. It is for this reason that this method is employed to re-evaluate those parameter values.

(c) Error Criteria

Based on the required model performance criteria described in part (a), two expressions for error function will be necessary. The error function that gives a measure of the deviation between the actual device performance and the simulated performance by the model can be formulated by the method of least pth approximation(35).

The least pth formulation allows two expressions for the error function as follows:

$$
\begin{align*}
& E_{1}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(W_{H}\left(h_{F E S i j}-h_{\operatorname{FEM}_{i j} j}\right)\right)^{P} \tag{3.17}\\
& E_{2}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(W_{r}\left(V_{B E S i j}-V_{B_{B E M} j}\right)\right)^{P}
\end{align*}
$$

Where: W_{H} and W_{I} are weighting factors to be discussed in part (d). $h_{\text {FEMij }}$ is the measured d. c. common-emitter current gain at the ith data point for jth base current among a total of nxm .
$V_{\text {BEMij }}$ is the measured base-emitter voltage at the ith data point for jth base current among a total of nxm.
$\mathbf{h}_{\text {FES }{ }_{i j}}$ is the simulated d. c. common-emitter current gain corresponding to $h_{\text {FEMij. }}$
$\mathrm{V}_{\text {BESij}}$ is the simulated base-emitter voltage corresponding to $\mathbf{V}_{\text {BEMi } \mathbf{j}}$.
P is a positive integer chosen to be 2 initially and 100 eventually.

The sum of E_{1} and E_{2} gives the error function to be considered. The final error function, termed the objective function U hereafter, is the pth root of the sum of E_{1} and E_{2}, i.e. $U=\left(E_{1}+E_{2}\right)^{1 / P}$ which will be minimized in a least pth sense during optimization process. (d) Weighting Factors

Essentially, the task of weighting factors is to emphasize or de-emphasize the various parts of the simulated performance to suit the required model performance. The larger the weighting factor used, the more emphasis is put on that simulated performance. The weighting factors chosen for the present case are as follows:
Initially, $\quad W_{H}=1 \quad$ and $\quad W_{I}=1$
Finally, $\quad W_{H}=1 \quad$ and $\quad W_{I}=200$

(e) Performance Analysis

The model performance corresponding to a set of model parameter values is evaluated on the basis of model defining equations (2.48) and (2.87) from Chapter II, as well as the effect of extrinsic series resistances (i.e. R_{E}, R_{C} and $R_{B I}$). Those series resistances are kept fixed for the performance analysis and will not be modified optimally during optimization process. The computer program for the performance analysis is named SUBROUTINE OBJECT and is presented in Appendix B.

Performance analysis gives the simulated $h_{\text {FES }}$ and $V_{\text {BES }}$ which will be approximated to the measured $h_{\text {FEM }}$ and $V_{B E M}$.
(f) Optimization Techniques

Since the bipolar junction transistor is a non-linear active device, evaluation of the partial derivatives of the objective function can not be obtained easily. Therefore the Direct Search method is appropriate. The Hooke and Jeeve's (36), (37), (38) Pattern Search is employed to minimize the objective function in a least pth sense because of its rapid convergence compared with the other multidimensional methods. The computer program for Pattern Search is presented in Appendix B and is named SUBROUTINE PTSH. Details of Pattern Search method can be obtained from references (36), (37) and (38). (g) The Modified Parameter Values

The modified parameter values are the ones which have been obtained optimally by minimizing the objective function during each optimization process by means of Pattern Search. The final set of the modified parameter values can be achieved provided that any one of the performance criteria has been met.
(h) Performance Criteria

Performance criteria are based on the strategy adopted for the termination of the optimization process. The termination of the optimization process can be considered in three ways as follows:
(i) The number of iterations exceeds the pre-determined maxinam number of iterations.
(ii) The number of function evaluations exceeds the pre-determined maximum number of function evaluations.
(iii) The incremental change (termed STEP SIZE in Pattern Search) in each model parameter value is smaller than the specified "tolerance" which is the required resolution to specify the objective function value at the minimum.

The above-mentioned specifications determine the frame-work of the method of automated model parameter determination.

Moreover, interpretation of Figure 3.20 is that the simulated model performance corresponding to the initial parameter values is obtained by means of model performance analysis and compared with the measured performance of the device via the pre-determined error criteria. Satisfactory simulated performance leads to the termination of the optimization process. Excessive errors lead to a reinitialization of model parameter values and the reinitialization of model parameter values is made through the minimization of the objective function value by means of Pattern Search. This process repeats itself until the simulated performance falls within the performance criteria. The final set of parameter values is the one at which the process terminates. The optimal parameter values are shown in Table 3-16 compared with those obtained by the experimental method.

	Method (I)	Method (II)
I_{1} (A)	5.057×10^{-14}	6.675×10^{-14}
I_{2} (A)	2.065×10^{-12}	4.832×10^{-13}
I_{3} (A)	4.563×10^{-13}	4.141×10^{-13}
$\mathrm{I}_{S} \quad(\mathrm{~A})$	1.396×10^{-13}	8.376×10^{-14}
${ }^{\mathrm{N}} \mathrm{C}$	1.133	1.123
$\mathrm{N}_{\mathrm{E} 1}$	1.217	1.218
$\mathrm{N}_{\mathrm{E} 2}$	1.618	1.636
${ }^{\tau}{ }_{F}(S)$	2.650×10^{-9}	1.853×10^{-8}
τ_{R} (S)	2.880×10^{-6}	1.153×10^{-5}
C_{C} (F)	3.670×10^{-12}	5.153×10^{-12}
C_{E} (F)	3.870×10^{-10}	2.322×10^{-10}
$Q_{B O}{ }^{(C)}$	6.690×10^{-10}	4.683×10^{-10}
$\mathrm{R}_{\mathrm{BA} 0}(\Omega)$	153'.0	124.6

Table 3-16 Comparison of Model Parameter Values obtained by Method I and Method II

CHAPTER IV

SIMULATION RESULTS

Three conventionally-modified Ebers-Moll models used in ECAP II, SCEPTRE and NET-1 circuit analysis programs, and the abbreviated Gummel-Poon model (abbreviated with sixteen parameters including parasitic resistances) have been described in Chapter II. The basic Ebers-Moll model and the abbreviated Gummel-Poon model are systematically derived from a common mathematical origin (i.e. the basic one-dimensional carrier transport equations). In spite of the appearance of the abbreviated Gummel-Poon model, for low-bias condition and with some idealization such as assumption of low-level injection, no carrier recombination-generation effects in the spacecharge regions and so forth, the model reduces to the basic EbersMoll model. This means that the abbreviated Gummel-Poon model is topologically equivalent to the basic Ebers-Moll model. In this chapter, models are compared on the basis of their ability to represent the comon-emitter static characteristics of a silicon doublediffused transistor.

The quantitative discussions are focased on the commonemitter static characteristics which are:
(i) The output characteristics (i.e. I_{C} versus $V_{C E}$ with I_{B} as parameter).
(ii) The dependence of common-emitter d. c. current gain on the collector current (i.e. $h_{F E}$ versus I_{C} for constant $V_{C E}$).
(iii) The input characteristics (i.e. I_{B} versus $V_{B E}$ with $V_{C E}$ as parameter).

Figures 4.1 to 4.9 inclusive show the comparison of the measured data (dashed lines) obtained by means of a curve tracer (Tektronix type 576) for the type 2 N 1613 transistor at a room temperature of $25^{\circ} \mathrm{C}$ and the simulations by the models (the solid lines). The model parameter values, used in the simulation are obtained from Chapter III.

For simplicity, the modified Ebers-Moll model in
ECAP II is called EMM 1; the one in SCEPTRE, EMM 2; and the one in NET-1, EMM 3; and the abbreviated Gummel-Poon model, AGPM.

4.1 THE OUTPUT CHARACTERISTICS

It has been already shown that all three modified EbersMoll models employ the principle of "superposition", that is, the collector current (or the emitter current) can be expressed as the sum of a function of emitter-base voltage and a function of collectorbase voltage. In order to examine the validity of the principle of "superposition", one can consider the Early effect(9), that is, the finite collector-current-dependent output conductance due to basewidth modulation. For the measured output characteristics, beyond the $V_{C E}=V_{B E}$ contour, a region of bias (i.e. the active region) exists in which the collector current varies approximately linearly with the collector-emitter voltage for fixed base current in such a way that the straight line section exhibits finite incremental output
conductance. In Figures 4.1 to 4.3 , the simulated out put characteristics (solid lines) by EMM 1, EMM 2 and EMM 3 do not exhibit finite output conductance in the active region. The deviation between the simulated and the measured output characteristics in the active region implies the violation of the principle of "superposition" for a real transistor. On the other hand, Figure 4.4, which shows the corresponding AGPM simulated output characteristics, exhibits a reasonable fit to the real transistor performance, (i.e. in the active region, the collector current varies linearly with the collector-emitter voltage). This finite output conductance results from introducing the base charge, Q_{B} in the denominator of equation (2.87) which through its dependence on operating junction voltages via the junction capacitances disables the "superposition" and provides a realistic description of the output conductance. However, EMM 1 to EMM 3 can be further modified to account for the Early effect by modelling the current gains α_{F} and α_{R} as functions of operating currents and junction voltages. This modification was proposed by Logan(4) recently and it is clamed that this modification can provide a realistic description of the output conductance as well.

Besides the Early effect, in the active region, it is seen that the output characteristics simulated by EMM 1, EMM 3 and AGPM but not by EMM 2 depart significantly from the corresponding measured data for low base currents (say, below $1 \mu \mathrm{~A}$). This can be explained as follows:
(i) For EMi 1, the assumption of constant α_{F} and α_{R} is used in the

Figure 4.1 Comparison of the Measured with the Simulated Output Characteristics by Model EMM 1

Figure 4.3 Comparison of the Measured with the Simulated Output Characteristics by Model EMM 3

model and they are evaluated at the base current equal to $60 \mu \mathrm{~A}$ to meet the typical operating conditions. Hence they are overestimated for low base currents.
(ii) For EMM 3, α_{F} and α_{R} are modelled by the third order polynomials respectively. Subject to the functional behaviour of the third order polynomial, the complete approximation of the variation in α_{F} (similarly in α_{R}) to the measured data over the wide base current range can not be achieved. For better fit over the wide base current range, a possible suggestion is to use two independent polynomials for modelling α_{F} (similarly for α_{R}), one to model α_{F} for low base currents and the other for high base currents.
(iii) For AGPM, one of the basic assumptions in developing this model is that the d. c. current gain, $h_{F E}$ is very large, whereas at low base currents, $h_{F E}$'s are smaller and hence violation of this assumption exists.

On the other hand, Figure 4.2 shows a reasonably good fit between the measured and the simulated characteristics by EMM 2. This is because α_{F} and α_{R}, in this case, are tabulated for a range of base currents. In the saturation region, a fairly reasonable match of the measured with the simulated characteristics of the EMM's, especially of EMM 2, is obtained as a consequence of the application of the principle of "superposition", since in the saturation region both junctions of the transistor are forvard-biased and the principle of "superposition" is valid. The corresponding simulations by EMil 1 and EMM 3 respectively are a little worse than that by EMM 2. The
reasons are stated above in items (i) and (ii). Figure 4.4 shows that the fit by AGPM in the saturation region is not better than that of the EMM's. The reason is that AGPM is developed on the basis of the transistor operating in the normal active mode.

Furthermore, it can be observed from Figures 4.1 to 4.4 that at extremely high base current equal to $500 \mu \mathrm{~A}$, there are large deviations between the measured and the simulated characteristics of all models in the saturation region. All EMM's are developed on the basis of the assumption of low-level injection. At high levels of base current where high-level injection occurs, this assumption is no longer valid because the transport equations for excess carriers in the quasi-neutral regions outside the space-charge regions change; they become non-linear and the electric field has an important effect on the flow of both holes and electrons. The AGPM in which the base "push-out" effect is not considered and constant τ_{F} and τ_{R} are assumed can not provide a more accurate description of the transistor performance than the EMM's.

The numerical comparisons of the measured and the simulated output characteristics by each model are given in Table 4-1. Table $4-2$ shows the measured and the simulated $V_{C E}$ by difierent models at zero collector current which is one of the measures of goodness of fit in the saturation region.

TABLE 4-1 COMPARISONS OF THE MEASURED WITH THE SIMULATED OUTPUT CHARACTERISTICS BY MODELS EMMI, EMM2, ETM3 AND AGPM FOR TRANSISTOR $2 N 1613$

$\operatorname{IBM}(\mathrm{A})$	$\operatorname{VCEM}(\mathrm{V})$	$\operatorname{ICM}(\mathrm{A})$	EMML ICSS (A)	EMM2 $\operatorname{ICSS}(\mathrm{A})$	$\begin{gathered} \operatorname{EMM} 3 \\ \operatorname{ICSS}(\mathrm{~A}) \end{gathered}$	AGPM ICSS (A)
5.000E-08	0 。	$-4.800 \mathrm{E}-08$	-7.048E-08	-4.209E-08	-3.603E-08	-4.564E-08
5.000E-08	3.000E-02	-3.000E-08	-7.777E-09	-1.025E-08	-8.217E-09	2.238E-U8
$5.000 \mathrm{E}-08$	5.000E-02	-5.000E-09	8.804E-08	3.323E-08	3.28 UE-08	$1.081 \mathrm{E}-07$
$5.000 \mathrm{E}-08$	5.200E-02	0 .	1.015E-07	3.891E-08	3.84 EE-08	$1.188 \mathrm{E}-07$
5.000E-08	6.000E-02	1.000E-08	1.649E-07	6.429E-08	E.466E-08	$1.054 \mathrm{E}-07$
5.000E-08	7.000E-02	3. $000 \mathrm{E}-08$	2.689E-07	1.019E-07	1. UE EE-07	2.311E-07
5.000E-08	$8.000 E-02$	5.800E-08	4. OE15E-07.	$1.452 \mathrm{E}-07$	1.603E-07	3.025E-07
$5.000 \mathrm{E}-08$	1.000E-01	1.100E-07	8.027E-07	2.406E-07	ב.058E-07	$4.471 \mathrm{E}-07$
5. $000 \mathrm{E}-08$	1.500E-01	2.950E-07	2. 254 E-06	4.217E-07	7.735E-U7	$6.8<1 \mathrm{E}-07$
$5.000 \mathrm{E}-08$	2.000E-01	$4.000 \mathrm{E}-07$	3.149E-06	4.797E-07	1.034E-06	. $473 \mathrm{E}-07$
5.000E-08	2.500E-01	$4.700 \mathrm{E}-07$	3.388E-06	4.918E-07	1.101E-00	$7.00<E-07$
5.000E-08	3.000E-01	$4.800 \mathrm{E}-07$	3.435E-06	4.941E-07	1.114E-06	7.628E-07
5.000E-08	$3.500 \mathrm{E}-01$	$4.810 \mathrm{E}-07$	3.444E-06	4.946E-07	1.116E-06	$7.635 E-07$
5.000E-08	$4.000 \mathrm{E}-01$	$4.820 \mathrm{E}-07$	3.446E-06	4.947E-07.	1.117E-UE	7.64UE-07
5.000E-08	4.500E-01	$4.850 \mathrm{E}-07$	3.446E-06	4. c47E-07	1.117E-06	7.643E-U7
$5.000 \mathrm{E}-08$	5.000E-01 ${ }^{\text {. }}$	4. C00E-07	3.447E-06	4.947E-07	1.117E-06	7.647E-07
5.000E-08	$1.000 \mathrm{E}+00$	4.920E-07	3.447E-06	4.947E-07	1.117E-06	7.082E-07
5.000E-08	$2.000 \mathrm{E}+00$	$4.950 \mathrm{E}-07$	3.447E-06	$4.947 \mathrm{E}-07$	1.116E-06	7.753E-07
5.000E-08	$4.000 \mathrm{E}+0$	$5.000 \mathrm{E}-07$	3.447E-06.	4.947E-07.	1.113E-06	7.899E-07

TABLE 4-1 COMPARISONS OF THE MEASURED WITH THE SIMULATED OUTPUT CHARACTERISTICS BY MODELS EMMI, EMMI2, EMM3 AND AGPM FOR TRANSISTOR $2 N 1613$ (CONT.).

IBM(A)	$\operatorname{VCEM}(\mathrm{V})$	$\operatorname{ICM}(\mathrm{A})$	EMML ICSS (A)	$\begin{aligned} & \text { EMM2 } \\ & \operatorname{ICSS}(\mathrm{A}) \end{aligned}$	EMM 3 $\operatorname{ICsS}(\mathrm{A})$	AGPM ICSS (A)
5.000E-08	$6.000 \mathrm{E}+00$	5.000E-07	3.447E-06	4.947E-07	$1.105 \mathrm{E}-06$	$8.051 \mathrm{E}-07$
5.000E-08	$8.000 E+00$	$5.000 \mathrm{E}-07$	3.447E-06	4.947E-07	1.091E-06	$8.209 \mathrm{E}-07$
5.000E-08	1.000E+01	$5.050 \mathrm{E}-07$	3.447E-06	4.947E-07	1.06 9E-U6	-8.373E-07
5.000E-08	1.500E+01	$5.100 \mathrm{E}-07$	3.447E-06	4.947E-07	$9.672 E-07$	8.81 SE-07
5.000E-08	2.000E+01	5.200E-07	3.447E-06	4.947E-07	7.817E-07	9.302E-07
$5.000 \mathrm{E}-08$	$2.500 E+01$	$5.250 \mathrm{E}-07$	3.447E-06	4.947E-07	$4.95 ¢ E-07$	9.849E-07
5.000E-08	$3.000 \mathrm{E}+01$	5.350E-07	3.447E-06	4.947E-07	1.182E-07	$1.040 E-06$
1. $000 \mathrm{E}-05$	0 .	-9.200E-06	-1.097E-05	-1.010E-05	-E.742E-06	-9.537E-06
1.000E-05	2.100E-02	0.	-2.492E-07	-4.035E-07	-7.886E-07	3.297E-06
1.000E-05	2.500E-02	3. 600 E-06	2.822E-06	2. 3 E9E-06	9.149E-07	6.959E-06
1.000E-05	3.000E-02	7. $800 \mathrm{E}-06$	7.291E-06	6.399E-06.	$3.393 E-06$	1.<27E-05
1.000E-05.	3.500E-02	1.200E-05	1.257E-05	1.115E-05:	6.319E-06	1.849E-05
1.000E-05	4.000E-02	1.800E-05	1.877E-05	1.673E-05	9.765E-06	-2.577E-05
1.000E-65	5.000E-02	$3.400 \mathrm{E}-05$	3.457E-05	3.088E-05.	1.855E-05	4.397E-05
1.000E-05	6.000E-02	5.500E-05	5.591E-05	4.991E-05	2.052E-05	6.78日E-05
1.000E-05	7.000E-02	7. $800 \mathrm{E}-05$	8.410E-05	7.486E-05	$4.654 \mathrm{E}-05$	9.827E-05
1.000E-05	$8.000 \mathrm{E}-02$	1.160E-04	1.202E-04	1.0E5E-04	$6.750 E-05$	1.353E-04
1. $000 \mathrm{E}-05$	1.000E-01	2. 05 0E-04	2.173E-04	1.902E-04.	1. $\subset 72 E-04$	2.26UE-04

TABLE 4-1 COMPARISONS OF THE MEASURED WLTH THE SIMULATED OUTPUT CHARACTERISTICS BY MODELS EMMI, EMM2, EMM3 AND AGPM FOR TRANSISTOR 2N1613 (CONT.).

$\operatorname{IBM}(\mathrm{A})$	$\operatorname{VCEM}(\mathrm{V})$	$\operatorname{ICM}(\mathrm{A})$	EMMI $\operatorname{ICSS}(A)$	ENM2 $\operatorname{ICsS}(\mathrm{A})$	EMM 3 ICSS (A)	$\begin{gathered} A G P M \\ \operatorname{ICSS}(A) \end{gathered}$
1.000E-05	1.500E-01	4.300E-04	5.061ミ-04	4.279E-04	3.534E-04	4.392E-04
1.000E-05	2.000E-01	5.300E-04	6.47JE-04	5.387E-04	E.134E-U4	5.193E-04
1. $000 \mathrm{E}-05$	2.500E-01	5.500E-04	6.811E-04	5.651E-04.	5.623E-04	5.362E-04
1. $000 \mathrm{E}-05$	3.000E-01	5. $600 \mathrm{E}-04$	6.873E-04	5.702E-04.	5.728E-04	5.394E-04
1.000E-05	3.500E-01	5.600E-04	6.89]E-04	5.712E-04	5.749E-04	5.401E-04
1.000E-05	4.000E-01	5.650E-04	6.892E-04	5.714E-04:	5.753E-04	5.405E-04
1.000E-05	4.500E-01	5.680E-04	6.893E-04	$5.714 \mathrm{E}-04$.	5.753E-04	5.407E-04
1.000E-05	5.000E-01	5.700E-04	6.893E-04	5.714E-04.	5.754E-04	5.409E-04
1.000E-05	$1.000 \mathrm{E}+00$	5.700E-04	6.893E-04	5.714E-04.	E.754E-04	$5.43 C E-04$
1. $000 \mathrm{E}-05$	2.000E+00	5.750E-04	6.893E-04	5.714E-04.	E.754E-04	5.477E-04
1. $J 00 \mathrm{E}-05$	$4.000 \mathrm{E}+00$	5.750E-04	6.893E-04	5.714E-04.	5.753E-04	5.57UE-04
1.000E-05	$6.000 E+00$	5.750E-04	6.893E-04	5.714E-04.	5.753E-04	5.666E-04
1. $000 \mathrm{E}-05$	$8.000 \mathrm{E}+00$	5.820E-04	6.893E-04	5.714E-04.	5.75 3E-04	5.765E-04
1.000E-05	$1.000 \mathrm{E}+01$	6.000E-04	6.893E-04	5.714E-04.	5.75cE-U4	5.808E-04
1. $000 \mathrm{E}-05$	1.500E+01	6.200E-04	6.893E-04	5.714E-04:	5.750E-04	6.142E-04
1. $000 \mathrm{E}-05$	$2.000 E+01$	E. 220E-04	$6.893 \equiv-04$	5.714E-04	5.745E-04	6.442E-04
1. $000 \mathrm{E}-05$	$2.500 E+01$	E. $450 \mathrm{E}-04$	6.8935-04	5.714E-04	5.737E-04	6.771E-04
1.000E-05	$3.000 E+01$	7.000E-04	6.893E-04	5.714E-04	5.726E-04	7.136E-04

TABLE 4-1 COMPARISONS OF THE MEASURED WITH THE SIMULATED OUTPUT CHARACTERISTICS BY MODELS EMMI, EMM2, EMM3 AND AGPM FOR TRANSISTOR 2NI613 (CONT.)

$\operatorname{IBM}(\mathrm{A})$	VCEM (V)	$\operatorname{ICM}(\mathrm{A})$	EMMI $\operatorname{ICSS}(A)$	EMM2 $\operatorname{ICSS}(A)$	EMM 3 ICSS (A)	AGPM ICSS (A)
4.000E-05	0 .	-3.830E-05	-3.972E-05	-3.937E-05	-2.890E-05	-3.837E-05
$4.000 \mathrm{E}-05$	1.850E-02	0 .	4.063E-09	-7.953E-08	-2.183E-06	6
4.000E-05	2.000E-02	$4.500 \mathrm{E}-06$	4.470E-06	4.335E-06	5.963E-07	2.608E-06
4.000E-05	$2.500 \mathrm{E}-02$	1. $950 E-05$	2.110E-05	2.077E-05	1.095E-05	1.821E-05
$4.000 \mathrm{E}-05$	$3.000 \mathrm{E}-02$	3.550E-05	4.075E-05	4.018E-05	2.32UE-05	3.673E-05
4.000E-05	$3.500 \mathrm{E}-02$	E.500E-05	6.391E-05	6.304E-05	3.765E-U5	5.86 SE-05
4.000E-05	$4.000 \mathrm{E}-02$	9.100E-05	9.112E-05	8.988E-05	E.468E-05	$8.445 E-05$
$4.000 \mathrm{E}-05$	$5.000 \mathrm{E}-02$	$1.700 \mathrm{E}-04$	$1.601 \mathrm{E}-04$	1.578E-04	c. $807 \mathrm{E}-05$	1.501E-04
$4.000 \mathrm{E}-05$	$6.000 \mathrm{E}-02$	2.700E-04	2.523E-04	2.489E-04	1.571E-64	2.387E-04
$4.000 \mathrm{E}-05$	7.000E-02	$3.800 E-04$	3.742E-04	3.680E-04	2.360E-04	3.551E-04
4.000E-05	8.000E-02	$5.500 \mathrm{E}-04$	5.232E-04	5.185E-04	3.390E-04	5.028E-04
4.000E-05	$1.000 \mathrm{E}-01$	9.500E-04	9.337E-04	9.134E-04	6.306E-04	8.947E-04
$4.000 \mathrm{E}-05$	$1.500 \mathrm{E}-01$	2.030E-03	2.075E-03	2.024E-03	$1.711 \mathrm{E}-03$	2.049E-03
4.000E-05	2.000E-01	$2.530 E-03$	2.6J3E-03	2.541E-03	2.453E-03	2.604E-03
4.000E-05	2.500E-01	2. $630 \mathrm{E}-03$	2.727E-03	2.665E-03.	2.679E-03	2.728E-03
$4.000 \mathrm{E}-05$	3.000E-0i	2.680E-03	2.752E-03	2.689E-03	2.729E-03	2.751E-03
4.000E-05	$3.500 \mathrm{E}-01$	2.680E-03	2.75i5E-03	2.693E-03	2.738E-03	2.755E-03
4.000E-05	$4.000 \mathrm{E}-01$	2.68 0E-03	2.757E-03	2.694E-03	2.74UE-03	2.757E-03
4.000E-05	$4.500 \mathrm{E}-01$	2. $685 \mathrm{E}-03$	2.75アE-03	2.694E-03	$2.741 \mathrm{E}-03$	2.758E-03

TABLE 4-1 COMPARISONS OF THE MEASURED W['TH THE SIMULATED OUTPUT CHARACTERISTICS BY MODELS EMII, EMM2, EMM3 AND AGPM FOR TRANSISTOR 2 NI 613 (CONT.).

$\operatorname{IBM}(\mathrm{A})$	$\operatorname{VCEM}(\mathrm{V})$	$\operatorname{ICM}(\mathrm{A})$	EMIN. $\operatorname{ICSS}(\mathrm{A})$	$\begin{gathered} \operatorname{ENM} 2 \\ \operatorname{ICSS}(A) \end{gathered}$	EMM 3 $\operatorname{ICSS}(A)$	$\begin{aligned} & \text { AGPM } \\ & \operatorname{ICSS}(\mathrm{A}) \end{aligned}$
4.000E-05	5.000E-01	2. $690 \mathrm{E}-03$	2.757E-03	2.694E-03	2.741E-03	2.759E-03
4.000E-05	$1.000 \mathrm{E}+00$	2. E90E-03	2.757E-03	2.694E-03	$2.741 E-03$	2.769E-03
$4.000 \mathrm{E}-05$	$2.000 E+00$	2.695E-03	2.757E-03	2.694E-03	2.741E-03	2.789E-03
$4.000 \mathrm{E}-05$	$4.000 \mathrm{E}+00$	2.700E-03	2.757E-03	2.694E-03	2.741E-03	2.83 UE-03
4.000E-05	$6.000 E+00$	2.715E-03	2.757E-03	2.694E-03	2.741E-03	2.872E-03
4.000E-05	$8.000 E+00$	2.720E-03	2.757E-03	2.694E-03	2.741E-03	2.915E-03
$4.000 \mathrm{E}-05$	$1.000 E+01$	2.800E-03	2.757Eー03	2.694E-03	2.741E-03	2.960E-03
$4.000 \mathrm{E}-05$	$1.500 \mathrm{E}+01$	2.875E-03	2.757E-03	2.694E-03	2.740E-03	3.077E-03
$4.000 \mathrm{E}-05$	$2.000 \mathrm{E}+01$	2.960E-03	2.757E-03	2.694E-03	2.740E-03	3.202E-03
4.000E-05	2.500E+01	3.08 0E-03	2.757E-03	2.694E-03	2.739E-43	$3.537 E-03$
4.000E-05	$3.000 \mathrm{E}+01$	3. 34 0E-03	2.757E-03	2.694E-03	2.738E-03	3.483E-03
6.000E-05	0.	-5.650E-05	-5.764E-05	-5.761E-05	-4.037E-05	-5.764E-05
6.000E-05	1.800E-02	0.	1.463E-06	1.463E-06	-2.11tE-06	-8.847E-06
6. $000 \mathrm{E}-05$	2.000E-02	8.000E-06	1.057E-05	$1.056 \mathrm{E}-05$	$3.783 E-06$	-1.232E-06
6.000E-05	2.500E-02	3.200E-05	3.623E-05	3.617E-05	c. $044 \mathrm{UE}-05$	2.031E-05
6.000E-05	3.000E-02	6. 200E-05	6.653E-05	6.641E-05	4.005E-05	$4.591 \mathrm{E}-05$
6.000E-05	$3.500 \mathrm{E}-02$	9.700E-05	1.02?E-04	1.020E-04	E. $324 \mathrm{E}-05$	7.624E-05
6.000E-05	4.000E-02	1.380E-04	1.44LE-04	$1.438 \mathrm{E}-04$	¢.053E-05	1.121E-04

TABLE 4-1 COMPARISONS OF THE MEASURED WJTH THE SIMULATED OUTPUT CHARACTERISTICS BY MODELS EMMI, EMM2, ENM3 ANI AGPM FOR TRANSISTOR 2N1613 (CONT.).

IBM (A)	$\operatorname{VCEM}(\mathrm{V})$	$\operatorname{ICM}(\mathrm{A})$	EMMI ICSS (A)	EMM2 $\operatorname{ICSS}(\mathrm{A})$	EMN3 ICSS (A)	$\begin{aligned} & \text { AGPM } \\ & \operatorname{ICSS}(\mathrm{A}) \end{aligned}$
6. $000 \mathrm{E}-05$	5.000E-02	2. 600E-04	2.51] $2 \mathrm{E}-04$	2.493E-04	1.600E-04	2.035E-04
6. $000 \mathrm{E}-05$	E. OOOE-02	3. 900E-04	3.9:35E-04	3.907E-04	2.545E-U4	3.277E-04
6. $000 \mathrm{E}-05$	7.000E-02	5.900E-04	5.736E-04	5.750E-04	3.803E-04	4.918E-04
$6.000 \mathrm{E}-05$	8. DOOE-0 2	$8.000 \mathrm{E}-04$	8.139E-04	8.078E-04	5.445E-04	$7.0<8 E-04$
$6.000 \mathrm{E}-05$	$1.000 \mathrm{E}-01$	$1.440 \mathrm{E}-03$	1.429E-03	$1.415 \mathrm{E}-03$	1.005E-03	$1.273 \mathrm{E}-03$
6. D00E-05	1.500E-01	3.070E-03	3.136E-03	3.113E-03	2.68UE-03	3.086E-03
6. $000 \mathrm{E}-05$	2.000E-01	3.850E-03	3.910E-03	3.902E-03	3.806E-03	4.055E-03
6.000E-05	2.500E-01	4.080E-03	4.092E-03	4.091E-03	4.148E-03	4.28 UE-03
6. D00E-05	3.000E-01	$4.120 \mathrm{E}-03$	4.128E-03	4.127E-03	4.223E-03	4.32UE-03
6. $000 \mathrm{E}-05$	3.500E-01	$4.125 E-03$	4.134E-03	4.134E-03	4.238E-03	$4.328 E-03$
6.000E-05	$4.000 \mathrm{E}-01$	4.125E-03	4.136E-03	4.136E-03	4.241E-03	4.331E-03
6. $000 \mathrm{E}-05$	4.500E-01	4.125E-03	4.136E-03	4.136E-03	$4.24 \overline{E E-03}$	$4.332 E-03$
6.000E-05	5.000E-01	4.125E-03	4.136E-03	4.136E-03	4.242E-03	$4.334 \mathrm{E}-05$
6.000E-05	1.000E+00	$4.125 \mathrm{E}-03$	$4.136 E-03$	4.136E-03.	4.242E-03	4.348E-03
6. $000 \mathrm{E}-05$	$2.000 \mathrm{E}+00$	4.150E-03	4.136E-03	4.136E-03	4.C4CE-03	4.377E-03
$6.000 \mathrm{E}-05$.	$4.000 \mathrm{E}+00$	4.18 OE-03	4.136E-03	4.136E-03	4.24cE-03	4.436E-03
6. $000 \mathrm{E}-05$	$5.000 E+00$	4. 25 0E-03	4.136E-03	4.136E-03	4. 24 CE-03	4.497E-03
6. $000 \mathrm{E}-05$	$8.000 E+00$	4.30 OE-03	4.1365-03	4.136E-03	4.242E-03	4.559E-03

TABLE 4-1 COMPARISONS OF THE MEASURED WITH THE SIMULATED OUTPUT CHARACTERISTICS BY MODELS EMMI, EMM2, EMM3 AND AGPM FOR TRANSISTOR 2N1613 (CONT.).

IBM (A)	$\operatorname{VCEM}(\mathrm{V})$	ICM (A)	Eminl ICSS (A$)$	EMM 2 ICSS (A$)$	EMM 3 ICSS (A)	$\begin{aligned} & \text { AGPM } \\ & \text { ICSS (A) } \end{aligned}$
6.000E-05	1.000E+01	4.350E-03	$4.135 \mathrm{E}-03$	4.136E-03	4.242E-03	$4.622 \mathrm{E}-03$
6. $000 \mathrm{E}-05$	1.500E+01	$4.450 E-03$	4.135 ± -03	$4.136 \mathrm{E}-03$	4.241E-03	$4.788 \mathrm{E-03}$
6.000E-05	2.000E+01	$4.580 \mathrm{E}-03$	$4.136 \mathrm{E}-03$	4.136E-03	$4.241 \mathrm{E}-03$	4.965E-03
6.000E-05	$2.500 E+01$	$4.750 \mathrm{E}-03$	$4.135 \mathrm{E}-03$	$4.136 \mathrm{E}-03$	$4.240 E-03$	5.153E-03
6.000E-05	3.000E+01	5.05 DE-03	$4.136 \mathrm{E}-03$	4.136E-03	4.239E-03	5.354E-03
1. $200 \mathrm{E}-04$	0.	-1.080E-04	-1.084E-04	-1.102E-04	-8.088E-05	-1.155E-04
1. $200 \mathrm{E}-04$	1.780E-02	0 .	1.392E-05	1.477E-05	4.440E-06	-3.538E-05
1.200E-04	2.000E-02	1.900E-05	3.489E-05	3.617E-05	$1.906 E-05$	-2.142E-05
1. $200 \mathrm{E}-04$	2.500E-0 2	7.200E-05	8.870E-05.	9.104E-05	5.660E-05	1.462E-05
1.200E-04	3.000E-0 2	1.280E-04	1.522E-04	1.558E-04	1.01 UE-04	5.755E-05
1.200E-04	3.500E-02	1.960E-04	2.270E-04	2.319E-04	1.532E-04	$1.085 \mathrm{E}-04$
1.200E-04	4.000E-02	2.850E-04	3.146E-04	3.211E-04	c.147E-04	1.688E-04
1.200E-04	5.000E-02	5.000E-04	5.362E-04	5.460E-04	3.707E-04	3.235E-04
1. $200 \mathrm{E}-04$	6.000E-02	8. $000 \mathrm{E}-04$	8.324E-04	8.459E-04	ᄃ.814E-04	5.346E-04
1.200E-04	7.000E-0 2	1.160E-03	$1.218 \mathrm{E}-03$	1.236E-03	8.609E-04	8.167E-04
1. $200 \mathrm{E}-04$	8.000E-02	1.560E-03	$1.703 \mathrm{E}-03$	1.726E-03	$1.223 \mathrm{E}-03$	1.184E-03
1. $200 \mathrm{E}-04$	1.000E-01	2.800E-03	2.959E-03	2.991E-03	2.218E-03	2.2U5E-03
1.200E-04	1.500E-01	5.900E-03	6.347E-03	6.504E-03	5.668E-03	ち.864E-03
1.200E-04	2.000E-01	7.750E-03	7.841E-03	8.146E-03	7.883E-03	$8.234 \mathrm{E}-03$

TABLE 4－1 COMPARISONS OF THE MEASURED WITH THE SIMULATED OUTPUT CHARACTERISTICS BY MODELS EMMI，EMM2，EMIN AND AGPM FOR TRANSISTOR 2N1613（CONT．）．

$\operatorname{IBM}(\mathrm{A})$	VCEM（V）	$\operatorname{ICM}(\mathrm{A})$	EMMLL $\operatorname{ICSS}(\mathrm{A})$	EMM2 ICSS（A）	$\begin{gathered} \operatorname{ENH} 3 \\ \operatorname{ICSS}(\mathrm{~A}) \end{gathered}$	$\begin{aligned} & \operatorname{AGPM} \\ & \operatorname{ICSS}(\mathrm{A}) \end{aligned}$
1．200E－04	2．500E－01	8．420E－03	8．183ミ－03	8．543E－03	8．553E－03	8．843E－03
1．200E－04	3．000E－01	8．550E－03	8．255E－03	8．621E－03	8．702E－03	8．952E－03
1． $200 \mathrm{E}-04$	$3.500 \mathrm{E}-01$	$8.570 E-03$	8．26Эミ－03	8．636E－03	$8.732 E-03$	8．972E－03
1．200E－04	$4.000 \mathrm{E}-01$	8．580E－C3	8．271E－03	8．639E－03	ع．737E－03	8．977E－U3
1．200E－04	4．500E－01	8.58 0E－03	8．272ミ－03	8．639E－03	8．739E－03	8.98 UE－03
1． $200 \mathrm{E}-04$	5．000E－01	$8.580 E-03$	8．272ミ－03	8． $639 E-03$	8．739E－03	8．98＜E－03
1． $200 \mathrm{E}-04$	$1.000 \mathrm{E}+00$	8．EOOE－03	8．272E－03	8．639E－03	E．739E－03	9．007E－03
1． $200 \mathrm{E}-04$	$2.000 E+00$	8．650E－03	8．272E－03	8．E39E－03	ع．739E－03	9．055E－03
1．200E－04	$4.000 \mathrm{E}+00$	$8.700 E-03$	8．272E－03	8．639E－03	8．739E－03	9．2ら4E－03
1．200E－04	． $6.000 \mathrm{E}+00$	$8.800 \mathrm{E}-03$	8．272E－03	8．639E－03	8．735E－03	9．255E－03
1．200E－04	$8.000 \mathrm{E}+00$	$8.900 E-03$	8．272E－03	8．639E－03	8.73 SE－03	$9.358 \mathrm{E}-03$
1．200E－04	1． $000 \mathrm{E}+01$	$8.980 E-03$	8．272ミ－03	8．639E－03	8．739E－03	9．462E－03
1．200E－04	$1.500 \mathrm{E}+01$	9．200E－03	8．272こ－03	$8.639 \mathrm{E}-03$	8．738E－03	9．732E－0．3
1． $200 \mathrm{E}-04$	2．000E＋01	$9.400 E-03$	8．272ミ－03	8．639E－03	8．738E－U3	$1.001 \mathrm{E}-02$
1． $200 \mathrm{E}-04$	$2.500 \mathrm{E}+01$	9．800E－03	8．27こミ－03	8．639E－03	$8.737 E-03$	1．031E－02
1． $200 \mathrm{E}-04$	$3.000 \mathrm{E}+01^{\prime}$	1．100E－02	8．272ミ－03	8．639E－03	$8.736 E-03$	$1.00<E-02$
5．000E－04	0.	$-4.550 E-04$	－3．877E－04	－3．745E－04	－3．386E－04	－4．829E－04
5．000E－04	$1.930 E-02$	0 。	2．403E－04	2．321E－04	1．924E－04	－2．495E－04

TABLE 4-1 COMPARISONS OF THE MEASURED WITH THE SIMULATED OUTPUT CHARACTERISTICS BY MODELS EMM1, EMM2, EMM3 AND AGPM FOR TRANSISTOR $2 N 1613$ (CONT.).

$\operatorname{IBM}(4)$	$\operatorname{VCEm}(\mathrm{V})$	$\operatorname{ICM}(\mathrm{A})$	EMLML $\operatorname{ICSS}(\mathrm{A})$	EMM2 ICSS (A)	$\operatorname{EMN} 3$ ICSS (A)	$\begin{aligned} & \text { AGPM } \\ & \operatorname{ICSS}(\mathrm{A}) \end{aligned}$
5.000E-04	2.000E-02	1.350E-05	2.722E-04	2.625E-04	c. 189E-04	-2.07OE-04
5. $000 \mathrm{E}-04$	2.500E-02	1.800E-04	5.194E-04	5.001E-04	4.26EE-04	-1.437E-04
$5.000 \mathrm{E}-04$	3.000E-02	$3.680 \mathrm{E}-04$	8.107E-04	7.796E-04	6.707E-04	-3.173E-05
5.000E-04	3.500E-02	5.880E-04	1.153E-03	1.107E-03	c.567E-04	1.012E-04
5.000E-04	4.000E-02	8.350E-04	1.553E-03	1.490E-03	1.291E-U3	2.587E-04
5.00CE-04	$5.000 \mathrm{E}-02$	1.530E-03	2.561E-03	2.445E-03	2.125E-03	6.616E-04
5.000E-04	$6.000 \mathrm{E}-02$	2. $300 \mathrm{E}-03$	3.898E-03	3.710E-03	3.232E-03	$1.216 E-03$
5.000E-04	7.000E-02	3.360E-03	5.623E-03	5.330E-03	4.652E-03	1.957E-03
5.000E-04	8.000E-02	$4.400 \mathrm{E}-03$	7.768E-03	7.354E-03	E.439E-03	$2.940 E-03$
5.000E-04	1.000E-01	7.150E-03	1.32JE-02	1.251E-02	1.105E-02	5.761E-03
5.000E-04	1.500E-01	1.540E-02	2.705E-02	2.E65E-02	2.454E-02	1.764E-02
5.000E-04	2.000E-01	2.220E-02	3.283E-02	3.352E-02	3.223E-02	2.838E-02
5.000E-04	2.500E-01	2.690E-02	3.415E-02	3.528E-02	3.460E-02	3.200E-02
5.000E-04	3.000E-01	3.010E-02	3.441E-02	3.565E-02	3.51EE-U2	3.27 UE-02
5.000E-04	3.500E-01	3.300E-02	3.445E-02	3.572E-02	3.529E-02	3.282E-02
$5.000 \mathrm{E}-04$	4.000E-01	3.430E-02	3.445E-02	3.573E-02	こ.531E-02	3.284E-02
5.000E-04	4.500E-01	3.500E-02	3.445E-02	3.573E-02	3.531E-02	S.C85E-42
5.000E-04	5.000E-01	3.50UE-02	3.44SE-02	3.573E-02	3.532E-02	$3.285 \mathrm{E}-02$
5.000E-04	1.000E+00	3.550E-02	3.447E-02	3.573E-02,	3.532E-02	3.290E-02

TABLE 4－2 COMPARISONS OF THE MEASURZI）WITH THE SIMULATED COLLECTOR－ EMITTER TERMINAL VOLTAGES，AT COLLECTOR CURRENT EQUAL TO ZERO，BY MODELS EMMI，EMM？，EMM3 AND AGPM FOR TRANSISTOR 2N1613

IBN（A）	$\operatorname{ICM}(\mathrm{A})$	$\operatorname{VCEM}(\mathrm{V})$	$\begin{gathered} \text { EMMI } \\ \operatorname{VCES}(\mathrm{V}) \end{gathered}$	$\begin{gathered} \text { EMM2 } \\ \operatorname{VCES}(\mathrm{V}) \end{gathered}$	$\begin{gathered} \text { EMM3 } \\ \operatorname{VCES}(\mathrm{V}) \end{gathered}$	$\begin{gathered} \text { AGPM } \\ \operatorname{VCES}(\mathrm{V}) \end{gathered}$
5． $000 \mathrm{E}-08$	0 。	5．200E－02	3．223E－02	3．578E－02	3．514E－02	2．266E－02
1．000E－05	0 。	2．100E－02	2．135E－02	2．162E－02	2．292E－02	$1.688 \mathrm{E}-02$
4．000E－05	0 。	1．850E－02	1．850E－02	1．853E－02	1．968E－02	1．907E－02
6．000E－05	$0 \cdot$	1．800E－02	1．767E－02	1．767E－02	1．873E－02	2．031E－02
1．200E－04	0 －	1．780E－02	1．624E－02	1．618E－02	1．710E－02	2．306E－02
5． $000 \mathrm{E}-04$	0 。	1．930E－02	1．331E－02	1．336E－02	1．371E－02	3．112E－02

4.2 THE DEPENOENCE OF COMMON-EMITTER D. C. CURRENT GAIN ON TIE

COLLECTOR CURRENT

Figure 4.5 shows the measured d. c. current gains, $h_{F E}$'s (dashed lines) as a function of collector current at collector-emitter voltage equal to one volt and the simulations (solid lines) by different models.

For different values of base currents, the simulated $h_{F E}$'s of EMM 1 are constant throughout because of the assumption of constant α_{F} and α_{R} evaluated at base current equal to $60 \mu \mathrm{~A}$ to meet the typical operating conditions. Hence $h_{F E}$'s are over-estimated for any base current less than $60 \mu \mathrm{~A}$ and under-estimated for any base current greater than $60 \mu \mathrm{~A}$.

There is an excellent match between the measured and the simulated $h_{F E}$'s by EMM 2 for a range of base currents. This excellence is achieved by tabulating α_{F} and α_{R} as a function of base currents. Since α_{F} and α_{R} are derived solely from the measurements made at the device terminals, no attempt is made to relate the device performance to the structural and physical parameters. The accuracy can be increased by increasing the number of neasured data points used in constructing this model. This approach, however, has serious drawbacks in that the resulting model based on the large tables becomes couplex.

The simulated $h_{F E}$'s by ELM 3 well match the measured $h_{\text {FE }}$'s for base currents above $1 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$ but not for base currents below $1 \mu \mathrm{~A}$ to $50 \mathrm{nA} . \quad \alpha_{F}$ and α_{R} are modelled by the third order poly-

nomials which have no direct connection with the device physics hence, being subject to the functional behaviour of the polynomials, a complete match of h_{FE} 's over this wide range of base currents is not possible. For complete match, two polynomials for α_{F} (likewise, for α_{R}) are required: one used to model α_{F} for base currents larger than $1 \mu A$; other used to model α_{F} for base currents less than $1 \mu \mathrm{~A}$. However, this would increase the number of model parameters.

The simulation of $h_{F E}$'s by AGPM is more of interest and although the match between the measured and the simulated $h_{F E}$'s is not so good as that of EMM 2 and EMM 3, the AGPM can give a realistic simulation. A good match at base currents ranging from 200 nA to $40 \mu \mathrm{~A}$ can be observed in Figure 4.5. The large discrepancy which appears at base currents below 200 nA is mainly due to the assumption of large $h_{F E}$ made in the developnent of this model, as the simulated $h_{\text {Fe }}$'s at base currents equal to 50 nA and 100 nA are larger than the corresponding measured values. At base currents above $40 \mu \mathrm{~A}$, a discrepancy between the measured and the simulated $h_{F E}$'s results because the base "push-out" effect (one of the high level-injection effects) is not considered completely in the derivation of the model defining equations. For more accurate model performance, it is recommended that the base "pushout" effect should be included by introducing a base "push-out" factor (which can be treated as a molel paraneter) in the equation for base charge, Q_{B} which has a functional dependence on the operating conditions of the transistor.

Table 4-3 gives the numerical comparisons of the measured and the simulated $h_{F E}$'s by different models.

4.3 THE INPUT CHARACTERLSTICS

Figures 4.6 through 4.9 show fairly good match between the measured input characteristics and those simulated by each models. The numerical data are given in Table 4-4.

In Figure 4.6, the deviation between the measured and the simulated input characteristics of EM 1 M is pronounced compared with that of other models. This is because of the assumption of constant α_{F} and α_{R} and the neglect of the effect of R_{E}.

Figure 4.7 shows that the simulated input characteristics of EMM 2 are a little better than that of EMM 1 since all the values of α_{F} and α_{R} are evaluated on the basis of device terminal measurements for different values of base current at a fixed collectoremitter voltage. However, the effect of emitter neutral region resistivity is still not considered in this model. Consequently, the simulated base-enitter voltages are higher than the measured base-emitter voltages at high levels of base current.

The simulation of input characteristics of EMM 3 exhibits much better match with the measured characteristics than do the EMM 1 and HM 2. This improvement is mainly due to the fact that α_{F} and α_{R} are modelled as functions of junction voltages as well as base curreats. The effect of resistivity of the neutral region of the emitter is accounted for in this model. The significant effect of R_{E} can be observed while the transistor is operated at high levels
table 4-3 COMPARISONS OF the measined with the simulated dependence OF D. C. CURRENT GAINS OI COLLECTOR CURRENTS AT COLLECTOREMITTER TERMINAL VOLTAG』 EQUAL TO 1.0 VOLT, BY MODELS ENML, EMM2, EMM3 AND AGPM FOR !?RANSISTOR $2 N 1613$

			EMMI	EMM 2	EMM 3	AGPM
$\operatorname{IBM}(\mathrm{A})$	$\operatorname{ICM}(\mathrm{A})$	HFEM	HFES	HFES	HFES	HFES
5.000E-08	4.920E-07	$9.840 E+00$	$6.893 \mathrm{E}+01$	9.893E+00	E. $233 \mathrm{E}+01$	$1.536 \mathrm{c}+01$
1.000E-07	1.360E-06	1.360E+01	$6.893 E+01$	1. $360 \mathrm{E}+01$	$2.505 \mathrm{E}+01$	$1.844 \mathrm{t}+01$
2. $000 \mathrm{E}-07$	3.750E-06	$1.875 E+01$	$6.893 E+01$	1.876E+01	2.826E+01	2.20UE+01
5.000E-07	1.350E-05	2.700E+01	E. $893 \mathrm{E}+01$	2.717E+01	こ. $338 \mathrm{E}+01$	2.7575+01
1.000E-06	3.400E-05	$3.400 \mathrm{E}+01$	6.893E+01	$3.421 E+01$	$3.801 E+01$	$3.25<E+41$
2. $000 \mathrm{E}-06$	8.190E-05	$4.095 E+01$	$6.893 E+01$	4.119E+01	$4.332 \mathrm{E}+01$	$3.8205+01$
5.000E-06	2.500E-04	$5.000 \mathrm{E}+01$	6. $893 \mathrm{E}+01$	5.028E+01	5.123E+01	4.69UL+01
1. $000 \mathrm{E}-05$	5.700E-04	$5.700 \mathrm{E}+01$	6.893E+01	$5.714 \mathrm{E}+01$	E.754E+01	$5.432 \mathrm{E}+01$
4.000 E-05	2.690E-03	$6.725 \mathrm{E}+01$	E. $893 \mathrm{E}+01$	$6.735 E+01$	E. $852 \mathrm{E}+01$	0.922E+01
6.000E-05	4.125E-03	$6.875 E+01$	$6.893 E+01$	6.893E+01	7.070E+01	7.247E+01
1.200E-04	8.600E-0 3	7.167E+01	$6.893 E+01$	7.199E+01	$7.282 E+01$	7.5U6E+01
5.000E-04	3.550E-0 2	$7.100 \mathrm{E}+01$	$6.893 E+01$	7.146E+01	7.063E+01	0.58 Ut+01

------ Measured

Figure 4.7 Comparison of the Measured with the Simulated Input Characteristics by Model EMM 2

Figure 4.8 Comparison of the Measured with the Simulated Input Characteristics by Model EMM 3

Figure 4.9 Comparison of the Measured with the Simulated Input Characteristics by Model AGPM

TABLE 4-4 COMPARISONS OF THE MEASURED WTH THE SIMULATED INPUT CHARACTERISTICS BY MODELS EMMI, EMM2, EMM3 ANID AGPM FOR TRANSISTOR 2N1613

VCEM (V)	$\operatorname{IBM}(\mathrm{A})$	$\operatorname{VBEM}(\mathrm{V})$	Emin $\operatorname{VBES}(\mathrm{V})$	$\begin{aligned} & \text { EMIM2 } \\ & \operatorname{VBES}(\mathrm{V}) \end{aligned}$	$\begin{aligned} & \operatorname{EMM} 3 \\ & \operatorname{VBES}(V) \end{aligned}$	$\begin{gathered} \text { AGPM } \\ \operatorname{VBES}(\mathrm{V}) \end{gathered}$
0.	5.000E-08	3.100E-01	3.371E-01	3.203E-01	3.158E-01	3.346E-01
0.	$1.000 \mathrm{E}-07$	3.350E-01	3.577E-01.	3.434E-01	3.367E-01	$3.549 E-01$
0.	2.000E-07	3.600E-01	3.782E-01	3.t52E-01	3.576E-01	3.751E-U1
0.	5.000E-07	$3.930 \mathrm{E}-01$	4.034E-01	3.952E-01	3.855E-01	4.018E-01
0.	1.000E-06	4.150E-01	4.259E-01	4.176E-01	4.067E-01	4.220E-01
0 .	2.000E-06	4.375E-01	4.455E-01	4.400E-01	4.281E-01	4.422E-01
0 .	5.000E-06	$4.650 \mathrm{E}-01$	4.737E-01	4.E93E-01	4.566E-01	4.691E-01
0.	1.000E-05	4.860E-01	4.943E-01	4.916E-01	4.784E-01	4.896E-01
0.	$4.000 \mathrm{E}-05$	5.300E-01	5.360E-01	5.357E-01	5.231E-01	5.319E-01
0.	6.000E-05	5.400E-01	5.434E-01	5.484E-01	5.366E-01	5.448E-01
0 。	$1.200 \mathrm{E}-04$	5.600E-01	5.701E-01	5.708E-01	5.604E-01	5.676E-01
0.	5.000E-04	6.120E-01	6.202E-01	6.194E-01.	E.159E-01	6.22UE-U1
3.000E-02	5.000E-08	3.330E-01	3.6E6E-01	3.485E-01	3.448E-01	3.612E-01
3.000E-02	$1.000 \mathrm{E}-07$	3.600E-01	3.871E-01	3.718E-01	3.656E-01	3.817E-01
3.000E-02	2.000E-07	3.875E-01	4.076E-01	3.939E-01	3.866E-01	4.021E-01
3.000E-02	5.000E-07	4.200E-01	4.347E-01	4.242E-01	4.145E-01	4.<91E-U1
3.000E-02	1.000E-06	$4.430 \mathrm{E}-01$	4.552E-01	4.4E6E-01	4.357E-01	4.495E-01

TABLE 4-4 COMPARISONS OF THE MEASURED WTH THE SIMULATED INPUT CHARACTERISTICS BY MODEIS ENMI, EMM2, EMM3 ANI) AGPM FOR TRANSISTOR $2 N 1613$ (CONT.).

VCEM (V)	$\operatorname{IBM}(\mathrm{A})$	$\operatorname{VBEM}(\mathrm{V})$	EMMI $\operatorname{VBES}(V)$	EMM2 $\operatorname{VBES}(\nabla)$	$\begin{aligned} & \text { EMM3 } \\ & \operatorname{VBES}(\mathrm{V}) \end{aligned}$	$\begin{gathered} A G P M \\ \operatorname{VBES}(V) \end{gathered}$
3.000E-02	2.000E-06	4.650E-01	4.758E-01	4. $691 \mathrm{E}-01$	$4.571 \mathrm{E}-01$	4.698E-01
3.000E-02	5.000E-06		5.029E-01	4.985E-01	4.857E-01	4.969E-U1
3.000E-02	1.000E-05	5.130E-01	5.23うE-01	5.208E-01	5.075E-01	5.176E-01
3.000E-02	$4.000 \mathrm{E}-05$	5.530E-01	5.651E-01	5.648E-01	5.522E-01	5.601E-01
3.000E-02	6.000E-05	5.650E-01	5.77ラE-01	5.775E-01.	5.657E-01	5.731E-01
3.000E-02	$1.200 E-04$	5. $850 \mathrm{E}-01$	5.992E-01	5.998E-01	5.894E-01	5.96UE-01
3.000E-02	$5.000 \mathrm{E}-04$	6.400E-01	6.432E-01	6.482E-01	t.447E-01	6.5U6E-01
5.000E-02	5.000E-08	3.530E-01	3.858E-01	3.658E-01	3.634E-01	3.768E-01
5.000E-02	$1.000 \mathrm{E}-07$	3.800E-01	4.062E-01	3.895E-01	3.842E-01	$3.976 \mathrm{E}=01$
5.000E-02	2.000E-07	4.050E-01	4.267E-01	4.120E-01	4.05 CE-01	4.183E-01
5.000E-02	$5.000 \mathrm{E}-07$	$4.375 \mathrm{E}-01$	4.538E-01	4.425E-01	4.332E-01	4.456E-61
5.000E-02	1.000E-06	$4.625 E-01$	4.742E-01	4.652E-01	4.544E-01	4.062E-01
$5.000 \mathrm{E}-02$	2.000E-06	4.850E-01	4.9'7E-01	4.877E-01	4.759E-01	4.868E-01
5.000E-02	5.000E-0.6	5.150E-01	5.218E-01	5.171E-01	5.045E-01	5.141E-01
5.000E-02	1.000E-05	5.350E-01	5.423E-01	5.394E-01	5.263E-01	5.349E-01
5.000E-02	4.000E-05	5.750E-01	5.838E-01	5.834E-01	5.710E-01	5.778E-01
5.000E-02	6.000E-05	5.850E-01	5.951E-01	5.961E-01	5.844E-01	5.908c-01
5.000E-02	1.200E-04	$6.050 \mathrm{E}-01$	E.178E-01	6.183E-01	6.081E-01	6.139E-01
5.000E-02	5.000E-04	6.580E-01	6.676E-01	$6.665 \mathrm{E}-01$	E.629E-01	6.686E-01

TABLE 4-4 COMPARISONS OF THE MEASURED WITH THE SIMULATED INPUT CHARACTERISTICS BY MODELS EMMI, EMM2, ENM3 AND AGPM FOR TRANSISTOR 2NI613 (CONT.)

VCEM (V)	$\operatorname{IBM}(\mathrm{A})$	$\operatorname{VBEM}(\mathrm{V})$	EMMIL $\operatorname{VBES}(\mathrm{V})$	$\begin{aligned} & \text { EMM2 } \\ & \operatorname{VBES}(\nabla) \end{aligned}$	EMM 3 VBES(V)	$\begin{aligned} & \text { AGPM } \\ & \operatorname{VBES}(\mathrm{V}) \end{aligned}$
1.000E-01	5.000E-08	3.830E-01	4.287E-01	3.982E-01	$4.033 \mathrm{E}-01$	$4.038 \mathrm{E}-01$
1.000 E-01	1.000E-07	$4.100 \mathrm{E}-01$	4.488E-01	4.234E-01	4.245E-01	4.256E-01
1.000E-01	2.000E-07	$4.370 \mathrm{E}-01$	4.ESOE-01	$4.480 \mathrm{E}-01$	4.457E-01	4.473E-01
$1.000 \mathrm{E}-01$	5.000E-07	4.725E-01	4.956E-01	4.802E-01	4.740E-01	4.758E-01
1.000E-01	1.000E-06	5.000E-01	5.157E-01	5.037E-01	4.956E-01	4.972E-01
1.000E-01	2.000E-06	5.225E-01	5.358E-01	5.268E-01	5.173E-01	5.180t-01
1.000E-01	5.000E-06	5.550E-01	5.624E-01	5.566E-01	5.461E-01	5.469E-01
1.000E-01	1.000E-05	5.750E-01	5.826E-01	5.790E-01	5.681E-01	$5.685 \mathrm{E}-01$
1.000E-01	$4.000 \mathrm{E}-05$	6.150E-01	6. $233 \mathrm{E}-01$	6.227E-01	t.126E-01	6.128E-01
1.000E-01	6.000E-05	t. $260 \mathrm{E}-01$	t.354E-01	6.352E-01	6.259E-01	6.263E-01
1.000E-01	1.200E-04	$6.450 \mathrm{E}-01$	6.566E-01	6.570E-01	6.490E-01	6.503E-01
1.000E-01	5.000E-04	6.950E-01	7.055E-01	7.042E-01.	7.016E-01	7.069E-01
1.500E-01	5.000E-08	4.050E-01	4.551E-01	4.112E-01	4.265E-01	4.136E-01
1.500E-01	1.000E-07	$4.300 E-01$	4.746E-01	4.378E-01.	4.481E-01	4.361E-01
1.500E-01	$2.000 \mathrm{E}-07$	4.575E-01	4.942E-01	4.644E-01	$4.700 \mathrm{E}-01$	4.584E-01
1.500E-01	$5.000 E-07$	4.925E-01	5.201E-01	4.986E-01	4.990E-01	4.878t-01
1.500E-01	1.000E-06	5.175E-01	5.396E-01	5.233E-01	5.211E-01	5.098E-U1
1.500E-01	2.000E-06	5.400E-01	5.591E-01	5.470E-01	E.432E-01	5.319E-U1

TABLE 4-4 COMPARISONS OF THE MEASURED WITH THE SIMULATED INPUT CHARACTERISTICS BY MODELS EMMI, EMM2, ENM3 AND AGPM FOR TRANSISTOR 2N1613 (CONT.)

VCAM (V)	$\operatorname{IBM}(\mathrm{A})$	$\operatorname{VBEM}(\mathrm{V})$	$\begin{aligned} & \operatorname{EMML} \\ & \operatorname{VBES}(\mathrm{V}) \end{aligned}$	$\begin{gathered} \text { EMM2 } \\ \operatorname{VBES}(\mathrm{V}) \end{gathered}$	$\begin{gathered} \operatorname{EMM} 3 \\ \operatorname{VBES}(\mathrm{~V}) \end{gathered}$	$\begin{gathered} \operatorname{AGPM} \\ \operatorname{VBES}(\mathrm{V}) \end{gathered}$
1.500E-01	5.000E-06	5.700E-01	5.850E-01	5.774E-01	5.726E-01	5.011E-01
1. $500 \mathrm{E}-01$	1.000E-05	5.930E-01	6.045E-01	6.000E-01	5.948E-01	5.834E-01
1. $500 \mathrm{E}-01$	4.000E-05	6.350E-01	6.441E-01.	6.434E-01	6.389E-01	6.296E-61
1. $500 \mathrm{E}-01$	$6.000 E-05$	6.460E-01	6.5!59E-01	6.557E-01	6.517E-01	6.439E-01
1. $500 \mathrm{E}-01$	1.200E-04	6.650E-01	6.765E-01	6.772E-01	6.738E-01	0.6.96E-01
1.500E-01	5.000E-04	7.170E-01	7.243E-01	7.239E-01	7.235E-01	7.314E-01
3. $000 \mathrm{E}-01$	5.000E-08	4.120E-01	4. EESE-01	4.150E-01	4.360E-01	4.10CE-01
3.000E-01	1.000E-07	$4.425 \mathrm{E}-01$	4.854E-01	4.422E-01	4.582E-01	4.389E-01
3.000E-01	$2.000 \mathrm{E}-07$	$4.675 \mathrm{E}-01$	5.045E-01	4.697E-01	4.805E-01	4.615E-01
3. $000 \mathrm{E}-01$	$5.000 \mathrm{E}-07$	5.025E-01	5.298E-01	5.048E-01	5.10 CE-01	4.912E-01
3. $000 \mathrm{E}-01$	1.000E-06	5. $250 \mathrm{E}-01$	5.490E-01	5.301E-01	5.328E-01	5.135E-01
$3.000 \mathrm{E}-01$	2.000E-06	5.500E-01	5.68.1.E-01	5.542.E-01	5.555E-01	5.358E-01
3.000 E-01	5.000E-06	5.795E-01	5.935E-01	5.849E-01	5.854E-01	5.654E-01
3.000E-01	1.000E-05	6. $000 \mathrm{E}-01$	6.127E-01	6.076E-01	6.078E-01	5.88UE-U1
3.000E-01	4.000E-05.	6.410E-01	6.516E-01	6.510E-01	6.516E-01	6.352E-01
$3.000 \mathrm{E}-01$	$6.000 \mathrm{E}-05$	6.540E-01	6.632E-01	6.632E-01	6.641E-01	6.501E-01
3.000E-01	1.200E-04	6.760E-01	6.836E-01	6.847E-01	6.856E-01	6.773E-U1
3.000 E-01	5.000E-04	7.300E-01	7.307E-01	7.317E-01	7.339E-01	7.463E-01

of base current.

Contrary to the above-mentioned discrepancy appearing in Figures 4.6 to 4.8 , the simulated base-emitter voltages of AGPM are lower than the measured base-emitter voltages for different base currents as shown in Figure 4.9. This discrepancy is probably due to one of the high-level injection effects called "emitter crowding" which is illustrated in Figure 4.10. For the diffused planar transistor, the base current causes the emitter bias voltage at the edge of the emitter, $V_{B E}$ edge to be higher than that at the centre, $V_{B E}$ centre. At low current levels, $V_{B E}$ edge $-V_{B E}$ centre $\lll T / q$, and the current is distributed uniformly as shown in Figure 4.10(a). At high current levels, the difference in biasing voltages becomes so pronounced that virtually all of the injection takes places at the edges of the emitter as shown in Figure $4.10(\mathrm{~b})$. This effect is known as "emitter crowding" and causes the measured base-emitter voltages to be higher than that predicted by the model. Transistors are often used at high current levels and the "emitter crowding" is a two-dimensional effect, whereas unfortunately, AGPM is based on a one-dimensional approach. Hence a true or complete physical model of the transistor calls for a two-dimensional approach.

In general, the relatively large discrepancy between the measured and the simulated input characteristics by different models appears at the very 1 ow current levels because of the effect of generation and recombination at surfaces and in the inversion layers at the surfaces which are significant at low bias voltages. This
effect is known as "surface effect" (39). The "surface effect" in modern diffused transistors actually has been minimized but however not eliminated.

Collector
\qquad
(a) At Low Current Levels

Collector
\qquad
(b) At High Current Levels

Figure 4.10 Current Distribution below the Emitter

CHAPTER V

CONCLUSIONS

This thesis has described and compared several large-signal transistor models, which are of different degrees of accuracy and and simplicity.

The accuracy of the basic Ebers-Moll model is limited by so many assumptions mentioned earlier in Chapter II, to a restricted range of currents and voltages; whereas the modified Ebers-Moll models can offer significant improvement in accuracy. The modifications of the basic Ebers-Mioll model consist of retaining the form of the equations but increasing the accuracy by allowing the parameters of the model to vary with currents and voltages or by curve-fitting the parameters'functional dependence to measured data. The advantage of these modifications lies on the side of accuracy. On the other hand, these also produce disadvantages, such as limitations on computer memory, on numerical accaracy and consequently, on the size of the circuit being simulated. As an additional disadvantage, the parameters for the model derive solely from measurements made at the device terminals. No attempt is normally made to relate the device behaviour to the structural and material parameters. Nevertheless, the Ebers-hioll models or modifications thereof, have found relatively wide spread use as models for bipolar junction transistors be-
cause of the relative ease of obtaining the model parameters. The abbreviated Gumel-Poon model is an alternative approach (i.e. the charge control approach) which offers significant advantages. Its novel feature is that the high level injection and the Early effects are incorporated into the model through the use of Gummel's new charge control relation. This makes the performance of the model substantially exceed that of the modified Ebers-Moll models of comparable complexity, and, thereby, the model enables trading between simplicity and accuracy. Moreover, in addition to the constant inactive base resistance, the inclusion of a base-charge-dependent active base resistance into the model gives the more accurate description of a diffused planar transistor whereas, in the modified Ebers-Moll model, the active base resistance is not included but the constant inactive base resistance used to account for the finite resistivity of the semiconductor material of the base region.

The disadvantage of this model is the difficulty in obtaining its model parameters, especially the charge-control parameters; some of which are not obtainable with the existing measurement techniques.

The most important approximations limiting the validity of this model are the assumption of the one-dimensional current flow which however is not the case in a practical transistor, and the assumption of large current gains even at low current levels. The latter assunption would cause considerable departure from a real transistor while operating in the cutoff region.

For future investigations, there are several possible areas or topics which are as follows:
(i) Inclusion of temperature effect which can be accounted for by considering the temperature dependence of parameters and the actual operating temperature of the transistor junctions.
(ii) Inclusion of the multidimensional effects which can be accounted for by formulating the multidimensional carrier transport equations and applying their solutions to develop a more precise model.
(iii) Extensions to full Gumel-Poon model to include the base "pushout" effect and the modelling of base-emitter junction capacitance.
(iv) Extension to fully automated parameter determination methods to eliminate the difficulties in parameter evaluation.
(\mathbf{v}) Inclusion of modelling the Early effect in the Ebers-Moll model, as proposed by John Logan(4).
(vi) Application of models to circuit analysis and system design.

Microscopic Measurement of Device Geometry

Fig. A-I(a) Top View

Fig. A-l(b) Cross-Section

Figure A-1 Internal Structure of 2 N1613

Measured Data:
(I) Diameter of the Emitter $=d_{E}=0.36 \mathrm{~mm}$.
(2) Diameter of the Base $=d_{B}=0.62 \mathrm{~mm}$.

COMPUTER PROGRAMMES

```
RUN(S)
SETINDF.
REDUCE.
LGO.
                                    64UU END OF RECORD
                            PROGRA MAPD (INPUT, OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
C
C MAIN PROGRAMME FOR AUTOMATED PARAMETER DETERMINATION
C
    DIMENSION OO(13), DELTA(13), TOLER(13)
C
        COMMON/AAA/ AICM(15, 5),AIBM(5),VCEM(15),VEEN(15,5),M1
        COMMON/BBE/ RE, RC, R3, PP
C
C TO READ IN MEASURED DATA EXPRESSED IN M.K.S. UNITS.
C
    M1=15
    DO 300 M=1,N1
    IF(M &T. 9 ) JI=5
    IF(M eEQ. 9) JI=4
    IF(M,GT. 9, JI=3
    IF( M .GE. 13) Jl=2
300 READ(5,97) (AICM(N,J), J=1,J1)
    97 FORMAT(8EIU.3)
C
    DO 400 M=1,M1
    IF(M LLT. 9 ) JI=5
    IF(M .EQ. 9 ) JI=4
    IF(N.GT, G ) JI=3
    IF(M.GE. 13, J1=2
400 RFAD(5,90) (VBEM(M,J), J=1,JI)
98 FORMAT(EFIL.3)
C
    AIEM(1)=5.E-8
    AIBM(2)=1.VE-5
    AIBM(3)=4.0E-5
    AIEN(4)=1•2E-4
    AIBM(5)=5.E-4
C
    VCEM( I)=U.
    VCEM( 2)=0.03
    VCEM( 3)=0.V6
    VCEM( 4)=U.UQ
    VCE:S(5)=0.1
    VCEM( 6)=U.3
    VCEV(7)=0.5
    VCEM( 8)=1.
```

$$
\operatorname{IMAX}=13
$$

C

$$
\begin{aligned}
& B P=1 . \\
& R E=U . U 724 \\
& R B=20.49 \\
& R C=0.291
\end{aligned}
$$

C

$$
A I I=5.057 E-14
$$

$$
A 12=2.065 E-12
$$

$$
\text { AI } 3=4 \cdot 563 E-13
$$

$$
A I S=2.374 F-12
$$

$$
A N C=1 \cdot 133
$$

$$
\text { ANE } 1=1.217
$$

$$
\operatorname{ANE} 2=1.618
$$

$$
Q B O=7.782 E-11
$$

$$
C C=3.67 E-12
$$

$$
C E=3.87 E-10
$$

$$
\text { TAUF }=2.550 E-9
$$

$$
\text { TAUR }=2.880 E-6
$$

$$
\text { RBAO }=867 .
$$

C

$$
\operatorname{DELTA}(1)=0 \cdot 1 * A I 1
$$

$$
\operatorname{DELTA}(2)=0.1 \div A I 2
$$

$$
\operatorname{DELTA}(3)=0.1 \div A 13
$$

$$
\text { DELTA }(4)=0 \cdot 1 * A I S
$$

$$
D E \operatorname{LTA}(5)=0 . \cup 1 * A N C
$$

$$
\operatorname{DELTA.}(6)=0 . \cup 1 * A N E 1
$$

$$
\operatorname{DELTA}(7)=\cup . \cup 1 * A N E ?
$$

$$
\operatorname{DELTA}(8)=U \cdot 1 * Q B U
$$

$$
\operatorname{DELTA}(G)=U \cdot 1 * C C
$$

$$
\text { DELTA }(10)=0.1 * C E
$$

$$
\text { DELTA }(11)=0.1 * \text { TAUF }
$$

$$
\text { DELTA }(12)=U \cdot 1 * T A U R
$$

$$
\operatorname{DELTA}(13)=U \cdot v * \operatorname{REA}
$$

C

```
OO(1)=ABS(AII)
OO(2)=ABS(AI 2)
OO(3)=ARS(AI3)
OO(4)=ARS(AIS)
OO(5)=ARS(ANC)
OO(6)=ABS(ANF1)
O\cap(7)=ARS(ANE2)
OO(G)=APS(QQu)
OO(G)=ABS(CC)
OO(1U)=ARS(C=)
OO(12)=ARS(TAUF)
OO(12)=ABS(TAUR)
```

$O O(13)=A B S($ RBAO $)$
$M O B J=5000$
MITER $=9000$
INTDATA $=1$
ALPHA $=3.0$
BETA $=\cup .5$
DO IOC $I=1$, IMAX
$100 \operatorname{TOLER}(\mathrm{I})=00(\mathrm{I}) / 20000$.
CALL PTSH(IMAX,MOBJ,MITER, INTDATA,ALPHA,BETA,DELTA,TOLER,OO) STOP
END

C
C

6400 END OF RECORD
-4.800E-08-9.20CE-06-3.830E-05-1.080E-04-4.550E-04
-3.000F-08 7. $800 \mathrm{~F}-06$ 3.550F-C5 1.280F-04 3.680F-04
1.000E-08 5.500E-05 2.700E-04 8.000E-04 2.300F-02
5.800E-08 1.160E-04 5.500E-04 1.560E-03 4.400E-02
$1.100 E-07 \quad 2.050 E-04 \quad 9.500 E-04 \quad 2.800 E-03 \quad 7.15 U E-02$
$4.800 E-07 \quad 5.600 E-042.580 E-03 \quad 8.550 E-03 \quad 3.010 E-02$
$4.900 E-075.700 E-042.670 E-03 \quad 8.580 E-03 \quad 3 \cdot 500 E-02$
$4.920 E-075.7 C O E-042.690 E-03 \quad 8.600 E-03 \quad 3.550 F-02$
5.000E-07 5.750E-04 2.700E-03 8.700F-03
5.000F-07 5. R20F-04 2.720F-03
5.050E-07 6.00UE-04 ?.800E-02
5.100E-07 6.20UE-04 2.875E-03
5.200E-07 6.220E-04
5.25UE-U7 6.45UE-U4
5.350E-07 7.00UE-U4

0.310	0.486	0.530	0.560	0.602
0.333	0.513	0.553	0.585	0.630
0.360	0.543	0.583	0.613	0.657
0.375	0.558	0.597	0.629	0.677
0.383	0.575	0.615	0.646	0.685
0.412	$0.6 u 0$	0.641	0.676	0.720
0.412	.500	0.541	0.676	0.720
0.412	0.600	0.641	0.675	0.720

$\begin{array}{llll}0.412 & 0.600 & 0.641 & 0.676 \\ 0.412 & 0.600 & 0.641 & 0.672\end{array}$

0.412	.600	0.641

$0.412 \quad 0.600 \quad 0.641$
$0.412 \quad .600$
$0.412 \quad 0.600$
0.412 U.6u0

END OF FILE

REAL O(16), U

DIMENSION Q $(15,5), \operatorname{QB}(15,5), \operatorname{VCE}(15,5), \operatorname{VEE}(15,5), \operatorname{VBC}(15,5)$,

DIMENSION AUX6 $(15,5), \operatorname{RBT}(15,5), E 1(15,5), F 2(15,5)$
COMMON/AAA/ AICM(15, 5), AIBM(5), VCEM(15),VBEM(15, 5),M1
COMMON/BBB/ RE, RC, RB, BP
c
$\operatorname{AII}=\operatorname{ABS}(O(1))$
$\operatorname{AI2}=\operatorname{ABS}(\mathrm{O}(2))$
$\operatorname{AI} 3=\operatorname{ABS}(0(3))$
$A I S=A B S(O(4))$
$A N C=A B S(O(5))$
$\operatorname{ANEI}=\operatorname{ABS}(0(6))$
$\operatorname{ANE2}=\mathrm{ABS}(0(7))$
$Q B O=\operatorname{ABS}(0(8))$
$C C=A B S(0 .(0))$
$C E=A B S(O(1 \cup))$
TAUF=ABS(O(11))
$\operatorname{TAUR=ABS(O(12))}$
$\operatorname{RBAO}=\operatorname{ABS}(0(13))$
c
C $B=Q / K T \quad Q=1.6 \cup 2 E-19 \mathrm{C} . \quad K=1.38 E-23 \mathrm{~J} / \mathrm{DEGREE} K \mathrm{~T}=298$ DEGREES K
$B=160.2 /(1.38 * 2.08)$
c
c To calculate vbes, aicss by treating vcem and aibm as independent variables
C

```
    DO IU \(M=1, M 1\)
    IF( M •LT• 9 ) JI=5
    IF (M.EO• \(\quad\) ) JI=4
    IF (M.GT• \(M\) ) JI=3
    \(I F(M \cdot G E \cdot 13) J 1=2\)
    DO \(20 \mathrm{~J}=2, \mathrm{Jl}\)
    \(\operatorname{AIEM}(M, J)=-A \operatorname{IRM}(J)-A \operatorname{ICM}(M, J)\)
    \(\operatorname{VCE}(M, J)=V C E M(M)-A I C M(M, J) * R C+A I E M(M, J) \neq R E\)
    VBEHI \(=0.8\)
    \(V B E L O=0 \cdot 2\)
    \(\operatorname{VRF}(N, J)=\) C. \(5 *(\operatorname{VBEHI}+\operatorname{VBFLO})\)
    \(\operatorname{VEC}(M, J)=\operatorname{VRE}(M, J)-V C E(M, J)\)
    \(A \cup X_{1}(M, J)=E X P(E M V F(Y, J) / A N E 1)\)
    AUX? \((N, J)=F X P\left(B_{H} V\right.\) FF \(\left.(\because, J) / A N F 2\right)\)
    \(A \cup \times 4(M, J)=E \times D(\square \because V マ C(M, J) / A M C)\)
    \(\triangle \operatorname{IRS}(M, J)=A I 1 *(A \cup X I(M, J)-1\).
        \(1+\dot{A} 2 *\left(A \cup X_{2}(M, J)-1.\right)\)
        \(2+A I 3 *(A J \times 4(1, J)-1\).
    \(\operatorname{IF}(A \operatorname{IBM}(J) \cdot G T \cdot A \operatorname{IFS}(N, J)) \quad \operatorname{VEELO}=\operatorname{VEE}(\because, J)\)
    IF(AIBM(J) LTT•AIES(M, J)) VBFHI=VBE(M, J)
    IF ( ABS (VPEHI-VAEL?) •LT. 1.OE-8 1 GO TO 12
    607011
    \(A \cup X Z(M, J)=5 \times(R \% V R C(N, J))\)
    \(\operatorname{AUXG}(\mathrm{M}, \mathrm{J})=F X F(B x \mathrm{~V}=(\mathrm{M}, \mathrm{J}))\)
    \(Q(M, J)=U .5 *(Q B U+C E * V F F(M, J)+C C * V E(M, J))\)
```

12 CONTINUF

```
    \(A \cup X 5(M, J)=S Q R T(Q(M, J) * * ?+Q B O * A I S *(R P * T A U F *(\triangle U X G(M, J)-1.0)\)
```

```
1 +TAUR*(AUX3(M,J)-1.0)))
```

 \(Q B(M, J)=A(M, J)+A \cup X 5(N, J)\)
 \(\operatorname{AICSS}(M, J)=A I S *\left(A \cup X_{6}(M, J)-A U X 3(M, J)\right) * Q R O / O B(M, J)-A I 3 *(A \cup X 4(M, J)-1\).
 AIES \((M, J)=-\operatorname{AICSS}(M, J)-\operatorname{AIRS}(M, J)\)
 \(\operatorname{RBT}(M, J)=R B+(R R A O * Q R O) / O R(M, J)\)
 \(\operatorname{VBES}(M, J)=\operatorname{VBE}(M, J)+\operatorname{AIRS}(M, J) \div R R T(M, J)-A \operatorname{IFS}(M, J) * R E\)
 \(\operatorname{HFES}(M, J)=\operatorname{AICSS}(M, J) / \operatorname{AIRS}(M, J)\)
 \(\operatorname{HFEM}(M, J)=\operatorname{AICM}(M, J) / A \operatorname{IRM}(J)\)
 C
C TO FORMULATE OBJECTIVE FUNCTION BY METHOD OF LEAST PTH APPROXIMATION
20 CONTINUE
10 CONTINUE
$E R R O R=0.0$
DO $40 \mathrm{M}=1, \mathrm{M1}$
IF (M •LT• 9) JI=5
IF (M •EQ. 9) J1=4
IF (M.GT. 9) JI=3
IF ($M \cdot G E \cdot 13$) JI=2
DO $50 \mathrm{~J}=2, \mathrm{JI}$
$E R R O R=E R R O R+E 1(M, J)+E 2(M, J)$
50 CONTINUE
40 CONTINUE
c
C TO FIND THE NOR: OF THE ERROR FUNCTION AND U =NORM WHICH IS THE ORJECTIVE
C FUNCTION TO EE MINIMIZED.
c
PTH=1.0/P
$U=A B S(E R R O R) * * P T H$
RETURN
END

SUBROUTINE DATA (OO, UO,DELTA,NOBJ,NITER)
REAL OO(13), DELTA(13)
WRITE (6,998) 00
WRITE (6.999) UO, NOBJ, NITER
998 FORMAT(1X, 7(5X, F12.5),/1HO, 7(5X, E12.5)/)
099 FORMAT ($6 \mathrm{X}, ~ 512.5,2(5 \mathrm{X}, \mathrm{I} 4) / /)$
RETURN
END

SUBROUTINE PTSH(IMAX,MOBJ,MITER, INTDATA,ALPHA,BETA,DELTA,TOLER,OO)
PATTERN SEARCH

PURPOSF

TO locate a local minimum of the scalar function u. where u IS A FUNCTION OF IMAX CONTROLABLE VARIABLES (VECTOR O) this program uses a direct search imethod, it only requires the USER TO SPECIFY THE FN U, NO INFORMATION ABOUT ITS PARTIAL -RIVATIVES WITH RESPFCT TO THE CONTRCLAbLE VARIABLFS IS REOUIRED THE USER IS REMINDED THAT THE SEARCH WILL LOCATF A MINIMU OF the fn. u but it cant quarantee a global minimun
A PROVISION HAS BEEN MADE TO KEEP TRACK OF THE MUMEER OF FUNC -Ion evaluations (nOBj). Should a Specified numeer (mobj) be ex -EEDED The SEARCH WILL be Stopped at this point.
a CHECK IS ALSO KEPT ON THE NUMBER OF ITERATIOAS. IF THIS SHOULD EXCEED A PREDETERMINED AMOUNT THE PROGRAM WILL BE STOPF - d automatically

DESCRIPTION OF fARAMETERS

INTEGER

I Subicript to dencte variable
imAX TOTAL NO. OF VARIABLES TO DE OPTIMIZED (LESS THAN
NOBJ index to record the no. of function evaluations
MOESJ
NITFR
MITER
Intoata
max no. of function evaluations
INDEX TO RECORD THF NO. OF ITERATIONS MAX NO. OF ITERATIONS
USED TO SIGNIFY IF INTERMEDIATE DATA IS REQUIRED
REAL
U OBJECTIVE FN. WHICH IS TO RE MIMIMIZED (SCALAR)
UO VALUE OF ORJECTIVE AT A BASE POINT
TEMDU CURRENT BFST VALUE OF U (USED IN SUBROUTINE EXPLOR
ALPHA
beta
ACCELERATION FACTOR FOR THE PATTERN-MOVE
REDUCTION FACTOR TO INCREASE RESOLUT:ON AS MIN. IS APPROCHED
O(I) VECTOR: IN N-DIMENSIONAL SPACE
OO(I) VECTOR LOCATION OF A BASE-POINT
DELTA(I) INCREMENTAL CHANGE INVARIARLE O(I) (USED IN EXPLOR) TOLER(I) REQUIRED RESOLUTION TO SPECIFY THE O(I) VALUE AT THE STEPO(I) INTERYEDIATE DARAVETER USED TO CALC. A PATTERG-VOVE

PARAMETERS SPECIfIED BY THE USER

IMAX
mobj (typically 100-500)
MITER
(LESS THAN 20)
(TYDICALLY YOPJ/(2*IMAX))

```
    INTDATA (=0 NO INTERMEDIATE RESULTS REQUIRED )
                (=1 IMTERMEDIATE RESULTS ARE REQUIRED )
    ALPHA (USUALLY 
    DELTA(I) (DEPENDS ON THE SCALING OF THE PROBLEM )
    TOLFR(I) (DFPFNDS ON THF REQUIRMENTS OF THF USER )
    ST(I) (LOCATION OF THE STARTING POINT FOR THE SEARCH)
    SUbROUTINES SUPPLIED BY THE USER
```



```
    subroutine object (o,u)
    THIS SURROUTINE SPECIFIES THE SCALAR FUNCTIONTO BE MINIMIZED.
    U is a function of the controllable variables vector o.
    Subroutine data (oo,vo,dElta,nobj,NITER )
    THIS PROGRAM SHOULD CONSIST OF ONE WRITE STATEMENT WITH ITS ASN
    -CIATED FORUAT DESCRIPTION. IT INSTRUCTS THE COMPUTER TO PRINT
    -T RESULTS. NOTE THE SAME FORMAT IS USED FOR INTERMEDIATE DATA
    AND THE FINAL RESULTS. ANY OF THE PARANETERS DECLARED IN THE
    -RGUEMENT LIST MAY BE SPECIFIED IN THE WRITE STATEMENT
```

 INTEGER I, IMAX
 REAL DFLTA(2U),TOLFR(20),O(20),OO(20),STEPO(20)
set the iteration and function evaluation counters to zero
NOBJ=0
NITER $=0$
A BASE POIMT HAS EEEN DEFINED OO. IM ORDER TO EVALUATE U(OI
THE 00 INFORMATION vUST BE TRANSFFRED TO O
1 DO 2 I=1,IMAX
$20(1)=00(1)$

```
evaluate the objective function at this location
CALL OBJECT ( O,U)
UO = U
PRINT OUT BASE POINT DATA
IF(INTDATA .EO. I) CALL DATA (OO,VO,DELTA,NOBJ,NITER)
CHECK THE NO. OF FUNCTION EVALUATIONS AND ITERATIONS
NOBJ=NOBJ+1
IF(NOEJ .GT. MOEJ) GO TO 85
NITER=NITER+1
IF(MITER .GT. \becauseITER) 6O TO 80
EXPLOR U TO FIND THE MIN IN THE ENVIRONS OF O
CALL EXPLOR (TMAX,MANJ:OOG.DFLTA,O,U,TEMPU)
IF(NORJ, GT. MORJ) }60\mathrm{ TO }8
```

CHECK TO SEE IF THERE HAS BEEN A REDUCTION IN THE OBJ. FA. U IF(TEMPU .LT. VO) GO TO 20

NO IMPROVEMENT SO CHECK IF STEP SIZE IS SMALLER THAN SPECIFIED TOLERANCE IF SO STOP IF NOT REDUCE INCREMENT SIZE
$L=0$
13 DO $14 \mathrm{I}=1$, IMAX
14 IF (ABS (DFLTA(I)) . LT. TOLER(I)) $L=L+1$
IF(L.EQ. MAX) GO TO 70
reduce the step size to improve the resolution
DO 15 I =1, IMAX
15 DELTA (I) $=$ DELTA (I) 2 BETA
GO TO 1

IF THERE HAS BEEN A REDUCTION IN U TRY TO EXPLOIT THIS SUCES: by updating the direction INFORMATION (SIGN OF DELTA, hopefully this will reduce no. of false moves ffuncidon evaluate:

- N EVALUATIONS)

200023 I =1, I MAX
IF (O(I) •GT. On (I) • AND. DELTA(I). .LT. 0.0, GO TO 22
IF (OI) aLE. OO (I) AND. DELTA(I).GT•0.0) GO TO 22
GO TO 23
22 DELTA (I) =-DEL TAI)
23 CONTINUE
up date the value of base point on and the associated value THE OBJECTIVE FUNCTION THEN RAKE A PATTERN MOVE

30 UO=TEMPU
DO $21 \mathrm{I}=1$, I MAX
STEPO(I)=O(I)-OO(I)
$00(I)=0(I)$
$310(I)=00(1)+$ ALPHA 3 STEPO(I)
NITER=NITER+1
IF(INTDATA •EQ.I) CALL DATA (OO, UO,DELTA,NOBJ,NITER)
IF (MITER • GT. MITFR) do TO go
find the value of the objective function at this new point
CALL OBJECT (O,U)
$N O B J=N O B J+1$
IF (NOBJ • GT. MOBJ) GO TO 85
BEFORE COMPARING U RIT vO FXDIOR D TO GET GEST VALUE IA THE
REGION OF O
CALL EXPLOR (IMAX,MOAJ, MOEJDELTA,O, U,TEMPU)
IF(NOBJ GT. MOEJ) GO TO 35

37 DO $40 \quad \mathrm{I}=1$ ，IMAX

IF（ DIM（O（I），OO（I））•GT．ABS（DELTA（I）／2．0））GO TO 20
40 CONTINUE
GO TO 1
70 WRITE（6，71）
71 FORMAT（1H1，IOX， $4 M I N$ ．LOCATED TO THE SPECIFIED ACCURACY＊／／

GO TO 90
80 WRITE 6,81$)$ NITER
8．1 FORMAT（／／，lUX，＊PROGRAM STOPED MAX．NO．OF ITERATIONS EXCEEDED
1ED NITER $=$＊，I4 ，
GO TO 90
85 WRITE $(6,86)$ NOBJ
86 FORMAT／／／／，ICX，FPROGRAM STOPPED MAX．NO．OF FN．EVALUATIONS EXCEE 1EXCFEDED NOBJ $=*$ ，I4）
90 CALL DATA（OO，UO，DELTA，NOBJ，NITER ）
RETURN
END
SUEROUTINE EXPLCR（IMAX，MOBJ，NOBJ，DELTA，O，U，TEMPU）
米米来米

PURPOSE

TO FIND THE MINIMUM IN THE REGION OF O THE SURROUTINE TA －S EACH CO－ORDINATE AT A TIME AND INGREMENTS IT WITH A PVE －P IF NO GOOD IT TRIES A－VE GTEP IF STILL NO IMPOOVENENT resets the co－ordinate to its initial value nnd repeats the －oceecure each of the pemaining co－ordthates in turn

RFAL O（2U），DFLTA（20），U，TEMPU
TEMPU＝U
DO $6 \mathrm{I}=1$ ，IMAX
$2 O(I)=A B S(C(I)+D F L T A(I))$
CALL OSJECT（O，U）
NOB．$=V O B J+1$
IF（NOBJ－CT．MORJ）GO TO 10
if（U－LT．TEMPU）on TO a
$O(I)=A B S(O(T)-2.0 * D F L T A(I))$
CALL DBJECT（O，U）
NORJ＝NOEJ +1
IF（NORJ．GT．MOBJ）GO TO 10
IFIU •LT．TFMPU GD TO 5
o（I）＝ABS（C（：）＋oELTA（I））
GO TO 6
5 TEMPU $=U$
6 CONTINUE
10 RETURN
END

APPENDIX C

Comparison of the Measured with the Simulated α_{F} and α_{R} versus $I_{B M}$

Figure C-1 Comparison of the Measured with the Simulated α_{F} versus $I_{B M}$ at $V_{C E}=2 \mathrm{~V}$.

Figure C-2 Comparison of the Measured with the Simulated α_{R} versus $I_{B M}$ at $V_{C E}=-2 V$.

REFERENCES

(1) 1620 Electronic Circuit Analysis Program (1620-EE-02X), Users Manual, IBM Corporation, H20-0170-1, 1965.
(2) H. W. Mathers, S. S. Sedore and J. R. Sents, "Revised SCEPTRE Users Manual, Volume $1^{\prime \prime}$, IBM Electronics System Center, Owego, New York, Technical Report No. AFwL-TR-67-124, April, 1968.
(3) A. F. Malmberg, et al, "NET-1 Network Analysis Program 7090/94 Verson", University of California, Los Almaos, Calif., 1964.
(4) J. Logan, "Modeling for Circuit and System Design", Proc. I.E.E.E., January, 1972, P.P. 78-85.
(5) R. Beaufoy and J. Sparkes, "The Junction Transistor as a ChargeControlled Devices", A.T.E.J.(London), 13, No. 4. Uctober, 1957. P.P. 310-324.
(6) H. K. Gummel and H. C. Poon, "An Integral Charge Control Model of Bipolar Transistor", B.S.T.J., P.P. 827-952, May-June, 1970.
(7) D. Hamilton, et al, "Comparison of Large-Signal Models for Junction Transistors", Proc. I.E.E.E., Vol. 52, March, 1964, P.P. 239-248.
(8) F. A. Lindholm, et al, "Assessing Model Adequacy and Selecting Model Complexity in Integrated-Circait Simulation", I.E.E.E. Journal of Solid-State Circuits, Vol. SC-6, No.4, August, 1971, P.P. 213-222.
(9) J. Early, "Effects of Space-Charge Layer Widening in Junction Transistors", Proc. I.R.E., 40, No.11, November, 1952, P.P.14011406.
(10) C. T. Sah, et al," Carrier Gencration and Recombination in p-n

Junctions and p-n Junction Characteristics", Proc. I.R.E., 45, No.9, September, 1957, P.P. 1228-1243.
(11) W. Webster, "On the Variation of Junction Transistor Current Gain Amplification Factor with Emitter Current", Proc. I.R.E., 42, No.6, June, 1954, P.P. 914-920.
(12) C. Kirk, "A Theory of Transistor Cutoff Frequency Falloff at High Current Densities", I.R.E. Trans. on Electron Devices, ED-9, No.2, March, 1962, P.P. 164-174.
(13) R. L. Pritchard, et al, "Small Signal Parameters of Grown Junction Transistors at IIigh Frequencies", 1954 I.R.E. Conventional Record, Pt. 3, P.P. 89-98.
(14) N. H. Fletcher, "Self-Bias Cutoff Effect in Power Transistors", Proc. I.R.E., 43, No. 11, November, 1955, P. 1669.
(15) A. S. Grove, "Physics and Technology of Semiconductor Devices", New York, Wiley, 1967.
(16) P. E. Gray, et al, "Physical Electronics and Circuit Models of Transistors", New York, Wiley, 1964.
(17) J. Early, "Effects of Space-Charge Layer Widening in Junction Transistors", Proc.I.R.E., 40, No.11, November, 1952, P.P.14011406.
(18) W. Shockley, "The Theory of p-n Junction in Semiconductors and p-n Junction Pransistors", B.S.T.J., Vol. 28, P.P.435-439, July, 1949.
(19) J. Ebers and J. Moll, "Large-Signal Behavor of Junction Transistor", Proc. I.R.E., December, 1954, P.P. 1761-1772.
(20) D. Koehler, "The Charge Control Concent in the form of Equivalent Circuit.s, Representing a Link between the Classic LargeSignal Diodes and Pransistor Models", B.S.T.J., 46, No. 3, March, 1967, P.P. 523-576.
(21) H. Gumel, "A Charge Control Relation for Bipolar Transistor", B.S.T.J., 49, No. 1, January, 1970, P.P. 115-120.
(22) H. C. Poon and H. K. Gummel, "An Integral Charge Control Model of Bipolar Transistor", B.S.T.J., May-June, 1970, P.P. 827-853. H. C. Poon and II. K. Gummel, "A Compact Bipolar Transistor Model", 1970 I.S.S.C.C. Digest of Tech. Papers, Vol. 13, Feb., 1970, P.P. 78-80.
(23) W. Shockley and W. Read Jr., "Statistics of Recombination of Holes and Electrons", Phys. Rev., Vol. 87, September, 1952, P.P. 835-852.
(24) R. Hall, "Germanium Rectifier Characteristics", Phys. Rev., Vol. 83, July, 1951, P. 228.
(25) R. Hall, "Electron-hole Recombination in Germanium", Phys. Rev., Vol. 87, July, 1952, P. 837.
(26) R. Noyce, et al, "Carrier Generation and Recombination in the Space Charge Region of a p-n Junction", Bull. Amer. Phys. Soc. II, Vol. 1, H9, P.382, December 27, 1956.
(27) S. Sze, "Physics of Semiconductor Devices", Chapter 3, P.P. 647651, John Wiley, New York, 1969.
(28) Chapter of (27), P.P. 65-70.
(29) J. Mioll and J. Ross, "The Dependence of Transistor Parameters on the Distribution of Base Layer Resistivity", Proc. I.R.E., Vol. 44, January, 1956, P.P. 72-78.
(30) R. Thornton, et al, "Handbook of Basic Transistor Circuits and Measurement", SEEC Series, Vol. 7, John Wiley, New York, 1966.
(31) B. Chawla and if. Gummel, "Transition Region Capacitance of Diffused p-n Junction", I.E.E.E. Trans., Electron Device, ED-18, March, 1971, P.P.178-195.
(32) Chapter 1 of (27), P. 40 and P. 89.
(33) Chapter of (27), P.28.
(34) D. A. Pierre, "Optimization Theory with Applications", John Wiley, New York, 1969.
(35) G. Temes and D. Zai, "Least pth Approximation", I.E.E.E. Trans. on Circuit Theory, Vol.CT-16, P.P. 235-237, May, 1969.
(36) R. Hooise and T. Jeeves, "Direct Search Solution of Numerical and Statistical Problems", J. ACM, Vol. 8, P.P. 212-229, April, 1961.
(37) D. Wilde, "Optimum Seeking Methods", Chapter 5, Engelwood Cliffs N. J. Printice Hall, 1964.
(38) J. Kowalik and M. Osborne, "Methods for Unconstrained Optimization Problems", Chapter 2, Elsevier, 1968.
(39) J. Mitchell and D. Wilson, "Surface Effects of Radiation on Semiconductor Devices", B.S.T.J., January, 1967, P.P. 1-S0.

[^0]: * The symbol, $\mathrm{T}_{\mathrm{B} \text { 1 }}$ is reserved for later use in equation (2.31).

[^1]: 3.2.2 Method of Automated Model Parameter Determination (Method II) This method can be regarded as a process of finding model parameter values which best simulate the terminal measurements made on the transistor being modelled. It is principally based on optimization theory(34) and is carried out with the aid of a digital computer. The flow chart of the procedure is illustrated in Figure 3.20 in which the specifications consist of the following.

