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ABS TRACT 

In thi s report , models , equati ons , and methodology 

us eful in the analyses of removal of radioactive iodine i n 

th e form of e l emental iodine and me thyl iodi de fr om the 

r eactor containment by sprays and deposition aft er a postu

lat ed Los s of Coolant and Loss of Emergency Core Coo lant 

( LOC/ LOECC) accident are discussed . 

Also discussed ar e applicable methodology us eful in 

the estimation of population dose as a r esult of the escape 

of radioactive iodine and noble gases out of the containment 

after such a postulated accident . A computer program POPDOSE 

was written to estimate population dose bas ed on thi s me thod

ology . 

Results of analyses and details of POPDOSZ are n ot 

i mpor tant for th e purposes of this r eport and ar e not included 

h er e . 
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='art T 

1 In t:co ::.l.ucti on 

In the s afety analysis of reactors , accidents ar e 

postulated some of which may l ea::l t o fuel f ai lures :1nd. r<:) -

l ease of radioactive fi ss i on products to the atmosph er e 

within t he containment: Among the various radi oactive 

fi ss i on pr oducts rel eased the iodine isotopes are th e mos t 

biologically s i gnifican t due to th c~ ir abundance , volatility 

and ability to concentrate in a single or gan ( the thyroid ) . 

Radioactive iodine may be r e l eased in differ ent 

che~ical f or·ns : 99 % i 2 expe ct ed to be a mi xtur e of e l emental 

i od i ne and hypo-i oJ ous acid •:li th . f 'ool· n"· i') ....... .:. 0 

organic iodi de . Aft er relsase from th8 corg th0 f i ss ion 

Thi s part of th ·2 repor t l oo:-::s at :nodel s , equati ons , 

and nethodo l ogy useful in analys in~ t he rsmoval of el emental 

i rv:linc and organi c methyl iodide by do :')~;d ~:!ater ::.:pray::; and 

? ~n~oval of ~l ~m enta1 I od ine 

~l3~~~tal iodine can ~8 r g·nJved at an appreciable rat~ 



by sprays and the natural process of deposition onto surfaces 

inside the containment . 

2.1 

2 . 1 . 1 

Removal by Spray 

Model of Spray Removal 

Elemental iodine reacts with water and therefore may 

be rapidly absorbed by sprays . The removal rate may be pre-

dieted from a model in whi ch the spray is considered to be an 

assemblage of noninteracting s i ngle dr ops ( Re f er en ce 1 ). The 

overall drop absorption process includes the following steps ; 

(a) 

( b) 

(c) 

(d) 

2 .1.2 

mass transfer of elemental iodine across the gas film , 

equilibrium dissolution at the gas - liqui d int erface, 

diffusion into the drop , 

reaction within th e liquid phase . 

Removal Rate 

Th e rat e of change of iodine cc!'lco•·,trati:·r: in t 1 ~e :-_~·:e<-:.~t :r 

building atmosph er e du e to spray r emoval is , 

{ 1 ) 

Si mplifying , 

( 2) 

i'lher e t :: time (s) 

qo :: quantity of iodine initially r el ea sed (g ) 

q = quantity of iodine ( g ) 

Th e spray r emoval rat e cons tant, ~ s' i s r e lated to 

t he spray fl ow rat e and drop absor ption effici ency ·2 by 



As = FHE 
-v 

where H = equilibrium partition co efficient 

E = drop effici ency 

V = volume of contained gas ( cmJ) 

F = volum etric flo·N rate of spray (cmJ/s ) 

The drop absorption effici ency, E, in equation J 

is given by (Reference 2 ) , 

E - l- e_xp(-6k
9
te/d(H+klk 1)) 

where k
9 

= ~v( 2 +0.6 Re
0

.
5

Sc?"
3l 

= gas phas e mass trans f er co efficient 
2 = 27T q/3d 

= liquid phase mass transfer co effi cient 

te = drop exposure time ( s ) 

H = equilibrium partition co effici ent 

d = diame ter of a spray drop ( em) 

diffusivity of iodine in gas 
~~ , .... ·~ ~~ ~;.:::! -~ •:_ ~..r ~; _l_~.r ~ .-; ,1·-' I ~ ) :~ ; 

( J) 

(4 ) 

= f;eynolds number pvd!J-L , where 
str eam , v is velocity of air 
viscosity of air stream . 

p is dens ity of air 
str eam , and fl. is 

Sc = Schmidt numb er , J-L/PDv 

As soon as the s pray r emoval rat e constant , A
5

, is 

evaluated, t he time , rq , r equir ed to r educ e the i odine ;q -
0 

conc entration to any given de contamination factor, q;q
0 

, 

can be obtained by taking t he natural logarithms of both s i des 

of equation 2 , yi e lding 

log (q/q ) = ->.. r 
e o s q;q 

0 

(5) 



I, 

or T = -loge(q/qo) 
q/qo ' 

"s 
the relevant equations 

(6 ) 

Thus , we have all to work with in 

estimating the transient of the concentration of elemental 

iodine relea sed into the containment atmosphere after a 
_,_ 

pos tulated LOC/LOECC .. accident , assuming that spray is 

available continuously . 

2 . 2 Removal by Deposition 

2 . 2 . 1 Removal Rate Constant and Deposi,t i on Veloci ty 

Elemental iodine i s also r emoved by natural deposi -

tion in addition to r emoval by engineer ed safety systems . If 

deposition is the only iodine removal mechanism , the rate i s 

given by : 

or 

where 

dq 
-OT 

q I qo 

Ad 

t 

= 

= 

= 

= 

( 7) 

fraction of initial iodine remaining 

deposition removal rate constant 

time aft er r e l eas e of iodine 

Th 9 deposition r emoval rat e constan t , Ad , is r e 

lated to the area to volume ratio , A/V , of the containment 

volume and an i mportant f.3.rameter -- deposition velocity 

v by : g 

v1here 

( 8 ) 

Vg = depositi on velocity (cm/ s ) 

A = are2 of surfac e avail~bl e for deposition 
( em ) 
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v ~ gas volume of containment (cm3 ) 

2 . 2 . 2 I\·1ode l of Denos i tion of I odine and De!JOs i tion Velocity 

In es timating V , I s hall adop t t he mode l dev eloped g 

by Knuds on and Hilliard (Refer enc e J ) . It i s a mode l in which 

fi s sion pro ducts ar e considered to b e rel eas ed into a well 

mi xed steam- air atmosnhere in the containment volume and the 

containment wall i s cover ed with a thin flowing film of wat er . 

In such a mod e l th e depos ition velocity , Vg ' i s practically 

equal to the gas phase ma s s transfer co effici ent , kc ' of iodine 

through the gas b oundary layer at the walls of the c ontainment . 

The ga s phas e ma ss transfer c oeffici ent , kc ' i s a 

functi on of th e temperatur e differ enc e , (Tb- Tsi) ' b et ween 

the bul k ga s and the containment wall . 'l1he value of kc can 

b e r ea d off a gr a ph of kc versus ( T - 'r . ) , which can b e b S l 

f ound i n r efer enc e 4 . 

Thus , we can evaluate t he r emoval rat e constant , Xd , 

i f we kn ow the details of the t emperatur e differ ence (Tb - Tsi ). 

I n t he case that such de t a i l i s not kn own , fr om a practi cal 

s t andpoi nt , a lower bound of 1 °F f or the t emperatur e di ffer enc e 

( Tb - T
3
i) can b e a ssume d( Refer en ce 5) . A cons ervative 

es tima t e of k or V can th::;n b e obtained . c g 

3 Removal of Me thyl Iodide 

Methyl i odi de i s r emov ed only very s l owly by nat ural 

dep os ition and t he r emoval through t hi s chann el can t h en be 

n egl ect ed . Howev er , me t hyl iodi de may be r emoved at a r ea sona bl e 

r at e by a queous spr ays doped with various r eagents . 



Th3 ro~oval o? ~ethyl i odi de by spr ay is achi eved 

through hro channels . !irst , th o i oiido i absorb ed by s~ray 

dr ops . Second , the S2_Jray vrill wet the contain .. 11o;nt '.vall , a'1d 

the i od i~~ i s absor~~d into the spray fil~ for~eJ o~ the wall . 

Th:; ovsr2.ll romoval rate cons t ant A i s th en g i v::;;1 by 

A = Awall film + Adrop 

Awan= rernoval rat e constant by wal l film abs orption 

Adrop= -c emoval rate cons tant by spray J. r ops 

(9) 

Since these two proc esses ar e qui t e i ndepend ent of 

each other , each channel Dill be di s cussed separat ely . 

3 ~ 1 Remova l by S ~ray Drons 

I n t he followin,3 discussion , I s hall a dopt th e mode l 

deve lop~d by Schwendi~an , Ha s ty , and Post~a ( ~ef er ence 2 , 1~ , 6 ). 

liquid s h ee t or j et .s . ·rh e :1.:::.·::--:: uoon comes t o its ter::tinal 

v aloci ty s o tha t the dr op expos ur e time , t , can b e appr oxi~ated 

by the height of the fall divi ded by the t er mi nal velocity . 

~fuil e a drop i s fa llinz , methyl iodi de is abs orbed into the 

dr op a t a rat e deter~ined by th e s olubility and f irs t order 

reaction rate of :·n <:; thyl iodi de in the f alling d:cop . As me t hyl 

5_ oc'li r:J. 0 d i sso lve .~; only s lightly in and r .::act ~-:; .slO'.'rly ':Ji th wa t or , 

a large r (~ a c tion rate can only bo achi ev ed rri th th e do.:: ing 

of th e 3~;ray '.·ri th a -:3 ui tabl e r ea;cmt at an appro~-::riate 

cone -:mtr a ti on . 

ab3or~tion rat ~ of nethyl i cdid e into th e drop . At tho ~ni 
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of t he fall of t1e dr op , the amount of methyl iodide absorbed 

by a drop is given by 
2 2 Bo?T 

Q 
8 

~a+(a':t,Brf.rlHI-exp(-a-/3n2 7T2 )) * - 7T L.. 2 2 · DaC t n = 1 a + f3 o 7T 
(10) 

where 

4 7T Ed 
= 3 73 (lOa) 

Q = mass of methyl i odide absorbed ( g ) 

D diffusivity iodide in liquid 2 
= of methyl drop (em /s) 

a = radius of drop (em) 

c* = conc e:tjtration of solute in liquid at drop interface 
(g/cm"-) 

t = drop exposure time (s) 

a = :c t 

/3 = Dt/a2 

k = first 
(1/s) 

order r eaction rate constant within the drop 

Ed = fraction of sa tura ti on 

= avera~e solute cone. at the end of _fall 
equilibrium cone . n egl ecting r eact1on 

The removal rate constant Adrop i s r elat ed to the 

fraction of saturation, Ed ' in equation 10 by 

A = FsHEd 
drop V 

') 

\'th er e F
5 

= spray flo·n rate (em_) / s ) 

H = me thyl iodi de partition co efficient 

Ed = fractional s aturati on achi eved during s ing l e pa s s 

V = volume of c ontainmen t gas spac e (cm3 ) 

I n order to evaluate Ed , we have to solva the ri ght 

(ll) 
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hand s i de of equati on 10 . Numerical values of equation 1 0 can 

be obtained fror:1 r ef erence 4 pr ovi ded vre input a and {3 . 

Alternatively , a small program can be vr.ci t t en t o evaluat e the 

rie;ht hand side of equation 10 . Once the right hand s i de of 

equation 10 is evaluat ed , Ed can be obtained with equation l Oa , 

and then. X. can be evaluat ed with equation 11 . drop 

Th e partition coef 'f ici ent of methyl iodid e , H, in 

equation 11 , is given by (Reference 6 ) : 

log H = 4. 82 + 
15-(7 (12 ) 

vrhere log H = logarithm t o the base 10 of the partition co effi 
ci ent H 

T = absolute temperature in °K 

Th e first order r eacti on rate cons tar:.t t , ;{ , depends on 

both concentration of r eagent s in spray solution and t emperatur e . 

Usually , the so call ed second order r eaction rate K
0 

f or 
0 differ ent r eagents at 25 C can be f ound in the literature , 

e . g . r eference 6 . The first order r eaction rat e , k , at 25 °C 

is thus given by 

where ( - 1 - 1, 
i( - second order r eacti on rate litre mole - s . 0 -

C = concentration of r eagent in spray solution 
( . - l ) mole lltr e -

At tem l)era-curc other than 25 °C , 1{ can be obtained by 

1'/here 

(lJ ) 
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T1 = 25 oc 

Ea = activati on 2n2rgy (kcal mole - 1) 

G universal constant (cal - 1 oK- 1) = gas mo l e 

universal gas constant ( cal mole - l oK-l) 

The quantity Ea is always found along vti th K
0 

in the 

lit erature . 

J . 2 Removal by l:lall Film 

After the spray is turn ed on , the containment will 

soon be covered with a flowing film for med by the spray drops . 

r!i ethyl iodide can be absorbed into this wall film and thus 

r emoved from the atmospher e . From a model discussed in 

reference 4 , the rate of removal of methyl iodide by wall film 

can be conservatively estimated as the following . The removal 

rate con3tant, \ , i s g iven by (r eference 4) " wall film 

wher e 

';rhcr e 

\ - q A "wall - - -c v 

= absor ution rat e uer unit area 
gas phase concentrat1on 

A = surface area of wall film 

V = volume of gas spac e . 

The numerical valu e of q/C9 is given by (r efer ence 4 ) 

./k 
q /C9 = H.../ko tanh([)~)) (15) 

H = partiti on coefficient 

k : first order r eaction rat e constant 

D = d. iffusivity of methyl i odide in water 

8 = thi c};:n E~ 1::: s of vrall film 
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The film thickness , 8 , may be pr edi c ted from laminar 

flow theory and is given by (r ef er ence 4 ) : 

(16 ) 

where 8 = f i lm thi cl~ness on vertical \va ll 

v = kinematic vi s cosity of w~t er film 

r = f ilm flow rate per unit length of perimeter 

g = acceleration due to gravity 

Or, Awall film = H: ./kD tanh Lj~ 8) 
(17) 



Part II 

POPULATI ON DOSAGE AS A RESULT OF RELEASE OF RA~I OACTIVE 

I ODI NE AND NOBL:S GAS ES FROM THE REACTOR CONTAil\P:T~NT AFTER 

A SI NGLE FAI LURE 

4 I ntroduction 

In a pos tulat ed r eator acci dent, e .g. LOC/LOECC, 

i s otopes of the noble gas es (Kryton and Xenon) and iodine are 

by far the most abundant fission products r el eas ed to the 

containment atmos pher e . Following such an accident, the 

pres sure in th e containment ri ses due to the entry of steam:~ 

hydr ogen and ga seous fi ss ion products. Henc e , ther e i s a 

poten t ial for l eakage of s ome fi ss ion products to the outside 

environment. ·This ·potential for l eakage will continue for 

many days unless the pr es sur e i s reduc ed by int enti onal 

di s charge thr ough filt er s . Thus , although the bulk would 

be contained , a small portion of t hese fi ss ion products 

may find its way ou t of the containment . thr ough s mall l ea ks . 

The efflu ent, aft er being r el ea sed to the atmosph er e out s ide 

the r eactor, may b e carri ed away fr om the r eactor by the 

wi nd and turbul ence . As a r esult, a per s on who happen s 

to b e in t he path of t he efflu en t will r eceive some radiation 

dos age . 

I n t hi s r eport, I s hall di s cuss bri efly a pplicable 

mod el s which de s cribe the spr ea d of the efflu ent under 

di ff er en t met eoro l ogi cal condi t i ons . l·'li th thes e mode l s , I 

-:~ ·ri1i2 i s only trw~ for s ingl-:; unit CA:N.JU containments . For 
multipl o uni t 0tati on2 , a vaccuum building i s conJ.1.o ct ed t o 
c ontai~m~nt , r8sulti~g i n s ubatnospheric contain~ent pr essure3 
f ollo•:rL1; acci5 :;:n t.::: . 

l1 



s hall als o outline th? proc edur e in estimating the population 

( coll ective ) dos age r eceived by th e publi c . I n par ticular , 

I shall di s cuss the proc edure for estimating the population 

dosage du e to the intake of isotopes of i odi ne releas ed , and 

that du e to external gamma irradiation by the radioactive 

nobl e gases . In both cases , I have assumed that there is no 

depositi on and no settling of t h e releas ed fission products 

although radioacitve decay will be tak en int o accout . Also , 

I have assumed that th e t errain compl exity in the path of the 

efflu ent i s unifor m. With th .ese assu:.nptions , the estimat es 

ma de will probably be cons ervat i ve in th e s ense that the 

calculation will predict a larger dose t han would be observed 

in ·experiment s . 

5 SDr ead of Efflu ent 

Onc e a radioactive gas or aero s ol b e comes air-borne 

it travel s and di sper ses in a manner governed by it s ov1n 

phys ical properti es and tho se of the a~bi ent atmo s ph er e into 

;,.vi th a certain v el ocity and t emperature i.'.Jhich ar e g en erally 

di f f er ent f r om those of the ambi ent . The efflu ent moti on 

has a v ertica l c omponant because of the c o~bined eff ect of 

i nitial mo~entu~ a~d bu oya~cy ( either pos i t ive or n egati ve ) 

unti l th~se proJerti 8s a r e di ss i pat ed . The vertical ri se of 

t h0 cf~lu~nt dus to t hi s not i on i s called ulu~e r i se and ha s 

th~ ne·t eff2 ct o~ chan~ing t he eff ect i ve he i ght of t he re l ease . 

Suri~~ an1 aft~r DlU~3 r i se th2 efflu ent i s t r ansuort ed 

"':Jy ti18 ·:j_n:l . The t urbu l::YJ.t -.wt i on · of t he a t :noSllher e a l ~3o 



causes ra:1.do::n mov2ment of the efflu ·::>nt re s ult i n.:; in i ts pro -

gres s i vs lat ~ral and rertical disp~rsion and it3 d i lution by 

mi z i ng r1i th a i r . Thi ~ pr oc2ss is cal l ed atmo .s"'!h '3 r i c ~i. i ffus i on . 

':!.'h::; sprea d of the c~ffluent by these me chan i sms can 

~e d es cribed by a matha::natical model . 

5. 1 :·.Tathe:nat i ca l Fadel 

Let u s c ons i der th e i deal i zed case of a s i ngl e puff 

of a n e f fluen t re l ea sed to t h e atmosph er e . Be cause of 

turbul r:mt d i:f f us i o:1. its s i z2 \'fill grovv wi th t rave l t i mG as 

i t ::naves 1o\mwi nd . Th e c oncen trati on of radi oactivity 

wi thin t he puff can b e d2scr i bed b y ( referen c e ?) 

00 = the quantity of th2 i nstantaneous source (Ci ) 

t 

= tha co - ordi nates of the s ource of r e l eas e and 
'.'Ji th th2 :~ - a:d:J in the dovmvrind dir e c t i o:'1 , the 
y-a~d s i n th e crosswi nd direction and th e z ...:. a:xi s 
in the vertical di rection 

= t5_m:; after relea,3e ( s ) 

crx, cry,crz = ·h e sta.n.J.aTd ::1ev i.ations of the conc sntrati on 
di s tr i buti ons along the thTee co- ordinat e 
dir <'" cti.on~:; at th e· c :::ntro i d of th::: clcmd at 
ti·nc; t 

u 

(18' 
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x-axis v1hen the wind speed u is not near zero, using the 

transformation r elation: X ::: ut and assuming that downwind 

diffusion can be n eglected as compared with advective transpor t 

(refer en ce ?) . In this case we get 

a• I y2 z2 
x(x,y,z) = 2 - exp {-2(-2 + -2 ) } 

7T U CT'y CT'z CTY CT Z 

In equation 19 , Q' is the r ate of relea se of radioac t i vity . 

Also , th e co - ordinates of the source , (x ,y ,z ) are set 
0 0 0 

arbitrarity at zero . 

It is often important to calcul ate ground level 

concentrations arising f rom elevated sources , such as the 

release from a stack . He can do this by first shifting the 

origin of the co-ordinate system in equation 19 . Also , 

assuming that the plume is reflected at the grotl.!'1d , we get 

(19) 

a• Y2 ( >2 ( H >2 
X ( x, Y, z) = 

2 
- [ex P ( ; 2 >] [ex p {- z - H2 } + ex p {- z + 2 } ] ( 2 o ) 

7T u o-Y crz cry 2 cr z · 2 cr z . 

viliere H is the effective stack height (see section 5.3 below ) 

\'le can then obtain the ground level conc entration by 

setting z=O in equati on 20 , yielding: 

x(x,y,O)= 
I 2 2 

Q [I Y +H] 
7T u a: a: exp - 2 (? ? ) 

y z y z 
(21) 

The gr ound level concentration along a line below 

the plume centr e line is ob·tained by l etting y=O in equati on 

l} , yiel ding 

x(x,O,O)= ( 22 ) 
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The time integral of the concentration (T.I. C.) of 

radioactive mat erial at a point is r equired for calculating 

the related dose . In shor t term continuous release , a con-

servative T. I . C. is obtained by r c~lacing Q' in equation 19 

\'lith th ,?. total quantity of r elease Q (r eference 7), yielding , 

T I C 1 1 Yz z2 
• . • = . exp {- 2 ( -2 + --=z)} 
Q 27Tuo-yo-z o-y o-z ( 23 ) 

= o/(x,y,z) 
Similarly , equations 21 and 22 r especti V<:!ly become , 

T.l. C. 1 { 1 ( y
2 H

2
)} 

Q = exp - 2 o-2 + o-2 
7TU o-yo-z y z 

= o/{x,y,O) (24 ) 

T. I.C. 
Q 

2 

= 7T u CT o- ex p { 2:2 } 
y z z ( 25 ) 

= o/( X, 0, 0) 
The left hand side of equation 23 , 2'-l· , and 25 , i . e ., 

T.I. C. per Ci of radi oactivity r eleased is defined as specific 

e~cposure , o/ , and is an im:9orta::J.t quantity in es timating th e 

radiation dose per Ci of release received by a person at a 

point . 

5 . 2 Stabilit~ Classes and Det ermination of u '~ 

As the diffusion of the radioactivity i s highly 

influcmced by turbul ence which in turn i s determined by 

at:·:10sph ere stability , we can expect the ' measur e of spread of 

the radioactivity' {a-·) to be a function of atmos ph eric 

:J tab.ili ty . Conversely , atmos:9heri c stability ca.r-1 be identifi ed 
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(refer ence 9) has developed a method for classifying 

atmosph eric stability . He grouped stability condition into 

7 classes A - G, ranging from extr emely unst.--:·_)J. e to extremely 

stable. Smith-Hosker (reference 8) , .in para1lel : to Pasquill , 

also classifi ed atmoshperic stability into classes A - G, 

and give the dependece of uy and uz on s tability classes 

analytically as the following 

u z (x) = g(x) F(z
0

,x) 

b b 
with g (x) = a 

1 
x 1/ ( 1 + a 

2 
x 2) 

and L { d d -1} F(z
0

,x)= n C
1

x 1(1 +{C2 x 2) if z0 > 10 em 

or F{z ,x) = Ln { c1 xd1/{1 + c2 xd2)} if z 0 ~ 10 em 

In equations 26 - JO, th e quantity z
0 

i s roughness 

l ength describing the t errain c omplexity of the land in the 

(26) 

'(27) 

(28) 

(29) 

(30) 

path of the plume . The parameters c3 , ~l' b1 , a 2 , b2 , c1 , 

d1 , c ?. , d2 as a function of stability classes A - G ar e given 

in Table 1, 2 , and J . 

Other author s have published analytic and graphic 

means of obtaining cry and crz for all the Pasquill stability 

categories (r efer ence 9 , 10) . However, th e Smith/ Hosker 

scheme i s adopt ed in the present analysis . 

'rhe lmowledg e of the dependenc e of cry and crz anables 

the pr edicti on of th e specific expos ure Y, Vlhich depends on 



TABLS 1 

Parameters for g (x ) in ~guations 28 

I-- -- - ·r -- --- --- ·- ---- ------ -----
Stability a 1 b 1 

-T ----- - a2 r· ------();--~ 

Class '---- _________ J_ 

A 
' _ L~ I ' 

1. 060 J- 5 . J8~~1 0 , ___ Q_ ._B_1.5. _J 
- 4 I 

_ _____ 0 . 950 6 . 52xl0 ___ ]_ 9·Z2Q __ ~ 
- -- q_ ------ _ Q_~l l_2 ____ __ Q. 920 _ ~ 9 ._ 05~_1Q~-~ 1---g_._'Z)-_$_, 

0 . 112 

O. lJO I3 

I - J 1 6 . 
, _______ Q q .-09$ _ -- - ___ g . 889 J . )_5~~-Q ----t-- _9 __ ~_§~- i 

E 0 . 0609 0. 895 1 . 96x10 - J ' 0 . 684 ; , _ __ - -- -- - _______ __ l ____ __________ ' 

F 0 . 06J8 0 . 783 ___ 1 ~J6xl 0 - J _l __Q_~_§_'Z_? __ i 
TABLE 2 

Parameters for T<' ( " "" ) in Equation 29 or JO 
=----------------~~ o~~-A~----~-~~----~---~~--

~~-~~~ess _ t c 1 _ L~- d 1_ e2 _ 7~~-c1_;-____ -J 
!--- l __ Q_m __ J __ 1 . 56 0 . 048 __ j_ _6 . 25y.lO_--~---~--- - -Q_ ·_ !~_5 ___ ~ 
, _ ___ 4 __ e m __ _i __ 2 . 02 _ 0 . 027 __ (_7.? 6xlg_-:-__ ~ _ _L_ __ Q_ ~)l ___ j 
! j • !---- -- ~0 em _ -i ____ e___ Q • _________ _ 0 . ---f-----0 ._ _____ _ 
\ LW em __ : ____ 5 . 16 - 0 . 098 1 . 86~~10 ! - 0 . 225 
~----- ~;~-- er~,;- 7 . 37 _ - 0 . 0957 -- --4 -. 29xi-~ 3 :-- ~-o--~ --6-o --~ 
r--------- ------ -- -- ----- --- - - - 4 -----~-- - --- --- --------- -
L_ __ 400 em 11. 7 - 0 . 128 Ll- . 59xl_O _____ i ___ ~ 9 -·1_f?. __ _;_ 

Parameters for ay (x ) in Equation 26 

~~ t2Cb_i_ii't;/ -_f ___ A:- - ~ 

Class 

e") 
__) 

; 0 . 22 

----------------- -------- ---· ----------:-· 
B ·c D 

; 
j ' ------------ ----------, --- -------~---·r-- ------~---

o . 16 o . ll o. os I o. o6 
--- - - J-

1 ,.., 
'- ( 

F 

0 . 04 
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and CTZ secti on 5 . 1) . Knowins 'iJ we can t h8n proc e8d with 

the es timat e of dose . 

5 . 3 Eff ective Stack Hei ght , H and Plume Ri se 

The eff ective s tack hei ght H in the expr essi ons for X 

and spe cific exposur e '/1 · i s obtained by addin;g t he plume ri s e 

to t he phys ical stack h ei ght . 

5 . 3 . 1 Pl um e Ri se for Tall Stacks 

Stacks t hat ar e at l eas t t wic e t h e hei ght of ad jacent 

s oli d s tructur e are classifi ed as tall s tack s . For effluents 

rel ea s ed from t all stacks , th e p lume ri se , h , can be es tima t ed 

us i ng t he fo ll o~ing equati ons a c cor ding to weather stabili ty . 

(a ) n eu t ral s t abili t y (reiarsnce 3 ) 

2/3 1/3 
h = 1.440 (w0 /u) (x/D) -c (31 ) 

v1her e h :: pl1.@8 r i se (m) 

w :: e::i t v elocity (m/ s ) 
0 

X = di stanc e doYmvrind ( m) 

u = v1ind speed (m/s ) 

D ::; i n t 0rnal stack di arne t er (m) 

and c = 2 D (1.5 - w
0
/u) 

For thi s case , also us8 

( 32 ) 

The valu e of h t o be ado, t ed 1s th e l ower of th o t wo 

obtained frryn equation 3 1 and 32 . 



(b) St ab l e Conditi ons r ~f0r cn c 3 9 

Th e r esults fr om equation 31 shoul d be compar ed with 

the r esu l t s from the followi ng two equations : 

h 

or h 

= 4(F /5)
114 

m 
-1/6 1/3 

= 1.5 S (Fm/u) 

and the sma ll est va lue of h is used . I n thes e equat ions Fm 

and S ar e defined a s 

5 . 3. 2 

f or clas s E s tabi lity 

for class F stability 

for class G stabili ty 

Plume Ri se f or Short Stacks 

-' •/ 

(33 ) 

(34 ) 

Stad:s of h ei gh t less than t wice th e h ei ght of ad jacent 

s oli d s tru~tures are classifi ed as short s tacks . Plume ri se 

h for short s tack ar e es timat ed acc or ding t o th e w /u rati o 
0 

as t h e f oll owi ng (r efer en ce 8 ) . 

( b ) 

We can use equation Jl . 

w /u < 1 
0 

We can equat e h t o zero for conser vative est i mat es . 

Firs t es timat e an en t r ainment co effici ent .2 t g l ven by 

:~:.1. = 2 . 58 - 1. 58 c w / u) 
~ 0 

!.. :::: 0 . J - 0 . i) -J ( ... , /i) ) 
~ 0 ' 

CD C 



Second , cons id er the r elea ~-;e a s tall s tacl~ rel ea se 

for 100(1 - ~t) perc ent of the time and a g r oun d leve l release 

100 Et perc en t of the time . Calculate the conc entration for 

each case and then find the averag e , wei ght ed wi th the fraction 

of that time that each r e l ease occurs . 

Of cours e , whenever v1e don ' t knovr th e de tai ls l ea d ing 

to the es timat e of h
1 

we can equate it to zero for a c onserva

tive es timat e ( subs tituting 0 i nto equation :~ 5) . 

5 . L~ Building 1.'!ake .Sff e ct 

Ra di oactive mat erials r e l ea sed through l eaks in th e 

buildings or from shor t s tac}::s 'Nill be mixed with the turbul en t 

·wake cr eat ed by th e a !nbi ent air flow around the buildings . rrhis 

eff e ct r esults in an air flow ar ound the buildings . This eff e ct 

r esult s in an i ncr ea se in both cry and cr z This building wake 

effect can be tak en account of by modifying cry and az a c cording 

to (refer en c e ll ) 

2y = 
2 1/2 

(cry +CA/1r) (35 ) 

Lz 
2 1/2 

(36 ) = (cr
2

+CA/1T) 

\Vhere A = total ar ea of bui l ding contributing to the 
bui l ding W3.l~e effect 

c = building \'!al~e effect constant , usually 0.5 

'l'h e estimat e of X and \jl can then be done by r eplacing 

cr ' s with ~> s in all th s ap~)ror)riat e equations . 

1'.'i th the s-r,:,rea d of effl uent dealt \'Ti th , v1e ar e in a 

T)08 i ti on to }:1I'Oc eed wi t1·1 th e~ G8ti:nate ol' do~,; e . 



s 

rr·:w cr2.. tical cr::;an for radioactive io (J.inc i s the 

thyroid (r J f~r a~c a 14 ) . '.2h :=: acti vj_ ty ca~ r each t?'l c thyroid 

Th:; a ~:1ount ry;" inta::s by an in.J.ivic!.ual situat s d at a ~Joint 

on the ground i s proporti onal to the time int egrat ed con~ 

centration. of iodine and thus :3peci fi c e ~~posur o ( o/ ) . Hene s , 

th~ dose receive d by ths s ame i ndividual i s a lso pr opor tional 

D = (37) 

''·.1h ' ) "C8 D = I od i n ·::: intal>:c dos ~ ( r :-.1/yr) 

Q = acti vity r-? l eas c d ( Ci) 

o/ = 3l:' Gci fi c c~:~1:; o sur e ( s /.13) 

11h e ~.:o 3::~ conv·:r:::i on fac-c cr 1
_--: vaTj_cs fr ·Pl isot0p·.J to 

i sotr:>JS for r easons iJ1Jch as di:ff :)r <'mt half - li v ~ s for di :ffer cnt 

;:_: a·:Je i .: o t u~.J o . 'r11 C'! _i r;-:1i!l8 in ta.~-:: e: cJ. o.J .:; conve r s i r;n :fact tJ j:-' 

f or a c:ci tica l indivL,_ual ( 6 '.1on-G1:. o L~_ c;1i lJ) an'J a~ av ~rag ::: 



TABLE I+ 

Dose Conversion Factors For Iodine 

r-:;: ··--- -- - --------------------,·---- -·. -· -·--------~----------1 
· Isoto,Je ' Half- Life · Critical 

1 
Average 

Individual : Individual , 
( ) ( 3 - 1) I ( 3 - 1) ; s 1 r em- m - s 1 r em- m- - s ~ 

- ----- -- -------------------- ------------··-- _________________ _L_ _ _ ---

1 I- 131 6 . 9L~7x105 ! 81./+ . 58 / 377 . 3Q__j 

~_I~~ _---~s-.:il§.xlo-;~-~_i -==~16 :-3~--~:-===~~--~_!_J}± _____ _ 
: I - 133 7 . 38 xl O:.y i 283.1+7 104 . 79 ' : --~--· -------- ·-- - ----3---: -·-------------;::;--- ---· -~-------------! 

I - 131~ 3 . l20J:l0 : 3 . lo . 1 . 33 , ;- ·-··---- '")····---. -- ~ - -.. --4---~-------~-~. . i 

, I - l..J5 , 2 . .J98""10 · 5o . ..,.g 20 .L~lJ- I ----- ---- ---'------------ -----···- ----- --·------------· -----~--------- ----·-..) 
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PO = f 0 (x, y} p ( x, y} d A 
A 

(38) 

wh er e PO = collective dose (man-rem/yr ) 

0( X , y) = dose r eceived by an individual 
(x , y ) (r em/yr) 

at the point 

p( X' y) = populati on dens i ty 
? 

(1/km- ) 

A = area encircled by plume boundary 2 (km ) 

6 . J Defining the Plume Boundary 

On examination of equations 21 and 22 , we can see that 

the activity concentration is continuously decreasing out to 

an infinit e distance in both they and x directions . To de t er -

mine the populati on dose , we must fir s t de t ermine t he boundary 

within which equati on J8 to find population dose can a pply . 

We therefor e need to set arbitrary limi t s t o th e crosswind 

(y ) and downwind (x ) dimensions of the plume shaped cloud . 

The following are J possible me thods of defi ning th e plume 

boundary (r e f er ence 16 ). 

( a ) Method 1 : Cons tant Specific Exposure Boundary 

By thi s me thod , the plume boundary i s a locus such 

that the specific exposure on each poi n t on this l ocus has a 

consta~t valu e . Normally, this i s t aken t o be 1 % of that a t · 

the station boundary on t he centre - line . This is a closed 

boundary . 

(b) Meth od 2 : Cons tan t Specific Exposure Ratio Boundary ,( lO %) 

By thi s me thod , the boundary i s such that t he specific 

exposure at a point ( x , y , O) is of a constant perc ent , (usually) 

10 %), of that at its projection on the x-axi s , i . e . ~ 'x , y , O ) 



i s 0 . 1 "' ( :c ' 0 ' 0 ) • 

In the x-directions , the boundary is a s traight line 

perpendicular to the x- axis with the specific exposur e at the 

inters ecting point equal to a given per cent of that at the 

station boundary on the centre- line . It is a boundary form ed 

by two ~arabo l o i d~ i n th 2 y - directi cn and c l osed by ? ~tr ai g~t 

line in the x- dir ection . 

(c) ~-1e thod '3 , Cons tant .l\rv;:: l e Boundary , ( 10 %) 

By thi s me thod , th e boundary is defined in the y- direc -

tion by two straight lines radiating from the reactor bui lding 

and v1i th the x- axis as the angle bis ector . Usually , the angle 

is 10° . 

Th e boundary in the x- direction is simi lar to that in 

method 2 . 

6 . 4 Corr ection for Radioactive Decay 

The dose rec eived by a person is pr oportional to the 

time integrated concentration which in turn is proportional 

to the activity pr es ent (see equation J? ). Sinc e the activity 

of a given i s otope decays with time, the effective dose a 

Der s on r ec eives from this i s otone at distance x dovmwind must 

b e corrected by a factor f d given by : 

fd = exp ( -Adt) 

= exp ( -Ad X /u) (3 9 ) 



6 . 5 Me tho do l ogy for calculating Pouulation Dose 

HavinG introduc ed all the nec essary equations , I shall 

li s t the s t eps t o be involved as th e following : 

( 1 ) Ca l culat e the specific exposure ( lJl CLl) at the plume 

centr e- lins at the station boundary (x =l ~m ) according to 

equation 25 us ing aplJr o:9riat e values of ~y and !z obtained 

1.vi th equations J5 and J6 for x = 1 km . The effective s tack 

height H in equation 25 is se t to zero to obtain cons ervative 

es timat e . 

(2) Let the activity of th e mixture of I odine isoto·o2s 

nermitted to be released be Q
0

• Th e activity of a given isotope 

i in thi s mixture is given by Qi :; Q
0
fi \'!here Qi i s th e fraction 

of i sot ope i in equilibri um in the mixt ur e . Note that thi s fi 

vari es from stati on to station . Next , obtain from Table 4 th e 

dose conv ersion factor for a critical individual at the station 

bmmclary on the ··) lume centre- line (x:::: 1 Inn ) contribut ed by th e 

ith isotope is then Q
0
ki fi ljl (l , O, O) . Th e dose r eceived by the 

critical individual du e t o all the i sotopes is then the s um of 

all the contributions . II:quat e thi s sum t o the limit of thyroid 

dose set for a critical individual . Thus , 
N 

Q lJl {1,0,0).l: fi ki = Dmax 
0 . I =I 

I-I::m c ·2 , Q
0 

is obtained f rom equati on LW since ev ery 

oua.nti t ·,r exce~·"Jt Cl is lmo':m in that equation . 
~ J - '0 

(3 ) ~e shall estimat e the population specific e~posur e . 

_T, ~ ::;hall li:ni t ouln a·ctenti on to half th e :;_;lume be cm .. 1. se of 

(40 ) 



symmetry about the centre- line of the plume . At a point on 

the centre- line (x , O, O), we shall calculate ~y (x ) and ~z (x ) 

according to equations 35 , 36 , 26 , and 27 . Cal culate the speci f ic 

exposure t Cx , O, O) . 

(4 ) Determine th e y- coordinate for the plume boundary at 

x in sten 3 dependent on the method of defining the plume bound

ary we have chosen ( secti on 6 . 3 ) . 

(5 ) I ncrease y from 0 to Ay • Using equa tion 22 , ca l culate 

'/J(x ,Ay , o ) 

(6) Compare t (x ,by , o ) with '/J (x- Ax,Ay , O) whi ch has been 

previously found . Do the s ame to '/J(x , O, O) and t (x-Ax , O, O). 

The highest of these four values i s chosen a s the local maxi mum 

'i' u 1 for the mesh with cor ners a t (x , O, O) , ( x ,Ay, O) , ( x -A~{. ,Ay , O ) 

and ( x-Ax , 0 , 0 ) and with are A :~y . 

(7) The population density , p (x ) , i s obtain ed from some 

popul ation density man . l\1ultiply 'i'L~,1 , Ax8 y , and p ( x ) to obtain 

th e ' differential ' contributi on by this mesh to the population 

specific exposure per Ci of activity released . 

(8 ) Steps 5 t o 7 ar e repeated with y changed from Ay to 2Ay 

and 'i'v .·1 for th e s qtJ.are with corners ( x , 2Ay , 0 ), ( x- Ax , 2Ay, 0 ), 

(x- Ax , ll y , O) and ( z , Ay , O) obtained in similar mann er and so on 

until the y- coor dinate for the plume- boundary det er mined in 

:=; t cp 1. ~ i s ,ju ::;t e:cceeded . 'l'he contributions from all squares 

be t ween ( x -.ll~ :) anu x are a dd ed to yi eld the contribution to 

;·,onula.t i_ on :3DP.Cifi c exnosur e b y t h e s tri D b e t 1.·wen ( x -A~;;__ ) and 

v 
A o 



(9) For each ith isotope , determine the correction factor 

for radioactive decay fd . at x according to equation 39 . 
. l 

IVIul tiply the strip contribution to population specific exposure 

obtined in step 8 by fdi to yield th e decay corrected strip 

contribution to population specific exposur e for the ith isotope . 

Add this decay corr ected strip contribution to its res pective 

subtotal pr eviously determined for the ith isotope . 

( 10) St eps J to 9 are repeat ed f or x i ncreased to ( x +A:x:) 

and rw on until the boundary set for ~~ is r eached . At thi s 

point, the decay corrected total population specific exposur e 

(half-plune ) for each ith i s otope is obtained . 

(11) For each ith isotope , obtain from TABLE 4 the r espective 

dose convers ion factor for an average individual . Multiply 

thi s factor with the activity of the ith isotope released as 

d~t ermined in s tep 2 and its respe ctive decay corrected popu-

lation specific exposur e to obtain the population dose attri-

bu t ive to th e ith isotope . 

(12 ) Add all the population dose attributive to each isotope 

to ~rield the total populat ion dose (half-plume ). 

( 13) l'·1ultiply the r esult obtained in Step 12 by two to obtain 

the total population dose . 

7 Ponulati on Dos o duP- to '.Thole- Body Ex t c:;rnal Gamma-Irra cliati or:· 
by ~Tobl e Ga::lr; ;:; 

7 .1 T)o::; r.; recr.,i vee! from o. roint ;::. ource 



such a s th o cl oud of radioactive Hable Gases start 1Ni th consi -

deration of th e radiation r eceived at the r eceptor from a 

differ ential ar ea or volume that can be r egarded as a ~oint 

source . Takin~ at t enuation of gamma photon s t~ air into account , 

the gamna close rat e , y 'J ', to tissue at di stanc cs r from the 

~oint source is given by (r ef er enc e 11 ) 

v1here 

= 
0.040 ,u.

0
qEf I+ k,u.r) exp (-,u.r) 

r2 
I 

yD = dose rat e (r em/ s ) 

fLo = tJtaL absol~pt.:..on coeffici ent for air (m- 1 ) 

( Lj, 1 ) 

' fL = total absorpt ion coefficient for ti s3ue ( m - _[_) 

k = (,u. - fLa ) l,u.a 
q = radi oacti vi ty of point source ( Ci ) 

-
E = average gamma en er gy from decay (r1Tev ) y 

r = distanc e b etvteen point source and r ecentor (m ) 

This dose rate i s th en int egrat ed over the entire sourc e 

with account being tak en of the geometry of the sourc e , variation 

in conc entration, attenuation by int eractions of the photons with 

i"latt er in the path between source and r eceptor , and scattering 

of radiation from material out::;icl e the direct path to the receptor . 

In the pr ocess of de t er mining th e gamma dose at a given 

noint on tha gr ound , th er e ar e t hr ee appr oa ches that we can 

adont in or der to have a conser vative es timate of the gamma dose 

rat e . I shall outline cach in the following secti on . 

7 . . '2 G-am.ma Jo:> c fro:n -c~1e :':: l r: ud 

? . 2 . 1 Infinite Cloui Dose 
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~·re shall cons ider a spherical cloud with a uniform 

conc entration of a ga mma emitting is otope and a radius equal 

t o the range of the gamma photon . Such a cloud could be 

consi dered an infinite cloud for a r eceptor at th e centre 

because any a dditional ga mma- emitting material beyond th e 

cloud dimensions would not alt er the flux of gamma photons 

t o the r eceptor . Integrating equation 41 yields th e infinite 

cloud gamma dose as (reference ll ) 

YD
00

(x, y ,0) = 0. 25 E Q'/t(x ,y, 0) (42) 
y . 

where YD00(x,y,O) = infinite cloud gamma dose ( r e:n ) 

l/l(x,y,O) = specific exposure at point (x,y , O) (s/mJ ) 

Ey ·- average gamma ray energy (MeV) 

Of cour se·, i n reality, the cloud i s not infinit e and 

the concentration of radioactivity needs not be cons tant for 

a distance equal to the range of th ~ gamma rate . An advan-

tage of this mode l i s th e s i mplicity of the equation and 

it i s ideal for programming . 

?.2.2 Finit e Cloud Dose 

The ga~na dose due t o a finite cloud can be obtained 

by r eplacing q in equation 41 with l/l ( x ,y , z , t) dV and inte-

grating throughout the entire cloud volume and through all 

time . Thi3 i nt egrati on will l ead to (reference ll) 

YD (x ,y ,0) = 
0 .1616JLJLa.EYQ (1 1 + kl2 ) 

u 
(43) 
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with 
- (JIJOO 2 2 

I= u Jfexp(-.u.r>{exp[-<m-~ ]-exp[-(m+r) ]}ddt 
1 4(27Tl~~ oo mr 2~ 2~2 r 

(44) 

o.ca 2 2 
I = . u ffl:!:.exp{-J.Lr} {eot r-<m-r) ]-ex [-(m+r) ]} dr dt (45} 
2 4(27T)zfL:r i{ m P 2:rz P 2 L2 

where m = distanc e b et ween the receptor and the c entre 
of the cloud ( m) 

-~ = ( L ~ )1/2 ( m) 
y z 

and YD(x,y, 0), p., p.
0

, Ey, Q, k, are defined as before · in 

section 7.2.1. 

l and 

cloud 

Thus , 

with 

The two int egrals Il and I 2 can b e 

2 which ar e r epr oduc ed fr om r efer ence 

It i s i nteresting to note that the 

dose t o infinit e cloud dose i s given 

yD(x,y,O) = 0.1616J..Lfit,Ey0(1 1 + kl 2 ) I TI 

yD(x,y,O) 0.25 Q exp (-l12~Y )17Tu~2 

2 
2.03 fLfLa ~ ( 11 + k 12 ) 

= 2 2 

= f 
ex p {-y I 2 "'. Y ) 

= 0. 25 EyQ 'ldx, y, 0) f 

= Q'/JF 

F = 0.25 Eyf 

r ead off .ligur es 

11. 

rati o of finit e 

by 

An i mpor t an t graph of f v er s us ~ f or ~ of 0 . 7 l\IeV i s 

given on pa ge 345 of r e f er enc e 5. Thi s gr a ph i s use ful a s 0 .7 

~eV i s the av8rage ~amma r a y energy of Noble Gas es r e l ea s ed in 

{46) 
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ligure l . Va lues of t he 1 1 i nt egr al . 
can be used . 

Va lu es of u- or (f" I 

31 



LL 
0 

w 
:::> 
_J 
<( 

> 

32 

1 0
-1 ~--~:-:-::_._: ... _:.· ~_ .. ·.-.· •.. :_._rl · ·',·.- .c. ..: ,i : .r ,~ . ,~ \ i \ i "1\ ~,l'l. ~ -I; . ··_· __ .,; . -~ ~ L . - - 1 

. . ·. : : I \ \ j \ i i'J '~'\ . , ' ••. ll . · ·. 
~~-~ = _r- l~ ::::::r~: c.......P\1 ~1 ~1 · \ ~~ ~ ~=·· -=t-· 
I f---i-: :;: fLS'= ~ r--~: .. -~ ~ \ : '""~:t-l -~ 

· , . . I ' - 5 f ~:'-:~ -1-:- + .... 
10 

.. I , 
!l'' I ' · • I I u..;___ . • . 

103 

:?i gur e '2 . Valu ~s of the I .~ i n t agral. Values of (J" or CT I 

can be u s ·?d 



JJ 

most reactors . 

Thus, to evaluate y D(x ,y, O), we can first read off f 

from the appropriat e graph and then use equation 33 and then 

equation 32. 

7.2.3 WAS IU400 Method 

The third approach for finding the gamma dose at a 

·point (x ,y, O) is given by (refer ence 15) 

-
yD(x,y,O) = 0.25EyQ'I!(x,O, 0) F 

where y D(x ,y,O), Ey, Q , '/f( x ,O,O), ar e defined as usual. 

The reduction factor F is given in TABLE 5. 

(49) 

This approaches as sumes uniform dose along y-direction 

and is useful only in the estimation of population gamma dose. 

7.3 Methodology for Calculating Population ' Ga~na Dose 

The procedure of estimating the population ga~a dose 

is very similar to that in the case of iodine intake discussed 

in section 3 .5 . . · The same steps can be followed. However, I 

would like to point out some differences which must be noted. 

First, 'I! ( x , y, 0) has to be corrected with a f actor g ( x ) 

dependent on the approach adopt ed. In the .infinite cl oud 

approach , g (x ) = l . In the finite cloud approach, g (x) has 

to be r oad off fi gures 7 .. 10, 7 . 11 , and 7 . lL~ in refer ence 11. 

In the WASH14-00 approach , g (x ) is (o/ (x ,O, O)/'It·(x,y,O)) F (x ) 

wher e F (x ) i s obtainable in TABLE 5. 

S <'o; cond , unli ke in the case of .iodine intake , vvher e the 

dose conver s ion factor per Ci of activity differ s for different 
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TABLE 5 
Correction Factor F for Fini t e Cloud Dose as listed in WASH- 1400 

~=:~(x ~(~-)--..---Cor-r-ect-io~ Factor , F 

I 2: < 10 t-- z 
1 lO SLz < 30 O. l + O.l3 in (! z/10) 

0 . 1 

' ----------1----
1 
1 30 S l:z < 300 r-------------- --
1 i:z ~ 300 
L-----------

0 . 24 + 0.33 Ln (i: /30 ) . z 
------- ------ ----1 

____ _j 1.0 
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isotope, the dose conversion factor per Ci of activity depends 

only on the gamma ray energy given by 0.25 E . 

With these two differences in mind, the steps listed 

in section 3.5 can be followed closedly. 

8 A Bri ef Revi ew of th e pr ogram POPDOSE 

The estimation of population dose due to iodine intake 

. and gamma irradiation is long winded, especially when the calcu-

lation has to be repeated for different boundaries and different 

approaches of estimating gamma doses. For this reason, I wrote 

a program code named POPDOSE to handle the computation . I 

shall very briefly outline what this program can do as the 

following: 

(l) At a distance x in the downwind direction, it determines 

2Y and Lz according to equations 26 , 27, 35, and 36 for our 

choice of stability class and terrain complexity (uniform). 

( 2) It determines the centre line specific exposure, '/! ( x~ 0, 0) 

according to equation 25 for our choice of effective stack 

height H and average wind spe ed 1:L. 

(3) It calculates the y co-ordinate of the plume boundary 

for our choice of boundary. 

(4) It calculates the correction factor fd at x due to 

radioactive decay according to equation 39 for every isotope 

present . 

(5) It determines the population density p( x ) in the strip 

defined by ( x -Ll:: ) and x . 
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(6 ) Along the y- diraction , it calculat es th e specific 

exposure 'It for a point ( :;.c , n /:i y , 0 ) for our choic e of fl Y 

a ccor ding t o equati on 24 . 

(7) It compar ,as 'It (x , m6 y , 0 ) with 'lt (~c- /:i :: , m /:i y , 0 ) and 

determines the higher of t he t wo . This gives t he local 

maxi mum of 'It fo r the square with corners at ( x , m l:i Y , 0) , 

( x , (m+l ) /:i y , 0) , (( x - /:i :d , (m+l ) AY· 0 ), and ( ( x - 6 :: ) , m /:i y , 0) . 

( 8 ) It multiplies l ocal maxi mum of 'It de t er min ed in St ep 7 

by p (x ) and then by A:: fl y to yield th e differential c ontri -

bution t o th e populat i on specific exposur e . 

( 9 ) St ep 6 to 8 i s repeat ed for (x , ( m+l ) 6 y , 0) and so 

on until the plume boundary i s r eached . 

(10) It th en sums up a ll the differ ential contributi ons t o 

population specific exposur e to yi el d th e stri p contribution 

between (x - !::::. :: ) ani :c. 

( ll ) It deter mi nes the strip contributi on according to the 

~~SH1400 a pproach as described in secti on 7 . 2 . 3 ( only if 

c o~mand is given that population ga mma specific exposure 

i s to be determi ned with this a pproach ) . 

( 12 ) The s trip co11tri butions det ermined i n Steps 10 and 

ll ar e correct ed for radioactive decay for each i sotope we 

inpu t by multiplying (~a ch of the t wo r ·asul t s for s tri p 

contributi on with th o r espe ctive decay correction fact or 

(13 ) Yor each i so topa , it adds each of th e two decay 

corr ~ctsl strip contri~utions obtained in Stap 12 to i ts 

previously de t er~in ed s ubtotal . 
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( lL~) Step 1 to 13 are repeated until our choice of boundary 

in the x- direction is reached , yielding the half pl ume total 

population specific exposure (both approaches ) for each isotope . 

The program POPDOSE is not so successf~l in the finite 

cloud approach for population gamma specific exposure . The 

re.ason is that the two integrals r 1 and r 2 in equati on 31 

determining the r a tio of finite cloud dose to infinite cloud 

dose have to be manually read off the graph . Thus , POPDOSE 

can be us ed only up to the point where the local ma~dmum at 

each mesh point is determined and the corre ction and summing 

have to be performed manually . 

The program POPDOSE i s meant to be a starting point 

for the possible development of much more sophisti cated c ode 

in the future . There i s plenty of room for improvement . To 

name a f ew , a subroutine to determine the correction factor f 

in the finite cloud approach by interpolation between values 

available in figur es 7. 10 and 7 . 11 in reference 11 for r 1 and 

r 2 curves in equations 4L~ and 45 . 'rhen , all thr ee approaches 

for gamma doses can be c omputeriz ed . Also , the program can be 

modifi ed to handle non-uniform terrain complexity , non uniform 

pupulati on density in the y-dir ection , depos ition , change of 

\'lind direction , etc . Hoi·Jever , all these cha.11.ges ar e beyond 

the scope of t he pr esent project . 
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