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CHAPTER I

INTRODUCTION

1.1 Historical Introduction

The liquefaction of helium in 1908 and the subse-

guent discovery in 1911 of the phenomenon of superconduc-

(1)

tivity in mercury by H. K. Onnes added a great deal of
fascination to the study of the low~temperature properties
of metals. Early theoretical studies of superconductivity
were mainly thermodynamic and were aided by the discovery

(2)

by Meissner and Ochsenfeld in 1933 that the magnetic
flux in a solid cylinder of a superconducting metal is
expelled below the critical temperature. Gorter and

(3)

Casimir extended the thermodynamic treatment and developed

the two-flulid model. In 1935, F. London and H. London(4)
developed the electromagnetic equations appropriate for a

(5) (6)

superconducting medium. Shoenberg and Pippard later
observed penetration depth effects predicted by the London
theory.

At the same time advances were being made in the
understanding of metals, the role of conduction electrons
in the screening of the ions and the theory of lattice

vibrations. In 1950 Fr&hlich(7) suggested that the electron-

phonon interaction might be responsible for superconductivity.



(8) (9)

The experimental discovery of the isotope effect was

a confirmation of the belief that the lattice vibrations
of the solid played a role in the phenomenon of supercon-

(10,11)

ductivity. 1In addition, experiments that showed

an exponential behaviour in the electronic specific heat

at very low temperatures added to the belief of the existence

of an energy gap. The 1957 theory of Bardeen, Cooper and

Schrieffer(12’13)

(B.C.5. theory) was based upon a phenomen-
ological attractive phonon—mediéted interaction between the
conduction electrons. The theory was able to correlate a
vast number of observed superconducting effects. Only in
the cases in which the properties depended on the detailed
nature of the interactions was elaboration of the theory
necessary.

(14)

In 1960 Giaver was able to determine the energy

gap directly with electron tunneling in superconductor-
insulator-metal films. The tunneling technique was subse-

(15/16) 56 that anomolies in the current-

quently developed
voltage characteristics could provide information about the
phonon density of states in the superconductor as well as
the electron density of states. In conjunction with the
tunneling experiments, a fheory of superconductivity that
took into account the instantaneous Coulomb and retarded
phonon ihteractions among the conduction electrons was

developed by Eliashberg(l7), Gorkov(lg), Nambu (19), Morel

(20)

and Anderson ; Schrieffer, Scalapino and Wilkins and



(21-23)

others with a large assist from a theorem on normal

metals due to Migdal(24)

and information on the phonon
density of states as calculated from measurements of the
phonon modes by inelastic neutron scattering. Calculations
of energy gaps, transition temperatures and other properties

(22,25-31) based

of the superconducting state have been made
on information on the phonon modes and electron-ion scattering
cross sections with some success in simple metals and alloys.
Several years after the discovery of superconduc-
tivity it was found that pressure could lower the supercon-

(32,33)

ducting transition temperature With the growth of

the technology of high pressures(34’35)

and low temperatures,
measurements of the effect of pressure on the superconducting
transition temperature have been extended and even the
guestion whether pressure éah destroy superconductivity has
been raised. Much of the early experimental data was fitted
to phenomenological formulas that related the transition |
temperature and the pressure(34>. This method of data
reduction was due to the open state of the theory of super-
conductivity prior to the B.C.S. theory. 1In 1964 Olsen and

(36) made a correlation between the volume de-~

co~-workers
pendence of the transition temperature and the B.C.S. attrac-
tive interaction. Chester and Jones(37) had first suggested
the plotting of experimental results directly as a function

of volume and this approach has been followed by others(38’39).

The experimental results for the simple metals show a



striking linear dependence on volume, at least for the
results in the pressure ranges currently available(Bg).
The development of a theory of strong-coupling
superconductivity has provided an impetus for the study
of the efféct of pressure on superconductivity from a more
basic approach. Studies of the effect have been made by
a number of superconducting tunneling experiments(40_42).
Calculations of the superconducting transition temperature
from nearly first principles with reasonable success in
simple metals have added belief that at least rudimentary
calculations of the effect of pressure will add to the
understanding of the subject of superconductivity.
Calculations of the superconducting gap and trans-

(28,31) in disordered

ition temperature have been made
alloys of simple metals. In these calculations the pro-

perties of the alloy have been treated as those in a pure
simple metal. An average ion approximation has been used
and the phonon modes have been treated as in a pure metal.
Phonon lifetime effects have been included in a phenomen-

oy (43)

ological way to account for phonon widths due to force

constant disorder in alloys. Ng(44) has extended the work

(45) 6 obtain an expression for phonon widths in

of Mattis
force constant disordered systems in first order time-
dependent perturbation theory. First principle calculations

of the phonon broadening‘due to force constant disorder

have not as yet been made. The formulation of the structure-
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dependent energy and effective pairwise interatomic inter-

actions in a binary alloy of simple metals in the pseudo-

(46)

[

potential theory as suggested by Harrison and carried

out by Hayes, Brooks and Bienenstock(47)

provides a starting
point for the development of expressions for phonon life-

time calculations within pseudopotential theory.

1.2 Scope of Thesis

The work of this thesis can be divided in two parts
with results of work on the pressure dependence of super-
conductivity presented in Chapter III and those on the
study of superconductivity in binary alloys in Chapter IV.
Chapter II is common to both Chapter III and Chapter IV
and presents some of the underlying theory necessary to
understand the following chapters. The purpose of Chapter IX
is not to provide a rigorous review but to give some details
of the ideas to be used later and to establish some notation.

In section 2.1 of Chapter II, the Born-von Kérmdn
theory is described and the description of lattice vibra-
tions is carried through to the second-quantized form. 1In
section 2.2 pseudopotential theory is described and in
section 2.3 the structure-dependent crystalline energy is
introduced with a view to the calculation of phonon dis-
persion curves. The electron-phonon interaction is re-
viewed in section 2.4 and an outline of the theory of

strong-coupling superconductivity is presented in section 2.5.
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Chapter III deals with the effect of pressﬁre on
the superconducting transition temperature. In section
3.1 some of the previous work on this topic is discussed.
Calculation of the phonon kernel entering the strong-
coupling theory by the method of Carbotte and Dynes is
reviewed in section 3.2. In section 3.3 the effect of
pressure on the phonon and Coulomb kernels of the Eliashbexg
gap equations is discussed. Sections 3.4 to 3.7 describe
the calculations carried out within the strong-coupling
formalism in alumiﬁum, lead, mercury, tin and indium. A
comparison of this work with other work is given in section
3.8.

In section 4.1 of Chapter IV some of the previous
work on alloys of simple metals is discussed. In section
4.2 the structure-dependent energy of a binary alloy is
discussed. In section 4.3 the structure-dependent energy
is used to describe the lattice dynamics of the alloy and
a method of calculating phonon widths with pseudopotentials
is outlined. 1In section 4.4 the theory of superconductivity
appropriate for a binary alloy is discussed.

In section 5.1 of Chapter V conclusions are drawn
on the work on the effect of pressure on superconductivity.
In section 5.2 conclusions on the work on alloys are made.

In Appendix A the configuration averages necessary
in the work of Chapter IV are discussed. 1In Appendix B the

equations of motion for the one electron Green's function



in a binary alloy are outlined and a perturbation series

is developed.



CHAPTER II

PHONONS, THE ELECTRON-PHONON INTERACTION

AND STRONG-COUPLING SUPERCONDUCTIVITY

2.1 Phonons and the Born-von Karmén Theory

It is believed that superconducting condensation
is caused by an attractive phonon-mediated interaction
between the conduction electrons of a metal. Thus a know-
ledge of the lattice dynamics of the metal is a prere-
guisite for calculations in superconductivity. One source
of information on the phonon modes in metals and alloys is

(48)

from the inelastic scattering cf slow neutrons A

(49) force cohstant model is fitted to

Born-von Karmén
measurenents of the phonon modes along the symmetry direc-
tions by the method of linear least squareé. The force
constants are used to calculate phonon modes in off-symmetry
directions and give a complete, if not always completely

(50), description of the lattice dynamics of the

accurate
crystal. In this section, the Born-von Karmdn theory is
deséribed in some detail. The transformation to normal
coordinates is outlined and the description of the lattice
dynamics is carried through to the second-quantized form.

. / / .
The classical Born-von Karman theory is based on

the assumption that the lattice vibrations in a solid can



be described in terms of effective interatomic interactions.
For a Bravais lattice with N atoms and one atom per unit
cell the classical Hamiltonian is

2

. 2M

+VV(’13(l,t), R(2,t) .. .R(N,t)) (2.1)
2

H =

where’g(ﬁ,t) and B(Q,t) are the momentum and position of the
atom of mass M in the 2'th cell at time t. V(B(l,t)...B(N,t))
is the potential energy of the configuration of atoms. The
harmonic approximation is achieved by an expansion of the
potential energy in a Taylor series including the second-
order term, with the derivatives evaluated with all atoms

at their equilibrium positions Bg with

R(%,t) = R) + u(f,t) (2.2)

The uu(ﬂ,t) with o one of x,y,z are the excursions of the
atoms from their equilibrium positions in the designated
direction. The Taylor-expanded Hamiltonian in the harmonic °

approximation is

2
-y P (%,t) 0 0
o=t V& By
+ L o 0%y 1 u (L,t) uy(2',t) (2.3)
2 g AR TL,E) SRG(L,E) 7 o B
L,

where the subscript 0 denotes evaluation at the equilibrium

positions. The potential energy of the equilibrium atomic
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configuration is a constant and can be dropped; the first-
order derivative does not appear because it vanishes upon
evaluation with all atoms in their equilibrium positions.
The atomic force constants @as(z,z') are defined by

2

v = BV
e T W P N AES L

@as . (2.4)

The force constant @as(z,z') gives the force on the atom &
in the direction o due to a unit displacement of the atom
£' in the direction B. The commutation of the derivatives
in equation (2.4) leads to

®QB(2,Z') = ®8a(£',2) » (2.5)

and for a system with translational symmetry

@uB(Q,Q') = @aB(Qnﬁ',O) .(2.6)

Equation (2.6) expresses the fact that in a pure crystal
the force constants do not depend upon the absolute position
of atoms £ and 2' but only on their relative separation
By - By
With the aid of Hamilton's equations of motion and

the Hamiltonian

2

=y P (2,t) 1 ' . '
H= 122 5 + 5 % @aB(R,Q ) ua(ﬁ,t) uB(Q s )
[ o, B
L, 8"
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equations relating the ua(z,t) are obtained. They are

2
9 ua(Q,El

1
- = I & (2,2'Y u
3t2 M B, oB

B(Q',t) .(2.8)

These are a set of coupled equations for the excursions
from equilibrium. The excursion of one atom is expressed
in terms of the excursions of all the other atoms.

For a pure crystal the Hamiltonian of equation
(2.7) can be diagonalized by a unitary transformation to

normal coordinates,

‘ L ix.BY
u (L,t) =  Q(k;A) € (kiA) e 1 (2.9)
@ AN k" o
¥ ik.B)
p,(%,t) =f;— I P(kiM) E (kiN) e . (2.10)
k, A

The time dependence on the right-hand-sides of egquations
(2.9) and (2.10) is implicit in the Q(k;2) and the P (ki)

and has the harmonic form e *@(KiA)t

. The wave vector %
takes N equally spaced values in the first Brillouin zone.
The index X, the branch index, takes three values that

correspond to the two transverse and one longitudinal

branches given by

w = w(%;k) (2.11)

with w(b;l) the frequency of the mode with wave vector %k

and branch index X. The vectors E(g;k) satisfy the
~n



orthogonality and completeness relations

12

D E (ki) B (AT = 6y, ,(2.12)
o
*
i Eu(kir) Eg (kid) = 8,4 (2.13)
and satisfy
*
£y (kid) = & (-ki}) .(2.14)

Consider the contribution of the component (b;k)

of eguation (2.9) to us(z‘,t),

: . 0
1 15.52.
uB(Q',t) = —— 0Q(kiA) g (ki) e - (2.
VMN
Equation (2.15) is substituted into equation (2.8) to
obtain the set of linear algebraic equations
2 _ . .
w”(k;A) Eu(b,l) = é DaB(b) Eg(bll) (2.
where D(“Jb) is the dynamical matrix of Born and Huang(51
0 .0
-ik. (R, ~R; )
N § , LN MY
DuB(},S) = i' @uB(R,SL ) e - (2.

15)

16)

)

14

17)

For a pure crystal, that is, for a crystal with translational

symmetry, the force constants depend only on the relative

distance between the atoms 2 and 2'. With this in mind and
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the relationship

il @uB(R,Q') = 0 (2.18)

derived from the invariance of the Hamiltonian under a
displacement of the entire crystal, the dynamical matrix
can be written in the familiar form

1
M

DaB(b) = T @as(m,o) (e - 1) .(2.19)

m#0

where m=2-2".

Equation (2.13) may be written in the form

2 =
E(Da (k) - w”(ki)) 6&6) Es(b;l) =0 . (2.20)

A knowledge of the dynamical matrix Da (5) reduces the

B
problem of generating the frequencies and eigenvectors of
the modes(%;x) to that of diagonalizing a three-~by-three
matrix. The eigenvalues give the frequencies and the
eigenvectors are the polarization vectors. Thus the know-
ledge of the dynamical matrix at every point k in the first
Brillouin zone completely specifies the crystal dynamics
of the metal.

For certain symmetry directions in the Brillouin
zone the polarization vectors 5(§;A) are fixed by symmetry(48).
In such directions the frequency can be written as a linear

combination of the force constants. In practice the fre-

quencies along the symmetry directions are determined by
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neutron spectroscopy and the linear relationship between
the frequencies and the force constants is used to obtain
the force constants by a linear least squares fit(48).
Since the amount of orthogonal data available from the
experimental measurements is finite, the force constants
are fitted in shells of nearest neighbours beginning with
the nearest neighbours. Thus the force constants that
cannot be fitted due to a lack of orthogonal data refer to
the forces between distant neighbours and are set equal to
zero; this is reasonable because it is expected that the
forces between the atoms are reduced with increasing
distance. This finite and hence tractable number of force
constants determines the dynamical matrix and hence provides
a complete description of the lattice dynamics of the metal.
Tt will be seen later that the dynamical matrix provides
all the necessary information on the lattice dynamics for
calculations in the theory of superconductivity.

A transformation of the Hamiltonian of equation

(2.7) to normal coordinates diagonalizes the Hamiltonian

with

H=2 o1 pYgan Poun) +e?0on 0T h) 00an ] (2.21)
k,l ~ ~ ~ '

n

where

vl
~
>
A
i1
el
!
2o
Pl
~~
N}
N
N
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BEquation (2.21) is recognized as a harmonic oscillator
equation. The quantized Hamiltonian follows from the

commutation rules

[ua(glt)l UB(/Q/'/t)] [pOL(Q'lt)l PB(Q':t)] = 0 7

i

ih 8 S (2.23)

[uu(!L,t), pB(’Q"lt)] 99" oB

which lead to the equal time commutation rules for the

. .
normal coordinates

i

R (k:M), 0'sA") ] = [P (k:\), P(k':A"N] =0

I
=
]
O

(0" (5:0), P 5A")] ,(2.24)

where /A is Planck's constant divided by 2m. In the standard

fashion the harmonic oscillator equation (2.21) can be

written in terms of creation and annihilation operators(sz)

with

. _ l h + "
Q(}EJ\) = m (a__b)\ + a’\};)\) ¢, (2.25)

how (ki) o
— (a aﬁbx) . (2.26)

P(kid) =i i

The Hamiltonian of equation (2.21) is then

fo(ki\) la) )

k) 3k + =] (2.27)
n r

where the operators aik, respectively create and destroy

~

A
~N
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a phonon of wave vector % and pelarization g(b;k). It will
be seen later that the Hamiltonian of equation (2.27)
enters in the formulation of the strong-coupling theory of
superconductivity. In addition, the coupling of the
electrons to the phonon field provides the interaction

between conduction electrons that leads to a bound state.

2.2 Pseudopotential Theory

In this thesis information on the electron-ion
scattering cross section is used in two ways. It will be
seen that this information is needed to describe the electron-
phonon interaction, that is, it enters in the calculation of
the electron-phonon coupling constant. The same information
is also reguired to calculate the structure-dependent
conduction electron energy which, along with the Coulomb
interaction energy of the bare ions, determines the total
structure-dependent energy from which the crystal dynamics
of the metal can be determined.

Information on the electron-ion cross section used

(53—58). In

in this work is based on pseudopotential theory
the neighbourhood of the ion site, a valence electron is
subject to a large negative Coulomb potential. Also, the
Pauli exclusion principle restricts the valence electron
state to be orthogonal to the ion core electron states so

the valence electron wavefunction has rapid oscillations

in the region of the core. These oscillations are manifested
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in a large kinetic energy of the valence electron in the
region of the core. In pseudopotential theory, these two
contributions to the valence electron energy are largely
cancelled and the net effect is that a reasonably weak
potential, the pseudopotential, acts on the valence electron
in the region of the core. This allows one to start with
a basis of plane waves and use perturbation theory to
account for the effects of the relatively weak pseudopotential
to calculate properties that depend on the electron-ion
interaction.

For the simple metals it is generally sufficient
to treat the core electrons in the tight-binding approx-

(59) and to neglect any overlap between core electron

imation
states on adjacent ion sites. In the tight-binding approx-
imation the set of core wavefunctions that satisfy the
Bloch condition are denoted by w[nlm;k](r) and are defined
by "

% By
e ¢

s

Z (5—52) (2.28)
VN g

w[nlm;b](r) nlm

where ¢ (r—RO) is the core state localized at the site
nlm'~y ~4%
,Bg and specified by the principal, orbital and magnetic
quantum numbers n,l,m respectively.
A conduction electron state, wv, must be orthogonal
to the core states as dictated by the Pauli exclusion

principle. The orthogonality can be achieved explicitly

by an appropriate subtraction of a linear combination of



18

core states to produce a more accurate conduction state

. . 0
Xy from an approximate valence wavefunction wV:

0

= - 0
XV - \pV E‘ w[nlm;k] (I‘U[nlm;k] ' wV) . (2.29)
n,.l_'m 2l n
k
n
Xy igs orthogonal to all core states. If wg is a plane wave,
wk’ then Xy is an orthogonalized plane wave (O.P.W.)(GO).

The conduction electron states can be written as a linear

combination of orthogonalized plane waves,
, (2.30)

and it is expected that a relatively small number of
orthogonalized plane waves in the expansion will sufficiently
describe the conduction state.

With the subscript c¢ as a short-hand notation for
[nlm,%], equations (2.29) and (2.30) can be combined to

write the valence wavefunction Xy @S

wv = 7 ay wk - wc(wc, b} a, wk) .(2.31)
k w~ ! C k ~ ~
(Y ~
A valence pseudowavefunction ¢V is defined by
¢v =z ay wk (2.32)
]’S ~N o~
and in terms of this function wv is written as
- A — N [RU] 27230
b, = by v B U g b)) L (2.22)
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If wv can be expressed in terms of a few orthogonalized
plane waves ih equation (2.30), then equation (2.32) states
that ¢v can be expressed in terms of the same number of
plane waves.

The pseudopotential can be iﬁtroduced with the
assumption that all the electron states in the solid can

be obtained by the solution of the Schrodinger equation

42 |
HY = [- 3= 92 + V(5)1¥ = ey (2.34)

I

where V(s) is a self-consistent potential and m is the
electron mass. For a valence state wv equation (2.33) can

be used to write

H[CbV + z wc<wc, ¢v)] = H¢v -z € wc(wc, ¢V) (2.35)
c c

and the equation for the pseudowavefunction is

H¢V + Z(e—ec) wc(wc, ¢V) = €¢V .(2.36)
c
With the definition
VR = Z(a—ec) wc(wc, ¢v) (2.37)

C

the equation for the pseudowavefunction is

(H+VL) ¢ = eb .(2.38)

VR is not a local potential but contains a projection
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operator. In addition, the energy eigenvalue is explicitly

contained in the definition of Vi The net effect of

W(r) = v{(r) + VR (2.39)

is a weak potential. W(r) as defined in equation (2.39) is

the pseudopotential of Phillips and Kleinman(53).

Austin, Heine and Sham(sg)

have investigated pseudo-
potentials and have shown that the most general form of the

repulsive potential is

VR ¢ = (Z:(fc,_cb)wc (2.40)

with the fc completely arbitrary functions. That the fc

can be completely arbitrary seems less unusual if it is

noted that any linear combination of core states can be

added to the pseudowavefunction of equation (2.32) and it

will still satisfy equation (2.38) with the same eigenvalue.
Equation (2.33) can be rewritten as

¢, =V

v + 2y (£, ¢,) (2.41)

v v
C

within the general formalism. This form, as well as that
of eguation (2.33), shows that at a long distance from an
ion where the core wavefunction can be neglected the pseudo-
wavefunction is equivalent to the true wavefunction. In
effect, the potential V(r) has been replaced by a weaker

potential with the restriction that at a long distance from
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the core the pseudowavefunction and the true wavefunction
must coincide.

In the foregoing discussion the pseudopotential was
thought to be derived in a self-consistent manner so that
the effect of the screening by the conduction electrons
was included in W(r). In practice an unscreened pseudo-
potential is derived or chosen within some model. In the
conduction electron medium of the metal the bare pseudo-
potential is screened by the conduction electrons so that
in the single particle apgroximation a valence electron
experiences a weaker potential than the bare pseudopotential.
In the diffraction model which will be discussed in more
detail in section 2.3 a bare pseudopotential w® is attributed
to each ion. The matrix element for the scattering of an

electron from a state with wave vector k to a state with

wave vector k+g is
N

wo(q) = <k+q|w®|k> (2.42)

in the local approximation with the matrix element evaluated
in a basis of plane wave states l5>. In analogy to the
screening of a bare charge in a free electron gas, the
screening of the bare pseudopotential is described by a

dielectric function e(qg) with

wi(q) = L(%%_ .(2.43)
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In this work the Hubbard(GI) form of the dielectric function
is used. This form includes correlation effects in a

phenomenological way. The appropriate dielectric funqtion

is
ks2 ,
e(q) =1 + — f(t) A(L) (2.44)
~ q
with
q
t = == (2.45)
2kF

where kF is the Fermi wave vector and

2
-t +
£e) = L4 28 g %:%‘ , (2.46)
2
A(t) = 1~ 2t . (2.47)
1+ 4t ¢ l~(——.E;i)2
2 kF
(62)

The parameter kS is the Fermi-Thomas screening wave

nunber defined by

2 Ay
ks = 5T »(2.48)
0
where a, is the Bohr radius,
C 2
A
ao = "“2- .(2.49)

In equation (2.49) i is Planck's constant divided by 27, m

is the electron mass and e is the unit charge.


http:1---------,--�.(2.47

23

If A(t) is set equal to unity in equation (2.44)
the resulting dielectric function is the one obtained in

the Hartree approximation,

e(g) =1 + 2V(g) Q(%) , (2.50)
with
4ﬂ92
v(g) = 5 .(2.51)
~ q

O(g) is the polarization function and is related to the

function £ of equation (2.46) by

L 2
Q(t) = —=5 £(t) . (2.52)
8re

The Fermi-Thomas (F.T.) screening limit results if
the long-wavelength limit of‘the dielectric function is
used for all momentum transfers, that is, if the static
limit is used. Then

-

2

(q) = —--5-2- (2.53)
81e

QF.T.

and the screened Coulomb potentialvc seen by a conduction

electron due to an impurity of valence number 7 is

7@2 “ksr
V. = - "Z- ¢  (2.54)
c Y
SO ks* is a characteristic screening length. A useful

property of the Fourier transform of the screened Coulomb
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potential in a conduction electron medium is

limit [- 1 4 ze? 1
g0 2 q2 + kSZ

2 5
:_g .zr."'}.!‘ 7 (2055)

where E_ is the Fermi energy and

P is the volume per ion.

0
A pseudopotential based on some model is screened
with a dielectric function according to equation (2.43). A

particularly simple local pseudopotential is the point-ion

pseudopotential(46). The bare potential is
o Ze2
wo(r) = - )+ B 5(x) .(2.56)

The delta-function term simulates the core repulsion due
to the Pauli principle. The Fourier transform of this

potential, screened with a dielectric function e(g) is
n

47 Ze2
w(gq) = [- —5 + B]/QOE(Q) . (2.57)
~n ~

q

The one parameter point-ion pseudopotential has the un-
attractive feature that it does not vanish for large values
of g. This feature can be removed by the introduction of

a second parameter r, so that

2 "
wig) = [- e i 1/9,¢ () . (2.58)

q [1+(qr) %12

For small values of g the pseudopotential of equation (2.58)
is nearly identical to that of equation (2.57) and for large

values of g it vanishes.
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Another pseudopotential that has been widely used

is the Ashcroft pseudopotential(63).

In real space the
potential is zero to a core radius RC; for separations
greater than R, the potential is the Coulomb potential.
The potential is screened and the parameter Rc can be
determined by a fit to the experimentally determined band
gaps.

The pseudopotentials used in this work are those

(64) (46)

as tabulated in Harrison and

(65)

of Animalu and Heine
calculated by the method of Heine and Abarenkov In

the method of Heine and Abarenkov the atomic energy levels
from spectroscopic data are used to give the description

of the ion core potential and the core electron wavefunctions.
This procedure has the advantage of including exchange and
correlation effects that are‘difficult to calculate from
first principles. A sphere of radius RM is constructead

about the ion and the potential for a valence electron in

the state with energy E and orbital and magnetic quantum

numbers 1 and m is chosen to be

V(r) = - Z%— ’ r>RM
Vir) = - Al(E) ’ r<RM . (2.59)

The wavefunction is joined continuously across the potential

discontinuity at RM.

from experiment; for intermediate values of E interpolation

For an eigenstate, Al(E) is taken
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between the term values 1s used. This allows the evaluation

(61)

of the potential and Hubbard screening is used to obtain

the screened potential appropriate for a metal.

2.3 Structure-Dependent Crystalline Energy and

Pseudopotential Phonon Calculations

In this section the contribution to the total cry-
stalline energy of the structure-dependent conduction-
electron energy to second order in the pseudopotential is

(46)

reviewed. The notation of Harrison is closely followed.
The contribution of this energy to the effective ion-ion
interaction energy is given. The bare ion-ion interaction
energy can be added to the conduction electron contribution
and the total structure-dependent energy will be used to
calculate phonons in a metal.

The model consists of N atoms of mass M in a volunme
Q located at positions Ro in a Bravais lattice. To each
ion a bare pseudopotential wo(g—gz) is attributed and the
bare pseudopotential is screened with an electron gas of

appropriate density. The lattice potential for a conduction

electron is W(S) where

W(f) = % w(g—B .{2.60)

)
. %

A factorization that is known as the diffraction

model can be made if the matrix element <b+qlw|5> evaluated
N
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in a basis of plane waves is written

1 -i(k+qg).r ik.r .3
<b+glw|b> =g J e % %) i w€5752) e"~'~ d’r
' crystal (2.61)
A substitution,§ =’5*52 leads to
-ig.R .
_ 1 PSR N —l(k+q) X
<b+g|W|1§> = 5 i e 1 5 J e "WV W (%)
X el]fs‘ZS d3x .(2.62)
The structure factor S(g) is defined by
~t
-ig.R
S(q) =x1xe ~7F (2.63)
and with the definition of <k+g|w|k> by
~n (ad
<5+q|w[§> = g— el(5+%)'§ w (%) e;b's d3x , (2.64)

the lattice potential evaluated in a basis of plane waves
is
<k+q|W|k> = S(q) <k+q|w|k> . (2.65)
[ PN fad ~ ~ N ”~

For all atoms in their equilibrium positions,’g = R

the structure factor S(g) has the property

S(a) 1, if g is some reciprocal lattice vector Kn,
~ ~ ~

i

0, otherwise, (2.66)

and the potential of equation (2.65) reduces to the usual
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crystal potential. The potential as written in equation
(2.65) depends on a factor S(g) that depends on the ion
positions and a factor <b+%|w|5> that is independent of
the ion arrangement.

The structure-dependent conduction electron energy
is calculated in second order perturbation theory with
the zero order wavefunctions taken to be plane waves. 1In

second order perturbation theory the valence electron energy

is

2 2 ,
E, = ’ﬁzk + <k|W|k>
m ~ ~

4

+ o3 <k2WI{+q>_<.7}»§,iq W_'lgz_ .(2.67)
g 4%

2 2
T 5 Ukl ?)

The total contribution to the energy per ion from the

conduction electron states is a sum of Ek over all states

no

in the Fermi sphere divided by the number of ions N. The

three terms that correspond to the three terms of equation

(2.67) are

,  Ak,?
Ee =5 2 =355 7 2 <kiW|k>

290 .
*
+ 508 (q) Slq) —2g P Slulkrgr <rglulye
q ~ ~oo(2m) n 2. )
~ sphere 5m Lk Ib+gl ]
Sr. ,(2.68)

where 7 is the ion valence number, QO is the volume per ion
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and the bar in the second term denotes the average. The

prime in the summation over g in the third term denotes
~

exclusion of the g=0 term. The structure-dependent con-
n

duction electron energy is the last term on the right

hand side of equation (2.68). If w in this term is inter-

preted as a screened pseudopotential, the electron-electron

interactions are counted twice and the subtraction of

B =L J‘“%’ W, () a°r (2.69)

must be made. Ws(E) is the potential of the screening
electrons and p(f) is the electron charge density. With

the aid of Poisson's equation and the definition of 0Q(q)
~

in equation (2.52) the structure-dependent conduction

electron energy can be written(46)

* *
Esq = % é‘ 8 (q) s(q) - 0l wig w (g

1
v (q)

1 *
-3 Ws‘g) Ws(g)} (2.70)

where the pseudopotential has been localized and
wi(q) = wo(q) + wgl(q) . (2.71)
r~ ~ ~

A combination of equations (2.70) and (2.71) leads to

E =

sa s7(q) (@) E(Q) (2.72)

Zl
g
~
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with

2
Q. g .
- - 0~ 1,° 2 e(q)-1
E(g) — |w (g)[ (—ETQ) ) .(2.73)

The indirect ion-ion interaction due to the contribution
of the structure-dependent conduction electron density can
be found by explicitly writing the structure factors in

equation (2.72),

_R. |)
NE L L (2.74)

The right hand side of equation (2.75) can be separated

into two parts

=ig. (R,~R, )
Egq = ' = ;%-E(q) e ~ NEMETT
g 2,0' N2 W

~NoLFEL!

1L
5 h(g) . (2.75)

2 '
g
~n

The first term on the right hand side of equation (2.75) can

be used to define an effective indirect interatomic potential

Vinp By By bY

-ig.(R,-R,,)
1 ~f ~5 1
1 = ~ - -
CZI 2}32’ ) E(q) e 2N 222. Vinp (Bp By t)
14 I
~ 1] 1
249 2£9 (2.76)
so that
2 —ig. (Rp-Ry )
Vi By By) = &I E(Q@) e L (2.77)

Zl
K
The second term on the right hand side of equation (2.75) is

independent of the ion arrangement. The sum over ¢ in
n
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equation (2.77) can be changed to an integral and the

angular integrations performed to obtain(46)
v (R) = 89 E(q) sin (gR) 23 (2.78)
IND ‘v 2 4 gR q dq lee
0

This is a two-body central potential that describes the
effective interaction between ions due the conduction elec-
trons.

The total effective two-body interionic potential
is the sum of VIND(R) of equation (2.78) and the Coulomb

interaction potential VC(R),

V (R) = , (2.79)

and will be denoted by V(B). The dynamical matrix of equation
(2.19) for a system of atoms interacting via a two-body

central potential V(R) with

VR) = % e39-R v(g) (2.80)

is

_ 1 _
Dag() = iy T IV Ustsy) Uetsy) o Ushn) g = ¥ Usy) () g () g

0 n n‘a'~n
n _ v
(2.81)
where the sum is over all reciprocal lattice vectors. In the
case of the potential of equation (2.80), V{(g) is
. ~t
2.2 2
52 2 Q.7q ' v
v(g) = L Ee .0 w°<q>| (=) - (2.82)
~ q 41 e ~ d
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Equations (2.8l) and (2.82) can be combined; with

. QO2q2
F@ =5 - —5 57
~ q2 1671” Z7e

2
WO‘S)l 5—‘%2—@% L (2.83)

and the square of the ion plasma frequency w_°,

p
2 2
2 _ 4w 727e
wp = ——Tﬁz;—— , (2.84)
so the dynamical matrix is
2 -
Dyg (k) = Wy E [F(k+e ) (ke ) (Ktg ) g = Flk)) (Sn)a(gn)el
n
.(2.85)

This is the form of the dynamical matrix used to calculate
phonons from pseudopotentials. From equation (2.83) it is
seen that the requirements, apart from constants, are the
bare pseudopotential wo(g) and the dielectric function.

For any b in the first Brillouin zone the elements of the
dynamical matrix are obtained by a sum over reciprocal
lattice vectors. Special care must be taken with the Coulomb
sum due to convergence difficulties, but the term can be

(66)

handled by the usual Ewald technique.

2.4 The Electron—Phonon Interaction

The electron-phonon interaction arises from the

interaction potential energy between a conduction electron

(52)

and an ion of the form w(gijgg) wherelgi is the position

of the i'th electron. The contribution to the total enerqgy
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of all the electrons interacting with all the ions of the

lattice 1is
Y W(x.) where
R ~1

w(r-R

W(’Jgj) = ,\rjﬂg) . (2.86)

z
L
With the electron variables expressed in second guantized

form this potential takes the form

1.

H= I <5+%]w|5> kiq,0 Sk, 0 .(2.87)
,q,O ~ ~S
~NOD
The operators c; o and k create and destroy an electron
4 ~I

with momentum % and spin ¢. The variable ¢ has two degrees
of freedom corresponding to the two independent degrees of
freedom for the electron spin. The matrix element <5+g|W|5>
can be factored according to the diffraction model (equation

(2.65)),

<k+q|W|k> = S(q) <k+q|w]k> ,(2.88)
~N ~ ~ A~ W ~
so that H is
.‘.
H= I S(q) <k+g|w|k> c c .(2.89)
K,q,0 N N ~N L{+glo ,]\{,IO'
~o

The BR in the exponent of S(q) can be written as in equation

(2.2),

0 4 u(s) ,(2.90)
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and for smali'displacements the eXponent can be expanded,
-iq.R 0 . .
e "~ =e ~ [l - ig.u(f)] .(2.91)
s N
The leading term on the right hand side of equation (2.91)
contributes to the equilibrium energy. The second term

leads to the electron-phonon interaction

. 2 Ly -iqeu(e) <rqlulk "Byt g

= = ¥ -ig.u <kt+q|wlk> e c c

eP blql(i N 2 ~~ l(fg,d f\]S'O
0(2092)

The 5(2) can be expanded in terms of normal coordinates

(equation (2.9))

1 5By
¢ u(f) = ~— I Q(k';)) E(b':l) e (2.93)
~ /ﬁﬁ'b'x ~ ~

so the electron-phonon interaction is

He_ﬁ X L o(k':r) [-iqoi(k';l)]
¢ /MN k,q,k' o) ~ :

~

+

<k+ k> § c c 2.94
X ~ %IWIN 5'_31’51,1 ]’§+glc r]\S’O ( )

-with Ky @ reciprocal lattice vector. The relationship

. 0
-i(g-k').R ]
sre ~V P oo (2.95)
2 .V g':vn
has been used to obtain equation (2.94). Thelb' sum can be

performed; as 5' sweeps the first Brillouin zone, the Kronecker
de lta will be non-zero for only one value of 5', that

with:5n+q=£' in the first Brillouin zone for one and only

nt
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one reciprocal lattice vector. Since the phonons are com-
pletely described in the first Brillouin zone, 5' can bhe
formally replaced by g where g in the phonon variables is to
be read as reduced to the first Brillouin zone. This is
equivalent to treating the phonons in a repeated zone schenme.

With the 5' sum accomplished, equation (2.25) can
be used to express Q(g;k) in terms of phonon creation and

annihilation operators so that

+ +
H = z g . c c (a_ + a_,) ,(2.96)
&Py ,q,0,) k+q.kiA 5+g,0 k0 %X %}
N
where gk+q,k;k is the electron-phonon coupling constant,
Oprg oy = - 1 q.5(qi0) <ktglulk> . (2.97)
~ g'rv’ V2w (g;A)MN ~ ~ ~
~N

The phonon frequencies and polarization vectors, w(g;k) and
é(g;k), and the pseudopotential matrix elements §5+g’w|%>
are necessary to calculate the coupling constant. It will
be seen that the electron-phonon interaction Hamiltonian

of equation (2.96) is exactly the one that enters the micro-

scopic theory of superconductivity.

2.5 Strong-Coupling Superconductivity

Superconducting condensation is believed to occur
when the net force between two conduction electrons of

opposite spins and momenta at the Fermi surface is attrac-

(13,52)

tive Then the electrons form Cooper pairs and become
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part of a many-electrcon bound state, the condensate. A
negative electron propagating through the metal attracts
positive ions, that is, it polarizes the lattice; a second
electron may be attracted to the first because of the pos-
itive polarization cloud. This attractive_force must over-
come the screened Coulomb force between the two electrons to
produce a net attractive force.

The B.C.S. theory of superconductivity was based
on an attractive force between electrons at the Fermi surface
described by a constant average interaction V. The B.C.S.
theory gave a relationship between the superconducting trans-
ition temperature and the interaction which is(l3)

1

k. T = 1.41 Aw e N(OWV

8Tc ,(2.98)

where w is an average phonon frequency and N(0) is the single
spin electron density of states at the Fermi surface. The
details of the interactions are contained in V in an average
way and are thus lost. The details of the interaction are
contained in the electron-phonon interaction which describes
the motion of the ions and hence the lattice polarization, and
the screened Coulomb interaction. The Coulomb interaction is
a long range instantaneous.interaction but the electron-
electron interaction mediated by the phonons is local in space
but retarded in time so one can appreciate the difficulty in
attempting to describe the total interaction in an average

way .
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The strong-—-coupling theory of superconductivity takes

into account(23’42’°7)

the retarded nature of the phonon-
mediated electron-electron interaction. It is based on the
electron-phonon interaction Hamiltonian of equation (2.96)
and on instantaneous Coulomb interaction between the con-
duction electrons. The electronic properties are described

in the language of Green's functions by the propagators(42)

—f-
G++£E,T) = - <N|T Cp+(T) cp+(0)lN> ,
~ ~
—f-
Gyylprt) = - <N|T cy(T) ey, (0) > (2.99)
~n

where T is Wick's time ordering operator and the thermal

averages are in the grand cononical ensemble with

RH

<0>

'I‘r(e_BH 0)/Tr e (2.100)

where

1
B = ¢+ (2.101)
kBT

where kB is Boltzmann's constant and T is the temperature.
In this and the following sections Planck's constant divided
by 2w, i, will generally be unity in the units that are
chosen. In some equations B will be written explicitly,

but no confusion should occur. The electron creation and

annihilation operators evolve according to

Ht

H[

(2.102)

(a4 ~
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(23’68). The

in the thermal Green's function formulation
two Green's functions of equation (2.99) describe the prop-
agation of spin up and down electrons and holes. These

are insufficient to describe a superconductor. For a super-

conductor it is necessary to introduce the anomolous F and

F' Green's functions of Gorkov(lg) defined by
F, (p,T) = - <N+2]|T c+ (1) c+ (0) |N>
DR -p¥ pt
~ ~
+ = e
F++€9,T) = <N'T<Lp+(T) cp¢(0)|N+2> .(2.103)
~ ~

These describe the pairing of two electrons which disappear
into the condensate and the excitation of two electrons out
of the condensate.

(19) formally simplified the problem of treating

Nambu
all four electron Green's functions with the introduction of
a two-component spinor field wp(T),

~

Cp+(T)
o~
wpm = ,(2.104)

.‘.
C—N(T)
~

and in a similar way introduced a one particle Green's function

) + 5
ng,T) = - <T wp(T) wp(0)> .(2.105)

~ ~

The Green's function of equation (2.105) is a two-by-two
matrix with the diagonal components just the usual Green's

functions of equations (2.99) and the off-diagonal components
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the Gorkov F and rt functions of equations (2.103).
The next step is to set up a perturbation expansion

of G(p,T) in terms of the non-interacting electron Green's
nS

function Go(p,T) with the Hamiltonian(ZB)
~n
H=Ze A R M CIeS al) ag
P =~ rg ,P q,)\ ~ % ~
+ z gg p'iA ¢p__pl.>\ U T3 Y
p,pll)‘ NIA) i PrE ; /g ’3‘_3
~N~ N
0 t +
+ 5 % <pap, |V ilpip,> (W T, W) (U T, Y )
2p1l'§)2 s34 e 10152 D 3 ,E,Dl 34 3 sz
P3Py
+ constant ,(2.106)

which is just the Hamiltonian of the electron and phonon
system with the electron-phonon interaction and the Coulomb

interaction between the electrons included in the Nambu

notation; Tyr Tyr Ty are the Paulil spin matrices. ep

is the energy, measured relative to the Fermi energy EF

of the electrons in a Bloch state of crystal momentum p.
~

.. 0 0
Th tit PA)
e quantities w (g ) gp,p';k

~
frequencies, electron-phonon coupling constant and Coulomb

and Vc0 are the bare phonon
interaction potential. ¢qx is defined as

¢qA E a*qk + an 0(2-107)

~ ~ ~
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The second term in equation (2.106) is the phonon energy
of equation (2.27) exclusive of the zero point energy and
the third term is the electron-phonon interaction of
equation (2.96). |

For the non-interacting system the electron Green's

function is

. e _ -1
Gy lpriny) = liw, - ey 4] ¢ (2.108)
where
1 ® —iwnT
G(p,1) = 5% I e G(p,iw_) (2.109)
~ g n=—co ~ n

in the finite temperature formalism with W, taking the
value (2n+l)7w/B. For the fully interacting system the

perturbation series for G is written in terms of G the

OI

screened Coulomb interaction, the screened electron-phonon

interaction and the phonon Green's function

D, (q,T) = = <T{o, (1) op, (0)}> (2.110)
with
] ® iVnT
DA(%,T) = g ni-w e DA(%’ivn) (2.111)

with v, taking the value 2n1/8.

For the fully interacting system the Dyson equation is

(G(p,in) 1" = 16y (p,in )17 - B(p,iu) L (2.112)
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Several representative terms of G expanded in terms of GO
are shown in figure (2.la). ©Now it must be remembered
that the superconducting state is a bound state. A bound
state cannot be achieved in finite order perturbation
theory. Thus an infinite number of terms must be summed
to correctly specify ¥ for the superconducting state. 1In

(19)

the Nambu self-consistent scheme this is achieved by

replacing G, in the expansion of I by the renormalized

0
electron propagator G. A further simplification arises

(24) which shows that phonon

from a theorem by Migdal
corrections to the electron-phonon vertex are smaller by

a factor (g)% where m and M are the electron and ion masses.
Thus these corrections can be neglected. The Coulomb
corrections to the electron-phonon vertex are also neglec-

ted(23). In the Nambu self-consistent scheme the self-

energy I becomes

. 1 .
L(p, = - = I G(p'
Sg 1wn) 5 bine Ty gg ,1wn.)T3
2 v s s o
X {ilgp’pwﬂ Dy (p-p',iw ~ivw ) + V (p-p )}.(2.113)

The diagrams representing the Nambu approximation are
shown in figure (2.1b). The double line represents the
renormalized electron propagator G. In this approximation
only the nested diagrams as shown in figure (2.lc) are

included.



Figure 2.1

(a) Several representative terms in
the perturbation expansion of the Green's
function G in terms of GO (solid line), the
bare electron propagator. The dashed line is
the screened Coulomb interaction and the wavy
line is the renormalized phonon propagator.
(b) The self-energy I in the Nambu self-
consistent scheme. The double line is the
renormalized electron propagator. (c) An
expansion of I of (b) in the Nambu scheme in
terms of G,. Only the nested diagrams are

0

included.



. . -
gt T Tieras e .

\ ( Tzt s /A‘mt'm(:;‘:;‘um 2 ® 00

\ /

R o o

(a) ‘

Figure 2.1



43

The Dyson equation, equation (2.112), and the

equation for the self-energy, equation (2.113), serve to

determine the electron Green's function G,(23)

w7z (p,0)1 + E(p,w)T3 + ¢€§'w)Tl
G(p,w) 5”2 = 5 (2.114)
~ w 2" (p,w) - e(p,0) - ¢"(p,w) +
~ ~ ~ Imw= 0"
where
e(p,w) = e_ + x(p,w) .{(2.115)
~N B n
The function ¢(p,w)/Z(p,w) is the energy gap function
~ ~
Ap,w), (23
A(p,w) = ¢ (p,w)/2(p,w) .(2.116)

The major contributions to G come from contributions with

(23)

Dp- By straightforward but
~

p near the Fermi surface
L%

labourious manipulation, the functions determining G are
reduced to one-dimensional form with the momentum evaluated

at the Fermi surface. The one-~dimensional form consists

of two coupled equations for A(w) and Z(w). These are(25’67’69)
w
c
Aw) = [z(w)] J dw' Re[—y 28
('™ - A% (w")]”
) .
x {D+(w,w') - D+(w,~w') - N(0) U, tanh (Q%L)} (2.117)
and
wl

;] {D_(wlw') + D”(w,“w'ﬂ

[1-2(w)]lw = J dw' Rel ) 2 5
! [w'%-0%(u') ] (2.118)
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where
D, (w,w") = J dv a?(v) F(v)
0

1 1

x [{N(V) + £(0")]} { — * —}11.,(2.119)
w'+wtvt+io w'-wtv-io
and
N(v) = [efV —r177d , (2.120)
Flu) = [P0+ 1771 ,(2.121)
are the Bose and Fermi functions. The two coupled non-

linear integral equations can be numerically solved to
determine A{w) and Z{w) by iteration on a computer. The
function a? (v) F(v) and Coulomb pseudopotential Uc completely
specify the solutions. These equations are fundamental to
the work in this thesis and later their solutions will be
discussed with respect to the determination of the gap and
the transition temperature of a superconductor.
The function a?(v) F(v) is given by

ERNTNE
J dzpj dep' E’%L'A 6(v~w(p-p';k)/J dzp
~ ~ ~ ~
S

~
(27) v
F! F °F

(2.122)

a?(v) F(v) =

where the integrals are over the Fermi surface and Ve is
the Fermi velocity. The ingredients necessary to completely
specify a? (v) F(v) are the phonon frequencies and the

electron-phonon coupling constant for scattering from ones



point on the TFermi surface to another. The electron-phonon
coupling constant is that of equation (2.97) and is com-
pletely determined by the phonon frequencies and polar-
ization vectors and the pseudopotential form factor. The
evaluation of a?(v) F(v) will be discussed in more detail
in Chapter IIT.

U, is the Coulomb pseudopotential introduced in
conjunction with the integration cut-off W in equation
(2.117) for A(w). A relation between UC and the screened

Coulomb potential Ve is(23)

VC
U, = = . (2.123)

F
1+N(0) Vv !Ln(ag)

N(0) is the single spin electron density of states at the

Fermi surface and EF is the Fermi energy. With a knowledge

of W, amd screening in the Fermi-Thomas approximation, Uc
is completely determined by the electron density.
At zero temperature the equations for A(w) and Z(w)

reduce to

w
C

[Z(uo)]—l I dw' Rel

o]

Alw")

A(w) L
w282 (") ]?

]

X {K+(w,w‘) - N(0) UC} ,(2.124)

[1-Z (w)]w

i

] {K_(w,0')} (2.125)

72

dw' Rel =
i [0'?-0% (0") ]
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where

Kp(w,0") = f dv a?(v) F(v)
0

x{

! Tt 1 7} . (2.126)
w'+wt+vtio w'-wt+v-io

The zero-temperature version of the gap equations is also
specified completely by the function o?(v) F(v) and the
Coulomb pseudopotential. This version is also solved in

this thesis to obtain the zero-temperature gap.

The function Re[—- w -] relates the effective
2 ,2 L
(w27 (w) ]
electron tunneling density of states NT(w) in the super-
conductor to that of the normal metal by(23)
W
N,,(w) = N(0) Rel i) .(2.127)
: [w?-2% (@) ]

Information on a?(v) F(v) and Uc can be obtained from the
structure in the current-voltage characteristics of super-
conductor-insulator-normal metal or superconductor-insulator-
superconductor tunnel junctions. McMillan and Rowell(70’7l)
have developed a method of inverting the gap equations,
equations (2.124) and (2.125), to obtain an a?(v) F(v)

and a Uc that accurately reproduces the tunneling electron
density of states of equation (2.127) as obtained from the
tunneling experiments. The method provides information on
the coupling parameter «?(w), the phonon density of states

F(w) and the Coulomb pseudopotential UC. The procedure



has been extended by McMillan and Rowell to several metals
in which the electron-phonon interaction is sufficiently
large for the method to be reasonably accurate. More

(42) have used the inversion

recently Franck, Keeler and Wu
- method to obtain information on a?(w) F(w) in lead under
pressure. In Chapter ITI of this thesis some of the

McMillan—-Rowell data will be used and more will be said

about the work of Franck, Keeler and Wu.
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CHAPTER ITII

THE EFFECT OF PRESSURE ON SUPERCONDUCTIVITY

3.1 Previous Work

Much of the early experimental data on the effect
of pressure on superconductivity in simple metals was fitted
with phenomenological formulas relating the pressure and
the transition temperature. One such formula is the

Ginzburg form(72),

T =Ae °© ,(3.1)

where T, is the critical temperature, P is the pressure, A
and a are fitted constants and PC is the extrapolated
pressure at which the transition temperature is thought
to vanish. With this form Brandt and Ginzburg(34) were
able to fit the data for cadmium and zinc.

For the case of weak coupling superconductors the
B.C.S. theory proposed a relationship between the critical
temperature TC and an attractive phonon-mediated electron-

electron interaction V. It is (equation (2.98))

kT, = 1.14 fi e N(0)V

B (3.2)

where fiw is an average phonon erergy and N(0) is the single

48
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spin electron density of states at the,Fermi surface. The
interaction V is an ill-defined quantity and can be thought

of as a phenomenological constant for a given material.

Olsen and co—workers(36) used equation (3.2) in the form
-1
kT =h o e MOV (3.3)

with h op the Debye energy and postulated that

k. T
ln(ﬁgégda Q—¢ (3.4)
D

where Q is the volume. Equations (3.3) and (3.4) are com-
bined to give for ¢

3 2n (N (0)V)

¢ = S i O .(3.5)

They attempted to fit the experimental data with a constant
¢ and in this way obtain information on the variation of
the strength of the B.C.S. interaction with pressure. Levy
and Olsen(35) fitted their data for aluminum with ¢=3.7.
However, Brandt and Ginzburg were not able to fit the data
for cadmium and zinc with a constant ¢.(34)
Smith and Chu(39) have analyzed the effect of

pressure on superconductivity in several metals in the
context of a straight-line variation of the transition

temperature with volume change and have extended the treat-

ment of equation (3.5) to finite volume changes. They have
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found that the present experimental results are inconsistent
with a constant value of ¢ in aluminum, cadmium and tin,
although ¢ is approximately constant for small volume
changes.

(73) has studied the variation of the

McMillan
critical temperature for a niobium-like spectrum o?(w) F(w)
rescaled for various coupling strengths a? (w) and frequency
cut-offs of the phonon density of states F(w). He used
the density of states of niobium as derived from inelastic
neutron scattering and a constant a? to fit the results
to an analytical formula. The formula is written in terms

of W, v the upper cut-off of the phonon density of states

spectrum, and the parameters

A = 2 J az‘wl F(0) 40 (3.6)
and
¥ 3
poo= N(0)U, . (3.7)

The parameter A is related to the phonon-renormalized

*
electronic effective mass m by

*

%ﬁ = 142 .(3.8)
McMillan's formula is
e 1.04(140)
e o ey Do e - (3.9)



(74) (75)

Seiden and Hodder
formula to investigate the effect of pressure on the super-
conducting transition temperature. Seiden has used the
point-ion pseudopotential and a jellium model for the

phonon frequencies, corrected to give the measured zero
pressure transition temperature, to calculate A. For the
phonon shifts Seiden used a Gruneisen parameter which he
fitted to reproduce the measured critical temperature

change with volume. The work of Hodder is also closely
related to this work. He investigated the effect of pressure
on the critical temperature of lead. He used the two-
Lorenztian model(23) for the density of phonon states and
calculated the coupling constant with the point-ion pseudo-~
potential. With the experimental phonon shifts from the

(41), he obtained good

tunneling work of Franck and Keeler
agreement with the experimental pressure dependence of the
transition temperature in lead.

In the previous chapter it was seen that the inter-
atomic force constants ®a8(2—2',0) can be derived from
inelastic neutron scattering measurements of the phonon
dispersion curves in high symmetry directions. It was also
seen that the interatomic force constants completely deter-
mine the lattice dynémics. The dynamical matrix for any
wave vector k is easily constructed from the force constants
and the phonon eigenvectors and frequencies follow directly

from the diagonalization of the dynamical matrix. In

addition to a complete knowledge of the lattice dynamics,

have recently used McMillan's
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a knowledge of the pseudopotential for scattering at the
Fermi surface allows the calculation of the electron-

phonon coupling constant and o?(w) F(w). The function

a?(w) F(w) and N(O)Uc permit the evaluation of the
Eliashberg gap equations and hence the gap at the gap edge
and the critical temperature. In the following sections
calculations of a?(w) F(w) at zero and finite pressure will
be described and the Eliashberg gap equations will be solved

for the kernels appropriate for zero and finite pressure.

3.2 Calculation of 0?2 (w) F(w)

From the complete knowledge of the lattice dynamics
as specified by the Born-von Kdrmin atomic force constants

and the Heine-Abarenkov pseudopotential Carbotte and

(29:30) yave evaluated a?(w) F(w) for some simple

(31)

Dynes
metals and Dynes, Carbotte, Taylor and Campbell have
evaluated o?(w) F(w) for an alloy series. In this section
the method of evaluating a?(w) F(w) is discussed.

In the approximation of a spherical Fermi surface

and a local pseudopotential the relationship

Q J a’p J a%pr Lip5R)
~ ~en? vy

N (0) j 1 43
= = d g f£(gq) (3.10)
j a2 g k.2 q <
F
S

gy

<2k

F

can be used to rewrite 0?(w) F(w) (eguation (2.122))
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as
2 N (0) ( 13 Jwi@|? lg.g(ain |2
o (w) F(w) = — b} J 3 d q = ZMNxd 2
8w kF A <2kF 0 .
x S (w-w(gs;A)) » (3.11)

where N(0) is the free electron value of the single spin

electron density of states at the Fermi surface

N(0) = , (3.12)

and N0 is the ion number density.

The quantity a?(w) F(w) is related to the density

of phonon states F(w)

3
F(o) = %~ 7 J | wé-ﬂ§ 8 (w=-0(q; 1)) (3.13)
0 X p.p.g. (2M ~

with the integral restricted to the first Brillouin zone

(76)

(F.B.Z2.). Gilat and Raubenheimer have constructed a

computer programme to diagonalize the dynamical metrix for
g values at the center of small cubes in the irreducible
1

sector of the first Brillouin zone. The irreducible

=&

W

8

in figure (3.la). In each cube the gradients of the dy-

sector of the face-centered cubic lattice is depicted

namical matrix with respect to variations in the wave
vector g are also determined and are used to extrapolate
[av4

to other points in the cube. The extrapolation method re-

duces the number of cubes to be sampled and reduces the



Figure 3.1

(a) Irreducible %5 sector of the first
Brillouin zone for the face-centered cubic
structure.

(b) A (001) section of the cone
subtended by the irreducible 1 sector. The

48
arc corresponds to a radius ZkF in lead.
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computation time for calculating F(w). The sampling method

(77)

is good enough to clearly resolve the van Hove singu-
larities.
In the calculation of a?(w) F(w) the contribution

of each cube in the F(w) calculation is weighted by a q-

dependent factor Lx(q),

2
_1m Jg.8(q;)) | 2
Lk(g) T4 M kg algin) lw(g)l , (3.14)
where now

1 d3 .

0(,2((1)) F(w) = 5 z .—...—q-_-3 L)\(q) § (w-w(g:A)) L (3.15)
0 )\ <2k (2’“’) o~ ~
F

and the integration must be extended beyond the first
Brillouin zone to a sphere of radius ZkF as shown in figure
(3.1b). The knowledge that the phonon modes are completely
described in the first Brillouin zone and that the first
Brillouin zone can be constructed by the 48 cubic symmetry
Z% irreducible sector can be used to extend

the integration beyond the Brillouin zone boundary. The

operations on the

phonon modes at any point in the cone subtended by the

irreducible %§ sector are equivalent to those in one of

the 48 sectors of the first Brillouin zone. A symmetry
operation on the eigenvectors at the appropriate point in

the irreducible sector constructs the eigenvectors of

1
48
any phonon mode in the cone. The required transformations

(78)

)

are listed by Dynes for face-centered and body-centered
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cubic lattices.

The a?(w) F(w) programme developed by Carhotte and
Dynes from the Gilat-Raubenheimer programme requires the
specification of the phonon modes by a force constant
model and a knowledge of the pseudopotential form factor
for scattering at the Fermi surface. With this information
the evaluation of a?(w) F(w) is direct and, as previously
stated, has been used to calculate the spectrum in some

simple metals and alloys.

3.3 The Effect of Pressure on the Coulomb and Phonon

Kernels

The calculation of a?(w) F(w) and the solutions of
the Eliashberg gap equations are to be repeated with the
metal under conditions of hydrostatic pressure. The zerc
and finite temperature kernels of the Eliashberg gap
equations are completely specified with a knowledge of
a?(w) F(w) and the Coulomb psgudopotential N(O)UC. In this
section these two quantities are discussed with a view
to their evaluation with the metal under pressure.

The Coulomb pseudopotential N(O)UC is related to
the angular average of the screened repulsive Coulomb inter-
action between the conduction electrons at the Fermi surface

V. by equation (2.123),

N(O)VC

N(0)U_ = - .(3.16)
e hF
L+N(0)VC zn(a;)
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In the Fermi-Thomas screening approximation N(O)Vc is(20)
ksz ksz + Ak
N(O)V_ = inf{ ] (3.17)
c 8k 2 k 2
F s

where ks is the Fermi-Thomas screening parameter. Equations
(3.16) and (3.17) can be used to show that N(O)UC varies
more slowly than l/kF with volume change. This variation
is very sméIl and N(O)Uc can be considered to be a constant
for the purposes of this work.

The calculation of a?(w) F(w) under pressure
presents much more difficulty. There are as yet no extensive
measurements of the phonon dispersion curves by inelastic
neutron scattering in materials under pressure. Some infor-
mation on the long-wavelength shifts is available from

sound velocity measurements. These results are given in

the form of mode Gruneisen parameters(79) vy{a;\)
. _ 9 n wla;A)
Y(Qid) = =557 ,(3.18)

where 9 is the volume. A small amount of information for
lead is available from superconducting tunneling experiments
under conditions of hydrostatic pressure(40_42).

The simplest approximation that can be made is to
assume that all phonon modes shift according to an average
Gruneisen parameter y. This is a simplification that may

not be altogether warranted in a final analysis but insofar

as more detailed information is only scantily available this
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appears to be a reasonable starting point. Some information
on the phonon frequency shifts can also be obtained from
pseudopotential calculations at zero and finite volume
changes. Calculations of mode Gruneisen parameters have

(80) with the

been made in several alkali metals by Wallace
use of pseudopotentials.

In addition to the phonon frequencies and eigen-
vectors, the pseudopotential for scattering at the Fermi
surface is necessary to evaluate o? (w) ka) in equation
(3.15) at finite pressure. With the phonon frequencies and
eigenvectors specified, the pseudopotential to be determined
at finite pressure enters in the calculation of a?(w) F(w)

through the Iw(q)l2 factor in the coupling constant. The

screened pseudopotential w(g) is

0
N1 vi(g)
w(g) = on G0 (3.19)

where Vo(q) is related to the bare pseudopotential wo(q) by

the volume per ion 9 The procedure used in this work to

0"
obtain the pseudopotential for finite volume changes was

to assume that vo(%) does not change for the volume changes
considered. The vonlume dependence of w(%) in equation (3.19)
is then contained in the dielectric function e(%) and the

volure factor QO. This preocedure neglects any energy depen-

. . 6 . .
dence contained in v (g) by virtue of its dependence on
facd

the Heine-Abarenkov parameters A](E), that ig AO, Al’ A2

(the Alvfor 1l greater than 2 are taken to be egqual to Az).
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This uncertainty only affects the coupling constant since
the phonon frequencies and eigenvectors are determined
separately.

Within the assumed model the calculations can now
be performed. The Born-von KArmidn force constants determine
the lattice dynamics of the metal at standard volume. The
spectrum a?(w) F(w) can be determined from the force constants
and the pseudopotential by the method of Carbotte and Dynes.
At finite pressure the phonon frequencies are to be shifted
with a constant Gruneisen parameter y and the pseudopotential
rescreened with the dielectric function for the electron
density of the compressed metal. The change.in the Coulomb
pseudopotential N(O)UC is known to be small. The calcula-
tions of Carbotte and Dynes can be repeated with the metal

under pressure.

3.4 Calculations in Aluminum

The spectrum a?(w) F(w) for aluminum at standard

volume was calculated from equation (3.15),

3
a?(w) F(w) = %_ 5 d Q3 Lx(q) § (w-0(q; 1)) (3.20)
0 X (2m) ~ ~
with
L.(q) = =D la.£ (g 0) |2 v (q) | 2 (3.21)
3 4 M kg g o(qild) 3 -3

« / /
Information on the phonons was taken from the Born-von Karman



60

force constant fit to the phonon dispersion curves measured

by inelastic neutron scattering by Gilat and Nicklow(gl).

The pseudopotential form factor of Animalu and Heine
(46)

(64)

as tabulated by Harrison was used for the electron-ion
scattering cross section. The calculated spectrum is éhdwn’
in figure (3.2). This calculation has been previously

(29)

performed by Carbotte and Dynes and is not new.
At finite pressure>the calculations were carried
out at 2%% and 5% volume changes. The Heine-Abarenkov

pseudopotential was rescreened according to equation (3.19),

0

=1 v (q) Y
W(%) = o 8(9,) ,(3.22)

for the two volume changes. The screened pseudopotential

form factors for 0% and 5% volume changes are compared in

figure (3.3). The phonon energies were shifted by a con-
stant Gruneisen parameter y = 2.6 according to
wéﬂ = Bwo (3.23)
Q
s
‘where
B = (1~ Y%Q) .(3.24)
s

Here Q@ is the volume and QS is the standard or zero pressure
volume. The value Yy = 2.6 for the Gruneisen parameter is
an approximate average of the microscopic Gruneisen para-

meters of several branches of the acoustic spectrum in



Figure 3.2 0? (w) F(w) spectra in aluminum for volume
decreases of 0% (solid line), 2%% (long-dashed
line) and 5% (short-dashed line) versus the

phonon energy w. The Gruneisen parameter is

2.6,
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Figure 3.3 The Heine-Abarenkov pseudopotential
form factor in aluminum at standard volume
(solid line) and the form factor rescreened
for_a 5% volume decrease (dashed line) versus

the momentum transfer q/ZkF.



Figure 3.3
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(79). The spectra calculated for 2%% and 5% volume

aluminum
changes are compared to tﬁe Zzero pressure spectrum in
figure (3.2). The shift to higher energies is clearly
evident and a general lowering of the spectra at higher
pressures is evident, although the general shape of the
spectra is not altered.

The zero temperature Eliashberg gap equations,
equations (2.124) and (2.125),

w
C

Alw')
[0 2-22 (0" ]

Aw) = [Z(w)]—lf dw' Rel

o]

1 {K+(w,w')

]

- N(O)UC} - , (3.25)
f "
[1-Z () ]w = J dw' Rel[ +1 {K (w,w")} ; (3.26)
12 22, 1% -
. [w' -2 (") ]
with
K, (w,0') = J dv a?(v) F(v)
o
x {- lA - +i 1 +} (3.27)
w'tptviio w'-wtv-io
were solved the a?(w) F(w) spectra of figure (3.2). For the

zero pressure (P=0) spectrum N(O)Uc was fixed to reproduce

the measured gap at the gap edge AO,

) ==

With AO(P=0) = 0.18 mev, N(O)Uc was fcund to bhe 0.16.
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N(O)Uc was kept fixed at the same value for the solutions
at 2%% and 5% volume change.
An example of the gap functions Al(w) and Az(w)

with

AMw) = Al(w) + i Az(w) (3.29)

for standard volume are shown in figure (3.4). 1In figures
(3.5a) and (3.5b) solutions for 2%% and 5% volume changes
are given. These solutions were calculated With a Gruneisen
parameter y=2.22; this will beAexplained later. However,
the main features correspond to the solutions for the speétra
of figure (3.2). The shifts to higher energies of the peaks
in the a?(w) F(w) spectra with decreasing volume are re-
produced. There is a general decrease in the gap functions
with decreasing volume and it is evident that this effect

is more pronounced fhan the shifts in the dz(w) F(w) spectra
of figure (3.2).

For the spectra of figure (3.2) the calculated gaps
were 0.18 meV, 0.079 meV, 0.032 meV for vodume changes of
0%, 2%% and 5%. 1In order.to obtain the transition temper-
atures corresponding to the calculated gap values the B.C.S.
ratio which relates the gap AO and the transition témper—

ature Tc by'

= 3.52 (3.30)
B c )

‘'was used. The_transitionrtemperatures for 2%% and 5%
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Figure 3.4 The gap functions Al(w) (solid line)
and Az(w) (dashed line) in aluminum at standard

volume versus the energy w.
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Figure 3.5

(a) The gap function Al(w) (solid line)
and Az(w) (dashed line) in aluminum for a 2%%
volume decrease versus the energy w.

(b) The gap functions Al(w) (solid line)
and A2(w) (dashed iine) in aluminum for a 5%

volume decrease versus the energy w.
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volume changes are plotted as ratios of the zero pressure
transition temperature in figure (3.6). The calculated
values are compared with an extrapolation of the straight

(39). The ratio for

line variation quoted by Smith and Chu
the 2%% volume change is low whereas the ratio for the 5%
volume change agrees fairly well with a straight line extra-
polation of the existing data.

As has already been noted, the spectra of figure
(3.2) indicate that the general shape of a?(w) F(w) is not
altered at finite pressure except for the general shift to
higher energies and a general lowering on the vertical |
scale. To investigate the dependence of a?(w) F(w) on the
rescreened pseudopotential at 2%% volume change a calcula-
tion was performed without rescreening the pseudopotential.
In figure (3.7), this spectrum is compared with the spectrum
at 2%% volume change of figure (3.2). From figure (3.7) it
is evident that the effect of the rescreened pseudopotential
is essentially a constant scaling factor that shifts
a?(w) F(w) upwards by a small amount.

The small scaling factor that shifts the spectrum
upward due to rescreening can be determined in the following
way. If a?(w) F(w) of equation (3.20) is multiplied by

w and an integration over all energies performed the

equation is(73)
dw w a?(w) F(w) = dw 0 = I =
No (2m)
0 o] <2k )



Figure 3.6

A comparison of the calculated variation
of the transition temperature T, with volume

AQ . o
change - g in aluminum for a Gruneisen para-
s

meter y=2.60 (circled points) and y=2.22 (boxed
points) with the experimental straight line
variation. The dashed extension of the solid
line is an extrapolation of the existing experi-

mental data.
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Figure 3.7

0% (w) F(w) spectrum in aluminum for a
2%% volume decrease calculated without rescreening
the pseudopotential (solid line) and the a? (w) F(w)
spectrum for a 2%% volume decrease of figure

3.2 (dashed line) versus the phonon energy w.
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w(q) | %1 6 (w-w(gin)

.(3.31)

The w integration on the right hand side can be performed

due to the delta-function. The resulting equation is

‘2

J dw w a?(w) F(w) = L d_g % % h%.g(g;X) IW(%)IZ
0

(21) kpd
F .(3.32)

The closure relationéhip for the polarization vectors

(equation (2.13)),

*
i Ea(g;x) Es(g;X) = 848 , (3.33)

can be used on the right hand side of equation (3.32) to
obtain

% 3
J dw w a?(w) F(w) = %— J d"q
0

] et

M9 u(q) |2 , (3.34)
<2kF

and the angular integration can be performed to obtain

o 2k
m F 3 2
J-dw w a?(w) Flw) = 5 J g dq |wi(q) | . (3.35)
81" Mk_. N ~
0 F 0 o

With g in units of 2kF, equation (3.35) is

o 1
J dw w a?(w) F(w) = constant x J t3dt ]W(t)[2 , (3.36)
0 o
where
T . (3.37)

o)
P
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Equation (3.36) can be used to rescale a?(w) F(w)

by a factor B,
3 2
[ at 7 |w(e) |71,

£
s

. (3.38)

s [| at ¢3 |w(t)|2]

0

QY O

The parameter B can be determined from the standard volums
pseudopotential and é pseudopotential rescreened for the
appropriate volume change.

In aluminum for 2%% and 5% volume decreases the
parameter B was found to be 1.0263 and 1.0563 by direct
evaluation of equation (3.38). With the phonon energies
shifted by a constant Gruneisen parameter the relationship
between the spectrum under pressure and the standard volume

spectrum mé(w) Fo(w) is

0?(Bw) F(Bw) = = o (W)F (1) | (3.39)
B2 0
where
8 = (1 - Y%84 (3.40)
s

is the phonon energy shift of equation (3.23).
A comparison of the o2 (w) F(w) spectrum for a 2%%
volume decrease of figure (3.2) and a spectrum corresponding

to a 2%% volume decrease calculated directly from the scaling
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procedure of equation (3.39) is shown in figure (3.8). The
agreement is very good. The gaps calculated with the spectra
scaled according to equation (3.39) were in good agreement
with those calculated from the spectra of figure (3.2). The
.rescaling procedure of equation (3.39) is very important
for it allows one to calculate a spectrum at finite volume
change from a standard volume spectrum in a very simple
manner and with little intermediate calculation.

It has been seen that a constant Gruneisen parameter
Y=2.6 provides phonon energy shifts that are too large for
agreement with the measured transition temperature decrease
at 2%% volume decrease. In order to investigate the
phonon shifts under pressure in more detail, phonon dis-
persion curves along the symmetry directions were calcula-
ted by the pseudopotential method. The dynamical matrix

of equation (2.85),

2

Dygk) = w E [Fk+r ) erg) (kg ) g
n
- Flg,) (En)a (Kn)s] , (3.41)
with
q 2 qé
g 1 0 o 2 ,e(g)-1
F(q) = %5 = —5———7 |wv (q) | =ty ) , (3.42)
~ q2 16ﬁ2 Z2e4 ~ € %)
provides the frequencies upon diagonalization. The phonon

dispersion curves along the symmetry directions as measured


http:2-,(3.42

Figure 3.8 A comparison of the rescaled a?(w) F(w)
spectrum for a 2%% volume decrease (solid line)
in aluminum with the 02 (w) F(w) spectrum for
a 2%% volume decrease of fiéﬁre 3.2 (dashed

line).
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(81)

by inelastic neutron scattering

(82)

were fitted by a vari-
ation of the parameters in the Heine-Abarenkov model
pseudopotential. This procedure has been previously used

(31) to obtain an

by Dynes, Carbotte, Taylor and Campbell
average pseudopotential in an alloy series. The fit for
aluminum is shown in figure (3.9) and compared with a re-

presentative sample of measured(83)

modes denoted by crosses.
The parameters for the Heine-Abarenkov form factor used to
obtain the curves were A0=1.38 Al=l.66 A2=l.85. The cal-
culation was repeated for 2%% and 5% volume changes with
the parameters of the Heine-Abarenkov pseudopotential held
constant. This procedure neglected the energy dependence
of the parameters which is more serious in the phonon
frequency calculations than in the calculation of the
pseudopotential that enters the coupling constant in the
calculation of a?(w) F(w) at finite pressure. However, for
aluminum it is believed that the energy dependence will not
considerably alter the results(82).

In figure (3.10) the phonon frequencies calculated
with a 5% volume decrease are compared to the standard
volume phonon freguencies of figure (3.38). The frequency
spifts at 2%% volume change were found to be almost exactly
one half the shifts at 5% volume decrease. A detailed
analysis of the shifts showed that the transverse modes

were somewhat more affected than the longitudinal modes

but the difference was not large. The longitudinal shifts



Figure 3.9 The phonon dispersion curves (solid line)
in aluminum calculated with a pseudopotential
form factor fitted to the experimental data
(crosses). The frequencies are given in terms

of the ion plasma frequency wp.
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Figure 3.10 The phonon dispersion curves in alu-
minum calculated for a 5% volume decrease
{so0lid lines) and the standard volume dis-

persion curves as in figure 3.9 (dashed lines).
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Figure 3.11

A comparison of the standard volume
phonon dispersion curves in aluminum shifted
with a Gruneisen parameter y=2.22 (solid line)
with the calculated freguencies (crosses) of

figure 3.10 for a 5% volume decrease.
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were reasonably reproduced by a constant shift with y=2.22
as shown in figure (3.11). 1In figure (3.11) the solid lines
are the zero pressure modes shifted by a constant and the
crosses are representative of the frequencies calculated
with a 5% volume reduction.

With y=2.22 the zero pressure a?(w) F(w) spectrum

oo

was scaled according to equation (3.39) for 2%% and 5
volume changes. The gap functiomsAl(w) and Az(w) cal-
culated with the zero temperature Eliashberg gap equations
are those of figures (3.4), (3.5a) and (3.5b). The gaps
at the gap edges for 2%% and 5% volume decréases were
found to be 0.095 meV and 0.048 mevV. With the B.C.S.
ratio these gaps were convefted to transition temperatures
and are compared to the straight line variation in figure
(3.6). The agreement at 2%% is better but there is some
loss of agreement at 5% volume change as compared to the

result with y=2.6.

3.5 Calculations in Lead

In lead the electron-phonon interaction is particu-
larly strong and its superconducting properties show many
deviations from the B.C.S. behaviour. In particular the

B.C.S5. ratio in lead is experimentally found to be

= 4.3 (3.43)
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compared to the weak coupling value of 3.52. The strong
electron-phonon interaction is manifested in large anomolies
in the current-voltage characteristics of superconductor-
insulator-metal tunnel junctions. Thus lead is a prime
candidate for tunneling inversions as discussed in Chapter
II. In addition, tunneling studies of lead under pressure

(40-42)

have been made and Franck, Keeler and Wu(42) have

used the inversion method to obtain a?(w) F(w) in lead

(41) have found that the

under pressure. Franck and Keeler
gap and the transition temperature in lead do not scale

identically under pressure with

d &n A

a—za—f; = 2.06 . (3.44)

In this section results of the study of the effect of pressure
on superconductivity in lead will be presented.

Initial calculations that are very similar to the
calculations already described for aluminum were performed
at standard volume and a 5% volume decrease. The Helne~
Abarenkov pseudopotential as tabulated in Harrison was
rescreened for a 5% volume change and is compared to the
standard volume pseudopotehtial in figure (3.12). The Born-
von Kdrmdn atomic force constants fitted to the phonon
dispersion curves as measured by inelastic neutron scattering
were used to generate aé(w) Fo(w) as shown in figure (3.13).

(78)

This calculation is not new For the 5% volume change,

(4

4)



Figure 3.12

The Heine-Abarenkov pseudopotential
form factor in lead at standard volume (solid
line) and the form factor rescreened for a 5%
volume decrease (dashed line) versus the momen-

tum transfer q/ZkF.
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Figure 3.13 Calculated a?(w) F(w) spectra in lead
for standard volume (solid) and a 5% volume
decrease (dashed) with a Gruneisen parameter

Y=2.85 versus the phonon energy w.
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the phonon frequencies were shifted with a constant Gruneisen

parameter y=2.85 (84)

and the rescreened pseudopotential
was used to calculate a?(w) F(w). The two functions are
compared in figure (3.13).

The zero temperature gap equations were solved
with the gap fixed at the value 1.35 meV to determine
N(O)UC with the standard volume aé(w) %ﬁw). For the
0?(w) F(w) spectrum at 5% volume decrease the gap was cal-
culated to be 1.01 meV. In figure (3.14) a comparison of
a? (w) F(w) calculated at 5% and a?(w) F{(w) obtained for
5% from the scaling law of equation (3.39) with B=1.0348
calculated from equation (3.38). The two o?(w) F(w) functions
give essentially the same gap.

Since the scaling law appears to be reasonable for
lead as well as for aluminum and since the a?(w) F(w)
function obtained by inversion of the tunneling results
is expected to be more accurate at this time than that cal-
culated from’force constants the McMillaﬁ—Rowell spectrum(7l)
was used for further work with lead. The first principle
calculations have served to verify the approximate scaling
law, equation (3.39), first established for aluminum.

The McMillan-Rowell spectrum rescaled for a 5%
volume change with a constant phonon shift y=2.85 and the
factor B calculated from the Heine-Abarenkov pseudopotentials

is compared to the standard volume spectrum in figure (3.15).

The o? (w) F(w) spectra of figure (3.15) can be compared to



Figure 3.14

A comparison of the rescaled o? (w) F(w)
spectrum in lead (solid line) with the cal-
culated o?(w) F(w) spectrum of figure 3.13
(dashed line) for a 5% volume decrease. The
dashed curve is displaced upward on the
vertical scale by 0.5 to prevent near total

overlap.
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Figure 3.15 The McMillan-Rowell o2 (w) F(w)
spectrum for lead (solid line) as obtained
from inversion of tunneling results and the
rescaled spectrum for a 5% volume decrease

(dashed line) versus the phonon energy w.
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the tunneling inversions of Franck, Keeler and Wu(42).

They
have inverted the Eliashberg gap equations and have obtained
the functions a?(w) F(w) for pressures of 0 and 3,445 bar.
Their zero pressure a?(w) F(w) is in good agreement with
the McMillan-Rowell spectrum of figure (3.15). The finite
pressure shifts of Franck, Keeler and Wu are much smaller
than the scaled shifts for a 5% volume change of figure
(3.15); however, the géneral shifts to higher energies
are clearly evident although their longitudinal peak is
shifted more than the transverse peak with Gruneisen para-
meters YT=2.6 and YL=3.4. The Gruneisen parameter y=2.85
used in the scaling shift of figure (3.15) falls between
Franck and Keeler's Yop and YL' The changes on the vertical
scale in the inverted a? (w) F(w) of Franck, Keeler and Wu
do not as clearly correspond to this work. The peak in
the 02 (w) F(w) at 3,445 bar do not appear to show a decrease
whereas the minimum between the peaks suggests a decrease
that corresponds to figure (3.15). Since the van Hove
singularities are rather sharp, a comparison at the peaks
may not be very meaningful so the evidence is not conclusive.
The different shifts in the longitudinal and trans-
verse modes observed in the tunneling work of Franck and
Keeler can be included in a calculation. A calculation
was performed with the transverse and longitudinal peaks
shifted by YT=2.6 and YL=3.4 for the spectrum derived from

the force constant model. The gap value obtained at a 5%
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volume change was not significantly different from that
obtained with the average shift y=2.85. This indicates
that a rescaling procedure with a constant Gruneisen para-
meter is adequate for this work.

The zero temperature solutions of the Eliashberg
gap equations, Al(w) and Az(w), are shown in figures (3.16)
and (3.17) for standard volume and a 5% volume decrease.

As in the solutions for aluminum, the general overall

heights of the gap functions are reduced with pressure

and the shifts of the peaks to higher energies are reproduced.
The gap at the gap edge was found to be A0=l.346 meV with
N(O)Uc=0.13 for the standard volume spectrum and A0=1.04

meV for the spectrum shifted for a 5% volume decrease.

The finite temperature Eliashberg gap eguations
must be solved to obtain the critical temperature Tc since
lead is a strong-coupling superconductor and the experi-
mental evidence is that the gap at the gap edge and the
transition temperature do not scale in the same way under
pressure. This is in contrast to the case in aluminum
where the weak-coupling B.C.S. ratio 3.52 was used to obtain
a relationship between the transition temperature and the
gap.

The frequency and temperature dependent gap A{w,T)
is obtained by iteration of the eguations (2.117) and

(2.118),

w
C

Alw,T) = [Z(w,T)]nl j dw' kel

0

Aw', T

]
[w' 2= (w', 1) 17
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Figure 3.16 The gap functions Al(w) (s0lid line)
and Az(w) (dashed line) for the McMillan-
Rowell spectrum in lead at standard volume

versus the energy w.
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Figure 3.17 The gap functions Al(w) (solid line)
and Az(w) (dashed line) for the rescaled
McMillan-Rowell spectrum of figure 3.15 for

a 5% volume decrease versus the energy w.
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x {D, (w,0") - D, (w,-0") - N(O)u_ tanh (8293 (3.45)
and
' w'
[1-2 (0,T) o = J Q' Rel ]
o
% {D_(w,0') + D_(w,-0")) (3.46)
where

Dy(w,0') = J dv a?(v) F (v)
0

x [N() + £(u)} {(—2 % L1 (3.47)

. + .
w'+twtvt+io w'-wtv-io

and N(v) and f(w') are the Bose and Fermi functions. At

finite temperature the gap edge is given by

AO(T) = Real'{A(AO(T),T)} .(3.48)

The equations were solved for the zero pressure McMillan-
Rowell spectrum a?(w) F(w) of figure (3.15) for two tempera-
tures below Tc but sufficiently close to Tc so that AO(T)

is a rapidly decreasing function of temperature in this
region. From these two values of the gap the value of
the critical temperature was obtained by extrapolation(25’26).

A solution for the real and imaginary parts of the gap

function A](w,T) and Az(w,T) with

Mw,T) = Al(w,T) + i Az(w,T) (3.49)
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is shown as a function of frequency for a temperature near
TC and for P=0 in figure (3.18a). This solution compares
well with the figure given by Scalapino, Wada and Swihart(zs).

For the McMillan-Rowell spectrum it was found that

k. T =0.63 meV for a ratio
- "B cC

= 4.27 . (3.50)

This agrees well with previous calculations(26) and the
experimental value of 4.3.

Figure (3.18b) is a plot of Al(w,T) and Az(w,T)
as a function of frequency for a volume change of 5% and
a temperature near TC as obtained by iteration of the gap
equations, equations (3.45) and (3.46), with the rescaled
.az(w) F(w) spectrum of figure (3.15). The shifts of the
peaks in o2 (w) F(w) are also evident in the solutions of
the finite temperature gap equations.

The temperature variation of AO(T) derived from
these solutions is given in figure (3.19). The B.C.S; tem-
perature variation fits the limited calculated data well.
At 5% volume decrease it was found that kBTc=O.555 meV

for a ratio

(7 = 3.75 . (3.51)

This is closer to the weak coupling limit 3.52 than the



Figure 3.18 (a) The gap functions Al(w,T) (solid
line) and Az(w,T) (dashed 1ine) for the
McMillan—-Rowell spectrum at standard volume
and T near Tc cersus the energy w.

(b} The gap functions Al(w,T) (solia
line) and Az(w,T) (daghed line) for the spec-
trum rescaled for a volume decrease of 5%

and for T near Tc versus the energy w.
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Figure 3.19

The variation of the gap A with temper-
ature T in lead. The curves are the B.C.S.
variation. The circled points are from the
calculations at standard volume and the boxed
points are the calculations for a 5% volume

decrease.
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zero pressure ratio of 4.27. The gap A, and TC scale

0
differently under pressure so that the B.C.S. ratio decreases
towards the weak coupling value. A comparison with the

(41)

experimental results of Franck and Keeler can be made
with a calculation of d &n Ao/d n Tc. With a straight
line variation of the critical temperature and gap with

volume change as shown in figure (3.20), the value of

d &n Ao/d n TC varies with volume change. At zero pressure

d &n AO
(m) = 1.92 (3.52)
C ne
0%
and at 5% volume decrease
d n AO : .
(a—zﬁ—fg) = 2.18 .(3.53)

Both these values are in close agreement with the experimental

result
= 2,06 .(3.54)

The variation of the transition temperature with volume
is plotted in'figure (3.20) and compared with the experi-
~mental results quoted by Smith and Chu(39). The agreement

at 5% volume decrease is good, so the calculation also

account for the observed value of d &n Tc/d in V.



Figure 3.20

The calculated variation of the
transition temperature T (circled points)

and the gap at the gap edge A, (boxed points)

0
with volume decrease in lead. The solid line

is the experimental variation of the transi-
tion temperature. The dashed line is a straight

line interpolation between the calculated

points for the variation of the gap.
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3.6 Calculations in Mercury

First principle calculations of a?(w) F(w) are as
yet not available for the structure of mercury. As a
consequence the same scaling procedure as was used for the
face-centered cubic materials aluminum and lead was used
for mercury. It must be stressed that the scaling law has
not been established in detail for mercury or for tin or
indium which will be discussed in the next section. The
scaling procedure assumes there is no change in the crystal
structure under stress since the shape of the spectrum
is affected by such a structure change.

The Heine-Abarenkov pseudopotential at 5% volume
decrease is compared to the standard volume pseudopotential
in figure (3.21). For a 5% volume decrease the value of
B to be used in the scaling of equation (3.39) was cal-
culated to be 1.0428. 1In figure (3.22) the McMillan-Rowell

(71)

spectrum as obtained by inversion of tunneling results

is compared with the rescaled spectrum for a 5% volume

(84). The a2 (w) F(w)

decrease with B=1.0428 and y=3.0
spectrum for mercury of figure (3.22) should be compared

to the lead spectrum of figure (3.15). The lead spectrum
has two peaks-longitudinal and transverse- that are charac-
teristic of the face centered cubic structure. The spectrum
for mercury has a peak at low energy, that is at 1.0 to

2.0 mevV. This appears to be the dominant structure in

mercury.



Figure 3.21 The Heine-Abarenkov pseudopotential

form factor in mercury at standard volume

(solid line) and the rescreened form factor

(dashed line) for a 5% volume decrease versus

the momentum transfer q/ZkF.
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Figure 3.22

The McMillan-Rowell a? (w) F(w)
function in mercury (solid line) and the
MgMillan—Rowell spectrum rescaled for a 5%
volume decrease (dashed line) versus the
phonon energy w. The Gruneisen parameter is

y¥=3.0.
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The zero temperature gap equations were solved

at zero pressure for a gap A.=0.825 meV to obtain

0
N(O)Uc=0.09. The finite temperature egquations were solved
to obtain the transition temperature kBTC=O.358 meV for

a B.C.S. ratio

= 4.61 . (3.55)

This value compares well with the experimental results and

previous calculations(26). For the a?(w) F(w) spectrum

rescaled for a 5% volume decrease the zero temperature

gap was found to be (AO) = 0.675 meV and the transition
5%
temperature was calculated with the finite temperature

equations with (kBTC) = 0.318 meV for a B.C.S. ratio
5%

Cho
kBTc
5

= 4.25 . (3.56)

oo

The gap and trénsitién temperature variations with volume
change are plotted in figure (3.23). As in the case of
lead, the gap and the transition temperature were found
to scale differently with volume change. With a straight
line variation of the gap and the transition temperature,
the derivative 4 &n Ao/d n Tc was found to be

d &n A

(a—zﬁ~¥g) = 1.63 (3.57)

d 2n A
and


http:N(O)Uc=0.09

Figure 3,23

The calculated variation of the gap

at the gap edge A, (boxed points) and the

0
transition temperature T, (circled points)
with volume change in mercury. The lines are

straight line interpolations between the

calculated points.
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As in the case for lead, the B.C.S. ratio tends toward the
B.C.S. value of 3.52 for a volume decrease. It is seen
that the derivative d 2n Ao/d in T for mercury is approxi-
mately 1.7 and is somewhat smaller than 2.0 as calculated

in lead.
d 2n AO
d &n TC
mercury are available as yet, Jennings and Swenson (38) quote
d 4n T
d 4n V

pressures to be 3.0 and a Gruneisen parameter y=2.2. The

Although no experimental results for in

the experimental value of in mercury for small

results of this work with y=3.0 is that the derivative
d 4n T
c

d ¢n V

results is not totally understood, but it may be due to a

is approximately 2.0. The difference between these

failure of the scaling law in mercury.

3.7 Calculations in Tin and Indium

As in mercury, the structures of tin and indium
are not of the face centered cubic type. However, the
scaling procedure of equation (3.29) was applied to the
McMillan-Rowell spectra(7l) for these materials.

The pseudopotentials for 0% and 5% volume changes
in tin a;e shown in figure (3.24a). The scaling parameter
B obtained from these two pseudopotentials was 1.0445.

(84) .nd B=1.0445 is

The rescaled spectrum with y=2.25
compared with the zero pressure tunneling spectrum of
McMillan and Rowell in figure (3.25). At zero pressure

the gap at the gap edge was set at (AO) = 0.575 meV with
0

oe

McMASTERLﬂﬂVERSHXﬁUBHARL



Figure 3.24

(a) The Heine-Abarenkov pseudopotential
form factor in tin at standard volume (solid
line) and the form factor rescreened for a S%Y
volume decrease (dashed line) versus the momen-
tum transfer q/2kF.

(b) The Heine-Abarenkov pseudopotential
form factor in indium at standard volume
(solid line) and the form factor rescreened
for a 5% volume decrease (dashed line) versus

the momentum transfer q/ZkF.
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Figure 3.25 The McMillan-Rowell a? (w) F(w) function
in tin (solid line) and the rescaled o?(w) F(w)
function for a 5% volume decrease (dashed line)
versus the phonon energy w. The Gruneisen

parameter is y=2.25.
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Figure 3.26 The McMillan-Rowell a? (w) F(w) function
in indium (so0lid line) and the rescaled a? (w) Flw)
function for a 5% volume decrease (dashed line)
versus the phonon energy w. The Gruneisen

parameter is y=2.50.
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Figure 3.27

A comparison of the calculated critical
temperature variation with volume change
with the experimental variation (solid lines).
The circled points are for tin. The lower
and upper boxed points are for indium with
Gruneisen parameters y=2.50 and y=1.80 respecti-

vely.
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N(O)UC = 0.15. At 5% volume change the gap was found to
be 0.370 meV. A comparison with the experimental results

as quoted by Smith and Chu(39)

is made in figure (3.27)
with a B.C.S. ratio 3.52. Reasonable agreement is evident.
In indium the pseudopotentials for 0% and 5% volume.
changes are shown in figure (3.24b). The parameter B was
calculated to be 1.0604. 1In figure (3.26) the rescaled

indium spectrum with y=2.5 (84)

and B=1.0604 is compared
to the McMillan~Rowell spectrum as obtained from inversion
of the tunneling results. The zero temperature gap equations
were solved for the zero pressure spectrum of figure (3.26)
for a gap (AO)Og = 0.525 meV with N(O)UC = 0.14. For the
5% volume decre;se spectrum of figure (3.26) the gap was
calculated to be 0.368 meV, a value that is considerably
low compared to the experimehtal results of figure (3.27)
when plotted with the B.C.S. ratio 3.52. An average
Gruneisen parameter from phenomenologically fitted dis-
persion curves calculated by the pseudopotential method

as was done in aluminum is y=0.18 (82).

With y=0.18, the
gap for a 5% volume change is 0.430 meV. From figure (3.27)
it is evident that a Gruneisen parameter y=0.18 is too
small to account for the experimental behaviour of the

transition temperature. It appears that a y of about 0.20

would provide sufficient frequency shifts.

3.8 Summary and Comparison with Other Work

In order to summarize the work of the previcus
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sections the values of the rescreening parameter B are

given in Table (3.1) for 2%% and 5% volume decreases. In
Table (3.2) the ratios of the transition temperatures at
finite pressure to the zero pressure transition temperatures
are summarized. A comparison of the results of this work

is made with the results calculated from McMillan's eguation,
equation (3.9),

1.04(14+0)

= ]
k. T = U A-u* (1+0.62X)) . (3.59)

A comparison is also made with the results calculated from
the Morel—Anderson(zo) form of the B.C.S. relationship
__1

K.T = 1.41 % @ e *HF (3.60)
ST . . . (3.

The parameter X is given by equation (3.6),

o

A = 2 “2(“)MF(M) du . (3.61)

0

The scaling procedure of equation (3.39) can be combined

with equation (3.61l) to obtain a relationship between

AAQ at finite pressure at the zero pressure parameter KO.
o
s
It is
A B
aQ < E; AO (3.62)
Q
S

where B is the parameter relating the phonon freguency



TABLE 3.1

SCREENING RENORMALIZATION PARAMETER B

107

AD o AR _ oy
o 2.5% o 5%
Pb 1.0151. 1.0348
Hg 1.0187 1.0428
In 1.0273 1.0604
Sn 1.0200 1.0445
Al 1.0263 1.0563




COMPARISON OF

THE EFFECT OF

TABLE 3.2

VOLUME CHANGE ON THE TRANSITION TEMPERATURE RATIO

T /T, (P=0)
MCMILLAN'S MOREL-ANDERSON
THIS WORK FORMULA B.C.S. FORMULA
y " P* -%g-_ 233 5% 2%3 5% 243 52
Pb 2.85 1.53 0.13 _— 0.881 0.936 0.868 0.966 0.927
Hg 3.00 1.66 0.09 _— 0.888 0.962 0.920 0.981 0.957
In 2.50 0.83 0.14 - 0.701 0.835 0.695 0.891 0.792
1.80 0.83 0.14 - 0.819 0.898  0.812 0.935 0.879
sn 2.25 0.79 0.15 —- 0.643 0.814 0.657 0.878 0.766
Al 2.60 0.46 0.16 0.439 0.178 0.440 0.171 0.603 0.340
2.22 0.46 0.16 0.528 0.267 0.520 0.253 0.668 0.431

80T
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shifts and the Gruneisen parameter vy,

B = (1L - v éﬁ) .(3.63)
S

It is interesting that this model gives a very simple re-
lationship for the dependence of the renormalization
parameter A on volume change.

The screening parameter B is plotted as a function
of volume change in figure (3.28) for volume changes of

0

oe

I 2

Ny
oo

and 5%. The variation is not strictly linear but
may be approximately linear for very small volume changeé.
The results of Table (3.2) are compared with the straight
line variations of the transition temperature decreases

(39) in figures

with volume change quoted by Smith and Chu
(3.29), (3.30) and (3.31). In figure (3.29) the results
calculated directly from the gap equations are given. A
comparison of these results with those calculated from
McMillan's formula shows that the agreement is good for
all the materials with the exception of mercury. In
mercury, the McMillan formula gives transition temperature
ratios that are larger than those calculated directly from
the gap equations. This is probably attributable to the
different shape of the 0?(w) F(w) spectrum for mercury
since the McMillan formula is fitted to a niobium-type

spectrum. The Morel-Anderson form of the B.C.S. relation-

ship gives variations of the transition temperatures with



Figure 3.28 The renormalization factor B due to
rescreening the pseudopotential as a function

of volume change.
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Figure 3.29 A summary of the variation of the
transition temperature with volume change as

calculated by the solution of the gap eguations.
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Figure 3.30 The variation of the transition temper-
ature with volume change as calculated with
McMillan's formula. The legend for the points

is the same as in figure 3.29.
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Figure 3.31 The variation of the transition temper-
ature with volume change as calculated with
the Morel-Anderson form of the B.C.S. formula.
The legend for the points is the same as in

figure 3.29,.
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volume decrease that are not in good agreement with the
results obtained by the solution of the gap equations or
the use of McMillan's formula.

In Table (3.3) values of XA for 0%, 2%% and 5%
volume decreases calculated by equation (3.62) are given.
These are the values of the parameters to be used in cal-
culating the temperature ratios for finite volume changes.
In the model used here the parameters decrease with decrea-
sing volume for all five metals under_consideration.

It is useful to compare;the résults obtained here

(74). He calculated the

with the recent work of Seiden
effect of pressure on superconductivity in simple metals
with McMillan's formula, eqdation (3.59). The values

of AO used by Seiden are not in good agreement with the

ones used in this work which'are derived from the tunneling
inversion spectra and which are expected to be more reliable.

For the volume effect corresponding to the factor B, Seiden

used the 1bng~wavelength limit of the screened Coulomb

interaction. By equation (2.55) this limit is - % EF
4/3
so the variation with volume is (%) . For small volume

v
changes in this approximation the parameter B is

AQ

,Q.m
a

B = (1 - (-43—) . (3.64)

For 2%% and 5% volume changes eguaticn (3.62) gives the
parameters B=1.0333 and B=1.0667 for all the metals. Re-

screening the bare pseudopotential cives different values


http:B=l.03.33

TABLE 3.3

VARIATION OF A WITH VOLUME CHANGE

115

Y oe A oys 5o
Pb 2.85 1.53 1.35 1.21
Hg 3.00 1.66 1.46 1.31
In 1.80 0.83 0.78 0.74
Sn 2.25 0.79 0.72 0.66
Al 2.22 0.46 0.42 0.39
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as is evident in Table (3.1l) and these are expected to be
more accurate; the difference in the Gruneisen parameter
necessary to obtain agreement with the experimental pressure
dependence of the transition temperature is not negligible
as will be shown later. The work in this thesis also
serves to justify to some extent the use of McMillan's
formula for a wide variety of o?(w) F(w) spectra.

For small volume changes the renormalization para-
meter for finite pressure can be written

) A Q

XAQ = 2 XO (3.65)
o (1 - vy BY
s QS

Nz,
N

where equations (3.62) and (3.64) have been combined and
the factor 4/3 Qf equation (3.64) has been replaced by

the parameter a to be determined by rescreening the
pseudopotential. The ratio of the transition temperatures
as obtained by McMillan's fofmula for small volume changes

can be written as

T
C

TC(P=O)

= (1 - ¢ %9. , (3.66)
S

where ¢ is the slope of the critical temperature versus
volume change curve. To first order in the volume change,
the ratio can be inverted to ohtain an expression for the

Gruneisen parameter y in terms of u*, A a and the slope

OI

c. This expression is

Yy = (c + a flfz)/(l + 2f

h
=
b}
S

, (3.67)
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where

f - 1.04 2, , (3.68)
1 T Xy = uF(1F0.62%y)

and

(1+1,) (1-0.62u%)
£oo=1+ 5

2 . - u*(1+o.62A0) -(3.69)

0

Equation (3.67) has been used to obtain the Gruneisen
parameter y from the slope ¢ as taken from the quoted
results of Smith and Chu and the parameters XO and u¥

used in the work of this thesis as given in Table (3.2).

The value for a was calculated from the parameter B for

a 2%% volume change. 1In Table (3.4) the calculated Gruneisen
parameters are compared with the parameters calculated with
a=4/3. It is evident that the factor a is important for

a good estimate of a Gruneisen parameter. If a is well
known equation (3.67) can be used to determine Grineisen
parameters from the dependence of the critical temperature
on volume change. It is again noted that the McMillan
formula gives a Gruneisen parameter for mercury that appears

to be too large.
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GRUNEISEN PARAMETERS FROM SLOPE OF TC/TC(P=O)

VERSUS-—éQ LINES
s
a Y vy for a=4/3
Pb 0.604 2.88 3.59
Hg 0.748 4.42 5.17
In 1.092 1.91 2.06
Sn 0.796 2.07 2.40
Al 1.050 1.65 1.80




CHAPTER IV

A CONTRIBUTION TO THE THEORY OF SUPERCONDUCTIVITY

IN BINARY ALLOYS OF SIMPLE METALS

4,1 Introduction

In this chapter the theory of strong-coupling
superconductivity in a binary alloy of simple metals will
be discussed. It has been seen in the previous two chapters
that knowledge of the atomic force constants that determine
the lattice dynamics and information on the electron-ion
scattering cross section serve to totally specify the
product function a?(w) F(w) as calculated by Carbotte and

(29,30) (. 4 pure metal. In an alloy, on first

Dynes
inspection, there wQuld seem to be two modifications
necessary to obtain a?(w) F(w). Firstly, since an alloy,
unlike a pure metal, does not have translational symmetry
the normal modes of the lattice vibrations are no longer
strictly the independent phonon modes specified by a wave
vector. Segondly, a modification of the Hamiltonian
coupling the conduction electron and ion motion would seem
necessary due to the presence of more.than one type of ion.
Ng(44) has studied alloys of the thallium-lead-

bismuth series by the method of neutron spectroscopy.

This alloy series is particularly suitable for study because

119
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the conduction electron concentration can be varied over a
wide range without a change in the crystal structure and
the effects of mass disorder can be neglected(48). The
work of Ng indicates that well defined phonon modes exist
in these alloys although the neutron groups are broader
than those observed in pure lead. Ng has analyzed the
measured dispersion curves for these alloys in terms of
atomic force constants and has derived an expression for
the phonon widths due toyforce constant disorder in first
order time-dependent perturbation theory. His analysis
indicates that the force constant disorder is not large.

(31) have

Dynes, Carbotte, Taylor and Campbell
studied superconductivity in the thallium-lead-bismuth
series. They have used the atomic force constants deter-
mined by Ng and a pseudopotential fitted to reproduce the
measured phonon dispersion curves to calculate a?(w) F(w)
for a number of alloys. The calculated gaps are in good
agreement with those from tunneling experiments performed
with these alloys.

(43)

More recently, Dynes and Rowell have inverted
the gap equations for a number of alloys to obtain the
function a?(w) F(w) from tunneling experiments. Their
results show that the peaks of the a?(w) F(w) spectra are
generally broadened as compared to lead. They attribute

this broadening to disorder effects and have made calculations

of o?(w) F(w) which phenomenologically include effects of
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phonon broadening.

In this chapter the possibility of obtaining
estimates of phonon broadening due to disorder effects in
alloys with the use of pseudopotentials is investigated.
In addition the effects of disorder on the electron-phonon

interaction are studied.

4.2 The Structure-Dependent Enerqgy of a Binary Alloy

In Chapter II the dynamical matrix for a pure metal
of equation (2.85) was written in terms of an effective
interatomic interaction potential. The total interaction
energy was a sum of the energy due to direct Coulomb inter-
actions among the bare ions and the structure-dependent
conduction electron energy which was cast in the form of
an indirect ion~ion interaction energy. In this section
the structure-dependent energy of a binary alloy as derived

(47)

by Hayes, Brooks and Bienenstock will be discussed.

The model for the disordered binary alloy AX Bl—x
consists of a fraction x of A ions and a fraction (1-x)
of B ions of a total of N ions randomly arranged in a
Bravais lattice. A bare pseudopotential form factor is
attributed to each type of ion and the ions are screened
with an electron gas of the density appropriate for the

alloy. The notation of Hayes, Brooks and Bienenstock is

to define G(Bz) such that

o(R,) = + 1 if the site R, contains an A atom,
~% ~

L
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0(52) = - 1 if the site 52 contains a B atom, (4.1)
so that
1+o(R,)  -ig.R -iq.R
%Z(MQ—&—)e"'“:%erN’L (4.2)
2 2

where the sum on the right hand side is restricted to
atoms of type A. An analogous equation holds for B with
(l+0(§2)) replaced by (1—0(52)). This notation is parti-
cularly convenient for an alloy of arbitrary concentrations
of A and B ions.

In the above notation a matrix element of the

lattice potential W as seen by a conduction electron is

—iq.R2

~ A
<]§+ng',]§> = e {(l+O(BQ,)) <5+glw !,}5‘>

=l

b}
%
+ (1-0(R,)) <k+q|w|x> . (4.3)

The matrix elements are evaluated for electron states of
wave vector k. The potentials W and wB refer to ions
A and B respectively. Equation (4.3) is the generalization
of the diffraction model for an alloy.

The element <E+%]W]E> can be expressed in a more

(47)

convenient form with the definition of an average

pseudopotential w by
— - A B
<k+q|w|k> = x<k+q|w’|k> + (1-x) <k+q|w |k> (4.4)
and a difference pseudopotential A w by

<b+q[Awl§> = [<§+q|wA]b> - <5+q|wB]5>] . (4.5)
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Then
<k+q|W|k> = 8(q) <}5+q]v7|l§> + F(q) </]v<+q|Aw]l<> (4.6)
where
1 . TigeRy s
F(g) =X i e [0(}32) - <0>R] (4.7)
with
<g>_ = 1 r o(R,) (4.8)
R ™ N 0 ~g * :

S(g) is the usual structure factor of equation (2.63)

S(qg) =

1
q 5 e .(4.9)

z
L
The quantity <o>p has the value 2x-1.

Each of the two terms on the right hand side of
equation (4.5) consists of a factor that depends on the
arrangement of the ions and a factor that is structure-
independent. A useful property of F(g) is that for all

ions in their equilibrium positions,lgzégg,

F(g ) =0 (4.10)

where Kn is a reciprocal lattice vector. Since S(g) is
unity if g is an inverse lattice vector and zero otherwise
. for all ions in their equilibrium positions it follows
that for all ions in their equilibrium positions only the

first term or the second term on the right hand side of

equation (4.6) is non-zero for an arbitrary g.
~
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Hayes, Brooks and Bienenstock(47) have written the
structure-~dependent energy ESd for a binary alloy in

analogy to the corresponding energy in the pure metal as

in equation (2.74). The expression for E.q is (per ion)
bl oy 2y ST G
sd 2N g,9 N q
2/#2! ~
X {Ell(g) t [0(Rgs) = <0>plE,,(q) + [o(R,) - <0>R]E2l(g)
+ 10(R,) = <0>] [0(Ry.) = <o>L1E,, () . (4.11)
In the local approximation the Eij for i, 3j = 1, 2 are
defined by
2
- Q. q
_ 0 *0 o} e{qg) -1
. Z em——— W, . w. = 4.12
15 (@ v @ v g (4.12)
where
wy(q) = W (q) ‘
(4.13)
wz(%) = A wo(%) .

The equation for Eij is directly comparable to E(g) of

equation (2.73). QO is the volume per ion and e(g) is the

dielectric function. In the case of an alloy the structure-
dependent electronic energy contains contributions from the

bare average pseudopotential w° and the difference bare

pseudopotential A w®. For a pure metal only the first
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term on the right hand side of equation (4.11) is present
with wlo(q) replaced by wo(q).

Apart from the local approximation, the expressions
E.. as written in equation (4.12) differ from those of

1]
(47) in that the leading

Hayes, Brooks and Bienenstock
coefficient in the expression for the valence pseudowave-
function in terms of plane waves is taken to be unity and
the conduction electron charge that arises from the sum
over core states is taken to be part of an effective
valence(46).

In addition to the conduction electron contribution

to the structure-dependent enerqgy, the inter-ionic Coulomb

energy EC must be included. This energy is(47) (per ion)
1 e2
E = 2= % - {[(1+0(R,)) 2
c T2 v, 4R, "R, | 2’4
LELT
+ (10 (B, )0 251 [(140(Ry )2, + (1-0(R,\)) 2,1 . (4.14)

AA and ZB are the valence numbers of the A and B ions. The

expression for EC can be rewritten in a form similar to

equation (4.11) with the application of the Ewald-Fuchs

(46)

method and a rearrangement of the projection operators.

In the new formn EC is

1 1 iq' (RQ - }321)
E === I ' = v(g) e~ ¥
C 2N 2,00 N v
~n



x'{i2 + [0(5 - <0>R] Z

)
. AZ 7

+ [0(52,) - <0>R] AZ Z

t [0(R,) = <o>p] [0(R,.)

- (self-energy term)
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- <o) (82) %)

, (4.15)

where 7 is the average charge and A% the difference,

Bl
i
b

7. + (l-—x)ZB

A
_ 1 -
AZ = 7 (ZA ZB)
and
2
vig) = a7 e2

I+t should be noted that for ZA B

term in equation (4.15) is non-zero and EC

equal to Z

ionic Coulomb energy equivalent to that of
as expected.
Equations (4.11) and (4.15) can be

give the total structure-dependent energy.

(4.16)

. (4.17)

only the first
is then the inter-

a pure metal,

combined to

The total energy

is to be used to describe the lattice dynamics of the alloy

and in this context the self-energy terms are unimportant

and are dropped. The sum over £ and &'

to & # &'. With the definitions

-2
1
Ell(%) 2Ell(%) + 7 v(%)

can thus be restricted
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Eiz(%) = 21312(%) + 7 AZ v(g) .
Eél(%) = ZEZl(%) + A7 7 V(%) 3
E,,(q) = 2B,,(q) + (42)% v(g) ,(4.18)

the potential energy W(Bl’BZ"‘BN) is

iq- (B,Q,—B,Q,')

= 1 ' =
WB1Ba By T o é ©
I
i

x{EBj,(q) + [0(By) — <0>p1E{,(q)

o~

~ne

+ [0(Ry) = <0o>plE (@) + [0(Ry) = <o>pl [0(Rg,) - <o>g]

X Eéz(%)} .(4.19)

This is an expression for the potential energy of the
lattice written in terms of two-body potentials V(BQ’EQ')’
The two-body potentials are functions of ion separation
distance and also contain information on the arrangement

of the A and B ions in the lattice through 0(52) and GQBQ.).

4.3 Theory of Calculation of Phonon Widths

In Chapter II the Born-von Kdrmé&n force constant

oWR )

model was discussed for an arbitrary potential W(Bl,gz Ry

Equation (4.19) is an expression for this potential in terms
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of two-body potentials V(BQ,BQ,) with

po] =

2 V(R
L, ~
28!

W(R /R, -By) = LRyt . (4.20)

The atomic force constants @ug(z,z') are obtained from

equation (2.4),

32 w

BRQ(Q) aR

o (2,0%) = I 1 . (4.21)
b s 7

The force constants derived from equation (4.19) are for

LAY
o (2,0') = &% 2cos[q(R )]
Br77 N g 2 NQ'
x {E (q) + [0(Rg,) - <o> ]Elz(q)
+ [0(52) - <o> ]F (q)
+ [0(By) = <o>p] [0(R,,) = <o>p]
X Eéz(%)} 949 .(4.22)

For £=%2' equation (2.18) can be used to obtain

0 8(2,,52,) = - 2% @uB(Q,Q") .(4.23)
Q,"#-,Q,

In order to obtain equation (4.22) the fact that the wio(q)

~

are real has been used to equate E (q) and Elz(q) The
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exponentials have been combined to give the cosine factor.

The force constants ®a (2,2') are in principle

B
completely specified by the pseudopotentials and a know-
ledge of the ion arrangement. It is now necessary to
establish the Hamiltonian to be used to describe the lattice
dynamics of the alloy. The procedure will be to make

a configuration average (C.A.) of the force constants for

a disordered alloy. The difference between the actual

and average force constants will be treated as a pertur-
bation.

The configuration averaged force constants are

— . )
@aB(Q,K ) defined by

@aB(R,Q') = <®a6(2,2')>C.A‘ (4.24)

B(SL,JL') where

and the differences are A®a

' — ' - & 1
A@aB(Q,Q ) @uB(Q,Q ) @aB(Q,Q ) . (4.25)
Equation (4.28) gives directly that
1 —_
<BOug (Ar27)> =0 . (4.26)

C.A.

The Hamiltonian that describes the lattice dynamics is

i p 2 (L,t) _ "
H = ——— k=T 0] (2,2%) u (%£,t) u Y,t)
o, 8 2 M 2 o, B oB a B
L, 8°
l 5 ] t
+ 5 azs A@as(l,z ) ua(z,t) uB(Q L) .(4.27)
L.,
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The first two terms of the Hamiltonian are those of a lattice
with force constants 5@8(1,2'); the third term is the
perturbation term.

In order to obtain the configuration average of the
forée constants, a configuration average of the right-hand

side of equation (4.22) must be made. The configuration

average <0(R2)>C.A. is <0>R. The average <[0(R2) - <0>R]
[G(Rz,) <0>R]>C A has been made in Appendix A. The result is
— . 2 —
<lo(Ry) = <o>llo(Ry,) - <o>pl>o a0 = (£, <o>p) + (1-£,)6,,.
(4.28)
where 2
<cr>R N -1
Fo= . (4.29)

2 N -1

The configuration averaged force constants for £ # &' are

3 ,0,8") =

Zl=

5' 2 cos [g. (RS - R9,)]
RS Ry ¥
g
~ (4.30)

(B];(@) # [(F, = <o>p) + (1= £,)6,,,] B, (q)Ia,aq -

The term with the Kronecker delta § does not contribute

Lt
for £ # 2'. For large N, f2 is approximately <0>; so all
the coefficients of Eéz(q) vanish. The result is that the

average force constants are those for a pure lattice described
by an average ion valence Z and a bare pseudopctential form

factor %O(q).

~
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Calculations of phonon dispersion curves in the
average lattice approximation have not beén made to comple-
ment this study. It may be that the average lattice
approximation will not give reasonable phonon frequencies.
There is some evidence that the phonon frequencies are
controlled by the average conduction electron concentration
Dynes, Carbotte, Taylor and Campbell(Bl) have calculated the
T1 and

0.4770.6
Tl0 8 Bi0 5 both of which have an average of 3.4 electrons per

product function a2(w)'F(w) in the alloys Pb

atom. They find the spectra to be almost identical for the

two alloys. Tunneling results agree well with these calcula-
tions. This might indicate that the conduction electron density
may be the important factor rather than the details of the

ion cores. With this in mind the Hamiltonian of equation

(4.27) with the Eas(z,z') defined by eguation (4.30),

* l__l»_l o _ 50 '
¢up (Br2") = F L' 2 cos [q.(R) ~ Rpu)] Ejq(g)a g -

RQ

(4.31)

for 2 # %' will be used to obtain expressions for phonon
broadening due to force constant disorder.
The difference between equations (4.22) and (4.31)

are the A@us(z,z'),for L # L,

' . O _ O
A@as(k,l ) = 2 cos [%'(Bg BR')]

2

z
3
{lo(Ry,) = <o>p) Ejp(q) + [0(R)) = <a>p] Ejy(q)

_ -, . . 4=
+ [0(R,) <0>R]lc(§2.) <o>pl Ezz(g)}qqu . (4.32)



For & = &' the A@ae(z,z') are

A@aB(Q,z) = —2'2 A@uB(Q,z') . (4.33)
2'#8
The force constants 5@8(2,2') and the difference
A@us(z,ﬁ') are completely specified with a knowledge of the
pseudopotential form factors by equations (4.31) and (4.32).
In the part that follows the physical properties of the lattice

will be discussed in terms of Green's functions. The

-
(85:86) ' qne Hamiltonian of equation

techniques are standard
(4.27) will be used to obtain a self-energy for the Green's
function from which the phonon widths can be calculated.

The A@aB(R,Q') will be used to obtain a perturbation

expansion for the Green's function DaB(zt,z't') defined(85)
(Hh = 1)
DaB(Qt,Q't') = 2ﬂ<<ua(2,t);u8(£',t')>> . (4.34)
The frequehcy transform of DaB(Qt,k‘t') is
1 iw(t-t") o
', — [ ]
DaB(R,Q ;W) 5 l DaB(Qt,Q t')e dt . (4.35)
DaB(l,Q';w) is the transform of the retarded Green's function(85)
. ' ' I - 1 v ¥
<<ua(2.t),u8(2 P2 >> 10 (t - tY)<[u, (2,t), uB(’% PR B
(4.36)

in the upper half frequency plane. < > denotes a thermal
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average. In the lower half plane DQB(Q,Q';w) is the transform

of the advanced Green's function

(L', t")1> .
(4.37)

<<u0t(qult) ;uB(Ql' It'),>>a = i0 (t"‘t)<[ua(/o'lt),u6

The uu(l,t) and pa(ﬁ,t) of the Hamiltonian of equation (4.27)
are the Heisenberg position and momentum operators and satisfy
the equal-time commutation relations of equations (2.23).

The Green's function D&B(Qt,z't') satisfies the eguation of

motion
g2 D (RE,2EY) = 28 (E - £ <[uy (2,t), ug(Rhe')]>
+ 2ﬂ<<[ua(2,t),H];u8(23€)>> (4.38)
where H is the Hamiltonian of equation (4.27). For the

Hamiltonian with the configuration averaged force constants

5a8(2,2'), the Green's function will be denoted by PuB(Qt,R't‘).

In a manner analogous to the work of Elliott and

Taylor(85)

a Dyson equation can be obtained that expresses
the Green's function D in terms of the Green's function P and

the difference force constants A@dB(Q,Q'). The Dyson equation

is
[ — T, [T n [
DaB(Q,Q ;W) PGB(Q,Q jw) + de Pay(l,l ,w)A@Ya(Q L )
2":2!'|

X DQB(Q"',Q';w) . (4.39)
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In matrix notation equation (4.39) is
D = P 4+ PAOD , (4.40)
and an iteration of equation (4.40) leads to
D = P 4+ PAOP + PAOPADP 4+ ... . (4.41)

The Green's sunction DuB(Q,Q';w) does not have translational
symmetry. The translational symmetry can be restored by a
configuration average. The averaged Green's function is denoted

by D,

D = <P + PAOP + PAOPAOGP + N (4.42)

The configuration average in the approximation to be used
here is obtained in the following way. Terms of the type

<AOPAOPAD> are to be considered of higher order than

C.A,.

the term <A®PAG> which will be kept. The average <A®>

C.A. C.A.

vanishes so only the terms with an even number of factors A0
will contribute. These terms are factored into averages

containing only two factors A®. 1In this approximation D is

= )
D P+ P<A®1A®>C.A.P

+ P<A®PA®>C.A. P<A®PA®>C.A.P + .. . (4.43)

Equation (4.43) can be formally summed to obtain

D =P + P<A®PA®>C.A.D . (4.44)
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Since the configuration average restores translational
symmetry equation (4.44) can be transformed to momentum space
by the normal coordinate transformation of equation (2.9) and

D will be diagonal in the momentumn,

Y . — . . 1 .
D)\)\l (%rw> - P}\)\I (%,OJ) + )\lllell P)\}\ll (glw) X)\II)\III (glw)
!

be DA"'A'(37M) (4.45)
where

X' = <A® P Ad> . (4.46)
C.A.

In the momentum representation PAX.(q;w) is diagonal,
~

Syt

wz-wz(q;k)

P (Qiw) ¢  (4.47)

and Xix,(q;w) is given by

~ . 0 .0
* 14d. (R,Q,—R,Q,')
Ea(%;k)ig (q;A') e

NM

XAA'(%;w) = ZB
2

1 v .
O
L.

. (4.48)

The function X&B(Q,Q';w) is given in eguation (4.46).
A full solution for Dkx,(q;w) would require an in-
version of a three-by~three matrix Y'. From equation (4.49)

Y' is

Yik.(g;w) = S35 ~ iﬂPAkn(g;w) Xinxr(g;w) (4.50)


http:configuratj.on

136

so in matrix notation

5 = (1-px') 1p : . (4.51)

The solution of equation (4.51) would provide an expression

for DAX,(q;w) with a typical self-energy term in contrast

.

to P,,,(g;w). If X'.,,(g;w) were diagonal in A, Elliott
AR ANT R
and Taylor(ss) give that
Im {1101t = - w2 T(w) (4.52)

om0 Xp(qretie))

where w I'(w) is related to the width of the spectral funétion
and is the broadening discussed by Ng(44). With the assumption
that BKA'(%7w) can be taken to be diagonal to a good approxi-
mation, a form for w.F(w) can be derived from equation

(4.48) . The function P on the right hand side of equation

(4.46) can be written as

* 'iq-(ngBg.)
£, (2iN) EB(q;M e ~
Pg(8,8'50) = % 2 S5 . (4.53)
g, NMIw ™ =w" (g;A)]

.Then X' of equation (4.46) is substituted into equation

(4.48) and an expression for A(w) = w T'(w) is reducible to
MMulgid) = —55— I 8(w(qid) - w(g'sA"))
~ 2N“M“w® gq',A? ~ ~
~
* —iq.Bg
X <[ L Ad_(2,8") E (g:)) E (gq';:\) e ~
aB A~ B'&
a,B
L,
iq'.gg, 2 ,
xe” > . (4.54)
C.A,
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Ng(44) has written a similar result for the phonon width

due to force constant disorder. His result does not con-
tain a configuration average. Otherwise the two results
are very similar.

An.expression for the width A(w) is obtained in
terms of the A@aB(R,K') expressed in terms of the pseudo-
potentials by a substitution of equations (4.32) and (4.33)
into equation (4.54). Since the A@ag(ﬁ,k') contain terms
with factors [0(R,)-<0o>;] and [O(BQ')_<O>R] x [0(52)_<0>R]’
the configuration average in equation (4.54) will have to
be performed over two, three and four factor terms. The
two factor term has already been discussed and the average
is given in equation (4.28). In Appendix A the averages
over the two, three and four factor terms are discussed
in more detail.

As an example of the evaluations to be made, con-
sider the contribution of the first term of A@aB(Q,Q')
of equation (4.32) to the width. The configuration

average to be pasrformed is

N ig-9) .Y -i(x-q").gJ,
T = < z "—2- nt e ~ e ~
21,2‘,2",2"' N k’kl
0,B8;v:6 ~o
-i(k'-q) BY. i(k'-q").RD,,,
-— 1 r~ X ~J o~
x [0(Ry4) <0>p1E (k) e e

* *
x [G(Bglll) - f0>R]Eié (E')ku Ea(%7k)k8 EB(%';%')

*
> 1 - - 1 v . 1
x kg éy(%,X)k6 55(% H )>C‘A. . (4.55)



138

The configuration average required is

<[0(52’|) - <O>R] [G(B,Q,"') - <O>R]>
C.A.

— ] - 2 -~ 5
= (f2 <o>R ) + (1 f2)62 (4.56)

I/Q’lll

where f2 is given in equation (4.29). The contribution

to T from the term with no Kronecker delta is

T. = 3 N2 %

: {(f2—<o>R2) s (k'-q') S(k-q")} s (k-q)
()(,,B,élY 15' ~ Yo ~

2

*

*
x S(k'-a)k, Ea(g;l)ks 68(%';X')k§ EY(%;K)ké Ed(%';X')

* :
X Elz(b) E12 (k ) _ , (4.57)

The contribution to T from the term with the Kronecker

delta differs from T, only by the replacement of the term

1
in {} by %(l—fz) 8(5—3'15'+g'). The sums over k and k'
can be performed since the structure factor S(g) is known
for the ions in their equilibrium positions. The con-
tribution of the term T to the width of the phonon mode
(%;A) is, for large N,

2

[l—<0>R 1Kl
AMwlgid)) g = 55 z pX X
~ 2N M7wT(qiA)y koK oa,B,8,y AL,
~ ~ v ~N o
*
. — T, .
x G(w(%,l) w(% iA")) (5n+g)u Eu(%,k)

X (~Kn+g)8 Ee(g'7>\') (Sm”‘g)Y E'Y{g;)\)



139
% (K +q) « Ex(q'iA') Ei_(c_+q) E'.T (k +q) (4.58)
Nm ~ 6 6 ~ ! le Nn ~ 12 Nm ~n * .

The sum overlg' is restricted by the energy cohserving
delta-function. There is a double sum over reciprocal
lattice vectors K andlgm

The evaluation ofall the contributions to the
width A(w) of equation (4.54) follows the same general
pattern used in the evaluation of the first term to obtain
equation (4.58). There are no formal difficulties, although
there are a large number of terms.

The contribution to the width given in equation
(4.58) can be reduced to a simple analytical formula in a

spherical Debye model with three phonon branches with a

dispersion relation
w =8 q (4.59)

for each branch A. The sound velocity is denoted by s.
The contribution should be identical for each branch A so
a sum over XA can be taken with a multiplicative factor of
%. The sum of A and A' can be performed with the aid of
the completeness relations for the polarization vectors to
obtain factors of Gyu and 668' The sum over the reci-

procal lattice vectors is restricted to Ko = 0 and Kiq = 0.
N ~ L

Equation (4.58) then reduces to

2
[1 <0>R IR

4 *
[AMw(g)) ], = §(sq - sq')g E;.(g) E!, (q)
a7 N Mzwz(q) g 12'2 12 ‘3
~ %'#% . (4.60)
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The sum over g' can be converted to an integral and the
n

integration can be easily performed to obtain

6' 2

[1-<0>.%1 2, a®|B], (@)

.(4.61)

[A(w(g))]T = 127 Mzwz(q)s

Equation (4.61) is an analytic form for the contribution

of the first term to the broadening in the Debye model.

4.4 Theory of Strong-Coupling Superconductivity in

Binary Alloys of Simple Metals

In this section the electron-phonon interaction
that enters the strong-coupling theory of superconductivity
is approximately modified to account for force constant
disorder in a binary alloy. The view is taken that the
conduction electron states can be represented by plane
waves as 1is usual in pseudopotential theory.

The problem that is initially considered is one
in which the lattice vibrations are treated as in a pure
crystal but the lattice potential that determines the
electron—~phonon interaction term is that of the alloy and

given by equation (4.6),

<k+q|W|g> = S(q) <k+qglw|k> + F(q) <ktq|Aw|k> .(4.62)
~N ~ ~ ~ ~t ~ o~ ~ ~ nt

The notation is the same as that of secticn 4.2. 7The
Hamiltonian that describes the lattice vibrations contains

the average force constants 6& (2,2'). The Hamiltonian

B
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that describes the ion and electron motion and contains the

modified electron—~phonon interaction is

R A C2E5 _ . T
H=% % —————+ % £ F _(2,2") u (2,t) u,(2',t
2 o, M 2 a,B o o 8
2,8
+ % E 1 o-igquoure,t) [<k+q|w|k>
N ~ ~roS ~
k,q,0 %
iRy
+ [0(R,) - <o>.] <‘5+SIAW|A}§>] e c5+q’0 05,0
+ X ¢ C+ c (4.63)

where the electron operators are in second-quantized form.
The third term is the modified interaction between the
electrons and ions and is directly comparable to the

equivalent term for a pure metal of equation (2.92),

. 0
1, | "8yt
Hop = L5 —1%29(2) fbfg[w}b> e Yiq,0 k,0
L{,q,g Q/ ~ ~
~n

.(4.64)
The difference between the two is the term characterized
by the factor [o(RB,) - <o>,1 <k+qg|hw|k>.
In Appendix B the equations of motion for the one-

electron Green's function G(x;x') defined by

G(x;x') = - i<T ¥ (%) wT(x')> (4.65)

where P(x) is the electron field operator are outlined and

a perturbation series for G in terms of G the free electron

OI
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propagator and the Green's function DaB(Qt,R't') with

DaB(Rt,Q't') = - 1<T ua(ﬁ,t) uB(Q't')> (4.66)

is developed. For the average lattice DaB(Qt,Q't') is

denoted by PaB(Qt,z't') where

* iq’(Bg"Bg')
£, (qiM) Es(g;X') e ™

LI — o
PaB(Q,l ;) é S PAA.(g,w)
ALAT .(4.67)

The Green's function Pkk,(q;w) can be written in the spectral
~

representation,

0y = o 11
Paar (7o) = J B (@) 52555~ oo (4.68)
0
where for zero temperature
Bi.,(qiv) = 2 §(v-w(qir)) 6 (4.69)
ant (9i 2V a7 A" 1200

In Appendix B it is shown that the configuration
averaged self—energy in the Nambu scheme leads to a function
a?(w) F(w) that consists of a sum of two terms. The first
term is equivalent to a?(w) F(w) calculated for a pure

metal with a pseudopotential form factor w(g) and is given
by(23)

2
BAA.(g,w)

a?(w) Fo) = 5 , 0 _ J as J qdq|§ .
X, 8T sz g/ qiA
: .{(4.70)



143

The coupling constant §é_x differs from the coupling constant

r

~
Iq:2 of equation (2.97) in that the factor S
qi /Zw(%;x)
is contained in Bxx.(q,w). The second term consists of
the additional contribution to a? (w) F(w)
Mo () F(w)] = [1-<o> %1 ¥ 1%1‘2 —-—-—N‘O—Lz an
LAt T gt osm ky g
~
ZkF .
3 . - '.\l *
% J qdgq (2Z-2La1iA)y (g (qid D)y 6" () awi(q)
o vMN vMN ~ ~
1
P Bxx'(% ,w)  (4.71)
so that for the alloy
a?(w) F(w) = a?(w) F(w) + Alo? (w) F(w)] .(4.72)

The second term can be considered to be a fluctuation term.
The effects of force constant disorder on the phonon

modes, that is, the phonon broadening can be included in

a claculation of a?(w) F(w) by a suitable modification of

the spectral function BAA'(%"M)' It should be noted that

this replacement represents a factorization, since the

configuration average should be performed over a product

of the coupling constant and the spectral function. In

the procedure outlined above, the configuration avefages

are performed separately.



CHAPTER V

CONCLUSIONS

5.1 Effect of Pressure on Superconductivity

The effects of hydrostatic pressure on the super-
conducting transition temperatures and gaps have been
studied within the strong-coupling theory of superconduc-
tivity in the metals aluminum, lead, mercury, tin and
indium. A scaling model that includes the shifts of phonoh
frequencies in terms of a constant Gruneisen parameter for
all modes and that takes into account the change in the
electron-phonon coupling constant by means of a rescreened
pseudopotential has been studied. The scaling model has
been established in some detail in aluminum and lead and has
been applied to the other three metals under study. The
model provides a simple method for obtaining the phonon
kernel of the Eliashberg gap equations at finite pressure
from the zero pressure kernel.

The zero temperature Eliashberg gap equations were
solved for the five metals at zero and finite volume changes.
The solutions of the gap equations were seen to bhe affected
in a pronounced manner; they are generally decreased and
the shifts of the van Hove peaks of the phonon density of
states spectra at finite pressure are reproduced in the gap
functions. |

144



For the weak-coupling materials aluminum, tin and
indium the assumption that the gap at the gap edge and
the transition temperature scale in the same way with
volume decrease lead to results in good agreement with
results obtained with the use of McMillan's phenomenological
formula. For the strong-coupling materials lead and mercury
the finite temperature gap equations were solved to obtain
the variation of the transition temperature with pressure.
In both mercury and lead the gap and transition temperature
were found to scale differently. The transition temperature
in lead was found to scale with volume decrease in a manner
consistent with McMillan's formula. In mercury the com-
parison was not good, and this may be due to the distinctive
phonon density of states in mercury as compared to the other
four metals. 1In both lead and mercury reasonable results
for the relationship of the different scaling of the gap at
the gap edge and the transition temperature were obtained.
In lead the result obtained is in good agreement with the
experimental results as obtained by tunneling studies
under pressure. In mercury no experimental results are
available for a comparison.

This work to some extent verifies the usefulness of
McMillan's formula for a wide variety of spectra. For
small volume changes, McMillan's formula has been inverted
to obtain a relationship to determine a Griuneisen parameter

from the dependence of the transition temperature on volune
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decrease.

A product of this work is that the variation of the
phonon-renormalized electronic effective mass under pressure
is obtained in a simple manner. The scaling procedures for
the phonon density of states and the electron-phonon
coupling constant determined the variation of the mass
renormalization. Apart from the inter-relationship between
the effective mass and the superconducting properties of
the material, there are probably other properties in which
the variation of the effective mass with pressure may be
observed. Such observations would serve to complement
the superconductivity studies.

Although more thorough observationsg show and will
show a more complicated behaviour of the phonon frequency
shifts under pressure it is believed that the simple model
used here incorporates many of the essential features
necessary to understand many of the effects of hydrostatic
pressure on the superconducting properties of simple metals.
It is hoped that these calculations will serve to stimulate
others to further investigate pféssufe~dependent effects in

superconductors.

5.2 Superconductivity in Binary Alloys

The structure-dependent energy of a binary alloy
of simple metals as formulated by Hayes, Brooks and

Bienenstock has been used to obtain a formalism for the



147

calculation of phonon widths due to force constant disorder
with pseudopotentials. Calculations of the widths have not
as yet been made within this formalism but the investigations
are being continued by the author.

The electron-phonon interaction Hamiltonian has
been modified in an approximation that decouples the phonon
propagator and the electron-phonon coupling constant. This
formulation, in conjunction with the phonon propagator
modified to include effects of broadening due to force constant
disorder, is to be applied to the study of superconductivity
calculations in alloys of simple metals. |

While this study is at a preliminary stage it is
hoped that this presentation will stimulate the continuation

of investigations on this topic.



APPENDIX A
CONFIGURATION AVERAGES

The configuration averages to be made are of the

form <[0(5£) - <o>R] [0(52,) - <G>R]>C,A. with up to four

factors [G(Bz) - <0>R] included. To begin, the average

<o(R,) o(R,,)> is found. If £=2', this is unity since
~ ~2 L.

02(52) is unity. If 2#L%', the average is the sum of the
conditional probabilities (with appropriate signs) for

X for an A or B atom at Rz.
The probability of finding an A atom at R/Q is x. With an

finding an A or B atom at R

A atom at R

x N-1
N-1 °

The. form possible combinations are taken into account so

. the probability of finding an A atom at R

is This term contributes with a positive sign.

<G(BQ,) g(B£|)>C A = [x XNI_\_]Il + (1-x) (l"';\]():_l_%:}:
(1-x)N-1 _ X N-1 -
N1 (1-x) —ﬁ:1~i (1 622‘)
+ 622. .(A.1)

Collection of terms on the right hand side of equation (2.1)

provides

= N - . -
<G(5£) o(Ry)> = N- 4x (1 X)ézz' No1 4x(1-x) (A.2)

148
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With
<g>_ = 2x~-1 (A.3)

R

equation (A.2) can be written

<O(Ry) 0(Ry)> = £, 4 (1-£,)8,,, (A.4)
C.A.
where
<0>R2N—l
f2 = w1 - (B.5)
Since
<o(R,)> = <g> (A.6)
“2c.a. R
the average with two factors is
_ _ 2
<[o(Ry) = <0>p1 [0(Ry4) <o>pl> = (£, = <0>p")
C.A.
+ (l—fz)égg, <(A.7)

The three factor term is averaged in a manner
exactly analogous to the two factor term. The three factor

term is expanded so that only the average <0(B£) G(BRJ O(BQ">
C.A.

must be found in addition to equation (A.7). For all three
sites different, L#2'#L", there are eight possible com-
binations of A and B placements. These are added together

and multiplied by a faqtor (l‘sgﬁv)'(l"égg") (l~6g,2")ﬁ

There are also contributions from the cases with two sites
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equal and all three sites the same. The result is

<o (R,) 0(R,) 0(Rpa)> = £4(1-8 (1=6, ) (1=6,,,u)

)
i
C.A. e

+ <0>R {62,2,'(1—62,,@") (1_62,'2,") + 622,"(1—62,52,') (1—62,'2.")
+ 622!(1—622|) (1—622")
+ <G>R 622| 622" 62|£n .,(A.B)
where
£ = (<o>.° N% - 3<o>. N + 2<0>.)/(N-1) (N-2) (2.9)
3 R R R ¢ *

Equation (A.8) is combined with equations (A.7) and (A.6)

to provide

<[0(52) - <0>p] [o(R

Ror) — <o>pl [o(R

~,Q,") - <0>R]>

C.A.

_ _ 3
= (f3 3f2<0>R + 2<O>R )

+ (f2<0> - f3) {8 + 8 + 8 1

R L8t e Lt

+ (2f3 - 2<0>R) § § . (A.10)

L T

In the final form triple Kronecker delta terms have been

reduced to double Kronecker delta terms where appropriate,
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for example,

S $ $ + 6 $ . (A.11)

LY Tt AT LT ALt

The four factor average is found with the additional
average <0(R2) O(RQ,) o(Rzu) c(Rg,,,)> for all com-
C.A.
binations of ion sites. With this average and the averages

of equations (A.8), (A.7) and (A.6), the result is

- <g>_1>
R C.A.

= (£, - 4<o>_ £, + 6<0> 2 f, - 3<o> 4)

4 R "3 R 2 R
+ (£, - £, - 2<0>_% + 2<0> £, + <0>_% - <0>_2 F.)

2 4 R R 73 R R 2
X {6221 + 62‘2’" + 62,2/"' + G,Q,'Q/" + 62,'2,"' + 5Q,"Q,lll}

2
+ (2f4 b 2f2 - 2<0>R f3 + 2<0>R) {G,Q,Q,' GQIV'Q/H + 62211 62,"2,"'
+ (S,Q,,Q,"' 62!!!2! + 62]!2]“ 62,"2,"'} ,(A.]Z)
where
_ 4 3 2 .2 2 B _ _ -

f4 = [<o>R N 6<o>p" N7 + (8<0>R + 3)N-6]/(N-1) (N-2) (N=-3)

. (A.13)

These are all the averages necessary in the work of Chapter IV.



APPENDIX B
EQUATIONS OF MOTION

A perturbation expansion for the one-electron

Green's function G(x;x') defined by

G(x;x') = - i<T ¢(x) ' (x')> (B.1)

is to be found. T is Wick's time ordering operator and
<> denotes a thermal average. The electron field operator
is

U(x) = ik ¢ (t) . (B.2)

Aoy .
/3 X :
where § is the volume and the operator ck(t) destroys an
~

electron with crystal momentum k and energy €1 measured
~

S
relative to the Fermi level u.

The Hamiltonian to be used is

2
L el _
H= %73 -~ + = I u (L,t) ¢ (2,2") u, (2',t)
20,9 M 2 o, B a aB 8 v
L,
+roE - dquue,n) [W(Q) + (0(8,) - <o>y) b w(g)]
kg o &
. 0
“id-Ret 4 . + (5. 3)
xe ~ c c, + €, C, C .(B.3
ek BB

This is the Hamiltonian of equation (4.63) and is
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discussed in the text. The ua(ﬁ,t) and pa(z,t) are
Heisenberg operators.
The electron field operators satisfy the equations

of motion (A=m=l1l; m is the electron mass)

i 5% Pix) = =(V “-u) ¥(x) + (aZB Ty (Le¥) u (£,8)) ¥(x)

(B.4)

) v e - (g ) u () 9T e
o,B

where the function  is

. -igq, _
Lo (£r%) = L —5— [wlq) + (0(By) - <o>p) A w(q)]
3
. 0
-1q.R .
X e ~ % etd-% . (B.5)

The equation of motion for G(x;x') is constructed with the

aid of equations (B.4). It is

d + Y 2

(L 5e+ 3.2+ W GGix") = 6% (x=x")

+ X gu(z,g) Ga(x;x':zt) (B.6)
o,

where the Green's function Ga(x;x':ﬂt) is

G, (xix':8£) = = i<T Y (x) b(x') u, (2,t)> L(B.7)

The equation conjugate to equation (B.6) is

* d 2 | —_ 4 R | _ . w .
(i TC Ix - u) G(x';x) = §  (x-x") UZB ca(Q’E) Gu(h ;X et)

. (B.8)
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The Green's functions D, H and F are defined by

DaB(Rt,Q't') = - i<T ua(ﬂ,t) uB(z',t')> ’
(I | — ' 1
Hus(kt,fl th) <T p,(2,t) uB(J& (EN) >
(B.9)
= - <7 ua(z,t) ps(z',t')> ,
FGB(Qt,k't') = - i<T pu(z,t) pB(Q',t')> .
The equation of motion for D is
P M =2 tety =
i M 5T DOLB(Q,t,l t') HOLB(Q't"Q"t') (B.10)
and furthermore
a2
- L _ Ty — 1
M at2 DaB(Qt,Q t') §(t-t") édB 522'

+ Y%2"¢GY(2,2 X DaB(l t,2't")

. 3.0 _ . +,
i J d " x Ca(ﬁ,ﬁ') GB(x't,x't YY)
,(B.11)
where t+>t, t++t.
The equation of motion for the Green's function

Ga(x;x':ﬁt") is

3,y 2

(i ot + Ex
~

+u) G GxiLe") = §% (x-x") G, (%, t")

+ i 5%2' CB(z ,5) GBa(X;X 0V EAET) (B.12)



where

G

coxpan (B (D (20 (2) 0 () Oy
o .

(1) a(m)(XlXZ"'Xn;XlX2°

= (=) ! iy 21 g TCRPRNTEN TANCIS AN

(1) Ly g (m) (@), . (B.13)

X u (2 (L
a(l) o (M)

The equation of motion for the Green's function of equation

(B.13) is
.9 2 (1), (1)
(i x=— + V + u) G (X oo 3xYooux':8 2 A
Btl %1 a(l)...a(m) 1 n'71 n
Q(m)t(m))
n .
Jj+1 .4
= I (-1) § (x,-x1) G (xx5..0ex sx!o..xl oxl
551 17737 7 () (2) 2 n'"1 j-1%3+1
xﬁzz(l)t(l)...z(m)t(m))
+ (i)C r o, (2",x.) G (x5...%_;x!...x!
thl'n B Nl Bu(l)a(Z).--Oﬂ(m) 1 n l n
z"tl,z(l)t(l)...z(m)t(m)) (B.14)
where
c =4, if m is even
. (B.15)
=1, if m is odd
The equation conjugate to equation (B.1l5) is
(i3, - V.2 = u) C (xu5m) = - 6% (x.-x) (B.16)
1—‘ O lltx - ;1 . e S

t ~X
~o



In the usual fashion equations (B.14) and (B.16)

to provide the expansion

et oyt (D (D)

a(m)(xl"’xn’ 1 n t

G ' 2

(1)000

_1yJ+1 - .
(-1) GO(Xl’Xj) Ga(l) a(m)(XZ"'xn’

' ' 1. (1) (1) (m) , (m)
10 %51 xj+l"'xn'£ t ceed t )

(2" 136) G

. 4
+ (1) € d'x G (x.;x) I z
J 071 B 8o

B, om (1)

x!.. (D) (D) g ) (m)y

t.on
1 .xn.ﬁ t, 2

where ¢ is given by equation (B.15).

A very similar analysis lends to

5 M) 2 2)

OL(l) .

..OL(m

0 (L) (1) ,(3),.)
D (8 t R t )
9 a(l)a(j)

I
I ~3

j
L (2) (2)

D

. . (
o2, o371 Gy (m)

x 9 (3T (3+1) . .Q(m)t(m))

(i)¢ = 0
L (D)

o, %

l dt d3x' D

x G p (2 (2) |y (m) g (m)y

+
(m)(x't;x't :
o .0

(2)

(2),(2)

OL(m)(xxz... n

WM g g (1,0
a
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are used

g (m ()

X i

(B.17)

XGRS GESY

. (B.18)



The CGreen's function for the electron, G(x;x'),
can be expressed in terms of the bare Green's functions
GO and DO with the use of equations (B.1l7) and (B.18).

In the theory of superconductivity as discussed
in section 2.5 of Chapter II, the Hamiltonian is recast
in the Nambu scheme with the introduction of the Gorkov
anomolous Green's functions. The self-energy in the
Nambu self-consistent scheme is written in terms of the
renormalized electron Green's function G which is now a
two-by~-two matrix and the renormalized Green's function
D. For the average lattice D is denoted by P.

In a straight-forward manner equations (B.17) and

(B.18) can be used to obtain an expression for the phonon

contribution to the self-energy, Zp. It is

: __1 v
Zp(g’lwn) = B 'Z ' T3 G(E ,1wn,)T3
p'/n
~
ilp~p"), _« ‘ *
x {2 — (w (p-p') + [0(R,) - <o>p 1 A w (p-p'))
a, B ~ = -
2,8
—1(p—p')B _
x —Fg— (w(p-p") + [0(By,) = <o>p1 & w(p-p'))
i(p-p') . (B)-B)4)
Xxe vV PaB(Q,Z';iwn—iwn.)} . (B.19)

The notation in equation (B.19) is that of section 2.5 of
Chapter II. The relationship of equation (4.67) between

Pas(z,z';w) and ka.(q;w) can be used along with the
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configuration average of equation (4.28) to obtain the

configuration averaged self-energy

i = - .:.L. v

<Zp(§,lwn)>c A = -3 p'zn' T, G(f riw 1) Ty
LA ,
o~
*
1 : -p'). l,. _2 -p') . |;>\l
ql 2;,2,' )\'AI
~

e . —% _ _ 2 - R |

: } i(p-p"). ®9-8%) iq'. (8O-
xAuw(p-p)}t e ~ ~ F o3
NN
X PAK'(E"iwn—iwn') . (B.20)

In the limit of large N, f2 is <0>R2 so the cor-
responding part of eguation (B.20) vanishes. Equation (B.20)
can be divided into two parts, the first with the factor
w W* and the second with A w A w*. In the first term the
sums over %, &' and g' can be performed. In the second

term only the 2 and 2' sums can be performed analytically.

The self-energy Zp is

. 1 :
<X _(p,iw_)> = - ¥ T, G(p',iw_,)T
P~ T 5 p',n' 3 'z n 3
, 2
X b} P -p',iw_-i
{A,A'lgf~">‘ (TR e Tieg )
# (1-<o>p%) = I (i(p-p").E(q';A)) (~i(p-p")
] ~ ~ P
N™M g
~

* .
X & (g';k')) A w(g~§') A w*(pmp') PAA'(%"iwn_iwn')} .(B.21)

N e
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The coupling constant gp—p' 2 corresponds to the average
14
~

o
pseudopotential and differs from the coupling constant of

1
Y2w(g;A)

in Payre With the specificationof the spectral function

equation (2.97) by a factor which is contained

B)\)\l (%7 w) by

_ ) 11
Paar (giw) = J B (@) 55555~ Givegs) r (B-22)
0
. 2 . e (23)
the function o“(w) F(w) is specified by
o
z
0’ (w) F(o) = 1 S _ | g9 aq |5 B, ., (q,w
gk ) q) 9 [Ig Parrl3e)
o
| 2k,
B I J an J qdq
w' Nogroen x J
d F 0

»

. 1. - * . 1]
(1%.5(% ,K)) ( lg-é,(% i A )) A w*(q) A w(qg)
TN /N ~ ~

X BAX'(%"w) : (B.23)

where kF is the Fermi momentum and N(0) is the electron

density of states at the Fermi surface.
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