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ABSTRACT:

A new detector for use in a frequency-shift keying
communication system is described. Digital phase-lock loops
replace correlators in the optimum detector implimentation.
Results of a working system, for a range of input'signal to

noise ratios are presented.
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PREFACE

This work has aimed at the continuation of research
on the phase-lock loop, a signal tracking system. Attempts
have been made to apply digital phase-lock loops as part of
a detection scheme for FSK signals. Much of the work of the
thesis was of a practical nature. A working model of the
detector was constructed and £he results of tests performed
on the system are presented in the last chapter. To provide
a better understanding of the operation of the detector,
the first two chapters have been devoted to a thorough
discussion of aralogue and digital phase-lock loops. Digital
phase-lock loops were constructed, and tested to‘determine
how closely a practical loop agreed with theory. The
detector configuration is based on that of the so-called
optimum coherent detector which is derived and discussed in

the third chapter.
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CHAPTER ONE

THE PHASE-LOCK LOOP

§=1 INTRODUCTION

Since the advent of electrical communications,
engineers have directed their attention towards solutions
to the optimum cletection of signals in additive noise. The
detection process generallv involved a filter to maximize
the signal to noise ratio. During the 1940's D.O. North,l
Van Vleck and Middletonzindependently developed a theory
of filters now called "matched filters"S The basic result
in the theory presented was that in the case of white
additive noise, the signal-to-noise ratio is maximized bv
a filter whose impulse response has the form of the imaage
of the signal to be detected. TIn radar detection, banks of
matched filters were used, with each filter designed for a
different delav and Doppler shift of the specific trans-

mitted signal. The output of the filters were monitored to

determine the most likely received messacge.



4 described a

In 1950, Lee, Cheathem and Wiesner
system of detection of a periodic signal buried in additive
noise by'an electronic correlator as in figure (1.1). In the
publication, they drew the parallel between filtering in the
frequency domain with matched filters and filtering in the
time domain with correlators. The application of the correl-
ators for signal detection presupposes that at the receiver,
the frequency and phase of the transmitted signal are known.
For a system such as radar in which the transmitter and re-
ceiver are located at the same geographical location, a
system as illustrated in figure (1.2) might be used. However,
if the transmitter and receiver are located great distances
apart, it is unlikely that a suitable reference signal will
be readily available for correlation. The problem is fur-
ther complicated if the transmitter is in motion relative to
the receiver, giving rise to a Doppler shift in the frequency
of the received carrier. In Chapter 3, we introduce the
optimum detector for the reception of digital information,
and as one might expect, the matched filter or correlator
provides a basis for detection. Again, the difficulty in the
implimentation of the detector, is the availability of a
suitable reference signal. In this Chapter, we will discuss
a device called a phase-lock loop that can be used for track-
ing the phase of the carrier component of the received
signal. This device thus generates a signal suitable for

synchronous detection.
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1-2 NATURE OF THE PHASE-LOCK LOOP

The phase-lock loop contains three basic components:
a phase detector or multiplier; a voltage controlled oscill-
ator, and a low pass filter, as in figure (1.3).

The multiplier compares the phase of a periodic input
signal with the phase of the voltace controlled oscillator
output. The output of the multiplier is a measure of the
phase difference between the two signals. This output is
applied to a low pass filter in the loop and then applied to
~the voltage controlled oscillator. This control voltage
changes the frecuency of the oscillator in a direction which
reduces the phase difference between the two sionals.

When the loop is "locked", the control voltacge is
such that the freguency of the VCO is ecual to the averacge
frequencv of the input signal: For each cvcle of input:
there is one, and only one cvcle of oscillator output..

Suppose that the incoming siagnal carries information
in its phase or frequency:; this sicnal will inevitably be
corrupted by additive noises. The function of the phase-
lock loop is to reproduce the original signal while remov-
ing as much of the additive noise as possible.

By beating the incoming signal with the output of
the local oscillator and applying a filtered version of the

beat signal to the voltage controlled oscillator, much of
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the noise can be suppressed. Since the input to the loop is
a-noisy signal, whereas the output is a cleaned up version
of the input; it is reasonable to consider the loop as a
kind of filter that passes signals and rejects noise.

Two important characteristics of such a filter are
that the bandwidth can be made very small and the filter auto-
matically tracks the signal frequency. These two features;
automatic tracking, and narrow bandwidth, account for the

major uses of the phase-lock loop.

1-3 HISTORY OF THE PHASE-LOCK LOOP

The first description* of the phase-lock loop was
published by, de Bellescizesin 1932, This paper dealt with
the synchronous reception of radio sicgnals (homodyne receiver).
For the receiver to operate, the local oscillator has to be
adjusted to the frequencv of the incoming signal, which is
then conwerted to an intermediate freguency of zero Hertz.

The output of the mixer contains the demodulated information.

* The existence of the original paper was brought to light

by T Rey§



Since any interference is not synchronous with the
local oscillator, the output of the mixer, due to the inter-
fering signal, can be suppressed by audio filterina. For
correct operation, the oscillator output must have the same
frequency as the input; and the phase difference must be min-
imal. In other words, the local oscillator must be phase-
locked to the incoming signal. The superheterodvne receiver
however, became more popular with radio engineers ana very
little use has been made of the homodyne receiver.

The first widespread use of the phase-lock loop was
in the synchronization of the horizontal and vertical scan
in television receivers7. The construction of the scan ras-
ter on the television tube is basically as follows: the syn-
chronization pulses are stripned off the received signal and
individually used to trigger a pair of oscillators which in
turn drive a pair of sweep generators. This scheme will work
in an acceptable fashion in the absence of noise. O0Of course,
noise is always present, and it is possible that a noise
spike may be confused with a ™sync¢" pulse causing incorrect
triggering of an oscillator and therefore, a sweep generator.
The noise problem may be eliminated by phaselockina the two
oscillators to the "sync" pulses. The oscillators in this
approach are not triggered by each pulse and because the
phase-lock loop looké at many pulses, it is unlikely that it
will be perturbed by the occassional noise spike. The so-

called "flyv wheel synchronizers" used in present-day tele-



vision receivers are really just phase-lock loops.

The analysis and application of phase-lock loops
began in earnest with the launching of the first artificial
-satellites. These vehicles carried low power transmitters;
the received signals being correspondingly weak. The problem
of receiver design was further complicated by a Doppler
shift, and a drift of the transmitting oscillator, which
caused considerable uncertainty about the exact freguency
of the received signal. At the 108 MHz frequency originally
used, the Doppler shift could range over * 3KHz. Thus, with
ordinary fixed tuned receivers, the bandwidth would have to
be in the order of 6KHz. The sicnal itself however, occupied
a bandwidth of onlyv 6Hz. The noise penalty suffered would

" be 1000 times (30dB). As technology has proagressed, the num-
bers involved have become even more dramatic. The noise
penalties involved are intolerable with the fixed tuned re-
ceivers and that is why narrow-band, phase-locked tracking

receivers are used in space communications.



1-4 ANALYSIS OF PHASE-LOCK LOOP

- Referring again to figure (1.3) let the received
signal be denoted by;

f(O=VZ2ASine® (1.1)
and the output of the VCO by

VY= V2 K, Cos 0'(8) (1.2)
where A and K, are root-mean-square amplitudes. Assume,

that if the error voltage e(t) is removed, the VCO oscillates
at a quiescent frequency of wgy radians per second. When

the control signal is applied, the VCO frequency becomes
WotKoe (t) radians per second, where Ky is the VCO propor-
tionality constant. Thus, we can write:

de’® . w, +Ke )

LT | (1.3)
The output of the multiplier or phase detector is the product
of (1.2) and (1.1), obtaining,

Ky = AK\{an[e(t\—@'(ﬂ:H Sm[e(t\"ré'),(-tﬂz

Since the linear filter in figure (1.3) takes thglgggm
of a low pass filter, the sum frequency term of (1.4) may be
discarded.

Applying the convolution integral to the linear time-

invariant filter, its output may be written as:
t t
e = e°(ﬂ+j % (W)W dw=e.®O+ \ X (WOFE-WOdw (1.5

L °
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where we have assumed that the input is applied at t=0 and
€o(t) is the zero input response of the filter. Generally,
the initial conditions of the filter are set to zero, so
that €o,(X\=0 for all times. The weighting function is,of
course, the impulse response of the filter. We can now

use equations (1.3), (1.4), and (1.5) and write:

T
Oﬁ(i—l(t): Wo+ Koz -F(t-u‘)AK.Sin[e(u)—e'(u):]o(-u« (1.6)

o

Now defining the phase error,

P = o(t)— e'(t) (1.7)

and the loop gain,

K= ¥ K (1.8)

we have:

€
dO®) - dot) — wp—AK | £(t-v) Sindu) ol e (1.9)
dt ot

o
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For any input phase o (¢) the solution ¢cﬁto this
integro-differential equation describes exactly, the oper-
ation of the phase-locked loop. Since the quiescent fre-
quency of the VCO serves only as a reference, we can, for

convenience eliminate it from the analysis by writing:

- . (1.10)
e e(’t\ wWoT (1,11)
€,V = o'(t) - Wt

Thus, from equation (1.9) we have:

t
d,(b& s d, |(-t§ — T =t {r\
ol:t)_d.i AKY )S 4)(@&%

(1.12)
)

The equation (1.12) suggests the model illustrated in fig-
ure (1.4).

We can see that the multiplier or phase detector has
been replaced by a summing point and a sinusoidal nonlin-
earity. The replacement of the VCO by an integrator is valid
since the phase of the VCO output signal is proportional to
the integral of the control signal. It should also be noted
that the gain of the loop is augmented by the root-mean-sguare
amplitude of the input signal. This often leads to the use
of a hard limiter at the input to a phase-lock loop impli-

mentation,in order to maintain the loop gain constant.
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1-5 LINEAR MODEL OF THE LOOP

It is apparent from the preceeding discussions and
diagrams that there must at all times be a non-zero control
signal; otherwise, the VCO will oscillate at its guiescent
frequency. This further implies that the loop must operate
with a finite phase error even when it is in a locked state;
that is, when the frequency of the VCO is equal to the
average frequency of the input signal. However, when the
phase difference ¢(t) is small (less than thirty degrees)

we may use the approximation;

Sind® = ¢ (1.13)

and the sinusoidal nonlinearity may be removed from the
model. The operation of the loop can now be described by the

linear differential equation:

do@) - de ~AKSf(t u)gb(u) dw (1.14)
dt dt

By using Laplace transforms, equation (1.14) may be

transformed to;

536 + AKROPE = 39 I

where F(s) is the transfer function of the linear filter and
N ~
¢(§3and'eﬁ55 are the Laplace transforms of &) and o, )

respectively. Equation (1.15) can be represented by the
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block diagram illustrated in figure (1.5). The basic loop

equations may be written as;

Q'\(s\ - '

Sy | +tARE®)|s (1.16)
and

S _ ey = AKED/S

&1 (%) \ +AKFC) /S £1.17}

where H(s) is known as the closed-loop transfer function.
Much of the analysis done on phase-lock loops has been based

on the use of this linear mode18.

1-6 LOOP FILTERS

It is apparent from the linear model that the per-
formance of the loop is very much dependent upon the choice
of filter function F(s). In general, the order of a control
system is equal to the number of finite poles in the open-
loop transfer function, which in the case of the phase-lock
loop is the number of poles of AKF (s)/s.

Thus, to impliment a first order phase-lock loop,
we require that F(s)=1, which means that we require no filter
within the loop. The inclusion of a first order filter
results in a second order loop and so on.

To demonstrate the performance of the loop with

different filters, let us consider the response of the loop
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fig.l.5 Linear Model of Loop

a9
at

(cw=cuo)
\Cbo o, do 27
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fig.1.6 Phase-Plane Trajectory of 1lst Order Loop




15

_to a constant offset in frequency. The phase angle of the

received signal can then be written as¢¢, t +& and we can

1

write;
o, = WO [(w-wat+e] (1.18)
where;
wud=1 |, t=zo

=0 |, <O
and
= = - &
6,() [Sl 2 2 (1.19)

Combining equations 1.16 and 1.19 we have;

o
P(s) = (cy~wo) + ©5
S (S+AKFE)

{1.20)

Let us now consider several choices of filters and investigate
the behaviour of’¢(t). We are not interested in finding an
explicit expression for<#(t) for all times, because, as
pointed out earlier, the linear model gives an accurate de-
scription of the loop only when the phase error is small. We
will thus confine ourselves to finding under what conditions
and for what choices of filters the asymptotic value of error,
lim ¢6£) becomes small. If we consider first, the loop with

&= o

no filter, equat:on 1.20 becomes,

(e, -y 95
S (st+AK) (1.21)

a;;n-:
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and applying the final value theorem:

. / ) =
f‘_’:‘ww T AK (1.22)

Thus, only if the initial frequency offset is sufficiently
small, will the loop with no filter settle to a satisfactory
steady state error. If we consider a filter with an inte-

grator, that is,

- T
s S (1.23)

we find that the steady state phase error is:

L P=0

[ (1.24)

A system with an integrating filter can thus asymptotically

track a constant frequency offset with zero asymptotic error.
In reality, a perfect integrator is impossible to

realize. With actual components, we might build a filter

which approximated the integrator, with a transfer function

of the form:

Sta
F(Q.—___ sl -
Ste€ (1.25)

The final value theorem predicts that the steady

state phase error for this filter is:

zé“ﬂ"’? ¢(t) = (W/'W‘))é
g AKa- (1.26)

Thus, although the steady state phase error is not zero, it
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can be made to approach zero by appropriately choosinga ,e
and making the gain of the loop large in comparison to the
offset frequency.

Similar investigations can be made for other input
phase conditions and the best filter transfer functions can
be chosen. So called, optimum filters, for the linear

9

model, have been derived, based on the Wiener” criterion.

1-7 HOLD IN PERFORMANCE

¥ The preceding material on tracking and phase error,
is based on the assumption that the error is sufficiently
small; thus allowing the loop to be considered linear in its
operation. This assumption becomes progressively worse as the
error increases until finally the loop drops out of lock and
the assumption no longer holds. In the previous section, we
showed using the final value theorem that the linear approx-

imation of phase error due to a frequency offset is:

- PANIY
AKF()

.1
However, for a sinusoidal phase detector, the true expression
should be:

. N L)
Sm(f):

AKF(®) ' (1.27)
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The sine function cannot exceed unit magnitude,there-
fore, if Aw > AKF(o)there is no solution to this eguation.
Instead, the loop falls out of lock and the phase—detectdr
voltage becomes a beat-note rather than a dc level. The

hold in range of a loop therefore may be defined as:

AW, =X AKF(D

R
(1.28)

Equation 1.28 implies that the hold-in range can be made
arbitrarily large, simply by using very high loop gain. Of
course, this cannot be entirely correct because some other
component in the loop will then saturate before the phase
detector; thus, equation (1.28) applies only theoretically.
Assuming the loop is locked onto a freguency and
suddenly a step change in input frequency takes place, one
might ask , can the transient error pull the loop out of lock,
even if the static error is within the hold in range? At
worse, the loop will unlock, skip cycles for a while and then
lock up once again. There is some frequency step limit below
which the loop does not skip cycles, but remains in lock.
This limit is often referred to as the "pull-out frequency";k
Viterbill has performed analogue computer simulations of
various loops and from his results, estimates of "pull-out

frequency" can be made.
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1-8 ACQUISITION

In previous sections it has been tacitly assumed that
the loop was initially in lock. 1In fact, a loop is initially
in an unlocked state and must go through an acquisition period.
Experimental evidence indicates that there are a number of
ways by which lock may be acquired; each depending on the
loop parameters and input conditions. If for some reason,
the frequency difference between input and VCO is less than
the loop bandwidth; the loop will lock up almost instant-
aneously without skipping cycles. There are séme loop types
in which the VCO frequency will slowly walk in toward the
input frequency, despite the fact that the initial frequency
difference may greatly exceed the loop bandwidth. The
maximum difference frequency for which the loop eventually
comes into lock is called the "pull in frequency", and its
value for any particular loop can only be estimated from
experiment or computer simulation.

It is instructive to consider the acquisition of

lock for a first order loop. Equation (1.12) becomes:

ddd . de® | Ak Sin )

dt d:t (1.29)
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The system trajectory can be plotted, according to
equation (1.29), as in figure (1.6). We have assumed that
the input to the loop is a constant offset in frequency,
that is;

8 =(w—wHt e

We know that when the loop is locked,%%?.is zeré and the
phase error ¢ has reached its steady state value. If for the
initial value of phase error, the derivative is positive,
equation (1.29) indicates that ¢ will increase as a function
of time. 1In fact, the system follows the trajectory
illustrated above, moving toWard the right until it reaches

a value of  for which d¢/jt=0.

Similarly, ¢(t) decreases if the derivative corresponding to
the initial phase error is negative, moving from right to
left until a point is reached at which the derivative is zero.

It is clear from the figure thatciﬁﬁxt is zero at any

of the following values of¢ :

= e B ) W =,
& = 2nT —Sin ] (1.30)

dn = (2n-NT = Sin' @ole

However, the stable points occur only for the points ¢n "
while the points ¢( are unstable since perturbations of ¢ in
either direction will cause the system to migrate until it
reaches the next value at which the derivative is zero, which

will necessarily be a stable point ¢ﬂ.
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The figure also serves to illustrate the lock-in
range of the loop. Ifw-w,>AKthe trajectory does not cut
the ¢ axis, no stable points exist and the loop never achieves
lock. <§ﬁﬂ continues to increase or decrease forever along
the sinusoidal trajectory. Thus, lock-in range for the first
order loop is the same as the hold-in range described in a
previous section;

Trajectories for higher order loops can be obtained
in a similar manner by solving the appropriate non-linear
‘differential equation. For an extensive discussion of these
so-called phase plane plots, reference can be made to |

Viterbill,12

1-9 ADDITIVE NOISE IN PHASE-LOCK LOOP

As mentioned at the beginning of this chapter, the
most important and unavoidable disturbance in the majority
of radio communication systems is additive thermal noise,
which is a zerd—mean wideband Gaussian process whose spectral
density is nearly flat over the frequency range of the
receiver.

13

Under certain assumptions it can be shown~~that a

- stationary Gaussian process n(t) with zero mean can be



expressed as;

MmO = VZ[ME) Sinat +my @) Coswit | a.31)
where one of the assumptions is that the noise process n(t)
has been passed through a symmetric wideband band pass
filter with center frequencyé¢v,, such that the two sided
spectral density of the noise is No/2 over a sufficiently
wide frequency range centered about iMé°

To examine how the additive white Gaussian noise

affects the operation of the loop, let the received

signal be:

VZ ASine(t) +mME) =VZ §ASIn(wet tei(t))

TM (1) Sinwot +My (£)Cos wot (1.32)

The VCO output signal can again be written as:

VZ K Cos o'@) = VZKCos[w-t +6:(0)] i 280

But in this case 6'%®) is nof only a function of signal
modulation but also of the noise process n(t).

The output of the multiplier can, of course, be
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written as,

(€)= AK, $;n[6x(‘ﬂ'ez<ﬂ]‘ K\ﬂu(‘a Si'.\ 92(%)

+K N2 () Cos 0,1 (1.34)

where we have eliminated all high frequency terms because of
the presence of the low pass filter following the multiplier.
Continuing, in a fashion similar to that used in the

development of equation (1.12), we can write,

cﬁ&(ﬂ - otfcﬂ 5Z(Asm¢m+n (a)}f{t—u) du (1.35)

which is the equation of operation of the loop when signal
plus additive noise are applied at its input and where,

m' @)= -11) Sinex (&) 1y (t) Los €, &) (1.36)

Equation 1.35 is represented by the block diagram
in figure (1.7). We mote, in particular, that for the sake
of analysis, the noise enters the loop after the sinusoidal

non-linearity. We can again make the approximation

S ¢:§ %
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“where ¢&€)now depends on n'(t) as well as signal, and then
A sin( ) in figure (1.7) can be replaced by A.
If we assume that noise alone ié present at the
loop input then ©,&)=0 and 4‘({')= -6:2() ;
their means are both zero and they are stationary in the

steady state. Their spectral densities can be written as;

Se, (W) = S¢(w\=# H(jb@r Sn(w) (1.37)

where Sn«u) is the spectral density of the noise and H(s) is
‘the closed loop transfer function defined in equation (1.17).
On the assumption that the noise process is white with one-

sided spectral density No’ equation (1.37) can be written,

(1:38)

S@(uﬁ

and the variance of the phase error or phase jitter can be

written as:
o) o)

2 L2
To=Je \ [H(] 42 =1

-l o

(1:38])




The loop noise bandwidth is defined as,

(=]
‘
BL:‘ I | \l__d,u—“)—
HGl 25 ror

o (1.40)

and the phase jitter, in the steady state is:
[ A

O_Q b No B.

A* , (1.41)

Thus, the loop noise bandwidth is defined as the bandwidth
of an ideal low pass filter whose output variance is Eﬂ?
when the input is a white noise process with.one—sided‘
spectral dens%ty NO/A2. Of course, loop noise bandwidths
for various ioop filters can be determined by evaluating
the integral in equation (1.40).

It should be remembered, that the results above
are only approximations since they are based on a linear
model and will hold only for values of variance less than
approximately 0.25.

Attempts have been made to obtain results for loops
in the presence of noise without the assumption of linearity;

the most successful being, work done by Viterbi.l4



CHAPTER TWO

" THE DIGITAL PHASE-LOCK LOOP

2-1 INTRODUCTION

In this chapter, a new type of loop will be described.
Unlike the conventional phase-lock loop, in which analogue
circuits are used, the loop discussed below is implimented
with logic circuits (gates, storage elements). When‘excited
by appropriate clock signals the loop will exhibit properties
very much like those of an analogue loop and as such is re-
ferred to as a digital phase-lock loop. The discussion and
analysis which is made in this chapter is a condensed ver-
sion of the analysis which appears in a paper published by
Pasternack and Whalinl. The block diagram of the so-called
"n th" order loop is first presented. Based on this block
diagram, an equation of operation is developed using differ-
ence equations and the z-transform. The equations are then

reduced to those of an n=1 digital loop.

29
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~72=2 TGENERAL DIGITAL PHASE-LOCK LOOP

In figure (2.1) the general "n th" order digital
phase-lock loop is illustrated in functional block diagram
form. Among its basic components are'an“exclusive or”com—
parator which davelops a gating function dependent upon
the phase relation of its two inputs, and transmission
gates operating on a number of clock signals to provide
inputs to register circuit¥y. Unlike the analogue phase-
lock loop, there is neither a voltage controlled oscillator
nor a low pass filter within the loop; although, we will
find, that for most applications it is necessary to include
a low pass filter at the output of the loop.

When the loop is locked, shift circuitry period-
ically transfercs the contents of i th register to (i#l)th
register. The transfer period is one half that of the
input waveform. The shift is controlled by the n th
register which provides an output pulse after M clock
pulses are counted. A flip-flop will convert the output
pulse train to a square wave which is used as the second
input to the phase comparator.

In order to determine some of the properties of the
loop, its operation is described in terms of a linear differ-
ence equation. I[n figure (2.2) we have illustrated some

waveforms which will aid in the formulation of this differ-

ence equation.
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The waveforms are for a phase-lock loop which is in
a locked condition with constant input frequency. We shall

"

assume that clocks 9s i=1,2-*n will be enabled during a "o"
level of the gating signal (output of the exclusive-or) and
~the clocks fi' i=1,2+:n will be enabled during the"l" level
of the gating waveform. If we further assume that the first

register is initially cleared then its count at the end of

the (K+1)th period is :
g e-T® ]+ fiTlkr)

For each successive period the count will be shifted

into the i th register and increased by a count of:
%{_[_‘f(k'*‘l-‘n"—C(k""—.'/ﬂ*ﬁf//(ﬂ:) T B

This count will propogate through the n registers until the
number M is reached in the n th reogister and the count is

reinitiatéd. It is of interest to note that although ne
seconds are required for a complete count cycle, new count

cycles will be initiated every ¢ seconds.
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After n€ seconds the count in the n th register will
be the sum of the pulses counted during the previous n/2

periods of the input waveform. Eguating this sum to M we get:

PLCR-TKT]+ goT etk 1) ~Tlkt)]r =
Lz 3'\[(<k+r\‘h—t(k+n-l) ‘/‘f, T(k'H) fomm =~

taT(kin) = M (2.1)

Rewriting the above equation:

wcn'c(k+n\+<€ gy lern-it - - - = -- 9,(K)
= M‘[an C(k*“‘\\*’gn-\ C(km-z\ﬁ— =1 e
t 9 elke\) t g\e(kﬂ .

which is the n th order general difference equation relating
the response T(k?n) to the exéitation g (k#n) .

Recalling, that for a general analogue system describ-
able by a linear differential equation,we use the Laplace
transform to arrive at a system equation in which polynomials
in s multiplying the response and excitation functions,
result in poles and zeros respectively, in the s-plane. By
the appropriate choice of the coefficients in the differantial

equation we are able to locate the poles and zeros in a
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position in the s-plane so as to give a desired frequency
response. In a similar manner, we may apply the Z-transform
to the difference equation 2.2 and since there is a one to
one correspondence between the s and z planes with regard to
poles and zeros, it can be expected that by properly choosing
coefficients, equation 2.2 can be synthesized to provide a
desired frequency response (high-pass, low-pass, band pass etc)
possessing specified critical frequencies. In most applica-
tions of phase-lock loops and in particular, for the applica-
tion we shall introduce later, we are interested in exploit-
ing the low-pass properties of 2.2. To achieve this, we

set the coefficients gi , i=2, 3-.n to zero thus locationg

the z plane zeros at infinity and obtaining maximum high

frequency attenuation. Equation 2.2 becomes:

ATkt +fan Then-0t - - - = Sl_c(k)
= M~ 9, e(K)

(2.3)

Further, we shall normalize equation 2.3 by making the

following substitutions:

_F|

v (ke = T(Re)) fe (kF))
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Equation (2.3) then becomes,

vv(K'm\ ¥ Faai v (K-’H\-h toem e Y (Kﬂ-n—é\ v(k)

= 2M F(Kk) -G, | (2.4)

where;

F( = 1/ (2fn e (R

Notice, that.v(k+j) is the cycle-by-cycle average voltage of
thei?(Kfj) interval expressed as a fraction of the maximum
possible voltage. In figure 2.3 we have redrawn the‘gating
waveform from figure 2.2, The complex Fourier series for

the gating waveform using the symbols from the diagrams is

'F(k)'=7%%£§: Cﬂ\Eébu“t

A= ~0d

where

Cn= TAL Sin(wn/a)) fwnTle

and

Wn= 2T nfe
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“The D.C. component of this series is AT/P and there-
fore, V (K#j ) is proportional to the D.C. component of the
gating waveform. It is this D.C. component, which is a meas-
ure of the phase difference between the phase comparator
inputs, that we shall méke use of for the application

described in chapter 3.

2-3 FIRST ORDER DIGITAL PHASE-LOCK LOOP

Equation (2.4) which was developed in the previéus
section is the system equation for the n th order digital
phase-lock loop with a low pass frequency response. In
this section we shall reduce equation (2.4) to the differ-
ence equation for the first order phase-lock loop and
derive some of the important parameters of the loop. The
approach can just as well be applied to the design of
higher ofder loops, but as might be expected, the higher the
order of the loop, the more tedious the mathematics becomes.,

The difference equation for the phase-lock loop

with n=1 is easily written from equation (2.4),

v(k+) =G v(k) = 2ZMF-G, (2.5)
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g

where M=2""1 and N is the number of counter stages in the

register in the system. Under steady state conditions

v(k+l)=vﬂk) so that,
v(K) (l-‘-GD_?—‘- 2MF -G,
or

v (R = 2MF —G, v (2.6)

p == Gh

We can de-normalize equation (2.6) by multiplying the

numerator and denominator by frffl to give;

v(k)= ZM¥F-9;

Fi—5 (2.7)

where f is the fundamental frequency of the input signal and
f, and g, are the fundamental freguencies of the two clocks.
Since 0%v (k)€1 we can define the end points of

the lock range by:

' Ev(k)’;o.]'-‘— 9i/2m  ma (2.8a)
£L v =1]= f fzm 2.0



Thus, the loop will lock onto any signal whose fund-
amental frequency lies between g;/2M and f;/2M and will
remain locked onto the input signal as long as it remains
within this range. In figure (2.4) we have illustrated the
so-called static response of the loop. The maximum voltage
V is equal to the Qoitage magnitude of the high logic
level of the elements used. In the diagram, we have assumed
that the low iogic level is at zero volts. It is important
to note that in the lock range the voltage output versus
frequency characteristic is perfectly linear. This is
exactly the relationship required fqr frequency demodula-
tion without distortion. Thus, the digital phase—lock
loop is an ideal device to use as a frequency discriminator.

Applying the z- transform to equation (2.5) we get;

Z. ;
Z-a(D)= (2MF-GY =7 1 Z v(o) (2.9)

A partial fraction expansion yields;

_|EMF-G,[ 2 _2ZMF-G,| Z
V(Z) | -G, ]Z"‘I +[1’(0) -G, |2-6, (2.10)



__Assuming that for t & o the normalized input

frequency is Fa we can write from equation (2.6),

/'.'GI

If we further assume that at t=o the input steps to For

we can write the response for t>Zo as,

Viz X_EZM F,,— 2M(FL-F)
Z- l I =G ya Gn (2.11)

The inverse z-transform can then be written as;

vik) = ——__ZINLFE’"G' - ZM(/"A Fa)/é)

(2.12)

2 Mf— 9 — ZM(f- fu)/9/>
fi 31 fi =9 “k
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In order to obtain the time constant of the loop we
shall assume that v (k) is a continuous function of time

and let v(k)=v{t) and t=k?=k/2fb . Thus,

e Zedecy et o o (a)]
(W—Y
(2.13)

The time constant can then be written as;

-
T = = (2.14)
L L (F1/q0)

Unlike most other physical systems, we find that
the time constant, and therefore the responseiof the
digital phase-lock loop is dependent upon the input frequency
f,. That is, the loop will respond somewhat differently
- for each input frequency within its lock range. If we
recall that the count cycle of the register is equal to one
half the period of the input signal, it is intuitively obvious
that the overall time constant of the loop should depend on

the period of the input signal.
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2-4 IMPLIMENTATION OF THE FIRST ORDER DIGITAL PHASE-LOCK LOOP

In figure (2.5) we have illustrated a logic circuit,
whose performance is describable by difference equations
{2.5) and (2.12). The' exclusive or"énd;N stage binary
counter are standard logic devices and their operation
-needs no explanation. However, the transmission gate does
require a brief description. The configuration of nand
gates is such that for a low logic level ("o") at the output
of the“exclusive or:’the output of the 1low frequency clock

~g1-will be transmitted unaltered through the nand gates and
applied to the triggering point on the first stage of the
counter. At the same time the transmission gate will act as
an open circuit to the output of the high frequency clock fI'
When a high logic level ("1") appears at the output of the

/4
exclusive or, the situation is reversed,that is, the trans-

W
mission gate acts as a short circuit to the output of the
high frequency clock fl and as an open circuit to the output
of the low frequency clock g, - Thus at any time during the
operation of the loop, the_output of one of the clocks but
not both, will appear at the input to the counter.

-In figures (2.6), (2.7), and (2.8) we have illustrated

waveforms at wvarious points in the loop for three different

input conditions. In the figure (2.6), we have assumed.that
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there is no input to the loop and that at time t; the feed-
back signal is at a low logic level ("o"). The output of

" ’
the exclusive or is therefore also a

"

o" and clock 9,

is enabled. For simplicity, we have further assumed that
the counter has only three stages and therefore when the
fourth (M=4)'pulse is applied to the first stage of the
counter, the fecedback signal makes the transition from a
"o" to a "1". Subsequently, the output of the "exclusive or’
makes a similar transition and clock fl is enabled. After

~ four pulses fron clock fl another set of transitions occur

and cycle is re:nitiated. From the illustration, it is

evident that the quiescent frequency of the loop is,

M g Fh (2.15)

But, one half cycle will be at'gl/zM and the next at fl/zM.
In figure (2.7), we have illustrated similar wave-
forms for the case of an input signal whose frequency lies
within the lock range of the loop; that is within the fre-
quency interval (gl/2M, f1/2M) . We have assumed that at
t=t, both the input and feedback signals are "o"'s. There-
o

w ‘
fore, the output of the exclusive or is a "o" and clock 91

is enabled. However, before four clock pulses from 9,
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can be transmitted to the counter, the input signal makes a
transition from a "o" to a "1" and as a result, the output
1]

" . ' . . . - .
of the exclusive or makes a similar transition, thus enabling

clock £ After three pulses are transmitted from clock fq,

1-
the count reaches four, causing a transition in the feedback
signal and subsequently, a second transition in the output
of the "exclusive or? clock 91 is re-enabled and the cycle
is reinitiated. We note that the frequencies of the feed-
back and input signals are the same and that the phase
difference between the two signals remains constant; the
loop is said to be locked to the incoming signal. Also

the output of the "exclusive or is a measure of this phase
difference and as mentioned earlier, the D.C. component of
the waveform is directly proportional to the phase differ-
ence.

Figure (2.8) illustrates the loop waveforms for the
last of the three possible input conditions; that is, an
input signal which lies outside the lock range of the loop.
The loop reaches a steady state condition where all the wave-
forms aré cyclic. However, the frequency of the feedback
signal is not equal to that of the incoming signal; the loop
is unable to lock onto the input. Although it may not be
evident from the illustration, the phase error waveform is
actually a beat note whose fundamental frequency equals
the frequency difference between the input and feedback

signal. If this beat note were passed through a low pass
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filter with cut off frequency of the order of the frequency
“difference, the output of the filter would be as in figure

(2:9)

2-5 CONSTRUCTION OF THE DIGITAL LOOP

The first order Digital Phase-Lock Loop illustrated
in figure (2.5) was constructed and tested. A block diagram
of the test arrangement is illustrated in figure (2.10). The
loop itself was built using Texas Instruments logic integrated
circuits. Two four-stage binary counters were cascaded to
form an eight-stage counter; thus, from equation (2.5) M=128.
The clock* frequencies were arbitrarily chosen at 363.5 KHz
and 262.5 KHz. Thus, from equation 2.8 it was expected that
the lock range would be from 1025 Hz to 1425 Hz. To insure
that the input signal to the loop could assume only voltage
levels equal to the two logic levels of the integrated cir-
cuits, a limiter* with an input-output characteristic as
illustrated in figure (2.11) was included between the oscill-

ator and loop.

* For a description of clock and other circuits used,

refer to appendix (A).
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In the first test, the oscillator frequency was varied

—over and beyond the expected lock range of the loop. For
each input freqrency; we measured the phase error, D.C.
output of the low pass filter and frequency of the feed-
back signal, the results are plotted in figure (2.12). The
loop performed &s theory predicts. Over the predicted lock
range the D.C. voltage output of the filter varies linearly
with frequency. Over the same range, the phase difference
between the input and feedback signals varies from o to 7T
radians.

In the next test, a second oscillator was connected
with the first,in such a way that we could electronically
switch between the two. Initially, the oscillators were
adjusted such that the frequency of each would be within the
lock range of the loop. The frequency of switching be-
tween the oscillators was 120 Hz. That is, for time equal to
1/120 seconds the output of the one oscillator was applied
to the loop and at the end of that interval the output of
the second oscillator was applied for 1/120 seconds. A
picture of the waveform at the output of the filter is shown
in figure (2.13a).

The frequency of one oscillator was then adjusted
such that it would lie outside the lock range. The corres-

ponding picture is shown in figure (2.13b). For each
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successive interval of 1/120 seconds, the loop is unable to
lock onto the input and the result is a beat note at the out-
put of the filter. From this picture, we are able to estim-
ate that the time taken for the loop to go from an unlocked
to a locked state is approximately 1/360 seconds. This rough
estimate of lock-in time will be of some value in the last
chapter when the digital loops are used as part of a binary
signal detector scheme.

-We can conclude from the experiments performed on
the digital loop that its performance is similar to that of
the analogue loop and, as such, can be used in similar appli-
cations. However, it is evident from the construction of the
digital loop, that it has certain advantages;
1) It is completely integrable using one or more monolithic

chips and can therefore have a small size.
2) Since it is digital, it is more reliable.

3) The stability of the loop is solely dependent on the

stability of the clocks, which may be as good as required.

4) It includes, in effect, an ideal voltage-controlled
oscillator, the frequency of which is linearly related

to voltage.



CHAPTER THREE

DETECTORS

3-1 INTRODUCTON

In this chapter we shall discuss some aspects of
communications systems in which digital signaling appears.
We shall briefly outline the techniques used for trans-
mitting digital data and then illustrate the receivers which
may be used for the detection of such digital signals. The
theoretical analysis of these detectors will be based on the
principles of statistical decision theory. The problem
normally encountered in digital communication involves
deciding on a particular signal transmitted and since this
problem is of a statistical nature, then decision theory
will enable us to find the optimum means of making this
decision. After demonstrating the theo;etical derivation
of these optimum detectors we shéll, based on physical
intuition, propose a detector which utilizes phase-lock

loops as its basic components.

55
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3-2 CARRIER TELEGRAPHY

Telegraphy means the transmission of a message to a
remote location. Although the term originally meant the
transmission of a language message, it has more'recently
come to mean the electrical transmission of a message encoded
in binary form. In its simplest form, such a signal may
utilize on-off (1 or 0), or bipolar (+1 or -1) voltage
waveforms. More generally, the binary signal is a train of
pulses each having associated with it, two voltages, the
choice of which depends on the message to be transmitted.

Carrier telegraphy is the use of a telegraph signal
to modulate a carrier. The common forms of modulation are
of course, amplitude (AM), frequency (FM), and phase (PM).
The AM form corresponds to 100 per-cent modulation with a
bipolar waveform, the carrier is keyed on and off by the
telegraph waveform. This system is referred to as on-off
keying (OOK). The FM corresponds to the bipolar modulation
of the frequency of the carrier. For a rectangular
modulating signal, which is the type we are interested in,
the states of the modulating signal are described by a
pair of discrete frequencies. This system is commonly
referred to as frequency-shift keying (FSK). For the third,
a choice of a o or 1809 phase shift in the carrier determines

the state of the modulating signal and is referred to as phase-
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shift keying (PSK). Figure (3.1) illustrates the three types
of carrier telegraphy.

Extensions from simple carrier telegraphy arise
when one considers the multiplexing, or the simultaneous
transmission of a number of telegraph'waveforms by use of a
single radio carrier.

Time division multiplexing (TDM) involves sequenced
sampling, at a uniform rate,of each telegraph waveform to
be transmitted. The composite waveform which results is
then transmitted by standard techniques of carrier
telegraphy.

Another multiplexing technique is the so-called
frequency division multiplexing(FDM). 1In FDM, each of the
telegraph waveforms is modulated in a standard fashion
onto a different subcarrier, with the subcarriers normally
in the audio range. This set of modulated subcarriers
is then added together to form a composite waveform which,
in turn, is modulated onto a radio carrier. At the receiv-
ing end, after demodulation down to baseband, the sub-
carriers are separated by filtering, and subsequently
demodulated individually.

In terms of the results presented in this chapter,
the analysis of the performance (error rate) of any one
channel of a multiplex system is just the problem of deter-

mining the probabilty of error for each pulse in the channel.



29

Thus, the following analysis will be for a non-multi-
plexed telegraph signal, the results of which may be applied
to a multiplex system using the same carrier-modulation tech-

nique.

3-3 STATISTICAL DECISION THEORY

In the last section, we described three modulation
techniques for transmitting a binary message. In general,

the signals for a mark or space (1 or Q) may be described

by

SO = ¢ Sin [wot + 650 +§] (3.1)

for o<t <LT , _i‘-’-‘-O;l
where T is the time duration of one baud (mark or space).
However, in a practical communication system these
received signals will be corrupted by additive noise and -
can therefore only be estimated. The techniques of deci-
sion theory will enable us to find the best way to perform
these estimates.
Let us consider the simple prcblem of detecting
the absence or presence of a signal pulse. Given a statis-

tical sample of value v, we must select between one of two
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alternative hypothesis. Hypothesis HO may correspond to
saying the voltage v measured represents noise, or a "o"

transmitted. Hypothesis H the alternative hypothesis,

17
corresponds to saying a pulse, or a "l1" is present. Of
course, either choice on our part may be in error. Let
us divide the one-dimensional space of v into two parts,
Vo and Vl- VO corresponding to our choice of hypothesis

’

Ho and V. corresponding to our choice of hypothesis H,.

: |
We must then choose Vo(or Vl) to minimize the overall
probability of error.

We assume that the a priori probabilities Po and Py
of transmitting a "o" and a "1, respectively,are given.
We are also given the conditional probability densities
Py (v) dv and Py (v) dv, corresponding to the probability
of receiving v, given a "1" transmitted or a "o" trans-
mitted, respectively. For Gaussian noise, and pulses of
values o and A, these are just the probability densities
illustrated in figure (3.2). Thus the error probability

that v will fall in region Vo’ although a "1" was trans-

mitted, is

o () dv
Vo



although a "o"

and likewise that v will fall in region Vis

was transmitted,is

Po(V)OL\/
Vi

The overall error probability Pe,that is to be minimized

by the appropriate choice of Vo,is'given by

Pe": B F.(ﬂo{wt- ajpo(v)o{v
v,

Vo

Since Vo plus V. include all possible values of v then we

b

can write:

Po(v)dv = |
VotV

Now we can eliminate V, from the probability of error

equation and write:

P = R\ RpD=Rp.v)]cv
Vo

Since P, is assumed to be a known constant, the probability
of error can be minimized by choosing the region V_ which

minimizes the integral; we can do this by choosing a
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region in which
Po Po(V\> P\ Pt(v\

This will enéure that the integral is always negative
and therefore Pe will be as small as possible.

For the case of Gaussian noise which was illustrated
in figure (3.2), VO corresponds to all values of v A/2 and
V1 to all values v >'A/2. Thus in the implimentation, a
threshold level at aA/2 would be established such that if v
exceeded this level we would decide in favour of a "1" being
received and if v was below the level, we would make the
alternative decision.

The rule for choosing Ho' which we have just developed
/

on the basis of minimum overall probability of error, is

called the Bayes decision rule. It is stated usually as

FO(V%.CV) > P;/B | (3.2)

where the ratio of probability densities

Po(+)/ By VY

is called the likelihood ratio.
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3-4 DETECTION OF KNOWN SIGNALS IN NOISE (COHERENT RECEPTION%’3

In this section we shall consider the problem in which
the binary information is to be carried by either one of

two signals s, (t) and g (t) of arbitrary and different

i
shape. Examples would include phase-shift-keyed and fre-
quency-shift-keyed signals which we discussed earlier in this
chapter and which may be described by equation 3.1.

The important assumption, necessary for this
analysis is that the two signals must be known exactly.
That is, we must have precise knowledge gf the amplitude,
frequency and phase functions of the two signals trans-
mitted. It is in this sense, that we refer to the receiver
as being coherent.

The model of the communication system is illustrated
in figure (3.3» Sq (t) and'sl (t) are deterministic sign-
als of duration T seconds and n (t) is assumed to be a
sample function from a random Gaussian process of known
autocorrelation function.

Let us assume that observations of y (t) are
where tk = kot

available at the instants t t pesat

' "2 k
and T—AT< k&< T, Then we may use vector notation to

represent the pertinent waveforms |
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Y=Ly g y]
S =[SJ', ) Sy ""’SJ‘J j=0l 3.3)

N‘*‘[m.,m—---mj N=O, Gun = NNT

We can then write:
Y=Sj + N (3.4)
Since Sj is known exactly and the noise is Gaussian with

zero mean and covariance matrix 4%n we have,

p(YIS))= p,(V) = 5 (¥-5=N)

£3.5])
= [/ Y] exp[ £ (-8 (0R)-5T ]
We can now write the likelihood ratio as
LY)= p(YIS ) expls '/2(7'~3:)T¢'1-;I( Y-S)] 3.6}

PCYISY) ~ expl -8y dnn (Y-So)]
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which according to Bayes rule must be compared to K=P0/P1

-where B and Pl are the a priori probabilities of so(t)
and sl(t) respectively. For convenience we will choose to

compare 1ln L(Y) with 1n(K):

Ln (L(Y)\“"/&("Y G Si=S] 0 Y+5/ bn
+Y ¢ S+ S O -3 O 3 =

where }f 4hw\~»i is a quadratic form* so that:
YT¢ Si=(Y"¢nm S) ((b S‘\T)’-—sb (3.8)

Equation (3.7) may be written as,

Lo LON= Y0 S=Y G Som2 SRS 2S00 3

= V(s S)- G5 -SIES) O

*  See Ogatal'
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Since the last term in equation (3.9) does not depend on
the received data and is composed of known factors, we can
replace the comparison of 1ln L(Y) to 1ln K by the comparison
of YT¢n:\l (Sc"So) to the constant

K + Yo (S\T¢rm S, 'S: o 603
Therefore the decision boundary equation can be written

in the form,

YTQ\-V'\ (6-S)= ﬂmK'&‘Va(S:rcb;:\S\ -S:(f)n‘rf SQ (3.10)

The constant on the right side of equation (3.10) is
often referred to as the bias and we shall denote it by b,

that is
b"’ z\v\ K+ % (3-1'_4%7\' 31_524)!\-: 807 (3.11)

The operation of this receiver is now clear from equations
(3.10) and (3.11) and is illustrated in figure (3.4). The
receiver is to sample the received waveform y(t) to obtain

the vector Y and then calculate the statistic

v = YTqﬂn;' (Sl'so)—é : (3.12)
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The decision as to which sigﬁal was transmitted is then
made as follows; if v€{o then so(t) was transmitted; if
vyo then sl(t) was transmitted.

In most cases we are justified to assume the a
priori probabilities equal, the noise white and the signal
energies equal. Thus P1=Po=l5, In K=o, @n“ztrlj'_' where
I is the identity matrix and vl is the mean-squared value

of the noise samples, and
T . .

S'L SJtE b=y
:r . . .

where e is the cross-correlation coefficient. Thus, the
bias term (equaft:ion 3.11) reduces to zero and the decision

boundary equation 3.10 becomes,

V= )/T<TS]“S;)'==C3

Hence, the receiver must perform a discrete correlation

of the received data with stored replicas of each of the
two signals Sy end S;. 1In figure (3.5) we have two possible
discrete systems for implimenting equation (3.13). In the
second of two implimentations the discrete correlator has

been replaced by a discrete matched filter.
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3-5 PROBABILITY OF ERROR

The measure of performance of the optimum receiver
derived in the previous section is the probability that it
will make an error, that is, the probability that the
receiver will decide in favour of sl(t) when, in fact, so(t)
was transmitted, and the probability that the receiver will
decide in favour of so(t) when, in fact, sl(t) was trans-

mitted. This overall probability of error can be written as

Fe= BRO@+REQN (3.14)

where Po and P; are the a priori probabilities and PE(j) is
the probability of error when sj(t) is transmitted. Re-
ferring to the boundary decision equation

V= VYT(S, —-SQ =0

we see that o

,DE__(/>= /O(V<O/S/>= P(V/S/)C/V

(3.15)

Since the random variable N is Gaussian, first and second
order statistics of v are necessary to compute p(v/sl). De-
fining v, to be the random variable v under the hypothesis

J
that the j th signal was transmitted, we have,
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:57‘ = (/Sb;fVVﬁyq/SL“E;J>
=Sj$l —Sjso
= EC(1-¢) |=!
=-’E(‘2—\\ ‘\'-’-o

Since the variance of vj is due only to the noise and is

(3.16)

therefore independent of the signal, we can compute the var-

iance under the assumption that Y=N. Therefore,

var Vi =var N7 (5-50)

- /VT(S/ _307 NT(S ,"'So)

i

2vte(1-¢)
No E (1-¢) (3.17)

H

where No is the one-sided spectral density of the white noise.



73

Therefore,

R ) =S expi-L v—E(/-(ﬂZ/ZM,E(/ -Of elv
= 2T Ne EC1-€)

SVEC-¢5/M0
=§ exp(-4/2)dy = erk |/E(-€)
'z No (3.18)

_where we have made the substitution,

o (‘v_ E (:—@jz//\/a E(1-¢)

)

and we defined

e
f Iy = erf (2)
/T

-

In a similar manner we can show that F%(T): FECCH
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and so,

B =% erfc V_—LEN/;@ +2L er& E(-0)

Ne

= erfc \/:-E—LL/' )
No

{3.29)

Since the complimentary error function is a monotonic
decreasing function of its arguement, we see that the error
probability for coherent reception in the presence of white
noise is a decreasing function of the ratio of signal
energy to the noise density E/No and is an increasing func-
tion of the normalized inner productf=. In particular,
the error probatbility does not depend on the signaling wave-
forms. 1In figure (3.6) we have plotted probability of
error curves for two different values of cross-correlation
coefficient. It is obvious from the expression for prob-
ability of error (equation 3.19) that the best choice for'e
is €>=:-/ . Physically we might expect this result, since
we have shown that the optimum receiver decides in favour
of the signal which most resembles the received data. For
¢=-1, the signals are as dissimilar as possible. The most
often used system for generating anticorrelated signals is

phase-shift-keying.
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The second curve of figure 3.6 is for ¢ =0 which corresponds

to a system in which the signals are orthogonal, that is,

-+
SHCG)SOC£\CLtL = O

o

The most often used system for generating orthogonal
signals is frequency-shift-keying, where the carrier
frequencies are chosen such that the signal spectra do not

overlap.

3-6 NON COHERENT RECEPTIONZ’3

In the last section we considered the optimum
receiver implimentation for two arbitrary but known signals
(coherent reception). In most practical communication
systems, however, it is unlikely that precise knowledge of
the signal phase is available at the receiver. As a result,
we can no longer say that the signals are known and the
implimentations of the last section will not be the optimum.

In this section we will present the optimum non-
coherent detectcr. The techniques used in the derivation of
the detector are similar to those of the last section and

therefore will not be repeated.
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Since in the exoerimental work, which is outlined in the
next chapter, w2 considered only the case of orthogonal
signals (frequency-shift-keying), we will present the non-
coherent detector for the particular case of orthogonal

signals. Thus, the signals may be written as,

S_\ (t)q)) = m(t) COS(W"\‘C +¢\> l:: 0, |

=M Cos wjt(cOsqﬁ—m(t\ 3N wj:’c‘(Sm@

= e ) COSf{)——mS&)Smcp < o6

Again, using the vector notation,

Y= S +N
%{@ = Nléc\uui cosd ""Mg)wj gm¢ (3.21)

Under the assunption that the a priori probability density

function for tte phase of the signal is,

PO = Yor » -TSpLT
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the likelihood ratio can then be written as

Lo ( \171- N M'c‘w.\z "'(71-(1):\—:1 Ms,‘wjd ) i Io(éh
T (Vg Mo t (TémMsw))  Toled)

43 22]

L(Y)=

where I is the modified Bessel function of the first kind
of order zero. But since the Bessel function is a monotonically
increasing funétion of its arguement, it is necessary ornly
to compute and ;hen compare the arguements &, and E\. E
The decision rule will be:

sl(t) was transmitted if €, >¢€,

so(t) was transmitted if €,>€&,
Under the assumption that the noise is white,the inverse
covariance matr:x of the noise equals the mean-squared
value Q‘-"I(r.\?Zt\=(]‘1>and the receiver structures necessary to
compute and compare &, and €&, is illustrated in figure (3.7).
The first implimentation is obvious from equation (3.22)
above and the séacond implimentation follows from the first
under the assumption that orthonormal basis functions are
used in the discrete representation. However, the third

implimentation illustrated requires a brief explanation.

Based on the theory presented in the previous sections, we
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see that the upper branch of the second implimentation
(which is an optimum detector for the signal m(t)cos@ult+¢),¢
unknown) can be interpreted as an optimum detector for the

signal m(t) cosw-,t in parallel with an optimum detector

1
for the signal m(t)singkdt . The outputs of these two
quadrature detectors are squared and summed, indicating
that &€, (t) is the envelope of the output of the optimum
detector for m(:) cos (uit+¢)where ¢ is an angle between

0 and 2T. It is important to note that the receiver de-
stroys the useless carrier phase information by basing the
decision on the envelope of the output of a filter matched
to m(t) cos “ﬁt . That is, the filter is matched to the
modulation waveform m(t) and carrier frequency, but no
attempt is made to match to the carrier phase. Of course,
a conventional linear bandpass filter centered onwy and

with a bandwidth equal to the bandwidth of m(t) is the

required matched filter.

3-7 PROBABILITY OF ERROR FOR INCOHERENT RECEPTION

The mathematical techniques used in the derivation
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of the probability error for the incoherent receiver are
similar to those used in the previous section on coherent

receivers. Thus, it may be shown that,

=" eXP(“E/Ho\ (3.23)

where E is the signal energy and N is the one-sided
' ' o

spectral density of the additive white noise.

3-8 COMPARISION OF COHERENT AND INCOHERENT DETECTORS

The expression for, probability of error for the
coherent and incoherent detectors, are plotted in figure
(3.8). For the sake of the illustration, we have let the
cross correlation coefficient be zero which corresponds
to a frequency-shift-keying system. Evidently the co-
erent receiver performs considerably better (approx-
imately 3dB) for the low values of signal to noise ratio.
However, at high signal to noise ratios, the knowledge of
carrier phase contributes little (approximately 1dB) to
system performance. We can conclude, that the slight

improvement in performance of the coherent system does not
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warrant the diffulties encountered in the system design.

In general, if a receiver can be operated coherently, that
is, exact replicas of the transmitted signals will be avail-
able at the receiver, it is to the designer's advantage to
use antipodal signals rather than orthogonal signals because

of the possible higher performance of the former.

3=9 THE PHASE--LOCK LOOP DETECTOR

The block diagram of a phase-lock loop and a
correlator are :llustrated in figure (3.9). If we compare
the two block diagrams, it appears that the phase-lock loop
is just a correlator with feedback provided through a voltage-
controlled oscillator (VCO). That is, both systems involve
the multiplication of an incoming signal with a reference
- signal and subsequent low pass filtering or integration
of the product. The only difference between the two systems
is the source of reference signal. For the correlator, the
reference is derived from a second system which is completely
independent of the operation of the correlator. However, as
described earlier, the reference for a phase-lock loop is
derived within the loop itself.

For the coherent correlation detectors, as prev-

iously discussed, no mention was made of the source of
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‘reference signals. It was assumed that the references were
available and more important, that they were in phase and
frequency synchronism with the possible transmitted signals;
For a normal communications system ip which transmitter and
receiver are located great distances apart, this necessary
synchronization leads to complex design problems. For the
less frequent, but important, case in which there is relative
motion between the transmitter and receiver the problem be-
comes virtually impossible,unless a method of tracking the
transmitted signals is used. Of course, the phase-lock loop
is just such a iracking system.

From what has been said above, it seems possible
that a phase-lock loop might be used for both the generation
of appropriate reference signal and subsequent correlation.
This being so, then the correlators in the detectors of
the previocus section may be replaced by phase-lock loops
and the problem of providing suitable references is thereby
eliminated. The detector would then be as illustrated in
figure (3.10) ard we shall refer to it as the phase-lock
loop detector.

In figure (3.10) we have assuﬁed that loop A is
able to respond only to sj(t); that is,the loop cannot lock
onto so(t). Similarly, loop B can lock only onto so(t).

This means that for the system to be able to determine which



.of the two signals has been transmitted; the frequencies
-of the two signals must be different and therefore the
detector is restricted to freguency-shift-keyed signals
only.

The operation of the detector can best be explained
by referring to figure (3.11) where it is assumed that the
binary sequence 10110 is to be transmitted by the waveform
illustrated in part (b) of the figure. At time zero, sl(ti
is applied at the input of the detector. Since the signal
lies within the lock range of loop A, a reference is gener-
ated and correlation takes place, If we assume'that loop A
is able to lock instantaneously and that the frequency of
the signal approaches the upper limit of the lock range,

then the loop output is

AKi Sin (§) = AR, Cos (§-72)

where A is the EMS value of sl(t) and K, is the RMS value

1
of the VCO output. We have further assumed that any high

frequency terms are eliminated by the low pass filter. By
appropriate choice of the low pass filter cut-off frequency,

the output of the filter at time T will be AK,T cos(¢—900) .

.

For ¢::q0°this is exactly the output of a correlator under

similar circumstances; that is, AKlT.



wn no" nyw \\"xl " “n 0'"

a) Binary Signal

Sl(t)

0 i 2T 3T aT 5T

b) Frequency-Shift Keyed Signals

fig.3.11 waveforms for FSK

68




Loop B,on the other hand,is unable to lock to the
signal and its output Would be a beat note which would be
removed by the low pass filter. Thus, referring to figure
(3.10) at time T7, u, would be greater than u_ and the

‘detector would :orrectiy decide in favor of the signal s, (t).

1

At time Tt a zero is transmitted and so(t) appears
at the input of the detector. Loop B will respond and lock
onto the signal; a reference is generated and correlation
takes place. Loop A will.go from a locked to unlocked
state producing a beat note at its output for the duration
of signal so(t), Thus at time 2T, = TAK, is greater

than u, and the detector correctly decides in favour of So(t) .

i
Operation of the detector would continue as above.

For each transition in the binary sequence, there will be

a corresponding transition within the detector, that is,

loops changing from a locked to an unlocked state or vice versa.

Based on the discussion above, we can appreciate

that the detector using "ideal" phase-lock loops will

behave exactly &s the correlation detector and its perform-

ance in terms of probability of error should be equivalent

to that of the correlation detector. However, in actual

practice it is impossible to design and construct an ideal

loop. Using practical loops, the performance of the detector

will be degraded relative to that of the correlation detector

for two reasons.
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1) One of the assumptions made, was that the loops
were able to lcck instantaneously; that is, the appropriate
loop would be locked for the entire bit duration and there-
fore the reference signal would be present for the bit
duration. Of course, this is an impossibility; a finite
time is required for a loop to lock. Thus, after each
transition in the binary sequence, the appropriate loop
will go through a locking—in process during which correl-
ation does not take place. At the end of the bit, the out-
put of the low pass filter associated with the loop, will
therefore not bz AKlT but rather AKl(mT) where m is a positive
fraction. That is, during the first (1-m)T seconds of the
bit, the loop is not locked and therefore correlation is
not taking plac=.

2) The second assumption was that the loops were designed
such that when locked, the phase error would be 90 degrees
and therefére the phase difference between the incoming

and reference signal would be zero. This implies that

the loop is operating at the upper limit of its iock

range and if anyv disturbance should cause the phase error
to exceed 90 degrees the loop will momentarily lose lock.
In the first chapter it was pointed out that additive
Gaussian noise causes a jitter in the output of the VCO

and therefore a jitter in the phase error. Thus, if the

phase error has a mean value of 90 degrees, there is a large
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probability that the loop will momentarily lose lock in the
_presence of the additive noise. To reduce the probability
of losing lock it is necessary to make this mean value

or phase error of the loop less than 90 degrees, The
output of the filter would then be AKl(mT)cos (¢—90) "

To further appreciate how the two factors mentioned
above degrade the performance of the detector, we can refer
for the moment back to the correlation detector. We have
already said that at the end of a bit, the output of one
channel of the detector is AKqT. _If we make the RMS
value of the relference signal equal to that of the input’
signal, then this output becomes alr, But, this is just
the energy contained in the input signal during one bit
duration of T seconds. Thus for the correlation detector,
at the time a decision is made, we have at the output of
one channel, the maximum possible signal energy and there-
fore, for any noise of spectral density NO the maximum
possible signal to noise ratio E/NO,

For the same situation, we have at the output of
the channel of the phase-lock loop detector A2T(m) cos (¢—90)
which is something less than maximum signal energy and
and therefore at the point of decision, the signal to noise
ratio is not maximized. Signal fo noise ratios for each

detector are shown in figure (3.12).
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Based on the comparison of signal to noise ratios
for the two detectors, we might expect that the probability
of error curves will be identical in shape but displaced
from one another; that is, for identical input signal
to noise ratios, the performance curve for the phase-
lock loop detector will be displaced to the right. The
amount of displacement will depend primarily on the two
factors discussed above. We can, of course, reduce this
displacement by making the factor m approach unity, which
~implies designing the loops to lock as quickly as possible.
This can be accomplished by increasing the loop bandwidth.

We can also improve the performance by making the phase

error approach 90 degrees, which means the loops be

designed for a minimum phase jitter in the presence of addi-
tive noise. A reduction in phase jitter requires a reduction
in loop bandwidth. Thus, an improvement in detector
performance invcolves conflicting requirements and a compromise
in loop bandwidth is necessary. We might expect then, that
the experimental results presented in the next chapter will
indicate an optimal loop bandwidth, above and below which

the performance of the system decreases.



CHAPTER 4

EXPERIMENTAL RESULTS

4-1 INTRODUCTION

In this chapter we shall give experimental results
describing the performance, in the presence of noise, of a
detector using digital phase-lock loops and compare this
performance with that of a coherent detector using cor-
relators. To make the experimental results meaningful,
the measurements on both systems were made under the same

conditions.

4-2 THE TEST ARRANGEMENT

A block* diagram of the test arrangement, used to
determine the performance curves for the detectors, is

illustrated in figure (4.1). The noise generator used for

* The schematic diagrams of all circuits constructed are
shown in appendix (p).
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the test had a cut-off frequency in the order of 20KHz.
Therefore the system had to be operated with carrier
frequencies which would fall in this range. Further, we
chose to operate near the low end of this range so that,
in the event pre-detection filtering of the carriers was
necessary, low pass rather than bandpass filters could
be used.

In the implimentation of the so-cailed "transmitter",
two schemes were available. In the first, only one oscill-
ator was used and its output was frequency modulated by
the binary sequance to be transmitted. In the second, two
oscillators werz used and the binary sequence caused a
switching action between the oscillators; that is, each
time there was a transition in the binary sequence the
output of the transmitter electronically switched from
one oscillator to the other. The latter arrangement,
although reguiring more circuitry, has the advantage that
one carrier freguency can be varied independent of the
other. For this reason, the two-oscillator scheme was
chosen.

Since both detector éystems were implimented
using logic elements, it was necessary to restrict their
input signal amplitudes, to the logic levels of the ele-
ments used (approximately 0 and 3 volts). That is, the

carrier signals applied to the detectors had to be



98

rectangular waves,; To insure that this would be the case,
a limiter with an input-output characteristic as in figure
(4.2) was included, at the input to the detectors. With
such a characteristic, the input signals to the limiter
can have any waveshape and the output will be a rectangular
wave with the same fundamental frequency. Further, the out-
put will be compatible with the logic elements used in the
-detectors. The only requirement of the input signal to
the limiter is, that it must have only two zero crossings in
each cycle. This requirement insures that, the input
signal to the d=tectors makes the transition from the low
level to the high level once each cycle. The rectangular
wave outputs of astable multivibrators meet this require-
ment and, for this reason, multivibrators were used as the
oscillators in the "transmitter". They were constructed
in such a way that their output frequencies could be
readily varied.
The summing point at which the signal and noise
were added, was constructed using an operational amplifier.
The source of binary data was a‘commercially built
square wave oscillator, which gave us the sequence 101910
10...... The reason for choosing this particular sequence
is as follows. In many systems that operate on digital
data, it is found that their performance will vary with

the binary sequence applied. There is no evidence to
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indicate that this is true for the coherent correlation
detector. However, based on the discussion in the pre-
vious chapter we can expect this to be true for the
phase-lock loopr detector. We have pointed out that
because the loops are unable to lock instantaneously the
performance of the detector will be degraded. That is,
each time a loop goes through a locking-in process, a
portion of the signal energy is lost, or rather will not
be available at the point at which the decision is made.
This is illustrated in fig.(4.3), where we have shown the
output of a low pass filter in both the correlation
detector and the loop detector. It is apparent, that at the
instant of sampling the output in the correlation detector
is greater than that in the loop detector and therefore,
the probability of making an error is correspondingly
higher for the loop detector. Thus we might expect that
the performance of the loop detector will depend on the
number of transitions in the binary sequence; or equival-
ently, the number of times the loops must go through a
locking-in process. As the number of transitions is
increased, in a sequence of fixed length, the probability
of making an error will likewise increase. - The sequence
which we have chosen has the maximum possible number of
trangitions and therefore we will be able to determine in

our tests, the nmaximum possible probability of error for
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any signal to noise ratio. Further, we can expect, that
for any other binary sequence, the performance of the
detector will be at least as good, if not better.

Also, the choice of this sequence, simplified
the circuitry required to derive the sampling pulses
necessary for the operation of the detector. The method
used is discussed in appendix (a).

In the error counting circuit, both the outputs
of the sequence generator and detector were sampled once
each bit. The samples were compared and, if different,

a pulse was applied to a commercially built counter. 1In
this way, a running count of the number of errors could
be made over any length of time.

In figures (4.4) and (4.5) we have illustrated one
branch of the phase-lock loop detector and correlation
detector, respectively. For both systems, the multiplier
is implimented using an“exclusive or:’which is sometimes
referred to as an anti-coincidence multiplier. That thé
"exclusive orﬁ performs as a multiplier is evident from
fig.(2.12), where we have shown a linear relationship between
the phase error of a digital loop and the average value
of the“exclusive ornbutput.

‘The low pass filter and sampling circuit are
identical in both detectors. The outputs of the two

branches in either detector were applied to a comparator
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circuit which made the decision as to which signal was

transmitted and then generated the appropriate bit.

4-3 MEASUREMENTS

In order to obtain the experimental results for
both detectors, some simple measurements and calculations
on the test arrangement had to be made. An estimate of the
probability of error, for a particular signal to noise ratio,
was made by using the counter to record the number of
errors made over a particular length of time, and divid-
ing this value by the total number.of bits transmitted
during that time. After a number of measurements had been
made, it was found that, for the range of signal to noise ra-
tios we were usinQ,lO0,000 transmitted bits were sufficient
to give a reliable estimate of the probability of error.

For the bit rates used in the tests, this meant that
measurements had to be made over lengths of time exceeding
ten minutes.

Measurement of the signal to noise ratio (E/No) was
made at the input to the limiter stage, which was considered
to be part of the recei?er. Fortunately,a measurement of
the RMS value of the noise could be made directly from a

meter on the generator. The one-sided spectral density of
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the noise gould then be calculated by dividing the mean=-
squared value of the noise by the bandwidth of the noise
generator. The RMS value of the square wave carriers was
measured using a Hewlitt Packard True RMS Meter. The bit
energy could then be calculated by multiplying the mean-
squared value, by the bit duration, T seconds. Thus, the
signal to noise ratio could be written as

E/N

where S is the RMS value of carrier signal,

o= (s/M) %w/B
N is the RMS value of the noise,
W is the noise bandwidth, ana
B=1/T is the bit rate or system bandwidth.
As the bit rate increases, the signal to noise
ratio decreases, and thus we can expect that for a constant
noise level the probability of making an error will increase
as the bit rate increases. However, the performance of the
detector is described by only one curve, no matter what the
bit rate.
We have suggested in a previous chapter, that
frequency-shift keyed signals are an example of orthogonal
signals; or equivalently, signals whose cross-correlation

coefficient is zero. Orthogonality is defined by

-
s. (t)s (t) dt=0
1 o

o
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Based on this cefinition, frequency-shift keyed signals
are approximately orthogonal only if their spectra do not
overlap. In figure (4.6), we have illustrated the spectra
of the signals transmitted, in our FSK system. If the
carrier frequercies are separated by something less than
the system bancwidth B, the cross-correlation coefficient
is greater thar zero. If the separation of carrier fre-
quencies is greater than the system bandwidth, then the
signals are aprroximately orthogonal and their cross-
correlation coefficient is approximately zero. We also
showed in the last chapter that the probability of error
is a function cf the cross-correlation coefficient. To
minimize the probability of error, the cross-correlation
coefficient must be minimized. In our system we could
insure this by maintaining a carrier frequency separation
greater than our system bandwidth.

Care also had to be taken in choosing the clock
frequencies associated with each loop; for it is these
frequencies which determine the lock range and bandwidth

of the loop.

4-4 RESULTS

The first and most important observation made on the



107

Carriers
E /
4 4
”‘\( \- ;><;; /’N\/f*\
—>| f P
' B l
a) Spectra Overlap (O( f< l)
E
\/,l
= P
b) Spectra Do Not Overlap Cei O)

fig.4.6 Spectre of FSK Signals




108

phase-lock loor detector was, that in the absence of noise,
it worked just as expected, reproducing at its output the
binary sequence transmitted. The bit rate was arbitrarily
chosen at 120 bauds. Variation of loop clock frequencies
and carrier frequencies did not have any effect on the
output of the system, provided the lock ranges of the two
loops did not completely overlap and the carrier fre-
quencies were adjusted to fall within the upper half of
the lock ranges.

However, when noise was added to the input signal,
performance in terms of probability of error did vary,
with the clock and carrier frequencies. A process of
trial and error was used to find a combination of frequencies
which would give the best performance in terms of prob-
ability of error. The combination finally decided upon is
shown in figure (4.7), where we have illustrated the static
characteristics of the two loops. The clock frequencies
necessary to obi:ain these characteristics can be determined
from equation (2.8). The two carrier frequencies are also
shown superimposed on the static characteristic.

The performance curve, for the correlation detector
operating at the same bit rate and on the same carrier
frequencies, was also obtained.

The experimental and theoretical probability of
error curves for the coherent correlation detector, are

- plotted in fig.(4.8). The significant difference between
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the two curves, (approximately 4.9dB at PE=0;001 is due

to the non-ideal conditions under which the experimental
system was operated. As mentioned earlier, it was necessary
to include a limiter stage at the input to the detector;
however, the limiter was not considered in the derivation

of the theoretical probability of error curve. It is
expected that bzcause the limiter is a non-linear device,

it will have a degrading effect on the system, particularly
at low signal to noise ratios. Further, it was assumed, in
the theoretical derivation, that the transmitter was

capable of switching instantaneously between the two signals
and that the noise process was white and Gaussian.

Both assumptions are only approximated, in the experimental
test. Finally, although we have maintained the carrier
frequency separation greater than the system bandwidth,

it is likely that the cross-correlation coefficient of the
two signals is slightly positive, thus causing a further
degradation in the experimental detector.

It should be emphasized at this point, that the
purpose of the experimental tests was to compare a practical
correlation detector with a practical loop detector, both
operated under the same conditions. It is assumed, that if
improvements carn be made in the performance of one detector,
then,.similar improvements can be made in the other.

The experimental probability of error curves for the



111

Experimental

_al Th -
10 2 eoretical

10-3 i i) )

1 10
-
E/Ng
fig.4.8 Experimental and Theoretical Probability of Error
Curves for Correlation Detector




112

two detectors are plotted in figure (4.9). The difference
between the two detectors is approximately 1.6dB at a prob-
ability of error of 0.001. Based, on the theory of detect-
ors presented in the last chapter, we'might expect that an
experimental non-coherent detector, implimented using fil-
ters and envelope detectors, would have a performance curve
lying about 3dE to the right of the coherent detector curve.
Thus, we may ccnclude that the performance of the phase-lock
loop detector is somewhere between that of the coherent and
non-coherent detectors.

To further illustrate the performance of the phase-
lock loop detector, a series of pictures were taken using a
storage scope and polaroid camera. In figure (4.10) input
and output waveforms were recorded for four different signal
to noise ratios. 1In part (a) of the figure,signal to noise
ratio is infinite; that is, no noise is present, and the amp-
litudes of the two carrier signals were intentionally made
different in order that they be more readily distinguishable.
It is apparent from these diagrams that as the signal to
noise ratio decreases, the probability of error increases
correspondingly. In figure (4.11) the output of one branch
of the detector is shown for different signal to noise ratios
in a manner corresponding to figure (4.10). 'The degradation
in the appearance of the waveforms at low signal to noise
ratios as in parts (a) and (b) indicates that the loop is

momentarily losing lock. -
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It appears that a useful application of the phase-
lock loop detector is for the case in which there is some
uncertainty as to the frequencies of the received FSK signals.
Such uncertainty would result if the transmitted signals under-
went a Doppler shift in frequency. To determine experimentally
how the detector would behave under such circumstances, it was
decided to obtain performance curves for a number of carrier
frequencies. The lock ranges of the two loops were maintained
constant and carrier frequencies changed in steps of 10Hz up to
a maximum of 40Hz in both the positive and negative direction.
For mean carrier frequencies of 1220Hz and 1490Hz, this cor-
responded to a maximum change of 3% and 2.5%, respectively.

The curves for positive changes in frequency are plotted in
fig.(4.12); the curves for negative changes lie within the
same region and therefore were not plotted. For this range of
carrier frequencies, the performance curves vary over only a
1.0dB range of signal to noise ratio.

A similar test was performed on the correlation detect-
or. The frequencies of the reference signals were maintained
constant at 1220Hz and 1490Hz, and the incoming carrier fre-
quencies were varied. As one would expect, as soon as the re-
ference and carrier signals become unsynchronized, the coher-
ent correlation detector ceased to operate. This is illustra-
ted in fig. (4.13). This'clearly demonstrates that the phase-
lock loop detector is superior to a coherent detector when

dealing with a FSK signal that has undergone some Doppler shift.
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CONCLUSIONS

The usefulness of digital phase-lock loops as part
of a binary detection scheme for FSK signals has been success-
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