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ABSTRACT: 

A new detector for use in a frequency-shift keyinq 

communication system is described. Digital phase-lock loops 

replace correlators in the optimum detector implimentation. 

Results of a work ing system, for a range of input signal to 

noise ratios are presented. 
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PREFACE 

This wor k has aimed at the continuation of research · 

on the phase-loc~ loop, a signal tracking system. Attempts 

have been made t o apply digital phase-lock loops as part of 

a detectio~ scheme for FSK signals. Much of the work of the 

thesis was of a practical nature. A working model of the 

detector was con structed and the results of tests performed 

on t h e system a r e presented in the last chapter. To provide 

a better unders t anding of the operation of the detector, 

the f irst two c apters have been devoted to a thorough 

discussion of a alogue and digital phase-lock loops. Digital 

phase-lock loops were constructed, and tested to determine 

how closely a practical loop agreed with theory. The 

detector configuration is based on that of the so-called 

optimum coherent detector which is derived and discussed in 

the third chapter. 
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CHAPTER ONE 

THE PHASE-LOCK LOOP 

1-1 INTRODUCTION 

Since the advent of electrical communications, 

engineers have d irected their attention towards solutions 

to t h e optimum detection of si9nals in additive noise. The 

detec tion proces s generally involved a filter to maximize 

the s ignal to no ise ratio. During the 1940's D.O. North,
1 

Van Vleck and Middleton 2independently developed a theory 

of f i lters now c alled "matched filters"~ The basic result 

in t he theory p r esented was that in the case of white 

addi t ive noise, the si9nal-to-noise ratio is maximized b v 

a fi l ter whose i mpulse response has the form of the imaae . . . 

of t h e signal t o be detected. In radar detection, bank s of 

matched filters were used, with each filter designed for a 

diffe rent delav anc Doppler shift o f the specific trans­

mitte d signal. The cutout of the filters were monitored to 

deter mine the m st likely received messaae. 

1 
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In 1950, Lee, Cheathem and Wiesner4 described a 

_system of detect ion of a periodic signal buried in additive 

noise by an ele tronic correlator as in figure (1.1). In the 

publication, the y drew the parallel between filtering in the 

frequency domai n with matched filters and filtering in the 

time domain with correlators. The application of the correl­

ators for signa detection presupposes that at the receiver, 

the frequency and phase of the transmitted signal are known. 

~or a system suc h as radar in which the transmitter and re-

ceiver are locat ed at the same geographical location, a 

system as illus t rated in figure (1.2) might be used. However, 

if t he transmitt er and receiver are located great distances 

apart , it is unlikely that a suitable reference signal will 

be readily available for correlation. The problem is fur­

ther complicated if the transmitter is in motion relative to 

the receiver, giving rise to a Doppler shift in the frequency 

of the received carrier. In Chapter 3, we introduce the 

optimum detector for the reception of digital information, 

and as one might expect, the matched filter or correlator 

provides a basis for detection. Again, the difficulty in the 

irnplimentation of the detector, is the availability of a 

suitable referen e signal. In this Chapter, we will discuss 

a device called phase-lock loop that can be used for track-

ing the phase of the carrier component of the received 

signal. This dev ice thus generates a signal suitable for 

synchronous detec tion. 
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1-2 NATURE OF THE PHASE-LOCK LOOP 

The phase-lock loop contains three basic components: 

a phase detector or multiplier; a voltage controlled oscill­

ator, and a low pass filter, as in figure (1.3). 

The multiplier compares the phase of a periodic input 

signal with the phase of the voltage controlled oscillator 

output. The output of the multiplier is a measure of the 

phase difference between the two signals. This output is 

applied to a low pass filter in the loop and then applied to 

--~he voltage controlled oscillator. This control voltage 

changes the freauency of the oscillator in a direction which 

reduces the phase difference between the two sianals. 

Y-7hen the loop is "locked", the control vol taqe is 

such that the frequency of the vco is eaual to the average 

frequencv of the input signal; For each cvcle of input; 

there is one, ·and only one cvcle of oscillator output.~ 

Suppose that the incoming sianal carries information 

in its phase or frequencv! this signal will inevitably be 

corrupted by additive noises. The function of the phase­

lock loop is to reproduce the original signal while remov­

ing as much of the additive noise as possible. 

By beating the incoming signal with the output of 

the local oscillator and applying a filtered version of the 

beat signal to the voltage controlled oscillator, much of 

4 
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the noise can be suppressed. Since the input to the loop is 

---a - noisy signal, v.rhereas the output is a cleaned up version 

of the input; it is reasonable to consider the loop as a 

kind of filter that passes signals and rejects noise. 

Two important characteristics of such a filter are 

that the bandwidth can be made very small and the filter auto-

matically tracks the signal frequency. These two features; 

automatic tracking, and narrow bandwidth, account for the 

major uses of the phase-lock loop. 

1-3 HISTORY OF THE PF...ASE-LOCK LOOP 

The first description* of the phase-lock loop was 

published by, de Bellescize5in 1932. This paper dealt with 

the synchronous reception of radio signals (homodyne receiver) . 

For the receiver to operate, the local oscillator has to be 

adjusted to the frequency of the incoming signal, which is 

then converted to an intermediate frequency of zero Hertz. 

The output of the mixer contains the demodulated information. 

* The existence of the original paper was brought to light 

6 by T.J. Rey. 



Since any interference- is not---synchronous -with -the 

local oscil_lator, the output of the mixer, due to the inter-

fering signal, can be suppr~ssed by audio filtering. For 

correct operation, the oscillator output must have the same 

frequency as the input; and the phase difference must be min-

imal. In other words, the local oscillator must be phase-

locked to the incoming signal. The superheterodyne receiver 

however, became more popular with radio engineers and very 

_little use has been made of the homodyne receiver. 

The first widespread use of the phase-lock loop was 

in the synchronization of the horizontal and vertical scan 

. t 1 . . . 7 1n e ev1s1on rece1vers . The construction of the scan ras-

ter on the television tube is basically as follows: the syn-

chroni zation pulses are stripped off the received signal and 

indivi dually used to trigger a pair of oscillators which in 

turn drive a pair of sweep generators. This scheme will work 

in an acceptabl~ fashion in the absence of noise. Of course, 

noise is always present, and it is possible that a noise 

spike may be confused with a ~sync" pulse causing incorrect 

trigge ring of an oscillator and therefore, a sweep generator. 

The no ise problem may be eliminated by phaselocking the two 

oscillators to the "sync" pulses. The oscillators in this 

approach are not triggered by each pulse and because the 

phase-lock loop looks at many pulses, it is unlikely that it 

will be perturbed by the occassional noise spike. The so-

called "fly wheel synchronizers" used in present-day tele-

7 



vision receivers are really just phase-lock loops. 

The analysis and application of phase-lock loops 

began in earnest with the launching of the first artificial 

8 

-satellites . These vehicles carried lmv pO"Y7er transmitters; 

the received signals being correspondingly weak. The problem 

of receiver design was further complicated by a Doppler 

shift, and a drift of the transmitting oscillator, which 

caused considerable uncertainty about the exact frequency 

of the received signal. At the 108 MHz frequency originally 

used, the Doppler shift could range over ± 3KHz. Thus, with 

ordinary fixed tuned receivers, the bandwidth would have to 

be in the order of 6KHz. The signal itself however, occupied 

a bandwidth of onlv 6Hz. The noise penalty suffered would 

be 1000 tiwes (30dB) . As technology has progressed, the num­

bers involved have become even more dramatic. The noise 

penalties involved are intolerable with the fixed tuned re­

ceivers and that is why narrow-band, phase-locked tracking 

receivers are used in space communications. 
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1-4 ANALYSIS OF PHASE-LOCK LOOP 

~ ~ Referring again to figure (1.3) let the received 

signal be denoted by; 

(1.1) 
and the output of the VCO by 

(1. 2) 
where A and K, are root-mean-square amplitudes. Assume, 

that if the error voltage e(t) is removed, the VCO oscillates 

at a quiescent frequency of w0 radians per second. When 

the control signal is applied, the VCO frequency becomes 

W0 +K2e(t) radians per second, where K2 is the VCO propor-

tionality constant. Thus, we can write: 

(1. 3) 
The output of the multiplier or pha s e - detector 'is the product 

of (1.2) and (1.1)1 obtaining, 

x.(t) = A K1 [ SiY\[ e(t') -e'(-t}_]+ S ~~~[e(t"'te (-ti] 5 
(1.4) 

Since the linear filter in figure (1.3) takes the form 

of a low pass filter, the sum frequency term of (1.4) may be 

discarded. 

Applying the convolution integral to the linear time-

invariant filter, its output may be written as: 
t t 

e(tl "'eoCtl-t-1-x (t-~f<v..l cl.v.-= eo (:ti-t-s X.Cu..lf (t-u.)Jv.. 
0 0 

(1.5) 
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where we have assumed that the input is applied at t=O and 

eo(t) is the zero input response of the filter. Generally, 

the initial conditions of the filter are set to zero, so 

that eo(t)= 0 for all times. The weighting function is, of 

course, the impulse response of the filter. We can now 

use equations (1.3), (1.4), and (1.5) and write: 

t: 

~~(t) = We-t t<1 f(t-u..JAK, Si{e(u.}-e1(uiJ cL u.. 

0 

Now defining the phase error, 

~(t)-= e(t')- e'(t) 

and the loop gain, 

we have: 

't 

cLp(t} = d ect) _ cvo-AKSf(t-u) Slnc/;{u) dv_ 
d..t d.t 

0 

(1.6) 

(1. 7) 

(1.8) 

(1. 9) 



For any input phase e (t) the solution c/;C:t) to this 

~ntegro-differential equation describes exactly, the oper-

ation of the phase-locked loop. Since the quiescent fre-

quency of the VCO serves only as a reference, we can, for 

convenience eliminate it from the analysis by v1ri ting: 

11 

e, (t)-::: 6(t)-Wot 

e~(t)= e'(t'>-wot 

(1.10 l 
(1,111 

Thus , from equation (1.9) we have: 

d._e,(t) -AK0f(t-~ Sin ~(LA.} clv_ 
clt J~ 

0 

(1.121 

The equation (1.12) suggests the model illustrated in fig-

ure ( 1. 4) . 

We can see that the multiplier or phase detector has 

been replaced by a summing point and a sinusoidal nonlin-

earity. The replacement of the VCO by an integrator is valid 

s~nce the phase of the VCO output signal is proportional to 

the integral of the control signal. It should also be noted 

that the gain of the loop is augmented by the root-mean-sguare 

amplitude of the input signal. This often leads to the use 

of a hard limiter at the input to a phase-lock loop impli-

mentation 1 in order to maintain the loop gain constant. 
~ 



1-5 LINEAR MODEL OF THE LOOP 

It is apparent from the preceeding discussions and 

diagrams that there must at all times be a non-zero control 

signal; otherwise, the VCO will oscillate at its quiescent 

frequency. This further implies that the loop must operate 

with a finite phase error even when it is in a locked state; 

that is, when the frequency of the VCO is eaual to the 

average frequency of the input signal. However, ~.rhen the 

phase difference ¢<t) is small (less than thirty degrees) 

we ma y use the approximation; 

12 

sir\ ~(t) ~ ~(t) (1.13) 

and t he sinusoidal nonlinearity may be removed from the 

mode l . The operation of the loop can now be described by the 

linea r differential equation: 

t 

d.<j?(f) =- cl...e,(-t) -A K \' t(t-~ ~cv..) clu.. 
clt clt J 

. 0 

(1.14} 

By using Laplace transforms, equation (1.14) may be 

transformed to; 

(1.15} 

where F(s) is the transfer function of the linear filter and 

'$( s) and ~(S') are the Laplace transforms of ~(~1 and e, <t) 

respectively. Equation (1.15) can be represented by the 



block diagram illustrated in figure(l.S). The basic loop 

equations 

""" 
may be written as; 

13 

~y:). = 
e,(s) I +AK~(s)/'5 (1.16}_ 

and 

HCs) = A K t=(-;.} /5 
. \ t-AKF(~}/S 

(1.171 

where H(s) is known as the closed-loop transfer function. 

Much of the analysis done on phase-lock loops has been based 

on t he use of this linear model 8 . 

1-6 LOOP FILTERS 

It is apparent from the linear model that the per-

formance of the loop is very much dependent upon the choice 

of f i lter function F(s). In general, the order of a control 

system is equal to the number of finite poles in the open-

loop transfer function, which in the case of the phase-lock 

loop is the number of poles of AKF(s)/s. 

Thus, to impliment a first order phase-lock loop, 

we require that F(s)=l, which means that we require no filter 

within the loop. The inclusion of a first order filter 

results in a second order looo and so on. 

To demonstrate the performance of the loop with 

different filters, let us consider the response of the loop 



-e, csl 

fig. l .S 

fig.l.6 

Linear Model of Loop 

~t dt 

1 
s 

F (S) 

Phase-Plane Trajectory of ~st Order Loop 
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__ to a constant offset in frequency. The phase angle of the 

received signal can then be written as~u1 t +eand we can 

write; 

where; 

u..(t)~ I 

=0 

and 

6;(s') -

\ 

\ 

t~o 

i: < o · 

Combining equations 1.16 and 1.19 we have; 
....._ 
¢C~) = (wr·w u) ·f- GS 

S ( S -t- A\< F(s)} 

(1.18) 

( 1.19) 

(1.20) 

Let us now consider several choices of filters and investigate 

the behaviour of 4 (t) . We are not interested in finding an 

explicit expression for~ (t) for all times, because, as 

pointed out earl.ier, the linear model gives an accurate de-

scription of the loop only when the phase error is small. We 

will thus confine ourselves to finding under what conditions 

and for what choi ces of filters the asymptotic value of error, 

lim ¢C-t) become ~; small. If we consider first, the loop with 
t+oO 

no filter, equat:_on 1. 20 becomes, 

(1.21) 
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and applying the final value theorem: 

U/1- Wo 

1\K (1.221 

Thus , only if the initial frequency offset is sufficiently 

small, will the loop with no filter settle to a satisfactory 

stea dy state error. If we consider a filter with an inte-

grator, that is, 

F<s) -= 
(1. 23) 

we find that the steady state phase error is: 

(1. 24) 

A system with an integrating filter can thus asymptotically 

track a constant frequency offset with zero asymptotic error. 

In reality, a perfect integrator is impossible to 

realize. With actual components, we might build a filter 

which approximated the integrator, with a transfer function 

of t h e form: 

f(s) :::: 
(1.25) 

The final value theorem predicts that the steady 

state phase error for this filter is: 

~t ¢(t) = (w,-Wo)E. 
t:-P- 00 A K o.... (1.26) 

Thus , although the steady state phase error is not zero, it 



can be made to approach zero by appropriately choosing~ 1 e 

and making the gain of the loop large in comparison to the 
' 

offset frequency. 

Similar investigations can be made for other input 

phase conditions and the best filter transfer functions can 

be chosen. So called, optimum filters, for the linear 

model, have been derived, based on the Wiener9 criterion. 

1-7 HOLD IN PERFORMANCE 

~The preceding material on tracking and phase error, 

is based on the assumption that the error is sufficiently 

smal l ; thus allowing the loop to be considered linear in its 

17 

operation. This assumption becomes progressively worse as the 

error increases until finally the loop drops out of lock and 

the assumption no longer holds. In the previous section, we 

showed using the final value theorem that the linear approx-

imation of phase error due to a frequency offset is: 

cp ~UJ 

- AKF(o) 

. 10 
However, for a sinusoidal phase detector, the true express1on 

should be: 

AK F(o") ( 1. 27) 



The sine function cannot exceed unit magnitude,there-

·--fore, if L::>.uJ > AK F(o) there is no solution to this equation. 

Instead, the loop falls out of lock and the phase-detect~r 

voltage becomes a beat-note rather than a de level. The 

hold in range of a loop therefore may be defined as: 

A t.Vli ':::: .:t A K F ( o I 
(1.28) 

Equation 1.28 implies that the hold-in range can be made 

arbitrarily large, simply by using very ~ high loop gain. Of 

course, this cannot be entirely correct because spme other 

component in the loop will then saturate before the phase 

detector; thus, equation (1.28) applies only theoretically. 

Assuming the loop is locked onto a frequency and 

suddenly a step change in input frequency takes place, one 

might ask 1 can the transient error pull the loop out of lock, 

even if the static error is within the hold in range? At 

worse, the loop will unlock, skip cycles for a while and then 

lock up once again. There is some frequency step limit below 

which the loop does not skip cycles, but remains in lock. 

This limit is often referred to as the "pull-out frequency"~ 

V. b' 11 h f d 1 . 1 . ~ter l as per orme ana ogue computer s1mu atlons of 

various loops and from his results, estimates of "pull-out 

frequ ency" can be made. 
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1-8 ACQUISITION 

In previous sections it has been tacitly assumed that 

the loop v7as initially in lock. In fact, a loop is initially 

in an unlocked state and must go through an acquisition period. 

Experimental evidence indicates that there are a number of 

ways by \'17hich lock may be acquired; each depending on the 

loop parameters and input conditions. If for some reason, 

the frequency difference between input and VCO is less than 

the loop bandwidth, the loop will lock up almos~ instant-

aneously without skipping cycles. There are some loop types 

in which the VCO frequency will slowly walk in toward the 

input frequency, despite the fact that the initial frequency 

difference may greatly exceed the loop bandwidth. The 

maximum difference frequency for which the loop eventually 

comes into lock is called the "pull in frequency", and its 

value for any particular loop can only be estimated from 

experiment or computer simulation. 

It is instructive to consider the acquisition of 

lock for a first order loop. Equation (1.12) becomes: 



The system trajectory can be plotted, according to 

equation (1.29), as in figure (1.6). We have assumed that 

the input to the loop is a constant offset in frequency, 

- that is; 

. e,(t) =(W-UJo}-t -t- e 

We know that when the loop is locked, _4i. is zero and the 
c;tt 

20 

phase error~ has reached its steady state value. If for the 

initial value of phase error, the derivative is positive, 

equat ion (1.29) indicates that t will increase as a function 

of time. In fact, the system follows the trajectory 

illustrated above, moving toward the right until it reaches 

a va l ue of ~ for which d..4/J.t = 0 

Simil arly, cp(t) decreases if the derivabive corresponding to 

the initial phase error is negative, moving from right to 

left until a point is reached at which the derivative is zero. 

It is clear from the figure that d¢jdt is zero at any 

of the following values of 4 : 

(1.30) 

4>~ ::::. ( '2. f\- \}rr - S i n-1 w- Wo 
A\< 

However, the stable points occur only for the points ~~ , 

~! ~ while the points ~., are unstable since perturbations of ~ 

either direction will cause the system to migrate until it 

in 

reaches the next value at which the derivative is zero, which 

will necessarily be a stable point~~-
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The figure also serves to illustrate the lock-in 

range of the loop. If w-w0 ">AK the trajectory does not cut 

the ~ axis, no stable points exist and the loop never achieves 

lock. ~(t) continues to increase or decrease forever along 

the sinusoidal trajectory. Thus, lock-in range for the first 

order loop is the same as the hold-in range described in a 

previous section){ 

Trajectories for higher order loops can ·be obtained 

in a similar manner by solving the appropriate non-linear 

- ~ifferential equation. For an extensive discussion of these . 

so-called phase plane plots, reference can be made to 

Viterbi~ 1, 12 

1-9 ADDITIVE NOISE IN PHASE-LOCK LOOP 

As mentioned at the beginning of this chapter, the 

most important and unavoidable disturbance in the majority 

of radio communication systems is additive thermal noise, 

which is a zero-mean wideband Gaussian process whose spectral 

density is nearly flat over the frequency range of the 

receiver. 

Under certain assumptions it can be shown13that a 

stationary Gaussian process n(t) with zero mean can be 



22 

expressed as; 

(1.31) 

where one of the assumptions is that the noise process n(t) 

has been passed through a symmetric wideband band pass 

filter with center frequency C..<..J0 , such that the two sided 

spectral density of the noise is N /2 over a sufficiently 
0 

wide frequency range centered about + ~V . 
- 0 

To examine how the additive white Gaussian noise 

affects the operation of the loop, let the received 

signal be: 

V2 A Sin e(t) +m(:t} = 1/E [Asir.(wo-t fe;l(-t)) 

t fY/1 (t:) S ~ fl Wo t t-· l'()z. (-t) Cos ().J"t (1.32) 

The VCO output signal can again be written as; 

(1.33) 

But in this case e'(~) is not only a function of signal 

modulation but also of the noise process n(t). 

The output of the multiplier can, of course, be 
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written as, 

rt.(;t') = A K, S i "L ~, (t)- e, (t)]- k 1 n, (t) S i 1'\ s,lt) 

+K,t'\~(t!Cos el.(t) 
(1.34) 

where we have eliminated all high frequency terms because of 

the presence of the low pass filter following the multiplier. 

Continuing, .in a fashion similar to that used in the 

development of equation (1.12)
1 

we can write, 

(1.35) 

which is the equation of operation of the loop when signal 

plus additive noise are applied at its input and where, 

(1.36) 

Equation 1.35 is represented by the block diagram 

in figure (1.7). We note, in particular, that for the sake 

of a n alysis, the noise enters the loop after the sinusoidal 

non-linearity. We can again make the approximation 
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---- - where --~(t') · now depends on n' (t) as -well -as s-ignal, and then 

A sin( ) in figure (1.7) can be replaced by A. 

If we assume that noise alone is present at the 

loop input then e,(t)=-o and ~t.t}== -ez Ci) ; 

their means are both zero and they are stationary in the 

steady state. Their spectral densities can be written as; 
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(1.37) 

where Sn(w) is the spectral density of the noise and H(s) is 

--the closed loop transfer function defined in equation (1.17). 

On t h e assumption that the noise process is white with one-

sided spectral density N , equation (1.37) can be written, 
0 

(1.38) 

and t he variance of the phase error or phase jitter can be 

written as: 
oO c;>O 

u-; ~ ~' s I H (jw)l' cLw == N~s~ H (w),z.ol.w 
Z.A '-1T A J '2Ti 

-()¢ () 

(1.39) 
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The loop noise bandwidth is defined as, 

l 

HCJ·~~~ ZTI 
(1-.401 

and the phase jitter, in the steady state is: 

(1.411 

Thus, the loop noise bandwidth is defined as the bandwidth 

of a n ideal low pass filter whose output variance is cr~~ 

when the input is a white noise process with one-sided 

spect ral density N /A2 . Of course, loop noise bandwidths 
0 

for various loop filters can be determined by evaluati?g 

the i ntegral in equation (1.40). 

It should be remembered, that the results above 

are only approximations since they are based on a linear 

mode l and will hold only for values of variance less than 

approximately 0.25. 

Attempts have been made to obtain results for loops 

in t h e presence of noise without the assumption of linearity, 

the most successful being, work done by Viterbi.l4 



CHAPTER TWO 

THE DIGITAL PHASE-LOCK LOOP 

2-1 INTRODUCTION 

In this chapter, a new type of loop will be described. 

Unlike the conventional phase-lock loop, in which analogue 

circuits are used, the loop discussed below is implimented 

with logic circuits (gates, storage elements). When excited 

by a ppropriate clock signals the loop will exhibit properties 

very much like those of an analogue loop and as such is re­

ferr e d to as a digital phase-lock loop. The discussion and 

analy sis which is made in this chapter is a condensed ver­

sion of the analysis which appears in a paper published by 

Paste rnack and Whalin1 . The block diagram of the so-called 

"n t h " order loop is first presented. Based on this block 

diagr am, an equation of operation is developed using differ­

ence equations and the z-transform. The equations are then 

reduced to those of an n=l digital loop. 
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- ·- z=2 -- GENERAL DIGITAL PHASE-LOCK · LOOP 

In figure (2:1) the general "n th" order digital 

phase-lock loop is illustrated in functional block diagram 
\\ II 

form. Among its basic components are an exclusive or com-

parator which d=velops a gating function dependent upon 

the phase relatLon of its two inputs, and transmission 

gates operating on a number of clock signals to provide 

inputs to regis ·:er circui t X'Y. Unlike the analogue phase-

lock loop, then~ is neither a voltage controlled oscillator 

nor a low pass f ilter within the loop; although, we will 

find, that for most applications it is necessary to include 

a lo\-7 pass filte r at the output of the loop. 

When thE~ loop is locked, shift circuitry period-

ically transfer~ the contents of i th register to (i+l)th 

register. The transfer period is one half that of the 

input waveform. The shift is controlled by the n th 

register \.vhich provides an output pulse after M clock 

pulses are counted. A flip-flop will convert the output 

pulse train to a square wave which is used as the second 

input to the phase comparator. 

In order to determine some of the properties of the 
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loop, its operat.ion is described in terms of a linear differ-

ence equation. Tn figure (2.2) we have illustrated some 

waveforms which 'vill aid in the formulation of this differ-

ence equation. 
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The ~aveforms are for a phase-lock loop which is in 

a locked condition with constant input frequency. We shall 

assume that clocks g., i==l,2·•n will be enabled during a "o" 
1 

level of the gating signal (output of the exclusive-or) and 

the clocks f., i=l,2· ·n will be enabled during the"l" level 
. 1 

of the gating waveform. If we further assume that the first 

register is initially cleared then its c6unt at the end of 

the (K+l)th period is 

For each successive period the count will be shifted 

into the i th register and increased by a count of: 

This count will propagate thro.ugh the n registers until the 

number M is reached in the n th reqister and the count is 

reinitiated. It is of interest to note that although n( 

seconds are required for a complete count cycle, new count 

cycles will be initiated every e seconds. 
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After nf seconds the count in the n th register will 

be the sum of the pulses counted during the previous n/2 

periods of the input waveform. Equating this sum to M we get: 

~~ce(k}-r(k~+~-a[('(k .,..,) -r(kt-1)] t - - .... -

t5n[((k+r\-C)--c(k+n-l)+f,T(I-\tl)r·· · ·- · 

t f(\ -c ( k +T\} =- tv\ 

Rewriting the above equation: 

fn-c(k+n) ~n-\-~A'y-c (k-rn-l)t- - - - -- j 1T(k) 

= M- [~" f(ki-Y\-~+5n-\ ((k+l\-Z.) T - - -­

+ 5-e. e(k+\J T Cj\ f(~-<1] 

(2 .11 

(2 0 21 

which is the n th order_ general difference equation relating 

the response -r: ( k.tn) to the excitation e ( kt-n) • 

Recalling, that for a general analogue system describ­

able by a linear differential equation 1 we use the Laplace 

transform to arrive at a system equation in which polynomials 

in s multiplying the response and excitation functions, 

result in poles and zeros respectively, in the s-plane. By 

the appropriate choice of the coefficients in the differ~~tial 

equation we are able to locate the poles and zeros in a 
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pos i tion in the s-plane so as to. give a desired frequency 

response. In a similar manner, we may apply the Z-transforrn 

to the difference equation 2.2 and since there is a one to 

one correspondence betv-reen the s and z planes with regard to 

poles and zeros, it can be expected that by properly choosing 

coefficients, equation 2.2 can be synthesized to provide a 

desired frequency response (high-pass, low-pass, band pass etc) 

possessing specified critical frequencies. In most applica-

tions of phase-lock loops and in particular, for the applica-

tion we shall introduce later, we are interested in exploit-

ing the low-pass properties of 2.2. To achieve this, we 

set the coefficients g. , i=2, 3· .n to zero thus locationg 
1. 

the z plane zeros at infinity and obtaining maximum high 

frequency attenuation. Equation 2.2 becomes: 

· fr\ T (ktn\t-tn-\ -c(k+n-~+-- ·-- 51-c (k) 

=M-5,e(k) 

Further, we shall normalize equation 2.3 by making the 

f ollowing substitutions: 

Fi ~iL 
+Y\ 

G,-::. ~~ 
f(\ 

(2.3) 



Equation (2.3) then becomes, 

v(k;-") t Ff\-1 v(Ki-f\-\lt -- ---F,v(k;.i}-G1 v(k) 

= '2. M ~(k)- 6, 

where; 

( 2. 4) 

Notice, that v(kij 1 is the cycle-by-cycle aver~ge voltage of 

• the!' (k+J ) interval expressed as a fraction of the maximum 

possible voltage. In figure 2.3 we have redrawn the . gating 

wavef orm from figure 2.2. The complex Fourier series for 

the gating waveform using the symbols from the di~grams i~ 

where 

and 
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-~he--D. C. component of this series is A '"C' /e and there­

fore, V (/<.t-j 1 is proportional to the D.C. component of the 

gating waveform. It is this D.C. component, which is a meas.­

··Ure of the phase difference between the phase comparator 

inputs, that we shall make use of for the application 

described in chapter 3. 

2-3 FIRST ORDER DIGITAL PHASE-LOCK LOOP 

Equation (2.4) which was developed in the previous 

secti on is the system equation for the n th order digital 

phase-lock loop with a low pass frequency response. In 

this section we shall reduce equation (2.4) to the differ­

ence equation for the first order phase-lock loop and 

derive some of the important parameters of the loop. The 

approach can just as well be applied to the design of 

higher order loops, but as might be expected, the higher the 

order of the loop, the more tedious the mathematics becomes. 

The difference equation for the phase-lock loop 

with n=l is easily written from equation (2.41, 

v(kr t)- G, v(k)-= 2MF-G, 
(2. Sl 



where M=2N-l and N is the number of counter stages in the 

_ register in the system. Und~ steady state conditions 

v(k+l)=v(k) so that, 

or 

We can de-normalize equation (2.6) by multiplying the 

numerator and denominator by f =f1 to give; 
n 

v(k )= 

( 2. 6) 

(2.7) 

where f is the fundamental frequency of the input signal and 

f 1 and g1 are the fundamental frequencies of the two clocks. 

Since b~v(k)El we can define the end points of 

the lock range by: 

end 
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f [ v(k)=o]-= :1'/?.M 

f [ v( k) = 1]-= f1 /c. !VI 

( 2 • 8a) 

(2.8b) 
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Thus, the loop will lock onto any signal whose fund-

amen tal frequency lies between. g 1/2M and f 1/2M and will 

remain locked onto the input signal as long as it remains 

within this range . In figure ( 2. 4) we have illustrated the 

so-called static· response of the loop. The maximum voltage 

V is equal to the voltage magnitude of the high logic 

level of the elements used. In the diagram, we have assumed 

that the low logic level is at zero volts. It is important 

to note that in the lock range the voltage output versus 

frequency characteristic is perfectly linear. This is 

exactly the relationship required for frequency demodula-

tion without distortion. Thus, the digital phase-lock 

loop is an ideal device to use as a frequency discriminator. 

Applying the z- transform to equation (2.5) we get; 

(-z.-6:) V{z)-= (2MF-6,) :_, t Z v(o) 
(2. 91 

A partial fraction expansion yields; 

V(z.) _[2MF-~7 'Z 
{ I -G1 j 7.. -1 

-t-fv(o) _eMF-§}..!:_ 
L" 1-G,j?...-G, (2. 10} 



_ Assuming that for t-<.. o the normalized input 

frequency is F we can write from equation (2.6), 
a 

-V(o) = 2MF~-G, 

I -:- G1 

If we further assume that at t=o the input steps to Fb' 

we can write the response for t ~ o as, 

( 2 .11) 

The inverse z-transform can then be written as; 

V(k.)= Zlv1Fb-G, _ 2M (Fb-Fc..)~ )k 
I - G, I -G G, I 

(2.12) 
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In order to obtain the time constant of the loop we 

shall assume that v(k) is a continuous function of time 

and let v(k)=v(t) and t=kp=k/2fb . Thus, 

v(-f)= 

(2.13) 

The time constant can then be written as; 

(2.14) 

Unlike most other physical systems, we find that 

the time constant, and therefore the response of the 

digital phase-lock loop is dependent upon the input frequency 

fb. That is, the loop will respOnd somewhat differently 

- for each input frequency within its lock range. If we 

recall that the count cycle of the register is equal to one 

half the period of the input signal, it is intuitively obvious 

that the overall time constant of the loop should depend on 

the p eriod of the input signal. 
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2-4 IMPLIMENTATION OF THE FIRST ORDER DIGITAL PHASE-LOCK LOOP 

In figure (2.5) we have illustrated a logic circuit, 

whose performance is describable by difference equations 
,, ,, 

(2.5) and (2.12). The exclusive or and ,N sta~~ binary 

counter are standard logic devices and their operation 

- needs no explanation. Ho···ever, the transmission gate does 

require a brief description; The configuration of nand 

gates is such that for a low logic level ("o") at the output 
" ,, 

of t h e exclusive or, the output of the low frequency clock 

-- g 1--will be transmitted unaltered through the nand gates and 

applied to the triggering point on the first stage of the 

count er. At the same time the transmission gate will act as 

an open circuit to the output of the high frequency clock f 1 . 

When a high logic level ("1") appears at the output of the 
,, ,, 
exclusive or, the situation is reversed,that is, the trans-

--miss i on gate acts as a short circuit to the output of the 

high frequency clock f 1 and as an open circuit to the output 

of the low frequency clock g
1

. Thus at any time during the 

operation of the loop, the output of one of the clocks but 

not both, will appear at the input to the counter. 

- In figures (2.6), (2.7), and (2.8) we have illustrated 

waveforms at ~arious points in the loop for three different 

input conditions. In the figure (2.6), we have assumed -that 
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there is no input to the loop and that at time t 1 the feed­

back signal is at a low logic level ("o"). Tne output of 
\\ ,, 

the exclusive or is therefore also a "o" and clock g 
. 1 

is enabled. Fo r simplicity, we have further assumed that 

the counter has only three stages and therefore when the 

fourth (M=4) pulse is applied to the first stage of the 

counter, the fe t:~dback signal makes the transition from a 
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"o" to a "1". 
t\ II 

!3ubsequently, the output of the exclusive or 

makes a similar transition and clock f is enabled. After 
1 

four pulses fron clock f another set of transitions occur ---- - 1 

and cycle is re :.nitiated. From the illustration, it is 

evident that the quiescent frequency of the . loop is, 

But, one half c y cle will be at. g
1

j2M and the next at f 1 j2M· 

In figure (2.7), we have illustrated similar wave-

forms for the case of an input signal whose frequency lies 

withi n the lock range of the loop; that is within the fre-

quency interval _(g1 j2M, t:1 /2M). Y.7e have assumed that at 

t=t 1 both the input and feedback signals are "o"'s. There-

'' . ,, 
fore, the output of the exclusive or is a "o" and clock g 

. -1 

is e n abled. However, before four clock pulses from g 
. 1 
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can be transmitted to the counter, the input signal makes a 

transition from a "o" to a "1" and as a result, the output .. .. 
of the exclusive or makes a similar transition,thus enabling 

clock f 1 • After three pulses are transmitted from clock f 1 , 

the count reaches fou~ causing a transition in the feedback 

signal and subsequently, a second transition in the output 

.. It 

of the exclusive or; clock g1 is re-enabled and the cycle 

is reinitiated. We note that the frequencies of the feed-

back and input signals are the same and that the phase 

..difference between the two signals remains constant; the 

loop is said to be locked to the incoming signal. Also 

the output of the
11

exclusive or
11
is a measure of this phase 

difference and as mentioned earlier, the D.C. component of 

the waveform is directly proportional to the phase differ-

ence. 

Figure (2.8) illustrates the loop waveforms for the 

last of the three possible input conditions; that ls, an 

input signal which lies outside the lock range of the loop. 

The loop reaches a steady state condition where all the wave-

forms are cyclic. However, the frequency of the feedback 

signal is riot equal to that of the incoming signal; the loop 

is unable to lock onto the input. Although it may not be 

evident from the illustration, the phase error waveform is 

actually a beat note whose fundamental frequency equals 

the frequency difference between the input and feedback 

signal . If this beat note were passed through a low pass 
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filter with cut off frequency of the order of the frequency 

·--difference, the output of the filter would be as in figure 

(2.9). 

2-5 CONSTRUCTION OF THE DIGITAL LOOP 

The first order Digital Phase-Lock Loop illustrated 
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in figure (2.5) was constructed and tested. A block diagram 

of t he test arrangement is illustrated in figure (2.10). The 

loop itself was built using Texas Instruments logic integrated 

circuits. Two four-stage binary counters were cascaded to 

form a~ eight-stage counter; thus, from equation (2.5) M=l28. 

The clock* frequencies were arbitrarily chosen at 363.5 KHz 

and 262.5 KHz. Thus, from equation 2.8 it was expected that 

the lock range would be from 1025 Hz to 1425 Hz. To insure 

-that the input signal to the loop could ass~~e only voltage 

leve l s equal to the two logic levels of the integrated cir­

cuits, a limiter* with an input-output characteristic as 

illustrated in figure (2.11) was included between the oscill­

ator and loop. 

* For a description of clock and other circuits used, 

refer to appendix (A) . 
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In the first i:est, the oscillator frequency was varied 

-- --Over and beyond the expected lock range of the loop. For 

each input freqt .encyi we measured the phase error, D.C. 

output of the lcM pass filter and frequency of the feed­

back signal, the results are plotted in figure (2.12). The 

loop performed a s theory predicts. Over the predicted lock 

range the D.C. voltage output of the filter varies linearly 

with frequency. Over the same range, the phase difference 

between the input and feedback signals varies from o to ~ 

radians. 

In the next test, a second oscillator ~Tas connected 
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with the first,in such a way that we could electronically 

switch bet\veen the two. Initially, the oscillators were 

adjusted such t h a ·t t h e frequency of e a ch \vould be within the 

l ock range of the loop. The frequency of switching be­

tween the oscillators was 120Hz. That is,for time equal to 

l /120 seconds the output of the one oscillator was applied 

to the loop and at the end of that interval the output of 

the second oscillator was applied for 1;120 seconds. A 

picture of the waveform at the output of the filter is shown 

in figure (2.13a). 

The freq uency of one oscillator was then adjusted 

such that it would lie outside the lock ra~ge. The corres­

ponding picture is shown in figure (2.13b}. For each 
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successive interval of 1/120 seconds, the loop is unable to 

lock onto the input and the result is a beat note at the out­

put of the filter. From this picture, we are able to estim­

ate that the time taken for the loop to go from an unlocked 

to a locked state is approximately 1/360 seconds. This rough 

estimate of lock-in time will be of some value in the last 

chapter when the digital loops are used as part of a binary 

signal detector scheme. 

-- We can conclude from the experiments performed on 

the digital loop that its performance is similar to that of 

the analogue loop and, as such, can be used in similar appli­

cations. However, it is evident from the construction of the 

digital loop, that it has certain advantages; 

1) It is completely integrable using one or more monolithic 

chips and can therefore have a small size. 

2} Since it is digital, it is more reliable. 

3) The stability of the loop is solely dependent on the 

stability of the clocks, which may be as good as required. 

4) It includes, in effect, an ideal voltage-controlled 

oscillator, the frequency of which is linearly related 

to voltage. 



CHAPTER THREE 

DETECTORS 

3-1 INTRODUCT: ON 

In this chapter we shall discuss some aspects of 

communications ~ ;ystems in which digital signaling appears. 

We s h all briefly outline the techniques used for trans­

mitting disital data and then illustrate the receivers which 

may be used for the detection of such digital signals. The 

theor etical anaJysis of these detectors will be based on the 

principles of st.atistical decision theory. The problem 

normally encountered in digital communication involves 

deciding on a particular signal transmitted and since this 

probl em is of a statistical nature, then decision theory 

will enable us to find the optimum means of making this 

decision. After demonstrating the theoretical derivation 

of these optimum detectors we shall, based on physical 

intuition, propose a detector which utilizes phase-lock 

loops as its basic components. 
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3-2 CARRIER TELEGRAPHY 

Telegraphy means the transmission of a message to a 

remote location. Although the term originally meant the 

transmission of a language message, it has more recently 

come to mean the electrical transmission of a message encoded 

- in binary form. In its simplest form, such a signal may 

utilize on-off (1 or 0), or bipolar (+1 or -1) voltage 

waveforms. More generally, the binary signal is a train of 

pulses each having associated with it, two voltages, the 

-choice of which depends on the message to be transmitted. 

Carrier telegraphy is the use of a telegraph signal 

to modulate a carrier. The common forms of modulation are 

of course, amplitude (AM), frequency (FM), and phase (PM). 

The AM form corresponds to 100 per-cent modulation with a 

bipolar waveform, the carrier is keyed on and off by the 

--telegraph waveform. This system is referred to as on-off 

keying (OOK) . The FM corresponds to the bipolar modulation 

of the frequency of the carrier. For a rectangular 

modu l ating signal, which is the type we are interested in, 

the states of the modulating signal are described by a 

pair of discrete frequencies. This system is commonly 

referred to as frequency-shift keying (FSK). For the third, 

a choice of a o0 or 180° phase shi ft in the carrier determines 

the state of the modulating signa l and is referred to as phase-
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shift keying (PSK). Figure (3.1) illustrates the three types 

of carrier telegraphy. 

Extensions from simple carrier telegraphy arise 

when one considers the multiplexing, or the simultaneous 

transmission of a number of telegraph waveforms by use of a 

single radio carrier. 

Time division multiplexing (TDM) involves sequenced 

sampling, at a uniform rate,of each telegraph waveform to 

be transmitted. The composite waveform which results is 

then transmitted by standard techniques of carrier 

telegraphy. 

Another multiplexing technique is the so-called 

frequency division multiplexing(FDM). In FDM, each of the 

telegraph waveforms is modulated in a standard fashion 

onto a different subcarrier, with the subcarriers normally 

in the audio range. This set of modulated subcarriers 

is then added together to form a composite waveform which, 

in turn, is modulated onto a radio carrier. At the receiv­

ing end, after demodulation down to baseband, the sub­

carriers are separated by filtering, and subsequently 

demodulated individually. 

In terms of the results presented in this chapter, 

the analysis of the performance (error rate) of any one 

channel of a multiplex system is just the problem of deter­

mini ng the probabilty of error for each pulse in the channel. 
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Thus, the following analysis wi ll be for a non-multi­

plexed telegraph signal, the results of which may be applied 

to a multiplex system using the same carrier-modulation tech_. 

nique. 

3-3 STATISTICAL DECISION THEORY 

In the last section, we described three modulation 

techniques for transmitting a binary message. In_ general, 

the signals for a mark or space (1 or Ol may be described 

by 

Sj (t) =- Cj(t) SiY\ (;uot + ej (~) +~] (3 .1) 

for 0 < t <. T ) j -::: 0 > I 

where T is the time duration of one naud (mark or space) . 

However, in a practical communication system these 

rece i ved signals will be corrupted by additive noise and 

can therefore only be estimated. The techniques of deci­

sion theory will enable us to find the best way to perform 

these estimates. 

Let us consider the simple problem of detecting 

the absence or presence of a signal pulse. Given a statis­

tical sample of value v, we must select between one of b ,vo 



alternative hypothesis. Hypothesis H
0 

may correspond to 

saying the voltage v measured represents noise, or a "o" 

transmitted. Hypothesis H1 , the alternative hypothesis, 

corresponds to saying a pulse, or a "1" is present. Of 

course, either choice on our part may be in error. Let 

us divide the one-dimensional space of v into two parts, 

V
0 

a nd v
1

; V
0 

corresponding to our choice of _hypothesis 

H
0 

a nd v
1 

corresponding to our choice of hypothesis H1 . 

We must then choose V
0

(or v
1

) to minimize the overall 

probability of error. 

We assume that the a priori probabilities P
0 

and P1 

of t r ansmitting a "o" and a "1'~ respectively,are given. 

We are also given the conditional probability densities 

p 1 (v) dv and p
0 

~~) dv, corresponding to the probability 

of receiving v, given a "1" transmitted or a "o" trans-

mitte~respectively. For Gaussian noise, and pulses of 

values o and A, these are just the probability densities 

illustrated in figure (3.2). Thus the error probability 

that v will fall in region V , although a "1" was trans­
o 

mitted,is 

S p.(v)olv 
Vo 
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and likewise that v will fall in region v 1 , although a "o" 

was transmitted1 is 

S p.(v) Jv 
v, 
The overall error probability ? 1 that is to be minimized 

e 

by the appropriate choice of V ,is given by 
0 . 

61 

Since V
0 

plus v1 include all possible values of v then we 

can write: 

S p. ( v) d. v = I 
Vo t"" 

Now we can eliminate v1 from the probability of error 

equat ion and write: 

Pe = Po t-j [P. F•( v)- P. p.(v?J dv 
Vo 

Since P
0 

is assumed to be a known constant, the probability 

of error can be minimized by choosing the region V which 
. 0 

minimizes the integral; we can do this by choosing a 
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region in which 

This will ensure that the int~gral is always negative 

and therefore P will be as small as possible. 
e 
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For the case of Gaussian noise which was illustrated 

in figure (3. 2) , V 
0 

corresponds to all values of v < A/2 and 

v1 to all valu~s v > A/2_. Thus in the implimentation, a 

threshold level at A/2 would be established such that if ~ 

exceeded this level we would decide in favour of a ''1" being 

received and if v was below the level, we would make the 

alternative decision. 

The rule for choosing H , which we have just developed 
0 

on the basis of minimum overall probability of error, is 

called the Bayes decision rule. It is stated usually as 

where the ratio of probability densities 

is called the likelihood ratio. 

I 
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3-4 DETECTION OF KNOWN SIGNALS IN NOISE (COHERENT RECEPTIONJ' 3 

In this section we shall consider the problem in which 

the binary information is to be carried by either one of 

two signals s
1 

(t) and s
0 

(t) of arbitrary and different 

shape . Examples would include phase-shift-keyed and fre-

quency-shift-keyed signals which we discussed earlier in this 

chapter and which may be described by equation 3.1. 

The important assumption, necessary for this 

analysis is that the two signals must be known exactly. 

That is, we must have precise knowledge of the amplitude, 

frequency and phase functions of the two signals trans-

mitted~ It is in this sense, that we refer to the receiver 

as being coherent. 

The model of the communication system is illustrated 

in figure ( 3 • 3) s , 0 
(t) and· s

1 (t) are deterministic sign-

als of duration T seconds and n (t) is assumed to be a 

sample function from a random Gaussian process of known 

autocorrelation function. 

Let us assume that observations of y (t) are 

available at the instants _ t 1 , t
2

, ... tk where tk = k ~T 

and T-L:!!.t<kA.t~ T. Then we may use vector notation to 

represent the pertinent waveforms : 



N=[m,, 1h---- 11J 

We can then write: 

Y=S. + N 
J 

(3. 3) 

(3. 4} 

Since Sj is known exactly and the noise is Gaussian with 

zero mean and c ovariance matrix ~1\f', we have, 

p(Y/Sj)= p ,~ (Y) = p(Y-Sj=N) 

= [1/( cz11Y"I ~"'iv') J expft ('1-Sj)( ~~}('1-~:)'"J 

We can now writE~ the likelihood ratio as 

exp E Yz. ('1-S)-r ¢~' (i'- s)] 
expt Yc. t/-sof ¢;~ (Y- So)] 

(3. 51 

(3. 61 
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which according to Bayes rule must be compared to K=P jP 
0 1 

-where P and P are the -a priori probabilities of s (t) 
0 1 0 

and s 1 (t) respectively. For convenience we will choose to 

compare ln L(Y) with ln(K): 

fn (LCY)) :::- -Yc_(-Y'~(\~s,-s~ ~~~ Yt~' ~~~ s, 
+ yr ~~~SoTS: ¢~~'1-s:cp~ s:; 

where YT ~;~ s~ is a quadratic form* so that: 

Equation (3.7) may be written as, 

f) LCY)..:..... '/Tk,-1 s -YTh_, s _II s~',h-l tC- 11 s,. ,h-1 ~ 
)U\ - lpfln 1 !_ff\f\ o I C. -1 't'\1'\ ~ 1 t /C.. o o/(\ n ~ o 

* See Ogata1 · 

( 3. 7) 
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Since the last term in equation (3.9) does not depend on 

the received data and is composed of known factors, we can 

replace the comparison of ln L(Y) to ln K by the comparison 

of Y' ~"~1 (S, -So} to the constant 

lf\ K t- Yz. (s,T ~(\~ s, -S~ ~;:~So) 
Therefore the decision boundary equation can be written 

in the form, 
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(3.10) 

The constant on the right side of equation (3.10) is 

often referred to as the bias and we shall denote it by b, 

that is 

(3.11) 

The operation of this receiver is now clear from equations 

(3.10) and (3.11) and is illustrated in figure (3.4). The 

receiver is to sample the received .waveform y(t) to obtain 

the vector Y and then calculate the statistic 

(3.12) 
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The decision as to which signal was transmitted is then 

made as follows; if v<o then s (t) was transmitted; if 
0 

v)o then s 1 (t) was transmitted. 

In most cases we are justified to assume the a 

priori probabilities equal, the noise white and the signal 

energies equal. Thus P1=P0=~, ln K=o, ¢'M-==\f~I where 

I is the identity ma·trix and v-2. is the mean-squared value 

of the noise s~nples, and 

T 
S· S· -= E L j 

S~Sj =('E 

where e is the cross-correlation coefficient. Thus, the 

bias term (equa1:ion 3.11) reduces to zero and the decision 

boundary equation 3.10 becomes, 

i 
v =- Y ( s,- Sc)-= o 

Hence, the recejver must perform a discrete correlation 

of the received data with stored replicas of each of the 

69 

two signals s0 a nd s1 . In figure (3.5) we have two possible 

discrete systems for implimenting equation {3.13). In the 

second of two irrplimentations the discrete correlator has 

been replaced by a discrete matched filter. 
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3-5 PROBABILITY OF ERROR 

The measure of performance of the optimum receiver 

derived in the previous section is the probability that it 

will make an error, that is, the probability that the 

receiver will decide in favour of s 1 (tl when, in fact, s
0

(t} 

was transmitted, and the probability that the receiver will 

decide in favour of s
0

(t) when, in fact, s 1 (t) was trans­

mitted. This overall probability of error can be written as 

(3.14) 

where P
0 

and P1 are the a priori probabilities and PE(j) is 

the probability of error when s. (t) is transmitted. Re-
J 

ferring to the boundary decisioH equation 

v -:;; ·y,-( S, -So)-== o 

we see that 0 

Pc (t) = P{ v.:.ojS ,) 1. p(v/S,)clv 
-oO 

(3.15) 

Since the random variable N is Gaussian, first and second 

order statistics of v are necessary to compute p(v/s1 ). De­

fining v. to be the random variable v under the hypothesis 
J 

that the j th signal was transmitted, we have, 



v· 
J = ( Sj tiV).,.(S,- S()) 

= Sj 5 , - Sj So 
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= E(1..:.e' 
= ~ E ( ;: - \) 

(3.16) 

Since the var i ance of v. is due only to the noise and is 
J 

therefore indepe ndent of the signal, we can compute the var-

iance under the assumption that Y=N. Therefore, 

va.r "i = v~r Af 1 ( S,-So) 

= Nr(~> 1 -So} N1(S ,-So) 

= ?...v '~ E {t-C) 

= tV() E. (1-() (3.17) 

where N is the one-sided spectral density of the white noise. 
0 
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Therefore, 

-oe 

- where we have rnc de the substitution, 

and we defined 

- oO 

In a similar manner we can show that Pe(l')= FE (o} 
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and so, 

-t f erfc vJ=a-ei 
l\/o 

(3.19) 

Since the complimentary error function is a monotonic 

decreasing function of its arguement, we see that the error 

probability for coherent reception in the presence of white 

noise is a decre asing function of the ratio of signal 

energy to the noise density E/N
0 

and is an increasing func­

tion of the normalized inner product f . In particular, 

the error probability does not depend on the signaling wave-

forms. In figure (3.6) we have plotted probability of 

error curves for two different values of cross-correlation 

coefficient. It is obvious from the · expression for prob-

abil i ty of error (equation 3.19) that the best choice fore 

i s ('=-I Physically we might expect this result, since 

we have shown that the optimum receiver decides in favour 

of the signal which most resembles the received data. For 

e-::::..-1 , the signals are as dissimilar as possible. The most 

often used syste~ for generating anticorrelated signals is 

phase-shift-keyi ng. 



t 
·,p 

E 

75 

l0- 1~----~~--------------------------------------------~ 

e==- o 

1 10 E/N 
0 

fig.3.6 Probability of Error Curves for Coherent Detector 



76 

The second curve of figure 3. 6 is for e =0 which corresponds 

to a system in Hhich the signals are orthogonal, that is, 

T s s,(i:lSo(t) d'c o 
0 

-The most often used system for generating orthogonal 

signals is frequency-shift-keying, where the carrier 

frequencies are chosen such that the signal spectra do not 

overlap. 

3-6 NON COHERENT RECEPTION2 ' 3 

In the l ast section we considered the optimum 

receiver implimEmtation for two arbitrary but known signals 

(coherent recepi ~ion) . In most practical communication 

systems, however, it is unlikely that precise knowledge of 

the signal phase is available at the receiver. As a result, 

we can no longer say that the signals are known and the 

impl i mentations of the last section will not be the optimum. 

In this section we will present the optimum non-

coherent detectc~. The techniques used in the derivation of 

the detector are similar to those of the last section and 

therefore will not be repeated. 
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Since in the e xoerimental work, which is outlined in the 

next chapter, we considered only the case of orthogonal 

signals (freque ncy-shift-key ing), we will present the non-

coherent detector for the particular case of orthogonal 

signals. Thus, the signals may be written as, 

J == 0> I 

= "T'f\ (t ) Casv.Jjt(cos ~ )--m(t} s 1 f\ uJjt(s 1 r\~) 

= ~ t) cos~ -TY\s(-t')S If\~ 
(3.20) 

Agai n, using t h e vector notation, 

~~ ~(41-r 

~{~} =: M c:,wj cos9-M~,wJ· Sir\~ (3.21) 

Under the assumption that the a priori probability density 

function f or t~e phase of the signal is, 

l 



the likelihood ratio can then be written as 

l(Y)= Io ( hT~;~-~4o,uJ~< ~c·r<(>;~1Ms,w~') = Io(E,) 
Io ( \( rJ ¢nn Me ,~~+ ()"c\)f\i\ Ms,w:}) To(E~ 
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(3. 221 

where I
0 

is the modified Bessel function of the first kind 

of order zero. But since the Bessel function is a monotonically 

increasing func t ion of its arguement, it is necessary only 

to compute and -t hen compare the arguements Eo and E,. 

The decision ru l e will be: 

s 1 {t) \vas transmitted if E. 1 >E. o 

s {t) was transmitted if 
0 

Under the assumption that the noise is white
1

the inverse 

covariance matr~x o f the noise equals the mean-squared 

.._ c- "l., value q- I f\"Z.(t):::::: c:r- ;and the receiver structures necessary to 

compute and compare ~ 1 and €: 0 is illustrated in figure (3. 7). 

The first implin~ntation is obvi9us from equation (3.22) 

above and the s e cond iwplimentation follows from the first 

under the assump tion that orthonormal basis functions are 

used in the dis c rete representation. However, the third 

implirnentation illustrated requires a brief explanation. 

Based on the the ory presented in the previous sections, we 
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see that the upper branch of the second implimentation 

·(which is an op·t imum detector for the sisrnal m (t) cos (t..0
1 
t+~) , ~ 

unknown) can be interpreted as an optimum detector for the 

signal m(t) costv
1

t in parallel with an optimum detector 

for the signal m (t) sin w 1 t The outputs of these two 

quadrature detec tors are squared and summed, indicating 

that E\ (t) is t h e envelope of the output of the optimum 

detector for m (':) cos Cw
1 
t+~) where ~ is an angle between 

0 and ZTf. It is important to note that the receiver de-

stroys the use lE~ss carrier phase information by basing the 

decision on the envelope of the output of a filter matched 

to m (t) cos w
1 

t That is, the filter is matched to the 

modulation v.1ave f orm m (t) and carrier frequency, but no 

attempt is made to match to the carrier phase. Of course, 

a conventional :.inear bandpass filter centered on w 
1 

and 

with a bandwidth equal to the bandwidth of m(t) is the 

requi red matched filter. 

3-7 PROBABILITY OF ERROR FOR INCOHERENT RECEPTION 

The math emati cal techniques used in the derivation 
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of t he probabiJity error for the incoherent receiver are 

simi lar to those used in the previous section on coherent 

receivers. Thus, it may be shown that, 

(3. 23} 

where E is the signal energy and N is the one-sided 
0 

spectral density of the additive white noise. 

3-8 COMPARISION OF COHERENT AND INCOHERENT DETECTORS 

The expr ession for, probability of error for the 

coherent and incoherent detectors, are plotted in figure 

(3. B). For the ~ ; ake of the illustration, we have let the 

cross correlation coefficient be zero which corresponds 

to a frequency- s hift-keying system. Evidently the co-

erent receiver p erforms considerably better (approx-

imately 3dB) for the low values of signal to noise ratio. 

However, at high signal to noise ratios, the knowledge of 

carr i er phase contributes little (approximately ldB) to 

system performance. We can conclude, that the slight 

improvement in performance of the coherent system does not 
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warrant the diffulties encountered in the system design. 

In general, if a receiver can be operated coherently, that 

is, exact replicas of the transmi tted signals will be avail­

able at the receiver, it is to the designer's advantage to 

use antipodal signals rather than orthogonal signals because 

of the possible higher performance of the former. 

3-9 THE PHASE·-LOCK LOOP DETECTOR 

The block diagram of a phase-lock loop and a 

_ correlator are :.llustrated in figure (3. 9) • If we compare 

the two block d i agrams, it appears that the phase-lock loop 

is just a corre .ator with feedback provided through a voltage­

contr olled osci l lator (VCO). That is, both systems involve 

_ the multiplication of an incoming signal with a reference 

signal and subsequent low pass filtering or integration 

of the product. The only difference beb1een the two systems 

is the source of reference signal. For the correlator, the 

reference is derived from a second sys ·tem which is completely 

independent of the operation of the correlator. ·However, as 

described earlier, the reference for a phase-lock loop is 

derived within the loop itself. 

For the coherent correlation detectors, as prev­

iously discussed, no mention was made of the source of 
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- reference signals. ~t was ·assumed -that the references were 

available and more important, that they were in phase and 

frequency synch ~onism with the possible transmitted s~gnals. 

For a normal communications system in which transmitter and 

receiver are lo1~ated great distances apart, this necessary 

synchronization leads to complex design problems. For the 

less frequent, b ut important, case in which there is relative 

motion between ·:he transmitter and receiver the problem be-

comes virtually impossible,unless a method of tracking the 

transmitted signals is used. Of course, the phase-lock loop 

is just such a 1:racking system. 

From what has been said above, it seems possible 

that a phase-lock loop might be used for both the generation 

of a ppropriate reference signal and subsequent correlation. 

This being so, t:hen the correlators in the detectors of 

the previous section may be replaced by phase-lock loops 

and t he problem of providing suitable references is thereby 

elimi nated. The detector would then be as illustrated in 

f igure (3.10) a~rl we shall refer to it as the phas~-lock 

loop detector. 

In figure (3.10) we have assumed that loop A is 

able to respond only to s 1 (t); that is,the loop cannot lock 

onto s
0 

(t) . Similarly, loop B can lock only onto s (t). 
0 

This means that for the system to be able to determine which 
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of the two signals has been transmitted, the frequencies 

- -of the two signals must be different and therefore the 

detector is restricted to frequency-shift-keyed signals 

only. 

The oper ation of the detector can best be explained 

by referring to figure (3.111 where it is assumed that the 

binary sequence 10110 is to be transmitted by the waveform 

illustrated in part (b) of the figure . At time zero, s 1 (t1 

is applied at t he input of the detector. Since the signal 

lies within the lock range of loop A, a reference is . gener­

ated and correlation takes place. If we assume that loop A 

is a b le to lock instantaneously and that the frequency of 

the signal approaches the upper limit of the lock range, 

then the loop ou tput is 

where A is the FMS value of s 1 (t) and K
1 

is the RMS value 

of the VCO outpu t . We have further assumed that any high 

frequency terms are eliminated by the low pass filter. By 

appropriate choice of the low pass filter cut-off frequency, 

the output of the filter at timeT will be AK1T cos(~-90°) 

For ~: Cf0° this is exactly the output of a correlator under 

similar circumstances; that is, AK1T. 
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Loop B,on the other hand,is unable to lock to the 

signal and its output would be a beat note which would be 

removed by the low pass filter. Thus, referring to figure · 

(3.10) at time T-, u would be greater than u and the 
1 0 

·detector would correctly decide in favor of the signal s
1

(t). 

At time T~ a zero is transmitted and s (t) appears 
0 

at the input of the detector. Loop B will respond and lock 

onto the signal ; a reference is generated and correlation 

takes place. Lo op A ~rill go from a locked to unlocked 

state producing a beat note at its output for the duration 

of signal s (t ) . 
0 

Thus at time 2T-, u
0
= TAK1 is greater 

than u 1 and the detector correctly decides in favour of 

Operation of the detector would continue as above. 

For e ach transi t ion in the binary sequence1 there will be 

a cor respondinq transition within the detector, that is, 

loops changing f rom a locked to an unlocked state or vice versa. 

Based or the discussion above, we can appreciate 

that the detecto r using "ideal" phase-lock loops will 

behave exactly as the correlation detector and its perform-

ance in terms of probability of error should be equivalent 

to that of the correlation detector. However, in actual 

practice it is impossible to design and construct an ideal 

l oop . Using practical loops, the performance of the detector 

will be degraded relative to that of the correlation detector 

for two reasons. 
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1} One of the assumptions made, was that the loops 

were able to l o ck instantaneouslyi that is, the appropriate 

loop would be locked for the entire bit durati on and there­

fore the reference signal would be present for the bit 

duration. Of course, this is an impossibility; a finite 

time is required for a loop to lock. Thus, after each 

transition in the binary sequence, the appropriate loop 

will go through a locking-in process duri~g which correl­

ation does not take place. At the end of the bit, the out­

put of the low pass filter associ ated with the loop, will 

therefore not be AK
1

T but rather AK
1 

(mT} where m is a positive 

fraction. That is, during the first (1-m)T seconds of the 

bit, the loop i s not locked and therefore correlation is 

not taking plac=. 

2} The seco nd assumption was that the loops were designed 

such that when l ocked, the phase error would be 90 degrees 

and therefore t e phase difference between the incoming 

and reference s i gnal would be zero. This implies that 

the loop is ope~ating at the upper limit of its lock 

range and if anr disturbance should cause the phase error 

to exceed 90 degrees the loop will momentarily lose lock. 

In the first cha pter it was pointed out that additive 

Gaussian noise causes a jitter in the output of the VCO 

and ~herefore a jitter in the phase error. Thus, if the 

phase error has a mean value of 90 degrees, there is a large 



probability that the loop will momentarily lose lock in the 

_._presence of the additive noise. To reduce the probability 

of l osing lock it is necessary to make this mean value 

or phase error of the loop less than 90 degrees. The 

output o f the filter would then be AK1 (mT)cos (¢-90) 

To furt her appreciate how the two factors mentioned 

above degrade t e performance of the detector, we can refer 

for the moment :back to the correlation detector. We have 

already said tha t at the end of a bit, the output of one 

channel of the detector is AK1T. If we make the RMS 

value of the re:: erence signal equal to that of the input 

signal, then thi s output becomes A2T. But, this is just 

the energy conta ined in the input signal during one bit 

duration of T s e conds. Thus for the correlation detector, 

at t h e time a dE ~ cision is made, we have at the output of 

one channel, the ~ maximum possible signal energy and there-

fore, for any noise of spectral density N the maximum 
0 

possible signal to noise ratio E/N
0

. 

For the same situation, we have at the output of 
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t he channel of the phase-lock loop detector A2T(m) cos (¢-90) 

which is something less than maximum signal energy and 

and therefore at the point of decision, the signal to noise 

ratio is not maximized. Signal to noise ratios for each 

detector are shown in figure (3.12). 
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Based on the comparison of signal to noise ratios 

for the two detectors, we might expect that the probability 

of error curves will be identical in shape but displaced 

from one anothe~; that is, for identical input signal 

to noise ratios, the performance curve for the phase-

lock loop detec·t or will be displaced to the right. The 

amount of displa cement will depend primarily on the two 

factors discuss c!d above. We can, of course, reduce this 

displacement by making the factor m approach unity, which 

-·- implies designi ng the loops to lock as quickly as possible. 

This can be accomplished by increasing the loop bandwidth. 

We can also improve the performance by making the phase 

error approach 9 0 degrees, which means the loops be 
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designed for a minimum phase jitter in the presence of addi­

tive noise. A reduction in phase jitter requires a reduction 

in loop bandwidt.h. Thus, an improvement in detector 

performance invc~ lves conflictin~ requirements and a compromise 

in loop bandwidth is necessary. We might expect then, that 

t he experimental results presented in the next chapter will 

i ndicate an optimal loop bandwidth, above and below which 

the performance of the system decreases. 



CHAPTER 4 

EXPERIMENTAL RESULTS 

4-1 INTRODUCTION 

In this chapter we shall give experimental results 

describing the erformance, in the presence of noise, of a 

detector using d igital phase-lock loops and compare this 

performance wit~ that of a coherent detector using cor-

relators. To ma ke the experimental results meaningful, 

the measurement~ on both systems were made under the same 

conditions. 

4-2 THE TEST ARRANGEMENT 

A block u diagram of the test arrangement, used to 

determine the pe rformance curves for the detectors, is 

illustrated in f igure (4.1). The noise generator used for 

* Th e schematic diagrams of all circuits constructed are 
s hown in appe ndix (~) . 
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the test had a cut-off frequency in the order of 20KHz. 

Therefore the system had to be operated with carrier 

frequencies which would fall in this range. Further, we 

chose to operate : near the low end of this range so that, 

in the event pre-detection filtering of the carriers was 

necessary, low pass rather than bandpass filters could 

be used. 
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In the implimentation of the so-called "transmitter·", 

two schemes were available. In the first, only one oscill­

ator was used and its qutput was frequency modulated by 

the binary sequ=nce to be transmitted. In the second, two 

oscillators wer= used and the binary sequence caused a 

switching actio:n between the oscillators; that is, each 

time there was a transition in the binary sequence the 

output of the t :ransmi tter electronically switched from 

one oscillator · o the other. The latter arrangement, 

although requiring more circuitry, has the advantage that 

one carrier frequency can be varied independent of the 

other. For thi :3 reason, the two-oscillator scheme was 

chosen. 

Since both detector systems were implimented 

using logic ele1nents, it was necessary to restrict their 

input signal amplitudes, to the logic levels of the ele­

ments used (appr oximately 0 and 3 volts). That is, the 

carrier signals applied to the detectors had to be 



rectangular waves. To insure that this would be the case, 

a l i miter with an input-output characteristic as in figure 

(4.2) was included1 at the input to the detectors. With 

such a characteristic, the input signals to the limiter 
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can have any waveshape and the output will be a rectangular 

wave with the same fundamental frequency. Further, the out­

put will be com patible with the logic elements . used in the 

detectors. The only requirement of the input signal to 

the limiter is, that it must have only two zero crossing-s in 

each cycle . This requirement insures that, the input 

signal to the d e tectors makes the transition from the low 

level to the hig h level once each cycle. The rectangular 

wave outputs of astable multivibrators meet this require­

ment and,for thi s reason, multivibrators were used as the 

oscillators in t he "transmitter". They were constructed 

in such a way t at their output frequencies could be 

readily varied. 

The summing point at which the signal and noise 

were added, was constructed using an operational amplifier. 

The sou ~::-ce of binary data was a commercially built 

square wave osc i llator, which gave us the sequence 101010 

10 •.... • The reason for choosing this particular sequence 

is as follows. In many systems that ~perate on digital 

data, · it is found that their performance will vary with 

the binary seque nce applied. There is no evidence to 



Output 

3v 

Input 

fig . 4.2 Limiter Characteristic 

_j 

Correlator 

a) Mark 

b)Carrier 

I 
I 
I 

time 

~--- Phase-Lock 
Loop 

~------ Sampling Time 
I 

~--------------------- Lock Time for 
· Loop 

c) 0/P of L.P.F. 

fig.4.3 Output of L.P.F for Both Detectors 

99 



indi cate that this is true for the coherent correlation 

detector. However, based on the discussion in the pre­

vious chapter ~~ can expect this to be true for the 

phase-lock loop detector. We have pointed out that 

because the loops are unable to lock instantaneously the 

performance of the detector will be degraded. That is, 

each time a loop goes through a locking-in process, a 

portion of the signal energy is lost, or rather will not 

be available at the point at which the decision is made. 

This is illustrated in fig. (4.3), where we have shown the 

output of a low pass filter in both the correlation 
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detector and the loop detector. It is apparent, that at the 

instant of sampling the output in the correlation detector 

is greater than that in the loop detector and therefore, 

the probability of making an error is correspondingly 

higher for the loop detector. Thus we might expect that 

the performance of the loop detector will depend on the 

number of transLtions in the binary sequence; or equival­

ently, the numb1~r of times the loops must go through a 

locking-in proc (~ ss. As the number of transitions is 

increased, in a sequence of fixed length, the probability 

of making an er::-or will likewise increase. · The sequence 

which v.re have c hosen has the maximum possible number of 

transitions and therefore we will be able to determine in 

our tests, the naximum possible probability of error for 
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any signal to noise ratio. Further, we can expect, that 

for any other b inary sequence, the performance of the 

detector will b e at least as good, if not better. 

Also, the choice of this sequence, simplified 

the circuitry required to derive the sampling pulses, 

necessary for the operation of the detector. The method 

used is discussed in appendix ( JJ • 

In the error counting circuit, both the outputs 

of the sequence generator and detector were sampled once 

each bit. The samples were compared and, if different, 

a pulse was applied to a commercially built counter. In 

this way, a runn ing count of the number of errors could 

be made over any length of time. 

In figur es (4.4) and (4.5) we have illustrated one 

branch of the p ase-lock loop detector and correlation 

detector, respec tively. For both systems, the multiplier 
'' ,, 

is implimented sing an exclusive or, which is sometimes 

referred to as a n anti-coincidence· multiplier. That the 
,, ,, 
exclusive or, p e rforms as a multiplier is evident from 

fig . (2.12), wher e we have shown a linear relationship between 

the phase error of a digital loop and the average value 
t\ I, 

of the exclusive or output. 

-The low pass filter and sampling circuit are 

identical in bot h detectors. The outputs of the two 

branches in either detector were .applied to a comparator 
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circuit which made the decision as to which signal was 

transmitted and then generated t h e appropriate bit. 

4-3 MEASUREMENTS 

In order to obtain the experimental results for 

both detectors, some simple measurements and calculations 

on the test arrangement had to be made . An estimate of the 

probability of e rror, for a particular signal to noise ratio, 

was made by using the counter to record the number of 

errors made over a particular length of time, and divid-

ing this value y the total number of bits transmitted 

during that tim . After a number of measurements had been 

made, it was fond that1 for the range of signal to noise ra-

tios we were us i ng,lOO,OOO transmitted bits were sufficient 

to give a relia le estimate of the probability of error. 

For the bit rate s used in the tests, this meant that 

measurements had to be made over lengths of time exceeding 

ten minutes. 

Measurement of the signal to noise ratio (E/N ) was 
0 

made at the inpu t to the limiter stage, which was considered 

to be part of t h e receiver. Fortunately, a measurement of 

the RMS value o f the noise could be made directly from a 

meter on the generator. The one-sided spectral dens t ty of 
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the noise could then be calculated by dividing the mean~ 

squared value o f the noise by the bandwidth of the noise 

generator. Th RMS value of the square wave carriers was 

measured using a Hewlitt Packard True RMS Meter. The bit 

ener gy could t en be calculated by multiplying the mean-

squared value, by the bit duration, T seconds. Thus, the 

signal to noise ratio could be written as 

E/N
0

= (S./N) 2w;B 

where s is the RMS value of carrier signal, 

N is the RMS value of the noise, 
' 

w is the noise bandwidth 1 and 

B=l/T is the bit rate or system bandwidth. 

As the bit rate increases, the signal to noise 

ratio decreases, and thus we can expect that for a constant 

noise level the probability of making an error will increase 

as the bit rate increases. However, the performance of the 

detector is des ribed by only one curve, no matter what the 

bit rate. 

We have suggested in a previous chapter, that 

frequency-shift keyed signals are an example of orthogonal 

signals; or equivalently~ signals whose cross-correlation 

coefficient is zero. Orthogonality is defined by 



106 

Based on this ~efinition, frequency-shift keyed s~gnals 

are approximate ly orthogonal only if their spectra do not 

over lap. In figure (4.6}, we have illustrated the spectra 

of t he signals transmitted, in our FSK system. If the 

carr ier frequencies are separated by something less than 

the system bandwidth B, the cross-correlation coefficient 

is greater thaL zero. If the separation of carrier fre­

quencies is greater than the system bandwidth, then the 

signals are aprroximately orthogonal and their cross­

correlation coefficient is approximately zero. We also 

showed in the last chapter that the probability of error 

is a function of the cross-correlation coefficient. To 

mini mize the probability of error, the cross-correlation 

coefficient must be minimized. In our system we could 

insure this by maintaining a carrier frequency separation 

greater than our system bandwidth. 

Care also had to be taken in choosing the clock 

frequencies associated with each loop; for it is these 

frequencies which determine the lock range and bandwidth 

of the loop. 

4-4 RESULTS 

The first and most important observation made on the 



107 

Carriers 
--- E 

// 

a) Spectra Overlap 

r 
f 

b ) Spectra Do Not Overlap 

fig.4.6 SpectrE. of FSK Signals 



108 

phase-lock loof detector was, that in the absence of noise, 

it worked just as expected, reproducing at its output the 

binary sequence transmitted. The bit rate was arbitrarily 

chosen at 120 bauds. Variation o f loop clock frequencies 

and carrier frequencies did not have any effect on the 

output of the system, provided the lock ranges of the two 

loops did not completely overlap and the carrier fre­

quencies were adjusted to fall within the upper half of 

the lock ranges. 

However, when noise was added to the input signal, 

performance in terms of probability of error did vary, 

with the clock a nd carrier frequencies. A process of 

trial and error was used to find a combination of frequencies . 

which would giVt:! the best performance in terms of prob­

ability of erro: ~ . The combination finally decided upon is 

shown in figure (4.7)1 where we have illustrated the static 

characteristics of the two loops. The clock frequencies 

necessary to ob :ain these characteristics can be determined 

from equation (:~ . 8) . The two carrier frequencies are also 

shown superimpoBed on the static characteristic. 

The perf ormance curve, for the correlation detector 

operating at the same bit rate and on the same carrier 

frequencies, wa~ ; also obtained. 

The expe rimental and theoretical probability of 

error curves for the coherent correlation detector, are 

plott ed in fig. 14.8). The significant diff erence between 
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the two curves, (approximately 4.9dB at PE=0-~001 is due 

to the non-ideal conditions under which the experimental 

system was operated. As mentioned earlier, it was necessary 

to include a li~iter stage at the input to the detector; 

however, the l~niter was not considered in the derivation 

of the theoreti.:::al probability of error curve. It is 

expected that bt~cause the limiter is a non-linear device, 

it will have a degrading effect on the system, particularly 

at low signal to noise ratios. Further, it was assumed, in 

the theoretical derivation, that the transmitter was 

capable of switching instantaneously bet,.,reen the two signals 

and that the noi se process was white and Gaussian. 

Both assumption::; are only approximated, in the experimental 

test. Finally , although we have maintained the carrier 

frequency separation greater than the system bandwidth, 

it is likely that the cross-correlation coefficient 9f the 

two signals is !;lightly positive, thus causing a further 

degradation in t he experimental detector. 

It shou j_d be emphasized at this point, that the 

purpose of the experimental tests was to compare a practical 

correlation detE!ctor with a practical loop detector, both 

operated under t:he same conditions. It is assumed, that if 

improvements can be made in the performance of one detector, 

then, similar i mprovements can be made in the other. 

The expe·rimental probability of error curves for the 
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two detectors a re plotted in figure (4.9). The difference 

between the two detectors is approximately 1.6dB at a prob­

ability of error of 0.001. Based, on the theory of detect­

ors presented in the last chapter, we might expect that an 

experimental non-coherent detector, implimented using fil­

ters and envelope detectors, would have a performance curve 

lying about 3dE. to the right of the coherent detector curve. 

Thus, we may ccmclude that the performance of the phase-lock 

loop detector is somewhere between that of the coherent and 

non-coherent detectors. 

To further illustrate the performance of the phase­

lock loop detector, a series of pictures were taken using a 

storage scope and polaroid camera. In figure (4.10) input 

and output waveforms were recorded for four different signal 

to noise ratios. In part (a) of the figure,signal to noise 

rati o is infinite; that is, no noise is present, and the amp­

litudes of the two carrier signals were intentionally made 

different in order that they be more readily distinguishable. 

It i s apparent from these diagrams that as the signal to 

noise ratio decreases, the probability of error increases 

correspondingly. In figure (4.11) the output of one branch 

of the detector is shown for different signal to noise ratios 

in a manner corresponding to figure (4.10). 'The degradation 

in the appearance of the waveforms at low signal to noise 

ratios as in parts (a) and (b) indicates that the loop is 

momentarily losing lock. 



113 

lo-1~----~~----~-----------------------------------------------

p 
E 

CorrE!lation --~~ 

PLL 

lo-3L----L---L~-~~J_~t, _________ ~------~---L~~--~-L~~_J 

fig.4.9 

10 -p;­
F/No 

Experimental Probability of Er:ror Curves for PLL 
and Co rrelation Detectors 

100 



4';> ... ' $ 

FSK input signal (E/No=~) 

C$ Q i(4J .,.-. #.-i!F~ @40 !!I <lfOE )Af!9 Vt¥4 E Jl. .... 4P( f'Q£; i< ._,W:S! O, QJ*fEt'! 

c rr rr rr rr ~-rr r.: r;: rr ~r· rr rr rr rr ( 

ts ~ lb 0:: l_ (1: ~ t=: ~ G:: lb U: b L ~ ~-

...!· · tc 

Output binary SE'quence ( 0 Errors) 

J 14 

Horizontal 
Sm sec.jcm 

Vertical 
• Sv /ern 

Horizontal 
20m sec./em 

Vertical 
.2v/cm 

fig. (4.10 a) Input and Output Waveforms for PHASE-LOCK LOOP 
Detector for Different Sis.nal to noise ratios. 



-
FSK input signal (E/N0=24) 

rr=rrrrrrrr ~rfr=~~-r-:rr:rrrrrrff 
.. 

b b ~ l1lh L i.:: -= .::: - (;: I~ h. 'L ~ i· 
J 

Out put binary s equence (0 Errors) 

fig. (4.10 b) 

Horizontal 
Sm sec./em 

Vertical 
.Svjcm 

Horizontal 
20m sec./em 

Vert.ical 
.2v/cm 



FSK input signa l (E/No= 10.6) 

Output binary s equence (3 Errors) 

fic;r . (4.10 c) 

llb 

Horizontal 
Sm sec.jcm 

Vertical 
• Sv ;ern 

Horizontal 
20m sec./em 

Vertical 
.2v/cm 



FSK input signal (E/No=7.4) 

r 
Q?_$ • JNIEI!fj! , "+'~i!JQ!fi4 . ( >$@ '-T¥J!! ,"'!'.>· I\) ¥W,*fiili 

~ ............... - - - -- · '* 1( ' '"% ' 'CP ·, ; <I '"" ' ,., . ·,,,.~ 

Output binary s3quence (3 Errors) 

fig. (4.10 d) 

11, 

Horizontal 
Sm sec./em 

Vertical 
.sv;cm 

Horizontal 
20m sec./em 

Vertical 
.. 2v/cm 



(a) E/No= e;.o 

lit C -x $CH:Ct!P tiS g:p; l¢i!#S(¢t . , 

(b) E/No=24 

118 

Horizontal 
Sm sec./em 

Vertical 
.Svjcm 

Horizontal 
Sm sec.jcm 

Vertical 
.Svjcm 

fig . (4.11) Output Waveform of One Br anch of PHASE-LOCK LOOP 
Detector for Different Signal to Noise Rat i os. 



(c) E/No=l0.6 

(d) E/No=7. 4 

fiq.(4.11} 

119 
' . 

Horizontal 
Sm sec.jcm 

Vertical 
.Svjcm 

Horizontal 
Sm sec./em 

Vertical 
.Svjcm 



120 

~t-appears -that a useful application of the phase-

lock loop dete tor is for the case in which there is some 

uncertainty as to the frequencies of the received FSK signals. 

Such uncertainty would result if the transmitted signals under­

went a Doppler shift in frequency. To determine experimentally 

how the detector would behave under such circumstances, it was 

decided to obtain performance curves for a number of carrier 

frequencies. The lock ranges of the two loops were maintained 

constant and carrier frequencies changed in steps of 10Hz up to 

a maximum of 40Hz in both the positive and negative direction. 

For mean carrier frequencies of 1220Hz and 1490Hz, this cor­

responded to a aximum change of 3% and 2.5%, respectively. 

The curves for ositive changes in frequency are plotted in 

fig. (4.12); the curves for negative changes lie within the 

same region and therefore were not plotted. For this range of 

carrier frequen ies, the performance curves vary over only a 

l.OdB range of ignal to noise ratio. 

A simila test was performed on the correlation detect­

or. The freque cies of the reference signals were maintained 

constant at 122 0Hz and 1490Hz, and the incoming carrier fre­

quencies were v aried. As one would expect , as soon as the re­

ference and carr ier signals become unsynchronized, the coher­

ent correlation detector ceased to operate. This is illustra­

ted in fig. (4.1 3 ). This clearly demonstrat es that the phase­

lock loop detec t or is superior to a coherent detector when 

dealing with a F SK signal that has undergon e some Doppler shift. 
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CONCLUSIONS 

The use ~fulness of digital phase-lock loops as part 

of a binary det.ection scheme for FSK signals has been success­

fully dern0:nstra ted, From the results of the previous chapter 

we may conclude that for an ordinary FSK signal, the phase­

lock loop detector is inferior to a coherent correlation 

detector but s u perior to the optimum noncoherent detector. 

Since the design and practical irnplirnentation of a digital 

phase-lock is relatively simple, we may consider a phase-

lock loop detector as a practical alternative to a non­

coherent detector, for FSK signals. 

Furthermore, because a phase-lock loop is, by nature, 

able to track variations in the frequency of the incoming 

signal, the performance of a phase-lock loop detector does 

not suffer a seLious degradation when the two frequencies 

making up the F SK signals, change (due to Doppler shift). 

In this respect, the phase-lock loop detector has a definite 

advantage over a coherent correlation detector. As for the 

noncoherent dete ctor although it will continue to operate 

with FSK signal s that have undergone frequency changes, its 

performance wil l be severely degraded because it utilize 

fixed tuned bandpass filters. 
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We may thus conclude that, the unique features of 

the phase-lock loop detector are: 

1) It generates its own reference signal. 

2) It caL operate successfully on FSK s~gnals with 

changing frequencies. 
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THE APPENDIX 

This appendix contains: Circuit Diagrams 
Circuit Explanations 
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APPENDIX A 

CLOCK CIRCUITS 

In fiq(A.l) we have illustrated three clock circuits 

using inverter~. Referring to (A.lb), the operation can be 

exp l ained as follows. The device is basically a flip-flop 

(gat es 1 and 3) with a high frequency by-passed inverter in 

the loop (gate 2). The inverter makes the loop unstable. 

The capacitor couples gate 1 to gate 3, allowing regeneration 

to occur for fa.st rise times, C and R2 control the frequency, 

and R1 varies t .he symmetry of the output. Since in our 

application the symmetry of the output was not important the 

arrangement in (A.lc) was used for the digital PLL. It was 

found that thi~ arrangement gave the best stability. 

"TRANSMITTER" 

The mu.l tivibrators used are illustrated in figure 

(A.2). For an explanation of this circuit refer to Millman 

and Taub1 . The outputs (points A and B) were applied to 

what we have ce.lled the switching circuit (figure A.3). 

In f act, this circuit is actually a sampling circuit, where 

the binary seqt:..ence applied at point C serves as the sampling 

pulses. The diode-potentiometer arrangement at the output, 

provides a mear.s of varying the amplitude of the FSK signals. 
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CHANNEL 

The surrun .:'. ng circuit was imp limen ted using a 7 41 

operational amplifier and the limiter using 710 comparator. 

Both circuits a re illustrated in figure (A.4). 

SAMPLING CIRCUITS 

The binary sequence was applied to a differentiator 

(poi nt C, figure (A.Sa)) giving positive and negative spikes 

at the transitions. The negative spikes were inverted 

using the diode bridge and differential amplifier arrangement 

illustrated in figure (A.Sa). The resulting train of 

pos i tive spikes were applied to a monostable multivibrator
1 

(pointE, figure (A.Sb)) which generated a positive sampling 

pulse at the end of each bit. 

The outputs of the branches of the detector were 

applied at points F and G where they were sampled at the end 

of each bit. The resulting sampl es were compared using a 

710 comparator (figure A.6). The output of the comparator 

was then applied to a hold circuit which generated the 

appropriate bit at point J. 

ERROR COUNTING CIRCUIT 

The outpu t s, of both the detector and source of binary 
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sequ ence, were sampled once each bit, as in figure (A.7). 

'' II 
The samples wer e applied to an exclusive or for comparison. 

" , 
If t he samples were different, the exclusive or provided 

a p u lse at its output, which was recorded on a commercially 

bui l t counter. 
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