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Abstract

The Gaussian mixture model has been used for model-based clustering analysis for

decades. Most model-based clustering analyses are based on the Gaussian mixture

model. Model averaging approaches for Gaussian mixture models are proposed by

Wei and McNicholas (2015), based on a family of 14 Gaussian parsimonious clustering

models (Celeux and Govaert, 1995). In this thesis, we use non-Gaussian mixture

models, namely the tEigen family, for our averaging approaches. This paper studies

fitting an averaged model from a set of multivariate t-mixture models instead of fitting

a best model.
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3.4 Model averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



4 Illustration 18

4.1 Real data analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Bankruptcy data . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.2 Iris data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.3 Female voles data . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.4 Vasoconstriction . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.5 Flea Beetles data . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.6 Microtus classification (more vole data) . . . . . . . . . . . . . 24

4.2 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 One model in Occam’s window . . . . . . . . . . . . . . . . . 24

4.2.2 Male Twins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Comparison between GPCM and tEIGEN . . . . . . . . . . . . . . . 26

5 Summary 28

A Tables 30

References 32

vi



List of Tables

2.1 Nomenclature, covariance structure, and number of covariance parame-

ters for each member of the GPCM family, whereG denotes the number

of components, and p denotes the dimension of the data. . . . . . . . 5

2.2 Nomenclature and number of covariance parameters for each member

of the tEIGEN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 BIC, number of components and weights for models in Occam’s win-

dow; ARI for true labels versus best model, AAP and MA in Occam’s

window for real data bankruptcy data . . . . . . . . . . . . . . . . . . 19

4.2 BIC, number of components and weights for models in Occam’s win-

dow; ARI for true labels versus best model, AAP and MA in Occam’s

window for real data iris data. . . . . . . . . . . . . . . . . . . . . . . 20

4.3 BIC, number of components and weights for models in Occam’s win-

dow; ARI for true labels versus best model, AAP and MA in Occam’s

window for real data female voles data . . . . . . . . . . . . . . . . . 21

4.4 BIC, number of components and weights for models in Occam’s win-

dow; ARI for true labels versus best model, AAP and MA in Occam’s

window for real data Vasoconstriction . . . . . . . . . . . . . . . . . . 22

vii



4.5 BIC, number of components and weights for models in Occam’s win-

dow; ARI for true labels versus best model, AAP and MA in Occam’s

window for real data flea beetles data . . . . . . . . . . . . . . . . . . 23

4.6 BIC, number of components and weights for models in Occam’s win-

dow; ARI for true labels versus best model, AAP and MA in Occam’s

window for real data Microtus classification (more vole data) . . . . . 24

4.7 BIC, number of components and weights for models in Occam’s win-

dow; ARI for true labels versus best model, AAP and MA in Occam’s

window for real data Male Twins . . . . . . . . . . . . . . . . . . . . 25

4.8 BIC, number of components and weights for models in Occam’s win-

dow; ARI for true labels versus best model, AAP and MA in Occam’s

window for a simulated data with noise variable . . . . . . . . . . . . 26

4.9 The GPCM vs. tEIGEN models. . . . . . . . . . . . . . . . . . . . . . 27

A.1 BIC, number of components and weights for GPCM models within

Occam’s window; ARI for true labels versus best model, AAP and MA

in Occam’s window for the flea beetles data. . . . . . . . . . . . . . . 30

A.2 BIC, number of components and weights for GPCM models in Oc-

cam’s window; ARI for true labels versus best model, AAP and MA

in Occam’s window for the voles data. . . . . . . . . . . . . . . . . . 30

A.3 BIC, number of components and weights for GPCM models within

Occam’s window; ARI for true labels versus best model, AAP and MA

in Occam’s window for the vasoconstriction data. . . . . . . . . . . . 31

viii



Chapter 1

Introduction

In this thesis, we discuss model-based clustering analysis using the tEigen family

(Andrews and McNicholas, 2012). The main purpose is to analyze the classification

performance after averaging models, which are selected within the Occam’s window,

and to compare with the Gaussian analogue. In general, we fit a data set x using the

mixture model density

f(x | ϑ) =
G∑

g=1

πgfg(x | θg),

where πg > 0 is the gth mixing proportion, such that
∑G

g=1 πg = 1, and fg(x | θg) is

the multivariate density for the gth component, with parameters ϑ = (π1, ..., πG,θ1, ...,θG).

In Chapter 2, we introduce model-based clustering and the tEigen family of 28

models. The tEigen family arises from the eigen-decomposition of the multivariate

t-distribution scale structure Σg = λgDgAgD
′
g, which can be used to generate the

28 mixture models. The parameters of models within tEigen family are estimated

through the ECM algorithm. The tEigen family has been implemented in the R

package teigen (Andrews et al., 2016), and details are given in Chapter 2.
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There are some methods to select the mixture models to averaging, such as the

Bayesian information criterion (BIC; Schwarz 1978) and Akaike information criterion

(AIC; Akaike, 1974). Despite its limitations (cf. Bhattacharya and McNicholas, 2014),

the BIC is most commonly used criterion and we use it to select models from the

tEigen family to put in Occam’s Window. When necessary, we merge components of

models based on their weights using a merging criterion (Chapter 3). Two averaging

approaches are explored: averaging a posteriori probabilities and model averaging.

Illustrations for our averaging results for the tEigen models are given in Chapter 4,

and a discussion about the averaging approaches is included in Chapter 5.
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Chapter 2

Background

2.1 Model-based clustering

Under Gaussian model-based clustering, a p-dimensional random variable X has G-

component mixture density, i.e.,

f(x | ϑ) =
G∑

g=1

πgφ(x | µg,Σg), (2.1)

where πg > 0 is the mixing proportion of the gth component in a mixture model, such

that
∑
πg = 1, with parameters ϑ = (π1, ..., πG,θ1, ...,θG), and µg is the mean and

Σg is the covariance matrix for component g. The component densities are usually

the same for all components in a clustering analysis, i.e., fg(x | θg) = f(x | θ). From

(2.1), the likelihood is :

L(ϑ | x) =
n∏

i=1

G∑
g=1

πgφ(x | µg,Σg). (2.2)

3
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Banfield and Raftery (1993) have discussed a parametrization in terms of eigen-

value decomposition for component variance matrix, i.e.:

Σg = λgDgAgD
′
g (2.3)

where λg = |Σg|1/p, Dg is the orthogonal matrix containing the eigenvectors of Σg,

and the determinant of a diagonal matrix Ag is 1.

Based on Banfield and Raftery (1993), Celeux and Govaert (1995) have built

14 Gaussian parsimonious clustering models (GPCMs; Table 2) in three categories

of spherical (EII, VII), diagonal (EEI, VEI, EVI, VVI), and general (EEE, VEE,

EVE, EEV,VVE, VEV, EVV, VVV). The constraints on Σg that are considered are:

Σg = Ip,Σg = σgIp,Σg = σIp, and Σg = Σ, where Ip is the p × p identity matrix.

Details are discussed in Gordon (1981), Banfield and Raftery (1993), and McNicholas

(2016, Chapter 2).

The parameters for 12 of the 14 models in the GPCM family were estimated by

using the expectation–maximization (EM) algorithm (Dempster et al., 1977), and

details are discussed in Celeux and Govaert (1995) and McLachlan and Krishnan

(2008). The parameters for the other two models, i.e., EVE and VVE, are estimated

by Browne and McNicholas (2014a) using the MM algorithm (Hunter and Lange,

2004). The details of the developed alternative algorithms are given by Browne

and McNicholas (2014a), and implemented in the R package mixture (Browne and

McNicholas, 2014b), which includes all 14 mixture models of the GPCM family for

model-based clustering analysis. The idea of averaging mixture models based on

GPCMs family is introduced by Wei and McNicholas (2015) as an alternative to

selecting the single best model.

4
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Table 2.1: Nomenclature, covariance structure, and number of covariance parameters
for each member of the GPCM family, where G denotes the number of components,
and p denotes the dimension of the data.

Model Volume Shape Orientation Σg Free covariance parameters

EII Equal Equal NA λI 1
VII Variable Equal NA λgI G
EEI Equal Equal Coord. Axes λA p
VEI Variable Equal Coord. Axes λgI p+G-1
EVI Equal Variable Coord. Axes λAg Gp-G+1
VVI Variable Variable Coord. Axes λgAg pG
EEE Equal Equal Equal λDAD′ p(p+ 1)/2
EEV Equal Equal Variable λDgAD′g Gp(p+ 1)/2-(G-1)p
VEV Variable Equal Variable λgDgAD′g Gp(p+ 1)/2-(G-1)(p+1)
VVV Variable Variable Variable λgDgAgD

′
g Gp(p+ 1)/2

EVE Equal Variable Equal λDAgD
′ p(p+ 1)/2+(G-1)(p-1)

VVE Variable Variable Equal λgDAgD
′ p(p+ 1)/2+(G-1)p

VEE Variable Equal Equal λgDAD′ p(p+ 1)/2+(G-1)
EVV Equal Variable Variable λDgAgD

′
g Gp(p+ 1)-(G-1)

2.2 The tEIGEN family of models

The departure from the Gaussian mixture model is the mixture of multivariate t-

distributions. McLachlan and Peel (1998) and Peel and McLachlan (2000) moti-

vated a heavy-tailed multivariate t-distribution. The gth component density for a

p-dimensional mixture of multivariate t-distributions is given by

ft(x | µg,Σg, νg) =
Γ([νg + p]/2)|Σg|−

1
2

(πνg)
νg
2 [1 + δ(x,µg | Σg)/νg]

(νg+p)

2

, (2.4)

with mean µg, scale matrix Σg, and degrees of freedom νg, where

δ(x,µg | Σg) = (x− µg)
′Σ−1g (x− µg)

5
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is the squared Mahalanobis distance between x and µg.

The G-component mixture of multivariate t-distributions has density:

g(x | ϑ) =
G∑

g=1

πgft(x | µg,Σg, νg), (2.5)

with the same notation as before. The eigenvalue decomposition for scale matrices

is also applied to the mixture of multivariate t-distributions. Utilizing analogues of

the 14 models in GPCM family, in addition to constraining the degrees of freedom

(νg = ν; cf. Andrews and McNicholas 2011a), leads to the tEigen family. Note that

these models are implemented in the the R package teigen (Andrews et al., 2016).

2.3 Performance assessment

The Rand index (Rand, 1971) is sometimes used to measure the agreement of two

partitions of one object in a clustering analysis. It can be simply expressed as:

Rand index =
number of pairwise agreements

total number of pairs
. (2.6)

Suppose we have a set S of size n. We have two ways of partitionings the set, denoted

as set A and set B. Let a be the number of pairs in the same group in A and also

in the same group in B; and let b be number of pairs in different groups in A and

B. Then, a+ b is the number of pairwise agreement, and the total number of pairs is(
n
2

)
. A Rand index of 1 indicates a perfect agreement.

6
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Hubert and Arabie (1985) introduced the adjusted Rand index (ARI), which cor-

rects the Rand index for chance agreement and is given by:

Adjusted random index (ARI) =
Rand Index− Expected Rand Index

Max Rand Index− Expected Rand Index
. (2.7)

The expected value of the adjusted Rand index under random classification is 0,

and for perfect classification, ARI= 1. The ARI is used in the merging criterion and

in assessing classification performance of models after averaging in Sections 3.4.

2.4 Model selection

The Bayesian information criterion (Schwarz, 1978) is the most common criterion to

use for selecting the best model from a family of mixture models. The BIC is

BIC = 2l(x, ϑ̂)−m log n, (2.8)

where l(x, ϑ̂) is the maximized log-likelihood, and ϑ̂ is maximum likelihood estimate

of ϑ, m is the number of free parameters, and n is the sample size. The uses and

applications of BIC for model-based clustering are discussed by Leroux (1992), Kass

and Raftery (1995), Kass and Wasserman (1995), and Keribin (2000).

Bayesian model averaging (BMA; Hoeting et al., 1999) is one of the most popular

techniques for model averaging. The BMA takes a combination of parameters across

the models into consideration. Borrowing the notation of Hoeting et al. (1999), sup-

pose we have data D and models M1, ...,MK , with ∆ a quantity of interest. The

7
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posterior distribution given data D is:

pr(∆ | D) =
K∑
k=1

pr(∆ | Mk, D)pr(Mk | D), (2.9)

where pr(Mk | D) is the posterior probability of model Mk, i.e.:

pr(Mk | D) =
pr(D | Mk)pr(Mi)∑K
k=1 pr(D | Mk)pr(Mk)

, (2.10)

where

pr(D | Mk) =

∫
pr(D | θk,Mk)pr(θk | Mk)dθk. (2.11)

There are two flaws for BMA. One of them is the that the number of terms in

the sum (2.9) can be very large. Another one is the posterior probability pr(Mk |

D), which is hard to compute because of the high-dimensional integrals involved in

Equation (2.10). Therefore, Occam’s window is proposed by Madigan and Raftery

(1994) — models that predict the data less well will not be included in the Occam’s

window. Note that Occam’s window is given by

{
Mi :

maxl pr(Ml | D)

pr(Mi | D)
≤ c

}
, (2.12)

and Madigan and Raftery (1994) choose c = 20 by analogy with a p-value of 0.05.

The BIC can be used to compute posterior distribution of D given model,

pr(D | Mi) = exp

{
−1

2
BICi

}
, (2.13)

where BICi is the BIC for Mi. Therefore, the posterior probability for Mi is given

8
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by

pr(Mi | D) =
exp{−1

2
BICi}∑K

k=1 exp{−1
2
BICk}

. (2.14)

And we use (2.14) to compute the weights, i.e.,

weight of Mi =
exp{−1

2
∆i}∑K

k=1 exp{−1
2
∆k}

, (2.15)

for the averaging approaches, where

∆i = max
l
{BICl} − BICi

for models M1, ...,MK . The models in the Occam’s window based on BIC is

{Mi : BICi ≥ maxl{BICl} − 2 log c}. (2.16)

Equation (2.9) is used for the weight of each model Mi that are selected within the

Occam’s window for our analysis in Chapter 4, i.e., (2.10).

9
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Table 2.2: Nomenclature and number of covariance parameters for each member of
the tEIGEN.

Model λg = λ Dg = D Ag = A νg = ν Free covariance parameters

CIIC C I I C 1+1
CIIU C I I U 1+G
UIIC U I I C (G-1)+1
UIIU U I I U (G-1)+G
CICC C I C C p+1
CICU C I C U p+G
UICC U I C C p+(G-1)+1
UICU U I C U p+(G-1)+G
CIUC C I U C Gp-(G-1)+1
CIUU C I U U Gp-(G-1)+G
UIUC U I U C Gp+1
UIUU U I U U Gp+G
CCCC C C C C [p(p+ 1)/2]+1
CCCU C C C U [p(p+ 1)/2]+G
UCCC U C C C [p(p+ 1)/2]+(G-1)+1
UCCU U C C U [p(p+ 1)/2]+(G-1)+G
CUCC C C C C G[p(p+ 1)/2]-(G-1)(p)+1
CUCU C C C U G[p(p+ 1)/2]-(G-1)(p)+G
UUCC U C C C G[p(p+ 1)/2]-(G-1)(p-1)+1
UUCU U C C U G[p(p+ 1)/2]-(G-1)(p-1)+G
CUUC C C U C G[p(p+ 1)/2]-(G-1)+1
CUUU C C U U G[p(p+ 1)/2]-(G-1)+G
UUUC U C U C G[p(p+ 1)/2]+1
UUUU U C U U G[p(p+ 1)/2]+G

10



Chapter 3

Methodology

3.1 Merging mixture components

We consider the merging criterion for some data sets, such as the vasoconstriction

data in Section 4.1.4 and the Flea Beetles in Section 4.1.5. Suppose we need to merge

a G-component mixture model to give a H-component mixture model, where H < G.

We denote the density of mixture model after merging procedure as

g(x | ϑ∗) =
H∑
j=1

π∗j ft(x | µ∗j ,Σ∗j , ν∗j ), (3.1)

with the averaging parameter ϑ∗ = (π∗1, . . . , π
∗
H ,µ

∗
1, . . . ,µ

∗
H ,Σ

∗
1, . . . ,Σ

∗
H , ν

∗
1 , . . . , ν

∗
H),

the mixture proportion π∗j > 0, and
∑H

j=1 π
∗
j = 1. Each merged mixture proportion,

π∗j is sum of the mixture proportions πg that need to be merged, or π∗j = πg sometimes.

Each ft(x | µ∗j ,Σ∗j , ν∗j ) with the mean µ∗j , covariance matrix Σ∗j , and degree of freedom

ν∗j , is multivariate t-distribution after merging the components. For example, in

Section 4.1.4, the models of Vasoconstriction data are required to merge the mixture

11
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components from G = 3 to H = 2.

There are two cases (Case I and Case II) for merging, as proposed by Wei and

McNicholas (2015). Both cases are based on a ‘reference model’ and models in Oc-

cam’s window. For Case I, the reference model is the one with the maximum BIC

in Occam’s window For Case II, the reference model is the model with least num-

ber of components within the Occam’s window. The models in Occam’s window with

more components than the reference model undergo merging. The models in Occam’s

window with fewer components than the reference model (Case II only) are discarded.

An approach based on ARI was proposed by Wei and McNicholas (2015). Suppose

we want to merge from G to H components (i.e., G > H). Then, the steps of the

merging procedure are the following.

1. Calculating a combination matrix A of size
(
G
H

)
×H, i.e.:

A =


A1 a1,1 · · · a1,H
...

...
. . .

...

A(GH) a(GH),1 · · · a(GH),H

.

Each row Ai represents a subset of the original G components. For example, we

have components {1, 2, 3, 4, 5}, i.e., G = 5, to be merged to {a,b,c}, i.e., H = 3.

Then the combination matrix A is of size
(
5
3

)
× 3. Suppose Ai = (1, 3, 4),

this is assigned to the new components (a, b, c) := (1, 3, 4). The remaining

components, {2, 5}, are going to be assigned in the next step.

2. Calcuate a permutation matrix B of size H(G−H) × (G−H), i.e.,

12
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B =


B1 b1,1 · · · b1,(G−H)

...
...

. . .
...

BH(G−H) bH(G−H),1 · · · bH(G−H),(G−H)

.

Each row Bj represents a subset of the H components. Suppose we have Bj =

(a, a), then the rest components (2, 5) := (a, a). Now, we have {{1, 2, 5}, {3}, {4}} :=

{a, b, c}, and components {1,2,5} need to be merged to one component.

3. Computing a matrix C of ARI with size
(
G
H

)
×H(G−H) that contains all possi-

bilities, ie.,

C =


c1,1 · · · c1,H(G−H)

...
. . .

...

c(GH),1 · · · c(GH),H(G−H)


There are

(
G
H

)
×H(G−H) possibilities for merging components. For each element

in C, ci,j represents the ARI value between true label with the relabelled data

set using Ai and Bj.

We select the maximum ARI value in C as the best combination for merging process

because the greater the ARI value, the better the classification performance.

For many data sets, Cases I and II are the same, such as the Iris data (Sec-

tion 4.1.2). This happens because the model with the best BIC also has the fewest

components.

13
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3.2 Matching components

Before applying the averaging approaches, we need to match their components by

measuring the Euclidean distance,

d(µi,µj) =

√√√√ P∑
p=1

Q∑
q=1

(µip − µjq)2. (3.2)

where µi is from a component before merging and µj is from a component after

merging. P = Q, and represent the number of variables for a given data set. We

measure the pairwise distance between two components within a mixture model, the

minimum distance between a pair of components will be matched. This matching

procedure is required before both averaging approaches.

3.3 Averaging a posteriori probabilities ẑig

In the model-based clustering analysis, a posteriori probability zig is used to denote

the cluster membership, where

zig =


1 if observation i belongs to component g,

0 otherwise.

(3.3)

We use the estimated a posteriori probability for our model based clustering aver-

aging analysis. For a model j in tEigen family, the generated a posteriori probability

14
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estimates of observation i by the ECM algorithm is given by:

ẑijg =
πjgft(xi | µjg,Σjg, νjg)∑G
h=1 πjhft(xi | µjh,Σjh, νjh)

(3.4)

Then we directly average the ẑijg for model j in Occam’s window based on its

weights pr(Mj | D) in (2.9). The merging criterion is applicable in this averaging

approach. Before we average the models, some data sets require merging of com-

ponents, e.g., Vasoconstriction in Section 4.1.4. Suppose we need to merge from G

to H components for a model in Occam’s window, then the averaged a posteriori

probability (AAP) is given by:

ẑ∗ih =
∑

Mj to be merged

pr(Mj | D)ẑijg, (3.5)

where
∑G

h=1 ẑ
∗
ih = 1.

3.4 Model averaging

We average parameters of models based on their weights pr(Mi | D). In the model

averaing approaches, we only consider the models within Occam’s window that have

same number of components as the model with largest BIC value. Therefore, the

merging criterion is not necessary for the model averaging approach.

The parameters of the models in the tEigen family are estimated via the ECM

algorithm (Celeux and Govaert, 1995). In addition, more parameters for characteristic

weights uig and the degrees of freedom νig were generated through expectation step

(E-step) and conditional step (CM-step) by Andrews and McNicholas (2011). The
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estimated parameter ΘMk
for models in tEigen family is given by:

ΘMk
= {π̂kg, µ̂kg, Σ̂kg, ν̂kg}Gg=1. (3.6)

For each parameter using weights pr(D | Mi), i.e. (2.9), we compute a weighted

average of parameter estimates, i.e.,

Θg = {πg,µg,Σg, νg}, (3.7)

where

πg =
K∑
k=1

pr(Mk | D)π̂kg, π̂kg =

∑n
i=1 ẑig∑G

g=1

∑n
i=1 ẑig

,

µg =
K∑
k=1

pr(Mk | D)µ̂kg,

Σg =
K∑
k=1

pr(Mk | D)Σ̂kg

νg =
K∑
k=1

pr(Mk | D)ν̂kg

(3.8)

The AAP for each observation i is denoted as

zig =
πgft(xi | Θg)∑G
h=1 πgft(xi | Θh)

, (3.9)

where ft(xi | Θg) is the density function of multivariate t-distribution fitted with the

averaged parameter Θg for xi. The AAP zig ranges from 0 to 1.

We estimate the cluster memberships via maximum a posteriori probability (MAP)
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classification:

MAP{zig} =


1 if g = arg maxh{zih}

0 otherwise.

(3.10)

For example, we have a set of maximum a posteriori probabilities for observation i,

where (zi1, zi2, zi3) = (0.1, 0.7, 0.2). After we apply MAP{zig} with g = 3 in this

example. We assign the membership for observation i to component 2.
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Chapter 4

Illustration

4.1 Real data analyses

4.1.1 Bankruptcy data

The bankruptcy data set can be found in R package MixGHD (Tortora et al., 2015).

The data contains the ratio of retained earnings (RE)/ total assets, and the ratio of

earnings before interests and taxes (EBIT)/ total assets of 66 American firms, and

was initially recorded by Altman (1968). The selected firms were assigned into two

groups with bankruptcy 0 and financially sound 1.

The tEIGEN models in the teigen package are used to fit the data. The default

gives G = 1, 2, . . . , 9. The UIIU model with G = 2 is the best model was selected by

BIC (−266.68). There are six models (CUCC, UICU, UCCU, UIIC, UIUU) selected

in the Occam’s window with all G = 2 components. Because all models in Occam’s

window have the same number of of components, the merging criterion (Section 2.1)

is not necessary in this example.
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For the bankruptcy data, AAP returns the same ARI value (0.82) as the best

model. However, MA provides a better classification performance with the ARI in-

creasing from 0.82 to 0.88, cf. Table 4.1.

Table 4.1: BIC, number of components and weights for models in Occam’s window;
ARI for true labels versus best model, AAP and MA in Occam’s window for real data
bankruptcy data

Occam’s window Pr(D | Mi) ARI values
Model BIC G Best AAP MA
UIIU -266.68 2 0.52 0.82 0.82 0.88
CUCC -268.80 2 0.18
UICU -269.41 2 0.13
UCCU -270.59 2 0.07
UIIC -271.06 2 0.06
UIUU -272.45 2 0.03

4.1.2 Iris data

The famous iris data set is discussed by Fisher (1936), and is available in datasets

package for R. There are four measurements in centimetres of the length and width

of both sepal and petals from all three species of iris (Iris setosa, versicolor, and

virginica).

We fit the iris data using the tEIGEN models. The BIC selected the UUUC

model with two components, and gives the best classification for the data set with

the largest BIC value (-795.56). There are three models (UUUC, UUCC, UUUU)

in Occam’s window. Each of the models has two components except model UUCC,

which has three components. Therefore, merging components is required for the iris

data. There are two cases to be considered while we are using AAP. The merging

procedure for both cases are the same because the model with fewest components is
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same as the best model. Thus, the UUCC model needs to be merged into the model

with two components. However, we discard the model with different components

as the best model. Therefore, the weights of the models are different for the two

averaging approaches.

As a result, in Table 4.4, the ARI values (0.57) of both model averaging approaches

(AAP and MA) remain the same comparing with the classification performance of

the best model UUUC.

Table 4.2: BIC, number of components and weights for models in Occam’s window;
ARI for true labels versus best model, AAP and MA in Occam’s window for real data
iris data.

Occam’s window Pr(D | Mi) ARI values
Model BIC G Case I/MA Best AAP MA
UUUC -795.56 2 0.83 0.70 0.57 0.57 0.57
UUCC -798.60 3 0.15
UUUU -798.79 2 0.17 0.14

4.1.3 Female voles data

Flury (1997) discussed the Female voles data where is available in the R package

Flury (Flury, 2015). The data consists 86 observations was measured on seven vari-

ables of two species of female voles: Microtus Californicus and M. ochrogaster. The

data is fitted in tEigen with G = 1, 2, ...9. Based on the BIC, the best model is

CCCC with G = 2. There are total four models in Occam’s window, all with

same number of components (i.e., G = 2). Hence, the merging procedure is not

required in this example. Notably, the models also have close BIC values (i.e.,

−132.61,−1324.27,−1326.80,−1328.03). Both two averaging procedures provide the

same classification performance based on the ARI (0.91) comparing with the best
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model.

Table 4.3: BIC, number of components and weights for models in Occam’s window;
ARI for true labels versus best model, AAP and MA in Occam’s window for real data
female voles data

Occam’s window Pr(D | Mi) ARI values
Model BIC G Best AAP MA
CCCC -1323.61 2 0.49 0.91 0.91 0.91
UCCC -1324.27 2 0.35
UCCU -1326.80 2 0.10
CCCU -1328.03 2 0.05

4.1.4 Vasoconstriction

The vasoconstriction data is available in the R package Flury (Flury, 2015). The

data include 39 observations, and was based on the measurements of three variables:

the volume of air inspired, the rate of air inspired, and a binary indicator (1 indicates

there is vasoconstriction, 0 otherwise). We fit the data using tEigen family with

G = 1, 2, . . . , 9.

There were 18 models in the Occam’s window; some models have the same scale

structure but with a different number of components. For example, the model CIIC

with G = 3 is selected to be the best model for this data, and model CIIC is also

selected in Occam’s window with G = 2. In this data, both cases are considered

for merging, with only models with G ≥ 3 selected for merging. The weights for

Case I in AAP and MA are same becasue the models for averaging have the number

of components (i.e., G = 3). The ARI value for the best model is 0.0143, this is close

to 0 because the true label is binary (G = 2). Following the averaging procedure, the

classification performance for Case I in AAP is improved from 0.01 to 0.02, and ARI
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value for Case II in AAP is 0.02. The classification performance is improved for AAP

in both cases. The ARI value (i.e., 0.01) for MA procedure remains the same.

Table 4.4: BIC, number of components and weights for models in Occam’s window;
ARI for true labels versus best model, AAP and MA in Occam’s window for real data
Vasoconstriction

Occam’s window Pr(D | Mi) ARI values
Model BIC G Case I/MA Case II Best AAP MA

Case I Case II
CIIC -224.45 3 0.33 0.18 0.01 0.02 0.02 0.01
CICC -224.87 3 0.27 0.14
UICC -225.30 2 0.11
UUUU -225.61 2 0.10
CICC -225.66 3 0.18 0.10
UICC -226.12 2 0.08
UUUU -227.28 2 0.04
CICC -227.64 2 0.04
UICC -227.65 3 0.07 0.04
UUUU -227.72 2 0.03
CICC -227.89 3 0.06 0.03
UICC -228.27 3 0.05 0.03
UUUU -228.96 2 0.02
CICC -228.96 2 0.02
UICC -229.11 3 0.03 0.02
UUUU -229.27 2 0.02
UICC -229.78 2 0.01
CICC -229.78 2 0.01

4.1.5 Flea Beetles data

The Flea Beetles data can be also found in R package Flury. The data contains 39

observations based on the measurements of 4 variables of two species of flea beetle:

Haltica Oleracea and H. Carduourum. We use the tEigen models with G = 1, 2, . . . , 9.

The model CIIC with G = 3 is selected by BIC ( -429.94). In the Occam’s window,
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there are four models selected by BIC with G = 3, except model UUUU because with

G = 1. In this example, two cases for merging are all considered, and the models in

the Occam’s window with same number of components or greater than the best model

are considered for merging. In this example, models CIIC, CICC and UICC with same

number of component (i.e., G = 1) are selected by Case I. The merging procedure is

not considered here. For the other case, the models CIIC, CICC and UICC are all

considered to be merged into one component. The weights are the same for both AAP

and MA while we are applying both cases in the following averaging process. The

classification performance of AAP for Case I is close to the best model (Table 4.5).

And considering Case II of AAP, the ARI value is 0 under the expectation. Therefore,

the model after merging is not good for classification in this data set because the true

number of classes is G = 2. The ARI value is lower than the best model for MA, and

indicates that classification performance of the model after averaging parameters is

not good for this data set either.

Table 4.5: BIC, number of components and weights for models in Occam’s window;
ARI for true labels versus best model, AAP and MA in Occam’s window for real data
flea beetles data

Occam’s window Pr(D | Mi) ARI values
Model BIC G Case I/MA Case II Best AAP MA

Case I Case II
CIIC -429.94 3 0.52 0.49 0.48 0.43 0 0.30
CICC -430.36 3 0.42 0.40
UICC -434.36 3 0.06 0.05
UUUU -434.39 1 0.05
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4.1.6 Microtus classification (more vole data)

This Microtus classification data is included in the R package Flury. The data is

fitted in the tEigen models with default G = 1, 2, . . . , 9. There are two models,

CCCC and UCCC, selected in Occam’s window and they have the same number of

components (i.e., G = 3). Therefore, the merging criterion is not needed. The best

model is CCCC, as selected by BIC. The ARI value has improved from 0.031 to 0.033

for the model after AAP, and the ARI value also improved from 0.031 to 0.032. The

classification performance has improved for both averaging procedures.

Table 4.6: BIC, number of components and weights for models in Occam’s window;
ARI for true labels versus best model, AAP and MA in Occam’s window for real data
Microtus classification (more vole data)

Occam’s window Pr(D | Mi) ARI values
Model BIC G Best AAP MA
CCCC -4347.80 3 0.77 0.031 0.033 0.032
UCCC -4350.27 3 0.23

4.2 Special cases

4.2.1 One model in Occam’s window

There are many data sets with only one model selected by BIC in the Occam’s

window under an analogy of p-value of 0.05. One example, the Swiss banknotes data

is discussed in the R package mclust (Fraley et al., 2016). The data set consists six

variables on measurement of 100 genuine and 100 counterfeit from an Swiss bank

notes.

Another example is the Simulated minefield data (Dasgupta and Raftery, 1998;
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Fraley and Raftery, 1998). This is also included in the R package mclust, and was

simulated on the 1104 bivariate minefield observations.

We fit the data sets using the tEigen family. In the Swiss bank notes data, the

model CCCC was selected by BIC within the Occam’s window with G = 4 under the

default G = 1, 2, . . . , 9. In the minefield data, under the similar procedure, the BIC

choose only one model CIUU in the Occam’s Window with G = 4.

4.2.2 Male Twins

The Male Twins data is also introduced in the R package Flury. There are six

variables based on 89 observations of male twins with a factor indicating whether

the twins are monozygotic or dizygotic. We fit the male twins data using the tEigen

family with G = 1, 2, . . . , 9. There are two models, UCCC and UCCU, selected with

the same number of components (i.e., G = 2). The best model UCCC was selected by

BIC with the (ARI = −0.01). The merging criterion is not considered for this data.

After AAP and MA, the ARI values (i.e. -0.01) remain the same for both averaging

models. This is a special case for ARI value which is negative. The reason is the

index of the data is smaller than the expected index.

Table 4.7: BIC, number of components and weights for models in Occam’s window;
ARI for true labels versus best model, AAP and MA in Occam’s window for real data
Male Twins

Occam’s window Pr(D | Mi) ARI values
Model BIC G Best AAP MA
UCCC -524.70 2 0.90 -0.01 -0.01 -0.01
UCCU -529.09 2 0.10
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4.3 Simulated data

The simulated data is generated from the R package clusterGeneration (Qiu, 2015).

The function genRandomClust() is used to generate random cluster data sets based

on the method is proposed in Qiu and Joe (2006).

We generate p = 3 variables and a noise variable by setting numNoisy=1 for

n = 440 observations and fit the tEigen models with G = 1, 2, . . . , 9. We assign the

simulated data into 4 components for each model. The models CICC and CIUC with

G = 4 are selected by the BIC. The ARI value for AAP has significant improvement

from 0.89 to 0.91, compared to the best model. And the ARI value for MA remains

the same.

Table 4.8: BIC, number of components and weights for models in Occam’s window;
ARI for true labels versus best model, AAP and MA in Occam’s window for a simu-
lated data with noise variable

Occam’s window Pr(D | Mi) ARI values
Model BIC G Best AAP MA
CICC -4607.67 4 0.95 0.89 0.91 0.89
CIUC -4613.50 4 0.05

4.4 Comparison between GPCM and tEIGEN

The six real data sets are used to fit the GPCM and tEigen families. The main pur-

pose of this comparison is to compare the classification performance of two averaging

approaches within the two families. In Table 4.5 of the bank data, the merging pro-

cedure is required. We only consider the ARI value in Case I for fitting in GPCM

family in this example. The Iris data shows that the result of AAP procedure for both
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families remains the same compared to the best model. However, the ARI value for

MA in GPCM family decreases compared to the best model. In the tEigen family, the

ARI value for MA remains the same because the true cluster of Iris data is in three

groups. However, the best model is selected with G = 2 by fitting in tEigen models.

In the third female vole data, the ARI value for both AAP and MA have increased in

GPCM family, and ARI value for AAP and MA are the same comparing to best model

in tEigen. For Vasoconstriction data, the best ARI of best models from both families

are same. However, the classification performances of selected models in tEigen are

increased for both averaging approaches. Moreover, in Flea Beetles data, the GPCM

models has a better classification performance for the averaging approaches. There

is a similar result in Microtus classification data set. However, the ARI for models in

averaging approaches increases compared to the best model in tEigen family.

Table 4.9: The GPCM vs. tEIGEN models.

bank Iris Female vole
Best AAP MA Best AAP MA Best AAP MA

tEigen 0.824 0.824 0.881 0.568 0.568 0.568 0.908 0.908 0.908
GPCM 0.679 0.679 0.760 0.922 0.922 0.904 0.658 0.908 0.908

Vasoconstriction Flea Beetles
Best AAP MA Best AAP MA

Case I Case II Case I Case II
tEigen 0.01 0.02 0.02 0.01 0.48 0.43 0 0.30
GPCM 0.01 0.01 0 0.03 0.43 0.44 0 0.38

Microtus classification
Best AAP MA

tEigen 0.031 0.033 0.032
GPCM 0.037 0.037 0.037
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Chapter 5

Summary

This thesis proposed averaging model-based clustering for a family of non-Gaussian

mixture models; the tEIGEN family. The two averaging approaches are used for

the mixture of multivariate t-distributions. Both approaches are based on Occam’s

window. One of the approaches is AAP, and the other is to average the parameters

of models selected by BIC which gives a new mixture model (i.e., MA). We saw that

AAP may require merging mixture components. The ARI merging methodology was

introduced in Wei and McNicholas (2015).

While we were following the merging and both averaging approaches, the results

were given from both real and simulated data sets. For some data sets, the BIC values

for models in Occam’s window are very close, and the new models after averaging are

similar to the best model. Therefore, the ARI values are same for these data sets.

In the female voles data, the classification performance for the best and averaging

criterion are the same (ARI = 0.91). In the Iris data (Table 4.2), the weight for

the best model (UUUC) is 0.83, which dominates the model after averaging. The

ARI value for the male twins data gives a negative ARI value (-0.01) for the best
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model and both models after averaging, which is close to 0. Later, we compared the

classification performance between the GPCM family and the tEigen family. In most

data sets, tEigen family shows a better classification performance of the best model

and the models after the two averaging approaches, such as the bank data.

There are many works on clustering and classification using skewed distribu-

tions, including shifted asymmetric Laplace mixtures (Franczak et al., 2014), skew-

normal mixtures (Vrbik and McNicholas, 2014), skewed-t mixtures (Lin, 2010; Lee

and McLachlan, 2011; Vrbik and McNicholas, 2012, 2014; Murray et al., 2014) and

variance-gamma mixtures (McNicholas et al., 2017). Further research on averaging

approaches can be applied to these mixtures. Another avenue for future direction

will concern looking at alternatives to Euclidean distance for matching components

(Section 3.2); a natural starting point would be the Mahalanobis distance.
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Appendix A

Tables
Table A.1: BIC, number of components and weights for GPCM models within Oc-
cam’s window; ARI for true labels versus best model, AAP and MA in Occam’s
window for the flea beetles data.

Occam’s window Pr(D | Mi) ARI values
Model BIC G Case I/MA Case II Best AAP MA

Case I Case II
EII 425.4649 3 0.5335 0.5115 0.4308 0.4430 0 0.3760
EEI 426.3587 3 0.3412 0.3271
VEI 430.1288 3 0.0518 0.0497
EEE 430.2747 1 0.0462
VII 431.5576 3 0.0482 0.0243
VII 432.1880 2 0.0177
EEE 434.1524 2 0.0066
EVI 435.0225 3 0.0254 0.0043
EEI 435.0487 4 0.0042
VEI 435.0534 2 0.0042
VEE 435.1748 2 0.0040

Table A.2: BIC, number of components and weights for GPCM models in Occam’s
window; ARI for true labels versus best model, AAP and MA in Occam’s window for
the voles data.

Occam’s window Pr(D | Mi) ARI values
Model BIC G Best AAP MA
VEE 4359.95 3 0.9898 0.0370 0.0370 0.0370
EEE 4369.10 3 0.0102
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Table A.3: BIC, number of components and weights for GPCM models within Oc-
cam’s window; ARI for true labels versus best model, AAP and MA in Occam’s
window for the vasoconstriction data.

Occam’s window Pr(D | Mi) ARI values
Model BIC G Case I/MA Case II Best AAP MA

Case I Case II
VII 220.4054 3 0.1760 0.1521 0.0144 0.0144 0 0.0344
EVI 220.9546 2 0.1155
EII 220.9625 3 0.1338 0.1151
VEI 221.5244 3 0.1332 0.0869
VEE 221.7105 2 0.0792
VVI 221.8105 2 0.0753
EVE 222.9975 2 0.0416
VII 223.2234 4 0.0372
EEI 223.2349 2 0.0369
EEV 223.4699 2 0.0329
VVI 223.5010 3 0.1006 0.0323
EEE 223.6589 2 0.0299
EEI 223.7200 3 0.0916 0.0290
EVI 224.1791 3 0.0872 0.0230
VEE 224.9952 3 0.0482 0.0153
VVE 225.2038 2 0.0138
VEV 225.5502 3 0.0430 0.0116
VVE 225.7304 3 0.0428 0.0106
VEV 225.7730 2 0.0104
EVV 226.4052 2 0.0076
VVV 226.4444 2 0.0074
VEI 226.7958 4 0.0062
VEI 226.8971 2 0.0059
EVE 227.1510 3 0.0380 0.0052
EEE 227.2644 3 0.0374 0.0049
EII 228.4250 4 0.0028
EII 228.8137 2 0.0023
VVI 228.8841 4 0.0022
EVV 229.9408 3 0.0346 0.0013
EEI 229.9608 4 0.0013
EEE 230.0607 1 0.0012
VVV 230.2185 3 0.0336 0.0011
EII 230.3190 1 0.0011
EVE 230.6512 4 0.0009
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