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ABSTRACT 

The Kolmogorov-Smirnov tests of homogeneity or goodness-of-fit 

and the binomial group tests for eliminating defectives are of different 

nature. But they are both popular in applications. The former are 

widely used in nonparametric comparison, while the later are usually 

adopted in the group screening problems. When the experimenter has 

k populations, k-sample statistics should be considered for the testing 

of homogeneity or goodness-of-fit. On the other hand, when there are 

k experimenters available for performing group testing on a given popula

tion, a k-sample group testing procedure should be used. 

In this thesis, the distribution functions of k-sample analogues 

of the Kolmogorov-Smirnov statistics have been found under certain condi

tions and a k-sample group testing procedure has been defined. This 

procedure has also been shown to be optimal in the sense that it requires 

a minimum expected number of k-sample group tests for finding a single de

fective from a binomial population. 

Our methods are mainly combinatorial: matrix enumeration, tree 

counting and construction algorithms are explored as a foundation of 

our study. 
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CHAPTER I 

ON TF~ ENUMERATION OF MATRICES UNDER RESTRICTIONS AND SOME VARIATIONS 

1.1 Introduction 

In this chapter we shall use a method initiated by Narayana (1955) to 

enumerate matrices whose rows satisfy certain boundary conditions. A simple 

example of such a problem is to enumerate the number of vectors (')_, x
2

, ••• ,xm) 

that satisfy the conditions 0 < x1 _< x2 < ... < x and a. < x. <b. for 
- - m 1 - 1 - 1 

i 1, 2, •.• , m, where x's, a's and b's are non-negative integers such that 

0 < a
1 

< a < • • • < a , 
- 2 - - m < ••• < b - - m 

and a.<b.,i=l, •.. ,m. 
1 - 1 

Among others who have solved these types of problems are Kreweras (1965), 

Steck (1969), and Mohanty (1971,1973). 

Here we first generalize the results to enumerate distinct kxm matrices 

whose rows are vectors of non-negative integers satisfying certain more 

general boundary conditions than those stated above. Enumeration of these 

matrices involves the simplification of a k·mfold summation of the number 1 

to a determinant of size (m+k)x(m+k). This enables us to determ~ne the null 

distribution functions of a k-sample analogue of the two-sample Kolmogorov-

Smirnov statistics under certain conditions in Chapter II and also enables us 

to enumerate certain classes of trees in Chapter III. 

Secondly, following the suggestion of Mohanty (1971), we employ a 

similar method to evaluate multiple integrals of k·m continuous variables 

in the form of. a kxm matrix with row vectors satisfying the same boundary 

conditions as mentioned in the discrete case, This enables us to find a 

(k+m)x(k+m) determinant as an expression of the joint distribution function 

of a k-sample analogue of the one-sample Kolmogorov-Smirnov statistics. 
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1.2 Enumeration of the Matrices 

Let 

X 

xl . 
. J 

X,. 
l] 

X. 
lin 

be a kxm matrix whose entries are non-negative integers. Let 

(1.2.1) 

, dk-l) be vectors of non-nega-

t.ive integers such that 0 < a < a < 
l 2 -

0 < c < c < 
l 2 -

< 0 < h < h < ck, l 2 -

j 1, 2, ... , m. 

< a , 0 < b < b < 
m - 1 - 2 -

< hk and b. <a. for 
J - J 

< b , 
m 

Let N(k, m, A, B, C, D) be the total number of distinct matrices 

of the form X satisfying the conditions: 

(a) c. < x.
1 

< x.
2 

< ... < x. , i = l, 2, ••. , k. 
1 - 1 - l - 1m 

*(b) X .. < X. l . + d., i 1, ,k-1 and j 1, . .. , m 
l] - l+ ,] 1 

(1.2.2) 
(c) b. < xlj j l, ... , m 

J -
(d) X < a. j l, , m 

kj J 

k-1 
Similarly, for b

1 
~ L dt' we let NB(k, m, A, B, H, D) be the 

t=l 
total number of distinct rniltrices of the form X satisfying 

the conditions (b), (c), and (d) of (1.2.2) and 

2 

} (1.2.3) 
(a 1

) 0 <X. < X. < 
- 11 - 12 -

•,x. <h.,i=l, ... ,k 
un - 1. 

For the vectors A, B, C, H, <1nd D considered here, we employ the 

convention that whenever all the components of the vectors are equal to 

a certain constant, we denote them by that constant. For example, if 



al = a2 = ... a a then 
m 

tions that do t\ 0 and 

Note that when c· = D 

we say t.hat A -- a. Also we use the conven-
n 

I x. = 0 whenever m > n for any X. • 

i=m 
1 

0 and h. > a + 
1 - m 

k-i 

I dt, i 
t=l 

1 

1, ... I K, 

we have N(k, m, A, B, 0, 0) = NB(k, m, A, B, H, O). The number 

N(k, m, A, B, 0, 0) was originally found by Kreweras (1965). In particu-

3 

lar, when k = 1, this is reduced to the problem stated in the introduction 

which was solved independently by Steck (1969) for finding the two-sample 

Kolmogorov-Smirnov statistics. Later, Mohanty (1971) provided a short 

k-1 
proof for Steck's result. t.Vhen C = 0 and b > I dt, the number 

t=l 

N(k, m, A, B, 0, 0) was found by Mohanty (1973). Unfortunately, 'the 

conditions were wrongly stated in his original paper (see Mohanty (1977)). 

Now the number N(k, m, A, B, C, D) represents the class of k x m 

matrices X of non-negative integers, whose rows are bounded in the fashion 

of * and the ith row is distributed within the region bounded above by 

i 
the vector (a

1
, ... 

i 
, a. 

J 
, ... i 

, a ) and bounded below by the vector 
m 

for j 

i .. . . , u.' 
J 

. .. . , i i 
u ) 1 where a. 

m J 
a. + 

J 

1 1 • • • , m and i = 1, . . . , k. 

max {b.
J 

On the other hand, the number NB(k, m, A, B, H, 0) represents 

matrices X of non-negative integers whose rows are bounded in the fashion 

of * 

the 

i 
(bl, 

and the ith row is distributed within the region bounded above by 

vector 
i 

(vl, 

... , bi . ' J 

i-1 
b. 

J 
I 

t=l 

i ... , v., 
J 

. .. , bi) 
m ' 

d for j 
t 

vi) and bounded below by the ... I vector 
m 

i 
k 

whe.re v. = min {a. + I d t' 
h.}, 

J J t=l 
1 

1, . . . 1 m and i 1, ... , k. Notice that 
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k-1 
the extra condition b

1 
.> 2: dt is necessary for the number 

t=l 

NB(k, m, A, B, H, D) to be well defined because this guarantees that 

every entry of X is non-negative. 

Now we employ the technique presented by Narayana (1955) to express 

the numbers N(k, m, A, B, C, D) and NB(k, m, A, B, H, D) as km fold 

summations. Hence, we have 

al a2 a. a 

IJ m 
N(k, m, A, B, C, D) I I I 

xkl=uk xk2=uk2 ~j=ukj x =u 
km km 

ail ai2 a .. a. 
1] liD 

I I I I 
xil=ui xi2=ui2 x .. =u .. X, =u. 

1] 1] liD liD 

all al2 alj alm 

I I I I 1 (1.2.4) 
x =u 

11 1 
x =u 

12 12 xlj=ulj x1m=u1m 

where a .. 
lJ 

x. . + d. for i = 1, ... , k-1 and j = 1, ... , m; 
l+l,J l 

i-l 
u .. 
lJ 

max {b. 
J 

I dt' x .. 1 } for i 
t=l 1 , J-

1, . . . , k and j = 2, ... , m 

i-1 
and u. 

1 
max {b

1 
- \ d , c.} for i 

t~l t 1 
l, ... , k. Similarly, 

NB(k, m, A, B, H, D)= 

v 
l 

l 
X =b 

lm m 

vl 

I 
X. =b. 

liD ]_ffi 

vk 

I 
X =b 

km km 

v 
l,m-1 

I 
X =b 

lm m-1 

v. l 1,m-

I 
X. l=b. 1 1,m- 1,m-

v 
k,m-1 

I 
X =b 

k,m-1 k,m-1 

v .. 
lJ 
I 

X .=b. 
1J J 

v .. 
lJ 
I 

X, ,=b .. 
lJ 1] 

vk. 
IJ 

xkj=bkj 

vk1 

I 1 (1.2.5) 

xkl=bkl 
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where bij = xi-l,j - di for i 2, • . • , k and j 1, . . . , m; 

k-1 
V .. = min {a. + I dt' x. "+1} for i = 1, ... , k and j l.J J l.,J 

1, . • • , m-1; 
t=i 

k-1 
v. = min {a + I dt' h.} for i = 1, ... , k. 

l. m 
t=i 

l. 

Our method of simplification is to replace the number 1 by a deter-

minant of size (m+k)x(m+k) instead of a determinant of size m x m used by 

Kreweras (1965) and Mohanty (1973). By doing so, more generalized results 

are obtained in the two theorems of this chapter. 

The following basic definitions and equalities will be used in the 

proofs of the theorems and are listed here for convenience. 

For any two integers a and b, we write 

if a > b > 0 

otherwise 

where ( ~ ) is a binomial coefficient. We call ( ~ )+ a positive binomial 

coefficient. The identity 

(1.2.6) 

is well known for binomial coefficients. It is simple to check that it 

holds for positive binomial coefficients as well. Using (1.2.6), it is 

straightforward to verify that the formulation 

= (a-b+t+l) l r+t+l+'"' (
b2 - b + t) 
r + t + 1 + 

(1.2. 7) 

holds for any non-negative integers a, b, b
1

, b
2

, t and r with the con

dition that b < b. 
1 -



Lemma 1.2.1 Let X be a matrix of size m x m, partitioned into the 

form X [A \· ~. j , where B is a matrix of size r x s such that 

r + s = m + l and 1 ~ r, s < m. Suppose every entry of the matrix B is 

zero, then det{X} equals to zero. 

Proof: This can be proved by induction on the row number r of the 

matrix B. It is obviously true when r = 1 in which case we have s = m 

and the fact that all the entries in the first row of X are zeros implies 

that det{X} = o. Suppose it is true for all r < r , where 1 < r < m. 
- 0 - 0 

We noqed to show that the Lemma is also true for r = r + 1. By expand
o 

ing: det{x} cat,, its first row, we can obtain a· sum of m determinants all 

of which equal to zero since the induction hypothesis is true when r = r 
0 

6 

Therefore the lemma is also true for r = r + 1 and the proof is completed 
0 

by induction. 

Theorem 1.2.1 N(k, m, A, B, c, D) = det{EiF}, the determinant of an 

augmented matrix of an (m + k) x m matrix E = {e .. } and an (m + k) X k 
l.J 

matrix F = {f .. } such that 
l.J 

k-1 
a - b + I dt + k i 1, ... , m+k and 
m-j+l m-i+l t=1 

e .. = j = 1, ... , m 
l.J j - i + k + 

and 

j-1 
U, - b + I dt + j - 1 i 1, ... , m+k and 

J m-i+l t=l 
f .. = j = 1, ... , k 

l.J m + j - i + 



where we set b. 
l 

i 1, ... , k. 

i-1 

max{b
1 

- I dt, ci} for 
t=1 

f ,t { t. } PI·oo : Let u = det E : F be the determinant of an augmented 

matrix of an (m+k) x m matrix Et = {e t .. } and an (m+k) x k matrix 
l] 

F {f .. } such t.hat 
l] 

t-1 

7 

t 
= rxt,m-i+l b . 1 + \' d m-J_+ [, Q, 

i 1, . . . , m+k, j = 1, ••• ,m 
e .. 

1] 2=0 
and t = 0, 1, ... , k-1, 

' 
j - i + t 

-1 

where d 0=0, 2~0di =0~ and F is given in the statement of the theorem. Let 

ail ai2 a. a. lj lm 

I z: f I for i 1, ... , k-1 

xil=ui xi2""Ui2 x .. =u .. X.= U. 

l.i= 
lJ lJ lm lm 

a a2 a. a 
l 

IJ 
m 

I I I for i k 

xkl=uk xk2=uk2 xkj=ukj ~ =u m m 

be usE:d to simplify the expression (1.2.4). Furthermore, since 

6° := l, 

we can replace the number l of expression (1.2.4) by the determinant 6°, 

so that 

N(k, m, A, B, C, D) 

We claim that 

yi i-1 1 6i i l, k-1 6 

l 
... , 

det {E!F} i k 
(1.2.8) 

Hence, the result of the theorem follows. 



8 

We illustrate the proof for the special case k = 3 and m = 3. The 

proof in gene:.al is simil~r but much more tedious to write. Now (1.2.4) 

becomes 
al a2 a3 a21 a22 a23 

N(k,m,A,B,C,D) = I 1: 1: 1: r r 
x3l=u3 x32::::u32 x33::::u33 x21=u21 x22=u22 x23::::u23 

In this case, we have 

[xl3~b3]+ [x12:b3]+ [x11:b3]+ [ul-b3] [u2-b3+dl+l] 
3 +· 4 + 

[u3-b3:d1+d2+2]+ 

0 [x12:b2]+ [x11 :b2]+ [\b2]+ lu2-bfd1 +1]+ [u3-b2:d1+d2+2)+ 

0 0 [xll:bl)+ [ul~bl)+ [u2-b;+dl +t [u3-b1:d1+d2+2]+ 
/:,0 = 

0 0 0 [\bll+ [u2-b~+d1+1]+ [u3-b1;d1+d2+2]+ 

0 0 0 0 [ u2 -b2 +d1 +1) '·[ u3-b1 +d1 +d2 +2) 
0 +· 1 + 

0 0 0 0 0 
. ' [ u, -bl +dl +<l:! +2] 

; 0 + 

(1.2.9) 

which is obviously equal to 1. Now 
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x23+d1 

L t:,o 

xl3=u13 

[X +d -b +1] [x12~b3]+ [x12~b3]+ [x11~h3]+ [\h3]+ • [u3-b3+d1+d2+2] 23 1 3 -
1 + 5 + 

[ x23 +d1 :b2+ll +- [ x12 :b2] + [x12:b2]+ [x11:h2]+ [\b2]+ [ u, -b2 +:1+d2 +2] + 

0 0 
[x11:b1]+ ["1~b1]+ [u3-b1+:1+d2+2]+ 

0 0 0 
[\b1]+ [u3-b1+:1+a2+2]+ 

0 0 0 0 [u3-b1+:1+d2+2]+ 

0 0 0 0 ... [" -b +d +d +2] 3 1 1 2 
0 + 

[ x23 +d1 :b3 + 1] + [x12 :b3] + [ x11 :b3l + ["1-:3] + [ "2 -b, :·1 +ll + [ u, -b, :·1 +d2 +>). 

[x23+d1:b2+1l+ [x12:h2l+ [x11:h2]+ ["1-:2]. ["2-b2:1 +1] + [ u3-b2 :•1 +d2 +2]+ 

0 0 
[ X11 :b1]+ ["1-:1]+ [u2-b1:a1+1]+[u3-h1:a1+d1+2]+ 

= 0 0 0 
[u1-:1]+ [u2-b1:"1+1]+[u3-b1:d1+d2+2l+ 

0 0 0 0 r~-b1:d1+1)+[u,-b1:dl+d2+2]+ 

0 0 0 0 0 [u3-b1:a1+d2+2)+ 

(1.2.10) 
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where we have added over the first column using ( l. 2. 7) and simplified 

(
x. 23+d1-

0
b2+l]+ - (x12-

0
b2]+. = 1 .- l = the determinant using the fact that 0 • 

Note that the last three columns of all the determinants involved in 

this proof remain the same as the corresponding columns of the deter-

minant 1:,
0

• From now on, every entry of the fourth and fifth columns 

of the determinants will be denoted by " " for the purpose of saving 

space. 

If we add over the second column, we obtain a similar result in the 

second column and so forb1, so that the end result is: 

[x2,+:1-b3+1]+ [x22+:1-b3+l]+ [x2l+:l-b3+l]+-[ul~b3]+ [ul~b3]+ 

[x23 +:l-b2+ll+ [ x22+:1-b2+t [ x21 +:l-b2 +l ].- [\b2]+ [ \b2] + 

0 [x22+:1-bl+t [x2l+:l-bl+l]+-[\bll+ [\bll+ 

0 0 

0 0 0 0 0 

0 0 0 0 0 



[ '23 +di -b, +1 L [ '22 +d1-b3+1) 
2 + 

['21 +:1-b3 +1] + [\b't 
['dd~-b2+t [ '22 +:1-b;+1]+ ['21+:1-b2+1]+ [\b2]+ ... 

0 [ '22 +~1-b1 +1]+ [ '21 +:1-br+1]+ [\b1]+ 
0 0 ['21+:1-b1+1]+ [\b1]+ 
0 0 0 0 

0 0 0 0 

Thus we have shown that I1 
f\.

0 
== f\.

1 .. Note that the fourth column of the 

0 . . 
determinant f\. plays the role of simplifying the resultant determinant 

yl after the first three summations L so that the next three summations 

I2 
can be carried out smoothly in a similar pattern. However, notice 

that Lemma 1.2.1 is essential in simplifying the expression I 2 
f\.

1
. 

Since 

11 
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x3 3+d2 
L\1 L 

x23=u23 

( x33 +d2 +dl-b3 +2] 
. 2 + 

[ x22 +d~ -b3+ll + [·2l+drb3+1L [\b3]+ 
fx33+d2+d1"b2+2] 
l 1 + 

["22 +dl-b2 +1] 
1 + 

[•2l+d;-b2+1]. [\b2]. 

["33+d2:dl-bl+2]+ [•22+d~-bl+ll+ [ "21 +dfbl +1] + [\bll+ 

0 0 [•21+d~-bl +1] + [\bll+ 

0 0 0 0 

0 0 0 0 

["23 +dl:b3+ll + [ "22 +d; -b3 +1] + [•2l+d;-b3+ ]+ [ul~b3]+ 

[u23+dl~b2+1]+ [•22 +d~ -b2+ll+ [•21 +d~ -b2+1]+ [\b2]+ 

[u +d -b +1] [•22 +d~ -bl +1] + [•21+d~-bl+l]. [\bl]; .. 23 1 1 
0 + 

0 0 [•21 +d~-bl +1]. [\bll+ 

0 0 0 0 . . . . .. 

0 0 0 0 
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where we have added over the first colunm of 6.
1 using equality (1.2.6) 

and decomposed the resultant determinant at the first column so that the 

above two determinants are obtained. Now we claim that the second deter-

rninant in the above expression equals zero. But, equality (1.2.7) is 

inadequate to enable us to replace every u
23

=max{b
3
-d

1
, x

22
} involved in 

the first colunm of the second determinant by x
22 

as we have done in the 

summations of Ll· For those entries below the main diagonal, the con-

ditions that r being non-negative in equality (1.2.7) is violated. Now 

we observe that when b 3-d1 > x22 , in the second determinant, all the 

entries with row number less than or equal to "one" (in this case) and 

coli.unn number greater than or equal to "one" vanishes. Thus, Lemma 1. 2.1 

implies that the determinant eanals zero. Hence, we conclude that the 

second determinant of the above expression vanishes no matter whether u23 

If we add over the second column, we obtain a similar result in the 

second colunm and so forth, so that the end result is: 
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I2L'I1 

[ x32 +d2 +dl-b3 +2] 
2 + 

[ x32+ct2 +d1-b/2] 
J + 

[x3l+d2:dl-b3+2)+ [\b']+ 

[x32+d2:dl-b2+2]+ [x32+d2:dl-b2+2]+ [x3l+d2:dl-b2+2]+ [\b2]. 
. .. 

[ x32 +d2 +dl-bl +2] 
. 0 + 

[x32+d2:dl-bl+2]+ fx3l+d2:dl-bl+2]+ [\bl]. 

0 [x32+d2:dl-bl+2]+ [x3l+d2:dl-bl+2]+ [u -b l 10 1 + ... 

0 0 [x3l+d2:dl-bl+2]+ 0 

0 0 0 0 

[x32+d2:dl-b3+2]+ [x32+d2:dl-b3+2]+ [u2-b3:dl+t [\b']. 

[x32+d2:dl-b2+2)+ [x32+d2;dl-b2+2]+ [u2-b2:d1+1]+ [u1~b2]+ 

[x32+d2:dl-bl+2]+ [x32+d2:dl-bl+2]+ [u2-bl:dl+ll+ [\bl]. 

0 [x32+d3:a1-b1+2]+ [u2-b1 :dl +1]+ [\bl]. 

0 0 [u2 -b1 :dl +1] 0 

0 0 0 0 

Note that the second determinant in the above expression vanishes since 

the third column is identical with the fifth column. Hence, we have 

\2 1 2 proved that L L'1 = L'1 • 



15 

The procedure of showing that I 3
ll

2 
= det{E;F} is entirely similar. 

This gives the result of the theorem for k = 3 and m = 3. A similar but 

more lengthy argument yields the theorem .. 

The number NB(k, m, A, B, H, D) can also be computed by using the 

above theorem according to the following lemma. 

k=l 
Lemma 1. 2. 2 If b > I dt' then the expression (1.2.5) can be trans

l - t=l 

formed so that NB(k, m, A, B, H, D)= N(k, m, A',B', C', D'), where 

A' . . . ' 

D' 
• • • I 

a') B' m , (bi, ... , b~), C' = (c]_, ..• , ck} and 

dk'-l) are vectors such that a1~ = hk - b m-i+l' 

b~ = hk - a . 1 for i 1 m-1+ 1, . . . , m, c l = hk hk . 
1

, for i = 1, . . . , k 
-1+ 

and d! = dk . for i 
1 -1 

1, • • • , k-1. 

Proof: In determining the number NB(k, m, A, B, H, D), we find that 

the overall upper bound for every entry of the matrix X satisfying the 

condition of (1.2.3) is hk. Thus, if we transform the origin (0, O) to 

the point (m, hk) and .rotate 180° clockwise with the new origin as a cen

ter, then the matrix X = {x .. } is transformed to the matrix X' = {x! . } 
1] 1] 

where xlj = hk- ~-i+l,m-j+l fori= 1, ... , k and j = 1, ... , m. 

It can easily be checked that the matrix X' satisfies all the conditions 

of (1.2.2). This completes the proof of the lemma. 

Accordingly, we have· 

u' = max {b' -
i 1 

i-1 

I 
t=l 

d' c.'} t, 1. 

max {hk - am-l+l -



max {hk 

hk + max 

h -
k 

min 

- a 
m 

{-a 
m 

{a + 
.m 
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k-1 

I d:, ~ - hk-i+l} 
j=k-i+l J 

k-l 

I d • 1 ,-hk-i+l} 
j=k-i+l J 

fori= 1, ..• , k. Then the following theorem can be obtained as are-

sult of Theorem 1.2.1 and Lemma 1.2.2. 

Theorem 1.2.2 NB(k, m, A, B, H, D) = det{E•;p•}, the determinant of 

an augmented matrix of a (m+k) x m matrix E' = {e! .} and a (m+k) x k matrix 
l.J 

F' = { f! . } such that 
1.] 

e!. 
1.] 

and 

c. = a. -
l.J 1. 

= a. -
1. 

vk-i+l 

k-1 
b. + I dt + 

J t=l 

j-i+k 

k-1 
+ I dt + j -

t=l 

m+j-i 

where we a. = a 
1. m 

for i > m and v. = 
1. 

i ::: 1, ... , k. 

k 

+ 

1 

+ 

min 

i 

j 

i 

j 

{a + 
m 

1, ... , m+k 

= 1, ... , m 

= 1, ... , m+k 

1, ... , k 

k-1 

I dt' hi} for 
t=i 

and 

and 

We have already mentioned that in some special cases, the numbers 

N(k, m, A, B, C, D) and NB(k, m, A, B, H, D) have been determined by vari-

ous authors in terms of relatively simple expressions. Thus, our deter-

minant can !Je l'm1ucud to a rill:lter simple form provided that additional 



.• 
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conditions are satisfied. 

Corollary l. 2 .1 'l'he following equalities hold for determinants with 

non-negative integral entries satisfying the specified conditions. 

k-1 
(i) When C - 0 and b

1 
::: L dt, the determinant det{ElF} of 
t=l 

Theorem 1.2.1 equals to 

[ 

k-1 l a -b + I d +k 
m m t=l t 

k + 

[ 

k-1 l a -b . + d +k m m-I+l l. t 
t=l 

k+l-i + 

[ 

. k-1 j 
a .-b + L d +k. 

m l t=l t 

k+l-m + 

a _.+1-b +I dt+k k-1 l 
m J m t=l 

.•. a -b +I d +k 

[ 

k-1 l 
1 m t=l t 

k+j-1 + k+m-1 + 

[ 

k-1 l [ k-1 l ... a . 
1
-b . 

1
+ I d +k ... a

1
-b . 1+ L dt+k m-J+ m-l+ t m-1+ 

t=l t=l 
k+j-i + k+m-i + 

' [ k-1 l . . . a .. 1-b . 1+ \ d +k ... 
m-J+ m-I+ L t . t=l 

k+j-i + 

(ii) When A = a, B c D 0, k = 1, the determinant in (i) becomes 

0 

(a; 1)+ 

(a : 1)+ 

(a ~ l)+ 

(a ; 1)+ 

(~ + ~) + 

(
a + lj 
j-i+lj + 

(
a + 1) 
m + 1 + 

[
a + 1) 
m-i+l + 
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Proof: (i) The determinant given here equals the number 

k-1 
N(k, m, A, B, C, D) when C = 0 and b

1 
> L d according to Mohanty. (1973). 
-t=l t 

Thus, the equality holds. 

This can also be shown directly by expanding the determinant det{E!F} 

th d . l'f . 't . of Theorem 1.2.1 at its (m + 1) column an s1mp 1 y1ng 1 us1:ng 

Lemma 1. 2 • 1. 

(ii) This is a result of Polya (1947) (cf. Kaucky (1975)). 

it also follows readily from the enumeration argument, see Steck (1969), 

Mohanty (1977), and Narayana (to appear). 

Remark 1.2.1 A meaningful refinement of our results in this section 

can be considered as follows. 

Let N(k,m,A,B,C,D,H) be the total number of distinct matrices of the 

form X given by (1.2.1) which satisfy 

all the conditions of (1.2.2) and 

(~) c. < xil < xi2 < . . . < X . < h, 1 i 1 - 1m - 1 11 • • • 1 k (1.2.11) 

(b) b. < x .. < a. i = 11 • • • I k and j 
J - 1) - J 

1, ... , m 

k-1 
Similarly, if b > 

1 
L dt' we let NB(k 1 m,A,B,H,D,C) be the total 

t=l 

number of distinct matrices of the form X given by (1.2.1) which satisfy 

all the conditions of (1.2.3) and } (a) and (b) of (1.2.11) 

(1. 2.12) 

It follows from the definition that N(k·;m;A 1 B1 C1 D1 H) can be expressed 

as a km fold summation of the number 1 which is of the same form as the 

right hand side of (1.2.4) except that here we have a .. =min{x. 1 .+d.,h.la.}, 
1] 1+ I] 1 1 J 
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u .. = max{b
1

, x .. 
1

, c.} and u. = max{b
1

, c.}. 
1J 1,]- 1 1 1 

Similarly, NB(k,m,A,B,H,D,C) can be expressed as a km fold summation 

of the number 1 which is of the same form as the right hand side of (1.2.5) 

except that here we have b .. = max{x, 
1 

.-d. c. ,b.}, V, rmin{a ,X, '+! h.} 
1] 1- ,] 1 1 J 1 m 1,] , 1 

and V, = min{a , h.}. 
1 m 1 

Unhappily, we are unable to simplify the above expressions by using 

the method employed in the proof of Theorem 1.2.1 and Theorem 1.2.2. The 

basic reason is that when the value of a .. is changed from x. 
1 

. + d, to 
1] 1+ ,] 1 

min{x. 
1

. +d., h., a.},e·tc.,the relation t1
ll0 = ll

1 
of (1.2.8) no longer 

1+ ,J 1 1 J . 
holds. To illustrate this, let us consider again the special case that 

k = 3 and m = 3 which was chosen to illustrate the proof of Theorem 1.2.1. 

Here IJ.
0 

is the determinant given by expression (1.2.9). But 

x2l+dl 

L flo 

xu= ul3 

[x23+dl-h3+ll _ [u13-h3] 
1 + 1 + 

[ X
12 :h3]+ [xll-b31 

2 J+ 
[u1:h3]+ ···[u,-~3~1+d2+2]+ 

[x23+dl:b2+ll+ -[u13:h2]+ [ x12:b2]+ [ xll :h2]+ [u1~b2].···[u3-b2~1+d2+2]+ 

0 0 [ xll :h1]+ [u1:h1].···[u3 -b1~1+d2+2]+ 

= [ ul -bll ... [ u3 -bl +dl +d2 +2] 
0 0 0 0 + . 2 + 

0 0 0 0 

0 0 0 0 



the above determinant cannot be reduced to a form like the one 

given by expression (1.2.10), because neither equation (1.2.7) nor 

Lemma 1.2.1 can be applied in this case. 

20 

Hence we conclude that further investigation is required in orderto 

find simple expressions for the numbers N(k, m, A, s; c, D, H) and 

NB(k, m, A, B, H, D, C) defined in this remark, except for the special 

cases that 

N ( k , m, A , B , C , D , hk ) :::: N ( k , m , A , B , C , D) 

amd 

NB(k, m, A, B, H, D, 0) = NB(k, m, A, B, H, D), 

the simple exvressions in terms of (m+k)x(m+k) determinants are given by 

Theorem 1.2.1 and ~'heorem 1.2.2, respectively. 
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1.3 Evaluation of Two Multiple Integrals 

The enumeration method developed in the previous section can readily 

be extended to the continuous case. Here we would like to determine a 

measure of km continuous variables in the form of a k x m matrix X given 

by ( l. 2 .1). 

Let I(k, m, A, B, C, D) be a measure represented by a multiple in-

tegral of the number 1 over the region of X specified by the conditions 

of (1.2.2). Therefore, 

I(k,m,A,B,C,D) 

(ij-
x .. -u .. 

l.J l.J 

all a12 

tll ~ull t12 ~u12 

a 

Jxm =u 
km km 

J
aim 

x. =u. 
1.m l.m 

(1.3.1) 

where a .. = x.+l. +d. fori= 1, •.• , k-1 and j = 1, •.• , m, 
l.J 1. ,] 1. 

i-1 
u. . = max{b . - I dt, x. . 1} , for i = 1 , k and 1· - 1 m l.J J t=:1 1. I J- 0 0 0 

I . - I 0 0 
• I I 

u. 
1. 

i-1 
max{b1 - L dt' c.} fori= 1, ... , k. 

t=1 1. 



k-1 
Similarly, if b

1 
~ L dt' we let IB (k, m, A, B, H, D) be a measure 
t=l 
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represented by a.multip1e integral of the number 1 over the region of X 

specified by the conditions of ( 1. 2. 3) • Therefore, 

IB(k,m,A,B,H,D) e ~b 
lm m 

c ~b. 
1m 1m 

c ~b 
km km 

v 

I 
l,m-1 

X =b 
l ,m-1 m.;.l 

(i,m-1 
X. 1 1,m-

v 

f 
k,m-1 

X =b 
k,m-1 k,m-1 

vlj 

Ixl.=b. 
J J 

(ij-
x .. -b .. 
1] 1] 

(kj-
x.. .-bk. 
k] J 

where b .. = x. 
1 

. - d. for i = 2, 
1] 1- ,] 1 

• ., • I k and j = 1, ••• ' m, 

V .. 
1] 

min{a., x .. +1} fori 
J 1,] 

l, ... , k and j = 1, ••• , m-1, 

k-1 
v. = min{a + L d, h.} fori 

1 m t 1 
1, ... , m. 

t=l 

It is clear from the definitions that when c 

k. > a 
1 - m 

k-1 
+ I d I i 
t=l t 

I(k, m, A, B, 0, O) 

1, ... , k, we have 

IB(k, m, A, B, H, 0). 

D 0 and 

(1. 3. 2) 
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Evaluation of the integrals I(k, m, A, B, C, D) and IB(k, m, A, B, H, D) 

is analogous to the summation problem of determining the numbers 

N(k, m, A, B, C, D) and NB(k, m, A, B, H, D). For if we replace the 

symbol I by the symbol L in (1.3.1) and (1.3.2), then they become the 

same as (1.2.4) and (1.2.5) respectively. 

The following definition and equalities have been suggested by 

Mohanty (1971) as analogues of (1. 2 .6) and (1. 2. 7). 

Let x and a be any two real numbers, we write 

(x)+ = max (0, x) 

Note that for real numbers a and b such that a > b > 0, we have 

I 
a r+l 

( ) r d _ (a)+ 
X + X - ~ 

b r+l 

(b) ~+1 

r+l 

It is also simple to check that 

f
a (a _ b)r++l 

(x- b)~ dx = ________ __ 
max{b

1
,b

2
} r+l 

(b _ b) +r+l 
- 2 

r+l 

(1.3.3) 

'1.3.4) 

for non-negative real numbers a, b, b
1 

and b
2

, such that a > b > 0 and 

bl ~ b. 

fr> 
Now if we view the function (x - b + 

(r)! as [x -r b)+ etc. and replace 

I by L• then equality (1.3.4) becomes the same as equality (1.2.7) except 

that the term a - b on the right hand side of the expression in 

equality ( 1. 3. 4) corresponds to the term a - b + 1 of equality ( 1. 2. 7) • 
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Therefore, if we adjust properly the symbols used in Section 1.2 and take 

into account the difference mentioned above, we can obtain the correspond-

ing results in the continuous case also. Since the arguments of proof are 

similar, we only state the results below without repeating the same pattern 

of proof again. 

Theorem 1.3.1 I(k, m, A, B, C, D) = det{E:F}, the determinant of an 

augmented matrix of an (m + k) x m matrix E = (e . .} and an (m + k) x k 
~) 

matrix F = {£. ) such that 
~) 

and 

e .. = 
~) 

f .. = 
~) 

k-1 ) (j-i+k) 
( a . 

1
- b . + L d 

m-J+ m-~+1 t=l t + 

( j - i + k) 

k-1 ) (m+j-i) 
b . 1 + 2 d 
m-~+ t=l t + 

(m + j - i) ~ 

where we define bi = b1 for i < 0 and 

i-1 
u. = max{b1 - L dt, c.} fori= 1, •.• , k. 
~ t=l ~ 

i = 1, ... , m+k and 

j = ~. • •• , m 

i = 1, ... , m+k and 

j = 1, .•• , k 
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k-1 
Lemma 1. 3.1 If b

1 
> I d , then the expression (1.3.2) can be trans
-t=1 t 

formed so that IB(k, m, A, B, H, D) = I(k, rn, A, B, C, D) where 

• • • I a') 
m ' 

B' = (b' 
1' ... , b') and C' = (c', 

m 1 • • • I c' ) are vectors 
m 

h th t I h b b', sue a ai = k - m-i+1' 1 = h - a . 1 for i = k m-1+ 
1, ..• , m and 

ci = hk- ck-i+1 fori= 1, ... , k. 

Theorem 1.3.2 IB(k, m, A, B, H, D) = det(E"• :F"•}, the determinant 

an augmented matrix of an (m + k) x rn matrix E' = fe~.} 
1] 

and an (m + k) 

matrix F' = (f'! .} such that 
1) 

(ai 

k-1 (j-i+k) 
- b. + I dt)+ i = 1, ... , m+k 

J t=1 e ~ . = j = 1, ... , m 
1) (j - i + k)! 

and 

(ai -

k-1 (m+j-i) 

vk-j+1 +I d) i = 1, m+k t=1 t + ... , 
f~ . = 
1) (m + j i) ! 

j = 1, ... ' k. -
k-1 

where we define a. = a for i > m and v. = min{a + I d , h.} for 
1 m 1 m t=l t 1 

i = 1, ... , k. 

of 

X k 

and 

and 
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The equalities in the following corollary are obtained from the 

boundary cases of the theorems. 

Corollary 1.3.1 The following equalities hold for determinants of 

non-negative integral entries satisfying the specified conditions. 

k-1 
(i) When C = 0 and b

1 
: I dt' the determinant det{E!F} of 
t=l 

Theorem 1.3.1 equals the determinant det{E 1
} where E1 

m x m matrix, such that 

={e~.} 
1] 

is a 

k-1 ) (j-i+k) 
( a '1-b 'l+}:d + m-J+ m-1+ t=l t i,j = 1, •.. , m 

e~. = 
1] (j-i+k)! 

(ii) When A = a, B = C 

becomes 

1 
a 

1 

0 

2 
a 
2~ 

1 a 
1! 

1 

aj 

j ! 

a 
j-1 

----( j-1) ! 

a 
(j-i+l) 

(j-i+l) 

D = 0 and k = 1, the determinant in (i) 

m-1 m a a 
(m-1)! m! 

m-2 m-1 a a 
(m-2)! (tn-1)! 

m 
= a 

m! 

(ltl-i) a: . r-i+l) 
I (m-i) I (m-i+l) .. 

1 a 
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Remark 1.3.1 If we define I(k 1m,AIB 1t,D,H) (resp. IB(k,m 1A,BjH 1 D,C)) 

to be a measure r<~presented by a multiple integral of the number 1 over the 

region of X specified by the conditi.ons of (1.2.11) (resp. (1.2.12)). Hence 

I (k 1m1A,B,C,D 1 H) (resp. IB(k 1m1A1B,H 1D1C)) equals to a k··m fold integral of 

the number 1 which is of the same form as the righthand side of (1.3.1) 

(resp. (1.3.2))1 except that here we have a ... = min{x,+l . + d, 1 h, 1 a.} I 
l] l ,J l . l J 

u .. = max{b11 X, . 1 I c.} and u. max{b11 
c.} (resp. b .. =max{x. 

1 
;-d. ,c. ,b.} 1 

l] 11]- 1 1 l l] 1- ,) 1 l J 

v .. min{a 
m' X, '+ll h.} and v. min{a 

m' h' } ) . 
1] .11 J l l 1 

With a similar reason as the one explained in Remark 1.2.1, we are 

unable to simplify the above expressions any fprther. 



CHAPTER II 

K-SAMPLE ANALOGUES OF THE KOLMOGOROV-SMIRNOV STATISTICS 

2.1 Introduction 

Let xi < xi ~ 
1 2 

< xi be the order statistics from a sample of ni 
ni 

independent identically distributed (i.i.d.) random variables with a con

tinuous cumulative distribution function (c.d.f.) Fi and a sample empirical 

distribution Fi , that is, 
n. 
~ 

i 
F (z) = 

n. 
~ 

0 

j/n. . ~ 

1 

x~ < z < xi 
J - j+l 

i=l, ••• ,k. 

xi < z 
n. -
~ 

For k -- 1, Kolmogorov (1933, 1941) proposed the one-sample statistic 

sup jF
1 

(z) - G(z) I 
z nl 

for testing the goodness-of-fit hypothesis H
1

: F1 = G, where G is some 

specified c. d. f. 

For k = 2, Smirnov (1939, 1948) proposed the two-sample statistic 

1 for testing the homogeneity hypothesis H
2

: F 

28 

' . 
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The asymptotic null distributions of these statistics were also found 

by the above authors. Among others, the exact null distributions were in-

vestigated by van der Waerden (1971) and Epanechnikov (1968) in the one 

sample case and by Gnedenko and Korolyuk (1951), Orion (1952) and 

Massey (1951) in the two sample case. However, simple and closed forms of 

both the one-sample and two-sample statistics in general setting were not 

known until Steck (1969, 1971). Recently, Govindarajulu, Alter and 

Gragg (1975) have used the generating function technique to obtain a 

closed form expression of the exact distribution of the one-sample Kolmo-

gorov statistic. Interestingly, these results turn out to be special cases 

of the formulas developed in Chapter I. 

K-sample analogues of the Kolmogorov-Smirnov statistics have been 

established by various authors. For example, David (1958) derived the 

null distribution of a one-sided three-sample statistic of the form 

max { 2 1 3 2 1 3 } sup(F (z) - F (z), sup(F (z) - F (z), sup(F (z) - F (z)) 
n n n n n n 

z z z 

where n
1 

= n
2 

= n
3 

= n. Kiefer (1955, 1959) considered statistics for 

1 2 k \ 
testing the homogeneity hypothesis H

2
: F = F = ... = F or the goodness-

£ f . h . 1 2 k . 'f' o- 1t hypot es1s H
1

: F = F = .•. = F = G, where G 1s some spec1 1ed 

c.d.f •• For testing H
1

, the statistic is 

u 2 = sup c .. 
. . 1] z,l,J 

i~j 

I Fi ( z) - Fj ( z) I , 
n. n. 

1 J 
(2.1.1) 

where c .. is some fixed constant, for i,j = 1, ... , k and i 1 j. The 
1] 

statistic U1 for testing ·Rl may be obtained by wri t:ing G for Fj and c. 
n. 1 

J 

for cij' j = 1, ... , k. Kiefer also showed that these statistics are 
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consistent against all alternatives and have good power properties. 

Dwass (1960) studied statistics of the same nature. However, the null 

distributions of the above statistics remained unknown. Conover (1967) 

found the exact distribution of the statistic 

sup 
z,i<k 

where n1 = n2 = ... = nk = n. In his paper, Conover stated that such a 

testing statistic would be useful in situations where the experimenter has 

k populations, k > 2 and may legitimately assume, from biological or other 

non-mathematical considerations, that F1 (x) ~ F2 (x) ~ ... ~ Fk(x) for all x. 

Wolf and Naus (1973) provided tables of critical values based on Conover's 

result and showed that for certain alternatives, the test has reasonable 

power relative to parametric and other distribution-free competitors. 

In this chapter, we obtain the null distribution functions of the 

statistics u1 and u2 for the special case of certain fixed constants cij 

in the definition. Furthermore, subject to some ordering conditions (see 

Sections 2.2 and 2.3) the conditional null distributions of the same 

statistics are also obtained. These conditional statistics are expected 

to be useful in situations like those specified by Conover(l967) that we 

have mentioned in the previous paragraph. 

All the random variables considered in this chapter are univariate. 

Extension to the multivariate case is possible according to Bickel (1969) 

~nd Ahmad (1977). 

The research work achieved under this subject is enormous (see 

Hajeck (1967)), our introduction only includes those references that are 

closely related to the topics discussed later. 
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2.2 K-sample Rank Statistics of Kolmogorov-smirnov Type 

In this section, we consider the statistie. u
2 

(cf. (2.1.1)) defined 

' 1 '2 
by Kiefer (1959) for testing the homogeneity hypothesis H

2
: F = F - .•• 

= Fk. It has been suggested by Anderson (1962) that the two-sample 

statistics of Kolmogorov-Smirnov type can be expressed in terms of 

statistically equivalent blocks, namely the ranks. Therefore, using the 

formulas of Section 1.2, we are able to determine the null distributions 

of the statistic for certain fixed constants c .. in the definition. 
~J 

Furthermore, we also obtain the conditional null distributions of the same 

statistic subject to the restrictions on the ordering of the ranks. When 

k = 2, the conditions become degenerated and the result is due to 

Steck (1969). 

Now we define the following statistics which constitute the u1 

statistic: 

i n.) k - Fi (z)) D+(nk, = sup(F (z) 
~ z nk n. 

~ 

i n .) i Fk (z)) D_(nk, = sup(F (z) -
:1 z ni nk 

and 
i i i 

D (nk, ni) =max {D+(nk, ni), D_(nk, ni)} 

are the two-sample statistics for comparing the ith sample with the kth 

sample, i = 1, ••• , k-1. 

i 
sup {nkn.D_(~, n.)} 

l<i<k=l ~ ~ 

and 
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i 
D(~; n

1
, ... , nk-l) = sup {nkn.D (nk, n.)} 

K l<i<k-1 1 1 

are the k-sample statistics measuring the supremum of the weighted maximum 

d . b h . th 1 d h kth . 1stance etween t e 1 samp e an t e sample, for 1 < 1 < k-1. 

Note that those statistics with a subscript '+' or '-' are one-sided 

while those without a subscript are two-sided. In addition to the above, 

we write 

ij 
D (n. , n.) = 

l. J 
sup (Fi (z) - Fj (z)) 

Z 
n. n. 

1 J 

for every i, j 1, .•. , k-1 and it j, and 

n.n.nk 
sup { l. J 

l<i,j<k-1 n.+n. 
- - 1 J 

itj 

Then, the u
2 

statistic can be expressed as 

for the special case that 

c .. = 
l.J 

n.n.nk 
l. J 

n.+n. 
1 J 

i = 

j 

i,j 

1, • • • I k-1, 

1, ... ' k-1, 

= 1, • • • I k-1 

j = k 

i = k 

and i t j 

Definition 2.2.1 Let i be an integer such that 1 < i < k-1. Let 

< zi 
n.+n 

1 k 

i xi be the combined and ordered sample of x
1

, ... , 
n. 

1 

k 
and x

1
, ... , k i 

The rank of X. in that sample, denoted by R., is the 
J J 

Z
i k 

total number of t' 1 < t < ni+nk, which is less than or equal to Xj, for 

every J. = 1 n ' ..• , k. 



It is clear from the definition that 

1 < Ri - 2 < 
2 

for every i = 1, ••. , k-1. 

< R~ - j < 
J 
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(2.2.1) 

The following is a result used by Steck (1969) who quoted the state-

ment from a paper by Maag and Stephens (1968). However, the basic idea 

can be found in Anderson's (1962) book. For the sake of completeness, we 

provide the proof here. 

Lemma 2.2.1 sup ~_2_ 
l<j<nk n 

- - k 

R~ jj 
n. 

1 

for every i 1, ... , k-1. 

Proof: Without loss of generality, we may assume that i = 1. For 

any fixed j, 1 < j ~ nk, we have 

k 
F (x.) 

j 

nk J 

Now 

= 

= 

Thus, the lemma is proved. 
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By ordering the random variables from the largest to the smallest, 

'\,' 

> x
1 

i = 1, ••• , k, Steck (1969) obtained the 
n. 

1 

following lemma as an analogue of Lemma 2.2.1. 

Lemma 2.2.2 l~~~n (R~ n~ j 
- - k 1 

for every i = 1, •.• , k- 1. 

Proof: For any fixed integer i, such that 1 < i < k-1, we write 

'\.ok '\.oi 
sup ( F ( z) - F ( z) ) 

z nk ni 

where we let Ft (z) 1 - Ft ( z) , x7 xt 
n. n. J n -j+l 

1 1 t 

'\.ot zt z. for j 1, • • • ·I nt+nk, so that 
J nt+nk-j+l 

~t > ~t > 
1 2 -

'\.ot 
Z for every t 

nt+nk 
1, •.. , k. 

for j 1, ... , nt and 

~t > ~t > '\.ot 
and > X 

1 2 - nt 

'\..' 

Also let R: be the total 
J 

'\,' 

number of z 1 

s' 
'\,' k 

1 < s < n. + n such that Z1 
> X. for j = 

1 k s - J 
Thus, 

'\,' R: 
J 

Ri 1 n. + nk - . 1 + . 
1 nk-J+ 

By the definition, 

0 ~t < 
1 z 

rvt 
( z) r/nt ~t < '\.ot 

F z < X 
nt r+l r 

1 z < 
'Vt 
X 
nt 

where r = n. - s, t = 1, ..• , k. Thus by a similar argument as the proof 
J 

of Lemma 2.2.1, we have 



Writing in terms of the original ranks 

where j 

( 

n -j+l 
k 

sup 
l<j<n nk 

- - k . 

(nk+n.-Ri . 1 > - (nk-j+l)) 
1 nk~-~J~+~------~---

n. 
1 

nk - ~ + 1. This can be reduced to the result of the lemma. 
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Let lxJ denote the largest integer less than or equal to x and let 

<x> = -l-xj denote the smallest integer greater than or equal to x. Using 

Lemma 2.2.1 and Lemma 2.2.2 and the fact that the ranks defined in 

Definition 2.2.1 are integers satisfying the inequalities (2.2.1), we can 

easily prove the following theorem which has been used by Steck (1969). 

(1) 

(2) 

( 3) 

Theorem 2.2.1 The following hold for every integer i, 1 < i < k-1. 

i 
Prob {nkn.D (nk, n.) < r} 

1 + 1 

< R~ 
J 

R~ - j 
J 

< n., j 
1 

j < n.' j 
1 1, ... ' nJ 

n. 
1 

< R. - J < m1n n. , - + J- -i . . ( ~r . ni 
J - 1 nk nk nk 

~} • j=l .. · · ,nk} 



(4) 

(5) 

(6) 

{nkniD~(nk, < r} Prob n.) 
]_ 

i = Prob { 0 ~ R. j < .nin n., ..E... + j...2:. - -~ { l n. n J} 
l. nk nk nk 

j 1, . .. , 
nk} J 

Suppose n. > 1 and r > max { n , sup t~~)}, 
k 1<i<k-] 2 

then 
l. 

Prob {nkniDi(nk, ni) 

-- Prob max { 0, ~~~ 
j = 1, 

Suppose n. < 1 and r 
l. -

= Prob 

< r} 

~} < R~ - j 2 min { ni, l ~ r 
-- + 

nk 

{ ( '} n,,.. nk 
< max nk, ~up 1 

2 
~ \ , then 

1<l.<k-1 J 

< Ri - j < 
j 

min {n., I ..E...+ 
1. lnk 

j 1, ... , nk 

n. 
. 1. + J---
nk 
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n. j} 1 

nk 

Remark 2.2.1 Notice that the extra conditions imposed on n. and r that 
J 

appears in (5) and (6) of Theorem 2.2.1 are to guarantee that the given 

inequalitie~ hold without contradiction. 

" \ 
' 



37 

Given k populations, an experiment C for testing the null hypothesis 

- -- ... - k 
F may be performed in the following steps: 

(1) sample of size namely, i i xi such that a n., xl, x2' • • • I 
1 n. 

1 

xi < xi < < xi is drawn from the .th population, i 1, k. 1 = 1 2 n. ... ' 
1 

(2) The sample i i xi is combined with the sample Xl, X2, • • • I n. 
1 

k k 0 i i Ri xl, x2' ... , so that the ranks Rl' R2' ... , are computed, for 
nk ~ 

i = 1, ... , k-1. 

(3) Compute the statistics defined at the beginning of this section 

by using Lemma 2.2.1 and Lemma 2.2.2. 

It is clear that every outcome of the experiment ~ can be written 

in the form of a (k-1) x nk matrix 

1 R~ Rl Rl J ~ 

R Ri i Ri (2.2.2) = R. 
1 J nk 

k-1 k-1 k-1 
R 1 R . R 

J nk 

which is called a rank matrix. Therefore, the sample space of the experi-

ment C, , that is, the collection of every possible outcome of t , is the 

set of all rank matrices of the form R. 

Suppose we consider a modified experiment of the experiment C.. , namely, 

the experiment~, described a~ ·the follows. For every i = 1, 2, ••• , k-3, 

i i i k k k a f"ter the. ranks R1 , R2 , ... , R has been determi .. ner'l, the sample x
1

, x
2

, •.• , x 
~ ~ 



th 1 t' 1 f . . is replaced in the k popu a ~on and a new samp e o the same s~ze ~s 

th i+l i+l i+l 
chosen from the k population in order to determine R

1 
, R

2 
, ..• ,R

3 

R
:i, ( i i . i' 1 Then it is obvious that the row vectors - R · R R ) and·R- -- '1' '2''''' -

~ 

... , Rj ) of the rank matrix R are independent of each other 
~ 

whenever i ~ j and thus 

Prob {Ri = U, Rj = V} = Prob {Ri u} x Prob {Rj 

consisting of integers satisfying 

0 < v < v < 
1 2 < V < n .• 

nk - J 

0 < u < u < 
1 2 

v} 

... , 

< U < n. and 
~ - ]. 
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Thus each row vector of the rank matrix R can be regarded as an out

come of a two-sample experiment and the experiment ~ consists of k-1 

independent two-sample experiments. 

Since the statistic Di(nk, ni) is only a function of the ranks 

• • • I 
Ri ) i 

n ' 
k 

1, .•. , k-1, we conclude that 

k-1 i 
IT Prob {nkn;D (nk, n;) < r} 

i=l ... ... 

and 

(2) 

Recall that N(k, m, A, B, C, D) and NB(k, m, A, B, C, H, D) are functions 

whose values have been determined in Section 1.2 for given positive integers 

k and m and vectors A, B, C, D and H satisfying the conditions specified by 

(1.2.2) and (1.2.3) respectively. 



It is not hard to find the null distribution of the statistic 

D(nk; n
1

, •.• , nk-l) obtained from the experiment C: since the null 

cist~ibutions of the two-sample statistics Di(nk,ni), i = l,2, .•. ,k-l 
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are known due to Steck (1979). In terms of our function N(l,nk,A,B,C,D), 

Steck's result can be formulated as the following: 

i r} N( 
i i I N{l,nk,ni,O,O,O) (l) Prob {nkniD (nk, n.) < = l,nk,E ,F ,0,0) 

1 

Ei i i 
) , i i fi ) are vectors such that where (el, • • • I e F (fl, ... , 

nk nk 

n. n. r i -Y} fi =max{ o+:~- r J} for {n ~r _ . 1 1 and e. min J-- -+ 
J.' n J nk nk J n: 

k k 

j = l, • • • I nk and i l, ... , k-1. 

where E'i ( I i e'i ) and F' = (f'i f'i ) are vectors such that e l, ... , ... , 
nk 1' nk 

,i { l n. ~J} and f'~ max { o, ~ni -~ )} . r . 1 for e . mJ.n n. , - + J- = 
J 1 nk nk J nk nk 

j = l, ••• , nk and i = 1, .•• , k-1. 

However, for the statistics obtained from the output of the experiment l, 

we are only able to find several conditional distribution ftmctions in terms 

of the functions N(k-l,nk,A,B,C,D) or NB{k-l,nk,A,B,H,D). 

Theorem 2.2.2 

j = 1, ••• , nk and i 

i '+1 
Under the conditions that k > 2, R. < R

1
. +d. for 

J - J l. 

= 1, ... , k-1, where d 's are non-negative integers 
i 

such that 0 < di ,:: ni - ni+
1

, i = 1, ••• , k-2, the following are true when 

the null hypothesis H
2 

holds. 
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(1} 

where A = (a
1

, ... , a ) , B = (b
1

, ... , b ) , D = ( d
1

, .•• , dk_
2

) , 
nk nk 

min { nk-1' (:~ nk-1 nk-1 -?}and b. max{ 0, l j~ -
rl 

+ 1J} a. ..,. J--- = 
J nk nk J nk 

for j 1, . . . , nk • 

(2) 

where A' = (ai, ... , a I ) 1 B' = (bi, • • • I b' ) and 
nk nk 

a~ min{ "k-1, ~2 + 
.nk-1 -\1J } { ~n1 r1)} for J-- b. = max . 0 , j nk - nk . , J nk nk J 

j=l, ... , nk~ 

Proof: Under the null hypothesis H
2

, each distinct rank matrix of 

the form R (cf. (2.2.2)) happens equally likely as an outcome of the 

experiment ~ . Since each row vector of R satisfies the inequalities 

(2.2.1) by definition, we know that the total number of distinct matrices 

of the form R which satisfies the conditions stated in the theorem is 

equal to the number N(k-l,nk,nk_
1

,o,O,D) and the total number of distinct 

rank matrices which also satisfy the restrictions nkn
1
o!(nk,nl) < r 1 , and 

Thus 

the result of the first part of the theorem follows. The second part can 

also be proved analogously. 
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Remark 2.2.2 For k = 2, the conditions of Theorem 2.2.2 degenerate 

and the two-sample result by Steck (1969) follows •. 

Similar arguments can be used to prove the following theorem. 

Theorem 2.2.3 Under the conditions that k ::_ 2, n
1 

~ n
2 

< 

. '+1 
and that R~ ~ R

1
j + di' j 1, ... , nk and i = 1, .•. , k-2, where di's 

are non-negative integers such that :~: di < max { 0, l :~ -:. + 1 J }• 
the following is true when the null hypothesis H

2 
holds. 

(1) 

where A, B are the same af; those defined in Theorem 2. 2. 2, D 

and H 

k-2 { n } 
In a·ddi tion, if the inequality L d. < max 0, nkl - nrk 

i-1 l 

is also 

satisfied, then the following is true when the null hypothesis H
2 

holds. 

(2) 

= NB(k-l,nk,A' ,B' ,H,D)/NB(k-l,nk,nk-l'O,H,D), 

where A', B' are the same as those defined in Theorem 2.2.2. 

Corollary 2.2.1 Ri < i+l Under the conditions that k > 2, . R . , j=l, .•. , nk 
J - J 

and i = 1, ... , k-1 and that n
1 

n, then the following is 

true when the null hypothesis H
2 

holds. 
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Proof: It suffices to show that in this case, 

and the above is also true when"<" is replaced everywhere by"~". Then 

the corollary follows from either Theorem 2.2.2 or Theorem 2.2.3 since 

N(k-l,nk,A,B,O,O) = NB(k-l,nk,A,B,H,O) under the given conditions. 

. i+l 
Our assertion is true because R~ ~ R j , j = 1, ... , ~' i=l, .•. ,k-1 

and Lemma 2.2.1 implies that 

i=1, ... ,k-1 

and 

i = 1, ••• ' k-1 

when n
1 

= n. Therefore, in this case, the conditions 

are equi•~lent to the conditions 

1 k-1 
D+(nk, n1) < r 1 and D_ (nk' nk-l) < r 2 

when n
1 

= = nk = n. Thus the result of the corollary follows. 
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Under t.he null hypothesis H
2

, we have already found the null distribu-

tion and the conditional null distribution of the statistic D(nk;n
1

, ... ,nk_1 >. 

In the next theorem we show that the distribution of the statistic 

u2 (nk,n
1

, ... ,nk-l) is the same as the distribution of the statistic 

Theorem 2.2.4 The cumulative probability distribution function of the 

Proof: Since 

supi(Fi (z)- Fj (z)) I< supiFk (z)- Fj (z)j 
n. n. - nk n,; 

+ sup I Fk ( z) - Fi ( z ) I , 
z nk ni z 1 J z J 

writing in terms of the statistics, we have 

nknin. ij 
n. n. i - 2 1 j n.) J D (n.,n.) < ---+-.- nkn.D (nk, + nkniD (nk,ni) n.+n. 1 J - n. n. J J n.+n. 

1 J l J 1 J 

for every i,j = 1, • • • I k-1 and i 'I j. Taking sup on both sides of the 

above inequality, we find that the right hand side is bounded 

by the statistic D(nk; n
1

, ••. , nk-l), while the left hand side becomes 

D' (n
1

, ... ,nk_
1
). Therefore, D(nk;n

1
, ... ,nk_1 > < r implies that 

D'(n
1

, ... ,nk_
1

) <r. Thus, 

Proh {o(n ;n , ... ,nk 
1

> < r} 
k 1 -

Prob {D(nk;n
1

, ... ,nk_
1

) < r, D'(n1 , ... ,nk_1 )<r} 

Prob {U2 (nk;n1 , ... ,nk_1 l < r}. 

This proves the first part of the theorem. The second part follows analogously. 



Remark 2.2.3 The conditions .imposed on the rank matrices when we 

find the null districtions in Theorem 2.2.2 and Theorem 2.2.3 arise due 

44 

to the restrictions given on the matrices enumerated by using Theorem 1.2.1 

and Theorem 1.2.2. Therefore, if we can improve the results of Chapter I 

by finding simple expressions for enumerating the classes of matrices 

satisfying the conditions (1.2.11) or (1.2.12) mentioned in Remark 1.2.1, 

the corresponding results on the conditional null distributions obtained 

in this chapter can also be improved. 
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2.3 K-sample Order Statistics of Kolmogorov-Smirnov Type 

In this section, we consider statistics of the form u
1 

defined by 

Kiefer (1959) (cf. Section 2.1) for testing the goodness-of-fit hypothesis 

1 2 
H1 : F = F = • • • = Fk = G. When k = 1, van der Waerden (1971) wrote the 

statistic as a function of the order statistics of a given sample; 

Epanechnikov (1968) found an exact expression for the distribution of 

the statistic, and Steck (1971) obtained a closed form of the distribution 

under the hypothesis H
1

. When k is any finite integer greater than or 

equal to 1, we use the formulas of Section 1.3 to determine, under the 

null hypothesis H
1

, the null distribution of the statistic 

U = sup !Fi (z) - G(z) I 
z ni 

which is a special form of the statistic u
1 

when c
1 

= ..• = ck = 1. In 

fact, this is only a combination of Steck's (1971) result. However, we 

obtain further the conditional null distribution of the same statistic 

subject to the restriction on the ordering of the order statistics between 

the k samples. 

Now we define the following statistics which constitute the 

U statistic. 

and 

-i 
D (n.) 

l. 

i sup(G(z) - F (z)) 
z ni 

i = sup(F (z) - G(z)) 
z ni 

-i 
D (n.) = max 

l. 
{D i -i } D+ (n.) , D (n.) 

l. - l. 

are usually called the one-sample Kolmogorov statistics. The first two 

are one-sided and the third one is two-sided. In the k-sample case, we 



define 

and 

sup 
l<i<k 

sup 
l<i<k 

-i 
{n· (n.)} 

+ ]_ 

-i 
{D (n.)} 

]_ 

sup {Di(ni)} 
l::j_::k 
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Since the statistic U(n
1

, ... ,nk) is a function of the one-sample 

statistics Di(ni)' i=l, ... , k, the distribution of U(n
1

, ... ,nk) is based 

on the distributions of these one-sample statistics. Therefore, we need 

the following lemma and theorem which are originally due to van der 

vJaerden (1969) and Epanechnikov (1968), respectively. For the sake of 

completeness, the proofs are also sketched here. 

Lemma 2.3.1 ( 
i h-1) sup xh-~ 

l<h<n. i - - ]_ 

i i sup(F (z) - F (z)) 
z ni (

h 
sup -

l<h<n. ni - - ]_ 

where ~ is the sample point of the order statistic ~, for every 

h 1, ... , n. and i 
]_ 

1, ... , k. 

Proof: Without loss of generality, we may assume that i = 1. Since 

a continuous monotone transformation of the z axis leaves the.differences 

(F
1

(z) - F
1 

(z)) unchanged, we can replace z and x1 
by the new variables n. n 

]_ 

z' 1 1 
F (z) and (xh) r1 (x~) without changing the maximal difference 



1 sup (F (z) 
z 

1 . 
F Cz) ) • 
nl 

1 
Let us call the new variables z and ~ again, so 

the distribution function assumes the simple form 

1 
F (z) == z o<z<l. 

1 
Since all of the ~·s lie between 0 and 1, we can set 

F (z) 0 z < 0 

F(z) 1 z > 1 

Hence, the probability density function (p.d.f.) is 

f(z) =t 0 < z < 1 

otherwise. 
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At the point 1 
~I 

1 h-1 
the function F (z) jumps from --- to It is clear 

nl nl 

that the maximum of the difference F1
(z) - F1 

(z) must occur at one of 
nl 

the points 

follow. 

1 1 
X X 
1' 2' • • • I 

1 
~· ... , Thus, the results of the lemma 

Theorem 2.3.1 For any integer i, 1 < i ~ k and any real number r, 

-1 < r 2 1, the following hold under the null hypothesis H
1

. 

(1) 
--i 

Prob {D (n.) < 
+ l -

i 
dx , 

n. 
l 

where Gi(r) is a n. dimensional region of integration specified by the 
+ l 

conditions 0 < xi < 

h 1, ... , n .. 
1. 



(2) Prob {ni(n.) < r} 
- .l 

n.! 
.l 

Jax~ ... i 
dx , 

n . 
.l 

i 
where G (r) is an. dimensional region Qf integration specifiedby the 

.l 

conditions 0 < xi < 
1 

h 1, ... , n .• 
.l 

i 
< x < l and max 

n. -
l 

h 
0, - r 

n. 
.l 

(3) Prob {-Di(n.) < r} • J fa i d i l == ni. Gj (r) • • . . . xl . . . xni, 

for 

where Gi(r) is an. dimensional region of integration specified by the 
l 

i 
conditions 0 < x < 

l 

for h = l, ... , n .. 
l 

Proof: Since the order statistics Xi 
1' • • • I xi are i.i.d., the 

n. 
l 

i sample points x
1

, • • • I 

i 
x , 'after the transformation described in the 

n. 
l 

proof of Lemma 2. 3 .1, are distributed with p. d. f. 

i 0 < X < l 
n. 

l 

otherwise. 
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Therefore, the joint p.d.f. of the order statistics is n.! in the region 
l. 

·r· a by o < i < spec1 le x
1 

i 
< xn. :: l. Under the null hypothesis H1 , we 

l 

l k have F = ... = F = G, therefore, Lemma 2.3.1 implies that the condition 

i 
D+(ni) < r is equivalent to 

i 
x. - (h-1)/n. < r h = l, ..• , n .. 

h l - l 

This proves (1) of the theorem. (2) and (3) follow analogously. 
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Given k populations, an experiment ~l for testing the null hypothesis 

H . 
1". 

. 1 2 k 
F = F ... = F = G may be performed in the following. steps: 

(l) sample of size 
i i xi such that a n., namely Xl, X2, .... , 

l n. 
l 

i i 
< < xi is drawn from the 

.th 
population, i k. xl < x2 l 1, 

n. 
.. "' , 

l 

(2) Compute the statistics defined at the beginning of this 

section by using Lemma 2.3.1. 

In order to find the null distributions of the statistics, we re-

call that I(k, m, A, B, c, D) and IB(k, m, A, B, H, D) are functions 

whose values have been determined in Section 1.3 for given vectors A, B, 

C, D and H satisfying the conditions specified by (1.2.2) and (1.2.3) 

respectively. 

The forthcoming theorems and corollary are the main results of this 

section. 

Theorem 2. 3. 2 Under the conditions that k :_ 1, n
1 

= • • • = nk = n 

i i+l 
and x. < x for every j = 1, .•. ,nand i 

J - j 
1, ... , k-1, the following 

is true when the null hypothesis H
1 

holds. 

{
-1 

Prob D_(n) ~(n) _:: r) = (n!)ki(k, n, A, B, 0, O) 

where A= (a
1

, ... ,an) 1 B = (b
1

, • • • I b ) and a. 
n J 

. {r + = mJ.n 2 
j-1 

n 

b j = max { 0, ~ - r 1} for j 1 1 ••• , n. 

Proof: From the proof of Theorem 2.3.1 1 we know that the joint 

p.d.f. of the i.i.d. order statistics X~, .... ' xi is n. ! I 

n. 1 
for every 

l 
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i = 1, ••• , k. Since the random variables between the samples are also 

independent of each other, the joint p.d.f. of the k samples of order 

statistics is equal to (n!)k. Hence, Theorem 2.3.1 implies that the 

joint probability distribution of the -1 --k 
statistics D (n) and D+(n) con-

k sidered in this theorem is the integration of the constant (n!) over the 

region which is the same as the region of integration defined by the 

function I(k, n, A, B, 0, 0). Thus, the result of the theorem follows. 

Similarly, we can prove the following theorem. 

Theorem 2.3.3 Under the conditions that k ~ 1, n1 = ... = n 

i '+1 
and x. < x1 +d., j = 1, ••• ,nand i = 1, ... , k-1, where d.'s are 

J - j 1 1 

non-negative real numbers such that 0 < d. < 1 for i 
1 -

1, ••• , k-1, and 

k-1 { 1 } L d. ~ max 0, - r
1 

, the following is true when the null hypothesis 
i=l 1 n 

H
1 

holds. 

{
-1 --k } Prob D_(n) ~ r 1 , D+(n) ~ r 2 = IB(k, n, A, B, 1, D) where A and B 

are the same as those defined in Theorem 2.3.2, and D = (d
1

, ••• , ~-l). 

Corollary 2.3.1 Under the conditions that k > 1, nl = ... = nk = -

and i < i+l for j 1, and i 1, k-1, then the following x. X • • • I n = ... , 
J - j 

holds under the null hypothesis H1 . 

where A, B, and D are the same as those defined in Theorem 2.3.3. 

Proof: This is true because of the fact that 

n 
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which can be verified from the given conditions and Lemma 2.3.1. 

Remark 2.3.1 The conditional null distribution of the statistic 

U(n
1

, n
2

, ... , nk) has been determined.by Corollary 2.3.1. For the 

special case that k = l, we obtain Steck's (1971) result. In general, 

the null distribution of the statistic U(n
1

, n
2

, ... , nk) can be expressed 

as 

i since the k samples x
1

, ... ' 

k 

i~l Prob {oi(ni) < r} 

i 
Xn·, ic l, •.• ,k are independently drawn in 

l 

the experiment E,1 and therefore the statistics Di(ni), i = l, .•. ,k are 

independent. This enables us to compute the statistic U(n
1

, ••• ,nk) based 

on the 1-sample result. 

The conditions imposed on the order statistics when we find the 

null distributions in Theorem 2.3.2 and Theorem 2.3.3 arise due to the 

restrictions given on the matrices used to specify the regions of integra-

tions of the k·m fold multiple integrals detetermined in Theorem 1.3.1 

and 'rfworem 1. 3. 2. Therefore, if simple expressions can be found for the 

integrals defined in Remark 1.3.1, the corresponding results on the condi-

tional null distributions obtained in this chapter can also be·improved. 
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2.4 Procedure of Testing the Null Hypotheses 

Here we describe precisely how the k-sarnple statistics defined in 

1 k 
this chapter can be used to test either the null hypothesis H2 : F = ••. =F 

1 k 
or the null hypothesis H1 : F = ... =F =G. 

Let S represent any one of the statistics whose c.d.f. has been found 

in this chapter. Let 

p = Prob {s < r} (2.4.1) 

then we are able to determine the value p for a given r, or to approximate 

the number r for a fixed p. Therefore, the following testing procedures 

can be used as an analogue to those given by Maag and Stephens (1968). 

Suppose there are k populations with continuous distributions. Draw 

one sample of prescribed size from each population and calculate the value 

of the statistic S according to its definition. If we find that s = s, then 

the two test at significance level a can be performed in the following two 

directions: 

(i) Compute ps such that ps = Prob {S < s}. 

the null hypothesis at the significance level a. 

If 1 - p < a, reject 
s 

(ii) Approximate the value of r for p = 1 - a, such that (2.4.1) is 

satisfied. If s > r, reject the null hypothesis at the significance 

level a. 



. CHAPTER III 

A STUDY OF ROOTED PLANE TREES 

3.1 Introduction 

In this chapter, we use the definition of a rooted plane.tree given 

by Klarm,~r (1970). Two representation theorems will be presen.ted in 

Section 3.2, namely, the pseudo-search code representation and the matrix 

representation. This reformulates the results of Chorneyko and Mohanty 

(1972, 1975) who have identified both a rooted plane tree and a pseudo

search code with a lattice path. Then we are able to enumerate in 

Section 3.3 certain classes of rooted plane trees by using the generating 

function techniques or the formulas of Chapter I. Finally, construction 

of optimal alphabetic q-ary trees are studied in Section 3. 4. This in

volves the investigation of the connections between rooted plane trees 

and codes in information theory. As a result, we are able to establish 

a necessary and sufficient condition on the path lengths of a q-ary tree 

(a refinement of Kraft's inequality) and provide an algorithm for con

structing an optimal alphabetic q-ary tree in terms of pseudo-search 

codes by using a computer (a generalization of Schwartz's and Kallick's 

(1964) algorithm). An important application of the optimal q-ary trees 

can be found in the k-sample group testing problem of Chapter IV. 
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3.2 Definitions and Representation Theorems 

The notion of a rooted plane tree considered here is the one 

used by Klarner (1969). For undefined terms see the book by Harary 

and Palmer (1973). 
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Let T(V, E, v, a) be a rooted plane tree where V is the vertex set, 

E the edge set (a set of 2-subsets of V) , v a distinguished vertex called 

the root, and a a linear order relation on V possessing the following 

properties: 

(i) For x, y £ V, if p(x) < p(y), then x a y, where p(x) is the 

path length from v to x and is called the path length~of x. 

In particular, p(v) = 0. 

(ii) If {r, s}, {x, y} £ E, p(r) = p(x) = p(s) - 1 = p(y) - l 

and r a x, then s a y. 

A rooted tree is called a planted tree if the degree of the root is 1. 

Any vertex of degree 1 other than the root is called an end vertex. 

Any vertex with degree greater than 1 is called a branch vertex. A tree 

having all its branch vertices of degree q + 1 is called a q-a~y tree. 

Two rooted plane trees T
1 

(V, E
1

, v
1

, a
1

) and T2 (V, E2 , v2 , a2) are 

isomorphic if there exists a permutation ~of V such that ~(v1 ) = v2 , 

E2 = {{~(x), ~(y)}; {x, y} £ E
1

} and x a
1 

y if and only if ~(x) a 2 ~(y). 

One can easily draw a diagram of a rooted plane tree by arranging the ver

tices in levels so that vertex xis in level p(x) and then arranging the 

vertices in each level from left to right according to the order relation a 

We note that two trees are isomorphic when they have "the same" 

diagram in the plane. 



Example 3.2.1 A diagram of a rooted plane tree T(V, E, v, a) where 

V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, E = {{1, 2}, {1, 3}, {2, 4}, {2, 5}, 

{3, 6}, {3, 7}, {6, 8}, {6, 9}, {6, 10}} is given in Figure 3.2.1. The 
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linear ordering a on the v~rtices is 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10. 

4 

1 

Figure 3.2.1 A Rooted Plane Tree 

It is clear from the definition that even though the vertices of a 

rooted plane tree are not labelled,the ordering a imposed on the vertices 

has already implied a natural labelling. 

One may ask, "Can we represent a rooted plane tree analytically with-

out showing its diagram?". The answer is positive. In fact, many authors, 

for example, Klarner (1970), Chorneyko and Mohanty (1975) have tried to · 

establish various representations of such trees. Here we provide two 

methods, namely, the pseudo-search code representation and the matrix re-

presentation. They can be considered as new versions of the results of 

Chorneyko and Mohanty (1972, 1975). 
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3.2.1 Pseudo-search Code Representation 

Let us define the lexicographic labelling of a rooted plane tree as 

the following. The root is labelled by e. The vertices of path length 1 

are labelled from left to right as 0, 1, •.. , p, provided that there are 

p + 1 of them. The labelling of the remaining vertices are determined 

firstly by the labelling of the branch vertex adjacent to it (joined to 

it by an edge) but with a shorter path length, arid, secondly by the left 

to right ordering among the vertices of same path length and adjacent to 

the same branch vertex. For example, if a branch vertex of d~gree q + 1 

is labelled as x where x is a concatenation of natural numbers, then the 

q vertices adjacent to it but with longer path lengths are labelled from 

the left to the right as xO, xl, ... , xq, respectively, where xi is the 

concatenation of x and i, i = l, ..• , q. 

It is easy to see that trees in the same isomorphism class have the 

same lexicographic labelling. Furthermore, the set of all labels at the 

end vertices of a rooted plane tree resulting from the lexicographic label

ling determines uniquely the isomorphic class of the tree. 

We define the lexicographic ordering S of the vertices of a rooted 

plane tree to be the lexicographic ordering of the corresponding labels 

obtained from the lexicographic labelling of the tree. Assume that the 

label e of the root is always first in order. 
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Example 3.2.2 When the tree T(V, E, v, a) of Example 3.2.1 is 

lexicographically labelled, we represent the tree by T(V, E, v, S). The 

diagram of such a tree is shown in Figure 3.2.3. The vertices in the lexica-

graphic orderin9 is ·e so B 1 f3' oo S 01 S 1 S 10 B 100 S 101 S 102 S 11. 

The set C = {00, 01, 100, 101, 102, 11} determines the isomorphic class 

of the tree uniquely. 

100 101 102 

Figure 3.2.2 The Tree Represented by the Set 
c = {00, 01, 100, 101, 102, 11} 

Later we shall see that sets like the set C of Example 3.2.2 are in 

fact a pseudo-search code defined by Chorneyko and Mohanty (1972) who 

modified Renyi' s (1969) definition of a search cod.e. For the sake of 

completeness, we list the necessary definitions: 

Definition 3.2.1 A finite sequence of non-negative integers is 

called a codeword. The length of a codeword is the number of non-negative 

integers contained in it. 

We denote the codewords by small Latin letters (a, b, c, ••• ),where 

each of the a, b, c, ... is a codeword of length~~ 1. When no confusion 

arises, we omit the comma and bracket signs. The length of the codeword a 

is denoted by ~(a). It is conv~nient to consider the empty sequence, e, as 

a codeword. The set of all codewords is denoted by z. 
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Definition 3.2.2 A codeword b is called a prefix of a codeword C 

if there exists a c.odew<:?rd d such that C = bd. 

It is obvious that t(bd) = t(b) + t(d). 

Definition 3.2.3 A finite set C of different codewords is called 

a code. 

The empty set is considered to be a code and is called the empty 

code. The code consisting of the empty codeword e only is called the 

trivial code. 

Definition 3.2.4 If C is a code and a any codeword, then C: is the 
a 

set of all codewords b E Z such that ab E C. 

We denote by N(C) the number of codewords in the code c. 

Definition 3.2.5 A code C is branched if one of the following occurs: 

(1) C is the empty code. 

(2) C is the trivial code. 

(3) C does not contain e and there exists an integer b(C) ~ 1, such 

that fork, the codeword consisting of the single letter k, k ~ 0, 1, 2, ••• , 

the code Ck is empty or non-empty according as k > b(C) or k < b(C). 

We call b(C) the branching number of C. To complete the definition 

of branching number, it is convenient to put b(C) = 0 if C is the empty or 

the trivial code. 

Definition 3.2.6 C is a pseudo-search code if C is branched for 
a 

every a E z. 
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Definition 3.2.7 For C a pseudo-search code, we call those a E Z for 

which b(C ) > 1 the branch points ofc and b(C ) is the branching number of 
a - a 

the branch point a. 

Definition 3.2.8 A pseudo-search code is called regular of degree 

q > 1 if each a E Z such that b(C ) > 1, b(C ) = q. 
a a 

It is convenient to say that the branching point a has b(C ) branches 
a 

at the branch point, a. 

If a pseudo-search code C does not contain e, then C is a search 

code according to Renyi (1969) if b(C ) > 2 for every branch point a of C. 
a -

~ 

Also, Renyi defines a regular search code as a regular pseudo-search code 

of degree q ~ 2. 

The following example may clarify the above definitions. 

Example 3.2.3 Consider the codes: 

c1 = {oo, 01, 100, 101, 102, 11} 

c2 {o, 11, 2} 

c3 {o, 21} 

c 1 is a pseudo-search code. c
2 

is branched but is not a pseudo-search 

code (since e.g. c~ is not branched) and c 3 is not branched (C~ = ~ but 

c3 {1}) 
~ 

Note that c1 is the code representing the tree in Example 3.2.2 and 

Figure 3.2.2. 
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Given a rooted plane tree, it is easy to check that the set of all 

labels at the end vertices of the tree obtained from the lexicographic 

labelling is a pseudo-sear8h code. Conversely, given a pseudo-search 

code, in order to show that there corresponds a unique isomorphism class 

of rooted plane trees with lexicographic labelling, we need to construct 

the sets defined below. 

For C a pseudo-search code, i a non-negative integer, define Ci to 

be a code consisting of distinct codewords formed by the first i integers 

of each codeword with length greater than i contained in C, together with 

all those codewords in C having lengths less than or equal to i. ~suppose 

the length of the longest codeword inc ish, then we construct c 1 , c2
, ... , 

ch. It is obvious that ch = c. 

The following lemmas concerning the sets c1 , c 2 , •.• , Ch are essential 

to the proof of our main results of this section. Verifications of the 

lemmas are elementary but lengthy. Therefore, we only outline the proofs. 

Lemma 3.2.1 Let a be any codeword inC with length t(a), then for 

any non-negative integer i such that i < h and i - t(a) > 1, we have 

= (C )i-t(a). 
a 

Proof: It can be shown from the definition that for each codeword 

b e: (Ci) , we have b e: (C ) i-t (a}. 
a a 

Thus, (Ci) c (C ) i-t (a) . 
a - a 

Similarly 

we can also show that (C )i-t(a) c (Ci) • This gives the result of the 
a a 

lemma. 

Lemma 3.2.2 If C is a pseudo-search code and the length of the 

longest codeword inC ish, then c 1 , c2 , ... , h C are also pseudo-search 

codes. 



61 

Proof: For any fixed non-negative integer i such that 1 < i < h, 

we obtain the following from Lemma 3.2.1: 

0 i < !t(a) 

(Ci) 
{e} i Jt(a) and c t- <I> a 

a ¢ i = 9; (a) and c = ¢ 
(C ) i-Jt (a) 

a 
i > Q, (a) 

a 

Then we only need to show that in the non-trivial case, (C )i-!t(a) is also 
a 

a pseudo-search code. 'I'he verification is elementary. 

For any pseudo-search code C, let ID(C) be the set of all branch 

points of C. Then we have: 

Lemma 3.2.3 

(i) 
1 2 h 

ID(C ) ~ JB(C ) ~ ... c~ JB(C ) = JB(C) . 

If a is a branch point of Ci, then a is also a branch point of Cj 

with the same branch number for any i < j, i,j = 1, ... ,h. 

k ID(C ) 
k-1 
u 

i=l 

i k 
c - c 1 k 2, 3, ..• ,h. 

Proof: ( i) For any i < j, i, j = 1, 2, ... , h, it follows from the 

definition that Ci = (Cj)i. If a is a codeword of length Jt(a) < i, then 

Lemma 3.2.1 implies that 

Therefore, if a is a branch point of Ci, it must be a branch point of Cj 

with the same branch number. 

The strict inclusions hold because of the fact that the longest code-

word in C is of path length h. 



(ii) It is easy to see that ID(C1) = {e} and ID(Ck) U ck = i~lci for 

k = 1, ..• ,h. But ID(Ck) n Ck = ~' therefore, we conclude that 

k-1 . 
u c

1
- ck. 

i=l 
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Theorem 3.2.1 Given a pseudo-search code C consisting of n codewords 

a
1

, a 2 , ••• ,an arranged in lexicographic order, suppose max {a.} = h. 
l. 

lSi:Sn 

There exists a rooted plane tree T with height h and with n end vertices 

such that the lexicographic labellings at the end vertices are a
1

, a 2 , ••• , 

a from the left to the right. Furthermore, the degree at the root of the 
n 

tree T corresponds to the branching number of the pseudo-search code C. Any 

other branch vertices of degree q + 1 corresponds to a branch point with 

branch number q in the pseudo-search code c. 

Proof: Construct the codes c1 , c 2 , ••• , Ck. Then they are pseudo

search codes by Lemma 3.2.2. If c 1 consists of q codewords, they must be 

0, 1, ••. , q-1 , then c 1 corresponds to a tree T1 with height 1 and with 

q end vertices labelled from left to right as 0, 1, ••• , q-1. 1Let m be any 

integer < h. Suppose there always corresponds a tree Tk to the pseudo

search code Ck, for any k < m < h, then the tree Tm+l representing the code 

m+l 
C can be obtained by adding the proper number of branches to the end 

vertices of the tree T which corresponds to a codeword in em but not in 
m 

m+l 
C • This is possible because of Lemma 3.2.3. Thus, the theorem is proved 

by induction. 

Remark 3.2.1 Since we have already mentioned that the converse of 

Theorem 3.2.1 iB also t.ruu, wo can establish a one-to-one correspondence 



63 

between the set of all pseudo-search codes and the set of all isomorphism 

classes of rooted plane trees in the manner described in Theorem 3.2.1. 

Thfs enables us to enumerate or construct trees by dealing analytically with 

the corresponding pseudo-search codes. The process of ?oding, that is, given 

a tree to dete~mine the code; and decoding, that is, given a code to deter-

mine the tree (representing an isomorphism class) is relatively simple com-

pared to Klarner's (1970) method of representing a planted plane tree by a 

sequence of integers or Chorneyko's and Mohanty's (1975) original method of 

representing a planted plane tree by a lattice path. 

3.2.2 Matrix Representation 

The definitions and results of this subsection apply to trees with 

vertices under either a linear ordering or a lexicographic ordering. Al-

though different classes of trees are .encountered when different orderings 

are specified in the matrix representation, we find .that the one-to-one 

correspondence between thf~se two classes naturally exists. 

Definition 3.2.9 Given a planted plane tree with n end vertices and 

k branch vertices other than the root such that the ith branch vertex is of 

degree qi + l, i = l, ... , k, then the sequence (q
1

, ... , qk) is called the 

degree sequence of the tree. Suppose there are X. end vertices between the 
l. 

ith and the (i + l)th branch vertices, i = 1, ... , k-1, and that xk = qk, 

then the sequence (x
1

, ... , xk) is called the end vertex sequence of the tree. 

j 
Let Q. = I q. 

J i=l l. 

j 
j and X. = I x. for j 

J i=l l. 

1, .•• , k. The sequence 

(Q
1

, ... , Qk) is called the cumulative degree sequence of the tree and the 

~>eq_wmcc (X
1

, ••. , Xk) J~: called the 'cumulative end vertex sequence of the 

tree. 
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Remark 3. 2. 2 'I'he following hold for any rooted plane tree: 

(i) If (Q
1

, ... , Qk} is the cumulative degree sequence, then Qi + 1 

denotes the total number of end vertices jpined to any one of the. first i 

branch vertices of the tree by an edge, i = 1, ... , k. On the other hand, 

if (X
1

, ... , ~) is the cumulative end vertex sequence, then Xi denotes 

th 
the total number of end vertices between the first and the (i + 1) branch 

vertex of the tree, i 1, ... , k-1 and Xk denotes 'the.total number of end 

vertices of the tree. 

(ii) It is obvious that a degree sequence (resp. end vertex sequence) 

of a tree is uniquely determined for a given cumulative degree sequence 

(resp. cumulative end vertex sequence), and the converse is also true. 

Definition 3.2.10 Let U = (u
1

, ... , Ur) and V = (V
1

, •.. , Vr) be 

two nondecreasing sequences of non-negative integers such that Ui ~ Vi, 

i = l, •.• , r. We say that the vector ti dominates the vector V, or in 

other words, the vector V'is dominated by the vector U. 

Theorem 3.2.2 Let (Q
1

, .•. , Qk) be the cumulative degree sequence 

of a planted plane tree and (X
1

, ... , Xk} be the cumulative end vertex 

sequence of the same tree. Then we have Xk = Qk + 1 and the vector 

(Q1 , ... , Qk-l) dominates the vector (X1 , ... , Xk-l) 

Proof: By definition, ~ = Qk + 1. The fact that X. ~ Q. for 
J. -J. 

i 1, ... , k-1 follows from (l) of the remarks. 

Theorem 3.2.3 Given any two nondecreasing sequences of non-negative 

integers (Q1 , .•. , Qk) and (X1 , ... , Xk} such that~== Qk + 1 and 

(Q1 , ... , Qk-l) dominates (X
1

, .•. , Xk-l}, then there exists a unique 
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isomorphism class of planted trees with (Q11 ..• 1 Qk) as its cumulative 

degree sequence and (X11 ~ .·. 1 Xk) as its cumulative end vertex sequence. 

Proof: Determine the vectors .< q 11 ... , qk) and ( x
1

, . ~ . 1 xk) by the 

systems of equations - j :::: Q. and 
J 

t 
i=l 

X. 
l 

X. for j 
J 

= 1, ... ,.k. 

Then we claim that (q11 ..• , qk) is the degree sequence and (x
1

, •.. , xk) 

is the end vertex sequence of a tree which represents a unique isomorphism 

class of rooted plane trees. This can be shown by drawing a tree with the 

. th h 1 . h d . b h .th 1 branc vertex of degree q. + and wlt x. en vert1ces etween t e 1 
l 1 

and the (i + l)th branch vertex, i = 1, .•. , k-1 and with Ck + 1 total number 

of end vertices. Such a tree can always be drawn because of the given con-

di tions. 

Remark 3.2.3 We conclude from the above two theorems that there is a 

one-to-one correspondence between the set of all isomorphism classes of 

rooted plane trees with given degree sequences and end vertex sequences, and 

the set of all matrices of the form 

where the vectors satisfy the conditions given in Theorem 3.2.2. 
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3. 3 Enumeration Methods 

Various techniques for counting labelled non-planar· trees have been 

gathered by Moon (1970). However, not all the techniques can be used to 

enumerate unlabelle'd plane trees. The .reason why labelling is unnecessary 

tobe considered in the enumeration of the rooted plane trees is that the. 

vertices of such trees have already been assigned an order relation. There

fore the ordering of the'! vertices can be taken as a natural labelling. 

Klarner (1970) used generating functions to enumerate certain classes 

of planted plane trees with a fixed number of vertices and with specified 

degrees at the branch vertices. Chorneyko and Mohanty (1975) determined, via 

the enumeration of the lattice paths, the total number of planted plane trees 

with a specified number of branch vertices and some boundary conditions on 

the degree sequences and the end vertex sequences. 

In this section, we first extend the generating function technique to 

t.he enumeration of certain classes of homeomorphically ,irreducible planted 

plane trees (planted plane trees with no branch vertex of degree 2) with a 

fixed number of end vertices. Further results are also obtained with addi

tional restrictions on the degrees at the vertices or heights of the trees 

with a fixed number of end vertices. We then use the formulas of Chapter I 

to determine, via the enumeration of matrices, certain classes of k-tuples 

of planted plane trees with a specified number of branch vertices and some 

more generalized boundary conditions on the degree sequences and end vertex 

sequences compared to the results of Chorneyko and Mohanty (1975). It is 

also demonstrated that, under certain circumstances, the same results can 

be obtained by both met.hods . 



3.3.1 Generating Function Techniques 

A generating function is a function of the form f(x) = I 
i=O 

i 
a.x 

1 

where x0 = 1. The variable x is an indeterminate or a tag whose powers 

identify the coefficients which are numbers of various kinds of trees in 
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question associated with the powers. The enumeration proceeds by finding 

relations for the generating functions and solving the function equations 

for the generating functions. A variety of techniques is required to 

solve these function equations so that an explicit solution or a recurrence 

relation for the coefficients of a generating function can be found. 

Unless otherwise specified, the results in the following examples are 

original. They are given as a demonstration of the above mentioned 

techniques. 

Example 3.3.1 Let t(n) be the total number of homeomorphically 

irreducible planted plane trees with n end vertices. Let the generating 

function be T(x) I t(n) 
n 

X • We can always combine k planted plane 
n=l 

I 

trees where k ~ 2, to form a new planted plane tree by joining them at 

their roots, and then adding an edge at the root. The new planted plane 

tree has a total number of end vertices equal to the sum of the end vertices 

at the k original trees. We therefore have the relation 

T(x) X + I 
i=2 

(T(x))i 

where we note that t(l) = 1 and the term x arises for the case that the tree 

has only a single edge.Using Lagrange's formula which can be found in 

Chapter 5 of the book by P6lya and Szego (1970)), we obtain 



where ¢(T) = 

1 -

we get 

T(x) = L 
n=l 

~~ { dn:~l {¢(T)}n} 
dT T=O 

1 
~ 

Consequently, by comparing the coefficients, 

I Ti 

i=l 

1 
t(n) = 

{ 

dn-1 

n! n-1 dT 
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In particular, t(l) = 1, t(2) = 2, t(3) = 3, t(4) = 11, and t(S) = 45, etc. 

Pictures of planted plane trees with n end vertices are given in Figure 3.3.1 

for n = 1, 2, 3, and 4. For n = 5, only one tree is shown as a representa-

tion for all those trees which are the same as a non-plane tree. However, 

the total number of possible planted plane trees is illustrated in the 

bracket below each representation. 

Example 3.3.2 Let t(n.) be the total number of q-ary planted plane 
1 

trees with k branch vertices and n. end vertices where n. = qi - i + 1. 
1 1 

~ 

Let the generating function be ¢(x) = L 
i=O 

t(n.) 
1 

i 
X • Then it is clear that 

t(n0 ) = 1 because there is only one tree consisting of a single edge with 

no branch vertex at all. 

If we combine q such trees at their root and add an edge to the root, 

then the resultant tree is again a q-ary planted plane tree with a total 

number of branch vertices equal to 1 plus the sum of the branch vertices 

at the q original trees. Therefore, we obtain the relation 

¢(x) 1 + x(¢(x))q 



1 2 3 

1 

2 y 
3 rYY 
4 

5 

(1) (4) (3) (3) (2) (2) 

4 

'1/ y 
(6) (4) (2) (6) (4) 
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5 

(8) 

Figure 3.3.1 Planted plane trees with n end vertices and with height h. 
For n = 5, the numbers in the brackets below the trees 
denote the total number of planted plane trees of that 
kind which can be obtained by switching the branch ver
tices within the same level. 
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where the term 1 appears due to the trivial case when the tree consists of 

no branch vertex at all. Using the formula in Problem 211 '(Chapter 5, Vol. 

Vol. 1 of the book by P6lya and Szego (1970)), we get 

By comparing the coefficients, we conclude that 

- - (qi ) 1 t (ni) - i-1 i 

Note that t(n.) also denotes the total number of q-ary planted plane 
l. 

trees with n. + i + 1 = qi + 2 vertices. The same result has been obtained 
l. 

by Klarner (1970) who used a generating function of the form T(x) in 

Example 3.3.1. However, his function equation for T(x) is more difficult 

to solve than our relation for ~(x). 

On the other hand, if we identify a q-ary planted plane tree with a 

pseudo-search code by using Theorem 3.2.1 and its converse, the same re-

sult has also been obtained by Chorneyko and Mohanty (1972) in terms of 

pseudo-search codes. 

The similar result for labelled non-planar binary 'trees is due to 

Harding (1971). 

Example 3.3.3 Let u(n) be the total number of homeomorphically 

irreducible planted plane trees with n end vertices and with branch ver-

tices of degrees less than or equal to 4. Let U(x) 
a: 

L u(n) xn be the 
n=l 

generating function. Since we can only combine 2 or 3 such trees at their 

roots and add an edge at the root to form a new tree of the same type, we 

obtain 
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U(x) = x + (U(x)) 2 + (U(x)) 3 

where the term x appears due to the trivial case that the tree consists of 

a single edge. To solve this function equation, we first find a transfer-

mation U (x) = V(x) + c for some constant c. such that the equation in terms 

of V(x) has the coefficient of the second degree term zero. By simplifying 

V(x) + c = x + (V(x) + c) 2 + (V(x) + c)
3 and setting the coefficient of the 

second degree term zero, we find that c =- ~ . Consequently, the equation 

becomes 

(V(x))
3 4 11 3 V(x) + X + 27 = 0. 

In order to reduce the power of V(x) in the equation, we move those terms 

with degree of V(x) less than 3 to the right hand side of the equality sign 

and take a ln transformation so that 

3 ln lv(x) I = ln ~~ V(x) - x- ~~~· 

Differentiation of both sides yields the result 

24V(x) V' (x) - llV' (x) - 27xV' (x) = -9V(x). 

If we substitute V(x) by U(x) + t, then 

BU(x)U'(x)- U'(x)- 9xU'(x) 

<X 

Recall that U(x) = I u(n)xn, hence U' (x) = 
n=l 

<X <X 

-3U(x) - 1. 

<X 

\ n-1 
!. nu(n)x and 

i=l 

(3.3.1) 

U(x)U' (x) = I I iu(i)u(n - i + l)xn. Substituting the above terms into 
n=l i=l 

Equation (3.3.1), we have 

<X <X <X 

8 l: I iu(i)u(n-i+l)xn - I 
n=l i=l n=l 

<X 

n-1 nu(n)x - 9 I 
n=l 

n nu(n)x 
<X 

= -3 I 
n=l 

n u(n)x - 1. 



Finally, the following recurrence relation is obtained by comparing the 

coefficients: 

~(n + 1) 1 {3(1 - 3n)u(n) + 8 
n+l 

n 
I iu(i)u(n- i + 1)}. 

i=l 

Since u(l) = 1, the above relation implies that u(2) = 1, u(3) = 3, 

u(4) = 10, u(5) = 38, u(6) = 154, and so on. 

72 

Generating functions can also be used to enumerate certain classes of 

planted plane trees with restrictions on the heights and the total number 

of end vertices. In the literature,Riordan (1960) enumerated unlabelled 

non-planar trees with given heights and total numbers of vertices. Gordon 

and Kennedy (1975) obtained recurrence formulas for counting unlabelled 

non-planar q-ary trees with given heights. In the following two examples, 

our approach is analogous toRiordan's (1960). The relations of the gen-

erating functions obtained seem to be relatively simple for planted plane 

trees. However, the solutions are still not in simple and explicit form. 

Example 3.3.4 Let sh(x) denote the total number of homeqmorphically 

irreducible planted plane trees with height less than or equal to h and 

with n end vertices. 
oc 

I sh(n)xn be the generating function. 
n=l 

If we combine i trees of height less than or equal to h at their roots 

and add an edge at the root, we obtain a new tree of height less than or 

equal to h + 1 and with a total number of end vertices equal to the sum of 

the end vertices at these i original trees, for any i = 2, 3, •.•. Thus 

we have the relation 
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L (Sh(x))i 
i=2 
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where the term x appears due to the trivial case when the tree consists of 

a single vertex. 

Since s
1 

(x) 

therefore 

s
1 

(x) 

s
2

(x) 

s
3

(x} 

~ 

L s
1 

(n)xn and s
1 

(1) = 1, s
1 

(2) = s
1 

(3) 
i=l 

= X 

~ 

X + I i X = X = 
i=2 1-x 

X + (l~x)
2 

1 

1 -
X 

1-x 

= X + X 
2 + 3x 3 

+ 7x4 
+ 

= 0, 

and so on. We see for example, s 3 (4) = 7 is the total number of homeo-

morphically irreducible planted plane trees with 4 end vertices and of 

height less than or equal to 3. These 7 trees can be found in Figure 3.3.1. 

\ 

Example 3.3.5 Let sh(n) denote the total number of q-ary planted 

plane trees with height less than or equal to h and consisting of i branch 

oc 

vertices and n. end vertices where n. = ki- i + 1. Let ~h(x) = I sh(n.)xi 
1 1 i=O 1 

0 be the generating function, where x = 1 and sh(n
0

) denotes the trivial case 

when the tree consists of no branch vertex at all. Since we can only com-

bine q-ary planted plane trees of height less than or equal to h at their 

root and then add an edge at the root to form a new q-ary planted plane tree 

of height less than or equal to h + 1, we obtain 
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l/Jh+l (x) = 1 + x (l/Jh (x)) q 

where the term 1 appears due to the trivial case that the tree has only one 

edge. 

Since lf;
1 

(x) 
a: 

Is (n.)xi and we know that s
1

(n
0

) 
i=l l l 

s
1 

(n
2

)= ••• = O, therefore, 

l/11 (x) l 

l/J 2 (x) 1 + X 

l/13 (x) 1 + x(l + x)q 

l/J4(x) l + x(l + x(l + x)q)q 

1, 

and so on. Thus, for example, if we assume that q = 3, then s
1

(n
0

) = 1 

s2 (n3) = ... 

1 and s
3 

(n
5

) s
3

(n6) = ... = 0. Here we find that there are 

three 3-ary trees with height less than or equal to 3, in fact, all three 

of them are of height 3 since s
2

(3) = 0. 



3.3.2 Matrix Enumeration Techniques 

It has been shown in Subsection 3.2.2 that a planted plane tree T. 
]. 

with m branch vertices can be represented by a unique matrix of integers 
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of the 
(

x. 1 ... x. ) 
f 

]. l.m 
orm 

Qil •·· Qim 
such that 0 < Qil < < Q is the cumulative im 

degree sequence and 0 < x.
1 

< •.• <X. where X. = Q. + 1 and X .. < Q .. 
- ]. - - J.m J.m J.m l.J - l.J 

for j = 1, •.• , m-1 is the cumulative end vertex sequence of the tree. 

Furthermore, the converse is also true (cf. Theorem 3.2.2 and Theorem 3.2.3) • 

... ' T., 
]. 

•.• , Tk) beak-tuple of trees Ti, i = 1,2, ••• ,i, 

••. , k, where k > 1, defined as the above. Let {T} be the setof all 

k-tuples of trees of the form T satisfying the following conditions: 

k-i 
(a) Q .. = a. + I dt j 1, ... , m and 

l.J J t=l i 1, k = ... , 
(b) c. < xil < xi2 < ... < X. i = 1, ... , k 

]. - - J.m 

(c) X .. < X. 1 . + d. i = 1, • • • I k-1 and (3.3.1) 
l.J - l.+ ,J ]. 

j = 1, ... , m 

(d) b. < X .. j 1, ... , m 
J - l.J 

(e) ~j < a. j = 1, ... , m 
J 

where a1 , ••• ,am~ b1 , ••• , bm~ c1 , ••. , ck and d1 , ••. , ~-l are non-

netative integers such that a
1 

_< ••• <a , b < 
m 1 -

We define A = (a1 , ••• ,am-~, B = (b1 , ••• ,bm-t , C= (c1 , ••• , ck) and 

D = (d1 , .•• , dk-l). Then Theorem 3.2.2 and Theorem 3.2.3 imply that the 

cardinality of {T} equals to N(k,m-l,A,B,C,D) which bas been defined and 

evaluated in Section 1.2 (cf. Theorem 1.2.1). 
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k-1 
Similarly, if b

1 
> L dt' where d0 = 0, we let {T 1

} be the set of 
t=l 

all k-tuples of trees of the form T1 = (T
1

, T
2

, ... , Ti, .•• , Tk), where 

T., i = 1, .•. , k are the trees defined at the beginning of this subsection 
)_ 

which satisfy the conditions (c), (d), (e) of (3.3.1) and the following: 

k-i 
(a I) Qi = min {a. + I dt' h.} j = 1, • • • I m and i = 1, ... ' k 

J t=l 
)_ 

(b I) 0 < xil < ... < X. < h., i = 1, ... , k - - J.m - )_ 

where 0 ~ h1 ~ ... ~ hk are non-negative integers. Then the cardinality 

of the set {T 1
} equals to the number NB(k, m-l,A,B,H,D) which has __ been 

defined and evaluated in Section 1.2 (cf. Theorem 1.2.2). 

Note that for the special case that k = 1 and C dominated by B (resp. 

A dominated by H) the determinant representing N(k,m-l,A,B,C,D) (resp. 

NB(k, m-l,A,B,H,D)) can be reduced to the determinant given in 

Corollary 1.2.1. This becomes the result which has been given by Chorneyko 

and Mohanty (1972, 1975) for both pseudo-search codes and planted plane 

trees of this kind. This is also a generalization of Klarner' s (1970) 

result for binary trees with a given number of vertices (cf.\Example 3.3.2 

of Subsection 3.3.1). 
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3.4 Optimal Alphabetic q-ary Trees 

Let T b~ a planted plane tree with n erid vertices. Let V={v
1

, ••. ,v} 
. n 

be the set of all end vertices ofT. Let 9.. be.the path length of the end 
1 

vertex V. and w. be a non-negative weight associated to the end vertex V • I 
1 1 J: 

i = ·1, •, • • I n. We say that the tree T is a weighted tree. The cost of the 

tree T is defined to be the weighted path length of its end vertices, that 

n 
is, I £.w .. 

l l 
A q-ary tree achieving the minimal cost for a given ·set of 

i=l 

weights W • • • I w } is called an optimal q-ary tree for W. 
n 

+ 

An optimal 

alphabetic q-ary tree for any given sequence of weights W = {w
1

, ... , wn} 

is defined to be a weighted q-ary tree T which achieves the minimal cost 

+ for the given sequence of weights W under the restriction that the left to 

right sequence of end vertices must follow the order v
1

, v
2

, ••. , v~ and 

with the weight w. associated to the end vertex v., i = 1, .•• , n. It is 
1 . ·. 1 

clear that the cost of an optimal alphabetic q-ary tree for a given sequence 

of weights is always greater than or equa:t to the cost of an optimal q-ary 

tree for the same set of weights. 

For applications to the k-sample group testing problem of Chapter IV, 

we are required to construct an optimal alphabetic q-ary tree, where q = k+l 

+ 
in this case, for a valley sequence of weights W = { w

1
, •.. , wn} , that is, 

for any w., 2 < i < n-1, w. < max{min w., min wk} 
1 1 - 1 i <j j<k 

Constructions of optimal binary trees and optimal alphabetic binary 

trees are well known. Huffman's (1952) algorithm for constructing an optimal 

binary tree was first given for coding purposes. Schwartz and Kallick (1964) 

provided a computer algorithm which transforms an optimal binary tree 

obtained from Huffman's algorithm to an optimal alphabetic binary tree of 
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the same cost for a monotone sequence of weights. Hu and Tucker (1971) 

proposed a T-C algorithm for constructing binary trees which can be con-

verted into an optimal alphabetic q-ary tree for a valley sequence of 

weights. The contents of the above mentioned algorithms will be studied 

later in Subsection 3.4.2. 

In this section, we first mention briefly the basic properties of a 

weighted q-ary tree observed by Huffman (1952) and Knuth (1968, 1971). 

Then we summarize how Huffman's algorithm can be generalized for construct-

ing optimal q-ary trees and the T-C algorithm by Hu and Tucker (1971) can 

be generalized for constructing optimal q-ary trees which can be converted 

into optimal alphabetic q-ary trees for valley sequences of weights. The 

process of generalization is mainly straightforward sinoe ·the principles of 

these original algorithms do not depend on the assumption that the trees 

have to be binary. In addition, we provide a computation algorithm based 

on pseudo-search code construction which enables us to use a computer to 

convert 'i:m optimal q-ary tree constructed by using the generalized T-C 

algorithm to an optimal alphabetic q-ary tree for a valley sequence of 
I 

weights · without increasing the cost. This can be considered as a non-

trivial extension of the algorithm by Schwartz and Kallick (1964). Finally, 

the upper and lower bounds of the cost of an optimal q-ary tree are found 

as functions of the entropy. When q = 2, these bounds have been found by 

Hwang (1974) . 

. . . , 

3.4.1 Basic Properties of the Weighted Trees 

Consider any weighted tree T with n end vertices, namely, v1 , v2 , 

v , from the left to the right • 
n 

Let w. be the non-negative weight 
~ 

associated to the end vertex vi, i = 1, 2, ••• , n. To every branch vertex 
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of the tree T starting from those with the longest path length to those 

with the shortest path length, assign a weight which equals to the sum of 

the weights at the vertices adjacent to it but with a longer path length. 

An example of such a weighted tree is given below to clarify the definitions. 

If we assign the weight w. to the· vertex v. of 
1 1 

the tree in Figure 3.4.l(a), the resultant tree in Figure 3.4.l(b) is a 

weighted tree for W. In fact, this is also an optimal tree for W. We 

also say that the tree is an optimal alphabetic binary tree for the 

+ 
sequence of weights W = {w

1
, w

2
, w

3
, w4 , w

5
}. However if we let 

W' = {w
1

, w
2

, w
3

, ~4 , w
5

}, the tree is not an optimal alphabetic tree for 

W'. Weights can also be assigned to the branch vertices of the tree 

according to the previous paragraph so that the tree in Figure 3.4.l(c) is 

obtained. The cost of the tree is equal to: 

5 
L ~.w. = lx5 + 3xl + 3x2 + 3xl + 3xl = 20. 

. 1 1 1 1= 

It is interesting to note that the sum of the weights at the branch vertices 

is also 20. This is explained in the following lemmas which were given as 

an exercise in the book by Knuth (1968). They can be easily proved by 

using induction on the total number of branch vertices of a tree. 

Lemma 3.4.1 The weight associated to any branch vertex v of a weighted 

tree T equals to the sum of the weights at the end vertices of the subtree 

of T rooted at v, that is, those end vertices of T that can be reached by a 

path from the root of T through the vertex v. 



Figure 3.4.1 
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(a) A binary tree with n end vertices v
1

, v
2

, ... , v
5

• 

tb) A weighted tree for the set of weights 
w = {5, 1, 2, 1, 1} 

(c) A weighted tree for W with branch vertices 
labelled by the associated weights. 

The assigment of weights to a binary tree with 

n end vertices. 
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Proof: It is obviously true for weighted trees with only one branch 

vertex. Suppose it is true for all trees with number of branch vertices 

less than or equal to k. For a weighted tree with k+l branch vertices, 

the lemma hold~-; for all t.he branch vertices except the root because of the 

induct:ion hypot.hesis. Howevt::r, the weight at the root is defined .to be 

the sum of the weights at the branch vertices adjacent to it. Thus, the 

weight at the root equals to the sum of the weights at all the end vertices 

of the tn"e. Therefore, the lemma is also true for trees with k+l branch 

ve:r:tices. 'rllis completes the proof by induction. 

Lemma 3.4.2 'rhe weighted path length of a weighted tree 'r equals to 

the sum of all the weights at the branch vertices of T. 

Proof: It is obviously true for trees with only one branch vertex. 

Suppose it is true for all trees with total number of branch vertices less 

than or equal to k. For a tree T' with k+l branch vertices, let there be 

m planted subtree~; rooted at the root of T'. From the left to the right, 

l 
. th 

. et the 1 subtree be Tj_ which has n
1 

end vertices with weights w
11

, wi
2

' 

• .. • I w 
in. 

l 

and path lengths £il' £i
2

, ••• ,£in. respectively, for i=l, ..• ,m. 
l 

Then the weighted path length of T' is 

m n. m n. m n. 
l l l 

I I (£, . + l)w. I I £. . w. + I I w . 
i=l j~=l 

~J lj 
i=-"1 j:=;l l] lj 

i=l j==l 
]_ j 

Since the numbers of branch vertices at the subtrees Ti, ... , T~ are less 

than k, by induction hypothesis, the first part of the expression equals 

the sum of the weights at all the branch vertices of the subtrees. But, 

the second part of the expression is known as the weight associated to the 
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root. from Lenuna 3. 4. 1. Hence, the lemma is also true for trees with k+ l 

branch vertices. This completes the proof by induction. 

Before we study the properties of an optimal tree for a given set. of 

weights VIi'= {w
1

, ... , w
0

}, we note that such a tree always exists be<;::ause 

ti1ere are only finitely many distinct planted plane trees with n end ver-

bees (cf. Example 3. 3.1). Note that if we want to find an optimal tree 

for W and allow the degrees at the branch vertices to be any number from 

1, ... , q, 1 ~ q ~ n, then the tree with the most branch vertices of degree 

q is always the optimal one. Therefore, it suffices to consider optimal 

q-ary trees of W, provided that n = l mod(q-1). The condition on n can 

always be fulfillc~d by addinq some extra zero weiqhts to the set W. 

'l'he following result for optimal q-ary trees is a generalization of 

the result on optimal binary trees by Huffman (1952). 

Theorem 3.4.1 Let v. and v. be any two given vertices (each of 
1. J 

which may be either a branch vertex or an end vertex, but they cannot be 

joined by the same path through the root) of an optimal q-ary tree with 

path lengths£., £.and weights w;, w. respectively. Then the following 
l J ~ J 

hold true: 

( i) Q,. > Q, . implies w. < w. 
1 J l - J 

(ii) there exis·ts an optimal q-ary tree with the property that 

w. < w. implies £. > £ .. 
l - J l - J 

Proof: Lt~t 'I' be a given optimal q-ary tree. Let v. and v. be the 
0 l J 

given vertices of T
0

.Let •r
1 

and T
2 

be the two q-ary subtrees rooted at v
1 

and v
2 

respectively. fn the case when v 
1 

or v 
2 

or both are end vertices, 



the corresponding subtrees become the vertices themselves. Let T
3 

be the 

subtree rooted at the root of '1' such that the end vertices of T
3 

include 
0 

all those end vertices of •r
0 

which do not belong to either T
1 

or T
2 

plus 

t.he vertices v. and v. . From Lermna 3. 4. 2, we know that the cost of T 
l J 0 

equals to the ~;urn of the costs of T 
1

, T 
2

, and T 
3

• Now if the locations of 
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T
1 

and •r are int.erchanged such that v. takes the place of v. and vice versa, 
2 1 . J 

then the resulti:.tnt: treQ 'I'~ is formed by the subtrees •r
1

, T
2

, and T,3, where 

T] is t.he same as •r
3 

except that the end vertices vi and vj of T
3 

are inter-

changed. 

of T' 
3 

of '1'' 
0 

Hence:~ 

( i) Given that Q,. > Q,., suppose it was true that w. > w., then the cost 
l J 1 J 

.l.S less t.han 

is Jess than 

w. < w .. 
l. - J 

the cost of 

the cost of 

T3 . 

T . 
0 

It follows from Lemma 3. 4. 2 that t;he cost 

This contradicts the optimality of T • 
0 

(ii) Given that w. > w., suppose that 9.
1
. < Q.J., then the cost of T

3
' is 

J - 1. 

no more than ·the cost of '1'
3

. Therefore, T' is the optimal q-ary tree 
0 

satisfying the required condition. 

3.4.2 l\1gorithms of Construction 

The constructions of an optimal q-ary tree for an arbitrary set of 

positive weiqhts and an optimal alphabetic q-ary tree for a valley sequence 

of weights are studied in this subsection. They are the generalizations of 

Huffman's (1952) algorithm, Hu's and Tucker's (1971) T-C algorithm, and 

Schwartz's and Kallick's (1964) algorithm. 

Generalized Huffman's Algorithm: Given a set of 11 positive integers 

W {w
1

, w
2

, ... , wn}' where n = 1 mod(q-1) and 11 > k, an optimal q-ary 
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tree for W can be constructed as the following. The n weights are said to 

be the end vertices of the tree. The q end vertices with smallest weights, 

say w
1
, , w?! , ••• , wq , are combined to form a new vertex of weight 

wr + w2, + .•• + wq', being the father of the q vertices. We say that a 

branch vertex of weight w
1

, + w
2

, + ... + wq' is created. Repeat the same 

procedure to the remaining n-q end vertices and the new branch vertex. The 

procedure continues until all the vertices are combined, that is, a branch 

vertex of weight w
1 

+ w
2 

+ + w is created. This is possible because 
n 

n = 1 mod(qrl) and n > k. The resultant tree is called a Huffman's q-ary 

tree for W. An example will be given at the end of this subsection. 

w 

Theorem 3.4.2 A Huffman's q-ary tree for a set of weights 

• • • I w } is an optimal q-ary tree for W. 
n 

Proof: The proof for q = 2 can be found on p. 403, Vol. 1 of the book 

by Knuth (1968) or the paper by Hu and Tucker (1971). The proof in general 

is a straightforward extension of the special case that q = 2. This can be 

shown by induction on the tqtal number of branch vertices of the tree. Use 

the fact that if T is a q-ary weighted tree for W with the q smallest 
0 

weights, say w
1

, , w
2
,, ... ' w , , combined to form a branch vertex of the 

q 

tree, then T is an optimal q-ary tree for W if and only if the subtree 
0 

with the q end vertices w
1

, , w
2

, , ... ' w, q 
excluded is also an optimal q-ary 

tree for the remaining n-q weights and the weight wr + ••• +w,. 
q 

In order to obtain an optimal alphabetic q-ary tree for a given se-

quence of weights we have to use a more restrictive construction method 

which is a generalization of the T-C algorithm given by Hu and Tucker (1971) 

for binary trees. 
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-+ 
The Generalized T-C Algorithm: Let W = {w

1
, w

2
, ••. , wn} be a 

sequence of weights arranged in required order. We call this an initial 

construction sequence of end vertices. Whenever q of the vertices are com-

bined to form a new vertex, say w, having a weight which equals to the sum 

of the q weights, we say that a branch vertex w is created. The new con-

struction sequence becomes the one withoub othese q vertices but with w 

taking the place of the leftmost one of these q vertices. Therefore, in 

general, a construction sequence may contain end vertices or branch vertices 

or both. 

Two vertices in a construction sequence are called tentative-connecting, 

abbreviated as T-C, if the sequence of vertices between them is either empty 

or consists of entirely branch vertices. Any q vertices in a construction 

sequence is called a T-C q-tuple if any two of its members are T-C whenever 

the sequence of vertices between them does not contain any one of its own 

members. 

The generalized 'l'-C algorithm asserts that a T-C q-tuple of minimum 

sum of weights should be combined in each construction sequence. In the 

case of a tie, combine the leftmost T-C q-tuple of minimum sum of weights. 

The procedure terminates when all the vertices are combined, that is 

(n-1)/(q-1) branch vertices are created. The resultant tree is called the 

·+ 
q-ary weighted tree for W constructed by using the generalized T-C algorithm. 

An example~ will be given at the end of this subsection. 

-+ 
Lemma 3.4.3 Let W 

+ 

{w
1

, •.. , wn} be a valley sequence of weights. A 

weighted q-ary tree for W constructed by using the generalized T-C algorithm 

is a Huffman's q-ary tree. 
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Proof: The proof for q = 2 can be found in the paper by Hu (1973). 

The proof in general is similar and based on the fact that in every step 

of the construction using the generalized T-C algorithm, a T-C q-tuple 

of minimum sum of weights always consists of the q smallest weights. This 

is true because the given sequence of weights is a valley sequence. 

-~ 

Theorem 3.4.3 Let W = {w
1

, ... , wn} be a valley sequence of weights. 

A q-ary weighted tree T constructed by using the generalized T-C algorithm 
c 

-+ 
can be converted into an optimal alphabetic q-ary tree for W with the same 

-+ 
cost. Furthermore, T is also an optimal q-ary tree for W. 

c 

Proof: 'l'he proof for q = 2 is due to Hu (1973). The proof in general 

can be obtained by considering the minimum sum T-C q-tuples instead of the 

-+ 
minimum sum '1'-C pairs in Hu' s (1973) proof. Because W is a valley sequence, 

we can always reassign the weights of the end vertices at the same level of 

T to obtain a tree with the weights at the end vertices arranged from left 
c 

to right in the required order without increasing the cost. The resultant 

tree is optimal because of Lemma 3.4.3 and Theorem 3.4.2. 

Before we introduce pseudo-search code construction algorithm, we define 

and study the following terms which are due to Hu (1973) in the binary case. 

Definition 3.4.1 A sequence of n positive integers A= {a
1

, a
2

, ..• , an} 

is called a q-ary feasible sequence if there exists a q-ary tree with n end 

vertices having path lengths corresponding to the integers from the left to 

the right. 

In addition, suppose max{a
1

, a
2

, ... ,an} h, we say that A is a q-ary 

feasible sequence of height h. 
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The following lemma is a straightforward extension of Hu's (1973) re-

sult. 

Lemma 3.4.4 A finite sequence of positive integers is a q-ary feasible 

sequence if and only if the following conditions are satisfied. 

(i) If the largest. integer in the sequence is h 1 then the number of h' s 

in the sequence must be a multiple of q and such h's always occur in con-

secutive sets of length q. 

(ii) If we form a reduced sequence from the original sequence by succes-

sively replacing (from left to right) every q consecutive h's by one occur-

renee of the integer h -· l 1 t.hen the reduced sequence again satisfies ( i). 

(iii) If the process of (ii) is replaced by considering the reduced 

sequence as the original sequence, (i) is still satisfied until a reduced 

sequence of q l's is found. 

Proof: 'rhe proof is a straightforward extension of the one given by 

Hu and Tucker (1971) for q = 2. It can be verified from the definition. 

'l'heorem 3.4.4 Given a q-ary feasible sequence of height h, a q-ary 

rooted plane tree of height h is uniquely determined. 

Proof: Based on the properties of a q-ary feasible sequence of height 

h stated in Lemma 3.4.4, it can be shown by induction on the height h. 

Given a feasible sequence (a
1

, a 1 ••• , a ) , Theorem 3. 4. 4 implies that 
2 n 

a unique rooted q-ary tree can be determined. Therefore, by Theorem 3.2.1 1 

we know that a unique pseudo-search code which corresponds to the rooted 

q-ary tree can alHo be determined. Such a pseudo-search code can be con-

structed by w;ing the following algorithm which can be considered as a 
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non-trivial extension of the algorithmby Schwartz and Kallick (1964). 

Pseudo-search Code Construction Algorithm: 

(i) the first codeword is formed by a
1 

O's. 

{ii) the ith codeword is formed by a q-ary addition* of 1 to the (i-l)th 

codeword (in lexicographic order) and affixing or removing zeros at the end 

so that the resultant codeword is of length a., i = 2, 3, ••. , n. 
l. 

*By a q-ary addition, we mean an operation (+) defined on the set of 

integers {0, l, ••• , q-1} such that 

if r + s < q 

if r + s = q 

if r + s > q and a = (r+s) mod q, a < q 

Theorem 3.4.5 Given a q-ary feasible sequence, the code obtained by 

using pseudo-search code construction algorithm is a pseudo-search code. 

Proof: Since q-ary addition is employed in the construction, the 

resultant code is branched with branching number q at every branch point. 

Since the existence of the corresponding q-ary tree is known due to 

Theorem 3.4.4, it is always possible for us to affix or remove zeros at 

the end of the ith codeword obtained in step (ii) of the algorithm, so 

h h . f . d h . h . th d t at t e resultant one l.S o desl.re lengt representJ.ng t e l. en ver-

tex of the q-ary tree, i = 2, ••• , n. Therefore, the code is a pseudo-

search code. 

Remark 3. 4.1 -+ Let W {w1 , •.• , wn} be a valley sequence of weights. 

-+ 
Theorem 3.4.4 asserts that the q-ary weighted tree for W constructed by 

using the generalized T-C algorithm can be converted into an optimal 
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alphabetic q-ary tree without changing the corresponding path lengths of 

the weights. However, th<~ process of converting was carried out graphically 

from level to level. Here we outline how it can be done analytically by 

employing pseudo-search code construction algorithm. 

(1) Let Q,. be the path length of the weight w. at the q-ary weighted 
l 1 

tree constructed by using the generalized T-C algorithm. By Theorem 3.4.3, 

,. • • I ~ ) must be a feasible q-ary sequence representing the left 
n 

to right path lengths of the end vertices of an optimal alphabetic q-ary 

tree for W. 

(2) Theorem 3.4.4 and Theorem 3.4.5 imply that the optimal alphabetic 

-+ 
q-ary tree for W can be obtained in the form of its corresponding pseudo-

search code by using pseudo-search code construction algorithm. 

The following example may clarify the concept. 

->-
{wl, W } I Example 3.4.1 Given that w w2, ... , where wl = 25, w2 = 6, 

n 

w = 4, w4 - 1, w5 = 1, w6 = 1, w7 1, w8 = .2, w9 - 2, wlO = 2, wll = 5, 
3 

then we know by definition that w is a valley sequence. We illustrate the 

-+ 
construction of an optimal alphabetic q-ary tree for W in the following, 

where we let q = 3. 

-+ 
(a) A Huffman's 3-ary tree for W can be constructe€!. by using the 

generalized T-C algorithm (cf. Lemma 3.4.3). The resultant tree is shown 

in (a) of Figure 3.4.1. 

-+ 
(b) An optimal alphabetic 3-ary tree for W converted from the tree 

in (a) by the procedure described in the proof of Theorem 3.4.3 is shown 

in (b) of Figure 3.4.1. 

{c) Prom (a), we know that £
1 

= 1, £
2 

= 2, £
3 

= 2, £
4 

= 3, ~ 5 == 3, 

9 () Pseudo-search code 
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algorithm can be employed t.o determine the corresponding pseudo-s<:!arch code 

representin<;:r the optimal alphabetic 3-·ary tree for W instead of finding the 

tree in (b) directly. 

codeword number 
(in lexicographic order) 

.i 

l 

2 

3 

4 

6 

7 

B 

9 

10 

11 

length 

9,. 
l 

1 

2 

2 

3 

3 

3 

3 

3 

3 

2 

2 

3-ary addition 
resultant 
codeword 

(+) a. 
l 

0 0 

0+1=1 10 

10+1=11 11 

11+1==12 120 

120+1=121 121 

121+1=122 122 

l22+lc::200 200 

200+1=201 201 

201+1==202 202 

202+1=210 210 

21+1=22 22 

The code A== {a
1

, a
2

, ... , a
10

} is a pseudo-search code due to Theorem 3.4.5. 

The tree corresponding to A is shown in (c) of Figure 3.4.1. This tree is 

in the same isomorphism class as the tree in (b) . 



(a) An optimal (ijuffman's) 3-ary tree for the set of 
weights W ={25,6,4,1,1,1,2,1,2,2,5 }constructed 
by using the generalized T-C algorithm. 

(b) An optimal alphabetic 3-ary tree the the sequence 
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* . of weights W = { 25,6,4,1,1,1,2,1,2,2,5}constructed 
by reassigning the weights at the vertices of same 
path length on the tree obtained from (b). 

120 . 121 122 200 2 1 202 

(c) The tree corresponding to the pseudo-search code 
A= {0,10,11 120,121,122,200,201,202,21,22}. 
This tree is isomorphic bo the tree obtained from (b) 
but it is constructed by using the pseudo-search code 
algorithm. 

Figure 3.4~2 Illustrations of the construction procedures. 
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3.4.3 Entropy Bounds for the Costs of the Optimal q-ary Trees 

In this ~;ection, we would 1 ike to find the upper and .lower bounds of 

an optimal q-ary tree in terms of the functions of entropy. Before we can 

apply theorems in information theory and coding, we study the following 

definition and a necessary and sufficient condition for a sequence of n 

po~3i tive inte9ers to be the path len9ths of a q-ary tree with n end ve.rtices. 

Definition 3. 4. 2 A full q-ary tree of height h is a q-ary tree with a 

h number of q end verticef> of path length h. 

'I'he following theorem is a refinement of Kraft's inequality {cf. 

Ash (1965) or Abramson (1963)). 

Theorem 3.4.6 A necessary and sufficient condition for a sequence of 

..... , £ to be the path lengths of the end vertices of 
n 

a q-ary tree witl1 n end vertices is that 

n I cr-£i 1. 

i==l 

Proof: Observe that any q-ary tree T which has height h and n end 

vertices can be obtained by excluding some vertices from a full q-ary tree 

TF of height h. Thus, a vertex v of TF is an end vertex of T if and only 

if all the vertices on the subtree rooted at v are excluded except the 

root. As a result, every end vertex of T is either left as an end vertex 
F 

of T or excluded. 'I'herefore, \ve have 

n L ah--£ 

i=l 

h 
q 

Dividing both sides of the 
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h 
above equality by q gives the condition of the theorem. 

Conversely, given that 
n -£· L a -~ = 1, a ·q-ary tree with n end vertices 

i=l 

of path lengths £
1

, £
2

, ... , £n can be obtained by reversing the arguments 

we have already used. (The details can be found as an analogue to the 

proof of Kraft's inequality for binary codes, cf. p. 59 of Abramson's (1963) 

book or p. 34 of Ash's (1965) book). 

Similarly, we can prove the following theorem referred to as Kraft's 

inequality in terms of trees. 

Theorem 3.4.7 The necessary and sufficient condition for a sequence 

of n positive integers£ , £, ... , £ to be the path lengths of a q-ary 
1 2 n 

tree with n end vertices and with branch vertices of degrees < q+l is that 

n -£. Iq 1 Sl. 
i=l 

The following is a very useful lemma in information tl1eory. 

Lemma 3.4.5 Let p
1

, p
2

, .•. , pM and q
1

, q
2

, ... , qM be arbitrary 

M M M 
positive numbers with I p. 

i=l l 

l. Then- I p.log p. <- L p.log q. 
i=l 1 ~ l i=l 1 e 1 

with equality if and only if p, = q, for all i. 
1. l 

Proof: Seep. 16 of Abramson's (1963) book or p. 16 of Ash's (1965) 

book for details. We sketch the proof in the following. 

For any real number x > 1, we have 

x - 1 - logx > 0 



and for x < 1, we have 

-log X- 1 + X > 0. 

Therefore, x - 1 > log.x with equality if and only if x 

we have 

M 

I 
i=l 

p. log ( q. /p. ) < 
l )_ "l 

q, 
1 

p. 
1 

- 1 0 
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1. Let X q./p., 
)_ l 

with equality if and only if q. = p. for all i. This proves the lemma. 
1 )_ 

We can now prove our main results of this subsection. They are known 

for binary codes (cf. Ash (1965) and Abramson (1963)). Here we state and 

prove the theorems for q-ary weighted trees. 

that 

Theorem 3.4.8 Let p
1

, p
2

, ... , pn be arbitrary positive numbers such 

n 

I p. 
i==l 

1 
1. ... , 2 be the path lengths of the end vertices 

n 

of a tree with branch vertices of degree less than or equal to q + 1 and 

with n end vertices. 

Let p. be the weight associated with the end vertex of path length 2., 
l 1 

i 1, ... , n. Then we have 

with 

n 

I p, > -
l i i=l 

equality 

Proof: 

-

if and 

Let q. 
l 

n 

I p, 
l i=l 

only if 

log 
q 

p, 
l 

p. = 
)_ 

n 
'i' -2· 
L q l 

i=l 

-2. 
n -2· 

q lj I q l for all i. 
i=l 

From Lemma 3.4.5, we have 



n n -£. - I p, log p, < - I p, log(q 1; 
i~l 1 1 - i=J. 1 

n -~· I q 1) 

i==l 

~ ~. ·q-1i) p.i. log q + L p. log( L 
1 1 

i=l 
1 

i=l 

n 

<I p.£. log q 
-i=l l l 
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since 
n -£· 

log ( L q l) < o. The equality holds if and only if p. 
l 

-~· n -~· 
q 1 1 I q 1 

i=l i=l 

for all i. 

Theorem 3.4.9 Given that p
1

, p
2

, ... , pn are n positive numbers such 

n 
that I p. 

i=l l 

l, there exists a tree which has its branch vertices of degrees 

less than or equal to q +land n end vertices of path lengths 1
1

, t
2

, ... ,!1, n 

such that 

Proof: 

n 
- I p. log p. < 

i=l l q l 

n 

I 
i=l 

p.1. < 1-
.l l 

n 

2 
i=l 

(cf. p. 38 of Ash's (1965) book). 

p. log p,. 
l q l 

Select 1. such that 
l 

-log p. < 1. < -log p
1
. + l for all i = 1, ... , n, then the required 

q l - l - q 

condition is satisfied. Observe that this is possible because -log p, < 1. 
q 1 - 1 

-!/,· 
implies that -log p, < 1 logqand p, > q 1 

q 1 i l -

n 
\' -Q,i 

Therefore, L q < l and Theorem 3. 4. 8 asse.rts that the required tree 
i=l 

exists. 
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We note that the tree in .Theorem 3.4.9 can always be considered as a 

qpary tree by adding vertices of weight zero adjacent to those branch 

vertices of degree less than q + 1. Thus, combining the above two theorems, 

we obtain the following corollary for the bounds of an optimal q-ary tree. 

Corollary 3.4.1 Let W {w
1

, w
2

, ... , wn} be a set of n weights 

n 
such that )' w. 

i:::l l 

1. Let 'I' be an optimal q-ary tree for W such that the 

end vertex associated with the weight w. is of path length£., i = 1, ... , n. 
l 1 

'rhen the cost of T is bounded in the following fashion: 

n 

- )' w log w < 
. '1 i q i -
1= 

n 

I w. 9 .. < 1-
i=l l 1 -

n 
I w. log 

i=l 1 -q 
w .• 

1 

Proof: The lower bound is obtained from Theorem 3.4.8. Since T is an 

optimal q-ary tree for w, its cost must be less than or equal to the cost 

of the tree determined in the proof of Theorem 3.4.9. Thus we obtain the 

upper bound also. 

n 
Remark 3.4.2 Let p

1
, ... , pn ben positive numbers with I p. 

i=l l 

l. 

n 
The quantity I p. log P., where q is any positive real number, is called 

i==l 1 . q 1 

entropy in the information theory. 



CHAPTER IV 

K-SAIVIPLE OPTIMAL NESTED BINOMIAL GROUP TESTING 

4.1 Introduction 

Consider a population P of N units, each with a nonzero probability p 

of being defective, and a probability q = 1 - p of being good. Thus, the 

units in any sample X of size n < N chosen from P have a joint distribution 

of binomial type with parameters (p, n). We say that X is binomial. In 

part.icular, when X = P, we say that P is a binomial population. A group 

test is a simultaneous test on a sample X of arbitrary size chosen from P 

with two possible outcomes: X is identified as good if all the units in it 

are good, and identified defective if otherwise. The usual purpose is 

to find a certain number of defectives or all the defectives from P, or to 

determine that P contains no defective units. A sequence of group tests 

used to attain the purpose is called a group testing procedure. The cost 

of a group testing procedure is defined to be the expected number of tests 

required to attain the purpose. An important criterion of evaluating a 

group testing procedure is called the optimality criterion, that is, a 

procedure is said to be optimal if it is of minimal cost. 

The concept of group testing originated from Dorfman's (1943) pro-

cedure for a blood testing problem. Suppose there are N blood samples 

subject to a test which revc;als the presence or absence of "syphilitic 

antiqen". 1\ blood sample which contains syphilitic antigen is said to be 

defective. Dorfman ( 1943) suggested that n blood samples, where n < N, 

should be pooled and tested ~c;iinultaneously as a unit at each st:ep. 

97 
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If none of Uw n blood samples contributed to the pool contains syphilitic 

antigen, then the pool will not contain it either and will be classified 

as good. Otherwise, the pool will be classified as defective and the 

individual f;amples making up the pool should be retested to determine 

which of the members are defective. It is not necessary to draw a new 

blood sample for this purpose since sufficient blood for both the test and 

the retest can be taken at once. Dorfman (1943) also formulated the cost 

of his procedure as a function of nand p, where p is the probability that 

a blood sample is defective. Hence, the value of n which minimizes the 

cost can be comput.ed . 

Sterrett (1959) modified Dorfman's procedure by proposing that in

dividual testing of the units in a defective pool should cease once a 

defective is found and the remaining units should again be pooled and 

tested simultaneously in one group test. 

Watson (1961) applied Dorfman's method in group screening problems 

where a large number of variables are screened by group testing to identify 

the important ones. 

Sobel and Groll (1959, 1960, 1966) found many industrial applications 

of group testing. For example, the testing of electrical devices and the 

elimination of defectives from manufactured products. They also improved 

Dor £man's procedure by allowing that the sizes of each sample tested in 

a group test may vary in order to save the cost. Furthermore, they required 

that the tests be nested, that is, once a defective sample is found,the next 

k samples t..o be tested must be chosen from the same defective sample. Kumar and 

Sobel (1971} pointed out that although such a procedure is not optimal for 

classifying all the defectives, it is optimal for finding a single defective 
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from the given populat.ion P. Furthermore, the exact cost functions for 

such an optimal m~sted group testing procedure were also conjectured for 

·the caseG whfm .P is either· finite or infinite. 

Hwanq (1974) proved t.he above conjectures. His proof is based on 

the construction of an optimal binary tree (Huffman's tree). Later, 

Hwang (1976) further improved the procedure for classifying all the defec

tives from a given binomial population P. Garey and Hwang (1974) also 

generalized the problem by allowing each unit in the given population to 

have a distinct nonzero probability of being defective. They referred to 

such a population as the generalized binomial population. For this problem, 

Hwang (1975) also qave a dynamic programming algorithm to obtain an optimal 

Dorfman's procedure for a qeneralized binomial population of finite size. 

Recently, Moon and Sobel (1977) found a formula in terms of Catalan 

m:unber, for enumeratinq a class of qroup testinq procedures which classify 

all the defectives from a given population of N units. Hwang (1978) con

sidered hypergeometric group testing procedures for the cases when the 

given population was known to contain either exactly d or at most d defec

tive units. 

In this chapter, we extend the group testing method to the case when 

two or more experimenters are working on a single population of N units by 

carrying out simultaneous group tests (each of which takes the same fixed 

time) and cooperating so as to minimize the time required to attain the 

purpose. By a k-sample group testing procedure,we mean that at each step, 

k ~::mnples an; chm>c~u from UH~ qivc~n population so that each is tested by 

an experimenter using a group test at a same fixed time period. When k==l, 

thi~'' is the qroup t.e~>tinq procedure studied by various authors mentioned 
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in the previous paragraphs. The terminology used in the literature of 

one-sample group testing can readily be carried over to k-sample group 

testing in general by regarding every k-sample group test as a unit. 

However, we note that in k-sample testing, more than one defective sample 

or good sample may be obtained from each k-sample test. Thus, in a nested 

k-sample testing procedure, we require that the defective samples be kept 

separate since the next k-sample test should be performed on a subset of 

one of the defective samples. It is evident ·that when k increases,the total 

expected number of individual tests required to find the defectives cannot 

be decreased. However, the total expected number of stages (units) of 

k-sample tests can be siginificantly reduced. Therefore, the purpose of 

using a k-sample testing procedure is mainly concerned with the saving of 

time required to find defectives. 

Here we outline the main steps for finding all the defectives from 

a certain sample S which may be a portion or the whole of a population P: 

Step (i): to find a single defective from s. 

If there is no defective in S, we conclude that S is a g?od sample. 

If a single defective is found from S, there may be three types of samples 

resulting from the tests. They are good samples, defective samples and 

binomial samples. The good samples can be excluded from consideration. 

The binomial samples can be combined to form one binomial sample. But the 

defective samples have to be kept separate since our k-sample testing 

prcedure is nested. 

Step (ii): to find a single defective from a defective sample. 

The new defective samples resulting from step (ii) are again kept 

s~ar~te • But the binomial samples can be combined with those binomial . ·• 
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samples obtained after step (i) . 

Repeat st.ep (ii) until all the defective samples are exhausted. 

Then go back t:o step (i) with the remaining binomial sample. The proce

dure ends when all the defectives of S are classified. 

The main results of th.is chapter include the design of k-sample 

optimal nested binomial group testing procedures required to attain the 

purposes of step (i) and step (ii) respectively. The most interesting 

part is the optimal allocation for finding a single defective from an 

infinite binomial population. 
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4.2 (K+l)-ary Tree Representation 

Unlike the 1-sample group testing procedures, not every k-sample 

group testing procedure cun be represented by a (k+l)-ary tree when k > 1. 

The type of k-sample group testing procedures which can be represented by 

a (k+l)-ary tree will be defined later in this section. An example will 

also be given to clarify the above statements. 

Let I be a population of n units. S h .th . h uppose t e 1 un1t I. as a 
1 

probability p. of being defective and a probability q. = 1 - p. of being 
1 1 1 

good. Without loss of generality, we may assume that p
1 

~ p
2 

> ••• ~ Pn 

because this can always be achieved by properly permuting the indices of 

the units in I. Denote by o. the event that the unit I. is defective, 
1 1 

i 1, ... ,nand 0 1 the event that all then units in I are good. Let n+ 

f be a k-sample testing procedure for finding a single defective from I. 

When I is a binomial population, the set of all possible outputs of f is 

... , 0 1}. n+ 
When I is a defective population,the set of all possible 

outputs off is {o
1

, ••. ,On}. 

Let each k-sample group test be performed on a k-tuple of samples 

of the form J = (J
1

, ... , Jk), where J
1

, ... , Jk are k samples chosen from 

I. Then each of the k samples is tested separately at a same fixed time 

period. Consider the type of k-sample group testing procedure which has 

the property that after a k-sample group test is performed on a k-tuple of 

samples, say, J = (J
1

, .•. , Jk), the next k-sample group test is completely 

determined either when (i) the least index defective samp~e is found, or 

(ii) when all the k samples J
1

, ••• , Jk are good. A procedure of this type 

can be represented by a (k+l)-ary tree in the following steps: 
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(i) The root of the tree is labelled by a k-tuple of samples 

J
0 

= (J~, ••. , J~) to be tested in the first k-sample test. The degrees 

and labellings of the k vertices joined to the root (by an edge) are 

determined according to the following criteria: 

(a) if a single defective can be found when J~ is the least 
l. 

index defective sample, then the ith vertex from the left is an 

end vertex and is labelled by that single defective unit, i=l, ••• ,k. 

(b) 'f h . f 0 
. h h 0 

. h 1 t 1. t e s1.ze o J. l.S greater t an one w en J. 1.s t e eas 
l. l. 

index defective sample,then the ith vertex from the left is a branch 

. i i -
vertex and is labelled by the k-tuple of samples J = (J

1
, ... , 

to be tested in the next k-sample group test, i = 1, ... , k. 

(c) if I can be determined as a good population When all 

th ••• , Jk are found to be good, then the (k+l) vertex from the 

left is an end vertex and is labelled by the empty set In+l' denoting 

that all the units of I are good. 

(d) if I cannot be determined as a good population when all the 

samples J
1

, th ••• , Jk are found to be good, then the (k+l)
1 

vertex 

from the left is a branch vertex and is labelled by the k-tuple of 

... , 
group test. 

Jk+l) to be tested in the next k-sample 
k 

(ii) Every branch vertex of the tree can be regarded as the root of 

a subtree so that step (i) can be applied. This continues until all the 

branch vertices of the tree are encountered. 

It is clear that a (k+l)-ary tree representing a k-sample group 

testing procedure for finding the defectives of I has the property that 
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every end vertex of the tree should either be labelled by a unit of I or 

labelled by an empty set I 
1

, denoting that I is good. Furthermore, every n+ . 

unit of I must be the label of at least one of the end vertices of the tree. 

Whenever a procedure is determined by its testing result to reach a 

stage described by a vertex of the corresponding tree, we say that the pro-

cedure reaches that vertex. In particular, when an end vertex is reached, 

then the procedure is terminated since an output is obtained. 

Example 4. 2.1 Suppose that I = { I
1

, •.. , r
10

L Let I
11 

be an empty 

set denoting the event that all the units in I are good. The testing pro-

cedure represented by the tree in Figure 4.2.1 can be interpreted as the 

following: 

(i) the first 2-sample test is to be performed on the 2-tuple of 

(ii) the second 2-sample test will be performed on one of the follow-

ing three possible 2-tuples of samples: 

(a) ( (I
1

, r
3

, IS), (I
2

)) if (I 1 ~ r
2

, r
4

) is defective. Note that 

\ 
the decision is made independent of whether or not the sample 

(b) ((I
3

, IS, r
6
), (I

7
)) if (I

1
, r

2
, r

4
) is good but the sample 

(I
3

, IS, r
6

, r
7

, r
8

) is defective. For in this case,the latter sample 

is the least index defective sample. 

(iii) the third 2-sample test will be performed on ((I 1), (I 3)) if 

<r 1 , I
3

, IS) is found to be defective, and on ((I
3
), (IS)) if (I 3 , IS, I 6 ) 
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is found to be defective. 

The rest of the procedure follows analogously. For example, if 

((I
9
), (I10 )) is tested and found to be good, then the vertex labelled by 

I
11 

is reached and we conclude that all the units of I are good. 

Note that the test described in Figure 4.2.1 is not a nested test. 

The reason is that when (I
1

, I
2

, I
4

) is defective, the next k-tuple of 

samples to be tested is ((I
1

, I
3

, IS), (I
2
)), but (I

1
, r

3
, Is, I 2) is 

not a subset of (I
1

, I
2

, I
4
). 

It is also interesting to note that if the procedure described in 

Example 4.2.1 is slightly changed such that (a) of (ii) becomes 

(a') ( (I 1' I3, Is> , (I2) ) if both (Il, 

(I 3' Is, I6, !7, I8) are defective. 

((I3, rs, I6)' (I2)) if (Il, I2, 

(I 3' rs, !6, !7, I8) is good. 

Figure 4.2.1 A 3-ary tree representing a 2-sample 

for finding defectives from I = {I , 
l 

an empty set denoting the event that 

I2, I4) and 

I4) is defective, but 

testinq procedure 

.•• , 110}. Ill is 
I is good. 
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Let f be a k-sample testing procedure that can be represented by a 

(k+l)-ary tree, say 'lj·· Denote by E(f) the cost off, that is, the ex

pected number of k-sampie tests required to achieve an output. 

Let { v 1 I ••• I vrn} be the set of all end vertices of T r Let Q, i be 

the path length of v., and w. the probability that the procedure f reaches 
. l l -

v .. Let W = {w
1

, ... , w} be a set of tbesc m weights. Let the weight w. 
l m · 1 

be us::;ocia ted with the end vertex vi, i = l, ... , m. Define C (T f) to be 

the weighted path length of the end vertices of the tree Tf' which equals 

m 

I t. w .• 
i=l l l 

We say that C(T ) 
f 

is the cost of the tree T.f" 

'I'he following lenuna has been proved by Hwang (1973) for .1-sample 

optimal group testin9 procedures. Extension to the k-sample case is 

strai9htforward since the arguments in Hwang's proof do not depend on k. 

Lemma 4. 2. 1 E (f) C (T J') 
J 

Proof: The procedure f reaches an end vertex of Tf if and only if 

it achieves an output. 'l'he number of k-sample tests required for f to 

reach an end vertex, say v., is£. and the probability that f reaches 
l ]_ 

v. 
.l 

is w: .. 
l 

Thus 

Ill 
\' I L Q,. w. 

i~l l l 
C ('I'.f'). 
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4.3 On Defective Populations of Small Sizes 

Suppose it is known in advance that I contains at least one defective 

unit, then I is a dc!fecUve silmple. Recall that p > p > ••• > p. 
1 - 2 ~ ~ n 

With-

out loss of generality, we maY assume that n = 1 mod k. For otherwise, we can 

always include extra units I . with probability 0 of being defective for 
n+J 

j = 1, ... ,· a where a is an integer such that 0 < a < k and n + a = 1 mod k. 

'I'hen we consider n + a instead of n. Let W = {w
1

, ... , w
11

} be a sequence 

of weicrhts such that 

i-1 
W, = 0.-l 

pi n q. 
l j=l J 

i 1, ... , n (4.3.1) 

n 
where a = 1 - n q .• Let. A be an optimal alphabetic (k+l) -ary tree for ~v. 

j:-,1 J w 

Now we label the vertices of A according to the following rules: 
w 

(i) the end vertex with weight w. is labelled by I .. 
l l 

(ii) every internal vertex is labelled by a k-tuple of subsets of I 

1 tl h . th d. . . f h ub f . f 1 b 11 . suc1 1at tel coor 1nate cons1sts o· t e s set o un1ts o I a e 1ng 

the end vertices which are reachable from the ith leftmost edge joined to 

that internal vertex, i = 1, ... , k. 

Hwang (1973) has proved the following theorem for k = l. The proof, 

in general, is entirely similar since the argument of the original proof 

does not depend on the restriction that k = 1. 

Theorem 4.3.1 A defines a k-sample testing procedure~ for finding 
w 

the least index defective in I. 

Let D. be the event that I. is the least index defective in I. Then 
l l 

{D
1

, ... , D} is the set of all possible outputs off. Since w. is the 
n w l 

probability that I. is the lc~ast index defective of I, w. is also the 
1 1 
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probability that j' reaches the end vertex I. of A , i = 1, ..•. , n. 
w . . l w 

Let ~ be the family of all k-·sample testing procedures tha·t can 

be represented by a (k+l)-i1ry tree and have {o
1

, ... ,on} as the set of 

all possible outputs. 

The following lemma and theo:t:em have been proved by Garey and 

Hwang (1974), for the case that k = 1. The proofs in general are similar 

but depend on the re~mlts established in Chapter III for (k+l) -ary 

weighted t:rees. 'I'his wi 11 be illustrated in the proof of the theorem. 

Lemma 4.3.1 Let. {v
1

, v
2

, ... , vn} be the set of all end vertices 

of a (k+l)-ary tree. Suppose v. is of path length t., i 
l l 

1, 2, ... , n 

and Q, < t < • • • < t 
1 2 - n 

* * Let w
1

, w 
3

, 

sequences of weights ~-:;uch that 

n 
< L w~ 

i=h l 

... e r 

for any integer h 1, 2, "'• • I n, then 

n n 
I * 'i t. w' .. £. w. < 

i=l 
1 .l 

i=1 
l l 

Theorem 4. 3.2 

..... , w' be two 
n 

Proof: Consider any testing procedure ~ in "1 . Let T be the 
· J s .Jw s 

(k+l)-ary testing tree representing P. 
. J s Suppose ... , s is the 

m 

left-to-right sequence of all the end vertices of T . Since each unit 
s 

of I must label at least one end vertex of T , we must have m > n. Let 
s 

W' {w
1
•, ••• , w'}, where w~ is the probability that the procedure /

5 m 1 

reaches the end vertex s., i 
1. 

1, ... , m. Now we order W' to obtain a 

new :>c:qucncu W' 
r {w~(l), ... , w~(m)} such that w~(l) > > I 

wr(m) · 
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Denote by L the set of all labels of sr(l), ... , s~(h). Let Q, == ILl. 

Then necessarily l < Q, < min[h,n}. Furthermore, the event that fs reaches 

one of the end vertices sr(l), ••• 1 s is disjo.int with the event that 
r(h) 

all the Q, units in L are good. Hence 

w' < 1 -
r ( i) 

< gn and .Q, < min{h,n} implies that 

ll 
jdk: I c:L} 

k 

Q, 

q.> IIq.> 
J - j"'l J -

Thus when l < .h < n, WQ have 

min{h,n} 
II 

j=l 

h h h 

q, 
J 

2: 
i=l 

w' . < a-l ( l -
r (l) -

IT q.) = I W. 

j=l J i=l l ' 

where w
1

, '"' • • I w are defined by (4.3.1). Define w.= o for n < i < m. Then 
n l 

h 

I 
i=l 

w' < 1 
r (i} 

for all h, n < h < m. 

h 
}' w. 

i~l l 

Let H 1 be an optimal (k+l) -ary tree for w' . w . r 

I 

Let Q,, be the path 
l 

r 

lenqth of the end vertex associated wi t.h weight W~ (i), i = 1, ... , m. By 

' Theorem 3.4.1 (ii), we may assume that Q,l < ••• 
I • 

< Q, , s1nce there always 
- m 

exists such an optimal (k+1)-ary tree for W1
• Then we can apply 

r 

Lemma 4.3.1 and obtain 

Lemma 4. 2.1 implies that E ( Jf' ) = C (A ) which also equals to the cost . w w 

of nn optimal (1<.11)-,Jry t-n:P for W by Thnorem 3.4.3, since the sequence of 



weights in W is monotone. 
m 

Therefore, E(fw) < L w.~~. 
- i=l l l 
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On the other hand, E(f ) 
·S 

C(T ) , which is no less than the cost of 
s 

m 
an optimal (k+l) -ary tree for W'. 

\ I 
Therefore, E(f

5
) > L w.t .. 

i=l l l 

Hence, we conclude that E(f
5

) > E(fw) and the proof is complete. 

If follows from Theorem 4.3.2 t.hat the procedure fw is a k-sample 

optimal nested group testing procedure in the family 'jw. The upper and 

lower bounds of E(f ) are given by the following theorem which is due to 
w 

Garey and Hwang (1974) when k = 1. 

n n 
'l'heorem 4.3.3 ) wilog(k+l)wi-l < E(fw) < 1 + ) wilog(k+l)wi-l 

l=l l=l 

-1 n 
where w. = a pi I q . and a 

l j=l J 

n 
Proof: Since L w. 

i=l l 

Corollary 3. 4 .1. 

n 

1 - I q .. 
j=l J 

1, the result follows directly from 
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4.4 On Binomial Populations of Small Sizes 

Suppose it is not known whether I contains a defective or not, then 

I is a binomial population. Recall that p
1 

> p > ••• > p. Without loss 
- 2 - n 

of generality, we may assume that n = 0 mod k. For otherwise, we can al-

ways include extra units I . with probability 0 of being defective for 
n+J 

j = 1, ••. ,a where a is an integer such that 0 <a< k and n +a- 0 mod k. 

Then we consider n +a instead of n. Let U = {u
1

, ••. , unTl}be a sequence 

of weights such that 

{: 
i-1 
n q. i = 1, ... , n 

u. 
j=l J 

(4.4.1) 1 

k = n+l. 

Let A be an optimal alphabetic (k+l)-ary tree for U. We label the vertices u 

of AU according to the following rules: 

(i) the end vertex with weight u. is labelled by the units I., 
1 1 

i 1, ••• ,nand the rightmost end vertex with weight un+l is labelled by 

the empty set In+l. 

(ii) every internal vertex is labelled by a k-tuple of samples such 

that the ith coordinate consists of the sample of units of I labelling the 

end vertices which are reachable from the ith leftmost edge joined to that 

internal vertex, i = 1, ••. , k. 

We state the following theorem which has been proved by Hwang (1973) 

for k = 1. The proof in general is entirely similar. 

Theorem 4.4.1 AU defines a k-sample testing procedure fu for either 

finding the least index defective from the binomial population I or deter-

mining that I is good. 
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Let D. be the event that I. is the least index defective in I, 
1 1 

i 1, ..• ,nand let D be the event that all the units in I are good. 
n+l 

Then {o1 , ... , Dn' Dn+l} is the set of all possible outputs of fu· Further-

more ui is the probability that fu reaches the end vertex Ii of A
0

, 

i = 1, ••• , n+-1. 

Let ~U be the family of all the k-sample testing procedures that 

can be represented by a (k+l)-ary tree and have {D
1

, ... , D, D 
1

} as the n n+ 

set of all possible outputs. 

By using Theorem 3.4.1, Theorem 3.4.3 and Lemma 4.3.1, Hwang's (1973) 

proof can be extended to obtain the following result for k-sample-testing 

procedures with any k > 1. 

Theorem 4.4.2 E(fu) < E(f*> for every f* £~0 . 

The procedure fu is therefore a k-sample optimal nested group test

ing procedure for either finding a least index defective or determining 

that the binomial population I is good. The upper and lower bounds of 

fu can again be obtained by using Corollary 3.4.1. Thus we have 

n+l n+l 
Theorem 4.4.3 I u.logk 

1
u.-1 < E( !,0 ) ~ 1 + I u.logk+lu-

1
.

1 
. 1 1 + 1 - . 1 1 1= 1= 

where u., i = 1, ... , n+l are defined in (4.4.1). 
1 

n+l 
Proof: Note that l u. = 1 and therefore Corollary 3.4.1 applies. 

i=l 
1 
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Given a population I of n units each with the same probability p of 

being defective and the probability q = 1 - p of being good, suppose it is 

known that I contains at least one defective, then I is a defective popula-

tion. The problem of finding a single defective from I is a special case 

of the one discussed in Section 4.3. 

Under .the present conditions, the cost E(j' ) of the k-sample optimal 
w 

nested group testing procedure .fw belonging to the family "-~ (see Sec-~ 

tion 4.3) can be formulated as a function of n, p and q only. For fixed 

p and q, we denote E(j~) by Fk+l(n). 

In the procedun~ j' , after a k-sample test has been performed on a 
w 

k-tuple of samples J == (,J 
1

, ... , Jk) , where J i, i = 1, ... , k are the dis-

joint subsets of I, the next k-sample test is required if no single defec-

tive has been found. 'l'he units to be tested in the next k-sample test 

must be a subset of the sample chosen according to the following criteria: 

(i) if one or more of the samples J
1

, ... , Jk are found to be 

defective, the least index defective sample should be chosen. 

(ii) if none of the samples J
1

, ... , Jk are defective, the next 

k-t.uple of samples should be chosen from the units of I which have never 

been ·tested. 

'I'he t<~sting procedure continues until a single defective is found. 

I 1 t i... d . f k+ 1 ( ) 1 ( 0 n or((~r o :1.n · an uxprnss1.on or F n , we et ,J
1

, 

the first k-tuple of samples tested in the proecdure f . Let y, be the 
w l 

size of the sample J~ , i = 1, ... , k. Since I is known to have at least 
l 

one defective, the probability that .J~ is the least index defective sample 
l 
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equals 
y + ... +y. l y. 

q 0 
l- (1 - q 1

) I (1 - qn) ,where yd:_:: 0. The minimal expected 

cost of finding a defective from J. when it is the least index defective 
l 

k+l 
sample equals F (y.). Therefore, the cost off can be written as 

l w 

k+l 
F (n) = min 

~+1 

for n :: l mod k , where the kLinimum is taken over the region 

k+l 
\' L y i = n and yi - l mod k, i = 1, ... , k} 

i=l 

The term l a:rises due to the cost of testing the samples 

It is trivial that Fk+l (k+l) == 1. The reason why we impose the conditions 

that y. 
l 

1 mod k, i 1, ... , k+l is that the procedure f is primarily 
w 

designed for finding a single defective from a defective sample of size n 

with n - l mod k. 

It will be verified in Theorem 4.5.1 that Fk+l(n) is in fact the 

cost of an optimal alphabetic (k+l)-ary tree for the sequence of weights 

W={w
1

, ... ,w} 
n , 

L-1 where w. = pq- /(1 
l 

n q ), i = 1, ... , n. Similar tree 

interpretations can also be found for the following functions: 

t k+l . { F ' (n) = m1n 1+ 

R~ 
i=l 

t y + ... +y. 1 y. I q 0 ]_- (1- q l) Fk+l(y.) 
l 

for n =.:: t mod k, when~ the mini:Tnum L; taken over the region 

t 
R~ = { (y

1
, ... ,yt): L y.= nand y.::l mod k, i=l, ... , t}, for t=l, ... , k+l. 

i"'-1 l l 

It lS clear t.hat when t ~~ k+l, we have Fk+l,k+l(n) = Fk+l(n). 

For simplicity in notation, we write 

F.t,k+l (!1) t '" F (n), for t == 1, ... , k +1. (4.5.1) 



115 

The function Fk(n) can be found useful when one wants to determine the 

cost of an optimal nested k-sarnple group testing procedure for finding a 

single defective from a binomial population (see Section 4.6 and Sec-

tion 4.7). In order to find the tree interpretations of the functions 

t F (n), t = l, •.• ,k+l, we introduce here the notion of at-sum (k+l)-ary 

tree which is trivial when k = 1. 

Definition 4. 5.1 Let n = n1 + • • • + nt, where ni :: 1 mod k, i = 1, ••• , t 

and 1 < t < k+l are positive integers. A t-surn (k+l)ary tree with n end 

vertices is a tree formed by combining t planted (k+l)-ary trees ~1 , ••• ,Tt 

at their roots, where T. has n. end vertices, i = l, ••. ,t and 1 < t < k+l. 
l l 

Thus when t = k+l, a t-sum (k+l)-ary tree is again a (k+l)-ary tree. 

Definitions concerning the optimality and alphabetic optimality of 

a t-surn (k+l)-ary tree can be given analoguous to those defined for (k+l)-

ary trees. Analogues of generalized Huffman's algorithm, generalized T-C 

algorithm and the related theorems can also be established since the only 

difference between a t-sum (k+l)-ary tree and a (k+l)-ary tree1 is the 

degree at the root when t < k+ 1. 

Let{ w~, * w*} be sequence of weights. Denote by W 2 I • • • I a n n 

ct { * r t * * * .v. } . = C {w.,w. 
1

, ••. ,w } 
l J J J+ r 

the cost of an optimal t-surn t k+l)- ary tree for the sequence of 

* * * l I weights { W • I wj+l, ••. , w where 1 < j < r < n. In particular, when 
J r 

w~ pqi-1/(1 n i 1 I • • • I write = w. = q ) I + n, we 
l l. 

1 < r < n. 
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Similarly, denote by 

t * r t * * * A {w.J. = A {w.,w. 
1

, ... ,w } 
1 J J J+ r 

the cost of an optimal alphabetic (k+l)-ary tree for the sequence of 

weights , where l < j < r < n. In particular, when 

* w. 
l_ 

i-1/( n w.=pq 1-q), 
l 

i 1, ... , n, we write 

t r t 
A { wi} 

1 
== A ( r) , l < :r: < n. 

(4.5.2) 

The following results have been proved by Hwang(l974) when k = l and t = k+l. 

Lemma 4.5.1 If w' 
i 

* a w. i=l, ... , n, for some given 
1. 

. ct { wl'. }nl non-negatlve constant a, then we have 

t t 
A { wj_ } ~ == a A { w: } 

Proof: This is a result of Lemma 3.4.2 .. 

t{ *} n ac wi 1 

Theorem 4.5.1 
t t t 

F (n) =A (n) == C (n), for t=l, ... , k+l. 

and 

Proof: Let y :=: 0 and T be the optimal alphabetic t-sum (k+l)-ary 
0 

tree under consideration. Let T
0

, T
1

, ... , Tt be (k+l)-ary subtrees ofT 

such that T
0 

is the one consisting of the root and the k+l vertices of 

path length l . . d h .th as 1ts vertex set and T. 1s the one roote at t e 1 
l 

leftmost end vertex of T
0

, i == l, ... ,t. As a result of Lemma 3.4.2, we 

can write 

t 
A (n) 

+ 

v +y 
'l 2 

/, wJ.., ••• , 
. 1 l""Y + 1 

yl + ... +y t 

I w. } 
. l 
l=yl+ ... +yt-1 
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for n:: t mod k, where the minimum is taken over the region 

t 
~~ = { (y

1
, ... , ¥t) : I y. = n and y. = 1 mod k, i = 1, •.. , t}, for t = 1, ... ,k+l. 

i==l l. l. 

Now Lemma 4.5.1 implies that 

n 
1 - q 

for i=l, ... , t. By definition, 

yl 

Iw., ... , 
i=l l. 

thus we have 

n 
1 - q 

£-1 
pq 

Y· 
1 - q l. 

which is exactly of the same form as Ft(n). So we conclude that 

y. 
l 

1 

(4.5.3) 

t t 
A (n) = F (n). The fact that t t 

A (n) = C (n) follows from Theorem 3.4.3 

and its analogue for t-sum (k+l)-ary trees, since the weights ~re monotone. 

This completes the proof. 

Let x be a positive integer which satisfies the inequalities 

x-1 x x+k-1 x x+l x+k q + q + ... + q > 1 > q + q + ... + q (4.5.4) 

for any fixed q such that 0 ~ q < 1. 
t A closed form expression for F (n) , 

where 0 < n ~ 2x+k-l, can be derived by constructing a perfect (k+l)-ary 

tree defined below. 

Definition 4.5.2 At-sum (k+l)-ary tree with n end vertices of 

path length ! 1 , •.. , tn is called a perfect t-sum (k+l)-ary tree if and 
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only if IQi ~£jl ~ 1, for all i and j such that 1::: i,j < n. 

Remark 4. 5 .1 Let .. be. the total number of end vertices of a t-sum 

(k+l)-ary tree. Suppose that (a, (3) is a pair of non-negative integers 

satisfying 

a 
n==t(k+l) +(3, 

then the following are true: 

a o < B < t k ( k + 1) , 

(i) B ::: 0 mod k, since n::: t mod k implies that 

t ( k + 1 ) a + B - t :::0 mod k, the result follows from the fact that 

( k + 1 ) a - l ::: 0 mod k . 

(4.5.5) 

(ii) fj 
k (k+l) must be the total number of end vertices of path 

. a 
length a + 2, since there is a total of (k+l) vertices of path length 

a + l and an increase of k+l vertices of path length a +2 implies a 

decrease of 1 end vertex of path length a+ l. Or equivalently, there 

is a total of B/k branch vertices of path length a+ l and a total of 

n - -fCk+l) end vertices of path length a + l. 

(iii) When n is of the form t (k+l)a, there are two pairs 

(a
1

, B
1

) and (<x
2

, B
2

) sat.isfying (4.5.5), but they represent the same 

perfect tree. 

Lemma 4.5.2 Let w~, w; •.. , w~ be a sequence of n weights such 

that. n ·. t mod l< and Then w* + 
n-t 

* + w 
n 

> 

implies that. there exists an Qptimal alpl:abetic t-sum (k+l)-ary tree 

for these n weights ~tich is also a perfect t-sum (k+l)-ary tree. 

Proof: Using generaLized Huffman's algorithm for constructing 
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an optimal alphabetic t-sum (k+l)~ary tree, the first step is to combine 

the k+l vertices of smallest weights to form a new vertex of weight 

w~+ 1 = w~·-k + . . . + w~ ~ wi. Theorem 3. 4 .1 asserts that there exists an 

optimal (k+l)-ary tree such that 

where £. is the path lenght of the vertex with weight w., i = 1, ... , n+l. 
l l 

Therefore, 

for all 1 < i, j < n. 

Thus it is a perfect t-sum (k+l)-ary tree. Furthermore, Theorem 3.4.3 

and its analogue imply that such a tree can be converted into an optimal 

alphabetic t-sum (k+l)-ary tree of the same cost, since the sequence of 

* * * weights w1 , w
2

, ... , wn is monotone decreasing. This completes the proof. 

Theorem 4.5.2 Let t be any fixed integer such that l < t< k+l . 

For any integer n which satisfies the conditions n::: tmod k and n < x + k, 

we have 
n- ~ ( k+ 1) 

t q 
F (n) ==l+ a+---

n 
- q 

Proof: Since 

w k+ w k 1+ ... + w n- n- + n 

n 
1 - q 

__ E._ __ _ 
n 1-q 

n-k-1 n-k n-1 q + q + ... + q 

n-k-x 1 k l 
_ pq -----( qx- + qx + ... + qx+ -

1 
n 

-q 

n-k-x 
> pq > __ P_ 

1 
n 

-q n 
1-·q 

when n < x-tk Lemma 4.5.2 impUes that there exists an optimal alphabetic 
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t-sum (k+1)-ary tree for w
1

, ... , wn' which is a perfect t-surn (k+l)-ary 

tree. Suppose (a, B) is defined by the expression (4.5.5) in Remark 4.5.1 

which implies 

t 
F (n) 

h n 
(a + 1) )~ w. + (a + 2) I w. 

i=l l i=h+l l 

n 
- q 

h 
(a + l) + g: 

n 
1-q 

where h n - ~(k+l). This completes the proof. 

Theorem 4.5.3 Let t be any fixed integer such that 1 := t ::;: k+l. For 

any i"nteger n which satisfies the conditions n:: t mod k, n = x + h and 

0 < h < x + k - 1 , we have 

1 + a + 
1 

n 
1-q 

m-lk~lj+ (k+l)r n) 
+ q - 2q 

where m, r, a, 13 are 'defined by (4.5.9), (4.5.10) and (4.5.11). 

Proof: Let w . be the weight of the new vertex created from the ith 
n+1 

step of the generalized Huffman's algorithm, i = 1, 2, .... Let i be the 
0 

largest integer satisfying the following condition: for any i < i , in the 
- 0 

.th 
1 step of the algorithm, k + 1 weights from the original sequence 

... , w are combined. 
n 

i < i , we have 
0 

wn+i ·- w (x+h) +i 

It is obvious that i > 1. 
0 -

For any integer 

w ( + w ( ) . + . . . + w (k ) . 1 x+h- k+l)i+l x+h- k+l 1+2 x+h- +1 1+k+ 

x+h- (k +-1) i 
ESL.__________ ( 1 + q + . . . + q k) 

l 
n 

-4 



From the definition of x given by (4.5.4), we find that 

and 

h- (k+l) i+l 
w . > pq ---------------

n+l - n 
1-q 

h-(kH)i 
w . < pq -----------

n-1-1. -
1 

n 
-q 

In particular, when i 1 and h > k+l, we have 

w < w < w . 
h-k+l - n+l - h-k 

(4. 5 .6) 

(4.5. 7) 

(4.5.8) 

Thus the weights of the new vertices created are always greater than or 

h-k n 
equal to pq I (1-q ) . 'fherefore, we know that 

Let a be an integer such that h:: a mod (k+l) and 0 < a < k. Let 
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Lz~d whenever h > k+1, then we have i
1 

h-a 
k+1 

It follows from the 

definitions that i
1 

imply that 

< i since h < x+k-1. 
0 

Inequalities (4.5.6) and (4.5.7) 

w < w < w , 
a+2 - n+i - a+l 

1 
whenever h > k+l. 

Now we claim that w ?: w
1

. This can be shown in the following 
n+i +1 

1 

two separate cases: 

( i) .l'i'' +l<' . :Ll . 10, then inequality (4.5.6) implies that 

a-k 
> pq __ > . < k 

wn+i +l _ n wi s1.nce a . 
l 1-q 

(ii) if i
1 

+ 1 > i , then (4.5.8) implies that 
0 



wn+i +l 
1 

(w · + ... + w ) + w. 
1 x+a-k+l x+a n+ 

> (w + .•. + w ) + w 
x+a-k+l x+a h-k+l 

> (w + ... + w ) + w 
x+a-k+l . x+a x+a+l 

since h < x+k-·1. From the definition of X given by (4.5. 4), we have 

a-k 

wn+il+l > ESL~. > w l since a < k. 
1-·q 

Hence, after the i
1 

steps of Huffman's algorithm, we obtain a 
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sequence S' of weights iu which the sum of the k+l smallest weights is 

great:er than or equal to w
1

. Let m be the number of weights in S'. Then 

m (4.5.9) 

Note that n = x+h :: l mod k implies that m :: l mod k. By Lemma 4. 5. 2, there 

exists an optimal alphabetic t-sum (k+l)-ary tree T , for the sequence S', s 

which is a perfect t-sum (k+l)-ary tree. If (a, (3) satisfies 

a 0 0 a 
m = t(k+l) + ~-' where 0 < ~-' < tk(k+l) ( 4. 5.1 0) 

s 
we can count exactly how many of the m - k (k+1) end vertices of TS' with 

path length a+l are vertices formed by the combination of (k+l) end ver-

tices in the original sequence { w
1

, ... , wn}. Let this number be r. Let 

the WE-;ights of theo;e r vPrtices be wn+i -t+
1

, t == 1, ... , r whenever r > 1 
1 

The largest one is wn+i which lies between wa+
1 

and wa+ 2 , provided that 
1 

h > k+ 1, or equi valE~ntly i
1 

> 1. 'I'here are k+ 1 weights from the original 

sequence between the weights w . and w . 
1

, t 
n+1

1
+t n+1

1
+t+ 

0, l, ... , r-1, 

whunuve.c r > 2. '.l'lwn•ron~, 



r = min {lk~lJ s } l~-:::. k-_ (k+l) k:2 (k+l) - (a+l)~ 

(k+1) + k 

k+2 
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(4.5.11) 

s 
Hence, for the vert:ices in the original sequence, the first m - k (k+l)- r 

vertices will have path length a+ 1, the last ( ~~J- r) (k+l) vertices 

will have path lenqt.h c~ + 3 and the remaining 

r) (k+l) - ( m ! (k+l) - r) 

(x+h) - lk~d (k+l) + dk+l) - ( x+h - L<~d k 

k~lj + (k+2) r + ~· (k+l) 

~ (k+l) - 0 

vertices at t_he middle will have path length a+ 2. Now we can compute 

t 
F (n) 

where H m -

H H+H* n 
(a+1) I w. + (a.+2) L ·w. + (a+3) L w. 

i=l 
1 

i=H+l 
1 

i=H+H*+l 
1 

S (k+l) - r and H* 
k lk~d + (k+2) r + f (k+l). 

n n 
1 +a + L w. + I w. 

i=~+l 1 i=H+H*+l 
1 

1 + a + 

1 + a + 

H n-H H+H* n-H-H* 
SL_L!__:::_s __ . __ l + q ( 1 - q l 

1 

1 
n 

-q 

n n 
1-q 1-q 

* H+H 
+ q 

Consequently, 

then the result of the theorem follows by substituting the values of H and 

* H into the above equalion. 



4.6 On Binomial Populations with Units from a Unique 
Binomial Distribution 
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~~upposn I is a binomial population of n units, each with the same 

probability p of be:lnq defective and the probability q=l-pof being 

good. The problem of finding a single defective from I is a special case 

of the one discussed in ~>ection 4.4. 

Under the present concli tions, the cost E ( f~) of the k-sample optimal 

nested group testing procedure f~ belonging to the family ::Ju (see Sec-

tion 4.4) can be formulated as a function of n, p and q only. For fixed 

p and q, we denote E( (') by K(n). ·u 
It can be seen from the definition that the procedure fu is the same 

as the procedure J' de~>cribccd precisely in Section 4. 5 except that 
w 

minates in either one of the following cases: 

(i) a single defective is found, 

( ii) t.he po!Julation L is found to be good. 

I' 
J ter

U 

Let 
(j 

••• I cTk) be the first k-tuple of samples tested in 

the procedure [
0

• L<c;t y. be the size of the sample ,J., i = 1, ... 1 k, 
l l 

k 
y

0 
_ 0 1 and y I y .. 

i=l l 

The probability that J~ is the least index de
l 

yo+ ... +yi-1 yi 
fective sample equals q (1 - q ·), and the minimal expected 

cos·t of finding a single defective from J~ when J~ is the least index 
l l 

defective sample equals k+l( ) p y, • 
1. 

The probability that all the k samples 

0 0 y 
J

1
, ... , Jk are good equals q and the minimal expected cost of finding 

a single defecti vc~ from the remaining n-y units when all these k samples 

are good equals K (n-y). 'rhl~refore we have 



K(n) min {1 + qyK(n-y) + 
Rk+l 
n+l,y 

k y + ... +y. ·1 
I o -~- (J L q -

i=l 

y. 
q 1) k+l( '} F y. I 

1 

for n :: 0 mod k, where the minimum is taken over the region 

k+l 
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(4.6.1) 

R~i,y={(y11 ... ,yk+l) :iLYi = n+-1 y=n+l-yk+l and yi::: lmod k 1 i=l, ... ,k+1} 

Note th<Jt the: term 1 arises due to the cost of testing the first k-tuple 

of samples J
0 

• .. ,. I The reason why we impose the condition that_ 

k+_l 
~ yi =n+l is that the procedure fu has n+l possibleoutputs(cf.Section 4.4). 

i = l 

If we express K(n) in terms of the function Fk(n) defined by (4.5.1) 1 

we find that 

K(n) min 

y=l, ... 1 n 
(4. 6. 2) 

where y is the total number of units to be tested in the first k-sample 

group test. 

k+l{ }n+l _ k+l 
where A ui 

1 
- A { u

1 
1 ••• , un+

1
} is the cost of an optimal alphabetic 

(k+l)-ary tree for the sequence of weights u
1

, ... 1 un+l 1 such that 

i-1 . 
U, = pq 1 l = 1, 

1 -

n 
... ,nand u 

1 
= q. 

n+ 

Proof: Define yo - 0. 'l'hen 

yl yl+y2 
k+l . n+J k+l { I U, I .. "' , 

1\ {ui}l - min A I u., l 
k+l l 

i=y +1 R i=l 
n+1 1 

k+l y + ... +y. 
+ 1 Ak+l{u.} l 1 

f. .l y + ... +y. l+ l i=l 0 ]_-

n+l 
l 

I u.} 
. l 
l=yl+ ... +yk+1 
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for n ::: o mod k 1 where the minimum is taken over the region 

k+l 
R~=-~ ==t (y

1
, ... 1yk ): }. y; ""n+l and y, :01 mod k, i=l, .•. ,k+l}. 

. .+1 j.col l l 

Now Lemma 4.5.1 implief> that 

k 1 
y] + .•. +y. y + ... +y. ] y. + -- . l· 0 l·- - l 

A {u.} · =q (1-q ) 
ly+ .. ;+y .. 1+1 

. 0 .. 1.- . 

y + ... +y. y. k 1 
o 1( 1 l) A+ (y.) q -q l for i = 1 1 ••• ,k+l. 

k 

If we let y = I y i , 
i=-~1 

k+l 
we obtain from the definition of F (n) that 

mi_n{ I k R i=l y 

k+] - y 1 + ... +y. } k 
A {u.} l = (1-·qy) F (n) 

l y + ... +y. 1+1 
0 l-

where the minimun h; taken over the region 

k 
R ~ = { ( y 

1 
, ... , y k ) : . I y i = y and y. = 1 mod k , i = l , ... 1 k } . 

l=l l 

Also, from Lemma 4.5.1, we know that 

k+1{ }n+l 
A u. l l y1 + ... +yk +. 

'rherefore, 

y k+l{ }n-y+1 
q A ui 1 

(4.6.3) 

which is of exactly the same form as K(n). This proves the theorem. 

Remark 4.6.1 Theorem 4.6.1 agrees with Lemma 4.2.1 which asserts 

that the cost of the k·-smnple testing procedure f U is equal to the cost 

of the corresponding (k+l)-ary tree representing it. 

The exact value of K(n) can be found by using the recursive 

expression ( 4. 6. 2) 1 provided that the values F ( 9,) , £ = l, ... , n are known. 
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However, Theorem 4.5.2 and Theorem 4.5.3 Only give the values of F(Z) for 

0 < Q, ::_ 2x+k-1, where xis defined by the inequalities (4.5.4). There-

foro, in order to compute K(n), it is essential for us to find a:n upper 

bound, say h, of the value y in the expression (4.6.2) such that 

h < 2x + k- 1. The following lemma is established for this purpose. 

Lemma 4.6.1 Let q be a real number such that 0 < q < l. If x is 

a positive integer satisfying the inequality 

x x+k-1 x+k 
1 > g + •.. + q + q 

then we have 

Proof: The lemma can be proved by two independent approaches, 

namely, the combinatorial approach and the analytical approach. The 

former is rather lengthy but straightforward. However, the later one 

requires the knowledge of defining a monotone decreasing function, 

namely ¢(q), whose lower bound is of our interest. 

(l) The combinatorial approach: for any integer r, we have 

(l- qr) 
2 

;:: 0 which implies that 

1 + q2r > 2gr . 

The expression 

x x+l x+k--1 x+k )2 
(q + q + ... + q + q 

can be written as a sum of the squares which equals 

where 

a .. 
l] 

k+l k+l 

I I 
i=l i==l 

q 
a .. ]_J 

(x+i-1)+(x+j-l)=-c2x-2+i+j, for i,j=l, ... ,k+l. 

(4.6.4) 

(4.6.5) 
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Let A ={a .. }be a matrix of size (k+l) x(k+l) with a .. defined by (4.6.5). 
1] 1] 

Table 4.6.1 illustrates how the entries of A can be obtained by first 

. . th 1 ( . 1) th .th d h .th 1 th b ass1gn1ng evaue x+1- at e1 rowan te1 coumn, eno-

. . . h . th d h . th 1 f talnlng a .. by add1ng the values at t e 1 row an t e J co umn, or 
1] 

i' j = 1' ... ' k+ 1. 

X 

x+l 

x+2 

x+k 

X 

2x 

2x+l 

2x+2 

2x+k 

x+l 

2x+l 

2x+2 

2x+3 

x+2 

2x+2 

2x+3 

2x+4 

2x+k+ 1 2x+k+2 

x+k-1 

2x+k-l 

2x+k 

2x+k+l 

x+k 

2x+k 

2x+k+l 

2x+k+2 

2x+2k-l 2x+k 

Table 4.6.1 The entries of the matrix A= {a .. } defined by (4.6.5). 
1] 

Note that a .. = r. +c., for i,j=l, ... , k+l. 
1] 1 J 

Observe from Table 4.6.1 that when i + j = k+2, we have 

a . = 2x + 2 + (k + 2) = 2:x: + k, for 1 < i < k+ 1 
i,k+2- 1 

On the other hand, inequality (4.6.4) implies that 

aij ak+2-j,k+2-i 2x-2+i+j( 2k+4-2i-2j 
q + q = q 1 - q 

for i = 1, ... ,k+2-j and j = 1', ... ,k+l. 

(4.6.6) 

(4.6.7) 

Since a .. and ak 
2 

. k 
2 

. are symmetric entries with respect to 
1] + -], + -1 

the diagonal which divides the matrix A into upper left and lower right 

triangles, that is, the diagonal with the number 2x+k in every entry. 

We thus obtain: 



l > 

k+l k+l 

I I 
i=l i=l 

a .. 
l] 

q 
k k+l-j 

I 1: 
j=l i=l. 

2 2x+k = (k+l) q 

k 

I 
j=l 

a 2 .. 
k+ -J,J q 
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as a result of (4.6.6) and (4.6. 7). This completes the proof by using the 

combinatorial approach. 

(2) The analytical approach: consider the function 

¢(q) = q -k/2 { l + q + q2 + ••. + qk ) , 0 :: q ::: 1 

It suffices to show that <jl(q) :: k+l for all q such that 0 :2 q ::: l. By 

tl . th . th ( 2 . ) th . f ga 1er1ng e 1 and the k + .-·l term together ln a common bracket, or 

i = l, 2, ... , we can write 

¢(q) 

where 

Taking 

¢, (q) 

-· £_ k 
2 2 

q - q + q 

- ~ + gj ~- t~J 
+(q +q )+R 

~ {:1/2 when k is even 
R 

when k is odd. 

k 
--1 
2 

tbc derlvutivc of (l!(q) with respect 

k k 

2 + 2) + q 
k -1 

(-+1) q (-q 
2 

to q, 

k --+1 
2 

+ q 

we find 

k 
--1 
2 

+q ) 

k 
--2 
2 

that 

) + .•. 

k -1 
+ ( -2+2) q ( q 

~+2 ~-2 k k -1 -~+l~J ~-t~ 1 
+ q ) + . . . + (-2+ bJ ) q ( q + q ~ + R I 

where R' {() 

1 -1/2 
-q 
2 

wlicll k is even 

when k is odd. 
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Therefore, ¢' (q) :;: 0 for any q in the closed interval [0, l]. Thus we 

conclude that ¢(q) is a decreasing function of q in [0, l] and ¢(q) :::<PCl) 

for any q such t:hat 0 < q < l. Since ¢ (l) = k + l 1 the result of the lemma 

follows. 

'rheorem 4.6.2 If x is the integer defined by the inequalities (4.5.4) 1 

then 

K(n) min { qy + qYK(n-y) + (1-qy)Fk (y) } (4.6.8) 
1 < y < min[2x~{-l,n} 

Proof: It suffices to prove for the case that n > 2x+k-l. 

Theorem 4.6.1 asserts that K(n) equals the cost of an optimal alphabetic 

(k+ l) -ary tree •r
0 

f oc tltc sequence of weights u
1

, ... , u 
1

, 
.. n+ 

i-1 
where u. = pq 

l . 

for i = 1, ... , n and u 
1 n+ 

n 
q • It follows from Theorem 3.4.3 that the tree 

TU is also an optimal tree for the sequence of weights u
1

, ... 1 un+l since 

it is a valley sequence of weights. 

Let v
1

1 ••• 1 vk+l be the left to right sequence of vertices of path 

length one on TU. Let w(v.) be the weight associated to the vertex v., for 
l l 

i = 1, ... , k+l. By definition, we have 

k+l 

L w(vi) 
i==l 

l . (4.6.9) 

From the proof of Theorem 4.6.1, we know that the number y in (4.6.8) 

represents the total number of end vertices at the k leftmost planted sub-

trees rooted at the root of the tree TU. Therefore, 

k y . l 
w(vk+l)=l-Lw(v.)=l- I pq

1
-

i=l l i=l 
(4.6.]0) 

Led: 9. be Llw total oumLc!r of (!n<.I vc•rt:Lcu:; of path length ono on T . Then 
{] 

0 < t < k+l since we assume that n > 2x+k-l Now we claim t11at the value 
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of t must be one of the following three values: 0, k, and k+l. 

When 0 < R < k+l, v
1

, ... ; v
1 

must be the end vertices of T
0 

since the weights u
1

, ... , u
1 

are monotone decreasing when 1 < k; on the 

other hand, vQ.+l' •.. , vk+l must be the. branch vertices. By Theorem 3.4.1, 

the optimality of T implies that each of the k+l vertices of path length 
u 

two joined to the vertices v. , i=£.+1, ... , k is of weight less that or equal 
l 

to w(v
1

) = p. Thus we have 

Now 

w(v.) < (k+l)p, 
-~ -

1 

I 
i=l 

w(v.) 
l 

1 

I 
i=l 

i-1. 
pq 

i 1+1, ... , k. (4.6.11) 

1 - qQ, (4.6.12) 

As a result of (4.6.9), (4.6.10), (4.6.11) and (4.6.12), we have 

1 - q Q. + (k - 1) (k + l) p + qy > l , 

or equivalently, 

y £ 1 
q :: q - (k - Q,) (k + 1) p .: q 

This is impossible unless £ = k since we know that y ;:: k. 

For the cases that £ k and £ = k+l, the theorem holds obviously 

and the proof is trivial. 

For the case that Q. == 0, then v
1

, ... , vk+l are all branch vertices. 

The optimality of T
0 

implies that 

i 1, ..• , k, (4.6.13) 

since each of the k+l vertices of path length two joined to v. is of weight 
1 

less that or equal to w(vk+l). Now (4.6.9), (4.6.10) and (4.6.13) imply 

that 

k (k+l) </ + q y > 1 , 



or equivalently, 

qy > -·----~---- > 
- k(k+l)+l 
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l 2x+k 
------ > q 
(k+l) 2 

where the last inequality is obtained from Lemma 4.6.1. Thus we conclude 

that y < 2x+k-l. 'l'hi!:; completes the proof. 

· From the proof of 'rheorem 4. 6. 2, we obtain 

Corollary 4.6.1 Let T be an optimal alphabetic (k+l)-ary tree for 
u 

i-1 
the sequence of weights u

1
, ... , un+ 

1
, where ui = pq for i = 1, ... , n and 

n 
un+l = q . Let y be the total number of end vertices at the k leftmost 

planted subtrees rooted at the root of T
0

. Then we have y < 2x+k-l. 

Remark 4.6.2 The above results can be found in the paper by 

Hwang (1976) for the case that k == 1. Since the value of Fk(y) is 

given by Theorem 4.5.2 when y < .x+k and given by Theorem 4.5.3 when 

x ,::: y ::: 2x+k-l, Theorem 4.6.2 enables us to compute K(n) recursively 

within 2x+k-l steps. 

* Let y be the value of y in the expression (4.6.8) such that 

* Then y denotes the total sum of units tested in the first k-sample test 

of the procedure f
0 

. The exact sizes of the first k samples tested can 

be found by considering the optimal alphabetic (k+l) -ary tree T
0 

which 

represents f - u . * 'I' his is because the leftmost y end vertices of the 

tree T are also the end vertices of the optimal alphabetic k-sum (k+l)u 

t f 1 f- · h i-l · 1 y*, w11+ch ary ree or t~ sequence o: we1g ts ui = pq , l. = · , ••. , ~ 

can always be constructed. 
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4. 7 A~;ymptotic Properties of the Cost Function 

Suppose I is a binomial population with infinitely many units, each 

with a probability p of being defective and a probability q 1 - p of 

being good. 'I'he problem of finding a single defective from I is similar 

to t:he case when I is a finite population discussed in Section 4.6. In 

·this case, we can even find a closed form solution for the cost E(f ) 
co 

of a k-sample optimal nested group testing procedure ·J: for solving the 

above stated problem. The procedure f is in fact an extension of the 
co 

procedure r when the given population is infinite in size. u 

0 
Let ,J 1 • • • I J~ ) be the first k-tuple of samples tested in 

the procedure f co 

0 
Let y i be the size of the sample J i , i = 1, ... , k, 

k 

I 
i=l 

y, 
l • 

'l'h.e probability that J~ is the least index de
l 

y + ... +y. 1 y. 
fective sample equals q 0 

.1,.- (1 - q l) and the minimal expected 

f f . d' . f . f 0 0 . cost o ln lng a slngle de·ectlve rom J. when J. lS 
l l 

defective sample equals Fk+l(y.), defined by (4.5.1), 
l 

the least index 

fori= 1, ... , k. 

The probability the all the k samples are good equals qy and the minimal 

expected cost of finding a single defective from the rest of the units 

in I when all these y units are good equals E(f ) again, since I contains 
co 

infinitely many units. Therefore, if we define the function 

where 

E 
y 

the 

k 
E 

y 

k y + ... +y. 1 y, 
min{ 1 + I q 0 l- (l - q l) F ( y.) '). + J 

Rk i=l 
"l 

y 

minimum is taken over ther region 

k 

{ ( y l, ... 'yk) : 1: y i 
i=l . 

y and y = 1 mod k, i 

qyE 
y 

1, ... 'k} 

(4.7.1) 

(4.7.2) 



then we have 

E(f,) = min 
y=l,2, .•• 

E 
y 

In terms of the function Fk(y) defined by (4.5.2), we write, 

qY 
E = ---=:.-

y 

and 
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(4.7.3) 

(4.7.4) 

The following theorems are identical to those obtained by Hwang (1974) 

for the case that k = 1. 

Theorem 4.7.1 E(/00) equals to the cost of an optimal alphabetic 

i-1 
(k+l)-ary tree for the sequence of weights u. = pq , i = 1,2, •.. 

~ 

Proof: Let T
00 

be an optimal alphabetic (k+l)-ary tree for the infinte 

sequence of weights u., i = 1,2, .... Then there are k+l planted (k+l)-ary 
~ 

subtrees rooted at the root of T , namely, T1 , T
2

, ... , Tk+l from the right 
k 

to the left. Let there bey. end vertices at T., i=l, ••. ,k and 
1 1 y = I Y. 

i=l l. • 

Lemma 3. 4. 2 implies that these k subtrees Tl I ••• I Tk form an optimal 

. i-1 we1.ghts u.=pq , for 
l 

alphabetic k-sum (k+l)-ary tree for the sequence of 

i = 1, ... , y. On the other hand, the tree Tk+l is an optimal alphabetic 

(k+l)-ary tree for the infinite sequence of weights u. = pqi-l, i=y+l,y+2, .... 
l. 

Now, if we define the function 

A = 
y 

k y + ... +y. 1 y 
min { 1 + I 0 ~- (1 - q i) Ak+l (y.)} + qy A 
. k i=l q . 1 y 
R 

y 
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where the minimum is taken over the region Rk defined by (4.7.2) and the 
y 

the function Ak+l(y.) is defined by (4.5.2), then by a similar argument 
1 

as ·the one used in the proof of Theorem 4.6.1, we are able to conclude 

that the cost of the tree T equals 
00. 

= min 
y=1, 2, ... 

{ A } 
y • 

But the expression for A can be simplified by means of the relation {4.5.3), 
y 

so that 

which is of the same form as the function E ( f ) , since Theorem 4. 5.1: . 
00 

implies that k k 
A (y) = F (y). 

Theorem 4.7.2 

This completes the proof. 

min 
1 < y < 2x+k-l 

{ E } 
y 

, where the function 

E is defined by (4.7.1) and xis the integer defined by (4.5.4). 
y 

Proof: This is a result of Theorem 4.7.1 and Theorem 4.6.2, since 

the upper bound of y in expression (4.6.8) is independent of n when n 

approaches infinity. 

Remark 4.7.1 Theorem 4.7.2 enables us to find the exact value of 

E ( f ) , since the values of E , for o <_ y < 2x+k-l, can be computed by 
00 y 

using Theorem 4. 5. 2 and 'I'heorem 4. 5. 3. Here we give the closed form 

solutions for E when 0 ~ y ~ x+k or x < y ~ 2x+k-l. They will be 
y 

frequently u~;ed in the proofs of our main results. 



( i) When y < x + k and y = 0 mod k, we have 

E 
y 

1 +a + 

y- ~ (k+l) 
k y 

q - q 

Y- ~ (k+l) 
k q . 

1 
y. 

- q 

1 
. y 

- q 
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(4.7.5) 

where (a, (3) is a pair of non-negative integers satisfying the equation 

a 
y == k(k+l) + (3 (4.7.6) 

(ii) When x < y < 2x+k-l and y = 0 mod k, we have 

qy 1 { m- ~ (k+l) -r m-l_E__J + (k+l) r - 2qy} + 1 +a+ 
k k+l 

E q + q 
y 1-qy y 

1-q 

1 + a + 1 
(4.7.7) 

where h = y - x, m = x + h - l_E_Jk k+l 
(a, (3) is a pair Of non-negative 

integers satisfying the equation 

m == k(k+l)a + (3 (4.7.8) 

and 

t 
(3 

+k -a IJ 
min {l ~+d' - - (k+l) 

h =a mod (k+l) and a < k __J , where k. 
r = -

k+2 
(4 '7. 9) 

It is easy to verify that the expression (4.7.7) can be reduced to 

the expression (4.7.5) when x: y: x+k. 

Now we can prove the following two lemmas which lead to the main 

result. The proof of the second one seem to be more complicated than the 

proof when k o-= l, gi VL;n by Hwang ( 1974) . 
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Lenuna 4.7.1 Hin E = E 
1 y ~ x+k-1 

y X 
< 0 

(4.7.10) 

y=::o mod k 

where x
0 

==f+~-ljk and x is the integer defined by the inequalities (4.5.4). 

Proof: It suffices to show that E is a monotone decreasing function 
y 

of y for 1 < y ~ x+k.;...l. Let y I = y + k for ahy integer y such that 

1 ::· y < X - 1 and y =:: 0 mod k. There always exist pairs of non-negative -

integers (a, (3) and (a', 0') satisfying 

y k(k+l)a + s 0 < s < k 2 (k+l)a -
,_ 

k 2 (k+l)a' (4.7.11) 
y = k (k+l)a + S' 0 < (3' < 

a' =a S' = (3 + k. 

Writing E and E, in the form given by (4.7.5) of Remark 4.7.1, we find 
y y 

that 

y~~~.(k+l)} { . . q Y-~(k+l) } 
q , · - 1 + a + 

1 - qy 1 - qy 

y-l?(k+l)-1 
k y k 

q (1 - q) [ 1- q (1 + q + •.. + q ) ] 

( 1 - qy+k) ( 1 - qy) 

< 0 

since qy(l + q + ... + qk) : 1 when y ~ x- 1. (Cf. inequalities (4.5.4)). 

Hence Ey is a monotone decreasing function of y for 1 ~ y ~ x+k-1. However, 

because of the restriction that y =: 0 mod k, x is the smallest value of y 
0 

such that (4.7.10)is satisfied. This completes the proof. 



138 

Lenuna 4 . 7 • 2 Min E = E 
< < 2x+k-l 

y X 
X y 0 

(4.7.12) 

- -
y = 0 mod k 

where x and x are the same as those of Lemma 4.7.1. 
0 

Proof: It suffices to show that E is a monotone increasing function 
y 

of y for X < y ~ 2x+k-l. Let y' = y + k. We are required to show that 

E - E > 0 for any integer y such that X < y < 2x - 1. In order to ex-y' y -

press E 
Y' 

and E in the form of (4.7.7), we define, for a given y. the 
y 

parameters h, m, (a, S), rand a according to the equations (4.7.8) and 
-

(4.7.9) of Remark 4.7.1. Similarly, we define, for a given y', the para-

meters h' , m' , (a' , S' ) , r' and a' • 

Since h :: a mod (k+ 1) and 0 < a < k, consider the two possible cases: 

(i) a = 0, or (ii) 0 < a < k. We claim that the quantity 

, 
d = ( 1 - qy) ( 1 - qy ) ( E - E ) • 

k Y' Y 

is always non-negative in each of the above'two cases. 

Case (i) When a o, then a' = k. We have 

h 1 = y 1 
- X = y + k - X = (X + h) + k - X = h + k and 

h 
k+l . Hence 

(4.7.13) 

m' x + h' -lk~~Jk ~ x + (h+k) -~~Jk =t + h -(k~i)0+ k = m + k. 

We cari t:h6ose (a', S') satisfying ~'=k(k+l)a' + S', 0 < s' < k2 (k+l)a' and 

and also a ' = a ' and S ' = S + k . Now 

= r or r - 1. 

+ ~ (k+l) 

k + 2 

(4.7.14) 
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(a) If r' r, (4.7.13) and (4.7.7) imply that, for 0 < y < 2x-l, 

we have 

so 

S+k 
m+k--(k+1} -r 

(1 - qy} ( q K 

m- B(k+l) -r 
- (1 - qy+k} ( q k 

h 
m+k- ill + (k+ 1} r y+k 

- q - q 

h 
m- k+l + (k+1) r 

- q - qy} 

§(k+l}-r-1 y+m- B(k+1)-r-1 
k k k+1) (1 - q} - q (1 - q 

h 
m- k+ 1 + (k+ 1) r k 

- q (1- q ). 

x+h k h 
q (1- q} (1+q+ •.• +q) < q (1- q), 

m- ~ (k+1) -r-1 h+m- ~ (k+1) -r-1 
x+h k k k 

dk > q (1 - q ) + q (1 - q) - q (1 - q) 

h 
m- k+ 1 + (k+ 1) r k 

-q (1-q). ( 4. 7 .15') 

First suppose r -l__E_I = __E_ , then (k+ 1) r h imp1 ie s that 
- k+lJ k+l 

Hence 

h m- -- + (k+l) r 
k+1 

q 
x+h-G~)k- ___E._ +h 

k+l k+1 x+h 
q = q • 

m- ~ (k+1} -r-1 h 
dk ~ q (1 - q} (1 - q } ~ o. 

1m-~ (k+l) +kj 
Next suppose r =t k+

2 
. From (4.7.14), we know that 

(3 
_1 m-k (k+1) -1 J 

r' -r-~2-----· . Then r' 

true. 

r implies that (k+2)r = m- ~(k+1)-1 must be 
k 



Besides, 

implies that 

m -
h 

k+1 
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-(___Q_'= X k+l} . Hence (4.7.15) 

x+h k (k+1)r _ qh+(k+1)r(l _ q) _ qx+(k+1)r(1 _ qk) 
dk > q (l - q ) + q (1 - q) 

> q
(k+l)r(

1 
h x 

- q) ( 1 - q ) { -q ( 1 + q + k x+k 
+q)+q +1} 

> q (k+1)r(
1 

h x+k 
- q) (1 - q ) { -1 + q + 1 } 

> 0 

(b) If r' = r- 1, (4.7.13) and (4.7.7) imply that, for 

0 < y < 2x-1, we have 

m+k-~ (k+l)- (r-1) 
(1 - qy) ( q k 

h m+k- -
1 

+(k+1) (r-1) 
k+ 

+ q 

h 
m-k(k+1)-r m-k+

1 
+(k+1)r 

- (1 - qy+k) ( q + q - qy ) 

y+k 
q 

m- ~ (k+l) -r m- ___Q_+ (k+1) r-1 
qy (1 - qk) (1 - q k ) + q k+l . ( 1- q) {l -qy (l+q+ ••• +qk) }. 

y k x+h k h 
But q ( 1 + q + ... + q ) = q ( 1 + q + ... +q ) .:5 q . Hence 

m- @_ (k+l) -r m- ___Q_ +(k+l) r-1 
dk ? qy (l - qk) (l - q k ) + q k+l (1 - q) (1 - qh) 

> o, 

since m - ~ (k+ l) - r > 0 for it is the number of end vertices with path 

length a.+ l on the k-sum (k+l) -ary tree constructed in the proof of 

Theorem 4.5.3. 
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Case (ii) When 0 < a < k, then a' = a - 1. We have 

h' = y' - X = y + k - X (x +h) + k - x h + k and 

L 11, j lh+kj l h j 
Lk+l == lc+1- = 1 + k+l Hence 

m' = x + h' -l~Jk == k+l 
X + 

Now we can choose (a', S') satisfying m' = k(k+1)a'+ s' , 0 < s': k
2

(k+lf' 

and also a' = a and B' ~ s. Now 

, 

r' ~ min [l,~ ~ J .l-' --~-~:-: 1

-' +_k_-_. ~} ~ min { 1+ [,~ d r - ~ (k+l) + k -a+lj} 

k+2 

r or r + 1. 

(a) If r' = r + l, (4.7.13) and (4.7.7) imply that, for 

0 < y < 2x-l, we have 

m- k§ (k+l) -r m- L ~1.1 + (k+l) r 
- (l - qy+k) ( q + q tic J - qy) 

y+k 
q 

(4.7.16) 

m- .§(k+l)-r-1 y+m- §(k+1)-r-1 
qy (l - qk) + q k (1 - q) - q k (l - qk+1) 

h 
m- k+l + (k+l) r k 

- q (l - q ) 

m-~(k+l)-r-1 h+m-§(k+l)-r-1 
y k k k 

~ q (1 - q ) + q (l - q) - q (1 - q) 

m-I___!:_J + (k+l) r 
Lk+1 k 

- q (l - q ) , (4.7.17) 

. y k+1 y-x x k 
s1nce q (l- q ) = q (l- q)q (1+q+ .•• +q) < 

h 
= q (1- q). 
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First suppose r =lk:lJ then (k+l) r = (k+l) lk~ d . Hence 

-lk:lJ + (k+l)lk~lj m- ~(k+l)-r-1 h 
) + q (1 - q ) (1 - q) 

> 0 

since m -lk~d+ (k+l) lk~lJ = x + h -lk~d k -lk~1 I + (k+l) lk~d = x+h .= y ~ 0. 

lm -
Next suppose r = L 

f (k-H) +k-a 
k . 

k+2 
From (4.7.16), we know that 

=lm ~ J r' 
- k (k+l) + k -a + ~-

Then r' = r + 1 implies 
k+2 

(k+2)r rn - ~ (k+l) k - a - (k-1) = m - fi(k+l) 
k 

- a -

rn - §(k+l) - r - 1 
k 

(k+l)r + a. Besides, 

that 

1, or 

rn -lk:l1+(k+l)r = x+h -lk~ljk -lk~d+(k+l)r Y- (k+l)lk~lj +(k+l)r. 

Hence, (4.7.16) implies that 

dk ~ qy(l _ qk) + q(k+l)r+a(l _ q) _ qh+(k+l)r+a 

y- (k+l) l_b_J + (k+l) r 
k+l k 

- q (1 - q ) 

y-(k+l) lk:lJ + (k+l)r k (k+l) lk~d- (k+l)r 
- q . ( 1 - q ) (1 - q ) 

/ -

since 

y-(k+l) L_E_j+(k+l)r 
~+1 k h (k+l)r+a h 

q (1 - q ) (1 - q ) + q (1 - q ) (1 - q) 

(k+l) lk~ll- (k+l)r 
q J > h-(k+l)r 

q > 
h 

q 
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Now we have 

h (k+1) r a y- (k+1) rtk~lj k y- (k+1)k~d+k 
d > ( 1 - q) ( 1 - q ) q { q - q ( 1 +q+ ••. +q ) + q } 

k 

> h (k+l)r a h-(k+1)b~~J y-(k+l)b~~1J +k 
(1 -q) (1 - q ) q { q - q + q } 

> (1-q) (1-qh) q(k+l)r { qy- (k+l)r lk~d+k} 
> 0 , 

since by definition, h - (k+1) lk~d= h - (k+1)(~:~) = a. 

(b) If r' = r, (4.7.13) and (4.7.7) imply that, for 

0 < y < 2x - 1, we have 

m- ~ (k+1) -r 
dk = (1- qy) ( q k 

m- L h -'-l+(k+l)r 
~+lj y+k 

+ q - q 

m-§(k+1)-r m-lk~1-'+(k+1)r - (1- qy+k) ( q k + q J - qy 

8 1 h j m- -(k+l)-r m----1+(k+1)r 
k k k+1 k qy (1- q ) (1- q ) + q (1-q) {1- (H·q+ ... +q )qy} 

m- ~ (k+l) -r m _1-....!:!_J - 1 + (k+1) r 
> qy (1 _ qk) (1 _ q k ) + q Lk+1 (1 _ q) (l _ qh-x) 

> 0 , 

since y - x = h > 0 and m - §(k+l) - r > 0 
k -

for it is the number of end 

vertices with path 1enth a+1 on the k-sum (k+1)-ary tree constructed in 

the proof of Theorem 4.5.3. 

Therefore, we can conclude that E is a monotone increasing 
y 

function of y for x ~ y < 2x+k-l. However, because of the restriction 
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< 2x+k-l, x is the smallest value of y such that (4.7.12) is that x ~ y _ 
0 

satisfied. This completes the proof. 

The following theorem generalizes the result of Hwang's (1974). 

X - §(k+l) 
0 k 

q 
Theorem 4.7.3 E( "',) = E = 1 + a + ~~---------Xo 

xo 1 - q 

\'There x 
0 

x + k - 1 k, x is the non-negative integer defined by the 
k 

(4.5.4) and (a, D) is a pair of non-negative integers inequalities J.J 

satisfying 

= k(k+l)a + S, (4. 7 .lBJ 

Proof: This is a result of Theorem 4.7.2, Lemma 4.7.1 and 

Lemma 4.7.2. we note that the existence of (a, S) has been discussed 

in Remark 4. 5.1. 

Now we reach a conclusio~ that if we are given an infinite population 

with units from a binomial distribution such that each unit has the same 
I 

probability p of being defective and the probability q = 1 - p of being 

good, then the optimal nested k-sample group testing procedure for find-

ing a single defective can be represented by an optimal alphabetic (k+l)

ary tree T
00 

for the infinite sequence of weights ui = pqi-l, i = 1, 2, ...• 

The total number of end vertices at the k leftmost planted subtreesrooted at 

the root of T 
00 

• l X+ k -lj k h • h • • .1.s x
0 

= k , w ere x J.S t e non-negatJ.ve J.nteger 

defined by the inequalities (4.5.4). Furthermore, these k subtrees form 

an optimal alphabetic k-sum (k+l)-ary tree T for the sequence of weights 
X 

0 
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i-1 u. = pq , i = 1, .•. , x. Since x < x + k- 1, from the proof of 
1 0 0 -

Theorem 4.5.2, we see that the tree T is also a perfect k-sum 
X 

0 

(k+l)-ary tree. Suppose (a, S) is defined by (4.7.18). Then the first 

x - § (k+l) end vertices of the tree T is of path length a+ 1 and the 
0 k X 

0 

last ~(k+l) end vertices of Tx is of path length a+2. 
0 

Practically, the above statement means that the total number of 

units tested in the first k-sample group test is x . More precisely, 
0 

let n. be the total number of units tested in the ith sample among the 
1 

first k samples tested, i = 1, ..• , k, then 

k 

I 
i=l 

and 

n. = 
1 

n. = x 
1 0 

(k+l)a fori= 1, .•• , 
xo -~(k+l) 

(k+l) a 
if 

xo- ~ (k+l) 

(k+l)a 
> 1, 

I (3 

X -
0 

X - ~ (k+l) 
o k (k+1 )a _ 

a xo -k(k+l) +1 
(k+l) for i = ----------

k(k+1)a (k+1)a (k+1) a 

if 

(k+l) a+l for i 

xo -~(k+l) 
(k+l) a 

< k - _.....;8,___ 
k(k+l)a 

k - . _ _,B:....__ +1, .•. , k 
k(k+1)a 

, 

if s > k(k+l)(l. 



CHAPTER V 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY 

5.1 Contributions of the Thesis 

In this thesis an attempt has been made to study two types of 

k-sample testing problems, namely, the testing of goodness-of-fit 

or homogeneity between k populations by using k-sample analogues of 

Kolmogorov-Smirnov statistics; and the binomial group testing for 

eliminating defectives by using an optimal nested k-sample group 

testing procedure. Several enumeration methods and results about 

the tree structures are included as a foundation of the study. The 

major contributions of the the thesis may be summarized as follows: 

(1) A method of enumeration is used so that simple expressions 

can be obtained in the following two cases: 

(a) a certain kxm fold summation of the number 1 is 

expressed as a determinant of size (m+k)x(m+k). 

(b) a certain kxm fold definite integral of the number 1 

is expressed as a determinant of size (m+k)x(m+k). 

(2) Based on the formulae of (1), the null distributions and 

the conditional null distributions of the following statistics have 

been found: 

(a) a k-sample analogue of the two-sample Kolmogorov-Smirnov 

statistics for testing the homogeneity hypothesis. 

(b) a k-sample analogue of the one-sample Kolmogorov-Smirnov 

statistics for testing the goodness-of-fit hypothesis. 
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The testing procedure of using the above statistics has been proposed 

and the consistency property of the tests has also been mentioned. 

(3) Rooted plane trees have been identified as matrices or 

pseudo-search codes. Using generating functions or matrix enumeration 

methods, t.he total number of dist.inct planted plane trees has been 

enumerated for each of the following cases: 

(a) given n end vertices 

(b) given height h and n end vertices 

(c) given all branch vertices of degree q+l, height h and 

n end vertices. 

(d) given all branches of degrees either 3 or 4, and n 

end vertices. 

(e) with cert.ain restrictions on the end vertex sequences 

and degree sequences. 

(4) Further exploratory results have also been obtained for the 

case of q-ary rooted plane trees. For example, we have 

(a) proposed a pseudo-search code construction algorithm 

for constructing an optimal alphabetic q-ary tree for a valley sequence 

of weights. 

(b) determined in terms of entropy, the lower and upper 

bounds of the cost of an optimal q-ary tree. 

(5) As an application of (3) and (4), a k-sample group testing 

procedure has been defined and the following problems have been solved: 

(a) eliminating a single defective from a binomial population 

P by using an optimal nested k~sample group testing procedure. 

(b) finding all the defectives from the population P. 
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5.2 Suggestions for Future Study 

There are numerous directions in which the present study can be 

extended. A few of them are listed below: 

(1) The enumeration methods used in Chapter I should be improved 

so that more specified classes of matrices satisfying the conditions 

given by Remark 1.2.1 or Remark 1.3.1 can be enumerated without using 

iteration methods. Such a problem is of importance because its solution 

will enable us to improve the conditional null distributions obtained in 

Chapter II. (cf. Remark 2.2.3 and Remark 2.3.1) 

(2) The k-sample nested group testng procedure proposed in 

Chapter IV has been shown to be optimal for finding a single defective 

from a given binomial population P. However, this procedure is not 

optimal for classifying a~l the defectives from P. (See Section 4.1 

for the case k = 1 ) It does not seem easy to find such an optimal 

procedure because it does not have a tree representation even when 

k = 1. However, one can consider k-sample group testing on a 

hypergeometric population, that is, a binomial population wit4 a known 

number of defectives. Also, it is interesting to enumerate a class 

of nested k-sample group testing procedures for classifying all the 

defectives from a given population. 
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