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ABSTRACT

The Kolmogorov-Smirnov tests of homogeneity or goodness~of-fit
and the binomial group tests for eliminating defectives are of different
nature. But they are both popular in applications. The former are
widely used in nonparametric comparison, while the later are usually
adopted in the group screening problems. When the experimenter has
k populations, k-sample statistics should be considered for the testing
of homogeneity or goodness-of-fit. On the other hand, when there are
k experimenters available for performing group testing on a given popula-
tion, a k-sample group testing précedure should be used.

In this thesis, the distribution functions of k-sample analogues
of the Kolmogorov-Smifnov statistics have been found under certain condi-
tions and a k-sample group testing procedure has been defined; This
procedure has also been shown to be optimal in the sense that it requires
a minimum expected number of k-sample group tests for finding a single de-
fective from a binomial population.

Our methods are mainly combinatorial: matrix enumeration, tree
counting and construction algorithms are explored as a foundation of

our study.
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CHAPTER I

ON THE ENUMERATION OF MATRICES UNDER RESTRICTIONS AND SOME VARIATIONS

1.1 Introduction
In this chapter we shall use a method initiated by Narayana (1955) to
enumerate matrices whose rows satisfy certain boundary conditions. A simple
example of such a problem is to enumerate the number of vectors (Xl’x2"'°'xm)
that satisfy the conditions 0 < x

< X, < 200 < X and a, < X, < b, for
- m i - 1 - 1

1 2 - -

i=1,2, ..., m where x's, a’'s and b's are non-negative integers such that

0 <a, <a
- l..

<

... <a, 0x<b

< b, < ... ¢«b and a, < b,, i=1,..., m.
- m - - "m i i

2 1 2 - -

Among others who have solved these types of problems are Kreweras (1965),
Steck (1969), and Mohanty (1971,1973).

Here we first generalize the results to enumerate distinct kxm matrices
whose rows are vectors of non-negative integers satisfying certain more
general boundary conditions than those stated above. Enumeration of these
matrices involves the simplification of a k-mfold summation of the number 1
to a determinant of size (m+k)x(mt+k). This enables us to determine the null
distribution functions of a k-sample analogue of the two-sample Kolmogorov-
Smirnov statistics under certain conditions in Chapter II and also enables us
to enumerate certain classes of trees in/Chapter IIT.

Secondly, following the suggestion of Mohanty (1971), we employ a
similar method to evaluate multiple integrals of k'm continuous variables
in the form of a kxm matrix with row vectors satisfving the same boundary
conditions as mentioned in the discrete case, This enables us to find a
(k+m) x (k+m) determinant as an expression of the joint distribution function

of a k~sample analogue of the one-sample Kolmogorov-Smirnov statistics.



1.2 Enumeration of the Matrices

Let
T x ble h
11 777" 713 777 Tim
X = K, eeee X, ., aev. X, (1.2.1)
il i) im :
1 007 kg 7 Yk
~ -

be a kxm matrix whose entries are non-negative integers. Let

A= (al, a2, . am), B = (bl' b2, e bm), C = (cl, c2, e ck),
H = (hl' hz, e hk) and D = (dl' ee g dk—l) be vectors of non-nega-
tive integers such tﬁat 0 < a; fa, < .. 8 a s 0 < bl < b2 < L. < bm,
0 < cl < c2 <.l < ck, 0 < hl < h2 < .. < hk and bj < aj for

Let N(k, m, A, B, C, D) be the total number of distinct matrices

of the form X satisfying the conditions:

’
< < 1 = .. .
(a) ci < xil < xi2 <. .0 8 xim' i 1, 2, . , k
*(b < X, o+ 4., =1, ... ,k=-1 daid=12, ...
B %y 2 e, e ’ Y ’ ” »(1 2.2)
< =1, ...
(c) bj < le j ' PR
(d) x . < a, =1, «e. , W
kj - ] J
k-1
Similarly, for bl < 2 dt' we let NB(k, m, A, B, H, D) be the
t=1
total number of distinct wmatrices of the form X satisfying
the conditionz (b), (¢), and (d) of (1.2.2) and
(1.2.3)
(a') 0<x,, <x,.< ... <x%x, <h,,i=1, ... , k
-1l - Ti2 - - im - i

For the vectors A, B, C, H, and D considered here, we employ the
convention that whenever all the components of the vectors are equal to

a certain constant, we denote them by that constant. For example, if



al = a2 = .,. = am = a then we say that A = a. Also we use the conven-
n
tions that do = dk = 0 and _X X, = 0 whenever m > n for any X .
i=m
k~-i
Note that when C = D = 0 and h, > a + y d, i=1, . , k,
i - m t;1 t

we have N(k, m, A, B, 0, 0) = NB(k, m, A, B, H, 05. The number

N(k, m, A, B, 0, 0) was originaily found by Kreweras (1965). In particu-
lar, when k = 1, this is reduced to the problem stated in the introduction
which was solved independently by Steck (1969) for finding the two—sémple

Kolmogorov-Smirnov statistics. Later, Mohanty (1971) provided a short
k~1

proof for Steck's result. When C = 0 and b > Z di,'the number
t=1

N{(k, m, A, B, d, 0) was found by Mohanty (1973). Unfortunately, ‘the
conditions were wrongly stated in his original péper (see Mohanty f1977)).
Now the ﬁumber N(k, m, A, B, C, D) represents ihe class of k x'm
matrices X of non-negative integers, whose rows are bounded in the fashion

. th . . . oy . ’
of * and the lt row is distributed within the region bounded above by

the vector (ai ) eee & a§ . a;) and bounded below by the vector
i i i i kot i il

(0., «o. , U,y +-o. , U), where a~ = a. + Z d , v, = max {b.- Z a4, c.}
1 3 m 3 =1 t 3 =1 t i

fér =1, ... ,mand i =1, ..., k.

‘On the other hand, the number Né(k, m, A, B, H, 0) represents
matrices X of non-negative integers whose rows are bounded in the fashion
of * and the ith row is distributed within the region bounded above by

the vector (vi, cee 4 v;, e g V;) and bounded below by the vector

R . . R ) k
i i i i . X :
(bl, cee bj' e bm), where Vj = min {aj + tz] dt' hi},
5 i-1
bj = bj - 2 dt for 3 =1, ... , mand i = 1, ... , k. Notice that

t=1



the extra condition b,

NB(k, m, A,
every entry

Now we
the numbers

summations.

Hence,

N(k, m, A, B, C, D)

where aij = Xi+1,j
ljl

u,, = max {b, - )
H J =1

and u, = max {b

NB(k/ m, A, B, H,

1

2T

t=1

of X is non-negative.

we have

= ]

X, ,70,
1

+ d, for i
i
dt' Xi,j—l
i-1

- 2 d, c, 1 for i
t 1

=1

D)= )

is necessary for the number

} for i =1,

B, H, D) to be well defined because this guarantees that

N(k, m, A, B, C, D) and NB(k, m, A, B, H, D) as km fold

=2, ..

Similarly,

i1 7il

1

X1 Pk1

employ the technique presented by Narayana (1955) to express

, M

(1.2.5)



where bij = xi—l,j - di for i =2, ... , k and j =1, ... , m;
k-1
Vi = min {a, + 2. d, . xi,j+l} fori=1, ... ,kand §=1, ... , m1;
t=1
k-1 .
v, = min {am + tzi dt, hi} fori=1, ..., k.

Our method of simplification is to replace the number 1 by a deter-
minant of size (m+k)x(m+k) instead of a determinant of size m x m used by
Kreweras (1965) and Mohanty (1973). By doing so, more generalized results
are obtained in the two theorems of this chapter.

The following basic definitions and equalities will be used in the
proofs of ‘the theorems and are listed here for convenience.

For any two integers a and b, we write

[ 4 (a} ifa>b>0
IHEERAE '

0 otherwise

where [ ; } is a binomial coefficient. We call [ ]+ a positive binomial

a
b
coefficient. The identity

. A
a - a+ 1 _ a
[b]+'[b+1]+ [b+l)+ (1.2.6)

is well known for binomial coefficients. It is simple to check that it
holds for positive binomial coefficients as well. Using (1.2.6), it is

straightforward to verify that the formulation

% [x—b+t] ={fa-b+t+1} [bz—b+t]
x= max{bl,bz} r + t |+ r+t+ 1+ r+t+1 |+
(1.2.7)

holds for any non-negative integers a, b, bl’ b t and r with the con-

2’

dition that bl < b.



Lemma 1.2.1 Let X be a matrix of size m x m, partitioned into the

B

form X = A ..}, where B is a matrix of size r X s such that

C

PRI I Y

r+s=m+1]1and 1 <r, s <m. Suppose every entry of the matrix B is
zero, then det{X} equals to zero.

Proof: This can be proved by induction on the row number r of the
matrix B, It is obviously true when r = 1 in which case we have s = m
and the fact that all the entries in the first row of X are zeros implies
that det{X} = 0. Suppose it‘is true for all r < r_, where 1 < r_<m.

We need to‘show that the Lemma is also true for r = r, + 1. By expand-
ing detfx}g;ﬁuits first row, 4wevcan obtain a - sum of m determinants all

of whiéh éqﬁal to zero since the induction hypothesis is true when r = r,-
Therefore the lemma is also true for r = r, + 1 and the proof is completed

by induction.

Theorem 1.2.1 N(k, m, A, B, C, D) = det{EiF}, the determinant of an

augmented matrix of an (m + k) X m matrix E = {eij} and an (m + k) x k

matrix F = {fij} such that '

k-1
- 1 = e e e -+ d
am—j+l bm_i+l + dt + k i 1, , mtk an
t=1 .
e, = i=1, ... , m
J j-i+k +
\
and
4 j-l
u; = byt t=21 d_ +3 -1 i=1, ..., mtk and
£ .= =1, .. , k
1) . . ’
m+ 3j-i +




where we set b, =b._ for i < 0 and u, = max{b, -~ ) d_, c,} for
i 1 - i 1 i

Proof: Let AT = det{EtSF} be the determinant of an augmented

. . t .
matrix of an (m+k) X m matrix E = {etij} and an (m+k) x k matrix

¥ = {f, .} such that
1]

t-1
t - + i=1, ..., mk, =1, ...,m
ef, = [Fe,moqer T Pmeien T L4 e ' ' T
17 =0
and t = 0, 1, r k-1,
| j- i+t +
%
where dozo, Z dQ =0; and F is given in the statement of the theorem. Let
2=0 "
( =
%1 #i2 i %im
y ) Y N for i = 1, ..., k-1
. ¥317Y i27%2 xijzui *im Yim
1=
. a.
al a2 : hi ém
) ... Y. ) for i = k
1T k22 SHES *kn m
be used to simplify the expression (1.2.4). Furthermore, since
2° =1,

we can replace the number 1 of expression (1.2.4) by the determinant AO,
so that
- : 1
Nk, m, A, B, ¢, D) = )¢ VK7L O TE 0 yha©
We claim that
;1 A1~l - )’ Al i

{ det {EiF} i

]
H
~
d
f

(1.2.8)

]
~

Hence, the result of the theorem follows.



8
We illustrate the proof for the special case k = 3 and m' = 3. The
proof in general is similar but much more tedious to write. Now (1.2.4)
becomes a a a
ay 2 23 an 22 23
N(k,m,A,B,C,D) = ) ¥ ) Y ) )
X3)TU3 X3oTUzy XygTUgg X51TUp1 ¥22™VWa Xa3TV23
a1 %12 213
) X I o1
*11™% %2712 %1313
- 23 22 Xl A0
In this case, we have
4 r r 3
X137 %173 (*p17Ps| |UtPa|  [upRatd | [ugtbytd tdyt2
0 + 1 + 2 + | 3 + 4 + 5 J+
- (w.-b ) fu - (g - )
0 x12 b2 x11 b2 u1 b2 u2 b2+d1+l u3 b2+dl+d2+2
0 J+ 1 J+ L 2 j+ | 3 + 4 )+
_ ' (. (o \ ¢ ; 3
0 0 xll bl u1 b1 u2 b2+dl+1 u3 bl+dl+d2+2
o o J+ 1 J+ | 2 J+ | 3 J+
AT = '
(. _ (. _ v (e o \
0 0 0 ul b1 u2 b2+dl+1 u3 b1+dl+d2+2
L 0 Jt 1 Jt 2 ]+
(11 - +1) gy - )
0 o o 0 u, b2+dl 1 ; u, bl+dl+d2+2
\ 0 J+>‘,\« l J+>
4
3
u,~b, +d, +d.,+2
473 7171 72
0 |
0 0 0 0 { 0 J+
(1.2.9)
which is obviously equal to 1. Now



23 "1 o
L b
13 113

e
x23 d bel

, 1
x23+dl—b2+l

0

0

0

0

0
Xy3tdymbatl

1
x23+dl~b2+l

0

0

0

0

0

f-_}
uyhy

(u_~ +
u2 b3+dl 1
| 4 +
(a_-b_+d. +1)
Um0

L 3 ]
(o \
u, b1+dl+l
2 +
(. _ )
u, bl+dl+l
L 1 Jt

u2~bl+dl+l
0 +

0]

R ) T
. u3 b3+dl+d2+2

TR
\ > /

(4. -b_+d.+d_+2)

A

370274 T
4
’u3—bl+dl+d2+2w'
\ 3 4
- .
u3—b1+dl+d2+2
i 2
(u_-b_+d_+d_+2)
372174 7Y
\ 1 J
(u.-b, +d_+d_+2)
37°17 %%
-\ O 7

~b_+d, +
u3 b3 d d2+2

1
5 }
¢ 3
u b, +d, +d,+2
\ 4 )
(o w
u3 bl+dl+dl+2
| 3
(u_-b_+a. +d_+2)
U301 e T
{ 2 J
u3—bl+dl+d2+2
l 7

371 71 72

(u_-b. +d.+d +2}

L 0

+

+

-+

+

+

+

+

(1.2.10)‘
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where we have added over the first column using (1.2.7) and simplified

| X, qtd,=b_+1 bl .o
the determinant using the fact that [23 lo ]+ [ 120 2}4'— 1-1=0.

Note that the last three columns of all the determinants involved in-

this proof remain the same as the corresponding columns of the deter-

minant A°. From now on, every entry of the fourth and fifth columns
of the determinants will be denoted by "..." for the purpose of saving
space.

If we add over the second column, we obtain a similar result in the

second column and so fortn, so that the end result is:

1




%X _+d.-b_+1 f _ : 1 . o } . - .
[ 231970, ] _ x22+dl b3+}, | x21+dl‘b3+1 ul—b3 cie adan
1 L2 + 3 + 1 3 J+
x +d. -b_+1] | b ( . (
[ Py 22" P *y1+dy byl Qymhyl e e
Q + 1 )+ 2 + 2 +
r _ 1 _v‘ \ .
0 x22+d1 bl+l x21+dl bl+l ul*bl .. .
\ 0 + 1 ]+ 1. )+
= (x +a ~b_ +1) ‘
O 0 ‘ 21 l l ul—bl “« s . »s
L 0 J+ 0 +
0] 0 0 0 .
0 0 0 0 ..

3 Al.

Thus we héve shown that Xl A° = Al;. Note that. the foufth column Qf the
‘determinant A° plays the role of simplifying tﬁe resultant determinant
after’thé first three summations Xl SO fhat the next three summatioﬁs_
22 can be carried out smcocothly iﬁ a similar pattern. However, notice

. . s . 2,1
that Lemma 1.2.1 is essential in simplifying the expression 2 AT

Since




u

y
"
|

\

[

{

33

33 2 1

23+dl b3+l

2

23+d1 b2+l

1
+d_-b_+
3 dl bl 1
0

X4+, +d -b3+27 4

x__+d_+d bl+2‘

[22

+ -—
x22 a }b3+1

+ -
X dl~b1+l
0

|

(v 43 -
X dl b3+l

2174
.3

21
2

4 + _
x21 dl bl+l
1

(x. +d,-b_ +
X d1 bl 1

21
0

( ‘ 3
+d_-b_+
X 172, 1

)

/

)

J
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where we have added over the first column of Al using equality (1.2.6)
and decomposed the resultant determinant at the first column so that the
above two determinants are obtained. Now we claim that the second deter-
minant in the above eXpression egquals zero. But, equality (1.2.7) is

=max{b_-d4., x

inadequate to enable us to replace every u,, 3794 9

2} involved in

the first column of the second determinant by X,, as we have done in the

'summations of zl. For those entries below the main diagonal, the con-
ditions that r being non-negative in equality (1.2.7) is violated. Now
we observe that when b3-d1 > x22, in the second determinant, all the
entries with row number less than or equal to "one" (in this case) and
column number greater than or equal to "one" vanishes. Thus, Lemma 1.2.1
implies that the determinant ecuals zero. Hence, we conclude that the
second determinant of the above expression vanishes no matter whether U,

equals to b3-d1 or Xx,,.

If we add over the second column, we obtain a similar result in the

second column and so forth, so that the end result is:
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52 1

x ,+d +d =b +2“ (x._+a.+d ~b_+2) [x.. +d.+d.-b_+2) (u.-b.) ... ...

2.1 . 32 727173 3. 72 71 73 41 73
( 2 ) e R A N S - T A
+ - o, ) — .
x d2+dl b2+2 | _x32+d2+dl b2+2 . X3l+d2+d1»b2+2 c ey b2 e eas
. L U 2 A | 3 v o2 )+
{x__+a +a.-b.+2) | | +d +d.-b.+2) | ‘+d +d.-b.+2] {u.-b.) ’
3279271 ™ *327 % NP *317% 7™ o s B AR A
L 0 Jt A R A 2 J* 1 g+
- 3 ( A
= + + +d_+ + -
0 x32+d2 dl bl 2 x31 d2 dl bl 2 ul bl ol
\ 0 + ’\ l J+ \ o J+
- 3
0 0 X31+d +dy-b,+2 0 .. ...
0 Jjt
0 0 0 0 .. .o

+td +d_ -b + + - + -b +d_+ -
X32 d2 dl b3 2 X d *‘d b_+2 u2 b3 dl 1 ‘ u.-b “e. .‘..

173
\ 2 i J+ \ \ 4 ‘J+ \ . 3 J+
¢ _ N - - W r — T
x32fd2+dl b2+2 x32+d +dl b2+2 . u2 b2+dl+l ul b2 N
\ l J+ . \ ‘ 3 J+ \ 2 J+
{ _ w L s _ ‘ 3\ e _ A ! .
_|{¥gp+dytdy ~b 42 x32+d +dl bl+2 u,-b,+d, +1 w=b, | ..o ...
- - 1 [y =1 )
0 x +d3+dl b1+2] u, bl+dl+1 uy bl cee e
{ { 1 J# L o )+
(4. ~b_+d, +1)
0 . 0 u2 14 0 cee  eee
{ 0 J
0 0 0 0 . .ae

Note that the second determinant in the above expression vanishes since

the third column is identical with the fifth column. Hence, we have

proved that XZAI = A2.
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The p:gcedure of showing that 23A2 =‘det{E§f} is entirely'similér.
This éiyes the resuit of the théorem‘for_k = 3 and m =3. A similér'but
mdrc lengthy afgument yieldé'thé theorem. | |

The number NB(k, m; A, B, H, D) cah also be computéd byAuSing,the ’

above theorem according to the following lemma.

k=1 ,
> z dt' then the expression (1.2.5) can be trans-

Lemma 1.2.2 If b
: t=1

1

formed so that NB(k, m, A, B, H, D) = N(k, m, A",B', C', D'}, where

LI ' 4 [ — 1 ' [ — 1 1
A (al, cee am), B (bl, eer bm), C (cl, cee ck) and

h - b

D'
k m-i+l’

1 L ]
(dl, cee dk—l) are vectors such that ay

b! =h =~ a for i =1, ... , m, ¢! =h -nh for i=1, ... , k

i k m-i+1 i k k-i+1’

and d! =d ., fori=1, ... , k-1.
1 k-1

Proof: In detefmiﬁing the.number NB(k, m, A; B, H, D), we find that
the pverall upper'bound for every'entry of the matrix X satisfying the |
COndifion of (1.2.3) is hk; Thus, if we-ﬁrénsform the ofigin fO, 05 to
V the point (m, hk) and rotate 180O clockwisé with the new origin as a cen—.
ter, then the matrix X = {Xij} is transformed to the matrix X' = {x'.}

1]

where x!. = h fori=1, ... , kand j =1, ..., m,
1) k .

- Xk-—i+l,m—j+l
It can easily be checked that the matrix X' satisfies all the conditions

of (1.2.2). This completes the proof of the lemma.

Accordingly, we have-

i

| iil
u' = max {b' - da', c!'}
i 1 =1 t 1

i

max {hy = ap 14 - ) dopr P ™ Ppling
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kil : :
= max {h, - a = a., ~h, . .}
‘ k- m J=k-1+1 3 hk k~i+l
, k-1
=h +max {-a_ - ) d., ~h,_ ., .}
“k ™ jek-itl ? “k-i+1
' . k-l :
=h ~-mind{a + ) 4., h . .}
k M ylkgep J0 KR
=By T Veoiar

for i =1, ... , k. Then the following theorem can be obtained as a re-

sult of Theorem 1.2.1 and Lemma 1.2.2.

Theorem 1.2.2 NB(k, m, A, B, H, D) = det{E'iF'}, the determinant of

an augmented matrix of a (mtk) X m matrix E' = {eij} and a (m+k) x k matrix
F' = {f'.} such tha
ij .
‘ k-1 ,
.= la, = b, + A i = ‘e +
eij a; bJ Zl dt k i ‘l, - , Mtk -and
- - o =1, ... , m
itk ) + ‘ ‘
and
k-1
f! = - + ] - i =
i ai Vk—i+l tgl @t + 3 1 i 1, ... , m+k and
‘ j=1, ... , k
m+j-i +
k-1
where we set a, =a for i >mand v, = min {a + 2 d_, h.,} for
i m - i : m =i t 1

i=1, ..., k.

We have already mentioned that in some special cases, the numbers
N(k, m, A, B, C, D) and NB(k, m, A, B, H, D) have been aetermined by vari-
ous authors in terms of reclatively simple expressions. Thus, our deter-

minant can be reduced to a rather simple Form proVided that additional



" conditions are satisfied.

Corollary 1.2.1

nén—negative integral entries éatisfying the specified conditions.
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The following equalities hbld for determinanhs with

: k=1 . - o
(i) When C = 0 and b_l > 2, dt,~the determinant det{E{F} of
: R - I :
Theorem 1.2.1 equals to
k~1 k-1 k-1
a-b + ) a +k b + ] d +k ceelagb o ] Ak
~3+
oMt AL LN
k k+j~-1 + k+m-1 +
k-1 k-1 k-1
m m-i+l lld Tk m—j+l m—1+1 tild SRR al—bm—i+l tzld ke
k+1-i k+j-1i + kt+m~i +
k-1 k-1 k-1.
a b +tzld +k m—3+l b it X dtk|...|a blffgldt+k
k+1-m k+j i + Tk +
(ii) When A = a, = C=D=20, k =1, the determinant in (i) becomes
[a + l} (a + 1 [a + 1} {a + l}
1 + L 2 J+ ] + m )+
a+1 (a + 1 ‘ a+ 1 a+1
o J+ S A j - 1)+ om+ 1
0 (a + 1 . .
L 0 + = la +m
. .- .. . n |+
a+ 1 a+1
o ct * j=-i+l ot m-i+1
' a+1
. . . .o 1 +
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Proof: (i) The determinant given here equals the number
k-1
N(k, m, A, B, C, D) when C =0 and.bl > z dt according to Mohanty. (1973).
: t=1
Thus, the equality holds.
This can also be shown directly by expanding the determinant det{EiF}
of Theorem 1.2.1 at its (m + 1)th column and simplifying it using
Lemma 1.2.1.
(ii) This is a result of Pélya (1947) (cf. Kaucky (1975)).

it also follows readily from the enumeration argument, see Steck (1969),

Mohanty (1977), and Narayana (to appear).

Remark 1.2.1 A meaningful refinement of our results in this section
can be considered as follows.

Let N(k,m,A,B,C,D,H) be the total number of distinct matrices of the
form X given by (1.2.1) which satisfy

all the conditions of (1.2.2) and

3 < < < < =
(a) C, DXy S XS ... S < hi' i 1, ..., k (1.2.11)
—_— : ]
(b) bj < xij < aj i=1, ..., kand j =1, ..., m
k-1
Similarly, if bl > 2 dt’ we let NB(k,m,A,B,H,D,C) be the total
t=1

number of distinct matrices of the form X given by (1.2.1) which satisfy
all the conditions of (1.2.3) and (1.2.12)
(a) and (b) of (1.2.11)
It follows from the definition that N(k,m,A,B,C,D,H) can be expressed

as a km fold summation of the number 1 which is of the same form as the

right hand side of (1.2.4) except that here we have aij=min{x.

+
i+1,3 di'hi'aj}'
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uij = max{bl, xi,j—l'

c.} and u, = max{b R c.lt.
i i 1 i
Similarly, NB(k,m,A,B,H,D,C) can be expressed as a km fold summation
of the number 1 which is of the same form as the right hand side of (1.2.5)

except that here we have b, . = maxix, .~d. ¢.,b.}l, v, =min{a ' X, h.}
ij i-1,3 1 i ij m

1 i, j+1,i

and v, = min{a , h,}.

i m i

Unhappily, we are unable to simplify the above expressions by using
the method employed in the proof of Theorem 1.2.1 and Theorem 1.2.2. The

basic reason is that when the value of aij is changed from x,

.+ d, to
i+1,3 i

1
min{x, . +d,, h,, a.},etc.,the relation Z A° = Al of (1.2.8) no longer
i+l,3 i i 3

holds. To illustrate this, let us consider again the special case that
k = 3 and m = 3 which was ¢hosen to illustrate the proof of Theorem 1.2.1.
Here n° is the determinant given by expression (1.2.9). But

X, _+d

217% .
y A
X137 Y13
{ 'q 3 s 3
+d, -b_+ - - - - -b_+d_+d.
EPE M B At I A F I | I L Pt IR L T A I e T e R
1 + 1]+ 1 4+ | 2 j+ | 3 J+ | . 5 )t
x. . +d. ~b_+1 u. .~-b X, .~b rx -b ) ru -b ) ru -b_+d_ +d +2\
2374170, {"137"2 12772 1172 17°2] ... U372
0 + 0 Jj+ o J+ { 1 J+ | 2 J+ | 4 J*
(x,,-b.)  (u,-b,) (u_~b,+d +d_+2
0 0 ¥117%1 YO L MR Y
o B L1 )+ 3 J+
=| (u. -b. ) (u ~b.+d.+d_+2)
N 17°1) L. U3
0 0 0 . o Jjt 2 +
[uy-b +a +d,+2
0 0 0 0o ... 1 +
(u_-b.+d.+d_+2
b N B B
0 0 0 0 ... 0 +
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the above determinant cannot be reduced to a form like the one
given by expression (1.2.10), because neither equation (1.2.7) nor
Lemma 1.2.1 can be applied iﬁ this case.
Hence we conclude that further investigation is required in 6rder‘to .
find simple expressions for the-numbéfs N(k, m, A, B, ¢, D, H and
NB(k, m, A, B, H, D, C) defined in this remark, except for the special
cases that

N(k, m, A, B, C, D, hk)

1

N(k, m, A’ B, C, D)
amd

NB(k, m, A, B, H, D, 0)

it

NB(k, m, A, B, H, D),
the simple expressions in terms of (mt+k)x(m+k) determinants are given by

Theorem 1.2.1 and Theorem 1.2.2, respectively.
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1.3 Evaluation of Two Multiple Integrals

The enumeration method developed in the previous section can readily
be extended to the continuous case. Here we would like to determine a
measure of km continuous variables in the form of a k x m matrix X given
by (1.2.1).

Let I(k, m, A, B, C, D) be a measure represented by a multiple in-~
tegral of the number 1 over the region of X specified by the conditions
of (1.2.2). Therefore,

al a2 aj am
I(k,m,A,B,C,D) = J eee j cee j
X

17 % " %k2™%2 %3~ %3 km km

I i1 Iai2 Iaij jalm
x11—ui Xi2=u12 xlj= ij ximzuim

211 412 215 21m
T S
¥117%1 %1272 ¥157915 X1m C1m

dx m"dxlj"dxl

.o . ...d
1 dx "dxij"dxil' dka sdxkJ Xkl

1777 im

where aij = + di fori=1, ..., k-l and 3 =1, ..., m,

%341, 7
i-1
u,. = max{b, - da,, x, |,
13 J tg:l t’ Ti,5-1
i-1
u, = max{bl -tzldt, ci} for i =1, ..., k.

}, fori=1, ..., k and j=1, ..., m,
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k
>

t

1
d
1 t

Similarly, if bl

I 01t

, we let IB(k, m, A, B, H, D) be a measure

represented by a multiple integral of the numbet 1 over the region of X

specified by the conditions of (1.2.3). Therefdre; ’

'm Vi,m-1 MR Y11
1B(k,m,A,B,H,D) = J , I pel f J
= '—"b C .=b- . —_b
1 Pn el omel *157°5 *11701
Jvi [Vi,m~1 (Vij Jvil
im Cim i,m-1 *i37043 ¥17P41
V1 Vi, m-1 Vi3 Yx1
"o N L L
= = .=b, X .=b
*km bkm Xk,m—l bk,m—-l xkj k3 k1l "kl
.. N ce e dx, L adx. . LsdX. L. .. L..dx
dxpq e - Xy g e Xy e e dXy e dXy g Xy AR ARy
(1.3.2)
Wherg bij =% 35 d, for iv=.2, ..., kand j =1, ..., m,
Vij = mln{aj, xi,j+l} for i =1, ..., kand 3 =1, ..., m-1,
k-1
v, = minf{a + Z d, h} fori=1, ..., m
1 m t i
t=1
It is clear from the definitions that when C = D = 0 and
k-1
ki > am + zldt, i=1, ..., k, we have
t=

I(k/ m, A, B/ Or O) IB(k, m, A, B, H, O)_

1m
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Evaluation of the integrals I(k, m, A, B, C, D) and IB(k, m, A, B, H, D)
is analogous to the summation problem of determining the numbers

N(k, m, A, B, C, D) and NB(k, m, A, B, H, D). For if we replace the
symbol J by the symbol Z in (1.3.1) and (1.3.2), then they become the

same as (1.2.4) and (1.2.5) respectively.

The following definition and equalities have been suggested by
Mohanty (1971) as analogues of (1.2.6) and (1.2.7).

Let x and a be any two real numbers, we write

(x)+ = max (0, x)

Note that for real numbers a and b such that a > b > 0, we have

a r+l r+l
r
J (x)y dx = @y = _ )y (1.3.3)
b r+l r+l
It is also simple to check that
a r+l1 r+l
j (x - b)i dx = (a b)+ _ (bz - b)+ (1.3.4)
max{bl,b 1 r+l r+l
2
for non-negative real numbers a, b, bl and b2, such that a > b > 0 and
bl < b.
(x - bjE) - b
Now if we view the function (r)'+ as [x r J etc. and replace
. +

f by E, then equality (1.3.4) becomes the same as equality (1.2.7) except

that the term a - b on the right hand side of the expression in

equality (1.3.4) corresponds to the term a - b + 1 of equality (1.2.7).
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Therefore, if we adjust properly the symbols used in Section 1.2 and take
into account the difference mentioned above, we can obtain the correspond-
ing results in the continuous case also. Since the arguments of broof are
similar, we only state the results below without repeating the same pattern

of proof again.

Theorem 1.3.1 I(k, m, A, B, C, D) = det{E:F}, the determinant of an

augmented matrix of an (m + k) x m matrix E = {E;j} and an (m + k) x k

matrix F = {E;j} such that

k-1 (5~i+k)

_ (aﬂhj+l - bm—i+l +tzldt)-+ i=1, ..., mtk and
e,, = .

ij (3 -1i+k) ! i=l ..., m

and
k-1 - (m+j-1i)
- +

_ (éj bm—i+l tZldt_)+ . i=1, ..., mtk and
£,.,. = s =

= m+ 3 - 1) ! 3=t eeen k

where we define bi = b, for i <0 and

i~1
u = max{bl -tZldt, ci} for i

]
[
-~
.
=
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k-1
Lemma 1.3.1 If bl > 2 dt' then the expression (1.3.2) can be trans-
t=1

formed so that IB(k, m, A, B, H, D) = I(k, m, A, B, C, D) where

A' = (ai, cees aé), B' = (b!, ..., b&) and C' = (¢!, ..., CA) are vectors
' = - Vo= - i =
such that ai hk bm—i+1' bi hk am_i+l for i 1, ..., m and
| - — i =
ci hk ck_i+1 for i 1, ..., k.

Theorem 1.3.2 IB(k, m, A, B, H, D) = det{E'iF'}, the determinant of
an augmented matrix of an (m + k) x m matrix E' = {Eij} and an (m + k) x k

matrix F' = {?ij} such that

k=1 \ (j-i+k)
a, - b, + 2 da ) i=1, ..., mtk and
— R Al
| - i =1 m
i3 3 b ey
(3 - i+ k)?
and
k-1 (m+j~i)
Gﬁ.' Vk-3+1 T dq)+ i=1, ..., mk and
rie t=1 \
ij (m+ 3 - i) =1, «.., k.
k-1
where we define a, = a for i >mand v, = min{am + ) d, - hi} for
t=1

i=1, ..., k.
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The equalities in the following corollary are obtained from the

boundary cases of the theorems.

Corollary 1.3.1 The following equalities hold for determinants of

non-negative integral entries satisfying the specified conditions.

. k-1
(i) When C = 0 and b, 2> ) d ., the determinant det{EiF} of
t=1
Theorem 1.3.1 equals the determinant det{E'} where E' = {eij} is a
m x m matrix, such that
k-1 (3-itk)
(am-j+l T Ppein Y ) d1;)+ i, j=1, ..., m
¥ = t=1
13 (j=i+k) !
(ii) When A =a, B=C=D=0 and k = 1, the determinant in (i)
becomes
2 -
al a” 31 " 1 2
20 T g T (n-1)! m!
1 al ... &t a™? 2"t
1! (-1 (n-2) ! (m-1)!
0 1 - o cee e . .o .ee
m
.o e e e cee e e s e v = a
m!
OO iR il Y bt
(5-i+1) ! (m-1) ! (m-i+1). !
e cee e . - e 1 a
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‘Remar]‘{ 1.3.1 If we de’fi'ne‘: E(l:,m;A;B,'c,D,H)‘ (resp. _I—B(k,_m,lA,B',H,D‘,C))‘
to'beva measure represented by é multipleAinteéral of the number 1 over.the
région of X specified by the conditiéns of (1;2;115 (resp. (1.2;12)). -Hence
.f(k,m;A,B,C,D,H) (resp. EE(k,m,A,B,H,D,C)) equals to akem fold integrél of

the number 1 which is of the same form as the right hand side Of'(l.j.l)

C(1.3.2)), he’ .. = mi .'.+'.‘, L, a,
.(?esp (1.3.2)) exceptAthatvhere we have aij ‘mln{xl+l,j dl ,hl,va]}(‘
o= x. . ., . = _— . b, .=max{x, . i-d.,c.,b.}
ulJ max{bl, xl,:'_l cl} and ay max{bl, cl} (resp i3 max{x’l__l,J 1763 7Pyts
vij = mln{am, Xi,j+l' hi} and v, = mln{am, hi}).

With a similar reason as the one explained in Remark 1.2.1, we are

unable to simplify the above expressions any further.



CHAPTER II

K~-SAMPLE ANALOGUES OF THE KOLMOGOROV-SMIRNOV STATISTICS

2.1 Introduction

Let Xi < X; 2 ... 5 Xi be the order statistics from a sample of ni
i .

independent identically distributed (i.i.d.) random variables with a con-
tinuous cumulative distribution function (c.d.f.) F* and a sample empirical

distribution F; , that is,

i
4 i
<
0 zZ Xl
i i .
4 = < < l=l PP k-
F ‘(z) 1 i/n Xj <z Xj+l P ¢
i
L 1 X1 < z
n, -
i

For k = 1, Kolmogorov (1933, 1941) proposed the one-sample statistic

sup |[FL (2) - G(2) |
n
z 1

for testing the goodness-of-fit hypothesis H Fl = G, where G is some

1
specified c.d.f.

;oA

For k = 2, Smirnov (1939, 1948) proposed the two-sample statistic

1 2
sup !Fn (z) - Fn (2) |
z 1 2
. . . 1 2
for testing the homogeneity hypothesis H2: F- = F .

28
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The asymptotic null distributions of these statistics were also found
by the above authors. Among others, the exact null distributions were in-
vestigated by van der Waerden (1971) and Epanechnikov (1968) in the one
sample case and by Gnedenko and Korolyuk (1951), Drion (1952) and
Massey (1951) in the two sample case. However, simple and closed forms of
both the one-sample and two-sample statistics in general setting were not
known until Steck (1969, 1971). Recently, Govindarajulu, Alter and
Gragg (1975) have used the generating function technique to obtain a
closed form expression of the exact distribution of the one-sample Kolmo-
gorov statistic. 1Interestingly, these results turn out to be special cases
of the formulas developed in Chapter I.

K~-sample analogues of the Kolmogorov-Smirnov statistics have been
established by various authors. For example, David (1958) derived the

null distribution of a one-sided three-sample statistic of the form

2 1 . 3 2 1 3
max {sup(Fn(z) - Fn(z), sup(Fn(z) - Fn(z), sup(Fn(z) - Fn(z))}

z b4 z
where nl = n2 = n, =n. Kiefer (1955, 1959) considered statistics for
4
testing the homogeneity hypothesis HZ: Fl = F2 = L., = Fk or the goodness-
1 2 k

of-fit hypothesis H,: F- = F = ,,. = F = G, where G is some specified

1:
c.d.f.. For testing Hl’ the statistic is

- i _ gl :
Up= sup C,. an'(z) Fn.(z)l, (2.1.1)
z,1,] 1 J

i#j
where cij is some fixed constant, for i,j =1, ..., k and i # j. The

statistic Ul for testing Hl may be obtained by writing G for Fi and c;
J

for Ciy’ j =1, ..., k. Kiefer also showed that these statistics are
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consistent against all alternatives and have good power properties.
Dwass (1960) studied statistics of the same nature. However, the null
distributions of the above statistics remained unknown. Conover (1967)
found the exact distribution of the statistic

sup (Fi(z) - Fi:l(Z)),

z,i<k
where n, =n, = ...=n =n. In his paper, Conover stated that such a
testing statistic would be useful in situations where the experimenter has
k populations, k > 2 and may legitimately assume, from biological or other
non-mathematical considerations, that Fl(x) > F2(x) > .. 2 Fk(x) for all x.
Wolf and Naus (1973) provided tables of critical values based on Conover's
result and showed that for certain alternatives, the test has reasonable
power relative to parametric and other distribution-free competitors.

In this chapter, we obtain the null distribution functions of the
statistics Ul and U2 for the special case of certain fixed constants cij
in the definition. Furthermore, subject to some ordering conditions (see
Sections 2.2 and 2.3) the conditional null distributions of the same

\
statistics are also obtained. These conditional statistics are expected
to be useful in situations like those specified by Conover(1967) that we
have mentioned in the previous paragraph.

All the random variables considered in this chapter are univariate.
Extension to the multivariate case is possible according to Bickel (1969)
and ‘Ahmad (1977).

The research work achieved under this subject is enormous (see

Hé&jeck (1967)), our introduction only includes those references that are

closely related to the topics discussed later.
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2.2 K-sample Rank Statistics of Kolmogorov-Smirnov Type

(cf. (2.1.1)) defined

Ll L

In this section, we consider the statisticJU2

by Kiefer (1959) for testing the homogeneity hyp;thesis H2:
= Fk. It has been suggested by Anderson (1962) that the two-sample
statistics of Kolmogorov-Smirnov type can be expressed in terms of
statistically equivalent blocks, namely the ranks. Therefore, using the
formulas of Section 1.2, we are able to determine the null distributions
of the statistic for certain fixed constants cij in the definition.
Furthermore, we also obtain the conditional null distributions of the same
statistic subject to the restrictions on the ordering of the ranks. When
k = 2, the conditions become degenerated and the result is due to
Steck (1969).

Now we define the following statistics which constitute the U

1

statistic:

[

i k i
D+(nk, ni) SIle(Fn (z) - Fn.(Z))

k i
i i k
D{n , n) = sup(F_ (z) - F_ (2)) . \
-k h n, n
z i k
and
i i i
D™ (n,, n;) = max {D+(nk, n,), D_(n, n,)}

th h

are the two-sample statistics for comparing the i sample with the kt

sample, i =1, ..., k-1.

i

D(n;n, ..., n_ .)= sup {nnD (n, n,)}
+ -~
k' 1 k~1 1<i<k-1 ki+ k' i
i
D_(n; nyy +vuymy ) = sup {nn.D (n, n)}

1<i<k=1

and
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D( n,_ ,) sup {n n Di(n n,)}
P Dy ey Ny L) = . , N,
ki M 10T e KL KT E
are the k-sample statistics measuring the supremum of the weighted maximum

h

. .t . ’
distance between the i h sample and the kt sample, for 1 < i < k-1.

Note that those statistics with a subscript '+' or '-' are one-sided
while those without a subscript are two-sided. 1In addition to the above,
we write

14 . .
D J(n., n.) = sup (Fl (z) - FJ (z))
i j z n, n, .
1 ]

for every i, j =1, ..., k-1 and 1 #¥ j, and

D'(nl, cees nk-l) = sup {ninjnk Dlj(ni, n.)}
1<i,j<k-1 ‘7, +n, J
i#j

Then, the U2 statistic can be expressed as

R = 1
Uz(nk, Dys eeey nk-l) max {D(nk, Dyr eeey nk—l)' D (nl, ceny nk_l)}

for the special case that

( n.n i=1, ..., k-1, j =k
. RN =1, ..., k-1, i =k .
cij = <
nin_nk i,j =1, ..., k=1 and i # j
n,+n

Definition 2.2.1 Let i be an integer such that 1 < i < k-1. Let

7zt <zt < ... <zt be the combined and ordered sample of Xl,..., x>
1- "2 - ~ n.+n 1 n,
ik i
k k k . i,
and Xl' ceey Xn . The rank of Xj in that sample, denoted by Rj, is the
k

. . i k
total number of Zt, 1l <tc< ni+n , which is less than or equal to Xj, for

k

every j =1, ..., n .
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It is clear from the definition that
i i i

0<R -1<R -2<... <R -3j<...<R -n <n (2.2.1)

for every i = 1, ..., k-1.

The following is a result used by Steck (1969) who quoted the state-
ment from a paper by Maag and Stephens (1968). However, the basic idea
can be found in Anderson's (1962) book. For the sake of completeness, we

provide the proof here.

Lemma 2.2.1 Di(nk, n) = suwp N T 1

for every 1 =1, ..., k-1.

Proof: Without loss of generality, we may assume that i = 1. For

any fixed j, 1 < j < n . we have

k ol _ 3 j
Fnk(xj) (k) Z .

1 K 1

Now

1 k 1
D+(nk, nl) sup (Fn (z) - Fn (z))

k 1
k 1
= sup (Frl (z) - Fn (z))
k k k k 1
ze{xl, KyreeerX }
k
. ORI -]
= s <43
- WA n n )
1350, \ 'k 1

Thus, the lemma is proved.
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By ordering the random variables from the largest to the smallest,

, i Vi i , : .
that is Xl > X2 > ... 22X ,1i=1, ..., k, Steck (1969) obtained the

following lemma as an analogue of'Lemma 2.2.1.

Lemma 2.2.2 Dl(n , n,) = sup Rj '
-k i .
lfjfnk n, n

for every i = 1, ..;} k=~ 1.

Proof: For any fixed integer i, such that 1 < i < k-1, we write

i vk i
D_(nk, ni) = sgp (Fnk(z) - Fni(z))

where we let Ft (z) =1 - Ft (z), XF = Xt . for 3 =1, ..., n_ and
n, n, j n -j+1 t
1 L | t
vt t ' vt vt Ve
Z, =12 . j = v + o> I d
3 n +n, -j+1 for j 1, R nt nk, so that Xl > X2 > > Xn an
t 'k t
v g v : Wi‘
Z,>Z. > ... Z for every £t = 1, ..., k. Also let R, be the total
1-2- - n_+n : J
t 'k
i i k .
number of Z7, 1 < s <n, +n_ such that 2° > X, for j =1, ..., n .  Thus,
s - - i k s - 3 k
g, i . e
R, =n, +n - R . + 1. By the definition,

v
( 0 Xi <z
vt vt vt
= <
n (z) { r/nt Xr+l <z Xr
t

ny

kl Z<X§
t

where r = nj - s, t=1, ..., k. Thus by a similar argument as the proof

of Lemma 2.2.1, we have
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L
Di( ) sup 2 Rg -
n ’ n . = —_—
- 'k i 1fz<nk nk ni

Writing in terms of the original ranks

. i .
-3+l (n, +4n, - - -j+
i n o3+l npn RS ) - (0 -4
D_(nk, n,) = sup - - o
1<j<n k i
N Sy N ‘
Where j = n - 2 + 1. This can be reduced to the result of the lemma.

Let |[x] denote the largest integer less than or equal to x and let
<x> = ~|-x] denote the smallest integer greater than or equal to x. Using
Lemma 2.2.1 and Lemma 2.2.2 and the fact that the ranks defined in
Definition 2.2.1 are integers satisfying the inequalities (2.2.1), we can

easily prove the following theorem which has been used by Steck (1969).

Theorem 2.2.1 The following hold for every integer i, 1 < i < k-1.

i :
: : <
(1) Prob {nkniD+(nk, ni) r}
%y r i :
= Proby max{0, j—i-— — + 1 <R, -3j<n,63j=1, ..., n
n n, - ) - i k

i
(2) Prob({ nkniD+(nk, njjsr

n, .
1 r i . .
= Prob{ maxi{0, <é;;~— H;>> < Rj -J < n., J= 1, ...y n,

i
(3) Prob {n n.D_(n,, ni) < r}

. n, n, o
= Prob{ 0 < R} -3 < min n,,<?i + j;i - ;i -~ j> ’ j=l,...,nk
] Nk k  k



i
<
(4) Prob {n,n.D(n, n) < r}

. n, n,
= Prob{O f' RJ_- - j i (‘nin n,s lj_.‘ + J;l..].'. - I_‘__‘l j
] R k Pk
ni + nk
(5) Suppose n, > 1 and r > max n . sup |- S+
' 1<i<k-1

i
P
rob {nkniD (nk, ni) < r}

n, .
= Prob {max %0, j~i-— L4 < R% - J < min
o ™ -

=1, ..., nk

(6) Suppose n, <1 and r < max n, , sup

i
P <
rob {nkniD (nk, ni) < r}

n, .
= Prob { max4{ O, <§—3~— = < R% - J <miny{n,,
n n, -3 - i

i=1, ..., n

Remark 2.2.1 Notice that the extra conditions imposed on nj and r that

appears in (5) and (6) of Theorem 2.2.1 are to guarantee that the given

inequalities hold without contradiction.

36
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Given k populations, an experiment E-for testing the null hypothesis

1 2
H2 + Fo=F = .. = Fk may be performed in the following steps:

(1) a sample of size ni, namely, Xi, X;, ceoy X; such that
i

i i i . .
Xl < X2 MR X; is drawn from the ith population, i =1, ..., k.

(2) The sample Xi, X;, ey X; is combined with the sample
i

K X . . .
Xl’ X cees Xﬁ so that the ranks Rl R} R are computed, for

1’ 2: veeyg

(3) Compute the statistics defined at the beginning of this section
by using Lemma 2.2.1 and Lemma 2.2.2.

It is clear that every outcome of the experiment E— can be written

in the form of a (k-1) x nk matrix

< | ~

R = Rr ....R  ....R (2.2.2)
1 J n
k
Rkll e BT Rﬁ:l
L ] k

which is called a rank matrix. Therefore, the sample space of the experi-
ment & , that is, the collection of every possible outcome of E. , is the
set of all rank matrices of the form R.

Supbose we consider a modified experiment of thé experiment & , namely,

the experiment E; , described as the follows. For everv i =1, 2, ..., k-3,

: i i i
after the ranks R, R ,..., R has been determined, the sample xk, xk,...,xk
1. 2 nk 1 2 nk
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is replaced in the kth population and a new sample of the same size is

. . . i+ i+l i+l
chosen from the kth population in order to determine Rl l, R2 ,...,R3 .
it i i i i . i 3
Then it is obvious that the row vectors R~ = (Rl' R2,...,R ) and'RY =

‘ RJ, ceey RJ ) of the rank matrix R are independent of each other

whenever i # j and thus

prob {R* = U, R} = v} =prob {R' = U} x Prob (R’ = v}
for any vectors U = (Ul' 02, cens Un ) and V = (Vl, V2, .ees Vn )
k k
consisting of integers satisfying 0 < Ul < U2 <. .. 20U < n, and

Thus each row vector of the rank matrix R can be regarded as an out-
come of a two-sample experiment and the experiment E-consists of k-1

independent two-sample experiments.

Since the statistic Dl(nk, ni) is only a function of the ranks

(Ri, R;, cess R: ), i =1, ..., k-1, we conclude that
k \
k-1 i
(1) Prob {D(nk; Nis o eees nk-l) <r} = igl Prob {nkniD (nk, ni) < r}
and
k-1 i
(2) Prob {D(nk; nl, et nk—l) f r} = izl Prob{ nkniD (nk, ni) < r}

Recall that N(k, m, A, B, C, D) and NB(k, m, A, B, C, H, D) are functions
whose values have been determined in Section 1.2 for given positive integers
k and m and vectors A, B, C, D and H satisfying the conditions specified by

(1.2.2) and (1.2.3) respectively.
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I+ is not hard to find the null distribution of the statistic

D(nk; n ) obtained from the experiment &L since the null

1’ ot k—

distributions of the two-sample statistics Dl(nk,ni), i=1,2,...,k-1

are known due to Steck (1979). In terms of our function N(l,nk,A,B,C,D),

Steck’s result can be formulated as the following:

i i i

(1) Prob {nkniDl(nk, ni) <r} = N(1,n,8"F,0,00 /N{Lnn,,0,0,0)
where El = (ei, eees e ), l = (fi, ceay ) are vectors such that

i By "ox
e, = min {n,, S j— - and f = max<{ O, j;~ i + I for

J N % x "k J
i=1, ..., nk and i =1, ..., k-1.

(2) Prob {n,n.D' (n, n) cr} = N l,nk,E' ,0,0) /N( 1,0 ,n,,0,0,0)
where E' = (e'i cees € i ) and F' = (f' . f'l )y are vectors such that

‘ k
. c n, ni r

e'% = min n ] — + 3~—-— — and f' = max 4 0, J— - for
I=1, <., n, and i = 1, ..., k-1. : 4

However, for the statistics obtained from the output of the exveriment &,
we are only able to find several conditional distribution functions in terms

of the functions N(k-1l,n

k,A,B,C,D) or NB(k~1l,n

k,A,B,H,D).

i i+1
Theorem 2.2.2 Under the conditions that k > 2, Rj < R}j + di for
j =1, «iuy nk and i =1, ..., k-1, where di's are non-negative integers

such that 0 < d, < n, i=1, ..., k-2, the following are true when

i

the null hypothesis H2 holds.



: 1 ' k-1, ,
. ; < v
(1)“ Prob {nknlD+(nk, nl) < rl, nk k—lD _“nk, nk-l) rz}

= N(k-1,n oon ,0,0,D);

,A,B.O,D)/N<k—1,n ko1

k

1 k-2’

where A =.(a1, s ank), B = (b.,, ..., bnk), D= (dl,-..., d

40 .

‘ s n: n .\ ' 4 .y n r_
a, = min nk—l; <:lg'* j k—l'f ~§:l--v;> and b, = max4 0, [j;l~—';£ + l}
) A "k "k k. 3 Ly

for j =1, ..., nk.

1 - k-1 .
2 < ¢ .
(2) Prob {nknlD+(nk, nl) < xyeomy k—lD _ (nk, nk-l) < r2}
= N(kfl,nk,A: /B! IOID)/N(k“lrnkrnk_lrololD) v
where A' = (a', ..., a' ), B' = (b!, ..., b' ) and
n 1 n

k

k N
x n n /n r
a% = min »ng_l, [;g~+ j i-l - i—l} , bj = max {0, <E;l;— E£;> , for
k k k k 'k

Y each distinct rank matrix. of

Proof:  Under the null hyéotbesis H
the form R (cf. (2.2;2)i happens eqUaliy iikely as an outcbﬁe_of'ﬁhe
experimeﬁt ér. Since each row Qector of R satisfies the inequalities
(2.2.1) by definition, we know that the total number of distinct matrices
of the form R which satisfies the conditidns stated in the theorem is

equal to the number N(k-1,n 0,0,D) and the total number of distinct

s O

rank matrices which also satisfy. the restrictions nknlDi(nk,nl) < ryr and

nn D ,A,B,0,D). Thus

k-1
Sk k-1 -

< i -
(nk,nk_l) r2 is equal to the number N{(k-1,n

k
the result of the first part of the theorem follows. The second part can

also be proved analogously.
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i.Remark 2.2.2 For k = 2, the conditions of Theorem 2.2.2 degenerate

and the two—sampleiresult by Steck (1969) follows. .

Similar arguments can_be_hSéd to prdve the following theorem.

Theorem 2.2.3‘ Under the conditions that k> 2, nl f,nz Sl S nk,
and that R} < lel + 4., j=1, ..;, h. and i =1, ..., k~2, where d,'s
E - R S k v » ; i
: . k=2 , nl r
are non-negative integers such that 2 d, < max40, [~—-— — + lJ s
. i - n n
i=1 k k
the following is true when the null hypothesis H2 holds.
1 k~1
1 < <
(1) Prob {nknlD+(nk,nl) r,, nknk—lD— (nk,nk_l) r2}
= NB(k-—l,nk,A,B,H,D)/NB(k*l,nk,nk_l,O,H,D) ’

~where A, B are the same as those defined in Theorem 2.2.2, D = (dl,;..,dk_z)

and H= (n,, ..., n ).

) o . k-2 .n .
: . L r .
‘In addition, if the inequality Z d. < max 40, d_ox is also
) i_l 1 - nk l’lk .

satisfied, then the following is true when the null hypothesis H2 holds.

1 k-1
¢ <
(2) Prob {nknlD+(nk,nl) < rl, nknk—lD— ‘nk'nk—l) r2}
= NB(k—l,nk,A‘,B',H,D)/NB(k—l,nk,nk_l,O,H,D),

where A', B' are the same as those defined in Theorem 2.2.2.

. 4 .
Corollary 2.2.1 Under the conditions that k\i 2, R; < lel, j=l,...,nk

and i =1, ..., k-1 and that n1 = ... = n = n, then the following is

k-1

true when the null hypothesis‘H2 holds.



() l]l ]I LRI 4 ] ]) ll (]I ll * ooy n-] ]) 2

= N(k-1,n ,A,B,0,0)/N(k-1,n ,n

k k=100

(2) Prob {D+(nk; Dysee-y D ) < xr_, D_(nk; n., ..., n__.) <r}}

k-1 - "1 1

= N(k-1,n_,A',B',0,0)/N(k-1,n ,n

X k'Pk-17070:0) -

Proof: It suffices to show that in this case,

)y < r.}

Prob {D+(n x-1) S %o

D_(ng; ny, ..., n

k! Pproceel Ppog) < Ty 1

= Prob {n . n Dl

k-1
KM% M By < Fpe mem Doy, my ) < rp)

and the above is also true when "<" is replaced everywhere by "<". Then
the corollary follows from either Theorem 2.2.2 or Theorem 2.2.3 since

N(k—l,nk,A,B,0,0) = NB(k-l,nk,A,B,H,O) under the given conditions.

. . i i+ , .
Our assertion is true because R, < lel, i=1, ..., nk, i=l,...,k-1

and Lemma 2.2.1 implies that

i 1 .
< = -
nkniD+(nk,ni) < nknlD+(nk,nl) i 1, ..., k-1

and

i < k-1 i _
nkniD_(nk,ni) < nknk_lD_ (nk’nk-l) 1, ..., k-1

when n. = ... = n n. Therefore, in this case, the conditions

1 k

. < . <
D+(nk, nl, cens nk—l) rl and D_(nk, nl, ceey nk_l) r2
are equivalent to the conditions
1 k-1
< <
D+(nk, nl) r, and D_ (nk, nk_l) r,
when n, = ... =n_ =n. Thus the result of the corollary follows.

1 k
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Under the null hypothesis H2, we have already found the null distribu-

tion and the conditional null distribution of the statistic D(n I o ).

k" k-1

In the next theorem we show that the distribution of the statistic

Uz(nk,n .., _1) is the same as the distribution of the statistic

1" k

) .

D(nk;nl,...,nk_l

Theorem 2.2.4  The cumulative probability distribution function of the

statistic Uz(nk;nl,...,nk_l) is given by

; <r} = ; ey <
(1) Prob {U2(nk,nl,...,nk_l) r} = Prob {D(nk,nl,. nk—l) r}
(2) Prob {U2(nk;nl,...,nk_l) < r} = Prob {D(nk;nl,...,nk_l) < r}

Proof: Since

Supl(Fi (z) - r) (z)) ] < Sup{Fk (z) - F’ (z)| + sup le (z) - F* (z) ],
n, n, - n n. n n,
z i 3 z k i 4 k i

writing in terms of the statistics, we have
14
I

3 i
+.
D ni,nj) <D (nk,nj) D (nk,ni)

n, n

nn.n, .. . . .
ki 3 1] < 1 j " 3j i
s D (npng S o=y n D nyng) 4 e nyn, DY (ny ony)
iy i) 13
for every i,j = 1, ..., k-1 and i # j. Taking sup on both sides of the

above inequality, we find that the right hand side is bounded
by the statistic D(nk; Dyreees nk—l)' while the left hand side becomes

D'(nl,...,nk_l). Therefore, D(nk;nl,...,nk_l) < r implies that

D' (n S o} ) < r. Thus,

1" k-1

) < r, D'(n;,...n _l)<r}

k

Prob {D(nk;n 1""'nk—l

< = .
1""'nk—1) r} Prob {D(nk,n

= . < .
Prob {Uz(nk'nl”"’nk-l) r}

This proves the first part of the theorem. The second part follows analogously.



44

Remark 2.2.3 The conditions imposed on the rank matrices when we
find the null districtions in Theorem 2,2.2 and Theorem 2.2.3 arise due
to the restrictions given on the matrices enumerated by using Théorem 1.2.1
and Theorem 1.2.2. Therefore, if we can improve the results of Chapter I
by finding simple expressions for enumerating the classes of matrices
satisfying the conditions (1.2.11) or (1.2.12) mentioned in Remark 1.2.1,
the corresponding results on the conditional null distributions obtained

in this chapter can also be improved.
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2.3 K-sample Order Statistics of Kolmogorov-Smirnov Type

In this . section, we consider statistics of the form U, defined by

1
Kiefer (1959) (cf. Section 2.1) for testing the goodness-of-fit hypothesis

Hl: Fl= F2 = .. = Fk = G. When k = 1, van der Waerden (1971) wrote the

statistic as a function of the order statistics of a given sample;
Epanechnikov (1968) found an exact expression for the distribution of
the statistic, and Steck (1971) obtained a closed form of the distribution

under the hypothesis H When k is any finite integer greater than or

1°

equal to 1, we use the formulas of Section 1.3 to determine, under the

null hypothesis H the null distribution of the statistic

l’

U = sup lFi (z) - G(z)l
z i

which is a special form of the statistic U1 when Cy = +ee = cp = 1. 1In
fact, this is only a combination of Steck's (1971) result. However, we
obtain further the conditional null distribution of the same statistic
subject to the restriction on the ordering of the order statistics between
the k samples.

A

Now we define the following statistics which constitute the

U statistic.

=i i
D+(ni) = S‘;P(G(z) - Fni(Z))
=i _ i _
D_(ni) = sgp(Fni(z) G(z))
and
~i _ i =i
D" (n;) = max {'13+(ni), D_(ni)}

are usually called the one-sample Kolmogorov statistics. The first two

are one-sided and the third one is two~sided. In the k-sample case, we
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define

i

sup {Bifni)}'

D (N, ,u..,n)
+ . .
1 k 1fifk

D (n,,...,n ) = sup {D (n.)}
- 1" k . - 1
- lflfk
,ahd
i _ - oq
u(ny,...m) = sup {D7(n;)}
1<j<k

Since the statistic Bfn .,nk) is a function of the one-sample

17
statistics Di(ni), i=l, ..., k,‘the distribution of U(nl,...,nk) is based
on the distributions of these one-sample statistics. Therefore, we need
the following lemma and theorem which are originally due to van der
Waerden (1969) and Epanechnikov (1968), respectively. For the sake of
completeness, the proofs are élso skétchéd here.

’ : i i o [.4i p-1
Lemma 2.3.1 sup(F (z) - Fn (z)) = sup xh -

JE

Sgp(Fi.(z) - Fikz)) = sup‘( i i ﬁ?

i 1<h<n
==

i . s i A
where x; is the sample point of the order statistic Xh' for every

h=1, ..., ni and i =1, ..., k.

Proof: Without loss of generality, we may assume that i = 1. Since

a continuous monotone transformation of the 2z axis leaves the differences

1 1 1 .
(F (z) - Fn (z)) unchanged, we can replace z and X by the new variables
i

z' = Fl(z) and (xi) = Fl(x;) without changing the maximal difference



47

1 ‘ . S | L
sup(Fl(z) - F (z)). Let us call the new variables z and>xh‘aga1n,,so
z 1 : : '

the distribution function assumes the. simple form
1 : ~
F(z) =z _ 0 <z <1,
Since all of the xh's lie between 0 and 1, we can set

F(z)

i

0 o z <0

1
o
N

v

F(z) 1

Hence, the probability density function (p.d.f.) is

1 0 <z <1
f(z) =
0 otherwise.
. 1 .1 . h-1 h .
At the point X the function ¥ (z) jumps from —— to —, It is clear
n n n
1 1 1

that the maximum of the difference Fl(z)'— Fi (z) must occur at one of

1

o L g :
the points xl,'x;, ceay xi, veey xi . Thus, the results of the lemma

1

follow.

Theorem 2.3.1 For any integer i, 1 < i < k and any real number r,

-1 < r < 1, the following hold under the null hypothesis Hl

i
ax~ ,
n

(1) Prob {Bi(n.) <r}s= ni! J C e [ dx
* G (r) i

where Gi(r) is a n, dimensional region of integration specifiedvby the

< ... < x:L <1 and 0 < x; < min {r + E:lA, 1} , for
- - 'n, - - - n

. i
conditions 0 < xl
i i
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(2) Prob {Bf(ni) < r} =n,! I 1_.;..._fdxi .o dxi .

i ‘.- . : S . {‘ . e -
where G“(r) is a ni dimensional region of integration specified by the

conditions 0 <'xl‘< < xl'.< 1 and max O} h - x < x1 < 1 for
- 71 - - n, - - ' n, - "h - -
i _ i

h=1l, ..., n,.

. i
(3)  Prob {Bl(n;) <r} =mn,1 { , PR Idxl R

it - i J 1 n,
G7 (r) » i

where Gl(r) is a n, dimensional region of integration specified by the

. <
i < ... <X ) < 1 and max o, "—'. - r} Xh < min {r+ —, 1 ’

conditions 0 < x
i. i

for h =1, ..., n..
i

Proof: Since the order statistics Xi, ey X; are i.i.d., the
i

. i i : ’ . ; el 4 s
sample points xl, ceny x; , ‘after the transformation described in the
5 : .

proof of Lemma 2.3.1, are distributed with p.d.f.

1 0<x- <1
i By
f(xh) =
0 othexrwise.

Therefore, the joint p.d.f. of the order statistics is ni! in the region

specified by 0 < x; < ... < xi < 1. Under the null hypothesis Hl, we
i
1 k \ . Cs
have F© = ... = F = G, therefore, Lemma 2.3.1 implies that the condltlon

i . .
D+(ni) < r is equivalent to
i , v
X, - (h—l)/ni <x h=1, ..., n,.

1

This proves (1) of the theorem. (2) and (3) follow analogously.
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Given k populations, an experiment ‘Ej for testing the null hypothesis

: S | 2 - k . : ' . .
'Hl: F =F = ... =F = G nay be performed in the following steps:
\ ' i i i :
_(1) a sample of size ni, namely Xl' X2, .y Xn such that
i i ~ i, Co .th " . o
X1 < X2 RN Xn is drawn from the i population, i1 =1, ..., k.

i
(2) Compute the statistics defined at the beginning of this

section by using Lemma 2.3.1. '

In érder to find the null distributions of the statistics, we re-
call that I(k, m, A, B, C, D) and IB(k, m, A, B, H, D) are. functions
whose values have been determined in Section 1.3 for given vectors A, B,
C, D and H satisfying the conditions specifiéd by (1.2.2) and (1.2.3)
respectively. |

The forthcoming theorems and éorollary are the main results of this

section.

Theorem 2.3.2 Under the'conditions>thatﬂk > 1, ny = ... = nk’= n

i i+l . . .
and xj < x : for every j =1, ..., nand i =1, ..., k-1, the following

is true when the null hypothesis Hl holds.

prob {Bi(n) < r,, Di(n) <} =¥, n, A, 8, 0, 0
, . s
where A = (a_, ,a), B= (b, ..., b) and a, = min § 2 l—iu 17,
1 1 n 3 n
bj=max{0,%~rl} for 3 =1, ..., n

Proof: From the proof of Theorem 2.3.1, wé know that the joint

L. . i i . '
p.d.f. of the i.i.d. order statistics Xl' . ey X; is ni!, for every
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i=1, ..., k. Since the random variables between the samples are also
independent of each other, the joint p.d.f. of the k samples of order
statistics is equal to (n!)k. Hence, Theorem 2.3.1 implies that the

joint probability distribution of the statistics Bi(n) and Bt(n) con-

sidered in this theorem is the integration of the constant (n!)k over the
region which is the same as the region of integration defined by the

function I(k, n, A, B, 0, 0). Thus, the result of the theorem follows.

Similarly, we can prove the following theorem.

Theorem 2.3.3 Under the conditions that k < 1, n, = ... = n =n

i+
< xl.l +d4,, j=1, ..., nand i =1, ..., k-1, where 4,'s are
- 3j i ] 1

and x%
J

non-negative real numbers such that O < di <1 for i=1, ..., k-1, and

k-1
2 di < max {O, %'— r¥} , the following is true when the null hypothesis
i=1

Hl holds.

Prob {Bi(n) < rl, Bﬁ(n) < rz} = IB(k, n, A, B, 1, D) where A and B

are the same as those defined in Theorem 2.3.2, and D = (dl, ey dk—l)'

Corollary 2.3.1 Under the conditions that k t 1, n1 = .,. ®=n =n

and x% < xl;l for 3 =1, ..., nand i =1, ..., k-1, then the following

holds under the null hypothesis Hl.

= _ k
prob {D_(n;, ..., n) <71, D(n, ..oy ) <1} = @H 1k,n,a,8,0,0)

where A, B, and D are the same as those defined in Theorem 2.3.3.

Proof: This is true because of the fact that
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2

= o
17 Pamgr ey nk) <r }

Prob {EL(ni, .eny nj) f r

| =1, =
= : “ <
. = Prob {D-(n) < r. §+(n) < rz}

which can be verified from the given conditions and Lemma .2.3.1.

‘Remark 2.3.1  The conditional null distribution of the statistic

U(nl,.n ...,>nk)»has been detefmined,by Corbllary 2.3.1. For the

2’

special case that k' = 1, we obtain Steck's (1971) result. 1In general,

the null distribution of the statistic Efnl,.nz, ey nk) can be expressed

as
— k. —i
. < o i <
Prob {U(nl, e nk) < r} i Prob {D (ni) < r}’
. i . o
since the k samples Xl' . X;i’ i= 1,...,k are independently drawn in

the experiment El and therefo?e the statisticshﬁi(ni), i= l,...,k are
independent. This enables us tovcompute the sﬁatisticfﬁ(hl,...,nk) based
on the l-sample resu;t.

.The conditions imposed on the érder statistics when we fiﬁd the
null distributions in Theo;eﬁ‘2;3;2_and Theorem 2.3;3‘arise'dué-fofthe
restrictions giQen on the matfices'used to specify the regions‘of integra-
tions of the k-m fold multiple integrals detetermined in Theorem 1.3.1
and Theorem 1.3.2. Therefore, if simple expreésions can be found for the
integrals defined in Remark 1.3.1, the correspondingvresulté on the condi—

tional null distributions obtained in this chapter can also be improved.
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2.4 Procedure of Testing the Null Hypotheses

Here we describe precisely how the k-sample statistics defined in

this chapter can be used to test either the null hypothesis H F1=...=Fk

or the null hypothesis Hj: Fl=...=Fk = G.

2:

Let S represent any one of the statistics whose c.d.f. has been found
in this chapter. Let
p = Prob {s < r} (2.4.1)
then we are able to determine the value p for a given r, or to approximate

the number r for a fixed p. Therefore, the following testing procedures

can be used as an analogue to those given by Maag and Stephens (1968).

Suppose there are k populations with continuous distributions. Draw
one sample of prescribed size from each population and calculate the value
of the statistic S according to its definition. If we find that S = s, then
the two test at significance level o can be performed in the following two
directions:

(i) Compute P such that P, = Prob {s < s}. I1f 1 - P, S o reject
the null hypothesis at the significance level a. 4

(ii) Approximate the value of r for p = 1 - o, such that (2.4.1) is
satisfied. If s > r, reject the null hypothesis at the significance

level a.



'CHAPTER IIT

A STUDY OF ROOTED PLANE TREES

3.1 'Introduction

In this chapter, we use the.definifion of a rooted plane't;ee~given
by Klarner (1970). Two representation theorems will be preéented in
Section 3.2, namely, the pseudo-search code representation and the matrix
representation. This reformulates the results of Chorneyko and‘Mohanty
(1972, 1975) who have identified both a rooted plane tree and a pseudo-
search code with a lattice path. Then we are able to enumerate in
Section 3.3 certain classes of rooted plane trees by using the generating
function techniques or the formulas Qf Chapter I. Finally, construction
of épfimal alphabetic q—ary trees are studiédvin_Seqtion 3.4. 'This in-
yolves the investigétion of - the connections between footedvélaﬁevtrees
and codes in information theory. As‘a‘résult, Qe are ablé to establish
a hecessary and sufficient condition on the paﬁh lengths of a g-ary tree
(a refinement of Kraft's inequality) and provide an algorithm for con-
structing an optimal alphabetic g~ary tree in terms of pseudo-search
codes by using a computer (a generalization of Schwartz's and Kallick's
(1964) algorithm). An important application of the optimal g-ary trees

can be found in the k-sample group testing problem of Chapter IV.
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3.2 Definitions and Representation Theorems

The notion of a rooted plane tree considered here is the one;L
used by Klarner (1969). For undefined terms see the book by Harary
and Palmer (1973). | |

Let T(V, E, v, o) be a rooted plane tree where V is the vertex set,
E the edge set (a set of 2-subsets of V), v a distinguished vertex called
the root, and a a linear order relation on V possessing the following
properties:

(i) For x, vy € V, if p(x) < p(y), then x o y, where p(x) is the

path length from v to x and is called the path length of x.

Il

In particular, p(v) 0.

(ii) 1f {r, s}, {x, v} € E, p(r) =p(x) =p(s) -1 =p(y) -1

and r o x, then s a vy.

A rooted tree is called a planted tree if the degree of the root isl.

Any vertex of degree 1 other than the root is called an end vertex.
Any vertex with degree greater than 1 is called a branch vertex. A tree
having all its branch vertices of degree q + 1 is called a g-a¥y tree.

Two rooted plane trees Tl(V. E.» V., al) and TZ(V' E., Vo az) are

1 1 2

isomorphic if there exists a permutation ¢ of V such that ¢(vl) =V,
E, = {{o(x), ¢t }; {x, v} € El} and x a, y if and only if ¢ (x) a, ¢(y).
One can easily draw a diagram of a rooted plane tree by arranging the ver-
tices in levels so that vertex x is in level p(x) and then arranging the
vertices in each level from left to right according to the order relation a

We note that two trees are isomorphic when they have "the same"

diagram in the plane.
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Example 3.2.1 A diagram of a rootea plane.tiee T(V, E, V,_u) where
v=1{1,2,3,45,6,7 8, 9, 10}, £ = {{1, 2}, {1, 3}, {2, 4},f{2, 5},
{3, 6}, {3, 7}, {6, 8}, {6,19}, {6, 10}} is given in Figure 3.2.1. The

linear ordering a on the vertices is 1o 2a 3 a4 a5a60 70 8a9al0.

Pigure 3.2.1 A Rooted Plane Tree.

It is clear from the definition that even though the vertices of a
rooted plane treé are not labelled, the ofdering o imposed on the vertices
has already implied a natural labelling.

One may ask, "Can we represent a rooted plane tree analytically with-
out shbwing its diagram?". The answer-ié positive. In fact, many aﬁthors,
for example; Klarner (1970), Chorneyko and Mohanty (1975) héve.tried‘to-
‘establish various representations of sﬁchvtxees. Here we‘provide two ‘
methods, namely, the pseudo-search code representation and the métrig fe—
presentation. They can be cdnsidered as new versions of the results 6f

Chorneyko and Mohanty (1972, 1975).
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" 3.2.1 Pseudo-search Code Representation

Let ﬁs-define the lexicographie labelling of a rooted plane tree as
the following. The robt is labelled by e. The vertices of path length 1 -
are labelled from left to right as 0, 1, ..., p, provided that there aré'_
p + 1 of them. The labelling of the remaining vertices are determined
firstly by the labelling of the branch vertex adjacent to it (joined to
it by an edge) but with a shorter path length, and, secondly by the left
to right ordering among the vertices of same path length and adjacent to
the same branch vertex. For example, if a branch vertex of degree g + 1
is labelled as x where x is a concatenation of natural numbers, then the
g vertices adjacent to it but with longer path lengths are labelled from
the left to the right as x0, xl1, ..., xq, respectively, where xi is the
concatenation of x and i, 1 =1, ..., ¢.

It is easy to see that tfees in the same isomorphism class have the
same lexicographic labelling. Furﬁhermore, the set of all labels at the
end vertices of a rooted;blane tree resulting from the lexicographic label-
ling determines uniquely the isomorphic class of the tree.

We define the lexicographic ofdering B of the vertices of a rooted
plane tree to be the lexicographic ordering of the corresponding labels
obtained from the lexicographic labelling of the tree. Assume that the

label e of the root is always first in order.
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Example 3.2.2 When the tree T(V, E, v, a) of Example 3.2.1 is
lexicographically labelled, we represent the tree by T(V, E, v, B). The
diagram of such a tree is shown in Figure 3.2.3. The vertices in the lexico-
graphic ordering is eg0 8 1 800 8 01 R 1R 10 B 100 B 101 B 102 B 11.

The set C = {00, 01, 100, 101, 102, 11} determines the isomorphic class

of the tree uniquely.

100 101 102

00 0 10 11

Figure 3.2.2 The Tree Represented by the Set
¢ = {o0, 01, 100, 101, 102, 11}
Later we shall see that sets like the set C of Example 3.2.2 are in
fact a pseudo-search code defined by Chorneyko and Mchanty (1972) who
modified Rénvi’'s(1969) definition of a search code. For the sake of

\
completeness, we list the necessarvy definitions:

Definition 3.2,1 A finite sequence of non-negative integers is
called a codeword. The length of a codeword is the number of non-negative
integers contained in it.

We denote the codewords by small Latin letters (a, b, ¢, ...), where
each of the a, b, ¢, ... is a codeword of length % > 1. When no confusion
arises, we omit the comma and bracket gigns.The length of the codeword a

is denoted by L(a). It is convenient to consider the empty sequence, e, as

a codeword. The set of all codewords is denoted by Z.
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Definition 3.2.2 A codeword b is called a prefix of a codeword C
if there exists a éodeword d such that C = bd.

It is obvious that £(bd) = 2(b) + 2(4).

Definition 3.2.3 A finite set C of different codewords is called
a code.

The empty set is considered to be a code and is called the empty
code. The code consisting of the empty codeword e only is called the

trivial code.

Definition 3.2.4 If C is a code and a any codeword, then Cé is the
set of all codewords b € Z such that ab € C.

We denote by N(C) the number of codewords in the code C.

Definition 3.2.5 A code C is branched if one of the following occurs:

(1) C is the empty code.

(2) C is the trivial code.

(3) C does not contain e and there exists an integer b(C) > 1, such
that for k, the codeword consisting of the single letter k, k 50, 1, 2, ...,

the code Ck is empty or non-empty according as k > b(C) or k < b(C).

We call b(C) the branching number of C. To complete the definition
of branching number, it is convenient to put b(C) = 0 if C is the empty or

the trivial code.

Definition 3.2.6 C is a pseudo-search code if Ca is branched for

every a € 2.
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Definition 3.2.7 For C a pseudo-search code, we call those a € Z for
which b(Ca) > 1 the branch points of C and b(Ca) is the branching number of

the branch point a.

Definition 3.2.8 A pseudo-search code is called regular of degree

g > 1 if each a ¢ Z such that b(Ca) >1, b(Ca) = q.

It is convenient to say that the branching point a has b(Ca) branches
at the branch point a.

If a pséudo-search code C does not contain e, then C is a search
code according to Rényi (1969) if b(Ca) > 2 for every branch poiﬁ; a of C.
Also, Rényi defines a regular search code as a regular pseudo-search code
of degree q > 2.

The following example may clarify the above definitions.

Example 3.2.3 Consider the codes:

ct = {00, 01, 100, 101, 102, 11}
c? = {o, 11, 2}
c3 = {0, 21} !

Cl is a pseudo-search code. C2 is branched but is not a pseudo-search

. 3
code (since e.g. C2 is not branched) and C3 is not branched (Cl = ¢ but

1
3—
c‘2 = {1})

Note that Cl is the code representing the tree in Example 3.2.2 and

Figure 3.2.2.
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Given a rooted plane tree, it is easy to check that the set of all
labels at the end Yertices of the tree obtained from the lexicographic
labellind is a pseudo-search code. Conversely, given a pseudo-search
code, in order to show that there corresponds a unique isomorphism class
of rooted plane trees with 1exicogfaphic labelling, we need to construct
the sets defined below.

For C a pseudo-search code, i a non-negative integer, define Ci to
be a code consisting of distinct codewords formed by the first i integers
of each codeword with length greater than i contained in C, together with
all those codewords in C having lengths less than or equal to i. “Suppose

2
the length of the longest codeword in C is h, then we construct Cl, C ', veey

Ch. It is obvious that Ch = C,.
. . 1 2 h .
The following lemmas concerning the sets C°, ¢, ..., C are essential

to the proof of our main results of this section. Verifications of the

lemmas are elementary but lengthy. Therefore, we only outline the proofs.

Lemma 3.2.1 Let a be any codeword in C with length £(a), then for

any non-negative integer i such that i < h and i - 2(a) > 1, we have
i i-%(a
«ty = (i@
a a
Proof: It can be shown from the definition that for each codeword

i-2(a) i-2(a)

b e (Cl)a, we have b € (Ca) . Thus, (Cl)a<§ (Ca) . Similarly

i-%(a)

we can also show that (Ca) g:(Cl)a. This gives the result of the

lemma.

Lemma 3.2.2 If C is a pseudo-search code and the length of the

longest codeword in C is h, then Cl, Cz, ceor Ch are also pseudo-search

codes.
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Proof: TFor any fixed non-negative integer i such that 1 < i < h,

we obtain the folloWinq from Lémma 3.2.1:

«g(a)”‘:'

0 i
i {e} ‘ i=2(a) and C_ # ¢
(c )a - ¢ : i =f(a) and C_ =
. .;_Q/(a) . a
(ca)l i > 2(a)

. . o i-2(a) .
Then we only need to show that in the non-trivial case, (Ca)% »(a) is also

a pseudo-search code. The verification is elementary.

For any pseudo-search code C, let B(C) be the set of all branch

points of C. Then we have:

Lemma 3.2.3

(1) mcH ¢ B g ... < B = B(C).

If a is a branch point of C%, then a is also a branch point of Cj

with the same branch number for any i < j, i,j =1, ..., h.

(ii) :m(cl) = {e}
k-1,
i k
Uu ¢ ~c,k=2,3, ..., h.
i=1

]B(Ck) .

il

proof: (i) For any i < j, i,j =1, 2, ..., h, it follows from the
e i j, i . ' '
definition that C~ = (CJ) . If a is a codeword of length %(a) < i, then

Lemma 3.2.1 implies that
i, j, i j i-%(a)
C = ({(C =
( )a ((c”) )a ((c )a)
Therefore, if a is a branch point of Cl, it must be a branch point of Cj
with the same branch number.

The strict inclusions hold because of the fact that the longest code-

word in C is of path length h.
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k.
(ii) It is easy to see that IKCl) = {e} and Exck) U Ck = iglcl for
k=1, ..., h. But Ixck) n Ck = ¢, therefore, we conclude that
k-1 .
BCS) = Uct— ok,
i=1

Theorem 3.2.1 Given a pseudo-search code C consisting of n codewords

ar @y ..., a arranged in lexicographic order, suppose max {a,} = h.
1<ign

There exists a rooted plane tree T with height h and with n end vertices

) By sy

such that the lexicographic labellings at the end vertices are a, 5

a from the left to the right. Furthermore, the degree at the root of the
tree T corresponds to the branching number of the pseudo-search code C. Ahy

other branch vertices of degree g + 1 corresponds to a branch point with

branch number q in the pseudo-search code C.

Proof: Construct the codes Cl, C2, ooy Ck. Then they are pseudo-

search codes by Lemma 3.2.2. If C1 consists of g codewords, they must be
0, 1, ..., g-1 , then Cl corresponds to a tree Tl with height 1 and with
g end vertices labelled from left to right as 0, 1, ..., g-1. ‘Let m be any
integer < h. Suppose there always corresponds a tree Tk to the pseudo-
k m+1 .
search code C , for any k <m< h, then the tree T representing the code
+
c™ 1 can be obtained by adding the proper number of branches to the end
vertices of the tree Tm which corresponds to a codeword in Cm but not in
m+1

C . This is possible because of Lemma 3.2.3. Thus, the theorem is proved

by induction.

Remark 3.2.1 Since we have already mentioned that the converse of

Theorem 3.2.1 is also true, we can establish a one-~to-one correspondence



63

.between the set of all pseudo-éearch codes and the sét of‘all isbmorphism'v
classeé of rdqted plane trees in the mannér described in Theorem 3.2.1.
_‘Thié‘enables us.to enumerate or construct trees by déaliﬁg analytically with
fhé correépbnding péeudo—éearch*codéé. Tﬁe process of ?oding,_that is, given
‘é tree to determine the code; gnd decoding, that ‘is, given a code to deter-
mine the tree (representing an isomorphism class) is relatively simple éom—.-
pared to Klarner's (1970) method of representing a plantga plane tree by a
sequence of integers of Chorneyko's and Mohanty's (1975) original method of

representing a planted plane tree by a lattice path.

3.2.2 Matrix Representation

The definitions énd results of this subsection apply to trees with
vertices under either a linear ordering or a lexicographic ordering. Al—
though different classes of trees are encountered when different orderings
are specified iﬁ the matrix representation, we find:that the one—to?one_

correspondence between these two classes naturally exists.

" Definition 3.2.9 Given a planted plane tree with n end vertices and
k branch vertices other than the root such that the ith branch vertex is of
degree q, +1,i=1, ..., k, then the sequence (ql, cees qk) is called the

degree sequence of the tree. Suppose there are xi end vertices between the

ith and the (i + 1)th branch vertices, i =1, ..., k-1, and that xk = qk,

then the sequence (xl, ey Xk) is called the end vertex sequence of the tree.

[ e (W Y
[ e (WY

Let Qj = xi‘for =1, ..., k. The sequence

q. - j and X, =
3 1

i=1 i
(Ql, cees Qk) is called the cumulative degree sequence of the tree and the

sequoence (Xl’ ey Xk) iy called the cumulative end vertex sequence of the

tree.
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- Remark 3.2.2“The follﬁWing.héld for any rootéd.plane tiee:

S (1) If’(Ql, }..j.Qk)'is‘the cumulétive degree sequence, fhen Qi + 1
aehotés the total'number»of end vertiCes'joinéd to ény one éf the first i
" branch vertices of the tree by an éége, i =‘i, ,..,_k. - On the_ofher hand,
if (Xl, ey Xk) is the cumulative end vertex sequence, t_:hen-xi déhotes
the total number of end vertices between the first and the (i 4 1)th branch
vertex of the tree, i =1, ..., k—l and Xk denotes‘the.tétal number of. end
vertices of the tree.

(ii) It is obvious that a degree sequence (resp. end vertex sequence)

of a tree is uniquely determined for a given cumulative degree sequence

(resp. cumulative end vertex sequence), and the converse is also true.

Definition 3.2.10 Let U = (Ul, ey Ur) and V = (Vl, eeey Vr) be
two nondecreasing sequences of non-negative integers such that Ui > Vi'

i=1, ..., r. We say that the vector U dominates the vector V, or in

other words, the vector Vis dominated by the vector U.

Theorem 3.2.2 Let (Ql' ceoy Qk) be the cumulative degree sequence
of a planted plane tree and (Xl, s Xk) be the cumulative end vertex

sequence of the same tree. Then we have Xk = Qk + 1 and the vector

(Ql, eeey Qk—l) dominates the vector (Xl, ey Xk—l)

Proof: By definition, Xk = Qk + 1. The fact that Xi < Qi for

i=1, ..., k-1 follows from (1) of the remarks.

Theorem 3.2.3 Given any two nondecreasing sequences of non-negative
i .o < v = + . ‘
integers (Ql' ' Qk) and (xl, ’ Xk) such that Xk Qk 1 and

(Ql, ceesr 9 ), then there exists a unique

“k»l) dominates (X

1o X
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‘isomorphiSm class of planted trees with (Ql,'..., Qk) as its ;umulative

degree sequence and (Xl, ey Xk) asvitS-éumulétive end vertex sequence.

AP %) by th
» xk) v t e

vProof: Determine the vectors qur'..,; qk) and (xl,

systems of equations i’q. -3 =0, and' % x, =X, for 3 =1, ...,.k.
| S J i=1 | S

cens xk)

Then we claim that»(ql, . qk) is the‘degree'sequence and (xl,
is the end vertex sequence of a tree which represents a unique isomorphism
class of rooted plane trees. This can be showh by drawing a tree with the
. th : . ' . . th

i branch vertex of degree a4 + 1 and with xi end vertices between the i v

. t . .

and the (i + 1) h branch vertex, i = 1, ..., k=1 and with Qk + 1 total number
of end vertices. Such a tree can always be drawn because of the given con-

ditions.

Remark 3.2.3 We conclude from the above two theorems that there is a
one-to-one correspondence between the set of all isomorphism classes of
rooted plane trees with given degree sequences and end vertex sequences, and

the set of all matrices of the form

where the vectors satisfy the conditions given in Theorem 3.2.2.
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3.3 | Enumeration Mcthods

_vVarious techniques for' counting 1cbe11ed non—blaﬁaf'treés have bgen
gathered by Moon (1970). Howcvef, not ‘all the‘tecﬁniqueS'can bevcséd'td
enumerate unlébelled plane treec. The rcason Why labelliﬂg is Unnecessary
to. be considered in the enumeraticniof thé rootéd piane;tréescic that the.
vertices of such trees have alféaay been assiéned'an order relaticn. There-
fore the ordering of thc vertices. can bectaken_as_a natcral iabeiling.

'Klarnér (1970) used generating functions to'enumeratebcertain classes
of plantea plane trees with a fixed number of vertices and with specified
degrees at the branch vertices. Chorneyko and Mohanty (1975) determined, via
the enumeration of the lattice paths, the total number of planted plane trees
with a specified number of branch vertices and some boundary conditions on
the degree sequences ana the end vertex sequences.

In this section, we first extend the generating functicn technique to
the enumeration of certain classes.of*hcmecmorphically;irreducible pianted
plane trees (planted plane trees with no bianch vertex of degree 2) with a
fixed pumber of end vertices. -Further.results are aléo cbtained with addi-
tional restrictions on the degrees at the Qertices or heights of the crecs
with a fixed number of end vertices. We then uce the formulas of Chapter I
to determine, via the enumeration of matrices, certain classes of k-tuples
of planted plane trees with a specified number of branch vertices and some
more generalized boundary conditions on the degree sequences and end vertex
sequences compared to the results of Chorneykc and Mohanty (1975). It is
also demonstrated that, under certain circumstances, the same results can

be obtained by both methods.
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3.3.1 Generating Function Techniques

<

i

A generating function is a function of the form f(x) = 2 a,x
i=0

where xo = 1. The variable x is an indeterminate or a tag whose powers
identify the coefficients which are numbers of various kinds of trees in
question associated with the powers. The enumeration proceeds by finding
relations for the generating functions and solving the function equations
for the generating functions. A variety of techniques is required to
solve these function equations so that an explicit solution or a recurrence
relation for the coefficients of a generating function can be found.

Unless otherwise specified, the results in the following examples are

original. They are given as a demonstration of the above mentioned

techniques.

Example 3.3.1 Let t(n) be the total number of homeomorphically

irreducible planted plane trees with n end vertices. Let the generating
[e
function be T(x) = 2 t(n) xn. We can always combine k planted plane
n=1
A

trees where k 2 2, to form a new planted plane tree by joining them at
their roots, and then adding an edge at the root. The new planted plane

tree has a total number of end vertices equal to the sum of the end vertices

at the k original trees. We therefore have the relation
«< 3
i
T(x) = x + ) (T(x))
i=2

where we note that t(l) = 1 and the term x arises for the case that the tree

has only a single edge.Using Lagrange’s formula which can be found in

Chapter 5 of the book by PSlya and Szegd (1970)), we obtain



68

v x° dn_l : n
T(x) = ) = {$(T)}
-1 b- ar -1
n T=0
where ¢(T) = i . Consequently, by comparing the coefficients,
1-) 7
i=1
we get
n-1
1 d
t(n) = = — {¢(m)}"
n! dTn—l
T=0

In particular, t(1) = 1, t(2) = 2, t(3) = 3, t(4) = 11, and t(5) 45, etc.

i}

Pictures of planted plane trees with n end vertices are given in Figure 3.3.1
forn=1, 2, 3, and 4. For n = 5, only one tree is shown as a representa-
tion for all those trees which are the same as a non-plane tree. However,

the total number of possible planted plane trees is illustrated in the

bracket below each representation.

Example 3.3.2 Let Ekni) be the total number of g-ary planted plane

trees with k branch vertices and n, end vertices where n, = gi - i + 1.
\

Let the generating function be ¢(x) =

E(ni) xl. Then it is clear that
i

0

I t~1R

t(nO) = 1 because there is only one tree consisting of a single edge with
no branch vertex at all.

If we combine g such trees at their root and add an edge to the root,
then the resultant tree is again a g-ary planted plane tree with a total
number of branch vertices equal to 1 plus the sum of the branch vertices

at the q original trees. Therefore, we obtain the relation

o(x) = 1 + x(¢(x))7
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T lvley

|yl ey

| ey [Vt

(1) (4) (3) (3) (2) (2) (2) (6)(4) | (8)

Figure 3.3.1 Planted plane trees with n end vertices and with height h.
‘ For n = 5, the numbers in the brackets below the trees
denote the total number of planted plane trees of that
kind which can be obtained by switching the branch ver-
tices within the same level.
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where the term 1 appears due to the trivial case when the tree consists of
no branch vertex at all. Using the formula in Problem 211 (Chapter 5, Vol.

Vol. 1 of the book by P8lya and Szegd (1970)), we get

« . i
$(x) =1 + ) {ql ) x

i1 i-1) i

By comparing the coefficients, we conclude that

E'(n.) = [qi } # .
i

i-1y i

Noée that'EKni) also denotes the total number of g-ary planted plane
trees with ni + i+ 1=gqgi + 2 vertices. The same result has been obtained
by Klarner (1970) who used a generating function of the form T(x) in
Example 3.3.1. However, his function equation for T(x) is more difficult
to solve than our relation for ¢(x).

On the other hand, if we identify a g-ary planted plane tree with a
pseudo-search code by using Theorem 3.2.1 and its converse, the same re-
sult has also been obtained by Chorneyko and Mohanty (1972) in terms of
pseudo-search codes.

A

The similar result for labelled non-planar binary ‘trees is due to

Harding (1971).

Example 3.3.3 Let u(n) be the total number of homeomorphically

irreducible planted plane trees with n end vertices and with branch ver-

<

tices of degrees less than or equal to 4. Let U(x) = z u(n) " be the
n=1

generating function. Since we can only combine 2 or 3 such trees at their
roots and add an edge at the root to form a new tree of the same type, we

obtain
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Ux) = x + (U(x)° + (Ux)>
where the term x appears due to the trivial case that the tree consists of
a single edge. To solve this function equation, we first find a éransfor—
mation U(x) = v(x) + ¢ for some constant ¢ such that the equation in terms
of V(x) has the coefficient of the second degree term zerc. By simplifying
V(x) + ¢ = x + (V(x) + c)2 + (V(x) + c)3 and setting the coefficient of the
second degree term zero, we find that ¢ =-—l-. Consequently, the équation

3

becomes

3 4 11
(V(x))" - 3 V(x) + x + 37 = 0.

In order to reduce the power of V(x) in the equation, we move those terms
with degree of V(x) less than 3 to the right hand side of the equality sign

and take a 1ln transformation so that

4 1
31n |V(x)]| = 1n V) - x - 2

Differentiation of both sides yields the result

24vV(x) V'(x) - 11V'(x) - 27xV'(x) = -9V(x).

If we substitute V(x) by U(x) + ly then

3 1
8U(x)UTx) - U'(x) - 9xU'(x) = -3U(x) - 1. (3.3.1)
o [+ 4 l
Recall that U(x) = z u(n)xn, hence U'(x) = 2 nu(n)xn and
n=1 i=1
o o«
U(x)U'(x) = ) ) du(iuln - i+ 1)x". Substituting the above terms into
n=1 i=1
Equation (3.3.1), we have
[+ 4 [+ [« [+ 4 ©
8 Z 2 iu(i)u(n-i+l)x" - Z nu(n)xn—l -9 Z nu(n)x" = -3 Z uln)x” - 1.

n=1 i=1 =1 n=1 n=1
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Pinally, the following recurrence relation is obtained by comparing the
coefficients:
1 Y o
u(n + 1) = — {3(1 - 3n)u(n) +8 ) iu(i)u(n - i + 1)}.
n+1 .
i=1
Since u(l) = 1, the above relation implies that u(2) =1, u(3) = 3,

u(4) = 10, u(5) = 38, u(6) = 154, and so on.

Generating functions can also be used to enumerate certain classes of
planted plane trees with restrictions on the heights and the total number
of end vertices. 1In the literature, Riordan (1960) enumerated unlabelled
non-planar trees with given heights and total numbers of vertices. Gordon
and Kennedy (1975) obtained recurrence formulas for counting unlabelled
non-planar g-ary trees with given heights. 1In the following two examples,
our approach is analogous to Riordan's (1960). The relations of the gen-
erating functions obtained seem to be relatively simple for planted plane

trees., However, the solutions are still not in simple and explicit form.

Example 3.3.4 Let sh(x) denote the total number of homegmorphically

irreducible planted plane trees with height less than or equal to h and

o«

with n end vertices. Let Sh(x) = z sh(n)xn be the generating function.
n=1

If we combine i trees of height less than or equal to h at their roots

and add an edge at the root, we obtain a new tree of height less than or

equal to h + 1 and with a total number of end vertices equal to the sum of

the end vertices at these i original trees, for any i = 2, 3, ... . Thus

we have the relation
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i
Spe1(® = x + ] (S, (x)
i=2

where the term x appears due to the trivial case when the tree consists of

a single vertex.

Since Sl(x) = Z sl(n)xn and Sl(l) =1, sl(2) = sl(3) = ... = 0,

i=1
therefore
Sl(x) = X
o<
i X
Sz(x)——x+.2x—-l—:; -
i=2
2
X 1
S3(x) =x+ (1—x) x
1_. —_—
1-x

= x + x2 + 3x3 + 7x4 + ...

and so on. We see for example, s3(4) = 7 is the total number of homeo-
morphically irreducible planted plane trees with 4 end vertices and of

height less than or equal to 3. These 7 trees can be found in Figure 3.3.1.

Example 3.3.5 Let gg(n) denote the total number of q—ary‘planted
plane trees with height less than or equal to h and consisting of i branch
o« .
vertices and n, end vertices where n, = ki - i + 1. Let wh(x) = izogk(ni)xl
be the generating function, where x0 = 1 and gk(no) denotes the trivial case
when the tree consists of no branch vertex at all. Since we can only com-—
bine g-ary planted plane trees of height less than or equal to h at their
root and then add an edge at the root to form a new g-ary planted plane tree

of height less than or equal to h + 1, we obtain
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Uppp (X) = 1 4 x(wh(x)?

where the term 1 appears due to the trivial case that the tree has only one

edge.
. AR = N
S;nce wl(x) = iZ]_sl(ni)x and wevknow that Sl(nO) =1,
sl(nl)‘= sl(n2)= ... =0, therefore,
wl(x)'= 1

wz(x) =1 +x
b (0 = 1+ x(l+ x)d
w4(x) =1 + x(1 + x(1 + x)q)q
qyq,4
b)) =1+ (1 +x(1+ (1+x(1+x)77)
and so on. Thus, for example, if we assume that q = 3, then sl(no) = 1

(n.) = 1 and

and s;(n)) = s (n,)) = ... =0; sz(no) = s,(n)

n
=3
~
il
9]
—_~
=}
[
il
|

= 0; s5(ng) = s5(n)) =1, s;(n,) = s3(n3) = 3,
s3(n4) = 1 and 53(n5) = 83(n6) = ,.. = 0. ‘Here we find that there are
three 3-ary trees with height less than or equal to 3, in fact, all three

of them are of height 3 since 52(3) = 0.
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3.3.2 Matrix Enumeration Techniques
It has been shown in Subsection 3.2.2 that a planted plane tree Ti
with m branch vertices can be represented by a unique matrix of integers
i1 " e xim
of the form such that 0 < Q,. < ... < Q. is the cumulative
Qiy ees O - =il - - ~im
il im
d < X < se. < L= 0, + X,. < 0.,
egree sequence and 0 < i1 S < Xim where le le 1 and 35 2 Qlj
for 3 =1, ..., m-1 is the cumulative end vertex sequence of the tree.
Furthermore, the converse is also true (cf. Theorem 3.2.2 and Theorem 3.2.3).

Let T = (Tl, T T.) oeey Tk) be a k-tuple of trees Ti’ i=1,2,...,1,

2, ceoyp i

.-+ k, where k > 1, defined as the above. Let {T} be the set of all

k-tuples of trees of the form T satisfying the following conditions:

k-i \
(a) Q,, =a. + ) d j=1, ..., m and
] ] i=1, ..., k
< < < < i =
(b) Cf SXy S XS e X i=1, ...,k
(c) X.. <X, .+ d, i=1, ..., k-1 and 5 (3.3.1)
iy - i+1,3 i .
i=1 ..., m
(d) b, < X,. i =1, ..., m
j - 713 ] ! ’
L}
(e) . < a, i =1, «.., M
ij - % J v ' /)
where a

ey am; b cesy bm; cl, cvas ck and dl, ceer dk-l are non-

1’ 1’

netative i h th < ... < b, < ... <b dec, < ... < .
e 1ntegers suc at a1 < < am, 1 S o an 1 3 < ck

We define A = (al,....am_f, B = (bl""' m—f' C= (cl, cees ck) and

D = (dl' ceey ). Then Theorem 3.2.2 and Theorem 3.2.3 imply that the

dk—l
cardinality of {T} equals to N(k,m-1,a,B,C,D) which has been defined and

evaluated in Section 1.2 (cf. Theorem 1.2.1).
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k-1
Similarly, if bl > Z dt' where do = 0, we let {T'} be the set of
t=1
all k-tuples of trees of the form T' = (Tl, T2, cees Ti' oo Tk), where

Ti’ i=1, ..., k are the trees defined at the beginning of this subsection

which satisfy the conditions (¢), (d), (e) of (3.3.1) and the following:
k-i

(a') Q; = min {aj + E a,. hi} J
t=1

1, .., mand i =1, ..., k

' < < < < i
(b'y O < Xil N Xim < hi' i

l, -.-’k

where 0 < hl ... < hk are non-negative integers. Then the cardinality
of the set {T'} equals to the number NB(k,m-1,A,B,H,D) which has been
defined and evaluated in Section 1.2 (cf. Theorem 1.2.2).

Note that for the special case that k = 1 and C dominated by B (resp.
A dominated by H) the determinant representing N(k, m-1,A,B,C,D) (resp.
NB(k, m-1,A,B,H,D)}) ‘can be reduced to the determinant given in
Corollary 1.2.1. This becomes the result which has been given by Chorneyko
and Mohanty (1972, 1975) for both pseudo-search codes and planted plane
trees of this kind. This is also a geﬁeralization of Klarner’s (1970)

result for binary trees with a given number of vertices (cf.‘'Example 3.3.2

of Subsection 3.3.1).
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3.4 Optimal Alphabetic g-ary Treeé.

Let T be a plantéd plané_trengith ﬁ ehdl?ertiées. Let Vﬁfvlf...,vn}-
be the set of all end vegtices of T. Let Qi be. the path»lenéth of the:end
vertex vi'and W, be a non-negative Weightvéssociated to the énd Qertex V.

i ='l,:,..;vn. We say_fhat the tree T is a weiqhted treeg Thé céSt of the

tree T is defined to be the weighted path length of its end vertices, that

n .
is,. 2 £.w,. A g-ary tree achieving the minimal cost for a given set of

weights W = {wl, ey wn} is called an optimal g-ary tree for W. An optimal

alphabetic g-ary tree for any given sequence of weightsla = {wl, “eey wn}
is defined to be a weighted g-ary tree T which achieves the minimal cost
for the given sequence of weights W under the restriction that the left to
right sequence of end vertices must follow the order vl, v2, .oy Vh and
with the weight wi associa;ed to the egd vertex vi, i=1, ...} n. it is
clear that the cost of an optimél alphabetic g-ary tree for a given‘seqqence
of‘wéights is always'greatei than or éqdal to the éost of an optimal g-ary
tree for the same set of weights. |

For applications to the k-sample group testing problem of Chapter IV,
we are required to construct an optimal alphabetic g-ary tree, where g = k+1
in this case, for a valley sequence of weights W ={w,, ..., wn}, that is,

1

for any W 2 < i< n-l1, w, < max{min W, min wk}
' i<j j<k

Constructions of optimal binary trees and optimal alphabetic binary
trees are well known. Huffman's (1952) algorithm for constructing an optimal
binary tree was first given for coding purposes. Schwartz and Kallick (1964)
provided a computer algorithm which transforms an optimal binary ﬁree

obtained from Huffman's algorithm to an optimal alphabetic binary tree of
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the same cost for a monotone sequence of weights. Hu and Tucker (1971)
proposed a T-C algorithm for constructing binary trees which can be con-
verted into an optimal alphabetic g-ary tree for a valley sequencé of
weights. The contents of the above mentioned algorithms will be studied
later in Subsection 3.4.2.

In this section, we first mention briefly the basic properties of a
weighted g-ary tree observed by Huffman (1952) and Knuth (1968, 1971).
Then we summarize how Huffman's algorithm can be generalized for construct-
ing optimal g-ary trees and the T-C algorithm by Hu and Tucker (1971) can
be generalized for constructing optimal g-ary trees which can be converted
into optimal alphabetic g-ary trees for valley sequences of weights. The
process of generalization is mainly stréigﬁtféxwara.‘ince‘the principles of
these original algorithms do not depend on the assumption that the trees
have to be binary. In addition, we provide a computation algorithm based
on pseudo-search code construction which enables us to use a computer to
convert ‘@Anoptimal g-ary tree constructed by using the generalized T-C
algorithm to anoptimal alphabetic g-ary tree for a valley seqﬁfnce of
weights =~ without increasing the cost. This can be considered as a non-
trivial extension of the algorithm by Schwartz and Kallick (1964). Finally,
the upper and lower bounds of the cost of an optimal g-ary tree are found
as functions of the entropy. When q = 2, these bounds have been found by

Hwang (1974).

3.4.1 Basic Properties of the Weighted Trees
Consider any weighted tree T with n end vertices, namely, Vl’ v2,
seer Voo from the left to the right. Let w, be the non-negative weight

associated to the end vertex Vi' i=1l, 2, ..., n. To every branch vertex
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of the tree T starting from those with the longest path length to those
with the shortest path length, assign a weight which equals to the sum of
the weights at the vertices adjacent to it but with a longer path length.

An example of such a weighted tree is given below to clarify the definitions.

Example 3.4.1 Let W = {wl, w2, Wor W, , ws} where wl =

3 4

w_ =2, w

3 4

=1, we = 1. If we assign the weight w, to the vertex v, of

the tree in Figure 3.4.1(a), the resultant tree in Figure 3.4.1(b) is a
weighted tree for W. 1In fact, this is also an optimal tree for W. We
also say that the tree is an optimal alphabetic binary tree for the

>
sequence of weights W = {wl, Wy r w3, w,, ws}._ However if we let

4

> : .
W' = {wl, Wor War Wy, w5}, the tree is not an optimal alphabetic tree for

2
W Weights can also be assigned to the branch vertices of the tree

according to the previous paragraph so that the tree in Figure 3.4.1(c) is

obtained. The cost of the tree is equal to:

5
Y% w, = 1x5 + 3xl + 3x2 + 3x1 + 3x1 = 20.

It is interesting to note that the sum of the weights at the branch vertices
is also 20. This is explained in the following lemmas which were given as
an exercise in the book by Knuth (1968). They can be easily proved by

using induction on the total number of branch vertices of a tree.

Lemma 3.4.1 The weight associated to any branch vertex v of a weighted
tree T equals to the sum of the weights at the end vertices of the subtree
of T rooted at v, that is, those end vertices of T that can be reached by a

path from the root of T through the vertex v.
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(a) A binary tree with n end vertices v., v_, ..., V

1 2

{b) A weighted tree for the set of weights
w=1{5,1, 2, 1, 1}

(¢) A weighted tree for W with branch vertices
labelled by the associated weights.

Pigure 3.4.1 The assigment of weights to a binary tree with

n end vertices.
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Proof: It is obviously true for weighted trees with ohly one branch
vertex. Suppose it is true for all trees with number of branch'vertices
less than or egual to k. For a weighted ﬁree with k+1 branch_verticés,
the lemma holdsiknfall‘the branch wvertices except the root because éf the
induction hypothesis. However, the weight at the root is definéd to be
the sum of the weights at the branch vertices adjacent to it. Thué, the
weight at the root equals to the sum of the Qeights at all the end vertices,
of the tree. Therefore, the lemma is also true for trees with k+1 branch

vertices. This completes the proof by induction.

Lemma 3.4.2 The weighted path length of a weighted tree T equals to

the sum of all the weights at the branch vertices of T.

Proof: It is obviously true for trees with only one branch vertex.
Suppose it is true for all trees with total number of branch vertices less
than or equal to k. For a tree T' with k+1 branch vertices, let there be
m planted subtyées rooted at the root of T'. From the left to the right,

.th . ' - : . :
let the 1 subtree bhe T{ which has ni end vertices with weights wil' wi2’

cen s ] hs £ L ey L i , i=1,...,m.
; wini and path lengths i1’ Yia y ini respectively, for i=1, LI

Then the weighted path length of T' is

m n, m n, m
i

R ST

W,

i=1 =1 -J =y =1 MM =y =1 M
Since the numbers of branch vertices at the subtrees T!, ..., T& are less
than k, by induction hypothesis, the first part of the expression equals

the sum of the weights at all the branch vertices of the subtrees. But,

the second part of the expression is known as the weight associated to the
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root from Lemma 3.4.1. Hence, the lemma is also true for trees with k+1

branch vertices., This completes the proof by induction.

Before we study the properties of an optimal tyee for a given set of
welights W = {Wl' e wn}, we note that such a tree always exists because
there are only finipely many distinct planted plane trees With n end ver-
tices (cf. Example 3.3.1). WNote that if we waﬁt.to find an optimal tree
for W and allow the degrees at the branch vertices to be any number from
1, ..., g, 1 <qg < n, then the tree with the most branch vertices of degree
g is always the optimal one. Therefore, it suffices to consider optimal
g-ary trees of W, provided that n = 1 mod{g-l). The condition on n can
always be fulfilled by adding some extra zero weights to the set W.

The following regult for optimal g~ary trees is a generalization of

the result on optimal binary trees by Huffman (1952).

Theorem 3.4.1 Let vi and vj be any two given vertices (each of.
which may be either a branch vertex or an end vertex, but they cannot be
joined by the same path throuéh the root) of an optimal g-ary tfee with
path lengths Qi, Rj and weights wi, wj respectively. Then the following
hold true:

(1) L. > %, implies w, < w.
i j i=- 3

(ii) there exists an optimal g-ary tree with the property that

w, < w, implies %, > £..
1= ] -]

Proof: Let To be a given optimal g-ary tree. Let v, and v, be the

given vertices of T .Let ’I‘1 and T2 be the two g-ary subtrees rooted at v
(6] R

1

and v, respectively. In the case when vy or v2 or both are end vertices,
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the corresponding subtrees become the vertices themselves. Let T3 be the
subtree rooted at the root of TO such that the end vertices of T3 include

all those end vertices of T which do not belong to either T
O

1 or T2 plus

the vertices Vi and vj. From Lemma 3.4.2, we know thét the cost of Tov
equals to the sum of the costs of Tl' T2, and TB. Now if the locations of

Tl and T? are interchanged such that v, takes the.placé of vj and vice versa,

and T., where
)

then the resultant tree Tg is formed by the subtrees Tl' Té,

Té is the same as T3 except that the end vertices Vi and Vj of T3 are inter-
changed. |

(i) Given that Ki > Qj' suppose it was true that wi > Wj' then the cost
of Té is less than the cost of T3. It follows from Lemma 3.4.2 that the cost

of Té is less than the cost of TO. This contradicts the optimality of TO.

Hence w, < w..
=]

(ii) Given that wj > wi,,suppose that Ri < Qj, then' the cost of Té is

no more than the cost of Tg. Therefore, Té is the optimal g-ary tree

satisfying the required condition.

3.4.2 Algorithms of Construction

The constructions of an optimal g~ary tree for an arbitrary set of
positive weights and an optimal alphabetic g-ary tree for a valley sequence
of weights are studied in this subsection. They are the generalizations of
Huffman's (1952) algorithm, Hu's and Tucker's (1971) T-C algorithm, and

Schwartz's and Kallick's (1964) algorithm.

Generalized Huffman's Algorithm: Given a set of n positive integers

W= {w,, w., ..., wn}, where n = 1 mod(g-1) and n > k, an optimal g-ary
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tree for W can be constructed as the following. The n weights are said to
be the end vertices of the tree. The g end vertices with smallest weights,

say w ee., W, , are combined to form a new vertex of weight

l|l'w2|I q

w,tw,+ ... + wq,, being the father of the g vertices. We say that a

1 2

branch vertex of weight w_,+ w + ... W is created. Repeat the same
l 2' ql

procedure to the remaining n-q end vertices and the new branch vertex. The
procedure continues until all the vertices are combined, that is, a branch
vertex of weight w, + v, + ...t v is created. This is possible because

n = 1 mod(g-1) and n > k. The resultant tree is called a Huffman's g-ary

tree for W. An example will be given at the end of this subsection.

Theorem 3.4.2 A Huffman's g-ary tree for a set of weights

W= {wl, Wor weey wn} is an optimal g-ary tree for W.

Proof: The proof for q = 2 can be found on p. 403, Vol. 1 of the book
by Knuth (1968) or the paper by Hu and Tucker (1971). The proof in general
is a straightforward extension of the special case that g = 2. This can be

shown by induction on the tqtal number of branch vertices of the tree. Use
\

the fact that if To is a g-ary weighted tree for W with the g smallest

weights, say wl,, w ey wq,, combined to form a branch vertex of the

2!
tree, then TO is an optimal g-ary tree for W if and only if the subtree

with the g end vertices Wi W , excluded is also an optimal g-ary

2" ey Wq

tree for the remaining n-gq weights and the weight wr + ...+t w .

In order to obtain an optimal alphabetic g-ary tree for a given se-
quence of weights we have to use a more restrictive construction method

which is a generalization of the T-C algorithm given by Hu and Tucker (1971)

for binary trees.
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The Generalized T-C Algorithm: Let W = {wl, w2, cees wn} be a
sequence of weights arranged in required order. We call this an initial
construction sequence of end vertices. Whenever g of the vertices are com~
bined to form a new vertex, say w, having é weight which equals to.the sum
of the g weights, we say that a branch vertex w is created. The new con-
struction sequence becomes the one without these g verticesvbut with w
taking the place of the leftmost one of these g vertices. Therefore; in
general, a construction sequence may contain end vertices or branch vertices
or both.

Two vertices in a construction sequence are called tentative-connecting,
abbreviated as T-C, if the sequence of vertices between them is either empty
or consists of entirely branch vertices. Any g vertices in a construction
sequence is called a T-C g-tuple if any two of its members are T-C whenéver
the sequence of vertices between them does not contain any one of its own
members.

The generalized T-C algorithm asserts that a T-C g-tuple of: minimum
sum of weights should be combined in each construction sequence. - In the
case of a tie, combine the leftmost T-C g-tuple of minimum sum of weights.
The procedure terminates when all the vertices are combined, that is
(n~1) /(g-1) branch vertices are created. The resultant tree is called the
g-ary weighted tree for % constructéd by using the generalized T—C.algorithm.
An example will be given at the end of this subsection.

Lemma 3.4.3 Let.% = {wl, e wn} be a valley sequence of weights. A
weighted g-ary tree for % constructed by using the generalized T-C algorithm

is a Huffman's g-ary tree.
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Proof: "The proof for g = 2 can be found in the paper by Hu (1973).
The proof in general is similar and based on the fdct that in every step
of the construction using the generalized T-C algorithm, a T-C g~-tuple
of minimum sum of weights always consists of the g smallest weighté. This

is true because the given sequence of Weights is a valley 'sequence.

. ->
Theorem 3.4.3 Let W = {wl, ey wn} be a valley sequence of weights.
A g-ary weighted tree TC constructed by using the generalized T-C algorithm

._>
can be converted into an optimal alphabetic g-ary tree for W with the same

->
cost. Furthermore, TC is also an optimal g-ary tree for W.

Proof: The proof for q = 2 is due to Hu (1973). The proof in general
can be obtained by considering the minimum sum T-C g-tuples instead of the
minimum sum T-C pairs in Hu's (1973) proof. Because % is a valley sequence,
we can always reassign thé weights of the end vertices at the same level of
TC to obtain a tree with the weighﬁs at the end.veftices arranged from left
to right in the required order without increasing the cost. The resultant

tree is optimal because of Lemma 3.4.3 and Theorem 3.4.2.

Before we introduce pseudo-search code construction algorithm, we define

and study the following terms which are due to Hu (1973) in the binary case.

Definition 3.4.1 A sequence of n positive integers A = {al, a ceey an}

2'
is called a g-ary feasible sequence if there exists a ¢g-ary tree with n end
vertices having path lengths corresponding to the integers from the left to

the right.

In addition, suppose max{al, a2, ey an} = h, we say that A is a g-ary

feasible sequence of height h.
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The following lemma is a straightforward extension of Hu's (1973) re-

sult.

Lemma 3.4.4 A finite sequence of positive integers is a g-ary feasible
sequence if and only if the following conditions are satisfied.

(i) If the largest integer in the sequence is h, then the number of h's
in the sequence must be a multiple of g and such h's always occur in con-
secutive sets of length q.

(ii) If we form a reduced sequence from the original sequence by succes-
sively replacing (from left to right) every g consecutive h's by one occur-
rence of the integer h - 1, then the reduced sequence again satisfies (i).

{(iii) If the process of (ii) is replaced by considering the reduced
sequence as the original sequence, (i) is still satisfied until a reduced

sequence of g 1's is found.

Proof: The proof is a straightforward extension of the one given by

Hu and Tucker (1971) for g = 2. 1t can be verified from the definition.

Theorem 3.4.4 Given a g-ary feasible sequence of height h, a g-ary

rooted plane tree of height h is uniquely determined.

Proof: Based on the properties of a g-ary feasible sequence of height

h stated in Lemma 3.4.4, it can be shown by induction on the height h.

Given a feasible sequence (a,, a ey an), Theorem 3.4.4 implies that

1" 2!
a unique rooted g-ary tree can be determined. Therefore, by Theorem 3.2.1,
we know that a unique pseudo-search code which corresponds to the rooted

g~ary tree can also be determined. Such a pseudo-search code can be con-

structed by using the following algorithm which can be considered as a
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non-trivial extension of the algorithmby Schwartz and Kallick (1964).

Pseudo~search Code Construction Algorithm:

(i) the first codeword is formed by a 0's.

- .th . s . th
(ii) the i codeword is formed by a g-ary addition* of 1 to the (i-1)

codeword (in lexicographic order) and affixing or removing zeros at the end

so that the resultant codeword is of length a, . i=2,3, ..., n.

*By a g-ary addition, we mean an operation (+) defined on the set of

integers {0, 1, ..., g-1} such that

r+s if r +s <q -
r(+)s =¢ 10 ifr+s =g
la if r+s >qgand a= (r+s) mod q, a < gq

Theorem 3.4.5 Given a g-ary feasible sequence, the code obtained by

using pseudo-search code construction algorithm is a pseudo-search code.

Proof: Since g-ary addition is employed in the construction, the
resultant code is branched with branching number g at every branch point.
Since the existence of the corresponding g-ary tree is known due to
Theorem 3.4.4, it is always possible for us to affix or remove zeros at
the end of the ith codeword obtained in step (ii) of the algorithm, so

that the resultant one is of desired length representing the ith end ver-

H

tex of the g-ary tree, i 2, ..., n. Therefore, the code is a pseudo-

search code.

Remark 3.4.1 Let W

it

{wl, ceey wn} be a valley sequence of weights.
-5
Theorem 3.4.4 asserts that the g—~ary weighted tree for W constructed by

using the generalized T-C algorithm can be converted into an optimal
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alphabetic g-ary tree without changing the correséonding path lengths of
the weights. However, the process of converting was carried out graphically.
from level to level. vHere we outline how it can be done analytically by
employing pseudo-search code construction algorithm. |

(1) Let Qi be the path length of the weight W, at the g-ary weighted'
tree constructed by using the generalized T-C algorithm. By Theorem 3.4.3,
(21, 22, “eey Qn) must be a feasible g-ary sequence representing the left
to right path lengths of the end vertices of an optimal alphabetic g-ary
tree for W.

(2) Theorem 3.4.4 and Theorem 3.4.5 imply that the optimal alphabetic
g-ary tree for ﬁ can be oﬁtained in the form of iﬁs corresponding pseudo-

search code by using pseudo-search code construction algorithm.

The following example may clarify the concept.

-
Example 3.4.1 Given that W = {w_, w

1Yy . wn}, where Wy = 25, w_ = 6,

w, = 4, w

3 =1, w. =1, w_. =1, w

5 6 =1, w, =2, w, =2, W = 2, W

4 7 8 9

then we know by definition that W is a valley sequence. We illustrate the
construction of an optimal alphabetic g-ary tree for % in the following,
where we let g = 3.

(a) A Huffman's 3-ary tree for % can be constructed by using the
generalized T-C algorithm (cf. Lemma 3.4.3). The resultant tree is shown
in (a) of Figure 3.4.1.

N

(b) An optimal alphabetic 3-ary tree for W converted from the tree
in {a) by the procedure described in the proof of Theorem 3.4.3 is shown
in (b) of Figure 3.4.1.

(¢) TFrom (a), we know that Zl =1, 4. =2, &_ =2, & =3, 2_ = 3,
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algorithm can be employed to determine the corresponding pseudo-search code
representing the optimal alphabetic 3—ary tree for W instead of finding the

tree in (b) directly.

codeword number -

(in lexicographic order) length 3-ary addition iizzigigt
i ‘ Ly (+) - a;
1 1 0 0
2 2 0+1=1 10
3 2 10+1=11 11
4 3 11+1=12 120
5 3 120+1=121 121
6 3 121+1=122 122
7 3 122+1=200 200
8 3 200+1=201 201
9 3 201+1=202 202
10 2 202+1=210 210
11 2 21+1=22 22
The code A = {al, Anr eeny alO} is a pseudo-search code due to Theorem 3.4.5.

The tree corresponding to A is shown in (¢) of Figure 3.4.1. This tree is

in the same isomorphismclass as the tree in (b).
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(a) An optimal (Huffman’s) 3~ary tree for the set of
weights w ={25,6,4,1,1,1,2,1,2,2,5 } constructed
by using the generalized T-C algorithm.

(b) An optimal alphabetlc 3-ary tree the the sequence
of weights W = {25,6,4,1,1, 1,2,1,2,2,5}constructed
by reassigning the weights at the vertices of same
path length on the tree obtained from (b).

120 121 122 200 201 202

10 11 12 20Y 21 2

(c) The tree corresponding to the pseudo-search code
a=1{0,10,11 120,121,122,200,201,202,21,22 }.
This tree is isomorphic to the tree obtained from (b)
but it is constructed by using the pseudo-search code
algorithm.

Pigure 3.4.2 Illustrations of the construction procedures.
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3.4.3 Entropy Bounds for the Costs of the Optimal q—ary Trees

In this section, we would like to find the upper and lower bounds of
an optimal g-ary tree in terms of the functions of entropy.  Before we can
apply theorems in information theorv and coding, we study‘the following
definition and a necessary and sufficient condition for a sequence of n

positive integers to be the path lengths of a g-ary tree with n end vertices.

Definition 3.4.2 A full g-ary tree of height h is a g-ary tree with a

number of qh end vertices of path length h.

The following theorem is a refinement of Kraft's inequality (ecf.

Ash (1965) or Abramson (1963)).

Theorem 3.4.6 A necessary and sufficient condition for a sequence of
n integers Ql, 27, ey ln to be the path lengths of the end vertices of

a g-ary tree with n end vertices is that

Proof: Observe that any g-ary tree T which has height h and n end
vertices can be obtained by excluding some vertices from a fuli g-ary tree
TF of height h. Thus, a vertex v of 'I‘F is an end vertex of T if and only
if all the vertices on the subtree rooted at v are excluded except. the

root. As a result, every end vertex of TF is either left as an end vertex

of T or excluded. Therefore, we have

where by definition, h = max{¢_ , %

ey Rn}. Dividing both sides of the
lfiin

21
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. h | s
above equality by q gives the condition of the theorem.
n _QI. . .
Conversely, given that E a 't =1, aqg-ary tree with n end vertices
S i=1 '
of path lengths 21, 22, ceey Qn can be obtained by reversing the arguments
we have already used. (The details can be found as an analogue to the

proof of Kraft's inequality for binary codes, cf. p. 59 of Abramson's (1963)

book or p. 34 of Ash's (1965) book).

Similarly, we can prove the following theorem referred to as Kraft's

inequality in terms of trees.

Theorem 3.4.7 The necessary and sufficient condition for a sequence

of n positive integers ll, 2 I Rn to be the path lengths of a g-ary

'>I

4

tree with n end vertices and with branch vertices of degrees < g+l is that

The following is a very useful lemma in information theory.

Lemma 3.4.5 Let Pyr Por «eor Py and Qv dyr e Ay be arbitrary

M M M M
positive numbers with z p. = Z q. = 1. Then - z p.log p. < - 2 p.log q.
Pl § (=1 1 jop & ei - 2 e i

with equality if and only if p; = 9, for all i.
Proof: See p. 16 of Abramson's (1963) book or p. 16 of Ash's (1965)

book for details. We sketch the proof in the following.

For any real number x > 1, we have

(o)

i

x - 1 - logx > 0
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and for x < 1, we have

1 1
J(;—l) dx = -logx- 1 + x > 0.
X

Therefore, x - 1 > logXwith equality if and only if x = 1. Let x = qi/pi,
we have
M ‘ M q.
) P, log(g,/p,) < ) p. —-1 =0
i i Fit -, i .

i=1 i=1 * pl

with eqguality if and only if a = P; for all i. This proves the lenmma.

We can now prove our main results of this subsection. They are known
for binary codes (cf. Ash (1965) and Abramson (1963)). Here we state and

prove .the theorems for q—arvaeighted trees.
Theorem 3.4.8 Let Pyr Pyr evvr P be arbitrary positive numbers such

gt e Qn be the path lengths of the end vertices

n .
that X p, = 1. Let L_, %
. i 1
i=1
of a tree with branch vertices of degree less than or equal to g + 1 and
with n end vertices.

Let P, be the weight associated with the end vertex of path length Qi,

i=1, ..., n. Then we have

o~
jge]
Y
t
I~

p; log. p;

i=1 i=1

L S
with equality if and only if p, = g i/ 2 g 1 for all i.

n
-0 . .
Proof: Let q; = d 1y Z g *. From Lemma 3.4.5, we have
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n ) n ) n e
- Y p, logp, <~ } p, loglq i/ ) g h
. i i - . i .
i=1 i=1 i=]1
n n n . —2‘
= 2 p.%, log q + E p. log{ 2 g )
. ii . i .
l:l l:l l:l
n
< ), p.%. log g
-, i7i
i=1
Tl T UL )
since log( 2 g 1) < 0. The equality holds if and only if pi =q 1/ 2 q i
=l i=1

for all 1i.
Theorem 3.4.9 Given that Py p2, ey pn are n positive numbers such

n
that X p; = 1, there exists a tree which has its branch vertices of degrees
i=l

less than or equal to g + 1 and n end vertices of path lengths Ql, 22, ee-rR
n n n

such that - 2 p. log p, < 5 p.2. <1 -~ 2 p. log p,..
- q b ii - . i g 1
i=1 i=1 i=1

Proof: (cf. p. 38 of Ash's (1965) book). Select Ri such that

--1ogq Py < Qi < ~logq pi + 1 for all i = 1, ..., n, then the required

condition is satisfied. Observe that this is possible because —logq pi < Ri
—'Q’i.

i ies that - . o< L, log dp. >
implies tha logq pl S log g an pl > g

iy .
g < 1 and Theorem 3.4.8 asserts that the required tree

1

Therefore,

f >3

i

exists.
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We note that the tree in Theorem 3.4.9 can always be considered as a
gpary tree by adding vertices of weight zero adjacent to those branch
vertices of degree less than g + 1. Thus, combining the above two theorems,

we obtain the following corollary for the bounds of an optimal g-ary tree.

Corollary 3.4.1 Let W = {wl, w2, ceny Wn} be a set of n weights

such that W, = 1. Let T be an optimal g-ary tree for W such that the

o~

i
end vertex associated with the weight wi is of path length Zi, i=1, ..., n.
Then the cost of T is bounded in the following fashion:
n n n
- w, log w. < w, R, <1 - w, lo w, .
i i g i - 'Zl - izl i gq i
Proof: The lower bound is obtained from Theorem 3.4.8. Since T is an
optimal g-ary tree for w, its cost must be less than or equal to the cost
of the tree determined in the proof of Theorem 3.4.9. 'Thus we obtain the
upper bound also.

D= 1.
1_p;L

[ st

Remark 3.4.2 Let Pirovees P, be n positive numbers with
i

n
The quantity 2 b, logq pi, where g is any positive real number, is called
i=1

entropy in the information theory.



CHAPTER IV

K~-SAMPLE OPTIMAIL NESTED BINCOMIAL GROUP TESTING

4.1 Introduction

- Consider a population P of N units, each with a nonzero probability p
of being defective, and a probability g =1 - p of being géod. Thus, the
units in any sample X of size n < N chosen from P have a joint distribution
of binomial type with parameters (p, n). We say that X is binomial. In
particular, when X = P, we say that P is a binomial population. A group
test is a simultaneous test on a sample X of arbitrary size chosen from P
with two possible outcomes: X is identified as good if all the units in it
are good, and identified as defective if otherwise. The usual purpose is
to find a certain number of defectives or all the defectives from P, or to
determine that P contains no defective units. A sequence of group tests
used to attain the purpose is called a group testing procedure. The cost
of a group testing procedure is defihea toc be the ekpected number of tests
required to attain the purpose. An important criterion of evaluating a
group testing procedure is called the optimality criterion, that is, a
procedure is said to be optimal if it is of minimal cost.

The concept of group testing originated from Dorfman’s (1943) pro-
cedure for a blood testing problem. Suppose there are N blood samples
subject to a test which revéals the presence or absence of "syphilitic
antigen". A blood sample which contains syphilitic antigen is said to be
defective. Dorfman (1943) suggested that n blood samples, where n < N,

should be pooled and tested simultancously as a unit at each step.

97
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If none of the n blood samples contributed to the pool contains syphilitic
antigen, then the pool will not contain it either and will be classified
as good. Otherwise, the pool will be classified as defective.and the
individual samples mqkinq up’the pool should be retested to determine
which of the members‘are'defective. It is not necessary to draw a new
blood sample for this purpose since sufficient blood for both the test and
the fetést'can be taken at once. Dorfman (1943) also formulated the cost
of his procedure as a function of nand p, wheré b is the probability that
a blood sample is defective. Hence, the value of n which minimizes the
cost can be computed.

Sterrett (1959) modified Dorfman’s procedure by proposing that in-
dividual testing of the units in a defective pool should cease once a
defective is found and the remaining units should again be pooled and
tested simultaneously in one group test.

Watson (1961) applied porfman’s method inbgroup screening problems
where a large number of variables are screenéd by group testing to identify
the important ones.

Sobel and Groll (1959, 1960, 1966) found many industrial applications
of group testing. For example, the testing of electrical devices and the
elimination of defectives from manufactured products. They also improved
Dorfman's procedure by aliowing that the sizes of each sample tested in
a group test may vary in order to save the cost. Furthermore, they recuired
that the tests be nested, that is, once a defective sample is found,the next
k samples ﬁo be tested must be chosen from the. same defective sample. Kumar and
Sobel (1971) pointed out that although such a procedure is not optimal for

classifying all the defectives, it is optimal for finding a single defective
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from the given popuiation P. Furthermore, the exadt cost functions for
such an optimal nested groﬁp testing procedufe were also conjectured for
the cases when P is either finite or infinité.

Hwang (1974) proved the above conjectures. His proof is based on
the construction of an optimal binary tree (Huffman's tree). . Later,

Hwang (1976) further improved the‘pxdcedure for classifying ali the défecf
tives from a given binomial population P. Garey and Hwangv(l974)'also
generalized the problem by allowing each unit in the given population to
have a distinct nonzero probability of being defecﬁive. They referred to
such a population as the generalized binomial population. For this problem,
Hwang (1975) also gave a dynamic programming algorithm to obtain an optimal
borfman’s procedure for a yeneralized binomial population of finite size.

Recently, Moon and Scbel (1977) found a formula in terms of Catalan
number, for enumerating a class Qf group testing procedures which classify.
all the defectives from a given population of N units. Hwang (1978) con-~
sidered hypergeometric group testing procedures fof the cases when the
given population was knownito contain éither exactly d or at most 4 defec-
tive units.

In this chapter, we extend the group testing method to the case when
two or more experimenters are working on a single population of N units by
carrying out simultaneous group tests (each of which takes the same fixed
time) and cooperating so as to minimize the time required to attain the
purpose. By a k-sample group testing procedure,we mean that at each step,
k samples are chosen from the glven population so that ecach is tested by
an experimenter using a group test at a same fixed time period. When k=1,

this is the group testing procedure studied by various authors mentioned
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in the previous paragraphs. The terminology used in. the literature of
one-sample group testing can readily be carried over to k-sample group
testing in general by regarding every k-sample group test as a unit.
However, we note that in k-sample testing, more than one defective sample
or good sample may be obtained from each k-sample test. Thus, in a nested
k-sample testing procedure, we require that the defective samples be kept
separate since the next k-sample test should be performed on a subset of
one of the defective samples. It is evident that when k increases,the total
expected number of individual tests required to find the defectives cannot
be decreased. However, the total expected number of stages (unifg) of
k-sampleitests can be siginificantly reduced. Therefore, the purpose of
using a k-sample testing procedure is mainly concerned with the saving of
time required to find defectives.

Here we outline the main steps for finding all the defectives from
a certain sample S which may be a portion or the whole of a population P:

Step (i): to find a single defective from S.

If there is no defective in S, we conclude that S is a gpod sample.
1f a single defective is found from S, there may be three types of samples
resulting from the tests. They are good samples, defective samples and
binomial samplés. The good samples can be excluded from consideration.
The binomial samples can be combined to form one binomial sample. But the
defective samples have to be kept separate since our k-sample testing
prcedure is nested.

Step (ii): to find a single defective from a defective sample.

The new defective samples resulting from step (ii) dare again kept

s@paféte. But the binomial samples can be combined with those binomial
.
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samples obtained after étep (i) .

Répeat step (ii) until all the defective sambles are exhausted.
Then go-back fo step (i) with the remaining bindmial samplg. The proce-
dure ends‘when all the defectives of S are classified.

The main results of this chapter includé the deéign df k-sample
optimal nested binomial group testing proceddres reqﬁirea to atﬁain the
purposes of step (i) and step (il) respectively. The most interesting
part is the optimal allocation for finding a single defective‘from an

infinite binomial population.
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4.2 (K+1)~-ary Tree Representation

Unlike the l-sample group testing procedures, not every k-sample
group testing procedure cwun be represented by a (k+l1)-ary tree when k > 1.
The type of k-sample group testing procedures which can be represented by
a (k+l)-ary tree will be defined later in this section. An example will
also be given to clarify the above statements.

Let I be a population of n units. Suppose the ith unit Ii has a
probability pi of being defective and a probability q; = 1l - pi of being

good. Without loss of generality, we may assume that pl > p, > ... 2 Pn

because this can always be achieved by properly permuting the indices of
the units in I. Denote by Oi the event that the unit Ii is defective,

i=1, ..., nand On the event that all the n units in I are good. Let

+1

f be a k-sample testing procedure for finding a single defective from I.

E!
¥

When I is a binomial population, the set of all possible outputs of f is

{Ol, e, On+l}° When I is a defective population,the set of all possible

outputs of f is {Ol, ey On}.

Let each k-sample group test be performed on a k-tuple of samples
4

of the form J = (Jl, ey Jk), where J .+ J are k samples chosen from

1’ k

I. Then each of the k samples is tested separately at a same fixed time
period. Consider the type of k-sample group testing procedure which has
the property that after a k-sample group test is performed on a k-tuple of
samples, say, J = (Jl, e ey Jk), the next k-sample group test is completely
determined either when (i) the least index defective sample is found, or

are good. A procedure of this type

(ii) when all the k samples J veer J

1’ k

can be represented by a (k+l)-ary tree in the following steps:
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(i) The root of the tree is labelled by a k-tuple of samples

J° = (Ji, ey Ji) to be tested in the first k-sample test. The degrees

and labellings of the k vertices joined to the root (by an edge) are
determined according to the following criteria:
{a) if a single defective can be found when Ji is the least
index defective sample, then the ith vertex from the left is an
end vertex and is labelled by that single defective unit, i=1,...,k.
(b) if the size of Ji is greater than one when Jz is the least

index defective sample,then the ith vertex from the left is a branch
;-

i
17 e 9

vertex and is labelled by the k~-tuple of samples b= @
to be tested in the next k-sample group test, i =1, ..., k.
(c) if I can be determined as a good population When all

Jl' ...y J, are found to be good, then the (k+1)th vertex from the

k

left is an end vertex and is labelled by the empty set I denoting

n+l’
that all the units of I are good.
{(d) if I cannot be determined as a good population when all the

samples J., ..., J, are found to be good, then the (k+lhth vertex

1 k

from the left is a branch vertex and is labelled by the k-tuple of
+
samples Jk+l = (Jkll, ceas Jk;l) to be tested in the next k-sample

group test.

(ii) Every branch vertex of the tree can be regarded as the root of
a subtree so that step (i) can be applied. This continues until all the
branch vertices of the tree are encountered.

It is clear that a (k+l)-ary tree representing a k-sample group

testing procedure for finding the defectives of I has the property that
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every end vertex of the tree should either be labelled by a unit of I or

labelled by an empty set I

17 denoting that I is good. Furthermore, every

unit ofifmgst be the label of at least one of the end vertices of the tree.
Whenever a procedure is determined by its testing result to reach a

stage described by a vertex of the corresponding tree, we say that the pro-

cedure reaches that vertex. 1In particular, when an end vertex is reached,

then the procedure is terminated since an output is obtained.

Example 4.2.1 Suppose that I = {Il, N IlO}' Let I,, be an empty

set denoting the event that all the units in I are good. The testing pro-

cedure represented by the tree in Figure 4.2.1 can be interpreted as the

following:

(i) the first 2-sample test is to be performed on the 2-~tuple of

samples ((Il, I I

2 14), (13, 15, 6" 17, I8)).

(ii) the second 2-sample test will be performed on one of the follow-

ing three possible 2-tuples of samples:
(a) ((Il, Iy 15), (12)) if (Ilf I I4) is defective. Note that
]
the decision is made independent of whether or not the sample

(13, I

57 I6’ I7, 18) is defective.
(b) ((I3, g 16), (17)) if (Il, I, 14) is good but the sample
(I3, 15, 16' I7, 18) is defective. For in this case, the latter sample

is the least index defective sample.

{c) ((19), (Ilo)) if both of the samples (Il, I I4) and

2’

(1 I I I8) are good.

30 50 Igr Iqgs

(iii) the third 2-sample test will be performed on ((Il), (I3)) if
(3 ] L] ’ I
(Il, I3, 15) is found to be defective, and on ((13), (Is)) if (13

5 Tg)
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is found to be defective.
The rest of the procedure follows analogously. For example, if
((19), (Ilo)) is tested and found to be good, then the vertex labelled by
Ill is reached and we conclude that all the units of I are good.
Note that the test described in Figure 4.2.1 is not a nested test.
The reason is that when (Il, 12,
samples to be tested is ((Il' I

14) is defective, the next k-tuple of

37 15), (12)). but (Il, 13"15’ IZ) is

t .
not a subset of (Il, 12, 14)
It is also interesting to note that if the procedure described in

Example 4.2.1 is slightly changed such that (a) of (ii) becomes -

, .
(a') ((Il, I3, IS)' (12)) if both (Il' 12, I4) and
(13, IS’ I6, I7, I8) are defective.
((13, I, 16), (12)) if (Il’ I, 14) is defective, but
(13, IS' 16, I7, 18) is good.
Ty

((1;)A1,))

((1,,I

1 I),. (1)) (I. ‘ ((18)'(I9))

3'75

((I,.I

2,14),(13,15,16,17,18))

Figure 4.2.1 A 3-ary tree representing a 2-sample testing procedure
for finding defectives from I é'{Il, cees Ilb}'

- S 111 is
an empty set denoting the event that T is good.
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Let [ be a k-sample testing procedﬁre that can be represented by a

(k+1)-ary tree, say T.. Denote by E(f) the cost of f, that is, the. ex-

i

pected number of k-sample tests required to achieve an output.

Let {vl, .. vm} be the set of all end vertices of T Let Ri be

’

o

the path 1ength'of Vi and w, the probability that the procedure f reaches

v, Let W = {Wl' ..., w } be a set of these m weights.. Let the weight W,
! ] m

be assoclated with the end vertex vi, i=1, ..., m. Define C(T,.) to be

f‘

the weighted path length of the end vertices of the tree T,, which equals

f‘

Low, . Sé ¢ ! s .
. vy We say that C(If) is the cost of the tree Tf

s

i
The following lemma has been proved by Hwang (1973) for l-sample
optimal group testing procedures. Extension to the k-~sample case is

straightforward since the arguments in Hwang's proof do not depend on k.
Lemma 4.2.1 E([) = C(Tf)

"Proof: The procedure [ reaches an end vertex of Tf‘ if and only if
it achieves an output. The number of k-sample tests required for f to
reach an end vertex, say Ve is Zj and the probability that f reaches

. 1
v. is w,. Thus
i i
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4!3' Oﬁ_Defective Populations of Small Sizes

Suppose it is-#nown in adVaucé‘that I contains at least one defective
unit, then 1 is a defchive.sampie.i Recall that pl'i p2 > .. z pﬁ. With-
out ioss of generality, we may assume that n = 1 méd k. For otherWise, we can
k always inclﬁdé extra units ;n+j with prdbability b,of being deféctivg for
j =1, ..., a where a is an integer such that 0 < a <.k and n + a = 1 mod k.
Then we cohsider n .+ a instead of n. #et,w =v{w y esey wn} be.a sequence

1
of weights such that

w, = ao" 4 p, Il g, i=1, ..., n (4.3.1)

where o =1~ 1 g

Let Aw be an optimal alphabetic (k+1)-ary tree for W.
j:"_‘l

5
Now we label the vertices of Aw according to the following rules:

(i} the end vertex with weight W, is labelled by Ii.

(ii) every internal vertex is labelled by a k-tuple of subsets of T
such that the ith‘coordinate conéiéts of the subset of units of I labelling
the end vertices which are reachable from the ith léftmost edge joined to
that internal vertex, i =1, ..., k.

Hwang (1973) has proved the following theorem for k = 1. The proof,
in general, is entirely similar since the argument of the original proof

does not depend on the restriction that k = 1.

Theorem 4.3.1 Aw defines a k-sample testing procedure ﬁ, for finding
the least index defective in I.

Let Di be the event that Ii is the least index defective in I. Then
{Dl, e Dn} is the set of all possible outputs of f@. Since w, is #he

probability that Ii is the least index defective of I, wi is also the
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probability that f@ reaches the.end vertex Ii of Aw, i=1, ..., n.

‘Let :}g be'thé family of all k"sample,testing procedures ﬁﬁat can
be represented by a.(k+l)»ary treevaﬁd have {Dl,‘;}., Dn}ras the set of
all possible outputs.

Tﬁe following lemma and thecrem have been proved by Garey and
Hwahg‘(l974), for the case that k = 1. Thé proofs in general Are similar
but depend on the results established in Chapter IIT for (k+l)fary

weighted trees. This will be illustrated in the proof of the theorem.

Lemma 4.3.1 Let {v_, v

1 AR vn} be the set of all end vertices

of a (k+l)-ary tree. Suppose v, ig of path length Ri, i=1, 2, ..., n
) ) * *
and 21 < Ro< L., <% . Let W w3,

*
e, woand w!, w
-2 - - n " n 17

1 1
ce.r W be two
27 " n

sequences of weights such that

n n
s b
i=h i=h *

for any inteqger h =1, 2, ..., n, then

n . n
.Zlﬁiwi < 2 in'i.
i= =

Theorem 4.3.2 E(f&) < E(j*) for every f* afzﬂ.

Proof: Consider any testing procedure fé in S&. Let T_ be the

(k+1)—-ary testing tree representing f%. Suppose s S is the

1’ “eey

left~-to~right sequence of all the end vertices of TS. Since each unit
of 1 must label at least one end vertex of Ts' we must have m > n. Let

W' = {wi, . WA}, where wi is the probability that the procedure fg

reaches the end vertex s.,, it = 1, ..., m. Now we order W' to obtain a
i

W 50 mce W' o= ! ey ! suc ha) ! > .. > w! .
new sequence W! {wr(l)’ ,wr(m)}such that wi o, > 2 YEim)



109

‘Denote by T the set of all labels of s, Let ¢ = |L].

| 1 7 Trm)
Then necessarily 1 <2 < min{h,n}. Furthermore, the event that fs reaches

one of thé,end vertices s is disjoint with theé event that

(1)’ "7 Sr(h)

all the % units in L are good. Hence

-1

- .
w! <1 -0 I q'f“G“ f q)
poE) - jelks T er) ) gelx: e Y

o~

i

But a4y < ... < 9, and & < minth,n} implies that

2 min{h,n}
> 1 > 1T
jﬁ{k:nIkEL} 4= j:-:l.qj T 4=l 4

Thus when 1 < h < n, we have

h ' o h h

izl ey T BT jzlqj) ) 121wi’
where Wyr o seey w oare defined by (4.3.1). Define wi= o0 forn < 1 < m. Then

h h

izl Yy 1 :_izlwi

for all h, n < h < m.

Let Hw' be an optimal (k+l)-ary tree for W; . Let li be the path
. ;
length of the end vertex associated with weight W;(i)’ i=1, ..., m. By
Theorem 3.4.1 (ii), we may assume that 2! < ... < Qg, since there always

exists such an optimal (k+l)-ary tree for W;. Then we can apply

Lemma 4.3.1 and obtain

LMt

Lemma 4.2.1 implies that E(j%) = C(Aw) which also equals to the cost

of an optimal (k+1)~ary trce for W by Theorem 3.4.3, since the sequence of
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m
weights in W is monotone. Therefore, E{f ) < z w.l..
W = jop 11

On the other hand, E(fs) = C(TS), which is no less than the cost of
T ;
an optimal (k+1l)-ary tree for W'. Therefore, E(sf ) > ) w,%,.
fs' 2, i7i
i=1
Hence, we conclude that E(fs) > E(f@) and the proof is complete.

If follows from Theorem 4.3.2 that the procedure fﬁ is a k-sample
optimal nested group testing procedure in the family(j%. The upper and
lower bounds of E(fw) are given by the following theorem which is due to
Garey and Hwang (1974) when k = 1.

n n
m S vl - . < e 1
Theorem 4.3.3 .Z wilOg(k+l)wi < E(fw) <1+ 2 WilOg(k+l)w'

i=1 i=1 *

il

n n
where W, =<x71p. 2 g, and a = 1 - 2 q..
g2 j=1 7
n
Proof: Since Z w, o= 1, the result follows directly from
i=1

Corollary 3.4.1.
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4.4 On Binomial Populations of Small Sizes
Suppose it is not known whether I contains a defective or not, then
I is a binomial population. Recall that pl > P, i_..; > P - Without loss

of generality, we may assume that n = 0 mod k. For otherwise, we can al-

ways include extra units In+j with probability O of being defective for

j=1, ..., a where a is an integer such that 0 <a<kandn + a 0 mod k.

Then we consider n + a instead of n. Let U =‘{ul, ...,uh+l}be a sequence

of weights such that

P. I qj i=1, ..., n _
u, = (4.4.1)
q k = n+l.
Let AU be an optimal alphabetic (k+l)-ary tree for U. We label the vertices
of AU according to the following rules:
(i) the end vertex with weight u, is labelled by the units Ii'
i =1, ..., n and the rightmost end vertex with weight LI is labelled by

the empty set In+1'

(ii) every internal vertex is labelled by a k-tuple of samples such
that the ith coordinate consists of the sample of units of I labelling the
end vertices which are reachable from the ith leftmost edge joined to that
internal vertex, i =1, ..., k.

We state the following theorem which has been proved by Hwang (1973)

for k = 1. The proof in general is entirely similar.

Theoxem 4.4.1 AU defines a k-sample testing procedure fu for either
finding the least index defective from the binomial population I or deter=-

mining that I is good.
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Let Di be the event that Ii is the least index defective in I,

i=1l, ..., n and let Dn+ .be the event that all the units in I are good.

1
Then i i . -
en {Dl' D Dn+l} is the set of all possible outputs of f .. Further
more ui is the probability that fb reaches the end vertex Ii of AU'
i=1, ..., ntl.
Let :?U be the family of all the k-sample testing procedures that

can be represented by a (k+l)-ary tree and have {D -+ D, Dn+1} as the

ll
set of all possible outputs.
By using Theorem 3.4.1, Theorem 3.4.3 and Lemma 4.3.1, Hwang's (1973)

proof can be extended to obtain the following result for k-sample testing

procedures with any k > 1.
Theorem 4.4.2 E(f.) < E(f*) for every f* EC? .
g - U

The procedure fb is therefore a k-sample optimal nested group test-
ing procedure for either finding a least index defective or determining
that the binomial population I is good. The upper and lower bounds of

’ fb can again be obtained by using Corollary 3.4.1. Thus we have
4

n+l n+l )
-] -
Theorem 4.4.3 iZluilogk+lui SECfY 14 iZluilogk+lui

where ui, i=1, ..., ntl are defined in (4.4.1).

n+l
Proof: Note that i u, = 1 and therefore Corollary 3.4.1 applies.

i=1
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4.5 On Defective Populations with Units from a Unique
Binomial Distribution

Given a population I of n units each with the same probability p of
being‘defective and the'probability g=1-p of being good, éuppose it ig
known that I containé at least one defective, then I is a defective popula-
tion. The problem of finding a single defective from I is a special case
of the one discussed in Section 4.3.

Under the present conditions, the cost E(fw) of the k-sample optimal
nested group testing procedure fw belonging to the family \sé {see Sec~
tion 4.3) can be formulated as a function of n, p and g only. For fixed
p and g, we denote E(f@) by Fk+l(n).

In the procedure j@ r after a k-sample test has been performed on a
k-tuple of samples J = (Jl, ey Jk)’ where Ji, i=1, ..., k are the dis-
joint subsets of I, the next k-sample test is required if no single dgfec—
tive has been found. The units to be tesﬁed in the next k-sample ﬁest
must be a subset of the sample choéen according to the following critefia:

J. are found to be

(1) if one or more of the samples Jl; s Iy

defective, the least index defective sample should be chosen.

(ii) if none of the samples J . ey Jk are defective, the next

1
k~tuple of samples should be chosen from the units of I which have never
been tested.
The testing procedure continues until a single defective is found.
In order to find an expression for Fk+l(n), we let (Ji, N J;) be
the first k-tuple of samples tested in the proecdure fw. Let yi be the

. ) -0 . . .
size of the sample Ji , 1 =1, ..., k. Since I is known to have at least

one defective, the probability that J? is the least index defective sample



114

Yote-¥¥; 4 - Yy n,
equals g (1 -q ")/ - 4g),where % 0. Theminimal expected

cost of finding adefective from Ji when it is the least index defective

+ ‘ .
sample equals Fk l(yi). Therefore, the cost of fw can be written as

k+1 'y ..y, V.

- o) i-1 1 k+1

g (L ~-q ) F (y.)
. , g i

Fk+ i=1

1 .
(n)= min 1+ - -
Jk+1 1 -qg

R

for n 1lwod k , where the minimum is taken over the region

k41
R by reeeny

'kfl
k"‘l): ]2‘1 yi::nand yl;lmod k, i=1,..., k}_

(o]

k+l)'

. . (o) 0
The term 1 arvises due to the cost of testing the samples 9 =(Jl'-"'J

. .. + i . ..
It is trivial that Fk l(k+1) = 1. The reason why we impose the conditions

that Yy Z1mod k, i =1,..., k+1 is that the procedure f@ is primarily
designed for finding a single defective from a defective sample of size n
with n = 1 mod k.
. . s . k+1 .

It will be verified in - Theorem 4.5.1 that F (n) is in fact the

cost of an optimal alphabetic (k+l)-ary tree for the sequence of weights
: i-1 n . C i

W=1{w,..., w} where w, = pq /(L -g), i=1,..., n. Similar tree

1 n,

interpretations can also be found for the following functions:

t v +.o.0ty, Y.
5 L —-1 k41
Yoq© ra-qgh F (v,)

3 n
Rt 1 -g

for n=Zt mod k, where the minimum is taken over the region

. t .
RL = { (v.,e..,7. )2 2 y.=n and v.=1 mod k, i=l,..., t}, for t=1,..., k+1
n 1 t 151 i i

+
Fk+l,k+l(n) - Fk 1(n).

It is clear that when t = k+l1, we have

For simplicity in notation, we write

t,k+1

P (n) = ro(n), for t=1,..., k+l. (4.5.1)
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The function Fk(n) can be found useful when one wants to determine the
cost of an optimal nested k-sample group testing procedure for finding a
single defective from a binomial population (see Section 4.6 and Sec-
tion 4.7). In order to find the tree interpretations of the functions

Ft(n), t=1,...,k+1, we introduce here the notion of a t-sum (k+l)-ary

tree which is trivial when k 1.

it

Definition 4.5.1 Let n n1+ ce. + nt, where ni Zlmod k, i=1,...,t
and 1 < t < k+l are positive integers. A t-sum (k+l)ary tree with n end
vertices is a tree formed by combining t planted (k+1)-ary treeS'Tl,...,Tk

at their roots, where Ti has ni end vertices, i = 1,...,t and 1 < t < k+1.
Thus when t = k+1, a t-sum (k+l)=-ary tree is again a (k+l)-ary tree.

Definitions concerning the optimality and alphabetic optimality of
a t-sum (k+l)-ary tree can be given analoguous to those defined for (k+1)-
ary trees. BAnalogues of generalized Huffman’s algorithm, generalized T-C
algorithm and the related theorems can also be established since the only
difference between a t-sum (k+l)-ary tree and a (k+l)-ary tree, is the

degree at the root when t <k+l.

Let{wI, w;,..., w;} be a sequence of n weights. Denote by
t * . T tr » *x *
c{ 1}j C {wj'wj+1"' ,wr}

the cost of an optimal t-sum {k+l)-ary tree for the sequence of

weights {w;, wf

* " . .
41700 W, }, where 1 <3j <r <n. Inparticular,when

Wi o= w, o= pql—l/(l - qn), i+1,..., n, we write

ct{w,} = Ct(r), 1 <r <n.
il - >
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Similarly, denote by

t x,r oty K % %
A {wi}j A {wj'wj+l""'wr}
the cost of an optimal alphabetic (k+l)~ary tree for the sequence of

- * * * v . . ‘
welghts wj, w: wr , where 1 < j < r < n. In particular, when

j+1:-~-r
w, = wi:: pqlnl/(l - qn), i=1,..., n, we write
' t r t . ,
= ~ <
A {Wi}l‘ A (r), 1 <r <n. (4.5.2)

The following results have been proved by Hwang{1974) when k =1 and t=k+1.
Lemma 4.5.1 If w; = axm?, i=1,..., n, for some given
. t ’ n t % I
non-negative constant a, then we have C {wi }l = acC {wi}l and
i R t * -
Iy {wi}l =a A {wi}

Proof: This is a result of Lemma 3.4.2..

Thedrem 4.5.1 Ft(n)=:At(n) = Ct(n), for t=1,..., k+1.

Proof: Let yOE%O and T be the optimal alphabetic t-sum (k+l)-ary

tree under consideration. Let TO, Tl,..

.y Tt be (k+l)-ary subtrees of T
such that TO is the one consisting of the root and the k+l vertices of

. . .th
path length 1 as its vertex set and Ti is the one rooted at the 1

leftmost end vertex of TO’ i=1l,...,t. BAs a result of Lemma 3.4.2, we

can write

+ ...+
. ( . 10T Y1 Ve
A(m)=min|Aa{ Jw, ) Wireans N w., }
L= i =y + =y _+,.,.+
Rt{ i=1 i yl 1 i=y yt-l
n
F
S N 41 Yy
toLa W by 4.t
L i=1 b e T
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for nzt mod k, where the minimum is taken over the region

f 10t

t - .
Rn = { (yl,...,yk): y;=n and ' =1 mod k, i=1,...,t}, for t=1,...,kH.

i=1

Now Lemma 4.5.1 implies that

VY tv.+.. by, V.
+...1y, - - .
At{w }Yl Y1 g 0 -1 i-1 (1 -gq 1) Ak+l pqz 1 Y5

. — y .

i 1+y1+...+yi_l 1 - qn 1-gq i

y oty +.. .y, Y.

0“1 -1 k+1
_ g TTa-ah ATy
1 - qn

for i=1,..., t. By definition,

+...+ -

£ t
A { z W, eoey Z w,} = 1.
i=1 * imy 4.y, o T
-1 i-1
thus we have
t y.t... .ty y
0 i-1 k+1
L d (L -qh) Ay
a%(n) = min{1 + 132 _ (4.5.3)
rRE 1-q
n

which is exactly of the same form as Ft(n). So we conclude that

t t t t
A (n)=F (n). The fact that A (n) =C (n) follows from Theorem 3.4.3
and its analogue for t-sum (k+l)-ary trees, since the weights are monotone.

This completes the proof.

Let x be a positive integer which satisfies the inequalities

T > 1 > g+ e (4.5.4)

for any fixed g such that 0 <'g < 1. A closed form expression for Ft(n),
where 0 < n < 2x+k-1, can be derived by constructing a perfect (k+l)-~ary

tree defined below.

Definition 4.5.2 A t-sum (k+l)-ary tree with n end vertices of

path length %;,..., 2n is called a perfect t-sum (k+l)-ary tree if and
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only if |&; sz <1, for all i and j such that 1 < i,3 < n.

Remark 4.5.1 Let o be the total number of end vertices bf a t-sum

. (ktl)=-ary tree. Suppose that (o, B) is a pair of non-negative integers

Satisfying

n=+t(k+1) + B, 0 <p< tklk+ 1) , (4.5.5)
then the following are true:

(1) B = 0 mod k,'since nzt mod k ‘implies that

t( k+1 fx—FB ~ t Z0 mod k, the result follows from the fact that

(k+1)%~ 1 20 mod k.

(i1)

e oo

~ (k+1) must be the total number of end vertices of path

length a + 2, since there is .a total of (k+l)a vertices of path length
o + 1 and an increase of k+1 vertices of path length o +2bimplies a
decrease of 1 end vertex of path length o+ 1. Or equivalently, there

is a total of B/k branch vertices of path length a+ 1 and a total of

n - »E{k+1) end vertices of path length o + 1.
(ii1) When n is of the form t (k+l)a , there are two pairs
(al’ Bl) and (u2, 82) satisfying (4.5.5), but they represent the same

perfect tree.

* .
Lemma 4.5.2 Let w;, Woenns w; be a sequence of n weights such
that n- t mod kK and wh o w,* R w*. Then w“c + ... w* > w*
L= "2 - - n n-t n - 1

implies that there exists an optimal alphabetic t-sum (k+1)-ary tree

for these n weights which is also a perfect t-sum (k+l)-ary tree.

Proof: Using generalized Huffman’'s algorithm for constructing
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an optimal alphabetic t-gum (k+1)-~ary tree, the first step is to combine
the k+1 vertices of smallest weights to form a new vertex of weight
* * +

=W + w

w .o * > w*. fTheorem 3.4.1 asserts that there exists an
n+l n-k n - 1

optimal (k+1)-ary tree such that

Ly 2 fn+l In 7 1
where zi is the path lenght of the vertex with weight W i=1l,..., ntl,
Therefore,

s = s | <p -0 <1, for all 1 < i, j < n.
Thus it is a perfect t-sum (k+1l)-ary tree. TFurthermore, Theorem 3.4.3
and its analogue imply that such a tree can be converted into an.bptimal

alphabetic t-sum (k+1)-ary tree of the same cost, since the sequence of

. * *
welghts wl, w

* . . .
preeer W is monotone decreasing. This completes the proof.

Theorem 4.5.2 Let t be any fixed integer such that 1 < t< k+1
For any integer n which satisfies the conditions n=Ztmod k¥ and n < x + k,

we have B

n- ‘k*(k'*'l)
t q -
Fo(n) =1+0 + - g9
n
1 -q
Proof: Since
P n-k-1 n-k n-1
+o.. = e e
wn-k+ wn~k+l + wn - (g + g + + q )
1-q
n-k~x
-1 x+k-1
—H (T g s )
n
l-gq
n-k~x
s __Ppg .
- n -
l-q 1-q"

when RS X+k Lomma 4.5.2 implics that there exists an optimal alphabetic



t-sum (k+1)-ary tree for Wy

vy wn, which is a perfect t-sum (k+1)-ary

120

tree. Suppose (&, B) is defined by the expression (4.5.5) in Remark 4.5.1

which implies

h n
Fim) = @+ 1) Jw +(@+2) ] w
i=1 ¢ i=h+1
h _..n
s (a+ 1) + 2 29
n
1-q°
R

where h = n {k+1). This completes the proof,

K

Theorem 4.5.3 Let t be any fixed integer such that 1 < t < k+l. For

any integer 1 which satisfies the conditions nZt mod k, n = x + h and
0 <h <x+k -1, we have

h

8
m-S&+l)r  m- -———J+ (k+1)r
Ft(n) = 1 4+ o + (iq k + q Lk+l - 2qn)

1-q"

where m, r, o, B are defined by (4.5.9), (4.5.10) and (4.5.11).

Proof: Let Yo be the weight of the new vertex created from the i

th

step of the generalized Huffman's algorithm, i = 1, 2, ... . Let iO be the

largest integer satisfying the following condition: for any i < io' in the

. th . , ..
i step of the algorithm, k + 1 weights from the original sequence
ceay wn are combined. It is obvious that io > 1. For any integer
i < i , we have

o .

W, =W .
n+i (x+h)+1

+ : ..+ :
Wethe (k+1) i+l T Yxth-(k+1y i+ oo Yeth (k+1) 1+k+1

x+h-(k+1) 1
Pg k

e (LA g . gD
n
L~y
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From the definition of x given by (4.5.4), we find that

h-(k+1)i+1 ’ ' ,

w o> (4.5.6)
n+i ~ ‘ n . )
1-q ’
and
Crh~ (k+1) i :
w . < IS S (4.5.7)
n+i1 - n
1-g
In particular, when i =1 and h > k+1, we have
Wkl v < w . (4.5.8)

n+l - "h-k
Thus the weights of the new vertices created are always greater than or

equal to pqh_k/(l—qn). Therefore, we know that

i o= fnz (k)Y Lx+kJ
o k+1 Todk+1l4

Let a be an integer such that h Za mod (k+l) and O < a < k. Let

il = L~Emj whenever h > k+1, then we have il = h-a

k+1 P It follows from the

definitions that i, < io since h. < x+k-1. inequalities (4.5.65 and (4.5.7)

1
imply that
< < 1enever h > k+1.
Woso O wn+il SV whenever h > k+l
Now we claim that w_ ., > w,. This can be shown in the following
n+11+l - 1

two separate cases:

(i) if il + 1< io’ then inequality (4.5.6) implies that

a-k
W, >BL w, since a < k.
n+i_+1 - n - i -
1 1-g
(ii) 4if il + 1L > io' then (4.5.8) implies that
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.= : ol F +
wn+1l+l (wx+a—k+l wx+a) wn+l
z toas.F +
- (wx+a~k+l wx+a) whrk+l
> + ... 7
-~ (wx+a~k+1 . * wx+a) * wx+a+1

since h < x+k-1. From the definition of x given by (4.5.4), we have

~

a—-
P9 ; ;
> ERe 3 <
W s o412 -~ 2w, since a £ k.
1 1-q :

Hence, after the i, steps of Huffman's algorithm, we cbtain a

1

sequence $' of weights in which the sum of the k+1 smallest weights is

greater than or equal to w Let m be the number of weights in S$'. Then

1°

l h
- L 4.5.9
m=x + h T k ( )

Note that n = x+h 21 mod k implies that m =1 mod k. By Lemma 4.5.2, there
exists an optimal alphabetic t-sum (k+1)-ary tree Tq, for the sequence S',

which is a perfect t-sum (k+l)-ary tree. If (a, B) satisfies

m= tk+1)" + B where 0 < B < £k(k+1)®  (4.5.10)

we can count exactly how many of the m - E-(k+l) end vertices of Tq, with

path length o+l are vertices formed by the combination of (k+l) end ver-

tices in the original sequence {w eeen wn}. Let this number be r. Let

]‘ I

the weights of these r vertices be w t =1, ..., ¥ whenever ¥ > 1.

+i -t+1’
nll

The largest one is LA which lies between w and w provided that

a+l a+2’

h > k+1, or equivalently il > 1. There are k+l weights from the original

sequence between the weights w | and w . t=0,1, ..., r-1
quenc etween ¢ E n+i_ +t n+i +t+1’ T ! ’

1 1

whenever v » 2. ‘lherefore,
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: . | .
: o o m - E-(k+l) + (k+1) - (a+l)
EEMNANST T k2

R [& - %»(k+1) +k - éJ
nin LEIIJ ) 3 : (4.5.11)

. ? - . , B
Hence, for the vertices in the original sequence, the first m - E (k+1) ~r

it

. . - h .
vertices will have path length o+ 1, the laSt(ng:zJ* ) {k+1) vertices

will have path length o+ 3 and the remaining

h . B
n - (l_ﬁij - r> (k+1) - (m i {(k+1) - r)
h ) h B _
‘]{IIJ (k+1) + r(k+1l) - (X“Ph - Lmj k - T {k+1) I.)
h

g
Lﬁ?ij + {k+2)r +_£»(k+1)

vertices at the middle will have path length o+ 2. Now we can compute

f
x
s
=

i

R

i

£ H : . HAH* n
F(n) = (a+l) ) w, o+ (042) Lowo+ (ak3) ) wy
i=1 i=H+1 i=H4+H*+1
where H = m - E~(k+l) - r and H” :' Fﬁh' + (k+2)r + Lg-(k+i). Consequently,
R k k+1 k
£ Il n
F{n) =1+ o + 2 w, + z W,
i=H+1l 5 i=HtE*H1 T
H n-H H+H* n-H-H*
-1 +0 49 {1 = g ) . g (1 2 )
1-q I-gq
1 H H+H n
=1l+a+—— {q +qg -2q}

then the result of the theorem follows by substituting the values of H and

H" into the above aquation.



124
4.6 On Binomial Pépulétioné with Units from a ﬁnique

Binomial Distribution

Supposeyl is a binomial population of n units, each with the same
probability‘p of being defective anafthe'ptObability g=1-pof beiﬁg
good. The problem of finding a single defective from I is a speciél case
of the one discussed in Section 4.4..

Under the present conditions, the cost E(fb) of the k-sample optimal
nested group testing procedure f; belonging to the family cz} (see Sec-
tion 4.4) can be formulated as a function of n, p and g only. For fixed
p and g, we denote E(jb) by K{n).

It can be seen from the definition that the procedure fb is the same
as the procedure f; described precisely in Section 4.5 except that fg ter-
minates in either one of the following cases:

(i) a single defective is found,

(ii) the population I is found to be good.

Let J° = (Ji,'.;., Jg) be the first k-tuple of samples tested in

the procedure fh. Let y, be the size of the sample S i=1, ..., k,

e

y =0, and y =

o yv.. The probability that J? is the least index de~-
i

i=1
YoFee i Y3
fective sample equals g ' (1 ~ g 7), and the minimal expected
cost of finding a single defective from J? when J? is the least index

. k41 e
defective sample equals F (yi). The probability that all the k samples

y

3° 7° are good equals ¢’ and the minimal expected cost of finding

170 Tk

a single defective from the remaining n-y units when all these k samples

are good equals K(n-y). Therefore we have
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; b +...+y; Y.
' i1 k+1
K(n) = min {] + qu(n~y) + 2 q o t (1 - g l) r (y.)} (4.6.1)
k+1 i=1 ot ‘

for nZ 0 mod k, where the minimum is taken over the region

k+1

RrE+1 ﬂy], ) =n+1, y:=n+1--yk+l and yiEilmod k, i=1,...,k+1}

: n+l,y '°’yk+1

Note that the term 1 arises due to the cost of testing the first k-tuple

of samples Jo = (Ji, SN Ji). The reason why we impose the condition that

kK+1 : :
5 vy =n+1 is that the procedure JU has n+l possible outputs (cf.Section 4.4).
i

If we express K{n) in terms of the function Fk(n) defined by (4.5.1),

we find that

K(n) = min {qy + qu(n-y) + (l—qY)Fk(y)}, (4.6.2)
y=l,...,n '

where y is the total number of units to be tested in the first k-~sample

group test.

Theorem 4.6.1 K(n) = Ak+l{ui}?+1,
+ + + » '
where A% l{ui}? booak l{u e un+l} is the cost of an optimal alphabetic
(k+1l)-ary tree for the sequence of weights Upr weer U ay such that
i-1 ., _ _n
ui = pq , 1 =1, ..., n and un+l =g .
Proof: Define Y, = 0. Then
-
Yy Y.ty
2 +
kK+1, ,ntl IR TSI Lo, .. ot
AT {u, } = min I Y, ) i ) u, }
1 KL i=1 b imy 4+l =y H... by, T
Nl | "1 YT e >
Kl gy, ity
b ) Fooot +1
i=1 4 Vi-1 /
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for nZo mod k, where the minimum is taken over the region

k+1 : :
k+1 . . . '
Rn+l «'{(yl,f..,yk+l)}§1yi—fn+l and yi;’l mod k{ i=1,...,k+1}.

Now Lemma 4.5.1 implies that

+ou IRV R R - .
k+l, 71 o Yote i Vi xe1pgt | Vi
{ui%f+ A 109 (L-qg ") A S
MRRRREETS B 1-qi)1
¥y +...ty, Y. )
. + .
= ( o o ‘l(l_q, l) Ak l(yi) ) for i=1,...,ktl.

: k
¢ . N k+1
If we let y=:v) y; r we obtain from the definition of F {(n) that

i=1
k vot. . ty,
. g +1 1 * ]
ming [ 2Tt T b a-d) e m1ed?
Ry li=1 Yor -V
where the minimun is taken over the region
¥ k .
Ry = { (yl,...,yk): z v,y and vy =1 mod k, i=1,...,k}.
i=1

Also, from Lemma 4.5.1, we know that

+ +
2k l{u 3 1

i yl+...+yk+l

+ -y+
= qy Ak l{ui}$ y+l

Therefore,

+ +
Ak l{u,}n 1

< + —y+
N Ky o¥ Aty 3yt

= min {q¥+1-q)F+q i1
yv=l,...,n !

(4.6.3)

which is of exactly the same form as K(n). This proves the theorem.

Remark 4.6.1 Theorem 4.6.1 agrees with Lemma 4.2.1 which asserts
that the cost of the k-sample testing procedure fU is equal to the cost
of the corresponding (k+l)-ary tree representing it.

The exact value of K{(n) can be found by using the recursive

expression (4.6.2), provided that the values F(2}, 2=1,...,n are known.
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However, Theorem 4.5.2 and Theorem 4.5.3 only give the values of F(&) for
0 i‘ﬁ < 2x+k -1, where x is defined. by thé inequalitiés (4.5.4). There-
fore, in ordeér to compute K(n), it is essential for us to find an upper

bound, say h, of the value y in the expression. (4:6.2) such  that

h < 2x+k-1. The following lemma is established for this purpose.

lemma 4.6.1 Let g be a real number such that O £q <1, If x is
a positive integer satisfying the inequality

+k~- +
1 > qX + oL+ qx k-1 + qX k

then we have

. ‘ 2 2x+
1> (k+1) g hk.

Proof: The lemma can be proved by two independent approaches,
namely, the combinatorial approach and the analytical approach. The
former is rather lengthy but straightforward. However, the later one
requires the knowledge of defining a monotone decreasing function,
namely ¢ (q), whose lower bound is of our interest.

(1) The combinatorial approach: for any integer r, we have
r 2 . . .
(-gq) > 0 which implies that
2r
1+ gt > 2gt . (4.6.4)
The expression
+1 x+k~1 x+k 2

X X
(4" + g + ...+ 4 + g )

can be written as a sum of the squares which equals

k+1 k+1  a,,

bl oa?

i=1 i=1

where

aij = (x+i-1)+(x+j-1)=2x~-2+1i+73, for i,j=1,...,k+1. (4.6.5)
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Let A ={aij}be a matrix of size (k+1) x(k+l) with aij defined by (4.6.5).
Table 4.6.1 illustrates how the entries of A can be obtained by first
. . . .th .th
assigning the value (x+1~1) at the i row and the i column, then ob-
.. . .th .th
talnlngaij by adding the values at the i row and the j column, for

i, 3=1,..., k+l.

r €3 x x+1  x+2 ... x+k-1  x+k
X 2x 2x+1 2x+2 ..... 2x+k -1 2x+k
x+1 2x+1 2x+2 2x+3 cevas 2x+k 2x+k+1
X+ 2 2x+2 2x+3 2x+4 ceens 2x+k+1 2x+k+2
x+k 2x+k 2x+k+l 2x+k+2 ..... 2x+2k-1 2x+k

Table 4.6.1 The entries of the matrix A = {aij} defined by (4.6.5).
Note that a,. =xr, + ¢,, for i,j=1,..., k+l.
1) 1 ]
Cbserve from Table 4.6.1 that when i+ j=k+2, we have

a, .= 2x+2+ (k+2) = 2x+k, for 1 < i < k+1 (4.6.6)
i,k+2-1 - -

On the other hand, inequality (4.6.4) implies that
aij
q

a R . .
k+2-3,k+2-i 2x~-2+i+ 2k+4-2i-2
+q JI l=qx lJ(l"q J)

k+2—i-j) - 2x+k

> q2x—2+1+j 2q (4.6.7)

(g
for i=1,...,k+2-jJ and j=1,...,k+1l.

Since aij and ak+2—j,k+2—i are symmetric entries with respect to

the diagonal which divides the matrix A into upper left and lower right
triangles, that is, the diagonal with the number 2x+k in-every entry.

We thus obtain:
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. k+l ktl  a, . k  k+i-j a. . a ..k a .
¥ i . e ij k+2~3,k+2~1 ' ~k+2-3,
1> ) L oatl= ] 1 (qt+g ' )+ ) g T
i=1 i=1 i=1 i=1. = s . j=1
2 ' ' .
+1) % +
><u< D k#l )( 2y 1) 2K
S 2 !
+
= (k+1)2 q2x k

as a '‘result of‘(4.6.6) and (4.6.7). This completes the prbof by using the

combinatorial approach.

(2) The analytical approach: consider the function

~k/ 2 2 k
¥g) = q k/2 (l+g+g +...+9g ), 0 =5qg 21

It suffices to show that ¢(g) 2 k+1 for all q such that 0 <q <1l. By

. .t o .
gathering the i h and the (k+2—-1)th term together in a common bracket, for

i=1l, 2,..., we can write
BB Ea E o o
d(q) = (g -q J+ {q +q Yy + (g + q ) +...
_k, H E_[EJ
2 2 2 {2
+ (g + g ) + R
0 when k is even
where R =
ql/2 when k is odd,

Taking the derivative of ¢{yg) with respect to g, we find that

k k k k
- £ S 2
’ k -1 2 2 k -1 2 2
o' (q) = 5 d (-g +qg) + (5+l)<1 (~g +q )
< k k Ik k ik
242 22 T 3 B
8 -1 5t 2 . kK k] -1, 2 EJ 2 tl
+ (—§+2) q ( g + q Yy + ...+ (—5+1§j) {q +qg + R’
0 when k is even
where R’ = 1 -1/2

54 when k is odd.
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Therefore, ¢’ (g) < O for any g in the closed interval [0, 1]. Thus we
conclude that $(q) is a debreasing function of g in [0, 1] and ¢(q) >¢ (1)
for any g such that 0 < g < I. Since ¢(1) = k+1, the result of the lemma

follows.

Theorem 4.6.2 If x is the integer defined by the inequalities (4;5.4),
then

v ‘ k '
K(n) = min {q' + qu(n-y) + (-7 )F (y) r (4.6.8)
1 <y« min{2x+k-~1,n} '

Proof: It suffices to prove for the case that n > 2x+k-1.

Theorem 4.6.1 asserts that K{(n) eguals the cost of an optimal alphabetic

. . i
(k+l)~ary trece TU for the scequence of weights wu,,...,u where u, = Pg

1 n+l’

= qn. It follows from Theorem 3.4.3 that the tree

for i = 1,...,n and u =
n+l

u since

177777 Tndl

TU is also an optimal tree for the sequence of weights u

it is a valley sequence of weights.

Let v ,... be the left to right sequence of vertices of path

1 " Vit
length one on TU. Let w(vi) be the weight associated to the Vértex Vi' for
i=1,..., kt1. By definition, we have

k+1

wiv,) = 1 . (4.6.9)
i=1 -
From the prcof of Theorem 4.6.1, we know that the number y in (4.6.8)

represents the total number of end vertices at the k leftmost planted sub-

trees rooted at the root of the tree TU. Therefore,

k y ;
— 1 i-1 vy
wivy ) =1- Jwv)=1- )} pqg = =q (4.6.10)
i=1 i=1

Let 2 be the total number ol end vertices of path length one on TU. Then

0 < £ < k+l1 since we assume that n > 2x+k~1 . Now we claim that the value
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of % must be one of thevfollowing'three values: 0, k, and k+1.

When 0.< £ < k+1, 'vl,...; vy must be the end vertices of TU
since the weights ul,..., uz are monotone decreasing when { <k ;  on the
other hand, VQ+1‘ .;.;,vk+i must be the branch vertices. By Theorem 3.4.1,

“the optimality of TU implies that each of the k+1 vertices of path length -

two joined to thé vertices Vi i=£+l,..., k is of weight less that or equal
to w(vl) = p. Thus we have

w(vi) < (k+1)p , i=2+41l,..., k. (4.6.11)
Now

; w(vi) = § pqi“l =1 - qg ) (4.6.12)

i=1 i=1

As a result of (4.6.9), (4.6.10), (4.6.11) and  {4.6.12), we have

1 - <qﬂ’+ (k-2 (k+1)p+ qy > 1,
oxr eqguivalently,

2 L
a2 g - (k-0 &+ p >q

This is impossible unless ¢ =k since we know that y > k.
For the cases that £ = k and & = k+1, the theorem holds obviously
and the proof is trivial.

For the case that £ = 0, then vl,..., Vk+l are all branch vertices.

The optimality of TU implies that

w(vi) < (k+l)vv(vk+1) ’ i=1,..., k, (4.6.13)

since each of the k+l1 vertices of path length two joined to v, is of weight

less that or equal to w(vk+l). Now (4.6.9), (4.6.10) and (4.6.13) imply

that

r

k(k+1)(1y + qy > 1
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or equivalently,

Yy 1 1 . 2x+k
q > > - > o}
- s + —
| k (k+1)+1 k l)g ,

‘where the last inequality is obtained from Lemma 4.6.1. Thus we conclude

that y < 2x+k-1. This completes the proof.

" From the proof of Theorem 4.6.2, we obtain

Corollary 4.6.1 Let TU be an optimal alphabetic (k+l)-ary tree for

u ' where ui==pql for i = 1,...,n and

the sequence of weights Upreeer U0

n .
u T A Let y be the total number of end vertices at the k leftmost

planted subtrees rooted at the root of TU. Then we have y < 2x+k-1.

Remark 4.6.2 The above results canbe found in the paper by
Hwang (1976) for the case that k = 1. Since the value of Fk(y) is
given by Theorem 4.5.2 when y < x+k and given by Theoxem 4.5.3 when
x <y < 2x+k~1( Theofem 4.6.2 enables qé_to cdmpute K{n) reéursively
witﬁin 2xtk-1 steps.

Let y* be the value of y in the expression (4.6.8) such that

*

K(n) = qy + qy

*

*

Knmy™) + (1 - ¢¥ ) F(y™) .

Then y*denotes the total sum of units tested in the first k-sample test
of the procedure fU . The exact sizes of the first k samples tested can
be found by considering the optimal alphabetic (k+1l)=-ary tree TU which
represents fU" This is because the leftmost y* end vertices of the
tree TU are also the end vertices of the optimal alphabetic k-sum (k+1)-
ary tree for the sequence of weights u, = pqiwl, iT="1,...4 y*, which

can always be constructed.
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4.7 Asymptetic Properties of the Cost Function

‘Suppose Iis a binoﬁial‘population with infinitely maﬁy uhité, each
with a probability p of being'defective and a pfobability qg=1-p of
being good.v The préblem of findiﬁg_a single dgfeétive from I is similar
to ﬁhe case when I is a finite éopulation discgssed‘in'Secfion 4.6. 1In
thisbcase, we can even find é closed forﬁ solution for the cost E(f)
of a k-sample optimal nested group teéting procedure [, for solving the
above stated problem. The procedure ﬁ;is in fact an extension of the

procoedure ﬁ} when the given population is infinite in size.
o) o e . .
Let J = (Jl reser Jk ) be the first k~tuple of samples tested in

the procedure f; . Let Y, be the size of the sample Ji , 1=1,..., k,

Y, Z 0 and y = .
i

I o~

Yo The probability that Ji is the least index de-

Vot t¥y vy
fective sample equals g " {1 - g ) and the minimal expected

. . . o \ O S .
cost of finding a single defective from Ji when Ji is the least index

. + . .
defective sample equals Fk l(yi), defined by (4.5.1), for i =1,..., k.

b4

The probability the all the k samples are good equals g° and the minimal

expected cost of finding a single defective from the rest of the units
in I when all these vy units are good equals E(f;) again, since I contains
infinitely many units. Therefore, if we define the function

k Y te.oty,

. ' o) i
E = min{ 1 +
¥ k .z 4

R i=1
Yy

where the minimum is taken over ther region

Y.
i
) Yy

1
- v 1+ ]
(1 q I‘(yi)) q».Ey (4.7.1)

k
k - . A N
K, Ty ey ) z

yi =Y and y=1 mod k, i = 1,...,k} (4.7.2)
l = 4

1
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then we have

E(f,) = min E_ .
y=1,2,... Y

In terms of the function Fk(y) defined by (4.5.2), we write,

B = —— + ) (4.7.3)
l-q
and
y
E(f,) = min -3—;; + Fk(y)} (4.7.4)

y=1,2,...L 1-g

 The following theorems are identical to those obtained by Hwang (1974)

for the case that k = 1.

Theorem 4.7.1 E(f,) egquals to the cost of an optimal alphabetic
(k+1)~ary tree for the sequence of weights ui = pql_l, i=1,2,...

Proof: Let T, be an optimal alphabetic (k+l)-ary tree for the infinte
sequence of weights u, . i=1,2,... . Then there are k+l1 planted (k+l)-ary

T,, T from the right

subtrees rooted at the root of T , namely, Tl' greeer Ty

) k
~to the left. Let there be Yy end vertices at Ti’ i=l,...,k and vy'= z v,
. : ) " i=1 1.

Lemma 3.4.2. implies that these k subtrees T T form an optimal

177k
-1

alphabetié k-sum (k+1l)-ary tree for the sequence of weights ui=pql , for '

is an optimal alphabetic

i l1,...,.v. On the other hand, the tree 'I‘k+1

{k+l)-ary tree for the infinite sequence of weights ui = pql 1, i=y+1l,y+2,... .

Now, if we define the function

k Yttty '
A = min {1l + Z q é _ l:l(l»— q
Y

Y.
i, k+1 _ v
) A (yi)} +q Ay
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where the minimum is taken over the fégion Rk defined by (4.7.2) and the
the function Ak+l(yi) is defined by (4.5.2), then by a similar argument
as the one used in the proof of Theorem 4}6.1, we are able to conclude
that the cost of the tree T equals

A{u,}. = min - {Aa}
171 y=1,2,... ¥

But the expression for Ay can be simplified by means of the relation (4.5.3),

so that
v Y k
A = (l -~ q ) A (y) + qu + qy

and therefore,
o Yy
A{ui}] = min —
) y=1,2,... | 1-g

+ Ak(Y) ’,

which is of the same form as the function E(j;) r Since Theorem 4.5.1::. -

implies that Ak(y) ==ka(y)- This completes the proof.

Theorem 4.7.2 E(f;) = min ' { '} , where the function
‘ 1 <y < 2x+k-1 .

Ey is defined by (4.7.1) and x is the integer defined by (4.5.4).

Proof: This is a result of Theorem 4.7.1 and Theorem 4.6.2, since
the upper bound of vy in expression (4.6.8) is independent of n when n

!

approaches infinity.

Remark 4.7.1 Theorem 4.7.2 enables us to find the exact value of
E(j;), since the values of Ey  for o <y < 2x+k-1, can be computed by
using Theorem 4.5.2 and Theorem 4.5.3. Here we give the closed form
solutions for Ey when 0 < y < xtk or x <y < 2x+k-1. They will be

frequently used in the proofs of our main results.
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(1) When y $x +k and y=0 mod k, we have

g
y k,(k+l)
y q . -q
E_ = 9 4+ 1+a+
y 1-q7 , 1 - g7
B,
Yo (k) |
=1+q + 4 — (4.7.5)
1 Y- o .

-q

where (o, B) is a pair of non-negative integers satisfying the equation

vy = kDY + 8, 0<B <k (kD (4.7.6)

(ii) When x <y < 2x+k-1 and vy =0 mod k, we have

B h
-= - R R
qY 1 m k(k+l) r m [k+ll (k+1)x v
E = +1_+a+-—:7 q + q - 2q
Y lfqy 1-q
m —E(k+l)—r m~b£%il+(k+l)r v
=1+ o + q + g - g . (4.7.7)
l—qy‘ ‘ :
where h = y - x, m=X + h - l?%z]k ,- (o, B) is a pair of non-negative
integers satisfying the equation
a
mo= kD) + g 0 < B < kK (k+1) (4.7.8)
and
m - §(k+l) +k - a

- min [11 j, [~ K , where hZa mod (k+l) and a < k.

B | T K+2 i (4,7.9)

It is easy to verify that the expression (4.7.7) can be reduced to

the expression (4.7.5) when x <y < x+k.

Now we can prove the following two lemmas which lead to the main
result. The proof of the second one seem to be more complicated than the

proof when k = 1, given by Hwang ( 1974).
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Lemma 4.7.1 Min E =§& , C(4.7.10)
1<y xtk-1 Y %o Lo :
y 20 mod k
x+k=1 L Co . o
where X, 7T k and x is the integer defined by the inequalities (@.5.4).

Proof: It suffices to show that Ey is a monotone decreasing function
of yfor 1 <y < xtk-1l. Let y' = vy + k for any intéger y such that
1 f:y < x -1 and y=0 mod k. There always exist pairs of non-negative

4

integers (o, B) and (o' ,8’) satisfying

y = k(k+1)” + 8 0<p < kk)®
y = k(k+1)% + g’ 0 < B < K2 (k+1)® (4.7.11)
a’ =aq B’=S+k.

Writing Ey and Ey’ in the form giveﬁ by (4.7.5) of Remark 4.7.1, we find

that
’
.yﬁg(k+1) ' y-B )
E, ~E =(l +a+——— 341 + 0 + —3
Y Y 1-q 1-q7
-8 -
Yy k(k+l) 1 K
- g (l~q)[1—qy(l+q+...+q)]
+k
(1 -q° )(l—qy)
< 0
since qy(l + g+ ...+ qk) > 1 when y < x - 1. (Cf. inequalities (4.5.4)).

Hence Ey is a monotone decreasing function of y for 1 < y < x+k-1. However,
because of the restriction that y = 0 mod k, X is the smallest value of y

such that (4.7.10)is satisfied. This completes the proof.
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Lemma 4.7.2 Min E = Ex ' (4.7.12)
x <y < 2xt+k-l Y o
Yy =0 mod k

where x and xo are the same as those of Lemma 4.7.1.

Proof: It suffices to show that Ey is a monotone increasing function
of y for x <y < 2x+k-1. Let y' = y + k. We are required to show that

E - E_> 0 for any integer y such that x <y < 2x - 1. 1In order to ex-

press E_, and E_ in the form of (4.7.7), we define, for a given y. the

parameters h, m, (a, B), r and a according to the equations (4.7.8) and

(4.7.9) of Remark 4.7.1. Similarly, we define, for a given y’, ihe para-
meters h', m', (o', B’), r' and a’.
Since hzZa mod(k+l) and 0 < a < k, consider the two possible cases:

(i) a =0, or (ii) 0 < a < k. We claim that the quantity

14

= y Y :
a = (1 - 1 - E =-E). 4.7.13
R = @ -ani =o' )E, - E) ( )

is always non-negative in each of the above two caseés.

Case (i) When a = o, then a’ =k. We have

h' =y -x=y+k-x=(x+th) +k-x=h+k and
h'HJr:+k|= h| b
+1 +]J 1 k+1 ° ence
n’ h h
' = + r - == - = - =
m = x+h lk+le X + (h+k) L(+1Jk 6 +h k+l)]9+ K =m+ k.

[

. L ~ - N ! . - -
We can choose (a’, B') satisfying m'=k(k+l)(1 +B8', 0 < B'f k2(k+l)a’and

and also a' = rand B’ = B + k. Now

f_ B A 8 -
o l_‘b*‘ l_m L (k+l) + Kk aJ o] m + = (k+1) 1|
k+1!’ k + 2 k+1 ' k + 2 |

rorr -1, (4.7.14)

a}
1

It
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(a) If r' = r, (4.7.13) and (4.7.7) imply that, for 0 < y < 2x-1, .
we have

B+k h
PRNERS——— r P, -— ——— +
m+k (k+1)~r n+k ol +(k+1)x y+k

- - -
L= 1-a)la q a )

[o]]
i

- B - __h
m k(k-i-l) r m k+l~!—(k+1)r

Yy (g - q -0

- (1 -gqg

B g
: m- = (k+1l)-r-1 y+m- £ (k+l)-r-1
g’ (1 - qk) +q . _ 1-q -9 k a - qk+l)

l

h
m- ——+(k+1l)r
k+1
-q (1 -qg).

k+1 x+h (

Since y = X + h and qy(l - qg ) = g 1 -q) (l+q+...+qk) < qh(l - qd),

S0

<+h K m- -@(k+l) -r-1 h+m - E(k+l) -r-1
d >q (1 -q) +gq (L-q - g (1-q

h
m—m +(k+1)r K
- q (1 -qg). (4.7.15)

. h h . .
First suppose r —L—d—l‘l =X+’ then (k+1)r = h implies that

h h h
- — + B R —————
qm Tl (k+l)r: x+h Gﬁl)k oL th _ qx+h

Hence

m- E(k+l)—r-l h
d. > 4 (L -q)(1 -qg) > 0.

m—]%(k+l)+k
Next suppose r =|——————1\. From (4.7.14), we know that

m—-E (k+1)-1

r = k+‘§‘“’“‘"} . Then r' = r implies that (k+2)r = m - %{(k+l)—1 must be

k+2

true.
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. h . h n\_
Besides, m - ol X + h Eiiq{ (k+l) X. Hencg (4.7.15)
implies that
x+h X k+1)r . ht (k+1) ¢ x+ (k+1) ¥ X
d 2 4 (l-q)+q( )(l—q)-q(, )(1—q)-q( )(l—q)

eSSt +k

+ 1}

v

(1 - g)(r - qh){ —qx(l + g+ ... F qk) + qx

(k+1)r x+k
q

1 -q@-qdH{-1+5% 41

v

>O.

(b) Ifr'" =r -1, (4.7.13) and (4.7.7) imply that, for

0 <Y < 2x-1, we have

Mk _&}E]i (k+1)-(r-1)  mtk- —+(k+1) (x-1)

+k
a = (1 - a) (g +q vl - g7 )
+k m—i(k+l)—r m—E%I+(k+l)r
-1 - qy y( g +q - qy )
. n-focn)or me e e el .
=q’(1 -gH -gq " )+gq (1- @) {1 -q (L4gh. . .+q5) L.

N
Bm:@%l+q+ “.+qH =thU_+q+..Aq% fq? Hence

B h
m~=—(k+1)-r m- —— +(k+1)r-1
a >a¥1 -dH0a - ¢ ) +q X 1-aa-qdh

Iv

0,

since m-—E(k+1)-—r > 0 for it is the number of end vertices with path

length a + 1 on the k-sum (k+1)-ary tree constructed in the proof of

Theorem 4.5.3.
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Case (ii) When 0 < a < k, then a’ = a - 1. We have

h! =y" ~x=y+k -x=(x+h)+ k -x=h+k and
h’ h+k h

e | = JIN = o+ f e .

lj;+lJ lk+l J 1 l_k+l } Hence

m’ = x + h' —[ h,Jk = x + (h+k) ~{ 1 + *E~J k=x+h - ~h—1k = m
K+1 x K+1L k+1 :

’

. ’
Now we can choose (a’, B’') satisfying m’' = k(k+)* + 8" , 0 < B'< kz(k+lﬁ

and also a' = g and B3’ = 8. Now
o m’ - }%(kﬂ) +k - a'l v intl|m- E(k+l) +k—a+1J
o - m
£ = min l_k+1J ' K42 | i T l_k+lJ’ k2
=rorr+ 1. (4.7.16)

(a) If x" =r + 1, (4.7.13) and (4.7.7) imply that, for

B h
m- = (k+1)-{r+l) m- (l+l-———-J+(k+l) (r+1)
q = 1-q)(q K + g o+l : - g7t
B ’ h
m- =(k+1)-r m- L—;—‘J+ (k+1)r
—(l-qY+k>(q k ' +q *1 - q)
. m- D(k+1) -r=1 | v +m- E(k+l)—r—l ol
=q’(1 -q) +q (1-q -gq (1-4qg )
h
n-———- +(k+1)r
k+1 k
-q 1 -q
m- B(k+1)-r-1 him- B (k+1) —x-1
k k .
zqy(l-q)+q (1 -9g) - g 1 -
h
m_LWJ +(k+1L)r
k+l 1 - q5, (4.7.17)

. k+1 - X k - h
since qy(l - g )y = qy x(1 - a)q (l+g+...+q ) < qy x(l -q) =g (1L -q).
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. Iny _ h
First suppose r _[k+lJ ; then (k+l)r = (k+l)Lk+lJ . Hence

h hy o 8 |
qm Lk¥IJ + (k+l)lk+lJ m - k(k+1)—r—-l

a.>0-gv0q - ) +q (1-qdMa-g

l - E(k+l) +k-a

k+2

Next suppose r =

From (4.7.16), we know that

- f(k+1)+k—a+1‘
' = s -] . Then x’' = r + 1 implies that

(k+2)r = m - E(k+l) =k - a ~‘(k~l) =m - E(k+l) -a=-1, or

m - £—3(k+l) -r - 1 = (k+1)r + a. Besides,

h h
L«&J”k”)r - X ‘Li?fjk lk};lJ+(k+l)r = v - e [gir] voer.

Hence, (4.7.16) implies that

dk > qy(l B qk) + q(k+l)r+a(l - q) - qh+(k+l)r+a
v (k+1)[ hJ+(k+1)r
k+1 k
- g 1 -qg)
y- (k+l)[kElJ-+(k+1)r (k+1)[kElJ (k+1)x
= - g {1l -g))(1 ~-g )
1
+ q(k+ )r+a(1 _ qh)(l - Q)
h
Y—(k+l)t-il+(k+l)r
. k+1 k h -
> - g 1-g90-qY +q* ™0 oMo - g

h
(k+l)l J (k+1)r
since q K+l - L
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Now we have

h h
- (k+1) r[ ] y- (k+1)L:——J+k
Q- @ -gh g DT (2l KU (Legr. . +d) + g *l

0,
\"

h
h-(k+1)[—= y- (k+1)[ J k
1 —q)(l—qh) q(k+1)r{qa —q l_k+1_l+ k+1

1V

}

h
(k+1) T y-(k+l)x lmj-f'k

1-9@-qYq

IV

{q 1

> 0,

. c s h _
since by definition, h - (k+l)[k+lJ h - (k+l)<k+l = a,. )

(b) If r' =r, (4.7.13) and (4.7.7) imply that, for

0 <y < 2x - 1, we have

_B - L J_
m (k+1) -r 1+(k+1)r
dk = (1 _qY)(q k k+1 - qy+k )
- 1-¢"" (g +q -4
m—]%(k+l)-r m lki‘lJ 1+ (k+1)r .
= q (L~-g )(l q ) + (L-9) {1 - (1%g+...+q )qy}
. n-Loe)r m —l‘}—{%‘ﬂ -1+ (ktl)x -
3qy(l-q)(l-q ) + g 1 -l ~-qg M)
> 0.

since y = x =h >0 and m - E(k+l) - r >0 for it is the number of end

vertices with path lenth a +1 on the k-sum (k+l)-ary tree constructed in

the proof of Theorem 4.5.3.

Therefore, we can conclude that Ey is a monotone increasing

function of y for x < y < 2x+k-l. However, because of the restriction
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that x <y < 2x+k-1, X is the smallest value of y such that (4.7.12) is

satisfied. This completes the proof.

The following theorem generalizes the result of Hwang's (1974).

_B
xo k(k+1)
Theorem 4.7.3 E( ) =E_ =1+a+ q '
o X Xo
o] l1-g
- x+k-1 ) ) ) )
where xo =—-——£——~—~ k, x is the non-negative integer defined by the

inequalities (4.5.4) and (a, B) is a pair of non-negative integers
satisfying

x, = k(e)® + 8, 0B < K2 (k+ 1) (4.7.18)

proof: This is a result of Theorem 4.7.2, Lemma 4.7.1 and

Lemma 4.7.2. We note that the existence of (o, B) has been discussed

in Remark 4.5.1.

Now we reach a conclusion that if we are given an infinite population
with units from a binomial distribution such that each unit has the same
probability p of being defective and the probability q = 1 - p~of being
good, then the optimal nested k~sample group testing procedure for find-
ing a single defective can be represented by an optimal alphabetic (k+1)-

ary tree T for the infinite sequence of weights u, = pqi'l’ i=1, 2
i PRSP

The total number of end vertices at the k leftmost planted subtrees rooted at

the root of i | Xtk-1 i
of T is x L X k, where x is the non-negative integer

defined by the inequalities (4.5.4). Furthermore, these k subtrees form

an optimal alphabeti - -
P ic k-sum (k+1)-ary tree TxO for the sequence of weights
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u, = pq s 1 =1, ..., X - Since X <x +k -1, from the proof of
Theorem 4.5.2, we see that the tree Tx is also a perfect k-sum

o -
(k+1)~ary tree. Suppose (o, B) is defined by (4.7.18). Then the first

B

X, - E(k+l) end vertices of the tree Tx is of path length a +1 and the

[e]

last E(k+l) end vertices of T, is of path length o+ 2.
o

Practically, the above statement means that the total number of
units tested in the first k—sémple group test is X, - More precisely,
let n, be the total number of units tested in the ith sample among the

first k samples tested, i =1, ..., k, then

X
izl R
and
B B
x -~ (k+1) x - =(k+1)
(k1% for i =1,..., 2K " if 2k 5,
(k+1)% (k+1)®
B B
X =-=(k+1) 8 x - =(k+1)
X~ Lk ka (k+1)% - —— 0‘(k+1)°‘ for i = == ka
(k+1) X (k+1) (k+1)
.o B
* X, = & (k+1) 5
if 2% <k -—E—
(x+1)% k (k+1) %
DY for i o=k - —P——— +1,..0, kK if B > k(xe1)?,

k (k+1)%

+1



CHAPTER V =

CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDY

5.1 Contributions of the Thesis

In this thesis an attempt has been made to study two types of
k-sample testing problems, namely, the testing of goodness-of-fit
or homogeneity between k populations by using k-sample analogues of
Kolmogorov-Smirnov statistics; and the binomial group testing for
eliminating defectives by using an optimal nested k-sample group_
testing procedure. Several enumeration methods and results about
the tree structures are included as a foundation of the study. The
major contributions of the the thesis may be summarized as follows:

(1) A method of enumeration is used so that simple expressions
can be obtained in the following two cases:

(a) a certain kxm fold summation of the number 1 is
expressed as a determinant of size (m+k)x(m+k). \

{(b) a certain kxm fold definite integral of the number 1
is expressed as a determinant of size (m+k)x(m+k).

(2) Based on the formulae of (1), the null distributions and
the conditional null distributions of the following statistics have
been found:

(a) a k-sample analogue of the two-sample Kolmogorov-Smirnov
statistics for testing the homogeneity hypothesis.
(b) a k-sample analogue of the one-sample Kolmogorov-Smirnov

statistics for testing the goodness-of~-fit hypothesis.
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The testing prdcedure of usihg the above'statistics'has been pro?osed
and the consistency property of the tests has also been mentioned;

(3) Rooted plane £fees.héve beeéen idenﬁifiéd'as métrices or
pseudo-seafch codes. Using generating functions or matrik enumeration
methods, the totaibnumber of distinct piantedbﬁlane trees hasvbeen
énuméfated'for each of'the‘following cases: |

(a) given n‘end‘vertices

(b) given heiéht h and n end vertices

(¢) given all branch vertices of degree g+l, height h and
n end vertices.

(d) given all branches of degrees either 3 or 4, and n
end vertices.

(e) with certain restrictions on the end vertex sequences
and degree sequences.

(4) Further exploratory results have alsé beenbobtaiﬁed for the
case of g-ary rooted plane trees. For example,‘ we have

(a) proposed a pseudo-search code construction algorithm
for constructing an optimal alphabetic g-ary tree for a valley sequence
of weights.

(b) determined in terms of entropy, the lower and upper
bounds of the cost of an optimal g-ary tree,

(5) As an application of (3) and (4), a k-sample group testing
procedure has been defined and the following problems have been solved:

(a2) eliminating a single defective from a binomial population
P by using an optimal nested k-sample group testing procedure.

(b) finding all the defectives from the population P.
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5.2 Suggestions for Future Study

There are numerous directions in which the present study can be
extended. A few of them are listed below:

(1) The enumeration methods used in Chapter I should be improved
so that more specified classes of matrices satisfying the conditions
given by Remark 1.2.1 or Remark 1.3.1 can be enumerated without using
iteration methods. Such a problem is of importance because its solution
will enable us to improve the cbnditional,null'distributions obtained in
Chapter II. (cf. Remark 2.2.3'and Remark 2.3.1)

(2) The k-sample nested group testng procedure proposed ig
Chapter IV has been shown to be optimal for finding a single defective
from a given binomial population P. However, this procedure is not
optimal for classifying all the defectives from P. (See Section 4.1
for the case k = 1 ) It does not seem easy to find such aﬁ optimal
procedure because it does not have a-tree representation even when
k = 1. Howewer, one can consider k-sample group testing on a
hypergeometric population, that is, a binomial population with a known
number of defectives. Also, it is interesting to enumerate a class
of nested k-sample group testing procedures for classifying all the

defectives from a given population.
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