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CHAPTER I
INTRODUCTION
Section 1. ,

In the last century, the advance of science and
technology has been staggering. In little more than sixty
years, man has progressed from the first fluttering flight
to the conquest of the moon. The first explosion of the
atomic bomb to the stock-piling of the nuclear powers took
little more then two decades. In the realm of physics, there
are discoverles, breakthroughs and inventions; too numerous
to mention. However, there still are prablems left unedlved.
In this category, are the two basic questions of nuclear physies.
What 1is the force that correlates the nucleons, and how are
the nucleons correlated? Through the years, enormous efforts
have been made in these directions and two distinct yet
related fields of research are formed as a result. The first
question led to the search for nuclear force, and the second
one initiated efforts towards the solution of nuclear many-
body problems,

Although no nuclear force which is free from
phenomenology 1s avallable at the present time, some general
features are now well-known about the two-nucleon interaction.
The possilbllity of three-or-more-body forces cannot be denied.
But, first of all, the two-nucleon interaction should be fully
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understood before more ambitious projects are consdidered.

We now understand that the origin of the nuclear force 1s

from the exchange of different kinds of mesons, and attempts
have been made to derive nuclear forces from meson theory.
(See, Rev. of Mod. Phys. Vol. 39,#3, 1967, for general
reference) However, meson theory has not yet reached a stage
where a nuclear force may be derived completely, and we can
only say something general about the force in reference to
meson theory; the long ranges, for r >2 fm, are dominated by
the exchange of single X-mesons. This is the part that can be
calculated accurately, since the coupling of Z-mesons to nucleon
is well-known. The intermediate ranges, for r==1 fm, are thought
to be governed by the exchange of vector mesons P W, D

and something called the O -meson, which mey simply be a re-
sonance of spin zero and isospin zero, or a contribution from
multi-meson exchsnge. Thils intermediate range is still under
intense investigation. Finslly, &t short distance, of about

0.5 fm, there 1is the core region about which little is known,
except that it 1s repulsive, because experimentally, the S-wave
phase-shifts change sign at high energy. So, we see that the
two-nucleon interaction is by no means completely understood.
One may wonder why the two-body force cannot be determined from
the experimental two-nucleon data. The answer is that experi-
mental date so far have provided on "on the energy shell" in-
formation when "off the energy shell" information is also

required for the determination of the nucleon-nucleon inter-



action. We shall not go into any detail to explain this but
only say that nucleon-nucleon scatterings in the free egpace
involve energy-conserving processes whereas scatterings in &
nuclear medium involve energy-nonconserving processes, EX-
perimental studies of these energy-nonconserving processes,
gsuch as nucleon-nucleon bremstrahlung experiments have been
done and more "off shell"” informstion will be availablé in
the future.

There are many other problems related to nucleon-
nucleon interactions. We shall not be concerned with these iIn
particular. Suffice it to =ay that enough is known about the
interaction to make a calculation of the nuclear many-body

problem realistic.

Section 2.,

Even 1f the nuclear force can be derived from meson
theory, many-body problems still face one slmost insurmountable
difficulty ------ the physicist himself. For he is incapable
of solving problems involving more than two particles. Even
the two-body problem, he 1s able solve only because it can be
reduced to two one-body problems. With this intrinsic difficulty
the many-body problem is really & study of approximations. The
general procedure is to propose a theory for the problem, to
test the theory with a simplified model of the system, and
finally, to apply it to the physical system. Such is true for

Brueckner's theory of finite nuclei. It has been tested in the



calculation of nuclear matter and is now being applied to finite
nuclei. It is this application that we are interested.in.

There are many difficulties in Brueckner's theory of
finite nuclei. To mention a few, there are the double self-
consistency, the particle spectrum, the solution of the Bethe-
Goldstone equation and the breatment of the Pauli operator.
In this thesis, we shall be concerned mainly with the solution
of the Bethe-Goldstone equation and the treatment of the Paull
operator. The other difficulties are treated with the usual
approximations. M. Baranger (1967) has made a very detailed
summary on these in his lecture notes. We shall only make
brief commenté.

The double self-consistency refers to the Hartree-
Fock self-consistency, and the Brueckner self-consistency.
The former involves the choice of single particle occupiled
states and is a problem only in finite nuclei., The Brueckner
self-consistency refers to the definition of the G-matrix in
terms of the single particle potential U, which ig unknown
until G has been calculated. The treatment of this double
self-consistency 1s still in a rather ambiguous state and
we shall not go any further in this regard. The particle spectrum
$8 really closely related to the Brueckner self-consistency
and we shall also pursue no further, but shall bear in mind
these difficulties in the application of Brueckner's theory.

With regard to the =olution of B-G eguation and the

treatment of Pasull operator, we believe that these sre insepa-



rable and should be dealt with together. The traditional
methods of solution of the B-G equation are also summarized
in the lecture notes of M, Baranger (1967). Very recently,
S. Butler et al (1969) reported a new approximate method
to the solution of B-G equation wnich seems very promising.
We believe, however, that our approach to the problem brings
out much more physical insight.

In Chapter II, we shall study the B-G equations.
We shall propose a formellsm which is particularly suited
for finite nuclel, and which makes use of technigues used
in nuclear matter calculations. Chapter III contains dis-
cusesions on how the reduced integrals are ceslculated. We
make a shell-model calculastion with the two-body matrix
elements obtained from Chapters II & III in Chapter IV.
The results of calculations are then presented and com-

parisons made in Chapter V.



CHAPTER IX
BETHE-GOLDSTONE EQUATIONS
Section 1.

In the theoretical study of nuclear properties with
realistic forces, one is almost invariably faced with the
problem of solving an integro-differential equation. In the
case of free scattering, this equation is of the Lipmann-
Schwinger type, and in the case of scattering 1in a medium,
whether it be finite or infinite, this equation is of the
Bethe-Goldstone type. The latter differs from the former in
that it contains a 'Paull' operator, which prevents certain
intermediate states from entering the equation. Since we are
not dealing with nucleon-nucleon scattering as such, our main
concern is the solution of the Bethe-Goldstone equation. There
are varlous methods of solving the equation; for example, the
integral equatioh method of Brueckner and Gammel (1958), the
separation method of Moszkowski and Scott (1960) and the
reference spectrum method of Bethe et al (1963). The relative
merits of these methods have been investigated in great detail
by G. Dahl et al (1969). It is well-known that the Pauli
operator and the energy denominator introduce great difficulties
in solving the Bethe-Goldstone equation, and these methods are
designed to treat certain characteristics of these operators.

Most of these methods have been applied to nuclear matter
(S)



calculations, with varying degrees of success. However, when
one is dealing with finite nuclei, further complications are
introduced. The sllowed intermediate states are.no longer

in the continuum; they are now discrete states and the treat-
ment of the Pauli operator must be modified accordingly.

C. W. Wong (1967) has made a very thorough study on the
treatment of this operator for finite nuclei. He 1lntroduced
the so-called 'local! and ‘'global' treatments of the operator.
The 'local!'! operator is essentlally a nuclear matter Pauli
operator with an average density dependence. The ‘global?
operator 1s treated in configuration space in an attempt to
include the discrete intermediate states correctly. We shall'
examine the physical situation, in which each of the treat-
ments of the Paull operator is good.

Nuclear matter, by definition, is an infinite medium
with a density which closely apprvoximates that in the interiors
of heavy nuclei. It is then apparent that the 'local’ treat-
ment of Q, the Paull operator, should be quite adequate for
two nucleons interacting deep in the nuclear interior. For
nucleons interacting near the nuclear surface, an effective
density approach must adopted. In other words, a ‘'local® Q
corresponding to a nuclear matter of a somewhat smaller
density should be used. C. W. Wong obtained some reasonable
results with this approach. However, we can see that in this
treatment, the discrete nature of the intermediate states 1is

completely ignored. The ‘global' treatment, on the other hand



treats the operator (1 - Q) instead of Q. With the basis
states forming a complete set, the operator corresponds to

a finite summation of the.discrete occupied states. Consider

the Bethe<Goldstone equation:

where ’q%/> is the unperturbed two-particle wave functlon,

/5@,)'18 the correlated two-particle wave function,
and V is the interaction, e the energy denominator. We shall
concentrate on Q@ for the time being.

The explicit form of Q, for & finite system, is

Q =‘g /¢mn>(¢mr¢_/

unoccupded
(Note: Sum over mn is used as short-hand for sum over %,,)

which is an infinite summation. To avold this, the equation

is re-arranged as:

1) = 1@y>= Lyl + "’;‘%2 v

If the basis states /¢%7> form a complete set, then,
(1 - Q) corresponds to a finite summation over the occupied
states. In the case of A=18 nuclei, with harmonic oscillator
baslis states, this corresponds to the 1S and 1P shells. At
first sight, this seems to be a reasonably small set to sum
over. However, in solving the B-G equation, a transformation
to centre-of-mass and relative co-ordinates is always necessary.

It is this transformation that increases the number of possible



intermediate states in terms of the C.0.M. and relative
quantum numbers. This number increases asll the more
drastically when heavier nuclel are treated, the single
particle occupied states increasing in number. C. W. Wong
hes found that '‘global' treatment converges wéll for light
nuclei in which the occupled states are relatively few. For

heavy nuclei, the magnitude of the summation becomes almost

unmanageable,

Section 2.
It appears apparent that the 'local' treatment of

the Paull operator is incomplete from the physical point of
view, while the 'global’ treatment becomes calculationally
inconvenient with heavier nuclei. We shall now introduce a
method which retains the fvirtues' of the nuclear matter oper-
ator, while, at the same time, making the inclusion of the
discrete nature of the intermediate states posaible., To do
this, we have to examine more closely, some of the well-known
physical features §f an interacting pair of nucleons,

One of the well-known features of realistic forces 1is
the short-range strong repulsion. This implies that two
nucleons will come very close together only when they possess
high momenta, and similarly, the scattered states will be
atates of high relative momenta, which are well approximsted
by plane wave states. Imagine two nucleons interscting in the

nuclear interior, their short-range correlation corresponding
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to the repulsive part of the interaction, will be very
gimilar to that of two nucleone in an infinite medium. A
very trivial example is the infinite hard core potential
which produces zero correlated wave functions 1n nuclear
matter as well as in finite nuclel, inside the hard core
region. Thus, the difference between the 'finite' and 'in-
finite' Paull operators, haes little effect on the short-
range part of the two-particle wave function. This is the basic
assumption of our formalism. It enables us to treat most of
the intermediate states of high energy as contlinuous, and
only the low-lylng states as discrete. Such a separation is
not always clearcut, and certain criteria have to be met.
But, we shall assume for the time being that such a separation
is possible and proceed.

Let us consider the two-particle B-G equation for a

finite nucleus,

- 2 y
/¢9;> = ,!%7> 2;.V’/%y)

where / B;)'s are some basis states,
/¥%;)'s are the correlated wave functions,
and V is the realistic potentisl.
Writing out the operator Q explicitly, we have:

15> = (g - > LOun2<Buan i VIYy)
v /7 'mn Mx ”
unoccupied <J

where e;} = E(m)+E(n) - E(f-) - E(J).
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We shall consider how to handle the energy denominator in
more detail later on. Let us, further, make an arbitrary
separation of the states mn to be summed, into those belong-
ing to & subspace we call D and those not within D. Then,

we can write the two-body B-G equation for finite nuclel in

the following way:

1%i> = I Bj> = >, ! Buyn > Bpan [V 1 Vo)

mnep e;ﬁ
- £§: ’9%6->(¢%5/t//?ﬁy}
aé (IIol)
eb&EC, D ey

where C represents the so-called core states which are occupied,
The nature of the subspace D depends on the nuclei under con-
sideration. I€ can be a partiaslly filled shell such as the

18 18
S-D shell in the case of O and F , or it cen be a completely

empty shell when a closed shell nucleus such as 016 is considered,
Here, we have used the language of harmonic oscillstor basis
states. In fact, any comblete set of states, whether 1t be
deformed or not, can be used. This sgain depends on what

nuclel are under consideration. We shall restrict ourselves

in actual application of this formallism to harmonic oscillator
basis states. To solve equation (II.l), there are many methods

as mentioned previously. What we want to achieve, 1s to make

use of the 'known' short-range behavior of the wave function

to render an easier egolution and to gain more physical insight.

To do this, let us imagine a hypothetical problem, Consider
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two nucleons originally in a discrete state /9%7> being
tembedded' in an infinite medium of Ferml momentum k.. The

behaviar of this pair of nucleons in the medium 1ls described

by the followong B-G equation:

S, = 18> = (&), vl

where the subscript N denotes the similarity between this and
the nuclear matter equation. The main difference 1g in ’4%%)

which 1s now a discrete state, lnstead of a plane wave state

a2 in nuclear matter. We shall call thls the 'semi-infinite!

equation. Writing Q explicitly, we have,

e Ch ky ! VI
5 =t [ b oy Ll i
%74

/.

7 e %

v (11.9
where lkjko>is a two-particle plane wave state,
et - Btk + Ech) - EC - EGY
and kg 1is the‘ﬁutoff or Fermi momentum, below which all =tates
are occupied. Note that we have suppressed the spln gquantum
numbers S and mg in the plane wave state Jkijkp? . A summation
over these quantum numbers is understood unless otherwise noted.
Again, we defer the discussion on the energy denominators,
Equation (II.2) is in exactly the ssme form as the
nuclear matter equation and can be solved by the varlous methods
previously mentioned. By a sultable choice of the subspace D

and the Fermi momentum ko , /¥y), and /%) will have

simdlar short-range correlatlions and one is Jjustified in



13

approximating ( /%7> - 1 ¥%52,) by a truncated expsnsion:

iy
/¢9:> - /k§,)N ==q5§§;Z> /i'/ /9%54§( (11.3)

Note that we have used "%%); in the expansion
instead of /Q%g) in order to& satisfy the boundary condition
on the correlated wave function /y%” > , at the core radius
of the potential. Here Aég..are the coefficients of the
expansion which we shall have to derive.

Let ue now see what physical insight one can gailn by
considering equations (II.l), (II.2) and (II.3). Equation (II.1)
represents the 'finite' situation. A set of single particle
basie states 1s chosen. This set is divided into the core

states C, the subspace D and higher states, as in Fig.(II.1).

7
T Unoccupied /4?2?%;(:// Continuum
£
c

K
D
:a;//// y; Ke D
C /fg/ij;;/(;; C
Occupied
Fig. (II.1) Fig. (11.2) Fig. (II.3)

The B-G equation describes the behavior of the two nucleons
when they are allowed to interact and scatter into D and

higher states. Equation (II.2) may be represented by Fig.(II.2).
This is the situation, when both the occupied and the un-
occupled states are 1in the continuum. Only the initial state

/ 9a>is discrete. The composite picture of Fig.(II.1l) and
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Fig.(II.2) is shown in Fig.(II.3). This represents the trun-
cated expansion of (II.3).

In the composite picture, we are in fact saylng that
we shall treat single particle states with momentum components
lower than k, as discrete and those with momentum components
greater than k, are treated as continuous, i.e. represented
by plane wave states. However, it is not possible to make a
one-to-one correspondence between K, and the uppermost state
in D. A state above D has momentum components smaller than
ke , and states within D also have momentum components greater
than k,. It is therefore necessary to have some criterias by
which k, may be chosen. To accomplish this, we shall have to
look into the structures of the coefficients Q% more closely.

Aslde from this difficulty of determining the cutoff
momentum, & much more baslic problem arises when we consider
the ‘semi-infinite' problem as represented by equation (II.2).
One of the baslc requirements of perturbative method is that
the perturbed wave function should be normalized to unity

with the unperturbed wave function, i.e.,

This 1s clearly not satisfied by equation (II.2), and the
reaction matrix one obtains corresponding to 7 %7)~ is
clearly not a sultable quantity: because of the incorrect nor-

malization. We shall present in the following section a
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formalism which provides for both the cholce of k, as well
as the proper normalization for the perturbed waves.

We note here also that although we have been_using
kc interchangeably as the cutoff momentum and as the Fermi
momentum, it will emerge in the next sectlion as being quite

distinct from the Fermi momentum of the nuclear system.

Section 3.
Let us define a two-particle plane wave state by:

14 k") = 144>~ D <Firkk e IPy> (IL4)
{/@‘Corb

for ky, kp kg , such that <@ /4 4k">=0 for 1jeC or D.
%

In other worde, /klke ) has been orthogonalized to all the

discrete states in the core and the subspace D.

The normalization of /klkaﬂ} is given by:
chAETIETHF)

= f(’é/-é" ) {('4’1 _4)&/) - Z <A b,/ ¢\(/)(¢\f//ét ,/6,_/}
f/éCar@ (1I.5)

in which the second term becomes negligible when ki, ko, ki
and ké are greater than k, and the momentum components of
/<@7) » greater than k., appear to only a small extent. This
will bear significance in our formalism later on. With the
plane wave states defined by (II.4), let us recast our semi-

infinite problem as:
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e 4

o
AT vl
1 s =g "40{:‘? e =t (11.6)
ke

where the following simplifications of notatlions have been
introduced:
1) /A&"> stands for /44,%) .
- - bafdlé %
11) ./Q adi stands for /£~Ag 7 5y .
111) o stands for a pair of indices such as 1iJ in
(11.5).
» ok,
iv) &y stands for @, which will be treated in
more detail later,
v) 4«24 wmeans 4./ 2 4 , and xeC means (1i,])eC.
We shall use this set of simplified notations whenever
convenlent, and shall specify so.

#
Because of (II.4), /% > 1is now properly normslized

with /&> such that,

#
(9‘2/%)20:}3 for «eC or D,
and the perturbatlive developmentes may be correctly applied
to the problem. We can also define a reaction matrix G*

corresponding to equation (IX.6),

* ¥
G" = v- V/EQ) G (I1I.7)
where R * b JET><KTY
/‘é") = A 24 P
C XA

We may now again apply our argument of the truncated
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expansion to obtain the true wave function/¥% > ; only this
time we shall use /%™ as basis states. The three basic

equations of our problem now can be wfitten in simplified

notations as:
KB viRd S sps B/ VI%>

/%):/%)*2/%)

BED éw/g Y#CD =
(II¢8)
. b
<kTivr ¥
185 = (B> -{ dg (&7 =7 % (11.9)
c o £,
¥y = O Afiph

and SRR A T sen BA (1I1.10)

P '

Assuming solution of (II1.9), our tacgk reduces to
evaluation of coefficients A%; in (II.10).
Using the fact thst ‘<92/g%f>= 5%4 for € C or
D, A;; may be obtained from (II.10) as:
/4“7;.:(63 IY -8 forgeC or D.
It 18 easy to see that for K’$/G s We have,

A *=(;73/;é(,\ = - X%/G/R> __ _ (%/6*/g)

—cu—

L Cug 4 (11.11)

where we have used equation (II.8) and where the G-matrix

1s replaced by G* as a first order approximation,
Let us examine more closely the truncated expansion

of (II1.10). This approximation is good if the magnitude of
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components /%7*)- s Where 7 ¢& Cor D, in /%> 1s small
as compared to components in the sgpace D. The quantity we

wish te study is therefore:

I = /%>~ (/% >+Z’4 /;)

P ED, #«K
From equations (II.8), (II.9), and (II.1l1), we get,

7 = + 2 <¢§/6/¢~ /% " —ﬂ“ /¢> <K/ D>

i & (I1.12)
_2 /¢)(¢/w i a/,c 1Dk v BT
&C.D 7 C.y 4 Cori

Applying equation (II 9) to the firet term, and inserting
& complete set of plane waves and a complete set of discrete
states /4%H>, in the third and fourth terms respectively,

we can further reduce the expression (II.12) to:

]'___Z (¢§/ ) dlc/k)/@/u/sb)

s 3 re & #

2 2, / (BB 1<k 1By T /Y BT 4
pécod v Tk o P

‘ 7
- ke <KIB < Bl VI HoD
pEcomdlo T o en(/s
*
B, v/ <B rvl¥

* o /a’,t/k><;€//%,)/ %e,‘}é’) -—ﬁ—;———fﬁy
AF Cocd R 8 ol

where we have introduced the same cutoff momentum kc for the
complete set of plane waves /£ > 's and the discrete states
have been separated into those in C or D and those that are

not. The last term appears because we have retained the
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difference between < &, /v ¢¥7> eand </ v/ HBe D

for completeness. We have also used the fact that (K*/”/%»-? </</}/£>

for/3¢- C or D, and (A”'/}/é>so for /é C or D. To further
8implify the expression, we again introduce 8 complete set of
discrete states in the first and the fhird terms,

r -~Z P <¢,/6/ z%%?c 1 < 1K) <KTY) Py >

'Z Qe (B <P IIK] B <G KD
,Jﬁrw‘o '%:(.& [ r -—.é——e-(;——
-2 =, / % /¢)(¢y/k)oc/sfg)<¢£/v/;g,>
BECop YECTD &,
<B/y) D <¢/w;z;,
oz Sde [reoenr gy fATLES //
L #CrD < /4
* 2, /¢,,)<¢§,//c)(,€/3§, )/" IV s <fé /w )///
Y€EC.D 7%

The second term in the expression vanishes after 1ntegration

over the & space. Therefore,

I=-2 10> /d/c_&_/z/__.<¢,k)f_u£;&»
/&fc'.n.b /3 ’)'e.b Ve
r / di XEIK>SKIE D <% /WV’«>
VEC oD Vo ~
B, v/
-5 (= %o | <BIvi¥! )/m«:
Lgeécms % Cois A
.7%6”3 /ﬁ},)(?’-y/k)\’k/%) (II.13)
The first term in (II.13) may be further simplified as
follows: A
-7 B> Z/‘(?’r/W% ak (%/z)(k/w%

&

=-Z s 5 Shivibed 3 (¢f/V/%5/df GIED KIS S
£

c Ye < &
LE w-b p €y §¢cod s 3

/
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= -2 (%> 3 <Hrviv, Z <EBsvrpy s

-
AécwDd Yed Cxy §¢comp €ra

ke
.{ - <K/
fos = ) Ak T/ Pe>/
where we have again used the properties of /&5,

Putting this in, we finally obtailn, after some

re-arrangements, an expression for the difference we want

to study:

4.
= - dr <Brk>SKkB, ) -
I=-2 g5 /E [ e <% y
pBécrmo Y¢eoms
L J
./( Yrvs g 7o > G B ISPy sV Y >

_,./(;ﬁg/u/}@)_ (%/u/}é”}//f pa (¢{/V/}£><§‘s/‘;{ff*>
(7‘9 6’,,/,: dén €5 é’;;@

Expression (II.l4) appears as a summation over states out-
side of D and C, which is as expected. The magnitude of the
coefficients is indicated by the three terms inside the
square brackets. The first term 1s swmall when k., 1s chosen
such that (;fe /<> 1= small for B¢ C or Dand &< Kkg.
The second term 1s of the same order as the term we have
ignored in the evaluation of A;; s 1.e. we replaced G by G*,
The last term is of second order and has at least one energy
denomlnator eé: which contains energy difference of at least
%4 bigger than €.s in A;€ .

Expression (II.1l4) indicates, therefore, that the

truncated expansion (II.10) is consistent with our order of

approximation. It also implies that the important criterion



21

for ko is that Y4 /%, should be small for & < k., and
Y] ¢ C or D. Therefore, the ideal separation of momentum
components by k., for the states in C and D and for the states
outside is not necessary. Fig.(II.4) shows the momentum
transforms of the single particle states used in the cal-
culation. For n¥=0, the /=2 and 4 states are plotted.
Although these states are separated by energy gaps in the
simple harmonic spectrum, we see that there is too much
overlap in the momentum space between these states to make
a unique determination of k.. The situation for n=1 is
even worse, because there 1ls & peak in its momentum transform
inside the maxima of the n=0 states.

A choice of zero for k, is not desirable, although
it eliminates the first term in (II.14). The resson is simply
that our formalism willl also reduce to the same footing as
the !'global' approach in which a2ll of the occuplied states
have to be summed. As previously mentioned, this will make the
magnitude of computation prohiibitive when heavier nuclel are
encountered. _

Let us consider the problem from a different point
of view by asking how well the true wave function 1s approx-
imated by (II.10) at different ranges. For intermediate and
long ranges, we know from experience with shell-model that
the wave function is adequately represented by a sultably

chosen D of reasonable size. Also we know that asymptotically,
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the wave function /%) goes to /%> . So except for the
extreme tail, which is not very important anyway, & trun-
catedexpansion in a sultable subspace D of the true wave
function, seems adequate for the intermediate and long ranges.
What about the short ranges? We have argued in
qualitetive terms, that the wave function /%;f> associated
with the semi-infinite probleﬁ has the éame short-range
correletion as that for the /%> . This , however, 1s valid
only when a suitable kc is chosen for equation (II.9). If
ke is too large, we will be leaving out Fourier components
that are not rerintroduced by the truncated expsnsion (II1.10)
and, if k, 1s too =mall, we shall be double—coﬁnting some
of the Pourier components which are already well represented
by states in D. Our approximation, which appears later in the
discussion of Paull correction terms, requires that ! Be)g
in D have small components <%&:-/&«> for 4 > Kk,..S0 we gee
that we must choose k., so that for e D, <&,/4) 18 small
for Kk > kc, but not so large that there is a group of wave
numbers less then k, which are not adequately represented by
our truncated expansion (II.10). The latter condition indicates
that k, should not be too far from the Fermi momentum associated
with average nuclear density. In other words, the restrictions
for 8 camplete separation of the momenta can be relaxed. How-
ever, this is by no means a uniqgue choice of ko and we shall
have to test the sensitivity of our formslism to different

valueeg of k,.
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Section 4.

So far, we have made the bold assumption that
equation (II.9) can be solvéd without difficulties. This
is not the case in actual practice. For equation (I1I.9),
we still have to use approximate methods, such as the
treference spectrum' method, the 'separation' method and
the 'integrali equation' method. As remarked by G. Dahl et
al (1969), the choice of a method should be made by con-
sidering 1its accuracy and the labour involved. We have
chosen the reference gpectrum method, partly because of
the ease in extending the method to all partial waves, and
partly because of the author's previous experience with this
method. We shall mention some of the salient features of this
approximastion.

The basic procedure is to replace the actual inter-
mediate state energy spectrum, which 1s unknown, by an
assumed ‘reference spectrum!? eR, The B-G equatlon can then be
reduced to a differential equation when the assumed spectrum
eR 18 a guadratic function of the momentum., The differential
equation is then solved numerically by first ignoring the
Paull operator, Q. This leads to a8 'reference' wave function
or 'reference' reaction matrix GR. The effects of the Pauli

R

operator Q and of the difference between e and the true

spectrum e¥* are then calculated as the Pauli and Spectral
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corrections respectively. This idea of an approximate solution
to the B-G equation may be summarized in the followdng way.

Consider a B-G equation represented by an operator equation,

=y-y & ¢
Gﬂ (] % 2 (:v (1I1.15)

where GA is the reaction matrix corresponding to the inter-

action V, and QA/eA is the propagator;appropriate for the

particular problem. Formally, let us consider another such

equation with subscript B,
GE:’G“%—%—% (I1.16)

and try to get an expression for G, in terms of Gp. Let us

define another operator (2 by,

@, Qs
= = Y4 = _ (.
e / g;'é% and L ! €b‘;%

The following identity holds:
r *
s - 4 7 Qe )7
G =G G LB (RG] G ()] g,
This again simplifies to:

7 " "
G =% "R (G- 4)8 G [12)-12)]6,

. | (11.17)
The ' indicates Hermitian conJjugates.

The operator relations tell us that if equation (II.16)
represents approxlmate situation of equation (I1I.15) and has

the virtue that it can be handled more easily, thén equation
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(II.17) tells us how to get the exact Gy from Ggz. Here,
we have followed very closely the treatment of Bethe et al
(1963) as presented by G. E. Brown (1967).

Let us assume that sll the operators involved, except

2 are Hermitian’@. Then equstion (II.17) reduces to:
e r & &
Go =% "B Y4 G2~ (32)] G,

The reference spectrum method is to assume that the
only difference between the exact and the approximate reaction
matrix is in their propsgators. Further, the approximate
propagator is taken to be simply 1/eR ynere eR is the so-
called 'reference'! spectrum. Bearing these in mind and re-
membering that Vy=Vg in this case, we have,

G % &[5 2/lG

r GG %/[5%/

@ Note that GR is not strictly Hermitian because of the state-

dependence of eR; however, we can make it Hermitian if the same

]
&0

etarting energles are used. In other words, for <aéb/ G*/ca>
and <cd/ G¥/ o4y, if we use &= #[E(a)+E(b)*E(c)*E(d)] as
starting energy, they will be equal. See Bethe et al (1963)

or Chapter III.
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or, G =Gt G g f % Gl % (L8

where we have replaced GA on the R.H.S. by GB as a first order
approximation. The second and last terms on the right are
respectively the Spectral and Psuli correctione.

The reference spectrum el is usually defined as:

f’e— Ece) +£(J') - E(l) - E(m)

where 1 and J are single particle intermediate states, with
energies given by:
£(£)=/?+_7‘.’:_ﬁ:
2mtrM
and E(1) and E(m) are initial state energies obtained from
experiment.

A and m* are the reference spectrum parameters which
should be calculated by a self-consistent process (See for
example, M. Razavy,1963). It was found, however, that in
nuclear matter, using E(1) = tﬂ@i@w gseeme to produce reasonable
results. (H. Bethe, 1965 and S. Mozskowski, 1965). Kuo and
Brown (1966) used this approximation to eR, In fact, in their
calculation, eR is treated as identical to the actual spectrum
e*; so, there 1s no Spectral correction. This is reasonable,
since nucleer matter calculations indicate results of using
8 flat particle spectrum and of self-consistent calculations

of m* and A (the two psrsmeters of the particle spectrum)
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are comparable,
We shall follow the same procedure here in treating
the free particle spectrum as exact and in using experimental

values for E(1) and E(m). Therefore, we have,

o vy 2 a
eV - JR_ XA T -
. = € wa T ot T E( - Em)

Assuming that we have solved for the reaction matrix
G* for the 'semi-infinite' problem, we need an expression
for the actual reaction matrix G, in terms of the coefficients

”»

A73 and G*, Again, ueing the simplified notations, we have:

(%/6/&)= (%/v/%>

I

*
<@,/ v/ t/»;>+ > A CBIVIBT>  (11.19)

veo /7
%
_ 2 /6"
=% Sy

Since G is Hermitian only if we use a fix starting
energy and calculate up to all orders, we shallvfollow the
practice of taking,

(¢“/c;/?6 /‘(;»/G/;ge)f«’ /1 Gs B /(II 20)
In actual ceslculation, <& /6 / Pg > and C% 1678, )
sre found to be close enough for such an average, to our

order of approximation.,



CHAPTER II1
THE CALCULATION OF REDUCED INTEGRALS

Section 1.

In this chapter, we shall be mainly concerned with
the solution of the referenée spectrum equstion. However,
before doing that, we should mention that it is the shell-
model matrix elements we are after. In other words, we
want to obtain effective interactions for shell-model type
calculation. Let us denote a two-particle state by the J-J
coupling scheme. Thus, we may write an anti-symmetric two-
particle wave function of a given set of quantum numbers,

JMy , and TMp as&:
/J;“/ )‘/.; "& ; J-Mf ’ TMT)”

4

~7* 4 *Ja
T JZ7- ) //-/' Mr s JoMe ; TMy, THy D> =(-/) IS #y, jom, ; TMy TM, 2

= ”I} (\/1 I/g "g /,MJJ(.[ /TMT ) [J,M '/-!m(z) :
.,r%m {'_,qr_a) - BB 1) X, i {“’m /

\/‘ Ma /’M J I3

We have written out the wave function completely, in
terms of the products of single-particle wave functions.

E%,”ﬂq denotes the space and spin wave function of perticle 1,

28
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and the X 's are isospin wave functions. N12 ia Just the
normalization factor and the first two factors are Clebsch-
Gordan coefficients for the spin and isospin couplings res-
pectively. The J-J coupling scheme is not convenient when the
interaction 1s decomposed into different angular momentum
gtates. We, therefore, have to transform to the L-S coupling
scheme, Using notations of Edmonds (1960), we note the fol-:
lowing identities: /

14,$¢.0; bSit) ), TMy)

[ )
= 20025+ +10(2jr 17 b F Uy S [0 (), 55,03, TM; )
l J ’ ’
. (ST
(111.1)
and,
’/ J Wi J
brdot LrS+1 412+ T 3
et L f=c-0 v 3/.
L & F
(III 2)

In (III.1) the L.H.S. is a two-body wave function in

J-J coupling scheme. //CG
L

for the transformation and /44 c¢),s58(5),9M,) 1s a two-

I
A is the nine-j symbol

G e oy

body wave function in the L-S coupling scheme. With these,

we get,
L) .,/.ag,.nn,,7ww;g
¢ £
2 J (22r12028%0( 2 +00035n77) - { & & Je /7//.- (£), 8,3, (S); TNy, Ty )
L 3

Grb tL +S-T , A
- (-1) 14l (e, 8,8 (), TMy, TMr D]
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the that we have consistently suppressed the
" principal quantum number n in the baeia ‘wave functions, since
it is, so far, not involved in any recoupling. Our inter-
action V is basically a function of the relative distance
between the two particles. Thus, we shall reduce the in-
dependent psir state into C.0.M. and relative co-ordinates,
_For this, we use the Brody-Moshinsky transformation (1960).
A pair state can then be written as:
In &, dy (£),S,TMyr)

‘—'%2( b, N LMl b LD ]l NZ, (40, 3. TH >

~N,L
where n,f and N,& are the relative and C.0.M. quantum numbers
respectively. <nl,NZ.&/mé.m1L (> 1s the Moshinsky trans-
formation bracket. We have suppressed the isoepin quantum
numbers. With these, we may write the anti-symmetric pair

state in C.0.M, and relative co-ordinates:

Imdy,, u.AQ/;, TMy, Ty 2,

4,8

(A J,/
= N . ¢ 2, 2 KN A ’
[, * 2, z(+/)(2s+/)(‘//+r)(‘/;f/)é - J/ .

-
<ndonl, cfmt, mby, > [/- -1 257 7 -

I nd, N&, (£),S,TM5 TH, D

We have to recouple £ and S to a relative j,
because the interaction, after being snslysed into angular
momentum states, depends on this quantum number J. This

recoupling may be achieved by noting that,
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|, N2, (L), S.TMyD

L+ S + [ +J' = . Y SJ.
% -7) VeaL»ri(2,+1)- T 4/

Jnd, S, N, TM D

/[SJ' is the =1 bol
where T 8 e six-J symbol.
Thus,

/”I ’j’ ; ”) [3/:, ].M], TM7>

. r _,
= My p (-/) (2z+/)/(2.9+/)(2J,+/)(f/;+/) B
_ 4,8 S
> £+

(-’} (”IINL,L /,"(p, ”‘(31 L) ] [ / -(—-/)

n, 4

~Z

’ Z (-/)'/./(y‘+/) J-(f/./ /7L, 3\/) NL TN 7Mr}
a

Therefore, the matrix element of V taken between
these states is:
((45.7‘7') / V/(:da'r)ﬂ)_—"—‘_ (474&/‘_ ‘n‘l‘/;,ff/ V/”C[ej'c,”d[djd'\]-r)

e ¥4

= /\/ Z, ( -7) (.?Lf/)(24+/)/2J+/) (“Z/“"’){/é*/)(\/ .,,)/‘/4”)
,d ,/4 I¢ Jc
A f /s u :‘ Jo ("1’”’5"/”414.”411,,4> .
L3 T &y 7

<7 N, L) R e, alat, £ « [1- (-/)(*s’f]-[/— (~/)(13+T].

Z(zu) /(S.// 5// Lo s St D
Y J'-Cl J'aCl/(” S(/)/V/wlsg))
(I11.3)
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This expression is identical with expression (2.1)
of Kuo and Brown (1966). So far, we have implicitly assumed
that the interaction V is the so-called residual interaction
and contains no singularity. However, the Brueckner theory
tells us that the effective interaction one should use in
such a calculation is the reaction matrix G, derived from the
'realistic®' two-body force V. We shall make a8 mental adjust-
ment here that all the V's appearing in the expression (II1I.3)
are to be replaced by G. So, our basic aim is to evaluate

<n 16‘_(/') /G 1 nd 3‘\//‘)) from some realistic interaction.

Section 2.
Let us now recall the 'semi-infinite! equation and

proceed to solve 1t. We have, in full notations,

¥ _ _ - ..ﬂ‘
/\}é' > = I8 /éQj V/{e/)

Define a defect wave function,
* *
"}:’/ D) = (/ ¢’./> -/ %J- & J

We can then write the equation as:
» R * *
/_f:/) e (2"} V(’¢\,)'>“‘/f{/~))

or, [//g)’r_,_ V)./Jj}:V/yﬁg.)

To set up the reference spectrum equation corres-
ponding to this problem, we replace Q* by 1 and e* by el of
Chapter 1I. Therefore,
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a2, 2 a, & R
/té/* t:é; "E([}-*Ef/‘)‘/‘v /“ff/‘) =V/%’>
where kj and ko refer to the momenta of the two particles.
Also /QQVR)' denotes the reference wave defect. Let us

make a transformation to the C.0.M. and relative co-ordinates,

r=(xn-5>/yz ; R=(rn+n)/z
and

ﬁ =(_fi "_é).)//é‘ » f -'-'(»6/ + A, 2/vZ
Then,

4" A£° : : e
S * s " £y -£9;+1/]/%£)/JM_>- V12018,
where (N?L+2a+L)=(an; +§ +.?¢- »¢;) and /¢;<> denotes the
C.0.M, harmonic oscillator function. Multiplying from the
left of this equation by <$2¢ /end integrating over R space,
we get,
2 a
[2L o T > L) -Epr V175> = VI% D
2N <
(I11.4)

Here, <TN&? is the expectation value of the kinetic
energy operator of the C.0.M. part of the wave function. We
have also assumed that the separation of the reference wave
defect / quf) into C.0.M. and relative co-ordinates is
complete. However, equation (III.4) contains centre-of-mass
dependence implicitly 1“'(TNL) » 8nd such a separation may
only be regarded as approximate. This discrepency may be
compensated by including state-dependence in the final
reaction matrix, as done by Kuo (1967). Let us define a
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parameter 7% as:
2M
-

Vis [<hpd - ECOCEG]
= [ 4 Eg - £ -EG]. 2

where we have replaced (TN£> by the average kinetic energy of
the oscillator in state N& . We see that 7Y’ contains all
of the state-dependence, and it is through 7Y~ that we are
able to include the prbper C.0.M. dependénce. Note also that
owing to the symmetric transformation of Moshilnsky, the reduced
mass remalns the nucleon mass M.

The equation for the radial part of the wave function

may be obtained by defining:

R »?
crrrly = Laelr c?)
r 15/
»
<l @y> = Kmelw ¢v)
r 43/
d R i m
an y = wl (YD Cy
<r/ %’(Z) "_‘——'—'—-y 1\3/. Y) (111‘5)

We have written out, explicitly, the spin quantum
numbers S, J and m, which have been supiresgsed previously.
Also, the radial harmonic oscillator function differs from

M n
the usual one by a factor of r. _54 .(r)'s are the total
J
angular momentum wave function. For uncoupled :states, the
R
redial wave defect ;Xm((r) satisfies the following equation:

a gl _ yi_ aMm R M
[ &~ 82 7 S e Tty 2 e

(I1I.0)
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This equation is true for uncoupled partial waves
only, snd it is implicit that V(r) used is of the proper
angular momentum. We shall generalize this equation to in-
clude coupled states 1n Appendix A,

Equation (III. 6) igs to be solved numerically with
the boundary conditions that,

X”:‘(r‘ ) = R, ()
and & :
A () =0
where r, is the core radius of the infinite-repulsive region
of the potential used. For soft-core poténtials, we can put
in an infinitesimal hard core and the firet boundary condition
will still hold. To solve this second order differential
equation, we use Ridley's method (1957). We shall illustrate
the salient features by the solution of an uncoupled equation.
The coupled eqdations are readily obteined as in Appendix A.
Conslider the differential equation for partial wave

/cé: Tjnzjl:( (r) =X,

£,

R
where g, , X;( s> by, are functions of r.

Rewrlting this”as,

(af%- 3.1)(,,%* we) Xy = Ky

gives us the following equations:



36

45, 2

drhl = Sut * G (II1.78)
cin R

7,—'-" = = Sut Xag * Wt (I11.7b)

where VV&tft) satisfies,

AWt
7’,’,'?’ = Sat Was * A,,_( (I11.7c)

The procedure 1s to integrate equation (III.7a) and
equation (III.7c) inward from r—oo with the proper initial

conditions for functions S and wﬂz s up to r=r, . Then

nd

equation (III.7b) is integrated outward from r=r, with the
R

correct initial condition for A,, and the tabulated values

of functions S,

Runge-Kutta-Gill method proposed by Gill (1951).

and W,, . Integration 1z done by the

To determine the initiasl conditions for Snz and Wn(:

consider the homogeneous equation as r —é= and V(r)=0,

at titr) "
/dr‘ _—-)"' = 7—/% =0

P 3
For positive 7Y , the solution is simply proportional

to the Spherical Henkel functions,
@) )

Hy tr) = ¢ (?(.'7-)')4‘”)(-7('7.)')

~{d+s ’ 7 :
= Tt v )R] (2 )

Using only the decaying function, we have then,
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“D(:;OV 44 7’{) €
| "6 ’crom

88 P—wpe (I11.8)
where the prime denotes differentiation with respect to the
argument. Comparing this with equation (III.7b) we see that
for r — s , 1f we zet,
#45% vy ) and W =,o ’

the boundary condition (III.8) is satisfied.

Resulte of some of the partlal wave:s using the
Hamads-Johnston potential are plotted in Fig.(I1I.1l)

After the wave defects )(;;'s are evaluated, the
reference G-matrix may be obtained without too much difficulty.

The reduced radial integrals are of the form,
14" . \ — R
<nl'Sep) s G*=1 nl Sop >-—/2m,(y) Vir) U, vy dy
[-4

where 643 (r) iz the radial part of the perturbed wave function.
Here, we tshall 1imit ourselves to integral:s diagonal in n and { .
Off-diagonal ones may easlly be obtained. Consider the radial
wave equation for the harmonic oscillator of pérameter Ka |,

and that for the reference wave defect,

4° ..
fa'(r‘ ) {;U* 2 (Epe -jMa)r)/)ZM(r)=0

and d” _ 1((+/) 1),k am ° (I11.9)
{ 7//{’# (r) = - % Vr) Uy ()

| R
Pre-multiplying these equations by X,, and R,,



respectively, we 1ntegrate from r=r, to r—o , and

subtract. Then we have,
o

/ ?"e (Y) Ver) Ukl (r) dl’

C
b

/(E;,l f"?M )/) ?l(l’) %hl(r)dr-— /MM;E [r)/thl(r)ydr

/A

/[{u(’) Ty Rae (r) - R"l{)d - /Tu ot ]dr
Integrating the last integral by parts and using the boundary
R R
conditions of J,, ()= R, (x) and X, (+=)=RK(<)=0, we have,

o

. R
[%L(r) Ver) U,, () dr
C

o
- R
= £ s A - i o r)yv'd
/(%e*.,;?)'?»c/’)fhz“)“’ 2/‘,4“) R (1) Lo 77 ¥ A7

(4

&* R’
T am [,?“(r) (’/nc (').Z,ar {II1.10)

Now, because of the hard core, the wave function
R
U, ) 1s discontinuous in its first derivative at r = r, .

One can then separate the reduced integral into three terms:

R
/ ?hl. (r) Very Uye (v) dr
()
A : 2
0

K R
* [R,,l_(r) U /))j yete /? ¢(Y) V(Y}UR (r) q’y
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. 2 _
Here, we have used the fact that X, ,w:X v for rg¢r,.
The terms on the,R.H.S; are usually called the core volume
term, the surface term and the outer term, respectively.

Substituting expression (I11.10) for the outer term,
we have finally,
b
/ R, r) VIV U((r) Ar

2 2
/[(E,,( '.574* Y- FMR ] Ry ) dy

* a a R
* /[(Ea.l*;zé Y -FM R o], ) dr

z

K 3 a2 R
/ [(E,,( _ .-A\ﬂ jiMm }’j?,,L/Y) )(,,l (ry) dr (I11.11)

For off-diagonal cases, we have similarly:
R
/ ,,(, @) vem u,, ) dr

/[(fu' 7)-5Mm’y‘];?,l,(r)e,,((r) dr. §,,,

Do
+ /‘ 2 2 2 2 ’ R
/ J (Eayr *Jf,‘ 7/—:}/%0 y - ;é[(((;’v)-[/(w)j ’P,,Q//)'}/Y»((r)dr

ke

(III.12)
These exprescsions can be generalized to include

coupled states.

Section 3.
The reference reaction matrix GR is only a first

approximstion to G%*, the reaction matrix for the ‘'semi-
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infinite' problem. We have to include Paull corrections,

U N S G® ’;RQ' G*1 i, N, SYI D

= = <J‘fw21~23$y'u/e”m*- 120 T ent, wz, Syss> (II1.13)

where R i XR( 7
SYRIJ nl, NR, $Y11) = B (R) Lnt 70 y J¢7)
r li/

is the total wave defect. eR is the reference energy
denominator given by: . |

e® = .z% (h+ V) (III.14)

The Paull operator Q¥ is an integral operator in

the momentum space. It differ:z from the ordinary @ of nuclear
matter in that the intermediate states are/kjko* > 's instead
of /kikp> 's. However, the space in which the momentum vector
must be integrated does not differ and we can use the same
angular-averaging technique of Brown, Shappert and Wong (1964),
when transformastion is made to C.0.M., and relative co-ordinates.
It is found that for a =single particle momentum cutoff of Kg

the angular average of Q% is:

Q"(é,k,ée/= 90 for Ch'r ) >-?é:

= / for [k -k ] > yzA,

5 2 2
L+ K - 6. otherwise

- e (111.15)

This angular averaged Q* differs from Kuo and Brown's value

because we have used 8 symmetric definition for k and K.
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Before writing out expression (III.13) more explicitly,
let us exsmine the Pauli correction in terms of the shell-
model states. From equation (II.7) and the definition of the

reference reaction matrix GE, it is easy to see that (e.rT.

(II.12)), o . 0"
# 4 o it ¥
G'=6"* 6 (&2~ 7/)6&
> R, GR (1= Q7 ) "
Gor 6T (=) ¢ (11I.16)
where we have assumed ef= e¥ and that G is close enough to
G* to replace it in the second term. It is this term that we
have labelled 'Paull'® correction. Writing more explicitly,
this Pauli correction is given by:

Rgl R U@V Ry B>
= (J’.; / €* Cr-Q7) 1 x r >
-
= ¢ L;/ e”/f:r) ‘Z{"% dfé:dk(f%' 1A "> <h kst L5 >
(111.17)

Here, we have expressed Q¥* explicitly as an integral

operator over the momentum space. X8 is the reference wave

R

v

defect corresponding to an unperturbed state G%g .
By the definition of /kiko* » we have,

b T J;/‘g >

Chky I Tag> - D <hkip ><B 7T 5 (111.18)
/6 vY5e&cC,2 e e 73 (

!
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Putting thie expansion in (III.17) and using the simplified

notations, we have,
| R 1-QF o #
Pt GG 6 g
= R R R _ R R R
=<J. /e /J/} h) '/4'; dt <Ju /KXK/J/, > € (ke
2 /kdfc ek/k,a(, )/<Lf /¢,)(/€/IR)<¢.,/'€)
YelC D % T /6 ,ﬂ
K 7 /K)<¢,/f/:><'€/%>/
bo
- Z, [d‘é/ ek['(,l(,/!)(]:(k/ ¢y)(%/f;){)(’/¢r)(¢r 7P

d,Y€C, »
(III.19)

To determine the importance of each term, we shall
consider the following. For K >k, ,
a) (J’f/,c) , the overlap of wave defect with high
momentum, is important.
b) <_L:‘lz%) , 1s not negligible since both J:f and
@s are finite inside the core.
c) <& /kp |, for ® & C or D is negligible
if ko 1s chosen to make 1t so. |
Expression (III.19) is a fairly complicated one; but,
it is easily éimplified if k¢ is chosen according to condition
¢). We have referred to this criterion before. Assuming that
c) 1s satisfied, we see that the first summation in (III.19)

ie of the order of importance of the Fourier components

greater than k, in the /%>'s in C and D. The second summation

is 8 further order smaller. If need arises, the first summation

in (IXI.19) may be evaluated. However, since we already may
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have been making error of this order in (II.11), it cseems
consistent to leave out this correction when condition c)
is satisfled. We shall only retain the first two terms in
(I11.19) as the Pauli correction. In terms of C.0.M. and
relative co-ordinates, and using the complete notations, we

have,

_/d%_ A% ek/(ék/fﬂf/v.(, nt, Sl(/')))/-(éf’—/)

Here, we have again restricted ourcselves to .diagonal

terms., However, off-diagonal terms may be obtsined readily.
°

The overlap <%¢C/J7(7mz/w1,qu)> i1g obtained as follow:s:

7,r A

‘c4)

’ KR s
1hk )= = Lo EE
D=1k K, SH= 4T 5 e M%’ (O f.ckr) Y,

LA . »:, ”

"2 LS e Ly Y TR

7’ l.S_/'

where (2= (J[)J is the volume normalization of the plane
wave. Therefore,

ki) Temg, nl, Sy>

= 47 kR . L . ., :
Z2 f@— T R B -”‘IZ <) g, Ckr) );,‘(/e)jzl(u%%,g,
,l’

»., R

. J A (r) /s

JO, - cry L Y ) R &
lSj’ y LS“/

- _-4-12 % / “--(' m -
5 o g [ Z e o

. R
« (LS My /g ) Xoe(r) v dr
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where ¢ (K) 1s the harmonic oscillator wave function in

L
K space. In simplifying the expressions we have usged the
ortho-normality condition for the total angular momentum
R . 2
wave functions. Therefore, /<RK/] (N, ”(,5(/))>/ is
given by : |
f
P / 3 )
& o ”, M,
. R . , 7/ e " A y# A
[/ /T“(r)J‘{,ér) rdr] MZ”, (k) ); (k)
ll l’l
. ([S Melmf’/j.’?/‘ )([SM(” Msll /J'MJ')

Inserting this into the expression for Paulli cor-

rection, and integrating out the angular parts of Kk and X,

” R :

we get: (j'?zv.(,w(,s(/'))/ek(&‘/) /LN, nds SGHI >
e i 2 -

0 (I11.20)

s
where L TRI = [ 3’:, (r) /;l(ér) rdr,
el 1s given by equation (III.14) and Q* satisfies condition
(I11.15).

It is¢ ceen that expression (III.20) differs from the
gimilar expression in Kuo's calculation (1967) by a factor
of 2. This factor appears 1f one chooses to use anti-symmetric
plane wave intermediate states., However, a simple normalization
test, by setting e®(q - 1)=1, shows that /kK) used, should
not be anti-symmetrized. (See, Law and Bhaduri,1969). We shall
discuss later in more detail, the consequence of this factor

on the results obtained by Kuo and Brown, and Kuo.
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Equation (III.20) may be generalized to include off-
diagonal terms, in which case,

- <T%ng w59/ eReQ-1)1 5w el St D
o o
- -2 //ekm“f‘,) Roe 4 R (0) Ly (k) Loy s06) AR AR Sp0 Gy
(/) (7}

For coupled states, the expression for Pauli cor-
rection involves summation over the couplad channels. Thie
makes the expression slightly more complicated, but still

eaglly derived.

Section 4.

In the calculation of the reaction matrix G¥, 7*

appears as a parameter. It is necessary to study the dependence
of G* on 7*because 7 contains the state-dependence of

the matrix elements asg given by:
® .
’=[Z_Z£~.¢ —E((')-Ey)]-_'%/g

We cee that not only 1ls there a centre-of-mass dependence

but also a dependence on the initial state ij. This initial
state-dependence brings in certaln amount of ambiguity.

Should one use the same 7 for both <26/ G*/mnr) and
<mn/G%aby 2 In the first case, the initial state is

mn, and in the latter case, ab. If different 7is are used,

the two matrix elements will not be equal. This is 8 reflection

of the fact that the reaction matrix G is not Hermitian even
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for Hermitian interaction V, unless the propagator Q/e 1is

Hermitian. In reference spectrum calculation, we are dealing

with l/eR, and unless el is made Hermitian, 6® will not be

Hermitian. To make eft Hermitian, we shall have to use the
same starting energy for the two matrix elements. In other

2

word, for both <abl!G¥/mny> and <mn 6% 06> , the 7 1is,

2 N =M
YR F L, - (Ew £y rEm  EGI) T

(I11.21)
where we have taken an average of the two starting energiles

E(a) *+ E(b) and E(m) »E(n).

The same approach has been used by Kuo.

The dependence of the reduced integrals on the valueu
of 7 has been studied. Fig.(III.1) and Fig.(III.2) show the

180 reduced integrals with respect

1

varlation of the 331 and
to 7. With momentum cutoff set at 1.4 fm" , Wwe see that
for both S states, the dependehce is nearly linear with ¥ .
This agrees with Kuo'ls results qualitatively. Our matrix
elements are seen to be more senzitive to the values of 7~ .
Table (III.1) also shows reduced matrix elements for
other partial waves. We have calculated states up to (=4,
and made no approximations for the higher partial waves, Since
our application is to A= 18 nuclei, in which there are two
nucleons in the S-D shell, (2n+C »aMmrl. j= 2 ,
which leads to a maximum ¢ of 4. Thus, /=4 is the highest
partial wave needed. In this respect, we differ from Kuo

and Brown, who made linear approximations for the wave defects
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of /> 2, Fig.(I11.3) makes a comparison between the wave
defect ,{R we get for 3D2 at 7= 4 and the corresponding
linear approximation of Kuo and Brown. This approximation is
clearly not adequate. However, mutual cancellation between
high partial wave contributions may overshadow this. Since

it does not take much more computation time to get the £2 2
states in a reference spectrum calculation, we shall include
these contributions without approximations to the reference

wave defects.

Fig.(III.4) and Fig.(III.5) show reference wave defects
for the P states. They compare well with results from Kuo

and Brown.



CHAPTER IV
APPLICATION TO SHELL MODEL

Section 1.

Nuclear shell theory has been responsible for a
large number of successful interpretations of experimental
data, and has been invaluable in the understanding of
nuclear structure. In this respect, it is purely phenomenological
in the sense that it provides a framework within which
observed properties of nucleil are interpreted and correlated.
(See, for example, A. deShalit and I. Talmi, 1963). & much
more fundamental aspect is when shell model theory is studied
as a8 link between the properties of complex nuclei and the
free nucleon interactions. A large body of calculations under
the general heading of "Shell Model Calculations with Realistic
Interactions" has been devoted for this purpose. (See, for
example, C. W. Wong, 19¢7; K8hler and McCarthy, 1967; Kalio
and Day, 1967). No matter which approach we wish to take,
the assumptions and limitatione of the shell model theory
must be borne in mind. (See M. Macfarlane, 1967). There are
two basic assumption:s in the shell theory. First, only the
nucleon co-ordinates need be considered. This restricts the
theory to low energy regions, where the possibility of real
meson creationeg 1l ignored. Secondly, the interaction between

48
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nucleons is a two-body one, meaning that effects due to
higher order forces are neglected. So, we see that the
premises in which the nuclear shell theory operates, is
8 rather restricted. However, it is still possible to form
a theory of shell model and its validity, within the frame-
work of these assumptions (Brandow, 1967), and then, a
comparison with experimental results would be a test for
the forces used. |

We shall restrict ourselves to the more fundamental
aspect of nuclear shell theory, and study the so-called
'realistic!' type calculations. In this regard, we have
mentioned earlier that the first basic step is to replace the
free-nucleon interaction by a Brueckner reaction matrix.
We shall now show why the reaction matrix is a good first
order approximation to the t'effective! shell model matrix,.

Consider the shell model Hamiltonian of an A-particle

system,
4 A
=2 C"{J

where viJ is the two-body interaction. We may rewrite this

Hamlltonian as:

H= 4H, » V
A
where H, = 2, CL+
&=
/f 4‘
V= Z Vf/ *ZUL
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Here, Uy 1s a single particle potential which,
hopefully, will contain most of the effects of the many-
body system. From H,, one can get a set of single particle
eigenfunctions with which to construct the shell model wave
function. This set of eigenfunctions will span the whole of
the Hilbert space %  and exceed all bounds. So, by the
very nature of the problem, diagonalization in space JWL |
is impossible and a truncation of the Space ie inevitable.

Suppose we have chosen a finite space D in which
the problem becomes tractable. We must then define an
'effective' Hamiltonian in this space, which will reproduce
the same eigen-energies as in ‘zx . Let us define this by:

Yp = %+ Ve

such that Hyy (%> = #/4>=E/4> 1D,

where E is thé eigen-value of the Hamiltonisn H in 57 space.
Vers 18 the effective interaction we alluded to earlier.
In thic process of projection into a finite cspace, some
information 18 bound to be lost. However, we have retained
at least the nuclear level information .

We shall now study the relation between V, the realistic
- interaction, and Veff . The condition that Verp must satisfy
is that it should produce the same low-lying energy levels
in the model space D, as V does in %% . However, this is

not enough, gince we do not have any criterion for the eigen-
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vectors in D. One simple way 1ls Jjust to define the eigen-
vectors for the effective interaction as the elgen-vectors
of the true Hamiltonian projected onto the model space D,

Therefore the conditions for Veff are:

(/Ar:/)/}é)=£/¢)/ /mgw/e//)/s,b:w%)
o~ H wihe [%>= P> ,.

. (1Iv.1)
where P is the projection operator defined by:

P =2 1P ><P/ (Iv.2)

(ed

We may 2lso define the complementary operator & as:
Q=71-P =2 (8>XP7
cED
where /% >'s are the elgen~vectors for the single particle
Hamiltonian H,. It is evident from (IV.1l) and (IV.2) that

we may write,

/%)= Z 4(./¢"> and /%): Z Q(/¢l.>
4'6% ‘ (ED
We note here that the model wave function /% > has
the same coefficlents of expansion as /¥ ) for i € D, If
the true wave function contains much contribution from single

particle states outside of D, then /g;-will not resemble the
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true wave function. However, we have only one condition for

/%> and that is that it should produce true low-lying
eigen-energieé when acted upon by Heff‘ There 1s no reguirement
that /%> should recemble /%) . In calculations where
the wave function is more critical, we should use expansion
(I1.10) in which the model wave function is expressed in basis
states with buillt-in short-range correlations.

The Schrddinger equations for ~5¢ and D spaces

are then:

HIY>=E/¥ , (E-&par =/,§?L CEIVIB> 4 ('651
and (IV.3)
Pt 1 >=El%> or (€-&)a =J§L B/ Uy I B8 e

where we have assumed the normalization <(¥/ %) ={%/ br=1
Comparing expressione in (IV.3) we see that for any

operator V e¢ defined by

ey /%> = VIY> (IV.4)

equations in (IV.3) will be satisfied. Therefore, (IV.4)

is the conditilon for V. ey . To derive an expression for Veff

we note that,

Q
———— VI¥D = 2 BBV
(E_HO) L‘fb CE ~ g‘.;b) (IVoS)

=2 @ lp>= RIYD
¢ Dp ;
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by virtue of (IV.3) and the definition of Q.
Combining equations (IV.3), (IV.4) and (IV.5), we

have,
\4# (4> = VIgs = ViP+Q ) /7I¥>

= /%> + I/(Ef?%)u/ ¥
= Iy +1Q?é%j.%y/%)
or more simply,
l/%, = Vs VE(_Q% V:// in D space, (1v.6)

This, then, is the relation we want between V and
Verf. It 1s clear that V_pp depends on the eigen-value E.
With certsin restrictions on the operator Q, equation (IV.4)
reduces to the Brueckner reaction matrix equation. For a
system with two nucleons outside of a8 completely inert core,
Verr 18 equal to G. The corresponding restriction on @
is ﬁhat it =hould prevent any type of excitation of the core.
Thus, for systems such as O18 and F18, the reaction matrix
G 1= a good first order approximation to Veff . It is only
8 first order approximation, because core excitations must
be taken into account as renormalizations.

Equation (IV.6) and second equation in (IV.3) are
the two besic equations in nuclear zhell theory. The latter

looks very much like the ordinary secular equation. However,
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there are two main peints of difference. First, the matrix
element of veff is E-dependent, as shown by Bloch and

Horowitz (1958), and csecondly, the eigen-functions obtained
from this 'secular! equation are not necessarily orthogonal
since they are eigen-tunctions of ditterent effective
Hamiltonisns Heff(E). This dependence on E is characteristic
of the Brillouiln-Wigner perturbation theory. (See, for example,
March, Young, and Sampanthar, 1967). As we have mentioned in
the previous chapters, we shall make no attempt at =elf-
consistency of this nature. A suitable average will be used

for E in the energy denominator in (IV.6). (See, M. Macfarlane,

1967)

Section 2.

It 1e apparent from discussion in the last section,
that core excitations must somehow be taken into account.
What we have included in the reaction matrix 1s a diagram

of the type:
c l o]

where a, b, ¢ and d are single particle states in the model
gepace D. In the case of 018 and F18 s these are states in the
S-D shell., There are two important diagrams which are second

order in G and involve states inside the core. These are:



55

o c d
(] G Td ~ G A
h
T pflm 2
~ and LW\/U\’W
n
a b a b
Fig.(Iv.1) Fig.(1v.2)

Fig.(IV.1) is usually called the core-polarization
diagram, in which a particle inside the core is excited out,
creating a particle-hole pair. This diagram involves 3p-lh
intermediate states and because of parity consideration it
usually represents an energy excitation of at least 2 AR 1in
harmonic oscillator language. Fig.(IV.2) represents core-
excitation of two particles and also involves a smallest
energy excitation of 2AW, However, whether these excitations
can be treated by perturbative methods, 1s now a question.
For example, in 018 and F18, 4p-2h configurations are
believed to contribute heavily to their low-lying states.
(See, Federman and Talmi, 1965). One remedy, of cource, is
to include 4p-2h configurations explicitly in the model
space D. This increases the difficulties of the shell model
problem and untlil a8 better method is found, we shall treat
4p-2h excitations by perturbative methods. There are other
diagrams which we have not included. Among these is the 2p

intermediate state excitation represented by:
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c d
G
Py Po Fig. (IV.3)
8 G b

This was included in the works by Kuo and Brown
(1966), and by Kuo (1967), in an attempt to include some
of the discrete nature‘bf the 1ntermediate‘states.~We do
not need to include this disgram because we have taken this
into account through our formalism in Chapter I1I.

Bertsch (1965) has studied effects of core-
polarizations in finite nuclel and derived expressions
for 3p-1lh excitations. However, we shall follow notations
used by Kuo (1967) which appear more convenient for our
computations.

Assuming an excitation energy of 2 X« , the 3p-lh

contribution to the effective interaction is given by:

- (abTT7T/76G _ﬁﬁzi G 1¢cdTT)

g )

o 24 .3'22) (RETT )G 13p-t1ATTI(H-14TT |G 1ca TT)
ZA LS
Y / (_/)\/4ch+ Tr 7 (_1;7‘7"’ 7

Ve &) (ers dees ) APRT77r " Rew

.//[‘3/"',)(_3/"*,) . W(/tJ.‘T':/;I'J‘Jd).LOC’J/)L(\/A’\/d)

W e _ e . .
o t1 U e + 1) W nrr’y, Sije ) Ll Js ) Lagi) o)

ST TI TS WCmot e - o o .
M0 W Ge Joga? b ey fa ) 2Gijid ol

Tr7r/

/



57

* (Zarr) (-?/&%1) WG T s Jage ) LYy pa) L (/),jc)/

‘ (Iv.5)
where the L-matrix elements are defined by:

Lj.)) = l(/,{,r"r';/i,/;)

= ("/)Jfft/;'ff‘f’* THr JRTE)oTE /)/ 2 [/,9]‘+,//.3]~,,/]
0?(&\/;*,)/ \]”7”’

W EFEFEITTTY) W s gy s T ) -
< (g g T771G 1Lga 7T (Iv.6)

In expression (IV.5), a, b, c and 4 denote the sets
of guantum numbers for the respective particles; /3p-1h JT)
represents a 3p-lh intermediate state with spin J and iso-
epin T, W's are the Racah coefficients. We have also defined
Q3p-1h as the projJection operator for all 3p-lh intermediate
states with 2 44 excitation energy. |

For 4p-2h excitations, assuming again an excitation ’
energy of 24«, we have:

)
(ab777-6G — %24 o ycdTT)
2% 60

= .?éb 2. (as77/6 VKK ITT AKX TG 1 cdTT)

A 2h,
(1Iv.7)
where [h;h,JdT> represents 4p-2h intermediate state with

the two hole states hj and hp coupled to spin J and isospin
T.
In both expressions, the two-body reaction matrix used

should contain the proper 'starting'! energy as given by



equation (III.21).

Section 3.

So far, we have no distinction between the discrete
subspace and the model space for shell theory. We have even
used the same notation for both. Let us now examine if there
is any relation between these two subspaces.

The model space for shell theory must csatisfy the
following conditions:

a) It must be finite and small enough for

diagonalization.

b) It must produce the correct eigen-values for

low-1lying states when operated upon by an

effective Hamiltonian Heff .

c¢) It must not contain too much impure configuration
(collective, deformed). (See, M. Macfarlane, 1967)
The discrete subspace in our formalism has to
satisfy only the one criterion that it should contain discrete
states: with significant momentum components up to the cut-
off ko. This automatically makes the subspace finite. It
is apparent that the shell theory model space it more res-
trictive. As we have mentioned in Chapter 11, our choice of
the discrete subspace is not unique. In principle, the larger
the subspace, the better is the approximation to the perturbed
wave function. Therefore, it seems reasonable to make it

at least as big as the shell theory model space., As a matter
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of fact, it may even be poessible to include configurations
not included in the shell model space, in this discrete
subspace.

We shall be able to make more conclusions regerding
this after we have presented results where the size of the
discrete subspace is changed along with the cutoff momentum

ke -



CHAPTER V
RESULTS AND CONCLUSIONS

Section 1.

As sn application of our formalism, we have chocen
the A =18 nuclei, where two nucleons intersct outside of a
doubly closed core of 016. Also, we are only considering
even parity states. The low-lying cstates of both 018 and F18
have been determined experimentally by Polletti and Warburton
(1965). We have chosen the Hamada-Johnston potential for
calculation (See Appendix B), mainly because of the readily
available works of Kuo and Brown (1966) and Kuo (1967), and
Wong (1967) for comparison. It also fits the two-body data
well at moderate energies.

The single particle basis for our calculation are
the harmonic oscillator states of A« =14 MeV, which
reproduces the r.m.s. radius of 016, (Elton, 1961). This
oscillator constant may also be treated as a parameter of
the calculation.

We did calculation of the semi-infinite G*-matrix
at three different values of the cutoff momentum k,. These
values are chosen to be close to the realistic nuclear

density as required by our formalism. Tables (V.1l) to (V.0)

60
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show the reduced integrals of G* as Kk, 1t varied. Each table
corresponds to a particular value of )’z, the parameter that
contains the state-dependence of the reduced integrals. G*(0)
represents the reaction matrix with no Pauli correction. We
see that Paulil corrections are important in both singlet and
triplet S-states. They are small but still significant for
states of higher angular momenta. The variation with respect
to k., within the range of realistic nuclear density, however,
has very little effect on the reduced integrals. A variation
of no more than a few percent exists in the S-states, whereas
it is almost negligible in the higher momentum states. This
geems to Justify our relaxing the ideal criterion for the
choice of k, . We note here that our bare G* (with no Paull
corrections) compares well with both C. W. Wong and Kuo &
Brown results, except for the triplet S-states, where the
incorrect numerical factor in Kuo and Brown'!s expression
has doubled their off-diagonal tensor contributions. We can-
not make valid comparison with C. W. Wong's Paull-corrected
results because we have used a free particle spectrum, and
our formalism of the discrete low-lying states, is really
another form of Paull correction, which is included only in
the two-particle representation and not the C.0.M. and re-
lative representation. Both "local" and "global" Pauli cor-
rections are included in the reduced integrals by Wong.

The variation of the S-states integrals with respect
to Y  are shown in Fig.(III.1) and Fig.(III.2). It is seen
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that the singlet states agree with well with Kuo's results
whereas we see the disagreement in the triplet case acs
mentioned earlier. We have checked also our P-states con-
tributions and they are in very close agreement with Kuo
and Brown's results,

The resulting shell-model matrix elements are
listed in table (V.9), for ko=1.4% fm~! and the discrete
subspace'D is chosen to be the S-D shell. G* is the Pauli-
corrected semi-infinite reaction matrix; Gpg represents
correction from the discrete low-lying states in D; G3p-ln
and G2h are, respectively, contributions from three-particle-
one-hole and four-particle-two-hole excitations. The reaction
matrix we used for shell-model diagonalization comes under
"SUM". A comparison of G3p-1p With Kuo's Values whows the
effect of the incorrect T=0 reduced integrals. G3p—lh
congists of summation over both T=0 and T=1 matrix elements
as shown in Chapter IV, and the incorrect T=0 matrix
elements made the G3p—lh calculation an over-estimation.
G,,, on the other hand, agrees well with Kuo's results for
the T=1 matrix element: and is again in general disagreement
with Kuo's T= 0 results. This may also be attributed to the
incorrect numerical factor in the triplet S tensor contribution.

Gpgs the dlscrete state corrections, are seen to be
in general, smaller than the other two renormalizations;
but, compared to G*, the corrections are clearly signigicant.

Variation of GDS with respect to different choicés of D 1is
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shown in Table (V.10). Gpy(sS-D) denotes the discrete con-
tribution when the S-D shell is chosen to be the subspace

D. Gpg(S-D, P-F) is the contribution when D is chosen to
include both S-D and P-F cshells, We see that the difference
is significant. This 1s reacsonable, since we see from Fig.
(II.4) that even for k,= 1.4 fm-1 , there is a significant
amount of n=1, J{ =1 components which are excluded by our
Paull operator. However, the second S-D shell will not con-
tribute so much. We =ee here that there 1: a distinct ad-
vantage in our formalism. In including the P-F shell as the
discrete subzpace, we need only evaluate, 1in addition to
matrix elements of the S-D shell, off-diagonal matrix elements
of the type ((P-F)°JT/ G (5-D)°JT), wheress, when the

P-F shell is 1included in the shell-model space, then matrix
elements of the type < (P-F)2JT /G /(P-F)2JT > will also be
required. < (P-F)2JT /G /(S-D)2JT ) 1¢ have been calculated at
the different ko's, using the reduced 1ntégrals with proper
state-dependence, i.e. the proper ¥’ s,

Fig.(V.1l) and Fig.(V.2) =zhow the resulting spectra

8 18

of O1 and F . We have also included Kuo's results for
comparison.
In the diagonalization of the shell-model effective
interaction, the single-particle energiez are taken to be
E(dsp,) = € + 0.0 (MeV)

E(1s,) = E, - 0.67
E(ds, ) = €& + 5.08
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where ¢, 1s set equal to zero o that the spectrum obtained
is a relative one. In calculating the effective interaction

€, = -4,14 MeV for a single neutron state and &, = -0.60
MeV for a single proton state.

With a8 fixed D, which in this case is the S5-D shell,
ke=1.3, 1.4 and 1.5 fm~1 produce almost identical spectra.

In the T =1 spectrum, ah increasing k. tends to shift the whole
spectrum slightly upwards.In the T =0 spectrum, 1ncréasing

ke shifts all levels up, except the first 37 level, which is
shifted slightly downwards. The inclusion of the P-F shell

as discrete statez has little effect on the T =1 spectrum,

For the F18 spectrum it tends to shift the levels down. &

more detailed study of these variation should include the
evaluation of the third term in equation (III.19).

A general comparison of our spectra with the
experimental results shows agreement in ordering, but the quan-
titative agreement is not very good. We were not able to
reproduce the experimental ordering for the second O " and
2% levels in 018; also, the first 2" and 0" levels are far
too high. Kuo's results indicated that agreement for the fir:st
0" state in 018 is due largely to the 3p-1h contribution.

We have examined this core polarization, and found it to

be an over-estimate as mentioned earlier.

Section 2.

We have presented a formalism in which the B-G
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equation for finite nuclel may be solved, such that one 1=

able to include the discrete nature of the low-lying states
allowed by the Paull operator. We have made approximations

in our actual application of the formalism, by leaving out

the last two terms in equation (III1.19), but with a little

more time and labour, these terms may also be evaluated.

We have studied the effective interaction obtained
trom the Hamada-Johnston potential in three respects; First,
the state-dependence of the effective interaction is studied
through the parameter Y’ . We have seen that state-dependence
affects the reduced integrals almost linearly with 7‘, in
agreement with Kuo; but, we have found that the dependence is
much stronger than is reported by Kuo. As a result, we have
carefully included this state-dependence in our calculation
by using the proper value of 71 for each reduced integral.

Secondly, we have varied one of our relatively free
parameters, the cutoff momentum k,. This does not seem to
have too much effect when k., is kept within the range of
realistic nuclear density. Finally, we have increased our
finite subspace to include the P-F shell. This again does
not have drastic effect on our :=pectral calculations., From
these, we may conclude that our formalism is not very
sensitive to the variations of k., and D in the ehergy level
calculations, as long as they satisefy our criteria,

One avenue of improvement might be to use a linear

combination of oscillators as basis states rather than just
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one oscillator, This is believed to improve the treatment
of the centre-df-mass dependence of the reaction matrix
elements.Also, calculations have been performed with a
oscillator well depth as a parameter (Becker, McKellar,
and Morris, 1968). However, this is believed to be important
in the binding energy calculations, and not in a spectral
calculatipn.

With our formalism, a calculation of the effective
interaction in finite nuclei becomes only slightly more
difficult than a nuclear matter calculation and it may

then be possible to test a varlety of forces, with relative



APPENDIX A
For triplet states, the f=j+1 and f=§ - 1
channels are coupled. In generalizing equation (III.6)
we shall suppreses the principal quantum number n in the

relative co-ordinates,

Thus, for coupled triplet cstates, we have:

2 s M R oM
/Z-- Y- %5 ‘lf'(r)//{:/(r)z— z;‘yff)g-/’) (A.1)

where, a .
4 _Jy-1) o
E;? = v /
A" ria)ez)
0 dr> - / r¥+ /
., (v
Vel o}
?(r} = /
0 /\P/-”/r)/
y(r) = Ket=11 V1 joy=1) Goy=r1tvlig.j*')

_ U:/"”/ V/\/',‘/'-/) (J',/'-f //V/J}J'+/)

with [J,[)» representing the angular momentum wave function,
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where the U's are the radial parts of the coupled perturbed

wave functions,

Both equations (III.6) and (A.1) can be solved by

the Ridley method (1957). We shall write out the detall of

each in turn. The basic equations are (III.7a), (III.7b) and

(III.7c). Suppressing the quantum number n again, we rewrite

these equations as:

(a.2)
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where, e o 8, w, - 2,

wWith the uncoupled states, where /(= j, we have,

2

AR JY1 e - ‘—Z'—,”[Ié - v, J

K( = —% [Vc-’?jf/""/)%‘];ee'(r)

for singlets, and

9,

.. ar
Y J Yot - FE U2 - Y >
+ [Jj'(/'+/)~// Vi.J

Ky = =3 [ve 2= g 1500 1) v, J R or)
for triplete. Also, VC’ VT, VLSand VLL are, recpectively,
the central, tensor, spin-orbit and gquadratic spin-orbit
parts of the potential,

The boundary conditions for the above differential

equations are:

/
'9{,{-}/ 7r)

\S‘[[r) = -7, Z
#0075

and V\/A,(y)=a as r—ueo .

The prime denotes differentiation with respect to the argument
end #,’ 1is the decaying spherical Henkel function.
For the coupled states (=jr1l, we have to generalize

the Ridley equations (A.2) as follows:
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as,;
—d 7
ar = ‘§> Q} 7 (2>
ax’ )
J oo i
rr A A VAR
where :
’ adw; £
a%i - o .
Av ‘S) W) ZJ

The functions 8re now expressed as matrices,

Combining these with eguation (A.l), we have then:

_AL::) L om
/ Ka. {/l/*//l/{/',‘/'../);
M

= . (/7200 .'&
z ‘/,'/*//V//,‘/w) ; l—;iL'/* %_Z/\/;\/.”,V{/}/.H)/

R /

z SA / (/;/“// V//;/;/} ; )

vl ?/ G gL ) /
R, Y. jerrvy, - .
IS R ey v Ywre) /
where,

(/, .~//I//'; -, = _ Y-y . )
\/ J |/»/ ) = VC °’/'-// v, -f</~/) ’4/43 fS/«/}lL4

o ¥ | |
S j e = - DU o g i - o) U

and,

(Jed 211V 1) j=1) 2 (fof= 1)) rr) = eV i) /e3jr ) Yy

We have, in deriving these, used the following
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identities for S =1 states:
Goj ! S tfoj) =2
oyt / S lJ.J*1) = - Y22/ (2) 475

L Sedfof ) = - 20 S

Cfsj~r1 S /1 218 (hjvi .
a ’ 3 v /\y/a_/ 4 - = . _* .
and i e SI12 = 4G 1203)1)

(’ . . - B ps fo
)l LSy 1) = ;{ngwm,)\gj



APPENDIX B
THE HAMADA-JOHNSTON POTENTIAL

Core radius r, = 0,343 /uii fm , for all states.
V =Veo + Vp S50 + Vi g (&’é ) * Viilie
where Sj2 , L S, and Ljp are the tensor, spin-orbit and
quadrstic spin-orbit operators respectively. Lo is
defined by:

L12 = [5}\/ + ('“,,3:/]“42- (!-S)z

Ve =008050)(5 7 a0 ) Yiny [1+ 4. Yoy # b Yix) ]
Vp = 00l () (7, 0) Zex) [ 1+ Ay Yex) + by Yex) ]
Vs = /u 4", Yor [ 1+ 4, Yix) ]

ViL = M G, | x™ Z(x}l[ 1 A T+ by Yixs ]

3

with  ¥(x) =e¥/x, 2(x)= (/+5 »35) ¥(x).

M= 139.4 MeV is the pion reduced mass and x is

in unite of )fé = 1,415 fm.
T2



THE PARAMETERS

State ac be 8 bl G1s bLs GrL arL bLL
s.E. 8.70 10.6 -0,000891 0,20 -0.20
T.o. - =9.07 3.48 f1.29 0.55 0.1961 -7.12 ~-0.000891 -7.26 6.92'
T.E. 6.00 -1,00 -0.50 0.20 0.0743 -0.10 0.00267 .1.80 0.40
s.0. -8.00 12,0 -0.00267 2.00 6.00

€L



Table (V.1)

TABLE CAFTION

Reduced 1integrals of uncoupled states,
Y=/ , with XW-14 MeV at k., =0, 1.3,

1.4 and 1.5 fm~1

Tables (V.2)--(V.4)

Reduced 1integrals of uncouplea states,
with same parameters as in Table (V.1),

for Y = 1.5, 2.0 and 2.5 respectively.

Tables (V.5)--(V.8)

Table (V.9)

Table (V.10)

Same as the above tables, for coupled
states.

Shell-model matrix elements calculated with
AW = 14 MeV, k,=1.4 fm™1.

G* is the Pauli-corrected semi-infinite

G-matrix,;

Gps is the contribution from the diccrete
states 1in D;

GBp—lh it the contribution from 3p-1lh
intermediate states of 2A4excitation;

Gpp, 1s the contribution from 4p-2h intermediate
states of 2 54 excitation;

SUM 1s the total effective interaction.

Comparison of contribution from S-D shell

discrete states and S$-D & P-F c£hell discrete

states with AW = 14 MeV.



TABLE(V.1)
Reduced Integrals at =1

s'n nt £ 2s § 6*(0) G*(1.3) G*(1.4) G*(1.5)
4 0 0 0 0 0 O -7.9559 -6.7906 -6.6618 -6.5793
2 11 0 0 0 0-5.1067 -4.2712  -4.,2308 -4.2062
0O 2 2 0 0O 0 O -1.677T4 -1.3173 -1.3083 -1.3042
300 11 0 1 1.6392 1.6731  1.6787  1.6646
1 1 1 1 1 0 1 2.5424 2.6005 2.6135 2.6290
2 0 0 2 2 0 2 -0.5268 -0.5256  -0.5247  -0.5238
0 1 1 2 2 0 2-0.8348 -0.8308 -0.8287 -0.8266
1 0 0 3 3 0 3 0.4306 0.4333 0.4338 0.4343
O O 0 4% 4 0 4 -0,0982 -0.0981 -0.0981 -0.0980
3 00 1 1 1 0-1.8201 -1.7979 -1.7964%  -1.8073
1 1 1 1 1 1 0-0.9416 -0,9278  -0.9274  -0.9272
3 00 1 1 1 1 1.7598 1,7980 1.8040 1.8239
1 1 1 1 1 1 1 2.4818 2.5397  2.5508 2.5633
2 0 0 2 2 1 2 -2,3225 -2.2581  -2.2437 -2,2285
0 11 2 2 1 2-3,1125  -3,0379 -3,0137 -2,9840
1 0 0 3 3 1 3 0.2838 0.2850 0.2852 0.2855%
O 0 0 & 4 1 4 -0.5046 -0.5014  -0.5005 -0,4994

S =2N+2

UNCOUPLED STATES
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TABLE (V.2)
Reduced Integrals at 7= 1.5
S n n' (45 § a*0) G*(1.3) G*(1.%) G*(1.5)
4 0 0 0 0 O O =-7.2677 -6.4981 -6.4101 -6.3512
2 1 1 0 0 0 O -4.5771  -4,0318 -4.0040 -3.9871
0 2 2 0 0 0O O -1.3%40 -1.,1084 -1.1029 -1.1007
3 00 1 1 0 1 1.6739 1.7146  1.7101 1.7160
1 1111 0 1 2.6090 2.6629 2.,6756 2.6911
2 0 0 2 2 0 2 -0.5267 -0.5240 -0.5233 -0.5225
01 1 2 2 0 2 -0.898 -0.8261 -0.5247 -0.8228
1 0 0 3 3 0 3 0.4317  0.4340  0.4345  0,4349
0O 0 0 4 4 0 4 -0.,0983 -0.0982 -0.0982 -0.0982
3 00 1 1 1 0 -1.8001 -1.7754 -1.7741 -1.7735
11111 1 0 -0.9127 -0.9020 -0.9017 -0.9106
3 00 11 1 1 11,7888 1.6228 1.8288 1.8345
1 1 1 1 1 1 1 2.5303 2.5808  2.5935 2.6058
2 0 0 2 2 1 2 -2.2931 -2.2309 -2.,2286 -2,2151
0 1 1 2 2 1 2 -3.065% -3.0047 -2.9836 -2.9675
1 0 0 3 3 1 3 0.2843 0.2853 0.2855 0.2858
O 0 O 4 & 1 4 -0,5041 -0.5013 -0,5006 -0,4996

UNCOUPLED STATES



TABLE (V.3)

Reduced Integrals at 7= 2.0
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S n n' <L L5 § G*(0) G*(1.3) G*(1.4) G*(1.5)
4 0 0 0 0 0 O -6.8238 -6.2601 -6.1945 -6.1505
2 11 0 0 0 O -4,2047 -3.8115 -3.7911 -3.7791
0 2 2 0 0 0 0 -1,0565 -0.9060 -0.9004 -0.8963
300 110 1 1,7038 1.7321 1.7375 1.7434
11 1 110 1 2,669 2.7201 2.7325 2.7478
2 0 0 2 2 0 2 -0.5205 -0.%226 -0.5221 -0.5224
0O 1 1 2 2 0 2 -0.8258 -0.8226 -0.8214 -0.8197
1 0 0 3 3 0 3 0.4325 0.4333 0.4349 0.4353
O 0 O 4% 4 0 4 -0.,0983 -0.0962 -0.0982 -0,0981
3 001 11 0 -1.7781 -1.7579 -1.7567 -1.7561
1111110 -0.,8877 -0.8791 -0.8789 -0.8788
3 00 1 1 1 1 1.8123 1.8430 1.8486 1.8544
11111 1 1 2.5721 2.6202 2.6305 2.6425
2 0 0 2 2 1 2 -2,2710 -2.,2273 -2,2089 -2.2045
0 1 1 2 2 1 2 -3.0289 -2.9779 -2.9594 ~-2.9360
1 0 0 3 3 1 3 0.2846 0.2854 0.2657 0.2859
O O O 4 4 1 4 -0.5037 -0.5013 -0.5006 -0.4997

UNCOUPLED STATES



Reduced Integral at s 2.5

TABLE (V.4)

- T7

UNCOUPLED STATES

> n n' L s 3 Ga*(0) G*(1.3) G*(1.4) G*(1.5)
4 0 0 0 0 0O O -6.4951 -6.0576 -6.0062 -5.9720
2 110 0 0 O -3,9077 -3.6081 -3.5926  -3.5838
0 2 2 0 0 0 0 -0.8122 -0,6996 -0.6972 -0.6965
3 00 1 1 0 1 1.7307 1.7570  1.7623  1.7680
1 1 1 1 1 0 1 2.7256  2.773%  2.7855  2.8005
2 0 02 2 0 2 -0.5236 -0.5041 -0.5211 -0.5204
0 112 2 0 2 -0.825 -0.8197 -0.8186 -0.8171
1 003 3 0 3 0.4332  0.4350  0.4353  0.4357
0O 0 0 4 4 0 4 -0.0983 -0,0982 -0.0982 -0,0982
3 00 1 1 1 0 -1.7602 -1.7431 -1.7422 -1.7417
11111 1 0 -0.8651 -0.8561 -0.8579 -0.8578
3 00 1 1 1 1 1.8323 1.8604 1.8658 1.8714
11 1 1 1 1 1 2.6092 2.6538  2.6636  2.6158
2 0 0 2 2 1 2 -2.2537 -2,2162 -2.2065 -2.1957
0 i 1 2 2 1 2 -2.9997 -2.9559 -2.9394% -2.9916
1 0 0 3 3 1 3 0.2849 0.2858 0.2858 0.2860
O 0 O 4 4 1 4 -0.503% -0,5013 -0.5006 -0.4998



TABLE (V.5)

Reduced Integrals at 7 = 1.0
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S noan' L L s 3 G*0) G*(1.3) G*(1.4) G*(1.5)
4 0 0 0 0 1 1 -16.0690 -10.7675 -10.4534 -10.2472
2 11 0 0 1 1-10.7254 -6.9716  -6.8521  -6.7794
0 2 2 0 0 1 1 -4,6597 -2.8386 -2.5056 -2.7878
.2 0 0 2 2 1 1 -0.5157  -0.4937 -0.4856 -0.4762
01122 11 -2.3601 -2,3126  -2.2944%  -2,3160
2 1 0 0 2 1 1 -5.3847  -4,7076 -4,5302 -4.3399
0 210 2 1 1 -6.0105 -5.7683  -5.6745 -5.5613
3 00 1 1 1 2 -0.9656  -0.9447 -0.9418 -0.9392
11 1111 2 -1.,7302 -1.6908 -1.,6853 -1.6934
1 00 3 3 1 2 -0.2119  -0.2109 -0.2108 -0,2106
1 101 3 1 2 0.4063 0.4140  0.4141  0.4141
2 0 02 2 1 3 0.0073 0.0073  0,0073  0.0073
0O 1 1 2 2 1 3 -0,0238  -0,0238 -0.0238 -0,0238
O O O & 4 1 3 0.2164 0.2173  0.2175  0.2177
0 1 0 2 4 1 3 -0.6713  -0.6477 -0.6464 -0.6539

COUPLED STATES

(Orf-diagonal matrix elements are averages)



TABLE (V.6)
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Reduced Integrals at 7= 1.5
S non' (LS § G*0) G*(1.3) G*(1.4) G*(1.5)
4 0 0 0 0 1 1 -12.7719 -10.1124 -9.9497 -9.8419
2 1 1 0 0 1 1 -8.3617 -6.5086 -6.4462 -6.4084
0 2 2 0 0 1 1 -3.2912  -2.4347 -2.4194% -2,4106
2 0 02 2 1 1 0,0619 0.0670 0.0691  0.0716
011 2 2 1 1 -1.1069 -1,0990 -1.0948 -1.0889
2 1 0 0 2 1 1 -k.,4020 -3.9743  -3.8566  -3.7304
0 2 1 0 2 1 1 -4,969%  -4,5228 -4.7626 -4.6882
3 00 1 1 1 2 -0.9465  -0.9284 -0.9265 -0.9234
1 11 1 1 1 2 -1.6979 -1.6639 -1.6289 -1,6542
1 0 0 3 3 1 2 -0.2089 -0.2081 -0.2080 -0.2078
11 01 3 1 2 0.399 0.4055 0.4056 0.4057
2 0 0 2 2 1 3 0.0164 0.0164 0.0164 0.0164
0 1 1 2 2 1 3 -0,0107 -0.0107 -0.0107 -0.0107
O 0 0 4 4 1 3 0.2216 0.2224 0.2226  0.2228
01 0 2 & 1 3 -0.6707 -0.6506 -0.6496  -0.6487

COUPLED STATES

(off-diagonal matrix elements are averages)
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TABLE (V.T7)
Reduced Integrals at 7= 2,0
S non' L Lt's J G¥0) G*(1.3) G¥(1l.4) G*(1.5)
4 0 0 0 0 1 1 -10.9358 -9.3157 -9.2151 -9.1481
2 110 01 1 -6.9768 =-5.8730 -5.8349 -5.8116
0 2 2 0 0 1 1 -2,4109 -1.9290 -1.2905 -1.9147
2 0 0 2 2 1 1 0.3%472 0.3502  0.3509  0.3517
0 1 1 2 2 1 1 -0.,4802 -0.4789 -0.4778 -0.4760
2 1 0 0 2 1 1 -3.9297 -3.6113 -3.5214 -3.4241
0 2 1 0 2 1 1 -4,4515 -4.3509 -4.3058 -4.2491
3 00111 2 -0.9310 -0.9151 -0,9128 -0.9105
1 1111 1 2 -1.6715 -1.6417 -1.6371 -1.6327
1 0 0 3 3 1 2 -0.2069 -0.2062 -0.2060 -0,2060
1101 3 1 2 0,394 0.3998 0.3999 0.3999
2 0 0 2 2 1 3 0,0243 0.0243 0.0243 0.0243
0 112 2 13 o0.0011 0.0011 0.0011 0.0011
0O 0 0 & & 1 3 o0.2254 0.2262 0.2263 0.2265
0O 1 0 2 & 1 3 -0.6705 -0.6533 -0.6521 -6.6514

(off-disgonal matrix elements are averages)

COUPLED STATES
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TABLE (V.8)
Reduced Integrals at 7= 2.5
S noa' gy s 3 @0) G*(1.3) G*(1.4) G*(1.5)
4 0 0 0 0 1 1 -9.6956 -8.6070 -8.5389 -8.4935
2 1100 1 1 -5.9952 -5.273% -5.2448 -5,2323
0 2 2 0 0 1 1 -1.7372 -1.4420 -1,4365 -1.4317
2 0 0 2 2 1 1 0.5193 0.5224 0.5228 0.5231
0 112 2 1 1 -0.0987 -0.0980 -0.0977 -0.0971
2 1 0 0 2 1 1 -3,6546 -3.3982 -3.3244  -3,2441
0 2 1 0 2 1 1 -4.,1480 -4,0699 -4,0335 -3.9617
300111 2 -0.9179 -0.9037 -0.9016 -0.8995
1 111 1 1 2 -1.6490 -1.623% -1.6182 -1.6141
1 003 3 1 2 -0.2054 -0.2048 -0.2046 -0.2045
1101 3 1 2 0.3908 0.3955  0.3956  0.3956
2 0 02 2 1 3 0.0314 0.031% 0.0314  0,0314
© 112 2 1 3 0.0119 0.0119 0.0119  0.0119
© 0 04 4 1 3 o0.2282 0.2289 0.2291  0.2293
0 1 0 2 4 1 3 -0.6705 -0.6553 -0.6542 -0.6535

COUPLED STATES

(orf-disgonal meatrix elements are averages)



TABLE (V.9) o
Shell-model matrix elements in the S-D shell, with kg =1,4 fm-1

and S-D shell as the finite subspace D.

82

Symbols: Od,, —> 4, 1S4, —> 5, Ody— 6.
<abJdT ! G/ cddJT >

T=1:

J a b ¢c da  G* Gps G3p-lh G2n . SUM

O 4 4 4 & -1,2196 -0.1467 -0,2097 -0.2356 -1.8117
0O & 4 5 5 -0.5962 -0.0253 0,0701 -0.0126 -0.5644
O & 4 6 6 -2,8377 -0.0057 -0.4460 -0,1348 -3.4249
0O 5 5 5 5 -1.9688 -0.0110 0,4418 -0.0008 -1.5387
0 55 6 6 -0.5020 -0.0331 -0.0156 -0.0103 -0.5637
0 6 6 6 6 -0.1724 -0.1762 -0.2288 -0.1806 -0.7580
1 4 6 4 6 -0.4333 -0.0001 0.4373 -0.0025 0,0014
1 4 6 5 6  =0.0565 —-—-e- 0.1207 0.0009 0.0631
1 5 6 5 6 -0.3556 -0.0001 0.1797 -0.0004 -0.1764
2 4 4 4 -0.9636 -0.0194 -0.0218 -0,0468 -1,0516
2 4 4 4 5 - -0.5590 0.0031 0.0235 -0.0217 -0.5540
2 4 4 4 6  -0.3253 -0.0029 0,0038 -0.0305 -0.3551
2 4 4 5 6 -0.5216 0.,0179 0.0277 0.0116 -0.4634
2 4 4 6 6 -0.6487 -0,0124 -0.2526 -0.0284 -0.9434
2 4 5 4 5 -1.1818 -0.0489 0.1395 -0.0106 -1,1017
2 4 5 4 6  -0.1471 -0.0298 0.0775 -0.0132 -0.1115
2 4 5 5 6 1.3640 -0.0040 0.0197 6.0036 1.3831
2 4 5 6 6 -0.7498 -0.0083 0.0215 -0.0104 -0.7657




TABLE (V.9) cant'd
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T 3 <abJT | G 1cdJT >

J 8 b c d G* GDS G3p-1h Gop SUM

2 4 6 4 6 -0,5180 -0,0201 0.4343 -0.0216 -0.1254
2 4 6 5 6 0.6617 0.0003 -0.1214% 0.0109 0.5715
2 4 6 6 6 -0.6734 -0.0061 -0,0249 -0.0234 -0.7282
2 5 6 5 6 -0.6362 -0.0506 0.1969 -0.0091 -0,4991
2 5 6 6 6 -C.0214 0,0228 0,0479 0.0164 0.0672
2 6 6 6 6 -0.2580 -0.,0305 -0.1090 -0.0311 -0.4268
3 4 5 4 5 -0,3088 ------ 0.3506 --=--- 0.0418
3 4 5 4 6 -0.0333 ------ 0,0260 ------ -0.0073
3 4 6 4 6 -0.4305 ------ TR £ S -0.1138
4 4 4 -0.4354 -0.0180 0,1701 ------ -0.2833
b 4 4 4 6 -1,0152  —=ee-- 0.0742  —=-e-- -0.9409
4 4 6 4 6  -1.9594 -0.0198 0.7757 ===--- ~-1.2035




TABLE (V.9) cont‘d
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T=0: £8abJdT { G |edJT )

J a b c d G* Gps C3p-1n - Son SUM

1 04 4 4 & -0.8667 -0.2398 -0.4192 -0.0791 -1.6049
1 4 4 4 6 2.2780 0,0139 -0.1456 0.2019 2,3489
1.4 4 5 5  -0.4524 -0.0470 0,0450 0.0038 -0.4514
1 4 & 5 6  -0.5688 -0.1135 0.143% -0.1099 -0.6552
1 4 4 6 6 2.8319 -0.0081 -0.0370 -0.074% 2.7395
1 4 6 4 6  -4.0437 -0.1540 -0.0506 -1.0967 -5.3450
1 4 6 5 5 1.2667 0.0097 0.2300 0,0697 1.5760
1 4 6 5 6 1.1049 0.0098 -0.0990 0.6458 1.6614
1 4 6 6 6 0.1548 -0.1606 -0.0632 0.2358 0.1586
1 5 5.5 5 -3.0670 -0.0363 -0,0559 -0.1805 -3.3397
1 555 6 0.4551 -0.0314% -0.0205 -0.2143 0.1877
l1 5 5 6 6 0.0085 0.0092 -0.0218 -0.0377 -0.0410
1 5 6 5 6 -4.,1901 -0.0698 0.3259 -0.5521 -4.4862
1 5 6 6 6 1.3537 0.0291 0.1621 -0.1637 1.3789
1 6 6 6 6 -1.5831 -0.2096 -0.0722 -0.0808 -1,9458
2 4 5 4 5 -0.6763 -0.1508 0.3321 -0,0007 -0.4956
2 4 5 4 6  -1.3380 -0.0789 0.0246 0.0215 -1.3678
2 4 5 5 6 -2,5901 -0.0411 -0.0147 -0.0008 -2,6487
2 4 6 4 6  -2.9274 -0.0865 0.0377 -0.6974 -3.6736
2 4 6 5 6 -1.6513 -0.0669 0.0879 0,0264 -1.6035
2 56 56 -1.7682 -0.1839 0.2376 -0.0010 -1.7155




TABLE(V.9) cont'd
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T =0 ; <8bJT |1 G 1cdJT >

J a8 b c d a* Gps G3p-inh  G2p SUM

3 4 4 4 4 -1,0294 -0.0697 -0.1596 -0.0313 -1.2899
3 4 4 4 5  -1,1763 -0.0255 0.0743 -0.0352 -1.1629
3 4 4 4 6  1.3751 -0.0050 -0.0202 0.0658  1.4155
3 4 4 6 6 0.8469 -0.031% =-0.0959 -0.0671 0.6495
3 4 5 & 5  -2,9403 -0.0391 0.1611 -0.0397 -2.8579
3 4 5 4 6 0.8354 0.0202 0.3304 0,074l  1,2594
3 4 5 6 6 0.3520 -0.0047 -0.2611 -0.0755 0.0111
3 4 6 % 6  -0.9283 -0.0915 0.0742 -0.1385 -1,0839
3 4 6 6 6 1.4784 0.0295 0.2631 0.1411 1.8516
3 6 6 6 6 -2.8703 -0.0643 0.1474 -0.,1438 -2.9310
b &% 6 4 6  -4,0218 —e-=-- 0.5712  ~=-me- -3.4506
5 4 4 4 4  -3,3191 —mm-e- 0.3652  ~m=m-=- -2,9540
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TABLE (V.10)
COMPARISON OF D(S-D) AND D(s-D, P-F)

Symbole: Od#-—- 4, ls&-——*s, Od;‘——-» 6, end at kpo=1.4 fm'l

T J a b ¢ d G* Gpg(S-D) Gpg(S-D, P-F)
1 0 4 4 .4 4 -1.2196 -0.1467 -0.2060
1 0 4 4 5 5 -0.5962 -0.0253 -0.0461
1 0 4 & 6 6 -2.8377 -0.0057 -0.0108
1 05 5 5 5 -1.9688 -0.0110 -0.0223
1 05 5 6 6 -0,5020 -0.0331 -0.0548
1 06 6 6 6 -0.1724 -0.1762 -0.2435
1 1 4 6 4 6 -0.4333 -0,0001 -0.,0011
1 1 4 6 5 6 -0.0585 = —-m--- -0.0007
1 15 6 5 6 -0.3556 -0.0001 -0.0008
1 2 4 4 4 4 -0.9636 -0.0194 -0.0320
1 2 4 4 4 5 -0.5590 0.0031 -0.0083
1 2 4 & 4 6 -0.3253 -0.0029 -0.0063
1 2 4 & 5 6 -0.5216 0.0179 0.0066
1 2 4 4 6 6 -0.6487 -0.0124 - -0.0226
1 2 4 5 4 .5 -1.1818 -0, 0489 -0.0739
1 2 4 5 4 6 -0.1471 -0.0289 -0.0406
1 2 4 5 5 6 1.3640 -0.0040 -0.0179
1 2 4 5 6 6 -0.7498 -0.0083 -0,0156
1 2 4 6 4 6 -0.5180 -0.0201 -0,0333




TABLE (V.10) cont'd

T J a8 b ¢ d G* Gps(S-D) Gps(s-D, P-F)
1 2 4 6 5 6 0.6817 0.0003  -0.0033
1 2 4 6.6 6 -0.6734 -0,0061 -0.0109
1 2 5 6 5 6 -0.6362 -0.0506 -0.0720
1 2 5 6 6 6 -0.0214 0.0228 0.0132 .
1 26 6 6 6 -0.2580 -0.0305  -0.0388
1 3 4 5 4 5 -0.3088  ------ ~0.0011
1 3 4 5 4 6 -0.0333  ------ -0.0005
1 3 4 6 4 6 -0,4305 = ------ -0,0013
1 4 4 4 4 4 -0.4354 -0.0180 -0.0242
1 4 4 4 4 6 -1.0152  -e--a- - -0.0072
1 4 4 6 4 6 -1.95%4 -0.0198 -0.0378
O 1 4 4 4 4 -0.8667 -0,2398 -0,3688
0O 1 4 4 4 6 2.2780 0.0139 -0,1634
01 4 4 5 5 -0.4524 -0.0470 -0.1273
01 4 4 5 6 -0.5688 -0.1135 -0.0845
O 1 4 4 6 6 2.8319 -0.0081 - 0.0367
0O 1 4 6 4 6 -4,0437 -0.1540 -0.5277
O 1 & 6 5 5 1.2667 0.0097 -0.1505
O 1 4 6 5 6 1.1049 0.0098 -0.0644
01 4 6 6 6 0.1548 -0.1606 -0.2108
01 5 5 5 5 -3.0670 -0.0363 -0.1935




TABLE(V.10) cont'd

T J e b c d a* Gps(S-D)  Gpg(S-D, P-F)
015556 0.4551 -0.0314 0.0085
0155 6 6 0.0085 0.0092 0.0471
01565 6 -4,1901 -0.0698 -0.2210
0165 6 6 6 1.3537 0.0291 -0.4132
0166 66 -1.5831 -0.2096 -0.2917
02 4 5 4 5 -0.6763  -0.1508  -0.2170
02 4 5 4 6 -1.3380 -0.0789 -0.1584
02 455 6 -2.5901 -0,0411 -0.1133
02 4 6 4 6 -2.9274 -0.0865 -0.2852
02 4 6 5 6 -1.6513 -0.0669 -0.1738
02565 6 -1.7682 -0.1839  -0.2840
0 3 4 4 4 4 -1.0294 ~0.0697 -0.1155
0 3 4 4 4 5 -1.1763 -0.0255 ~0.0848
0 3 4 4 4 6 1.3751  -0.0050 0.0345
0 3 4 4 66 0.8469 ~0.0314  -0.0439
0 3 45 4 5 -2.9403 -0.0391 0. 1404
0 3 4 5.4 6 0.8354 0.0202 0. 0661
0345 6 6 0.3520 ~0.0047 -0.0004
0 3 4 6 & 6 -0.9283 -0.0915 -0.1601
0 3 4 6 6 6 1.4784 0.0295 -0.0156
0366 6 6 -2.8703 -0.0643 -0.1408
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TABLE (V.10) cont'd

T J a b ¢ d G* Gpg(s-D) Gps(S-D, P-F)

O 4% 4 6 4 6 -4,0218 = ---e-- -0.1601
0 5 & 4 4 4 -3.3191 —meee- -0.0624




Fig. (II.4)

Pig. (III.1)

Fig. (I11.2)

Fig. (III.3)

Pig. (III.4)
Fig. (III.5)
Fig. (V.1)

& Fig. (v.2)

FIGURE CAPTIONS

Fourlier Transforms of harmonic oscillator
wave functions with A4 =14 MeV. Radial

part R,((k) plotted in arbitrary units

and k in units of fm'l.

331 reduced integrsls plotted as functlon
of 7' . S0lid lines represent values

obtained by Kuo. 7 in units of fm™2,

1So reduced integrals. Conventions and

unite similar to Fig. (III.1).

BDQ

unit; r in fm; n=0, Y'= k4, Solid line

reference wave defect in arbitrary

represents actual reference wave defect
and dotted line represents linear approx-
imation of Kuo and Browh.

lPl reference wave defect for n=1, Y%= i,
Triplet P-state reference wave defects.
Spectra of O18 and F18 .

First column shows the experimentally
determined energy levels of the nucleus.
Columns (a), (b) and (c¢) show spectra
obtained for D = (S-D) shell and k,=1.3,
1.4 and 1.5 fm~! respectively. Column {d)
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shows spectrum for D =(S-D, P-F) shells
and k., =1.4 fml, Column (e) shows results

of Kuo.
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'S, Reduced Integrals
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