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Section 1. 

CHA Pl'ER I 

INTRODUCTI ON 

In the last century, the advance of science and 

technology has been staggering. In little more than sixty 

years, man has progressed from the first flut tering flight 

to the conquest of the moon. The f irst explos i on of the 

atomic bomb to the stock-piling of the nuclea r powers took 

little more than two decades. In the realm of physics, there 

are discoveries, breakthroughs and inventions , too numerous 

to mention. However, tbere st ill ~.re problems left unsolved. 

In this category, are the t wo ba s ic questions of nuclear physics. 

What is the force that corre lates the nucleons, and how are 

the nucleons correlated? Through the years, enormous efforts 

have been made in these directions and two dist inc t yet 

related fields of research are formed as a result. The first 

question led to the search f or nuclear forces a nd t he second 

one initiated efforts toward s the solution of nuc lear many-

body problems. 

Although no nuclea r force which is free from 

phenomenology is available at the present time, some general 

features are now well-known about the two-nucleon interaction. 

The possibility of three-or- more-body forces cannot be denied. 

But, first of all, the two - nucleon interaction shou ld be fully 
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understood before more ambitious projects are cone~dered. 

We now understand that the origin of the nuclear forc e is 

from the exchange of different kinds of mesons, and attempts 

have been made to derive nuc lear forces from meson theory. 

(See, Rev. of Mod. Phya. Vol. 39,#3, 1967, for general 

reference) However 1 meson theory has not yet reached a stage 

where a nuclear force may be derived completely, and we can 

only say · eomething general about the force in reference to 

meson theory; the long ranges, for r ~2 fm, are domina ted by 

the exchange of single ~-mesons . This is the part that can be 

calculated accurately, since the coupling of~-mesons to nucleon 

is well-known. The intermediate ranges, for r=-1 fm, are thought 

to be governed by the exchange of vector mesons f 1 w , ¢ 

and something called the U-meson, which may simply be a re~ 

sonance of spin zero and isospin zero, or a contribution from 

multi-meson exchange. This intermediate range is still under 

intense investigation. Fina lly, at short distance» of about 

0.5 fm, there is the core region about which little ia known, 

except that it ia repulsive, because experimentally, the S-wave 

phase-shifts change sign at high energy. So, we see that the 

two-nucleon interaction is by no means completely understood. 

One may wonder why the two-body force cannot be determined from 

the experimental two-nucleon data. The answer is that experi­

mental data so far have provided on "on the energy shell" in­

formation when "off the ene rgy shell" information is also 

required for the determination of the nucleon-nucleon inter-



3 

action. We shall not go into any detail to explain this but 

only say that nucleon-nucleon scatterings in the free space 

involve energy-conserving processes whereas scatterings in a 

nuclear med~um involve energy-nonconserving processes. Ex­

perimental studies of these energy-nonconserving processes, 

such as nucleon-nucleon bremstrahlung experiments have been 

done and more 11off shell 11 information will be available in 

the future. 

There are many other problems related to nucleon­

nucleon interactions. We shall not be concerned with these ~ 

particular. Suffice it to say that enough is known about the 

interaction to make a calcula tion of the nuclear many-body 

problem realistic. 

Section 2 • 

Even if the nuclear force can be derived from mes on 

theory, many-body problems still face one almost insurmountable 

difficulty ------ the physicis t himself. For he is incapable 

of solving problems involving more than two particles. Even 

t~e two-body problem, he is able solve only because it can be 

reduced to two one-body problems. With this intrinsic difficulty 

the many-body problem is really a study of approximations. The 

general procedure is to propose a theory for the problem, to 

test the theory with a simplif ied model of the system, and 

finally, to apply it to the physical system. Such is true for 

Brueckner's theory of finite nuclei. It has been tested in the 
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calculation of nuclear matter and is now being applied to finite 

nuclei. It is this application that we are interested. in. 

There are many difficulties in Brueckner's theory of 

finite nuclei. To mention a few 1 there are the double self­

consistency, the particle spect rum 1 the solution of the Bethe­

Goldstone equation and the treatment of the Pauli opera tor. 

In this thesis~ we shall be concerned mainly with the solution 

of the Bethe-Goldstone equation and the treatment of the Pauli 

operator. The other difficult ies are treated with the usual 

approximations. M. Baranger (1967} has made a very deta iled 

summary on these in his lecture notes. We shall only make 

brief comments. 

The double self-consistency refers to the Hartree­

Fock self-consistency, and the Brueckner self-consistencyo 

The former involves the choice of single particle occupied 

states and is a problem on~y in finite nuclei. The Brueckner 

self-consistency refers to the definition of the G-matrix in 

terms of the single particle potential U1 which is unknown 

until G has been calculated. The treatment of this double 

self-consistency is still in a rather ambiguous state and 

we shall not go any further in this regard. The particle spectrum 

is really closely related to the Brueckner self-consistency 

and we shall also pursue no further, but shall bear in mind 

these difficulties in the application of Brueckner's theory. 

With regard to the solution of B-G equation and the 

treatment of Pauli operator, we believe that these are insep~ 



rable and should be dealt with t ogether. The traditional 

methods of solution of the B-G equation are also summarized 

in the lecture notes of M. Bara nger (1967). Very recently 1 

s. Butler et al (1969) reported a new approximate method 
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to the solution of B-G equation wnich seems very promising . 

We believe 1 however 1 that our approach to the problem br ings 

out much more physical insight . 

In Chapter II, we sha l l s tudy the B-G equations. 

We shall propose a formalism which is particularly suited 

for finite nuclei, and which make s use of techniques used 

in nuclear matter calculations. Chapter III contains dis ­

cussions on how the reduced integrals are calculated . We 

make a snell-model ca l cu la t i on with the two-body matrix 

elements obtained from Chapte rs II & III in Chapter IV. 

The results of calculations are then presented and com­

pa risons made in Chapter v. 



Section 1. 

CHAPTER II 

BETHE-GOLDSTONE EQUATIONS 

In the theoretica l study of nuclear properties with 

realistic forces, one is a lmos t invariably faced with the 

problem of solving an integro-d i fferential equation. In the 

case of free scattei_'ing, this equation is of the Lipmann­

Schwinger type, and in t he ca s e of s cattering in a medium, 

whether it be finite or infinite , this equation is of the 

Bethe-Goldstone type. The latter differs from the former in 

that it contains a •Pauli' operator, which prevents certain 

intermediate states from entering the equation. Since we are 

not dealing with nucleon-nuc leon scattering as ~uch, our main 

concern is the solution of t he Bethe-Goldstone equation. There 

are various methods of solv i ng the equation; for example, the 

integral equation method of Brueckner and Gammel (1958)., the 

separation method of Mos zkows ki and Scott (1960) and the 

reference spectrum method of Bet he et al (1963). The relative 

merits of these methods have been investigated in great detail 

by G. Dahl et al (1969). It is well- known that the Pauli 

operator and the energy denomi na tor introduce great difficulties 

in solving the Bethe-Goldst one equation, and these methods are 

designed to treat certain cha ra cteristics of these operators. 

Most of these methode have been applied to nuclear matter 

6 
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calculations 1 with varying degrees of success. However, when 

one is dealing with finite nucle1 1 further complications are 

introduced. The allowed intermed i a te states are no longer 

in the continuum; they are now disc rete states and the treat ­

ment of the Ptauli operator must be mod ified accordingly. 

c. W. Wong (1967) has made a very thorough study on the 

treatment of this operator for finite nuclei. He introduced 

the so-called 'local' and 'gl oba l' treatments of the operator. 

The 'local' operator is essentially a nuclear matter Pauli 

operator with an average density dependence. The 'global' 

operator is treated in configur ation space in an attempt to 

include the discrete intermedia te states correctly . We shall 

examine the physical situation, i n whic h each of the treat­

ments of the Pauli operator is good. 

Nuclear matter, by defini t i on, i s an infinite medium 

with a dens i ty which closely app~oximates that in the interiors 

of heavy nuclei . It is then apparent that the 'local' treat­

ment of Q1 the Pauli operator 1 should be quite adequate for 

two nucleons interacting deep in the nuclear inter i or. For 

nucleons interacting near the nuclear surface, an effective 

density approach must adopted. In other words, a 'local' Q 

corresponding to a nuclear matt er of a somewhat smaller 

density should be used. C. W. Wong obtained some reasonable 

results with this approac h. However, we can see that in this 

treatment, the discrete natur e of the intermediate states is 

completely ignored. The 1global 1 treatment, on the other hand 



treats the operator (1 - Q) instead of Q. With the basis 

states forming a complete set, the operator corresponds to 
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a finite summation of the._discrete occupied states. Consider 

the Bethe~Goldstone equation: 

where 1 ¢'.)·> is the unperturbed two-particle wave function, 

1 'Y'y> is the correlated two-particle wave function, 

and V is the interaction, e the energy denominator. We shall 

concentrate on Q for the time being . 

The explicit form of Q, for a finite system, is 

Q =~ 
unoccupd.ed 

(Note: Sum over mn is used as short-hand for sum over ~~ ) 

which is an infinite summation. To avoid this, the equation 

is re-arranged as: 

If the bas is states I ¢v· > form a complete set, then, 

(l - Q) corresponds to a finite summation over the occupied 

states. In the case of A=l8 nuclei, with harmonic oscillator 

basis states, this corresponds to the lS and lP shells. At 

first sight, this seems to be a reasonably small set to sum 

over. Howeve~, in solving the B-G equation# a transformation 

to centre-of-mass and relative co-ordinates is always necessary. 

It is this transformation that increases the number of possible 



intermediate states in terms of the C.O.M. and relative 

quantum numbers. This number increa ses all the more 

drastically when heavier nuclei are treated, the single 

particle occupied states increa s ing in number. C. W. Wong 

has found that 1global 1 treatment converges well for light 

nuclei in which the occupied s t ates are relatively few. For 

heavy nuclei, the magnitude of the summation becomes almost 

unmanageable . 

Section 2 . 

It appears apparent t hat the 'local' treatment of 
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the Fsuli operator is incomplet e from the physical point of 

view, while the 'global' treatment becomes calculationally 

inconvenient with heavier nuc l e i. We shall now introduce a 

method which retains the 'virtues • of the nuclear matter oper­

ator, while, at the same time , making the inclusion of the 

discrete nature of the intermediate states possibleo To do 

this , we nave to examine more closely, some of the well-known 

physical features of an inte ra ct i ng pair of nucleons. 

One of the well-known features of realistic forces is 

the short - range strong repulsion. This implies that two 

nucleons will come very close together only when they possess 

high momenta, and similarly, the scattered states will be 

states of high relative moment a, which are well approximated 

by plane wave states. Imagine two nucleons interacting in the 

nuclear interior, their short-ra nge correlation corresponding 
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to the repulsive pert of the interaction, will be very 

similar to that of two nucleons in an infinite medium. A 

very trivial example is the infinite hard core potential 

which produces zero correlated wave functions in nuclear 

matter as well as in finite nuclei, inside the hard core 

region. Thus, the difference between the 'finite• and 'in­

finite• Pauli operators, has little effect on the short-

range pert of the two-particle wave function. This is the basic 

assumption of our formalism. It enables us to treat most of 

the intermediate states of high energy as continuous, and 

only the low-lying states as discrete. Such a separation is 

not always clearcut, and certain criteria have to be met. 

But, we shall assume for the time being that such a separation 

is possible and proceed. 

Let us consider the two-particle B-G equation for a 

finite nucleus, 

I 'f') > = I cj:l > - ~ V I ~,0: > 

where I ¢cJ)'s are some basis states, 

I st'v>•s are the correlated wave functions, 

and V is the realistic potential. 

Writing out the operator Q explicitly, we have: 

I ~t/> = l¢,j') - z 
mn 

unoccupied 

where Ac.Jl ey = E(m)+E(n) -E(i) E(J) • 



ll 

We shall consider how to handle the energy denominator in 

more detail later on. Let us, further, make an arbitrary 

separation of the states mn to be summed, into those belong­

ing to a subspace we call D and those not within D. Then, 

we can write the two-body B-G equation for finite nuclei in 

the following way: 

_ L.., -~-~6 ><'¢at>/ V/1/-;/) _ 

abt(: c~ Z> e t (II.l) 

where c represents the so-called core states which are occupied. 

The nature of the subspace D depends on the nuclei under con­

sideration. It can be a partially filled shell such as the 
18 18 

S-D shell in the case of 0 and F , or it can be a completely 
16 

empty shell when a closed shell nucleus such as 0 is considered. 

Here, we have used the language of harmonic oscillator basis 

states. In fact, any complete set of states, whether it be 

deformed or not, can be used. This again depends on what 

nuclei are under consideration. We shall restrict ourselves 

in actual application of this formalism to harmonic oscillator 

basis states. To solve equation (II.l), there are many methods 

as mentioned previously. What we want to achieve, is to make 

use of the 'known' short-range behavior of the wave function 

to render an easier solution and to gain more physical insight. 

To do this, let us imagine a hypothetical problem. Consider 
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two nucleons originally in a discrete state J¢i,;> being 

•embedded' in an infinite medium of Fermi momentum kc· The 

behaviGr of this pair of nucleons in the medium is described 

by the tollowong B-G equation: 

where the subscript N denotes the similarity between this and 

the nuclear matter equation. The main difference is in t¢<j·> 

which is now a discrete state~ instead of a plane wave state 

as in nuclear matter. We shall call this the 'semi-infinite' 

equation. Writing Q explicitly~ we have~ 

wherelk1k2>is a two-particle plane wave state, 

e ~~~ = E. {/i,) +- £(k'4) - £:( <') - Efj) 
'./ 

and kc is the cutoff or Fermi momentum, below which all states 

are occupied. Note that we have suppressed the spin quantum 

numbers Sand ms in the plane wave state lk1k2) • A summation 

over these quantum numbers is understood unless otherwise noted. 

Again~ we defer the discussion on the energy denominators. 

Equation (II.2) is in exactly the same form as the 

nuclear matter equation and can be solved by the various methods 

previously mentioned. By a suitable choice of the subspace D 

and the Fermi momentum kc ~ I Y-'(j>~~~. and I tl:::_;·> will have 

simdlar short-range correlations and one is justified in 
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approximating ( 11/;j> -I¥-~/~) by a truncated expansion: 

(11.3) 

Note that we have used 1 ~)N in the expansion 

instead of /~;8.) in order to satisfy the boundary condition 

on the correlated wave function 
cj 

I }b~ .> , at the core radius 

of the potential. Here A~ . are the coefficients of the 

expansion which we shall have to derive. 

Let us now see what physical insight one can gain by 

considering equations (II.l), (1!.2) and (II.3). Equation (II.l) 

represents the 'finite• situation. A set of single particle 

basis states is chosen. This set is divided into the core 

states C, the subspace D and higher states, as in Fig.(II.l) . 

i Unoccupied 

D --------------- kc 

~/)01 
Occupied 

D 

c c 

Fig. (II.l) Fig. (II. 2) Fig. (II.3) 

The B-G equation describes the behavior of the two nucleons 

when they are allowed to interact and scatter into D and 

higher states. Equation (II.2) may be represented by Fig.(II.2). 

This is the situation, when both the occupied and the un­

occupied states are in the continuum. Only the initial state 

I cf>cf> is discrete. The composite pic t ure of Fig. (II.l) and 
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Fig.(II.2) is shown in Fig.(II.3). This represents the trun­

cated expansion of (II.3). 

In the composite picture~ we are in fact saying that 

we shall treat single particle states with momentum components 

lower than kc as discrete and those with momentum components 

greater than kc are treated as continuous~ i.e. represented 

by plane wave states. However~ it is not possible to make a 

one-to-one correspondence between kc and the uppermost state 

in D. A state above D has momentum components smaller than 

kc ~ and states within D also have momentum components greater 

than kc• It is therefore necessary to have some criteria by 

which kc may be chosen. To accomplish this# we shall have to 

look into the structures of the coefficients ~ more closely. 

Aside from this difficulty of determining the cutoff 

momentum# a much more basic problem arises when we consider 

the •semi-infinite• problem as represented by equation (II.2). 

One of the basic requirements of perturbative method is that 

the perturbed wave function should be normalized to unity 

with the unperturbed wave function, i.e., 

This is clearly not satisfied by equation (II.2) 1 and the 

reaction matrix one obtains corresponding to 1 ¢y·>..v is 

clearly not a suitable quantity; because of the incorrect nor­

malization. We shall present in the following section a 



formalism which provides for both the choice of kc as well 

as the proper normalization for the perturbed waves. 
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We note here also that although we have been using 

kc interchangeably as the cutoff momentum and as the Fermi 

momentum6 it will emerge in the next section as being quite 

distinct from the Fermi momentum of the nuclear system. 

Section 3. 

Let us define a two-particle plane wave state by: 

/ k, k~ if) ::: IN, R. ) - L, < ¢~· I ~~ ~ ) • llj fj > 
~·e c ol" 2> 

{11.4) 

for k1, k2 > k0 , such that < ¢:/ /k, k;). *> == o for ij e c or D. 

* In other words, lk1k2 > has been orthogonalized to all the 

discrete states in the core and the subspace D. 

* The normalization of lk1k2 ) is given by: 

~ 1. #I.J."k'lf <' "<, ~... ....., 1\"'.l ) 

- r-rl<,-1?,' ) 

in which the second term becomes negligible when k1, k2 , ki 
and k~ are greater than k0 and the momentum components of 

I ¢tj·> , greater than kc appe~.r to only a small extent. This 

will bear significance in our formalism later on. With the 

plane wave states defined by (II.4), let us recast our semi­

infinite problem as: 
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(11.6) 

where the following simplifications of notations have been 

introduced: 

i) 

ii) 

lie*) stands for 
lo A a& stands • 

iii) o( stands for a pair of indices such as ij in 

(II. 5). 

iv) 
'If' k,kl.~ 

eP<k; stands for e [/ which will be treated in 

more detail later. 

v) ~ > ~ means !_, -~ .. .> ~c , and a< € C means (i.,j )c=C. 

We shall use this set of simplified notations whenever 

convenient, and shall specify so. 

Because of (11.4 ), I~*..> is now properly normalized 

with /¢x_) such that, 

and the perturbative developments may be correctly applied 

to the prob~em. We can also define a reaction matrix G* 

corresponding to equation (II.6)» 

c* == v- v(3*c* (11.7) 
/Ia 

//(H > < .k; .,Y/ where (~)if== l ct~ 
if kc ..-... ec<tt 

We may now again apply our argument of the truncated 
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expansion to obtain the true wave function/~) ; only this 

time we shall use IY:c.:f..> as basis states. The three basic 

equations of our problem now can be written in simplified 

notations as: 

I Y:c> ,., I~,> _ ~ ~~ > <~I VI~)._ Z /¢,) <'¢-,.1 VI~> 
~ ,d E..l> 6'~ '"'/~ C,.D ~")' 

(11 .. 8) 

(II. g) 

and (II.lO) 

Assuming solution of {II.9) 1 our task reduces to 
.,f 

evaluation of coeffictents .A~ in (II.lO). 

Using the fact that -<~I~*.>""' f~ for ot E- C or 

* D; A~f may be obtained from (IIelO) as: 

if 
111 = <~ 1 ~-1£ 11> for;3e-c or D. 

It is easy to see that for .P( :;. j3 ~ we have; 

/l 7f =- <' ~J!l I~ ) = _ .< ¢tS I (7 I¢.,...) ~ _ <~ It;*'/~> 
n"'A r « 

' e«~ ~~ (II.ll) 
where we have used equation (II.8) and where the G-matrix 

is replaced by G* as a first order approximation. 

Let us examine more closely the truncated expansion 

of (II.lO). This approximation is good if the magnitude of 
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components l'f:r *> , where 'Y ¢ C or D, in 1'/:t> is small 

ae compared to components in the space D. The quantity we 

wish to etudy is therefore: 

I = I )4.. > - ( I ~If> -r L 11(JI; I~,_> ) 
;s f?.Jj, F- e( 

From equatione (II.8), (11.9), and (II.ll), we get, 

I = + L. <¢A I G I ftlot > . I tth "'> - z I~ > . <' I vI ~0( ) 

~ ~.z> e.,A ',ll !! ~JJ r e..,.,.d' 
r ~e. * r .o.tl 

_ 2, 1 ¢._ ) < ¢,.. I vI ~) -+ / 0/,E I k / < k I V ~ ~ > 
Y(f-C,..]) 7 ~y he (!11(k 

Applying equation (II.9) to the first term, and inserting 

a complete set of plane waves and a complete set of discrete 

states I ¢a->, in the third and fourth terms respectively, 

we can further reduce the expression (II.l2) to: 

I = - z <,IG I~> ~~dK //('¥ <k""'/ V/ 

If~ e~ ke - / ~;_ 

(II.l2) 

_ <~ !VIct,j 
~ 

where we have introduced the same cutoff momentum k 
c for the 

complete set of plane waves IK> 'sand the discrete states 

have been separated into those in C or D and those that are 

not. The last term appears because we have retained the 



19 

difference between < ~ 1 v t Y>: ,> and < ~ I v 1 ~o.- > 
for completeness. We have also used the fact that <K"'~>=<KI~> 

for ;s + C or D, and < K ..,.I'>.= o for f.s C or D .. To further 

simplify the expression, we again introduce a complete set of 

discrete states in the first and the third terms, 

/

6- "" ., r=--Z 2 <~:rltil9.t ~~ l~><"~l,.t;)<kll//?t'> 
.,~~ ,& f C,v.D e.,., :r .t. ....... e,.! 

F-o< 1- c "' 

- Z. L /tile 1?5,.> <.¢:r /K }<k I~.> <~ I VI 'Ytr > 
,4f t"I!NJ) J'<!'-C,..l) 0 ~ ~ 
_ Z G j d',t 14)<¢y/k)<A:I~) <? tvi}P,.:> 

jJ f1 Ctr'.b I'~ c- ll"r..l> o cP? 
+ ~"qk fiK><I<I¢. >(<9)11/!:f~ <1-1 vl~a.->j 

Z ,t - IS e«.8 e~A 
I'~ c,l> r: I r 

+ z / st> < ¢yl~) (A: I¢ >I<~ /f//;£ > - <~ /(// :"(' -#>/; 
Y~C~L> ~ p"",P' ~;6' 

The second term in the expression vanishes after integration / 

over the IC apace. Therefore, 
1o .., fl 

I==- Z I¢, .>-l'z. jo~~c <4tvl st.->.<~ lk> <k '~~'',/~? > 
~fC.N.b j8 1-r~..t> he - -f....-y j9 e-y/c 

r G /.Jcolk <?:! /I<.> <IC I 9!: ) <.¢1' I VI y'>..., >j 
Y¢ c 'tL> , .... f9 r. e.,...1' 

- 2 (<'~ltd~.> - <~IP/~J)j.k~k 
~A e. .if -_,g <1- c ,., ../J r <>< ;4 o 

· Z 1f3y.><'t?7t/r::.><kl~.> (II.l3) 
'11 f c t~Y.l> r 

The first term in (II.l3) may be further simplified as 

follows: ~ 

- z /~)· z J<~/ V/Y,«> 
ft f C ITW'.l) . *Y ~lJ Jc ~ 
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., 
"' nl 1/ 1 1h Z < pl_.r I VI SJ' .,.. ). - -z I~> . z " 'f"7 I r"") • u , 

~tl c ,.,J) -r~.b e«7 ,r tl: t'rt../) e,,-

·[ ~o - fkcd~ <~/!C) <lei ¢o>} 
If. 

where we have again used the properties of /k.>. 

Putting this in, we finally obtain, after some 

re-arrangements, an expression for the difference we want 

of- ( <' I V I Y.o< > _ <~ I VI~'),) r 2 
e14 eiiiJd.,. ot-I> 

<?&'"IV/~> <~IV!J&.,.-"> 
e-<o , e? J 

Expression (II.l4) appears as a summation over states out-

side of D and C, which is as expected. The magnitude of the 

coefficients is indicated by the three terms inside the 

square brackets. The first term is small when kc is chosen 

such that is small for f3 ~ C or D .and K. < k0 • 

The second term is of the same order as the term we have 
Jl 

ignored in the evaluation of A"'/ , i.e. we replaced G by G*. 

The last term is of second order and has at least one energy 

* denominator eJf which contains energy difference of at least 

1i4) bigger than e ~ in A1 . 
Expression (II.l4) indicates, therefore, that the 

truncated expansion (II.lO) is consistent with our order of 

approximation. It also implies that the important cr~terion 
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for kc is that <KI¢!9> should be small for k< kc and 

~ f c or D. Therefore, the ideal separation of momentum 

components by kc for the states in C and D and for the states 

outside is not necessary. Fig.(II.4) shows the momentum 

transforms of the single particle states used in the cal­

culation. For n = o, the 1 = 2 and 4 states are plotted. 

Although these states are separated by energy gaps in the 

simple harmonic spectrum, we see that there is too much 

overlap in the momentum space between these states to make 

a unique determination of kc. The situation for n = l is 

even worse, because there is a peak in its momentum transform 

inside the maxima of the n ... 0 states. 

A choice of zero for k0 is not desirable, although 

it eliminates the first term in (II.l4). The reason is simply 

that our formalism will also reduce to the same footing as 

the 1global' approach in which all of the occupied states 

have to be summed .• As previously mentioned, this will make the 

magnitude of computation prohibitive when heavier nuclei are 

encountered. 

Let us consider the problem from a different point 

of view by asking how well the true wave function is approx­

imated by (II.lO) at different ranges. For intermediate and 

long ranges, we know from experience with shell-model that 

the wave function is adequately represented by a suitably 

chosen D of reasonable size. Also. we know that asymptotically, 
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the wave function IY:t> goes to 1st> • So except for the 

extreme tail~ which is not very important anyway~ a trun­

catedexpansion in a suitable subspace D of the true wave 

function, seems adequate for the intermediate and long ranges. 

Wbat about the short ranges? We nave argued in 

qualitative terms~ that the wave function '~ *> associated 

with the semi-infinite problem has the same short-range 

correlation as that for the I~> . This , however, is valid 

only when a suitable k
0 

is chosen for equation (II.9). If 

kc is too large~ we will be leaving out Fourier components 

that are not re;-;introduced by the truncated expansion (II.lO) 

and~ if kc is too small~ we shall be double-counting some 

of the Fourier components which are already well represented 

by states in D. Our approximation~ which appears later in the 

discussion of Pauli correction terms, requires that 

in D have small components for 

that· w~ must choose kc so tbat for o< e D, 

k > kc• .so we see 

<¢« /k > ia sma 11 

for ~ > kc~ but not so large that there is a group of wave 

numbers less than kc which are not adequately represented by 

our truncated expansion (II.lO). The latter condition indicates 

that kc should not be too far from the Fermi momentum associated 

with average nuclear density. In other words, the restrictions 

for a camplete separation of the momenta can be relaxed. How­

ever~ this is by no means a unique choice of kc and we shall 

have to test the sensitivity of our formalism to different 

values of kc. 



Section 4. 

So far, we have made the bold assumption that 

equation (II.9) can be solved without difficulties. This 

is not the case in actual practice. For equation {II.9), 

we still have to use approximate methods, such as the 

•reference spectrum• method, the •separation• method and 

the 'integra! equation• method. As remarked by G. Dahl et 

al (1969), the choice of a met.hod should be made by con­

sidering its accuracy and the labour involved. We have 

chosen the reference spectrum method, partly because of 

the ease in extending the method to all partial waves, and 

pa~tly because of the author•s previous experience with this 

method. We shall mention some of the salient features of this 

a pprox ima t ion • 

The basic procedure is to replace the actual inter-

mediate state energy spectrum, which is unknown, by an 

assumed •reference spectrum' eR. The B-G equation can then be 

reduced to a differential equation when the assumed spectrum 

eR is a quadratic function of the momentum. The differential 

equation is then solved numerically by first ignoring the 

Pauli operator, Q. This leads to a •reference• wave function 

or •reference• reaction matrix GR. The effects of the Pauli 

operator Q and of the difference between eR and the true 

spectrum e* are then calculated as the Pauli and Spectral 
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corrections respectively. This idea of an approximate solution 

to the B-G equation may be summarized in the followdng way. 

Consider a B-G equation represented by an operator equation, 

(II.l5) 

where GA is the reaction matrix corresponding to the inter­

action VA and QA/eA is the propagator! appropriate for the 

particular problem. Bormally, let us consider another such 

equation with subscript B, 

(II.l6) 

and try to get an expression for GA in terms or Ga. Let us 

define another operator ...!2 by, 

and 

The following identity holds: 

This again simplifies to: 

The tindicates Hermitian conjugates. 

The operator relations tell us that if equation (11.16) 

represents approximate situation of equation (11.15) and has 

the virtue that it can be handled more easily, then equation 



(II.l7) tells us how to get the exact GA from GB. Here~ 

we have followed very closely the treatment of Bethe et al 

(1963) as presented by G. E. Brown (1967). 
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Let us assume that all the operators involved~ except 
@ 

are Hermitian • Then equation (11.17) reduces to: 

The reference spectrum method is to assume that the 

only difference between the exact and the approximate reaction 

matrix is in their propagators. Further~ the approximate 

propagator is taken to be simply l/eR~ where eR is the so­

called •reference• spectrum. Bearing these in mind and re­

membering that VA=VB in this case~ we have, 

~ ~ ~8 "f- c;~~ ·(e~ - :; J. ~ 

@ Note that oR is not strictly Hermitian because of the state­

dependence of eR; however~ we can make it Hermitian if the same 

starting energies are used. In other words~ for <a.b/ c; 11 /cd> 

and <cd t yA>/"'-.4> • if we use c...: t{E(a).,.E(b)._..E(c)~E(d)j as 

starting energy. they will be equal. See Bethe et al (1963) 

or Chapter III. 
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or, (II.l8) 

where we have replaced GA on the R.H.S. by QB as a first order 

approximation. The second and last terms on the right are 

respectively the Spectral and ~uli corrections. 

The reference spectrum eR is usually defined as: 

ell= EtiJ _,.. £tf'- Er..tJ - £fl'lllJ 

where i and J are single particle intermediate states, with 

energies given by: 

.J ~ /e, . .a 
£UJ = II+ ....... 

e?llt.*Jitf 

and E(l) and E{m) are initial state energies obtained from 

experiment. 

A and m* are the reference spectrum parameters which 

should be calculated by a self-consistent process (See for 

example, M. Razavy,l963). It was found, however, that in 

nuclear matter, using E(i) = t.~kc%1'1/ seems to produce reasonable 

results. (H. Bethe, 1965 and S. Mozskowski, 1965). Kuo and 

Brown (1966) used this approximation to eR. In fact, in their 

calculation, eR is treated as identical to the actual spectrum 

e*; so, there is no Spectral correction. This is reasonable, 

since nuclear matter calculations indicate results of using 

a flat particle spectrum and of self-consistent calculations 

of m* and A (the two parameters of the particle spectrum) 
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are comparable. 

We shall follow the same procedure here in treating 

the free particle spectrum as exec~ and in using experimental 

values for E(l} and E(m}. Therefore~ we have~ 

e''i = ~ll= 
/II( 

- Efl)- E(wt) 

Assuming that we have solved for the reaction matrix 

0* for the •semi-infinite' problem~ we need an expresoion 

for the actual reaction matrix 0~ in· terms of the coefficients 

A~ and 0*. Again~ using the simplified notations~ we have: 

('~a( I ~ I ~ ) = < ¢"" I VI ~ > 

<~I VI tp~* > :z 
.., - ~'Y <'~IVI~y*> + (11.19) 

"lt: D 

7' 
- <~Jt;""l~> -z <¢,1G~I~> 

• <¢ot ;c; 'I¢,../ 
")&...]) $lY •j! 

Since 0 is Hermitian only if we use a fix starting 

energy and calculate up to all orders 1 we shall follow the 

practice of taking~ 

< ¢0( I <; I ~ > = i ( <' st I G I ¢,8 > 

In actual calculation~ <¢., 1 t:; 1 ~Jf > 

r<¢.1CTI¢..>/ 
~ « f(II.20) 

and <~It; I¢_,> 

are found to be close enough for such an average. to our 

order of approximation. 



CHA Pl'ER III 

THE CALCULATION OF REDUCED INTEGRALS 

Section 1. 

In this chapter6 we shall be mainly concerned with 

the solution of the reference spectrum equation. However 6 

before doing that, we should mention that it is the shell-

model matrix elements we are after. In other words 1 we 

want to obtain effective interactions for shell-model type 

calculation. Let us denote a two-particle state by the J-J 
coupling scheme. Thus 6 we may write an anti-symmetric two­

particle wave function of a given set or quantum numbers 1 

- h;', (.J;"',..J~ "'~- I.TM~)rf rr;f o; ITM7 ) • [ ~,.f,'J ~~m[~J 

·X_, ''J .:r.~ r~J - P.. tn ¢.. ~~) ..r.~ r .. , ,.r r-~..J j 
.1. 11; I cr.l ;,j& ~&. /'"'' .1 cr. rtr, 

We have written out the wave function completely1 in 

terms or the products of single-particle wave functions. 

9_, r.-; denotes the space and spin wave function of P9rticle 11 'JI I . 

28 
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and the X •s are isospin wave functions. N12 is Just the 

normalization factor and the first two factors are Clebsch-

Gordan coefficients for the spin and isospin couplings res­

pectively. The J-J coupling scheme is not convenient when the 

interaction is decomposed into different angular momentum 

states. We# therefore. have to transform to the L-B coupling 

scbeme. Using notations of Edmonds (1960). we note the fol~:: 

lowing identities: 

I-',S, f.I;J. l ~ !J~ J • :TMr) , ~ t" ~ Jv· = ZJt~l..+l)(~~+l)(.y;.,.,){~"..~l)• ~ t ./~ •/I,I,('-J,.:S,.9;,(~),.:rf1T). 
L,3 S .j . . 

. (III.l) 
and. 

ll, f ":;· I, .,./a.,. t. .,. .S.,. I~ •J~ + J(; ~ f .../.;· 
.. f J~ = (-/) "' ..L / • .z .., I 

s r L s I 
(111.2) 

In (III.l) the L.H.B. is a two-body wave function in 

J-J coupling scheme. is the nine-J symbol 

for the transformation and I I, I. t~o J ~ s, s~ (S), JM.r) is a two­

body wave function in the L-S coupling scheme. With these. 

we get. 
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Note tbat we bave consistently suppressed the 

principal quantum ·number n in tbe basis ·wave functions, since 

it is, so tar, not involved in any recoupling. Our inter-

act ion V is basically a function·. ot tbe relative distance 

between the two particles. Tbus, we shall reduce tbe in­

dependent pelr state into c.o.M. and relative co-ordinates. 

· .. :For this, we use the Brody-Moshinsky transformation (1960). 

A pair state can tben be written asz 

117, I,, lis. LA. (~), s, 7M.r) 

= 2 <''11, N.(, £I ,,I,, ~~~ lA. ,I.> . I "'L, N,[, (~ J, 3, T,4,f.,.. > 91,1 , If'.., 

N,"' 

where n,t and N,~ are tbe relative and c.o.M. quantum numbers 

respectively. <,1, H.(,,l./11,1,.'1'1~1,.,£> is tbe Moshinsky trans­

formation bracket. We have suppressed the isospin quantum 

numbers. With these, we may write the anti-symmetric pair 

state in C.O.M. and relative co-ordinates: 

I '11, J, J~ ~ 11& 1 .. /~ , .7Mr, TMr )4 , . 

/1/,z • L, . ( Z/,+/)(.ZS..,./J( ~i·n){ ~~.,.1) .It:: .i) · 6 
lo,S I~ ~ .:T ,.,, 

J.,.s.,.T 
('lt(,N.(,L/"11 /,,n~~./).,1.>· {1-(-1) j · 

I '111., N,(, ( J. ),S, .:TMJ. T Mr > 
I 

N.-< 

We have to recouple ~ and S to a relative J, - - -
because the interaction, after being analysed into angular 

momentum states, depends on this quantum number J. This -
recoupling may be achieved by noting that, 



I "'I, N-<:. , ( J..) • 3 ... ;:r M.r > 
.(;"f-.3 o#-J...,..j ~ jL Sj) 

- ~ (-1) /(:JL+I)(.tj"f'I)•/J-l L 

. In.', s v:.), "',(_, .:rM.r > 

where ().:. ~·~ is the six-J symbol. 

Thus, 

Therefore, the matrix element of V taken between 

these states is: 

31 

<'ra.JJrrJ I V/(cdJ"T).) .=: ('il?•la.j-. ~n~L,j~,JT/ V / 11cle.J~. >lt~./~}et, ..TT) 
4 'A . 
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This expression is identical with expression {2.1) 

of Kuo and Brown {1966). So far, we have implicitly assumed 

that the interaction V is the so-called residual interaction 

and contains no singularity. However, the Brueckner theory 

tells us that the effective interaction one should use in 

such a calculation is the reaction matrix G, derived from the 

'realistic' two-body force V. We shall make a mental adjust­

ment here that all the V's appearing in the expression {III.3) 

are to be replaced by G. So, our basic aim is to evaluate 

<n.l.SfjJ !G I n'ls[/J> from some realistic interaction. 

Section 2. · 

Let us now recall the •semi-infinite• equation and 

proceed to solve it. We have, in full notations, 

or, 

Define a defect wave function, 
~ * !Jf/ ) = (I t/J,j) - I ~j >) 

We can then write the equation a "'. "' . 
If Q~ .tC 

I .J .. > = ( -) V ( I ¢, .. ) - I f,- . >) y e U ~ 

To set up the reference spectrum equation corres­

ponding to this problem, we replace Q* by 1 and e* by eR of 

Chapter II. Therefore, 
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where k1 and k2 refer to the momenta of the two particles. 

Also If.·. R > denotes the reference wave defect. Let us 
'J 

make a transformation· to the C.O.M. and relative co-ordinates, 

; 

and 

k == rk, + R.~ J/vz - - -
Then, 

where (.;)N-f.(.+.:/'1+1.} =(~'It'-~""-' ~.J'!Jt-{;)and '~.l denotes the 

c.O.M. harmonic oscillator function. Multiplying from the 

left of this equation by <~I and integrating over 1!. space, 

we get, 

[ 
t_J.J.J. tl R /r"A 

'< -~" < ~-<:> -Erc'J -l.y'.J -1- V.1 1 J 111 > =- V ~t > 
.1NJ 

(III.4) 

Here, (TNC 1::: the expectation value of the l<inetic 

energy operator of the C.O.M. part of the wave function. We 

have also assumed that the separation of the reference wave 
~ . 

defect I J(j ) into c.o.M. and relative co-ordinatet; is 

complete. However, equation (III.4) contains centre-of-mass 

dependence implicitly in (TN..t> , and ::uch a separation may 

only be regarded as approximate. This discrepency may be 

compensated by including state-dependence in the final 

reaction matrix, as done by Kuo (1967). Let u~ define a 
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parameter 7.a as: 

y ~ = [ < J;~) - EtO - E !J J} · =it 
- r .L E - Etc') - Et>J 7. -2M 
- L < tv~ 1 J i;.a. 

where we have replaced (TN~> by the average kinetic energy of 

the oscillator in state N tZ • We see that Y~ contains all 

of the state-dependence, and it is through 1~ that we are 

able to include the proper C.O.M. dependence. Note also that 

owing to 'the symmetric transformation of Moshinsky, the reduced 

mass remains the nucleon mass M. 

The equation for the radial part of the wave function 

may be obtained by defining: 

ll <'r If,,.> = 

and 
(III.5) 

We have written out, explicitly, the spin quantum 

numbers S, j and m, which have been sup~ressed previously. 

Also, the radial harmonic oscillator function differs from 
Uhf" the ueual one by a factor of r • .:/JV.(n •s are the total 

angular momentum wave function. For uncoupled ~tates, the 
~ 

radial wave detect X .. t l~ J satisfies the followd.ng equation: 

(lll.b} 



This equation is true for uncoupled partial waves 

only~ and it is implicit that V(r) used is of the proper 

angular momentum. We shall generalize this equation to in· 

clude coupled states ip Appendix A. 

Equation (111.6) is to be solved numerically with 

the boundary conditions that~ 
~ A',, ( 1'c ) =' te,~ ( J;) 

and 
R 

~l (~o) = 0 
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where rc is the core radius of the infinite-repulsive region 

of the potential used. For ~oft-core potentials~ we can put 

in an infinitesimal hard core and the first boundary condition 

will still hold. To solve this second order differential 

eq'uation~ we use Ridley 1 .s method (1957). We shall illustrate 

the salient features by the solution of an uncoupled equation. 

The coupled equations are readily obtained as in Appendix A. 

Consider the differential equation for partial wave 

R. 
where gnL ~ XJt( ~ hn 1 are functions of r. 

Rewriting this as~ 

gives us the following equations: 



~stool 2 - = S,._l ..,. 
-:l;n.t._ dy 

~ 
d ;(".( R - - - .sltl ~'II.{ + ~.{ dY 

where Wttt (Y) satisfies# 

d.W.,.t 
-d y = sl'f.l. w-tt...l ~ ~ff./.. 
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(III. 7a) 

(III.7b) 

(III.7c) 

The procedure i~ to integrate equation {III.7a) and 

equation (III.7c) inward from r~oo with the proper initial 

conditions for funct·ions s,1 and W'17l # up to r = rc • Then 

equation (III. 7b) is integrated outward from r = rc with the 
R 

correct initial condition for x~~ and the tabulated values 

of functions S~1 and W~! • Integration is done by the 

Runge-Kutta-Gill method proposed by Gill (1951). 

To determine the initial conditions for S~t and Wn~# 

consider the homogeneous equation af: r~6c> and V(r)=O# 

[ !!._J.. - /.(1-1-t) - )'j // = 
d.r~ r~ "L 0 

For positive Y~# the solution is cimply proportional 

to the Spherical Henkel functions, 
li(~} f/+1) • /1) 

'.1 (Y) =- i_ (+tl·r)/,.1. f+t · /·Y) 

- f.l..,.,) . ~~~, • 
= i, (!.. ' 1· y ) A. I. ( :t .{_ )'. y) 

Using only the decaying function, we have then, 
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as r-t>- (III.8) 

where the prime denotes differentiation with respect to the 

argument. Comparing this with equation (III.7b) we see that 

for r _,. '- ~ if we set~ 

(-J / 

S = _ -y. ~ (7· r} 
fr.l. 

~ (-.lf'Y· )") and w,, = 0 . 
the boundary condition (III.b) is satisfied. 

Results of some of the partial wave~ using the 

Ramada-Johnston potential are plotted in Fig.(III.l) 
q 

After the wave defects x,.( Is are evaluated~ the 

reference a-matrix may be obta.ined without too much difficulty. 

The reduced radial integrals are of the form~ 
1). 

<?1'-t, ~~·I I G; R I '11 l S:/J ) E j ~'!'(' (V) V(.,.) U,~ f.-) tfr 
0 

l> 
where u;,l tr) is the radial part of the perturbed wave function. 

Here~ we shall limit ourselves to integrals diagonal in n and 1. 

Off-diagonal ones may easily be obtained. Consider the radial 

wave equation for the harmonic oscillator of parameter ~tAJ ~ 

and that for the reference wave defect~ 

and ( 
d;j. '((+!) I ..( .:JAA R (III 9) .:ra. - ..c; - "1 ;r. (r) = - -7 V(r) l/,l. (r J • "'- r r~ ,l tv 

.< 
Pre-multiplying these equations by X~~ and Rn~ 
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respectively, we integrate from r=rc to r-o... , and 

Integrating the last integral by parts and using the boundary 
R R 

conditions of {,ll~).:: R.,,_rrc) and x,~.(!!o).:((,l{lo)-=0, we have, 
lo · 

/ ~~ trJ VtrJ U,~ rr) dr 
~ ~ 

1 1>0 J. A I I :a- R. ~ 
= ( E,l+ co~! l A) R,t(r) {,t (r) tir- ;z }y_ M fA) 1?..,.,,_ fl') {,l f r J v dY 

~ c 

J:.." / 
- ~Nt [R,l(,..} UA fr)} 

,,, "{ Y= r_ 
c. 

(III.lO) 

Now, because of the hard core, the wave function 

Ll~~(rJ is discontinuou~ in its first derivative at r = rc • 

One can then separate the reduced integral into three termE: 

R ( ... } v ( y) u 11(. ( 'Y) d, 

lo 

+ j R,.l (Y) VtY.J ·u:e_ ,,_) tfy 

'C 
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II. . 

Here, we have· used the fact that ,t,Ltr;J = ~t.l"J for r ~ rc. 

The terms on the R.H.S. are usually called the core volume 

term, the surface term and the outer term, respectively. 

Substituting expression (III.lO) for the outer term, 

we have finally, 
~ J ~ ... L (l') VfY) u:(. (") dr 

p 

: ~~ ~;:,.• a I .l. aJ ~ [ r ~,.t. '~- ~M 'Y } - z 111 Al r ~"l (;- J d r 
() 

For off-diagonal cases, we have similarly: 
~ f ~'(' (J-) V{Y) u~ (Y) d.r 

~ ::: j [' { E,'l' -f' o1~z./".J - }N/fAlar-~} R,,1 , {'r) R.,(. (Y) dY · dpJ.' 
• 

(III.l:2) 

These expresEions can be generalized to include 

coupled etates. 

Section 3. 

The reference reaction matrix GR is only a first 

approximation to G*, the reaction matrix for the •semi-



infinite' problem. We have to include Pauli corrections, 

<??'.l: "'~:srjJI t;z/l. 1 ~~eQ' G ~ 1 'h.f.1 N<._, ..Jrj.J) 
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= - < J~er.,'l; N'.('/ s;;'JJ/ eRr o. #_ 1 J 1 fttr11l, N.<::./ s;;·); > (III.l3) 

h ~ ryR M· 
W ere <t- RIJ ('11.( N~ St/JJ) = m ( R) "".( tY) !i :; ;1 

I ~, i/ Tiv.c - . . ( "(" ) 
r '7/ 

is the total wave defect. eR is the reference energy 

denominator given by: 
a 

eR = .!S:...rk .. +r"'J 
..211 

(III.l4} 

The Pauli operator Q* is an integral operator in 

the momentum space. It differ~ from the ordinary Q of nuclear 

matter in that the intermediate states aret.K1k 2* ;> 1 s inf:tead 

of /k1k2> •s. However, the ~pace in which the momentum vector 

must be integrated does not differ and we can use the same 

angular-averaging technique of Brown, Shappert and Wong (1964), 

when transformation is made to C.O.M. and relative co-ordinates. 

It is found that for a single particle momentum cutoff of kc 

the angular average of Q* is: 

0 for 

I for I k - IG I -> v2 .l?c 

= otherwi::e 

This angular averaged Q* differs from Kuo and Brown's value 

because we have used a symmetric definition for k and K. 
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Before writing out expression (111.13) more explicitly, 

let ue examine the Pauli correction in terms of the shell-

model states. From equation (11.7) and the definition of the 

reference reaction matrix oR, it is easy to ~ee that (c.f. 

(II .12):) I 

(III.l6) 

where we have assumed eR=e* and that oR ie close enough to 

G* to replace it in the second term. It is this term that we 

have labelled •Pauli' correction. Writing more explicitly, 

this Pauli correction is given by; 

~ ~ 

= < J;; eR, J_.", > -j jd"R, tt"i., ~R< J/t tA,k. ~><A,k,t f;o > 
..t(; R.: 

(II1.17) 

Here, we have expressed Q* explicitly as an integral 
~ 

operator over the momentum spaceo f~p is the reference wave 

defect corresponding to an unperturbed state ~/S . 

= 

By the definition of / k 1k 2*) we have, 

* A. <'II, k~ I :r Dfj9 > 

<Jt,k,., i~> 2 <~,k~l<?10 ><~0 ;f: > 
'Y,_ d ~ c ,.l> fS' 

(III.lb) 
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Putting this expansion in (III.l7) and using the simplified 

notations, we have, 

<<f"( I Gl( 1;!-* G~ I~> 
R R 1• A A R 

= < J<J( 1 eR 1 ~ >- It d.!_ <J'« Jk.><KJ..r11 > e (,.e .. ~~f'> 
c 

lo 

t- 2 j a~ e~~«',.6'J/<.t:1¢r><tkl.f;)<¢y-lk.) 
Y 6 C, l> '.fc I I 

+ <f: 1!<.)< ~.r I :r; .><k. I ~r>} 
kJ _"") f ~ R R 

G c11: e fK,,(,/ J<' f..t I ¢ 1 ><~I J~ ><k 1¢r).(~ l.k:) 
J~'YGC,Z> ~ 

c. 

(III.l9) 

To determine the importance of each term, we shall 

consider the following. For /<. ;> kc ' 
a ) 

,.. 
< Y.( 1 k.) , the overlap of wave defect with high 

momentum, is important . 

b) 
A 

<fp(l1j), is not negligible ei nce both s: and 

~ are finite ins i de t he core . 

c) <~ lk.) 
' 

for ()( ~ C or D is negligible 

if kc is chosen to make it so. 

Expression (111.19) ie a fairly complicated one; but, 

it is easily simplified if kc is chos en according to condition 

c·). We have referred to this criterion before . Assuming that 

c) is satisfied, we see that the first summation in (III.l9) 

is of the order of importance of the Fourier components 

greater than k0 in the 1¢> 's in C and D. The second summation 

is a further order smaller. If need arises, the first summation 

in (111.19) may be evaluated. However, since we already may 



have been making error of this order in {II.ll), it seems 

consietent to leave out this correction when condition c) 

is ~atisfied. We shall only retain the first two terms in 

(III.l9) as the Pauli correction. In terms of c.o.M. and 
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relative co-ordinates, and u~ing the complete notations, we 

have, 

Here, we have again restricted oureelve8 to.diagonal 

terms. However, off-diagonal terms may be obtained readily. 
~ 

The overlap <~ IC 1 J r N~,. '».l, sy1 J) i::: obtained a :s follow~: 

L ,. I t"tt·/2 "")> . .t'. 11f.,"' 
IF< k) = 1~, k.., s > = 41(- e. - - L...... (( J 1'-,rlu) 't;, 'rR.J 

R M I' .h .c. 
~, 

where 
~ 

.Q =- {~I[) is the volume normalization of the plane 

wave. Therefore, 



where ~ (lc} i8 the harmonic oscillator wave function in 
N<. -

K space. In simplifying the expressions we have used the -
ortho-normality condition for the total angular momentum 

ll 12 
wav~ functions. Therefore, I<I<K!J (N,(, ,.(, Sfj>J> is 

given by : 
.ll ./ -(-

{41[) n~ . t~K.) . ~<::- r K. J ~.c r ~ J • 

·{ j,.;r,;(t'J j; M") ydr-]~ L 'f;~'/~J Y,~r~t'(J) 
~ ~~~~ 

• ( L S IYit' Wlr, I j "'J J ( .f S h1t" "".$'' I j ~· J 

Inserting thi~ into the exprescion for Pauli cor-

rection, and integrating out the angular parts of k and K, .....- ~ 

we get: 

where 

44 

eR is given by equation (III.l4) and Q* satisfies condition 

(III.l5). 

It is ceen that expre~sion (III.20) differ~ from the 

~imilar expression in Kuo's calcula tion (1967) by a factor 

of 2. Thi~ factor appears if one chooce8 to uce anti-cymmetric 

plane wave intermediate states . However, a simple normalization 

test, by setting eR(Q - 1) = 1, shows that I kK) used, should 

not be anti-symmetrized. (See, Law and Bhadur1,1969). We shall 

discuss later in more detail, the consequence of this factor 

on the results obtained by Kuo and Brown, and Kuo. 
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Equation {III.20) may be generalized to include off-

diagonal terms, in which case, 

- < Jll( N<~ n'.t.; sr,/J) / el(r 4- 1) I../~( N~; ., '(.; S(}J) > 
lo ,.. 

- -: j j e 11rii."-t} fS,<tKJR,,,J~eJf.Lr")f.,,,,r~Jrl~etl?. ~z'1i' 
0 0 

For coupled states, the expre~sion for Pauli cor-

rection involves summation over the coupled channels. This 

makes the expression slightly more complicated, but still 

easily derived. 

Section 4. 

In the calculation of the reaction matrix G*, r~ 

appears as a parameter. It ie necessary to study the dependence 

of G* on (.l. because 
.2 

Y contain ~ the state -dependence of 

the matrix elements as given by: 

We see that not only is there a centre-of-mass dependence 

but also a dependence on the initial state ij. This initial 

state-dependence brings in certain amount of ambiguity . 

Should one use the same tz. for both <a !J I c; ,q I ~t-t "- > and 

? In the first case, the initial state is 
.z. 

mn, and in the latter case, ab. If different l•s are used, 

the two matrix elements will not be equal. This is a reflection 

of the fact that the reaction matrix G is not Hermitian even 
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for Hermitian interaction V, unless the propagator Q;e is 

Hermitian. In reference spectrum calculation, we are dealing 

with l;eR, and unless eR is made Hermitian, GR will not be 

Hermitian. To make eR Hermitian, we shall have to use the 

same starting energy for the two matrix element:::. In other 
~ II ~ word, for both <a-61~ /~ttn> and -{"J¥v\ It; ;a!J>, the Y is, 

/' ~ j- ( S.c - [" E(a.} 7 E(~} f E {I~) -f E('11)J) ~-; 

(IIL21) 
where we have taken an average of the two starting energies 

E (a ) 1- E ( b ) a nd E ( m ) -r E ( n ) . 

The same approach has been used by Kuo. 

The dependence of the reduced integrale on the valuec 
1. 

of *Y has been studied. Fig.(III.l) and F1g.(III.2) show the 

variation of the 3s1 and 1so reduced integrals with re~pect 
....,.z 4 -1 to ' • With momentum cutoff set at 1. fm , we see that 

J for both S states, the dependence is nearly linear with r • 

This agrees with Kuo•s results qualitatively. Our matrix 

elements are seen to be more censitive to the values of 

Table (III.l) also shows reduced matrix elements for 

other partial wave:::. We have calculated states up to ./_= 4, 

and made no approximations for the higher partial waves. Since 

our application is to A= 18 nuclei, in which there are two 

nucleone in the S-D shell, , 
which lead:: to a maximum .{ of 4. Thus, 1-= 4 is the highest 

partial wave needed. In this respect, we differ from Kuo 

and Brown, who made linear approximations for the wave defects 



of~~ 2. F1g.(III.3) makes a compari~on between the wave 

defect .{R we get for 3n2 at I~ 4 and the corresponding 
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linear approximation of Kuo and Brown. This approximation is 

clearly not adequate. However, mutual cancellation between 

high partial wave contributions may overshadow this. ~ince 

it does not take much more computation time to get the i ;:,- 2 

states in a reference spectrum calculation, we shall include 

these contributions without approximations to the reference 

wave defects. 

Fig.(III.4) and Fig.(III.5) show reference wave defects 

for the P states. They compare well with results from Kuo 

and Brown. 



Section 1. 

CHA PI'ER IV 

APPLICATION TO SHELL MODEL 

Nuclear shell theory has been responsible for a 

large number of succes~ful interpretations of experimental 

data, and has been invaluable in the understanding of 

nuclear structure. In this re~pect, it is purely phenomenological 

in the sense that it provides a framework within which 

observed properties of nuclei are interpreted and correlated. 

(See, for example, A. deBhalit and I. Talmi, 1963). A much 

more fundamental aspect is when shell model theory is studied 

as a link between the properties o! complex nuclei and the 

free nucleon interactions. A large body of calculations under 

the general heading of 11 Shell Model Calculations with Realistic 

Interactions" has been devoted for thio:; purpose. (Bee, for 

example, C. W. Wong, 1967; K8hler and McCarthy, 1967; Kalio 

and Day, 1967). No matter which approach we wish to take, 

the assumption~ and limitations of the shell model theory 

must be borne in mind. {See M. ~~cfarlane, 1967). There are 

two basic assumptions in the shell theory. First, only the 

nucleon co-ordinates need be considered. This restricts the 

theory to low energy regions, where the poBsibility of real 

meson creations is ignored. Secondly, the interaction between 

48 
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nucleons is a two-body one, meaning that effects due to 

higher order forces are neglected. So, we see that the 

premises in which the nuclear shell theory operates, is 

a rather restricted. However, it is still possible to form 

a theory of shell model and its validity, within the frame­

work of these assumptions (Brandow, 1967) , and then, a 

comparison with experimental results would be a test for 

the forces used. 

We shall restrict ourselves to the more fundamental 

aspect of nuclear shell theory, and study the so-called 

•realistic' type calculations. In this regard, we have 

mentioned earlier that the first basic step is to replace the 

free-nucleon interaction by a Brueckner reaction matrix. 

We shall now show why the reaction matrix is a good fir~t 

order approximation to the 'effective• shell model matrix. 

Consider the shell model Hamiltonian of an A-particle 

system, 

where Vij is the two-body interaction. We may rewrite this 

Hamiltonian as: 

A 
where -l-ID =: L ( li + U,; ) 

l=t 
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Here, Ui is a single particle potential which, 

hopefully, will contain most of the effects of the many­

body system. From H0 , one can get a set of single particle 

eigenfunctions with which to construct the shell model wave 

function. This set of eigenfunctions will span the whole of 

the Hilbert space .7/ and exceed all bounds. So, by the 

very nature of the problem, diagonalization in space ~ 

is impossible and a truncation of the space is inevitable. 

Suppose we have chosen a finite ~pace D in which 

the problem becomes tractable. We must then define an 

'effective• Hamiltonian in this space, which will reproduce 

the same ·eigen-energie.s as in Jf . Let us define this by: 

· such that in D, 

where E is the eigen-value of the Hamiltonian H in J.t space. 

Veff is the effective interaction we alluded to earlier. 

In thi~ proces~ of projection into a finite ~pace, some 

informa~ion i s bo~nd to be lo~t. However, we have retained 

at least the nuclear level information • 

We shall now study the relation between v, the reali~tic 

· interaction, and Veff • The condition that Veff must satisfy 

is that it should produce the same low-lying energy levels 

in the model space D, as V doe::: in dj • However, this is 

not enough, ~ince we do not have any criterion for the eigen-



vectors in D. One simple way is just to define the eigen­

vectors for the effective interaction as the eigen-vectors 

of the true Hamiltonian projected onto the model space D. 

Therefore the conditions for Veff are: 

(I/. r
1 

1/) t'j-.> =E 11/-) 
~ if/ ( 

{ ~ -r /4;{ J I '(z, > = £ I~ .> 

wt/t !tiP>= PI tf> 

(IV.l) 
where Pis the projection operator defined by: 

fAl . .><¢>.I 
"rt ' (IV.2) 

We may also define the complementary operator Q aB: 

Li=l-?=2 l~·><¢il 
t'<f.]) 
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where 1¢e·>•s are the eigen-vectors for the single particle 

Hamiltonian H0 • It is evident from (IV.l) and (IV.2) that 

we may write, 

and I~..> == ~ Cit·;¢,·> 
('6.,]) 

We note here that the model wave function I~> has 

the same coefficients of expaneion as I~) for i E- D. If 

the true wave function contains much contribution from single 

particle states outside of D, then /~) will not resemble the 
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true wave function. However, we have only one condition for 

I¢;;> and that is that it ~hould produce true low-lying 

eigen-energies when acted upon by Herr· There is no requirement 

that I~> should resemble I~) • In calculations where 

the wave function is more critical, we should use expansion 

(II.lO) in which the model wave function is expressed in basis 

states with built-in short-range correlations. 

The Schr8dinger equations for .;f and D spaces 

are then: 

and 

{ £- et·) at· = Z <tf>c· I V/tp,- > t:<_;· /6 ~ jer :.; "' 
(IV.3) 

(E- et' )(},: .:: .z <¢;·I t/*' I ?)·Jty· c· ~ 7j 
jl!?-.h 

where we have assumed the normalization ()61~)=(~1~>=1 • 

Comparing expressions in (IV.3) we see that for any 

operator veff defined by 

(IV.4) 

equations in (IV.3) will be satisfied. Therefore, (IV.4) 

is the condition for Veff • To derive an expression for Veff 

we note that, 

(IV.5) 

= Z. a,· lfD,· > == (]), 1 ~ > 
,. f .1> 



53 

by virtue of (IV.3) and the definition of Q. 

Combining equations (IV.3)~ (IV.4) and {IV.5)~ we 

have~ 

\J,ff I~;>= VI~> =- V(P-rtJJ.) I~;> 

- V / ~) + 1/ { E ~fl-o) V / Y') 

=VI~>+ 1/(E-~o) VW'I~.> 

or more simply~ 

vtff ~II in D ~pace. {IV.6) 

This~ then~ is the relation we want between V and 

Veff• It is clear that Veff depends on the eigen-value E. 

With certain restrictions on the operator Q~ equation {IV.4) 

reduces to the Brueckner reaction matrix equation. For a 

system with two nucleons outside of a completely inert core~ 

Veff is equal to G. The corresponding restriction on Q 

is that it should prevent any type of exc1tation of the core. 

Thus~ for systems ~uch as o18 and F18~ the reaction matrix 

G is a good first order approximation to Veff • It i~ only 

a first order approximation~ because core excitation~ must 

be taken into account as renormalizations. 

Equation (IV.6) and second equation in (IV.3) are 

the two basic equations in nuclear ~hell theory. The latter 

looks very much like the ordinary secular equation. However~ 



there are two main points of difference. Fir~t, the matrix 

element of Veff is E-dependent, as shown by Bloch and 

Horowitz (1958), and secondly, the eigen-functions obtained 

from this 1 ~ecular 1 equation are not necessarily orthogonal 

since they are eigen-functions of dirrerent effective 

Hamiltonians Heff(E). This dependence on E is characteristic 

of the Brillouin-Wigner perturbation theory . (See, for example, 

March, Young, and Sampanthar, 1967). As we have mentioned in 

the previous chapters, we shall make no attempt at self­

consistency of this nature. A suitable average will be used 

for E in the energy denominator in (IV.6). {See, M. Macfarlane, 

1967) 

Section 2. 

It is apparent from discussion in the last section, 

that core excitations must somehow be taken into account. 

What we have included in the reaction matrix is a diagram 

of the type: 
c d 

a b 

where a, b, c and d are single particle states in the model 

space D. In the case of o18 and F18 , these are states in the 

S-D shell. There are two important diagrams which are second 

order in G and involve states inside the core. These are: 
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c G d 
c d 

and 

a b a b 

Fig.(IV.l) Fig.(IV.2) 

Fig.(IV.l) is usually called the core-polarization 

diagram, in which a particle inside the core is excited out, 

creating a particle-hole pair. This diagram involves 3p-lh 

intermediate states and because of parity consideration it 

usually represents an energy excitation of at least 2 1\./10 in 

harmonic oscillator language. Fig.(IV.2) represents core-

excitation of two particles and also involves a smallest 

energy excitation of 2~. However, whether these excitation~ 

can be treated by perturbative methods, is now a question. : 

For example, in ol8 and F18, 4p-2h configurations are 

believed to contribute heavily to their low-lying states. 

(See, Federman and Talmi, 1965). One remedy, of cource, is 

to include 4p-2h configuration~ explicitly in the model 

space D. This increases the difficulties of the shell model 

problem and until a better method is found, we shall treat 

4p-2h excitations by perturbative methods. There are other 

diagrams which we have not included. Among these is the 2p 

intermediate state excitation represented by: 



c d 

Fig. (IV .3) 

This was included in the works by Kuo and Brown 

(1966) 1 and by Kuo (1967) 1 in an attempt to include some 

of the discrete nature of the intermediate states. We do 
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not need to include this diagram because we have taken this 

into account through our formalism in Chapter II. 

Bertsch (1965) has studied effects of core­

polarizations in finite nuclei and derived expressions 

for 3P-lh excitations. However 1 we shall follow notations 

used by Kuo (1967) which appear more convenient for our 

computations. 

Assuming an excitation energy of 2 ~~ 1 the 3p-lh 

contribution to the effective interaction is given by: 

- (a/>.:TT/6; Q~;-tA.. G 1 c d .:rr J 
..?/vt.v 

-- ~IA)..l~w (~6JT/C7 /.:Sf-t"-..JTJ(1'-'4.:rTfc;;cc(..rT) 

I I VA ·tj,c. + ;r_,.. T ..:r:f 7 ,, 
=: -;:::=::;;:::::= (- 1 ) • """5 {- I } 

Jo ..c._, • W ~LTT ~ ·-! 1
) 

( /-fo 4;, )j (I+ dccl.) ;>i_:r''T" i_~ a 21 <:-Z 

· ft"'Ji~,Jf-?)~ "fo,J • W(j~;rJ''.;; lJ~j« J · '-. (i,Ji J L.. rj~_,j&( J 

-t-Jfoj~+,)("'j~ 'f- t). W (.j~ .TJ ''," ;.).· · } • L_ ( · . 1.. ( . . JrTrl 
vd Ajc J#l './ /) ) [/A , jc) x (-'.) 

+Jij. "'I)( .'l,j~ .,_,). 1111(/~.r:rJ~; ;".t.;d'. L r.i' j .. } L{!j, ;d J -r-I' r~' 



..,. r-v~ rtJ l'f!c·n J. W (/~ .r..r:;~ ; J~j~ J ·L (!~,j~ J L (j~,jc-J j 
(IV.5) 

where the L-matrix elements are defined by: 

(IV. 6) 
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In expression (IV.5)~ a~ b~ c and d denote the sets 

of quantum numbers for the respective particles; /3p-lh JT) 

represents a 3p-lh intermediate state with spin J and iso­

spin T. W1 s are the Racah coefficients. We have also defined 

Q3p-lh as the projection operator for all 3p-lh intermediate 

states with 2 1;._,.J excitation energy. 

For 4p-2h excitations~ assuming again an excitation 

energy of 2 tw ~ we have: 

t; ;cd.TT) 

- -1~~ Z (Q..6JT!i;7 lt.,t,2.JT)(It,~:£-JT/C7!Cd.JT} 
Ia., ~ A,_ ( IV. 7 ) 

where f h1h2JT > represents 4p-2h intermediate state with 

the two hole states h1 and h2 coupled to spin J and isospin 

T. 

In both expressions~ the two-body reaction matrix used 

should contain the proper •starting' energy as given by 
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equation (III.21). 

Section 3. 

So far, we have no distinction between the discrete 

subspace and the model space for shell theory. We have even 

used the same notation for both. Let us now examine if there 

is any relation between these two subspaces. 

The model space for ~hell theory must satisfy the 

following conditions: 

a) It must be finite and small enough for 

diagonalization. 

b) It must produce the correct eigen-values for 

low~lying states when operated upon by an 

effective Hamiltonian Heff • 

c) It must not contain too much impure configuration 

(collective, deformed). (~ee, M. Macfarlane, 1967) 

The discrete subspace in our formalism has to 

satisfy only the one criterion that it should contain discrete 

state.;; with significant momentum components up to the cut-

off kc• This automatically makes the subspace finite. It 

is apparent that the shell theory model space is more res­

trictive. As we have mentioned in Chapter II, our choice of 

the discrete subspace is not unique. In principle, the larger 

the subspace, the better is the approximation to the perturbed 

wave function. Therefore, it seems reasonable to make it 

at least as big as the shell theory model space. As a matter 



of fact 1 it may even be possible to include configurations 

not included in the shell model ~pace 1 in this di~crete 

subspace. 
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We shall be able to make more conclu~ions regarding 

this after we have presented results where the size of the 

discrete subspace is changed along with the cutoff momentum 

kc • 



CHAPl'ER V 

RESULTS AND CONCLUSIONS 

Section 1. 

As an application of our formalism~ we have cho~en 

the A= 18 nuclei, where two nucleons interact outside of a 

doubly closed core of ol6. Also~ we are onl~ con~idering 

even parity states. The low-l~ing ~tates of both ol8 and Fl8 

have been determined experimentally by Polletti and Warburton 

(1965). We have chosen the Ramada-Johnston potential for 

calculation (See Appendix B), mainly because of the readily 

available works of Kuo and Brown (1966) and Kuo (1967)~ and 

Wong (1967) for comparison. It also fits the two-body data 

well at moderate energies. 

The single particle basis for our calculation are 

the harmonic oscillator ~tates of ~t..J = 14 MeV~ which 

reproduces the r.m.s. radius of ol6. (Elton, 1961). Thi:: 

oscillator constant may also be treated as a parameter of 

the calculation. 

We did calculation of the semi-infinite G*-matrix 

at three different values of the cutoff momentum kc· These 

values are chosen to be close to the realistic nuclear 

density as required by our formalism. Tables (V.l) to (V.b) 
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show the reduced integrals of G* as kc i~ varied. Each table 

Y.z. 
corresponds to a particular value of # the parameter that 

contains the state-dependence of the reduced integrals. G*(O) 

represents the reaction matrix with no ~uli correction. We 

see that ~uli corrections are important in both singlet and 

triplet S-states. They are small but still significant for 

sta~.es of higher angular momenta. The variation with re:;:pect 

to kc within the range of realistic nuclear density, however, 

has very little effect on the reduced integrals. A variation 

of no more than a few percent exists in the S-statet: .. wherea .e 

it is almost negligible in the higher momentum states. ThiE 

seems to justify our relaxing the ideal criterion for the 

choice of kc • We note here that our bare G* (with no Pauli 

corrections) compares well with both c. W. Wong and Kuo & 

Brown results, except for the triplet s-states, where the 

incorrect numerical factor in Kuo and Brown's expression 

has doubled their off-diagonal tensor contributions. We can-

not make valid comparison with c. W. Wong's Pauli-corrected 

results because we have used a free particle spectrum, and 

our formalism of the discrete low-lying states, is really 

another form of Pauli correction, which is included only in 

the two-particle representation and not the c.o.M. and re­

lative representation. Both "local" and "global" ~uli cor­

rections are included in the reduced integrals by Wong. 

The variation of the S-states integrals with respect 

to Y
~ 

are shown in Fig .(III.l) and Fig.(III.2). It is seen 



that the singlet states agree with well with Kuo•s results 

whereas we see the disagreement in the triplet case as 

mentioned earlier. We have checked also our P-states con-

tributions and they are in very close agreement with Kuo 

and Brown's results. 

The resulting shell-model matrix elements are 
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listed in table (V.9), for kc= 1.4 fm-l and the discrete 

subspace D is chosen to be the S-D shell. G* is the Pauli­

corrected semi-infinite reaction matrix; Gob represents 

correction from the discrete low-lying stateb in D; a3p-lh 

and a2h are, respectively, contributions from three-particle­

one-hole and four-particle-two-hole excitations. The reaction 

matrix we used for shell-model diagonalization comes under 

"SUM". A comparison of a3p-lh with Kuo 's values whows the 

effect of the inco_rrect T = 0 reduced integrals. a3p-lh 

consists of summation over both T = 0 and T = 1 matrix elements 

as shown in Chapter IV, and the incorrect T == 0 matrix 

elements made the G3p-lh calculation an over-estimation. 

G2h, on the other hand, agrees well with Kuo's results for 

the T .::.1 matrix elements and is again in general disagreement 

with Kuo 1 s T = 0 results. This may also be attributed to the 

incorrect numerical factor in the triplet S tensor contribution. 

Gns, the discrete state corrections, are seen to be 

in general, smaller than the other two renormalizations; 

but, compared to G*, the corrections are clearly signig1cant. 

Variation of Gns with respect to different choices of D is 
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shown in Table (V.lO). Gns<~-D) denotes the discrete con­

tribution when the S-D shell is chosen to be the subspace 

D. a08 (s-D, P-F) is the contribution when D is chosen to 

include both S-D and f-F ~hells. We see that the difference 

is significant. This is reasonable, since we see from Fig. 

(II.4) that even for kc= 1.4 fm-1 , there is a significant 

amount of n = 1, J.:: 1 components which are excluded by our 

Pauli operator. However, the second S-D shell will not con­

tribute so much. We see here that there is a distinct ad-

vantage in our formalism. In including the P-F shell as the 

discrete sub~pace, we need only evaluate~ in addition to 

matrix elements of the S-D ~hell, off-diagonal matrix elements 

of the type ( (P-F)
2

JT I G I (S-D) 2JT), whereas, when the 

P-F shell is included in the shell-model space, then matrix 

elements of the type < { P-F )2JT I G 1 ( P-F )2JT) will also be 

required. < (P-F)2JT /G I (S-D) 2JT) •s have been calculated at 

the different kc's, using the reduced integrals with proper 

~tate-dependence, i.e. the proper Y~ •s. 

Fig.(V.~) and Fig.(V.2) ~how the resulting ~pectra 

of o18 and F18 • We have also included Kuo•s re~ults for 

comparison. 

In the diagonalization of the shell-model effective 

interaction, the single-particle energie~ are taken to be 

E(d S/:a ) 

E(lS Ya ) 

E(d ¥2 ) 

= 

- E. -+ 

o.o 

0.&7 

5.08 

(MeV) 
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where ~0 is set equa l t o zero so that the spectrum obtained 

is a relative one. I n ca lculating the effective interaction 

~o = -4.14 MeV for a s ingle neutron . state and €. = -o.60 

MeV for a single proton sta te. 

With a fixed D, which in this case is. the S-D shell, 

kc= 1.3, 1.4 and 1.5 fm-l produc e almost identical spectra. 

In the T =1 spectrum, a n increasing kc tends to shift the whole 

spectrum slightly upwards .In t he T=O spectrum, increasing 
+ · kc shifts all levels up, except the first 3 level, which is 

shifted slightly downwards . The inclusion of the P-F shell 

as discrete state~ has l itt l e effect on the T=l spectrum. 

For the F18 spectrum it tends to shift the level~ down. A 

more detailed study of these variation should include the 

evaluation of the thi rd term in equation (III.l9). 

A general compar ison of our spectra with the 

experimental result s shows agreement in ordering, but the quan-

titative agreement is not very good. We were not able to 
+ reproduce the experime ntal ordering for the second 0 and 

2~ levels in ol8; also , the first 2+ and o+ levels are far 

too high. Kuo•s r esults i ndicated that agreement for the fir~t 

0~ state in ol8 is due largely to the 3p-lh contribution. 

We have examined this cor e polarization, and found it to 

be an over-estimate a s mentioned earlier. 

Section 2. 

We have presented a formalism in which the B-G 



65 

equation for finite nuclei may be solved~ such that one is 

able to include the discrete nature of the low-lying states 

allowed by the Pauli operator. We have made approximation~ 

in our actual application of the formalism~ by leaving out 

the last two terms in equation (III.l9)~ but with a little 

more time and labour~ these terms may also be evaluated. 

We have studied the effective interaction obtained 

rrom the Ramada-Johnston potential in three respects. First~ 

the state-dependence of the effective interaction is studied 
2 

through the parameter 'Y • We have seen that state-dependence 
~ 

affects the reduced integrals almost linearly with 7 ~ in 

agreement with Kuo; but~ we have found that the dependence is 

much stronger than is reported by Kuo. As a result 1 we have 

carefully included this state-dependence in our calculation 
.'L 

by using the proper value of r for each reduced integral. 

Secondly~ we have varied one of our relatively free 

parameters~ the cutoff momentum kc.. Thie does not seem to 

have too much effect when kc is kept within the range of 

realistic nuclear density. Finally 1 we have increased our 

finite subspace to include the P-F shell. Thie again does 

not have drastic effect on our ~pectral calculations. From 

these~ we may conclude that our formalism is not very 

sensitive to the variations of kc and D in the energy level 

calculations~ as long as they satisfy our criteria. 

One avenue of improvement might be to use a linear 

combination of oscillators as basis state~ rather than just 



one oscillator. This is believed to improve the treatment 

or the centre-of-mass dependence or the reaction matrix 

elements.Also, calculations have been performed with a 

oscillator well depth as a parameter (Becker, McKellar, 
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and Morris, 1968). However, this is believed to be important 

in the binding energy calculations., and not in a spectral 

calculation. 

With our formalism, a calculation of the effective 

interaction in finite nuclei becomes only slightly more 

difficult than a nuclear matter calculation and it may 

then be possible to test a variety of forces, with relative 

ease. 



APPENDIX A 

For triplet Etates, the 1 =J #- 1 and 1= J - 1 

channels are coupled. In generalizing equation (III.6) 

we shall suppress the principal quantum number n in the 

relative co-ordinates. 

Thus, tor coupled triplet Etates, we have: 

.& • 

« .. - J(/-t) 
dr r~ 

0 

~:.,('I) 0 l )·(r),. I 
() ~-+, fr) I 

!'itr) = I (J:j-1/ VI i;i-1) 

( (J,j.,.l I vt j;j-1) 

(A.l) 

with I J, P > representing the angular momentum wave function, 
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I 
{'~ { r) 

,. ~-·.j-' 

~j~' .. j-t (r) 

R 
...:t" .. / . (r') I 

c./ ,J+I 

V ( ·/ . . y ..,.,,I,.' J 

with 

Rj .. , (Y} - U: . (r) v y-t,J-/ 

and 

where the u•s are the radial parte of the coupled perturbed 

wave functions. 

Both equations {III.6) and (A.l) can be solved by 

the Ridley method (1957). We shall write out the detail of 

each in turn. The basic equations are (III.7aL (III.7b) and 

(III.7c). Suppressing the quantum number n again 1 we rewrite 

these equations as: 

dS 32 . ,(. 

~ - - ..,. 
dr ~ 

tiX:~ R. - = - ..s:, {t + W..c 
dr (A .2) 



where., 

With the uncoupled states, where 1.= j, we have, 

:z .( _,/VI r . J 
".: - Y- Jv"+IJ/y._- ~"' L Vc- ~J\/'"~-') ~L 

~ _ OIM [ · · J ']) "-t ::: }\,a j/c- .:lj[j+t) ~L '~"L(y) 

tor singlets, and 

.J, = - }'a._ j() -rl )/r-2. - .:~.~ Ll/c -1- .:l '7 - ·~-s ..,. 

+ [-'/f,/rt)-t} Vt.~J 

XL = - ~ [ 1/c + .J V7 - I{ s 7 { -vtj+ ') - 1} l{_ £ J R
1 

( r) 

tor triplets. Also, Vc, VT, VLSand VLL are, reEpectively, 

the central. tensor, spin-orbit and quadratic spin-orbit 

parts or the potential. 

The boundary conditions for the above differential 

equations are: 

}(:0-c) -~(Yc> 
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w..t tv J == o as r__,.c--" • 

The prime denotes differentiation with respect to the argument 

and H1rJ is the decaying Spherical Henkel function. 

For the coupled state~ l = j :t 1, we have to generalize 

the Ridley equations (A.2) as follows: 
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The functions are now expre~sed as matrices. 

Combining these with equation (A.l), we have then: 

f. 
J 

where, 

and. 

~·, (J,i-' IV/ J' i'' J I 
;y._, !.;·,iN/ V!j,JrtJ J 

We have, in deriving these, used the following 



identities for ~ - 1 stateE: 

t,;, j I S,~ I J~ j J :: .G 

v,.;.,, 1 s,.,j,J-t-1) = - ~r;·"'"o?J/(.;Jj.,.I.J 

(/j-1/ S,~ ltf~l/._1}:: - .)fj-1;/(d/"tJ 
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and 
f,j~/-, I S,. !j,f'') = (/~jo ;s,. lj-j -' .1, 6,/jr,;+o/r")~'J 



APPENDIX B 

THE HAMADA-JOHNSTON POTENTIAL 

Core radius fm , for all states. 

where s12 1 L S1 and L12 are the tensor, spin~orbit and 

quadratic spin-orbit operators respectively. L12 is 

defined by: 

Ll2 ~ L b'J· +- ( ~( 0 :!! J] ! ~ - (!. . 2 /'-

l 

'r {xJ [I -r .b,_s 'rrx)] 

..t -.2 ZrxJ [ 1 + 4.~.< 'rrx) + 6.li y;>r J} 

with Z(x) 
.J ) 

= ( 1 + x r x~ ) · Y(x). 

139.4 MeV is the pion reduced mass and x is 

in unite of t:. 1.415 fm. 
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THE PARAMETERS 

State ac be 8'!' bT GLS bLs GLL aLL bLL 

s.E. 8.70 10.6 -0.000891 0.20 -0.20 

T.O. -9.07 3.48 -1.29 0.55 0.1961 -7.12 -0.000891 -7.26 6.92 

T.E. 6.00 -1.00 -0.50 0.20 0.0743 -0.10 0.00267 .1.80 0.40 

s.o. -8.00 12.0 -0.00267 2.00 6.00 



TABLE CA PI' ION 

Table (V.l) rleduced integrals of uncoupled states, 
~ 

Y=; , with :VJ ... 14 MeV at kc=O, 1.3, 

1.4 and 1.5 fm- 1 . 

Tables (V.2}--(V.4) 

rleduced integralc of uncouplea states, 

with same parameters as in Table (V .1), 

)~= for 1.5, 2.0 and 2.5 respectively. 

Tables (V.5)--(V.8) 

Table (V.9) 

Table (V.lO) 

Same as the above tables, for coupled 

states. 

Shell-model matrix elements calculated with 

~w = 14 l~ev, kc=l.4 fm- 1 . 

G* is the Pauli-corrected semi-infinite 

G-matrix; 

GDs i~ the contribution from the diccrete 

states in D; 

GBp-lh i~ the contribution from 3p-lh 

intermediate states of 2?ftJexc1tation; 

G2h is the contribution from 4p-2h intermediate 

states of 2 iitJ excitation; 

SUM is the total effective interaction. 

Comparison of contribution from ~-D shell 

discrete states and S-D & P-F chell discrete 

s t a t e ~;:: w 1 t h ""'t-O = 14 MeV . 



TABLE(V.l) 

Reduced Integrals at 
.l. 

1::::. 1 

ztn n• 1 I.' s J G*(O) G*(l.3) G*(l.4) G* (1.5) 

4 0 0 0 0 0 0 -7.9559 -6.7906 -6.6618 -6.5793 

2 1 1 0 0 0 0 -5.1067 -4.2712 -4.2308 -4.2062 

0 2 2 0 0 0 0 -1.6774 -1.3173 -1.3083 -1.3042 

3 0 0 1 1 0 1 1.6392 1.6731 1.6787 1.6846 

1 1 1 1 1 0 1 2.5424 2.6005 2.6135 2.6290 

2 0 0 2 2 0 2 -0.5288 -0.5256 -0.5247 -0.5238 

0 1 1 2 2 0 2 -0.8348 -0.8308 -0.8287 -0.8266 

1 0 0 3 3 0 3 0.4306 0.4333 0.4338 0.4343 

0 0 0 4 4 0 4 -0.0982 -0.0981 -0.0981 -0.0980 

3 0 0 1 1 1 0 -1.8291 -1.7979 -1.7964 -1.8073 

1 1 1 1 1 1 0 -0.9416 -0.9278 -0.9274 -0.9272 

3 0 0 1 1 1 1 1.7598 1. 7980 1.8040 1.8239 

1 1 1 1 1 1 1 2.4818 2.5397 2 .. 5508 2.5633 

2 0 0 2 2 1 2 -2.3225 -2.2581 -2.2437 -2.2285 

0 1 1 2 2 1 2 -3.1125 -3.0379 -3.0137 -2.9840 

1 0 0 3 3 1 3 0.2838 0.2850 0.2852 0.2855 

0 0 0 4 4 1 4 -0.5046 -0.5014 -0.5005 -0.4994 

UNCOUPLED STATES 
t 

Z = 2N 1",(_ 
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TABLE (V.2) 

deduced Integrals at 1~:::: 1.5 

l n n• l J..' s J G*(O) G*(l.3} G*(1.4) 0*(1.5) 

4 0 0 0 0 0 0 -7.2677 -6.4981 -6.4101 -6.3512 

2 1 l 0 0 0 0 -4.5771 -4.0318 -4.0040 -3.9871 

0 2 2 0 0 0 0 -1.3440 -1.1084 -1.1029 -1.1007 

3 0 0 1 1 0 1 1.6739 1.7146 1.7101 1.7160 

1 1 1 1 1 0 l 2.6090 2.6629 2.6756 2.6911 

2 0 0 2 2 0 2 -0.5267 -0.5240 -0.5233 -0.5225 

0 l l 2 2 0 2 -0.8298 -0.8261 -0.6247 -0.8228 

1 0 0 3 3 0 3 0 .. 4317 0.4340 0.4345 0.4349 

0 0 0 4 4 0 4 -0.0983 -0.0982 -0.0982 -0.0982 

3 0 0 1 1 1 0 -1.8001 -1.7754 -1.7741 -1.7735 

1 1 1 1 1 l 0 -0.9127 -0.9020 -0.9017 -0.9106 

3 0 0 1 1 1 1 1.7888 1.8228 1.8288 1.8345 

l 1 1 1 l l l 2.5303 2.5808 2.5935 2.6058 

2 0 0 2 2 l 2 -2.2931 -2.2409 -2.2286 -2.2151 

0 l l 2 2 l 2 -3.0654 -3.0047 -2.9836 -2.9675 

1 0 0 3 3 l 3 0.2843 0.2853 0.2(:)55 0.2658 

0 0 0 4 4 l 4 -0.5041 -0.5013 -0.5006 -0.4996 

UNCOUPLED STATES 
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TABLE (V.3) 

Reduced Integrals at 
,..~_ 

2.0 

!. n n• L L' S j G*(O ) G*(l.3) G*(1.4) G*(1.5) 

4 0 0 0 0 0 0 -6 . 8238 -6.2601 -6.1945 -6.1505 

2 1 1 0 0 0 0 -4 . 2047 -3.8115 -3.7911 -3.7791 

0 2 2 0 0 0 0 -1 . 0565 . -0.9060 -0.9004 -0.8963 

3 0 0 1 1 0 1 1. 7038 1.7321 1.7375 1.7434 

1 1 1 1 1 0 1 2.6696 2.7201 2.7325 2.7478 

2 0 0 2 2 0 2 -0. 5205 -0.5228 -0.5221 -0 .. 5224 

0 1 1 2 2 0 2 -0.8258 -0.8226 -0 .. 8214 -0.8197 

1 0 0 3 3 0 3 0. 4325 0.4333 0.4349 0.4353 

0 0 0 4 4 0 4 -0.0983 -0.0982 -0.0982 -0.0981 

3 0 0 1 1 1 0 -1. 7781 -1.7579 -1.7567 -1.7561 

1 1 1 1 1 1 0 -0. 8877 -0.8791 -0.8789 -0.8788 

3 0 0 1 1 1 1 1.8123 1.8430 1.8486 1 .. 8544 

1 1 1 1 1 1 l 2.5721 2.6202 2.6305 2.6425 

2 0 0 2 2 1 2 -2 .2710 -2.2273 -2.2089 -2.2045 

0 1 1 2 2 1 2 - 3.0289 -2.9779 -2.9594 -2.9360 

1 0 0 3 3 1 3 0. 2846 0.2854 0.2t)57 0.2859 

0 0 0 4 4 1 4 -0 .5037 -0.5013 -0.5006 -0.4997 

UNCOUPLED STATE~ 
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TABLE (V .4) 
:1 

Reduced Integral at Y= 2.5 

z n n' L 1.' s J G*(O) G*(l.3) G*{1.4) G*(l. 5) 

4 0 0 0 0 0 0 -6.4951 -6.0576 -6.0062 -5.9720 

2 1 1 0 0 0 0 -3.9077 -3.6081 -3.5926 -3.5S38 

0 2 2 0 0 0 0 -0.8122 -0.6998 -0.6972 -0.6965 

3 0 0 l 1 0 1 1.7307 1.7570 1.7623 1.7680 

1 1 1 1 1 0 l 2.7256 2.7734 2.7855 2.8005 

2 0 0 2 2 0 2 -0.5236 -0.5041 -0.5211 -0.5204 

0 1 1 2 2 0 2 -0.8225 -0 .. 8197 -0.8186 -0.8171 

1 0 0 3 3 0 3 0.4332 0.4350 0.4353 0.4357 

0 0 0 4 4 0 4 -0.0983 -0.0982 -0.0982 -0.0982 

3 0 0 1 1 1 0 -1.7602 -1.7431 -1.7422 -1.7417 

1 1 1 1 1 1 0 -0.8651 -0.8581 -0.8579 -0.8578 

3 0 0 1 1 l 1 1.8323 1.8604 1.8658 1.8714 

1 1 1 1 1 1 l 2.6092 2.6538 2.6636 2.6158 

2 0 0 2 2 1 2 -2.2537 -2.2162 -2.2065 -2.1957 

0 .. 1 2 2 1 2 -2.9997 -2.9559 -2.9394 -2.9916 ... 

1 0 0 3 3 1 3 0.2849 0.2858 0.2858 0.2860 

0 0 0 4 4 1 4 -0.5034 -0.5013 -0.5006 -0.4998 

UNCOUPLED STATES 



TABLE (V.5) 
~ 

Reduced Integrals at 7 ~ 1.0 

}; n n• J. '-' s J G*(O) G*(l.3) G*(l.4) G*(l.5) 

4 0 0 0 0 1 1 -16.0690 -10.7675 -10.4534 -10.2472 

2 1 1 0 0 1 1 -10.7254 -6.9716 -6.8521 -6.7794 

0 2 2 0 0 1 1 -4.6597 -2.8386 -2.8056 -2.7878 

2 0 0 2 2 1 l -0.5157 -0.4937 -0.4856 -;-0.4762 

0 1 1 2 2 1 1 -2.3601 -2.3126 -2.2944 -2.3160 

2 1 0 0 2 1 1 -5.3847 -4.7076 -4.5302 -4.3399 

0 2 1 0 2 1 1 -6.0105 -5.7683 -5.6745 -5.5613 

3 0 0 1 1 1 2 -0.9656 -0.9447 -0.9418 -0.9392 

1 1 1 1 1 1 2 -1.7302 -1.6908 -1.6853 -1.6934 

1 0 0 3 3 1 2 -0.2119 -0.2109 -0.2108 -0.2106 

1 1 0 1 3 1 2 0.4063 0.4140 0.4141 0.4141 

2 0 0 2 2 1 3 0.0073 0.0073 0.0073 0.0073 

0 1 1 2 2 1 3 -0.0238 -0.0238 -0.0238 -0.0238 

0 0 0 4 4 1 3 0.2164 0.2173 0.2175 0.2177 

0 1 0 2 4 1 3 -0.6713 -0.6477 -0.6464 -0.6539 

COUPLED STATES 

(Ott-diagonal matrix elements are averages) 
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TABLE (V. 6) 
~ 

Reduced Integrals at "Y .::= 1 5 0 

~ n n' l J.. ' s J G* (O) G*(l.3) G*(l.4) G*(1.5) 

4 0 0 0 0 1 1 -12 . 7719 -10.1124 -9.9497 -9.8419 

2 1 1 0 0 1 1 -8.3617 -6.5086 -6.4462 -6.40d4 

0 2 2 0 0 1 1 -3 . 2912 -2.4347 -2.4194 -2.4106 

2 0 0 '2 2 1 1 0.0619 0.0670 0.0691 0.0716 

0 1 1 2 2 1 1 -1.1069 -1. 0990 -1.0948 -1.0889 

2 1 0 0 2 1 1 -4 .4020 -3.9743 -3.8568 -3.7304 

0 2 1 0 2 l 1 - 4.9694 -4.8228 -4.7626 -4.6882 

3 0 0 1 1 1 2 -0. 9465 - 0.9284 -0.9265 -0.9234 

1 1 1 1 1 1 2 -1 .6979 - 1.6639 -1.6289 -1.6542 

1 0 0 3 3 1 2 - 0.2089 -0.2081 -0.2080 -0.2078 

1 1 0 1 3 1 2 0 .. 3992 0.4055 o. 4·056 0.4057 

2 0 0 2 2 1 3 0.0164 0.0164 0.0164 0.0164 

0 1 1 2 2 1 3 -0 ~ 0107 -0.01()7 -0.·0107 -0.0107 

0 0 0 4 4 1 3 0.2216 0.2224 0.2226 0.,2228 

0 1 0 2 4 1 3 -0.6707 -0.6508 -0.6496 -0.6487 

COUPLED STATES 

(Off-diagonal matrix elements are averages) 



80 

T~BLE (V.7) 

Reduced Integra 1a at 'Y .. = 2. 0 

2 n n• I. t' s J G*(O) 0*(1.3) G*(l.4) 0*(1.5) 

4 0 0 0 0 1 1 -10.9358 -9.3157 -9.2151 -9.1481 

2 1 1 0 0 1 1 -6.9768 -5.8730 -5.8349 -5.8116 

0 2 2 0 0 1 1 -2.4109 -1.9290 -1.2905 -1.9147 

2 0 0 2 2 1 1 0.3472 0.3502 0.3509 0.3517 

0 1 1 2 2 1 1 -0.4802 -0.4789 -0.4778 -0.4760 

2 1 0 0 2 1 1 -3.9297 -3.6113 -3.5214 -3.4241 

0 2 1 0 2 1 1 -4.4515 -4.3509 -4.3058 -4.2491 

3 0 0 1 1 1 2 -0.9310 -0.9151 -0.9128 -0.9105 

1 1 1 1 1 1 2 -1.6715 -1.6417 -1.6371 -1.6327 

1 0 0 3 3 1 2 -0.2069 -0.2062 -0.2060 -0.2060 

1 1 0 1 3 1 2 0.3944 0.3998 0.3999 0.3999 

2 0 0 2 2 1 3 0.0243 0.0243 0.0243 0.0243 

0 1 1 2 2 1 3 0.0011 0.0011 0.0011 0.0011 

0 0 0 4 4 1 3 0.2254 0.2262 0.2263 0.2265 

0 1 0 2 4 1 3 -0.6705 -0.6533 -0.6521 -0.6514 

COUPLED STATES 

(Ott-d1aaona1 matrix elements are averages) 
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TABLE (V.8) 
.L 

Reduced Integrals at 'I::: 2.5 

~ n n• I l' s .1 G*(O) G*(l.3) G*(1.4) G*(1.5) 
,. 0 0 0 0 1 1 -9.6956 -8.6070 -8.5389 -8.4935 

2 1 1 0 0 1 1 -5.9952 -5.2734 -5.2448 -5.2323 

0 2 2 0 0 1 1 -1.7372 -1.4420 -1.4365 -1.4317 

2 0 0 ~ 2 1 1 0.5193 0.5224 0.5228 0.5231 

0 1 1 2 2 1 1 -0.0987 -0.0980 -0.0977 -0.0971 

2 1 0 0 2 1 1 -3.6546 -3.3982 -3.3244 -3.2441 

0 2 1 0 2 1 1 -4.1480 -4.0699 -4.0335 -3.9817 

3 0 0 1 1 1 2 -0.9179 -0.9037 -0.9016 -0.8995 

1 1 1 1 1 1 2 -1.6490 -1.6234 -1.6182 -1.6141 

1 0 0 3 3 1 2 -0.2054 -0.2048 -0.2046 -0.2045 

1 1 0 1 3 1 2 0.3908 0.3955 0.3956 0.3956 

2 0 0 2 2 1 3 0.0314 0.0314 0.0314 0.0314 

0 1 1 2 2 1 3 0.0119 0.0119 0.0119 0.0119 

0 0 0 4 ,. 1 3 0.2282 0.2289 0.2291 0.2293 

0 1 0 2 ,. 1 3 -0.6705 -0.6553 -0.6542 -0.6535 

COUPLED STATES 

(Ott-diagonal matrix elements are averages) 
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TABLE (V.9) 

Sbe11-mode1 matrix elements in the S-D shell, with kc:: 1.4 rm-1 

and s-D ebe11 as the finite subspace D. 

Spbo1s: Od~ 4, lS z, ---+ 5, Od" 6. 

< a bJT I G I cd JT > 
T - 1 : 

J a b c d G* Gns G3p-lh G2h SUM 

0 4 4 4 4 -1.2196 -0.1467 -0.2097 -0.2356 -1.8117 

0 4 " 5 5 -0.5962 -0.0253 0.0701 -0.0126 -0.5644 

0 " " 6 6 -2.8377 -0.0057 -0.4460 -0.1348 -3.4249 

0 5 5 5 5 -1.9688 -0.0110 0.4418 -0.0008 -1.5387 

0 5 5 6 6 -0.5020 -0.0331 -0.0156 -0.0103 -0.5637 

0 6 6 6 6 -0.1724 -0.1762 -0.2288 -0.1806 -0.7580 

1 4 6 4 6 -0.4333 -0.0001 0.4373 -0.0025 0.0014 

1 4 6 5 6 -0.0585 ------ 0.1207 o.ooo9 0.0631 

1 5 6 5 6 -0.3556 -0.0001 0.1797 -0.0004 -0.1764 

2 4 4 4 4 -0.9636 -0.0194 -0.0218 -Oe0468 -1.0516 

2 4 4 4 5 -0.5590 0.0031 0.0235 -0.0217 -0.5540 

2 4 4 4 6 -0.3253 -0.0029 0.0038 -0.0305 -0.3551 

2 4 4 5 6 -0.5216 0.0179 0.0277 0.0116 -0.4634 

2 4 4 6 6 -0.6487 -0.0124 -0.2526 -0.0284 -0.9434 

2 4 5 4 5 -1.1818 -0.0489 0.1395 -0.0106 -1.1017 

2 " 5 4 6 -0.1471 -0.0298 0.0775 -0.0132 -0.1115 

2 4 5 5 6 1.3640 -0.0040 0.0197 0 .. 0036 1.3831 

2 " 5 6 6 -0.7498 -0.0083 0.0215 -0.0104 -0.7657 
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TABLE (V.9 ) ccnt'd 

T • 1 : <'a bJ'l' I G I cdJ'l' ) 

J • b c d G* GDS G3;e-1n G2n SUM 

2 4 6 4 6 -0.5180 -0 . 0201 0.4343 -0.0216 -0.1254 

2 4 6 5 6 0.6817 0.0003 -0.1214 0.0109 0.5715 

2 4 6 6 6 -0. 6734 -0.0061 -0.02't9 -0.0234 . -0.7282 

2 5 6 5 6 -0.6362 -0.0506 0.1969 -0.0091 -0.4991 

2 5 6 6 6 -0.0214 0. 0228 0. 0479 0.0164 0.0672 

2 6 6 6 6 -0.2580 -0. 0305 - 0. 1090 -0.0311 -0.4268 

3 4 5 4 5 -0.3o88 ------ 0.3506 ------ o. 041ts 

3 4 5 4 6 -0.0333 ------ 0.0260 ------ -0.0073 

3 4 .6 4 6 -0.4305 ------ 0.3167 ------ -0.1138 ,. 4 4 4 4 -0. 4354 - 0. 0180 0.1701 ------ -0.2833 

4 4 4 4 6 -1.0152 ------ 0.0742 ------ -0.9409 

4 4 6 4 6 -1.9594 -0.0198 0.7757 ------ -1.2035 
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TABLE (V.9) oont 1d 

T • 0 s <abJT t G 1 odJT > 

J 8 b c d G* Gns G3,e-1h 02h SUM 

1 4 4 4 4 -0.8667 -0.2398 -0.4192 -0.0791 -1.6049 

1 4 4 4 6 2.2780 0.0139 -0.1456 0.2019 2.3489 

1 .,4 4 5 5 -0.4524 -0.0470 0.0450 0.0038 -0.4514 

1 4 4 5 6 -0.5688 -0.1135 0.1434 -0.1099 --0.6552 

1 4 4 6 6 2.8319 -0.0081 -0.0370 -0.0744 2.7395 

1 4 6 4 6 -4.0437 -0.1540 -0.0506 -1.0967 -5.3450 

1 4 6 5 5 1.2667 0.0097 0.2300 0.0697 1.5760 

1 4 6 5 6 1.1049 o.ooga -0 .. 0990 0.6458 1.6614 

1 4 6 6 6 0.1548 -0.1606 -0.0632 0.2358 0.1586 

1 5 5 :5 5 -3.0670 -0.0663 -0.0559 -0.1805 -3.3397 

1 5 5 5 6 0.4551 -0.0314 -0.0205 -0.2143 0.1877 

1 5 5 6 6 o.oo85 0.0092 -0.0218 -0.0377 -0.0410 

1 5 6 5 6 -4.1901 -0.0698 0.3259 -0.5521 -4.4862 

1 5 6 6 6 1.3537 0.0291 0.1621 -0.1637 1.3789 

1 6 6 6 6 -1.5831 -0.2096 -0.0722 -0.0808 -1.9458 

2 4 5 4 5 -0.6763 -0.1508 0.3321 -0.0007 -0.4956 

2 4 5 4 6 -1.3380 -0.0789 0.0246 0.0215 -1.3678 

2 4 5 5 6 -2.5901 -0.0411 -0.0147 -0.0008 -2.6487 

2 4 6 4 6 -2.9274 -0.0865 0.0377 -0.6974 -3.6736 

2 4 6 5 6 -1.6513 -0.0669 0.0879 0.0264 -1.6035 

2 5 6 5 6 -1.7682 -0.1839 0.2376 -0.0010 -1.7155 
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TABLE(V.9) cont 1d 

T = 0 : <&bJT t G J cdJT > 

J a b c d G* Gns G3;e-1h a2h SUM 

3 - - 4 4 -1.0294 -0.0697 -0.1596 -0.0313 -1.2899 

3 4 4 4 5 -1.1763 -0.0255 0.0743 -0.0352 -1.1629 

3 4 4 4 6 1.3751 -0.0050 -0.0202 0.0658 . 1.4155 

3 4 4 6 6 0.8469 -0.0314 -0.0959 -0.0671 0.6495 

3 4 5 4 5 -2.9403 -0.0391 0.1611 -0.0397 -2.8579 

3 4 5 4 6 0.8354 0.0202 0.3304 0.0741 1.2594 

3 4 5 6 6 0.3520 -0.0047 -0.2611 -0.0755 0.0111 

3 4 6 4 6 -0.9283 -0.0915 0.0742 -0.1385 -1.0839 

3 4 6 6 6 1.4784 0.0295 0.2631 0.1411 1.8516 

3 6 6 6 6 -2.8703 -0.0643 0.1474 -0.1438 -2.9310 

- 4 6 4 6 -4.0218 ------ 0.5712 ------ -3.4506 

5 4 4 4 4 -3.3191 ------ 0.3652 ------ -2.9540 



SJmbo1e: 

T J a 

1 0 4 

1 0 4 

1 0 4 

1 0 5 

1 0 5 

1 0 6 

1 1 4 

1 1 4 

1 1 5 

1 2 4 

1 2 4 

1 2 4 

1 2 4 

1 2 4 

1 2 4 

1 2 4 

1 2 4 

1 2 4 

1 2 4 

TABLE (V.10) 

COMPARISON OP D(S-D) AND D(S-D, P-F) 

b c d G* Gns(S-D) 

4 r4 4 -1.2196 -0.1467 

4 5 5 -0.5962 -0.0253 

4 6 6 -2.8377 -0.0057 

5 5 5 -1.9688 -0.0110 

5 6 6 -0.5020 -0.0331 

6 6 6 -0.1724 -0.1762 

6 4 6 -0.4333 -0.0001 

6 5 6 -0.0585 ------
6 5 6 -0.3556 -0.0001 

4 4 4 -0.9636 -0.0194 

4 4 5 -0.5590 0.0031 

4 4 6 -0.3253 -0.0029 

4 5 6 -0.5216 0.0179 

4 6 6 -0.6487 -0.0124 

5 4 5 -1.1818 -0.0489 

5 4 6 -0.1471 -0.0289 

5 5 6 1.3640 -0.0040 

5 6 6 -0.7498 -0.0083 

6 4 6 -0.5180 -0.0201 
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Gns(S-D,P-F) 

-0.2060 

-0.0461 

-0.01o8 

-0.0223 

-0.0548 

-0.2435 

-0.0011 

-0.0007 

-0.0008 

-0.0320 

-0.0083 

-0.0063 

0.0066 

-0.0226 

-0.0739 

-0.0406 

-0.0179 

-0.0156 

-0.0333 



TABLE (V.10) cont 1d 

T J 8 b c d G* Gns(S-D) Gns(S-D, P-F) 

1 2 4 6 5 6 0.6817 0.0003 -0.0033 

1 2 4 6. 6 6 -0.6734 -0.0061 -0.0109 

1 2 5 6 5 6 -0.6362 -0.0506 -0.0720 

1 2 5. 6 6 6 -0.0214 0.0228 0.0132 

1 2 6 6 6 6 -0.2580 -0.0305 -0.0388 

1 3 4 5 4 5 -0.3088 ------ -0.0011 

1 3 4 5 4 6 -0.0333 ------ -0.0005 

1 3 4 6 4 6 -0.4305 ------ -0.0013 

1 4 4 4 4 4 -0.4354 -0.0180 -0.0242 

1 4 4 4 4 6 -1.0152 ------ -0.0072 

1 4 4 6 4 6 -1.9594 -0.0198 -0.0378 

0 1 4 4 4 4 -0.8667 -0.2398 -0.3688 

0 1 4 4 4 6 2.2780 0.0139 -0.1634 

0 1 4 4 5 5 -0.4524 -0.0470 -0.1273 

0 1 4 4 5 6 -0.5688 -0.1135 -0.0845 

0 1 4 4 6 6 2.8319 -0.0081 0.0367 

0 1 4 6 4 6 -4.0437 -0.1540 -0.5277 

0 1 4 6 5 5 1.2667 0.0097 -0.1505 
0 1 4 6 5 6 1.1049 o.ooga -0.0644 

0 1 4 6 6 6 0.1548 -0.1606 -0.2108 

0 1 5 5 5 5 -3.0670 -0.0363 -0.1935 
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TABLE(V.10) cont'd 

T J 8 b c d G* Gns(S-D) Gns(S-D, P-F) 

0 1 5 5 5 6 0.4551 -0.0314 0.0085 

0 1 5 5 6 6 o.oo85 0.0092 0.0471 

0 1 5 6 5 6 -4.1901 -0.0698 -0.2210 

.. o 1 5 6 6 6 1.3537 0.0291 -0.4132 

0 1 6 6 6 6 -1.5831 -0.2096 -0.2917 

0 2 4 5 4 5 -0.6763 -0.1508 -0.2170 

0 2 4 5 4 6 -1.3380 -0.0789 -0.1584 

0 2 4 5 5 6 -2.5901 -0.0411 -0.1133 

0 2 4 6 4 6 -2.9274 -0.0865 -0.2852 

0 2 4 6 5 6 -1.6513 -0.0669 -0.1738 

0 2 5 6 5 6 -1.7682 -0.1839 -0.2840 

0 3 4 4 4 4 -1.0294 -0.0697 -0.1155 

0 3 4 4 4 5 -1.1763 -0.0255 -0.0848 

0 3 4 4 4 6 1.3751 -0.0050 0.0345 

0 3 4 4 6 ·6 0.8469 -0.0314 -0.0439 

0 3 4 5 4 5 -2.9403 -0.0391 -0.1404 

0 3 4 5 .4 6 0.8354 o. 0202 0.0681 

0 3 4 5 6 6 0.3520 -0.0047 -0.0004 

0 3 4 6 4 6 -0.9283 -0.0915 -0.1601 

0 3 4 6 6 6 1.4784 0.0295 -0.0156 

0 3 6 6 6 6 -2.8703 -0.0643 -0.1408 



T J a b c d 

0 4 4 6 4 6 

0 5 4 4 4 4 

TABLE (V.10) cont'd 

G* Gos(S-D) 

-4.0218 

-3.3191 
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Gns(S-D,P-F) 

-0.1601 

-0.0624 



Fig. (11.4) 

Fig. (111.1) 

Fig. (111.2) 

Fig. (111.3) 

Fig. (111.4) 

Fig. (111.5) 

Fig~ (V.l) 

lc Fig. (V.2) 

FIGURE CA Pl'IONS 

Fourier Transforms of harmonic oscillator 

wave functions with 1\.t.J =14 MeV. Radial 

part R~{(k) plotted in arbitrary units 

and k in units of fm-1 • 

3s1 reduced integrals plotted as function 

of Y ~ • Solid lines represent values 

obtained by Kuo. "'.a. in units of fm-2. 

1s0 reduced integrals. Conventions and 

units similar to Fig. {111.1). 

3n2 reference wave defect in arbitrary 

unit; r in fm; n = 0, ya.- 4. Solid line 

represents actual reference wave defect 

and dotted line represents linear approx­

imation of Kuo and Brown. 
1 P1 reference wave defect for n -1, Y~= 4. 

Triplet P-state reference wave defect~. 

Spectra of o18 and Fl8 • 

Firat column shows the experimen~ally 

determined energy levels of the nucleus. 

Columns (a), (b) and {c) show spectra 

obtained tor D = (S-D) shell and kc = 1.3, 

1.4 and 1.5 fm-1 respectively. Column ·(d) 
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shows spectrum for D a(S-DJ P-F) shells 

and k0 = 1.4 fm- 1 • Column (e) shows results 

of Kuo. 
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3
S, Reduced lnte;rals 

n = n'= o 

2 3 4 

Pig. (III.l) 
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