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functions were chosen which led to an explicit decomposi-
tion of thé three-body wave function into components
which display definite two-body LSJ dependence. The cal-
culations were done with three soft-core potentials and
one purely attractive potential. It was found that
regardless of the number of terms the superposition of
Gaussians was inferior to exponential trial functions. A
correction in the binding for the Gaussian type function
was applied and it was found that the modern realistic
soft-core potentials are not inconsistent with the experi-
mentally observed binding of the triton. The Coester-Yen
potential, although it is "unrealistic", gives binding
energy and radius of the triton which are in close agree-

ment with experiment.
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CHAPTER I

INTRODUCTION

Over the past decade or so a great deal of effort
has been expended on local repulsive-core nucleon-
nucleon potentials which fit a wide range of two-body data.
Such repulsive-core potentials are treated in a straight-
forward manner in the two-body system, but lead to con-
siderable complications in the three- and four-body nuclei.
Recently very accurate calculations on the triton have
been done using purely central forces with a hard core
(TSH65; RB66). To date only Blatt et al. have calculated
the triton binding energy with realistic repulsive-core
forces (DMB61l; BDL62; BD64; DB67; D67). Blatt and Delves
(DB67) have done the calculation for the Gammel-Thaler,
Hamada-Johnston, and Yale potentials. All these potentials
contain hard cores, central, non-central tensor, and L&
components. The Hamada-Johnston and Yale potentials have
additional quadraticiiﬁ?components. Table I-1 lists the
results of the most recent calculations. In Table I-2
we have given the experimentally determined quantities that
one tries to predict in the triton calculations.

Whereas the most recent calculations are of a

1



variational nature and are quite general, a modification
to that approach is required in order to treat the more
recent realistic potentials, such as the Reid soft-core
(R68) and the Kerman-Bressel potentials (BKR68). The
reason for a different approach lies in the functional
behaviour of the recent potentials. Blatt et al. had to
deal with infinite repulsive cores in the potentials
that they used. They did this by making their trial
function zero inside and at the boundary of the infinitely
repulsive force region; thus ensuring zero probability
that two particles come closer to each other than the core
radius. The Reid and Kerman-Bressel potentials, however,
have "soft" repulsive cores. The short range behaviour of
the nucleons is described by strong but finite repulsion.
This means that the wave function does not vanish although
its amplitude becomes very small in the repulsive force
region. In a calculation with soft core potentials, one
must ensure that the wave function behaves in this way;
Since the potentials used by Blattet al. are
expressed as a sum of central, tensor, spin—drbit, and
quadratic spin-orbit forces, they can also be expressed in
terms of the spin and parity state of the two interacting
particles. In order to calculate the potential energy
matrix elements, they use this feature (D60). The Reid
potential, however, is given separately for each LSJ state.

It ig difficult to project from Blatt et al.'s trial



functions such LSJ dependence. For this reason also an

alternative approach is required.

Soft-Core Potentials

Since fairly accurately fitted realistic soft-
core potentials have recently become available, it is of
interest to look at their effect in nuclear structure.

The calculations of binding energy per particle in nuclear
matter seem to indicate that potentials with infinitely
hard repulsive cores give too little binding (BM62; R63).
The static soft-core potential used by C. Wong (W65)
acting only in the 1SO state was estimated to give more
binding in nuclear matter than the hard-core potential.
The same conclusion was reached by Bhargava and Sprung
(BS67) when they compared the results of the Hamada-
Johnston and Reid hard-core potentials with that of the
soft-core Bressel-Kerman potential. Recently Sprung (S68)
compared the effect of the Reid hard-core with the effect
of Reid soft-core (R68). He found that the soft-core
potential gave about 3MeV more binding per particle than
the hard-core potential. Instead of using local soft-core
potentials, one can also obtain reliable velocity-dependent
potentials which also show an increase of binding in
nuclear matter over hard-core potentials (KPY68). 1In
scmrary, the nuclear matter calculations with local poten-
tials geem to exclude hard-core potentials and favour

soft-core potentials. The shape of the soft-core seems to



be unimportant in these calculations (T67).

Calculations of H3 and He3

In order to choose between potentials that yield
the same two-body scattering results, and similar results
in nuclear matter, an accurate few-body calculation may
be the decisive factor. The simplest few-body problem
besides the deuteron is the three-nucleon system, H3 or
He3. The results of Davies (D67) and Delves and Blatt
(DB67) of their calculation with realistic hard-core
potentials are upper bounds to the ground state energy of
the triton, which are about 3MeV above the actual ground
state energy. The discrepancy may be reduced somewvhat by
improving the trial wave function in the variational
calculation and by including effects due to three-body
forces and relativistic energies. On the other hand, one
would also expect the replacement of the hard-core by a
soft-core to have some influence on the triton, since the
triton is a more tightly bound system than the deuteron
and consequently it would be affected more by the short
range behaviour of the nucleons.

That the suppression of the wave function at small

3

interparticle distances is desirable in He™ and the triton

is also evident from the various studies on elastic and

inelastic electron scattering from He> and H3 and two-body

3

photodisintegration and w capture by He~ (G67; K67; C66).



In those calculations the wave function describes three-
body states in which particles have very small probability
of coming close to each other. In all cases, the
suppression of the wave function is smooth, i.e. the wave
function falls off to become small but finite close to

zero interparticle distance. This is the kind of behaviour
a soft-core potential would produce. These calculations do
not exclude hard-core type wave functions but they do
indicate that in the areas where the calculations are
sensitive to short-range correlation, the experimental data
are consistent with soft-core type correlation. It should
also be noted that whereas Khanna (K67) and Cheon (C66) use
proper correlation functions of Gaussian or exponential
types, i.e. l—e_Brz or 1-e Po¥, with r being the distance

between particles, Gibson's mechanism (G67)involves the

use of a multiplicative factor, Rn, n>o for small R where

R =/f;;2 % r22 + r32. Gibson's wave function is not as
restrictive, and perhaps somewhat unrealistic in the sense
that it vanishes when all three-interparticle distances
vanish but remains finite when one distance becomes zero
and the other two are non-zero.

Another property of the nuclear force that is not
uniquely defined by two-body data fitting is the ratio of
tensor-to-central force. In low energy systems, this would

mean especially the 381 and 3Dl mixture. It is found in

nuclear matter that the tensor-to-central ratio is important



to obtain saturation at the correct density (SBD66; S67).
It was suggested that the reason for underbinding of
nuclear matter with realistic local potentials is the
large tensor-to-central force ratio, and that a weaker
ratio would give more binding.

For attractive potentials, it has been known for
a long time that purely central forces giving the correct
deuteron binding lead to excessive binding of the triton
and the alpha particle (I51; BW52; p. 201). Calculations
with purely attractive forces which include both central
and tensor components are able to give reasonable triton
binding (PF52) albeit the Coulomb radius is still too
small. Ohmura et al. (KMY56; KMY57; 059) have shown that
the inclusion of hard repulsive cores in purely central
forces will give reasonable values for the binding of the
triton and the Coulomb energy of He3 when they use core
radii consistent with those used in realistic phenomeno-
logical potentials. The same calculations were done more
accurately by Y. C. Tang et al. (TSH65), van Wageningen
and Kok (VK67) and Rosati and Barbi (RB66). They came to
the same conclusion. A calculation by Blatt and Derrick
(BD58) gives a result concerning both the repulsive core
and the tensor force contribution to the triton binding.
Their conclusion is that as the core radius in the poten-
tial is increased, the effectiveness of the tensor force

in binding the triton decreases. There is a definite



correlation between core sizes and the effect of the
tensor force in binding the triton.

The three-nucleon system is the smallest and
hence the least complex of nuclear systems that may in-
volve many-body forces, as distinct from two-body forces.
When a calculation of the three~body system is done with
realistic forces and when the calculation as well as the
potential are known to be reliable, the discrepancy
between theory and experiment would indicate the relative
importance of three-body forces. Normally one assumes
that only two-body forces act in doing nuclear structure
calculations, with the hope that if three-body and many-
body forces do exist they are unimportant and can be
neglected or treated as a perturbation. Nuclear forces
predicted from meson theory must include short-range
many-body forces. Estimates have been made of their
effect in the three-nucleon system. Loiseau and Nogami
(LN67) have shown that they may have an appreciable effect
on the binding of the triton, i.e. of the order of 1MeV
greater binding. Pask (P67) has done a perturbation
calculation with the wave function obtained by Davies (D67)
for the Hamada-Johnston potential, which indicates that
three-body forces may increase the binding by as much as
1.5MeV; this is a large percentage of the total binding
but a small percentage of the total potential energy, thus

justifying the perturbation theory approach.



Throughout the calculation we assume that the
triton can be treated non-relativistically. Relativistic
corrections are thought to be more important in the
triton than in the deuteron, mainly because the triton is
more tightly bound than the deuteron. But the total in-
ternal kinetic energy of the system turns out to be less
than 100MeV (DB67). For that reason, we expect high energy
scattering processes between nucleons to be rare so that
the potential model is valid in most instances. Gupta
et al. (GBM65) have calculated the relativistic correction
to a triton binding calculation with separable potentials.

Their correction increases the binding of triton by .5MeV.



TABLE I-1

Recent Results for the Ground State of the Triton

Potential Gammel-Brueckner Hamada-Johnston Yale
Energy -6.60 MeV -4.88 (-5.735)MeV -4.64 MeV
Coulomb Energy (He3) .616 MeV .549 (.58) MeV .520 MeVv
P % 8.8 Fad (8.9) 6.8
R 1.96 fm 2,32 (1.92) fm 2.44 fm

These results are from Delves and Blatt (DB67) except those in brackets, which

give an improvement'by Davies (D67).



TABLE I-2

Experimentally Determined Quantities for the

Nucleus

Enerqgy

Coulomb Energy

\e]

P

(e}

a
r .
magnetic

rcharge

-8.48192

(63)

t .00020 Mev

.05 fm

+ .05 fm

3 " 3

Ground State of H™ and He

-7.71808

.7638

14

I+

* .00017 MeV (MTW67)
£ 0001 MeV (MTWé7a)
v4g* (V57)

.10

(CHEJYDWG65)
+05

* The D-state probability is calculated very crudely from magnetic moment consi-
derations. Exchange effects are likely more dominant in the triton than in the
deuteram because the triton has smaller size (P62, p.83; S53
D-state probabilities anywhere between 2% and 8% would not be inconsistent with

experiment.

4
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Intent of This Work

In this thesis we attempt to formulate the three-
body problem as a variational calculation for the soft-
core Reid and Bressel-Kerman potentials. We do this by
choosing a simple trial function which does include the
most important compbnents of the ground state of the
triton, viz. the symmetric S-state, mixed symmetry S-state,
symmetric P-state, and the symmetric D-state. The goodness
of the wave function is tested by applying it to the Pease-
Feshbach potential (PF52) for which accurate calculations
have been done (BDL62). This potential includes a tensor
part but is completely attractive. To separate the effects
of the soft-core of the potential, a model calculation is
done with a central potential with a soft-core of Yukawa
shape (CY63). For this potential calculations are done
with two kinds of trial functions, a superposition of
Gaussians and a superposition of exponentials, to determine
the relative accuracy with which they bind the triton. It
is found that the Gaussian type function gives less binding
than the exponential function for the same potential. A
correction is found that should be applied to calculations
of the triton binding energy with soft-core potentials.
Then, calculations are done with the Reid and Bressel poten-
tials using modified Gaussians as tfial functions. Within
the framework of this calculation and first order correction

both potentials may bind the triton but will not overbind it.
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The quantities that are calculated are the binding energy,
root-mean-square radius, and the probabilities of the
presence of the various states in the triton. The experi-

mentally determined quantities are given in Table I-2.



CHAPTER II
CLASSIFICATION OF THE WAVE FUNCTION OF THE

BOUND THREE-NUCLEON SYSTEM

The Derrick-Blatt and Cohen-Willis Classification

In a three-nucleon system each particle is speci-
fied by its position vector, spin, and isospin. Employing
established conservation laws that apply to the ground
state of the system, one can classify components of the
ground state wave function according to their orbital
angular momentum, intrinsic spin, isospin, and partition
of the internal space function.

The center-of-mass motion of the nucleus can be
eliminated by a proper choice of internal cocrdinates.
There will be six such coordinates since the remaining
three independent coordinates specify the center-of-mass
position. The spatial part of the wave function, there-
fore, will depend on these six space coordinates only.

The total angular momentum of the triton is a good quantum
number; it has the experimentally determined value J=1/2.
Since each nucleon has spin of 1/2, the two possible intrin-
sic spin states of the triton are S=1/2 or S=3/2. Using

angular momentum addition rules, one obtains the possible

13
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orbital angular momentum states. These states are Sl/2’

2 4 4 ;

Pl/2' Pl/2’ Dl/2’ where we have used the notations

2S5+1
LJ.

terms of these four states, in a manner analogous to the

two states, 3Sl and 3Dl’ found in the deuteron.

The isospin of the ground state of the triton is

One can classify the ground state of triton in

1/2, since the triton and He3 belong to an isospin doublet.
The isospin quartet states of three nucleons have higher
energy than the ground state of the triton as the triprofon
and the trineutron are thought to be unbound systems

(OD67; B67). When we consider the three-nucleon system, we

3 and He3 but rather assume

will not distinguish between H
them to be two degenerate states of the same system. This
assumption corresponds to the charge independence of nuclear
forces. The differences between the two nuclei can be
ascribed to Coulomb effects between nucleons and the mass
difference of the proton and neutron. Since we also assume
that nuclear forces conserve parity, we take the parity to
be even. The total wave function must be antisymmetric
under interchange of any pair of particles because of the
Pauli exclusion principle. By combining spin, isospin,
internal, and angular functions each of definite symmetry
using methods prescribed by algebra or group theory, one
obtains the desired antisymmetry of the wave function.

One can choose the six coordinates describing the

spatial part of the wave function in various ways. Derrick
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and Blatt (DB58) have given a full classification of the
angular momentum-isospin functions which are found in the
ground state wave function of the triton. Their method
involved the use of internal functions dependent on the
three interparticle distances, functions dependent on the
Euler angles to specify the orientation of the triangle
formed by the three interparticle distances, spin functions,
and isospin functions. In short, they combine spin and
isospin functions to obtain spin-isospin functions. These
are combined with the Euler angle functions to give total
angular momentum-isospin functions, which in turn are
combined with the internal functions to give an overall
antisymmetric wave function.

A different approach to the complete classification
of the triton states has been employed by Cohen and Willis
(CW62). This classification has the advantage that it
avoids Euler angles and consequently the complicated calcu-
lations that are necessary to calculate the kinetic energy.
Derrick (D60) found that, with the Derrick and Blatt choice
of internal coordinates, the body coordinate system is not
defined when the three particles lie on a straight line or
when they lie at the vertices of an equilateral triangle.
He did derive a set of asymptotic conditions for these con-
figurations to avoid diverging kinetic energy integrals.

Since the Cohen and Willis classification avoids

these complications in the calculation of the kinetic energy,
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we will follow their approach. It turns out that with
their classification we can do a variational calculation
with a rather simple trial function which makes it
relatively easy to calculate the kinetic energy matrix
elements. This trial function also enables us to do the
calculation with the Reid potential (R68) without the use
of involved projection operators to project out of the
total wave function those parts which have a specific two-
body angular momentum dependence. With our choice of trial
function, we are able to do this by inspection. A note-
worthy difference between the two classifications is that
in the Derrick and Blatt classification interparticle dis-
tances appear only in the internal functions, whereas in
the Cohcn and Willis classification they are presenf in the
angular as well as the internal functions.

The operator method used by Cohen and Willis (CW62)
is really a systematization of the approach used by Gerjuoy
and Schwinger (GS42) and extended by Sachs (S53, Chapter
VIII) to include isospin. In the remainder of this chapter
we will describe this approach. First we will state some
general results of the permutation group of three objects
and then apply these results to form angular momentum-

isospin functions of the system.

Permutation Symmetry

The overall wave function must be antisymmetric



37
under the interchange of any pair of particles. 1In order
that we may be able to keep track of the symmetry of the
components of the wave function, we resort to the results

of the symmetry group of degree 3, S, (H64, Chapter VII).

3
There are six elements in this group (1), (123), (132),
(12), (13), (23). We know that the number of nonequivalent
irreducible representations of a group is equal to the
number of classes in the group. The number of classes of
the symmetry group of degree n can be determined by the

number of partitions of n. These partitions are character-

ized by a set of numbers Al, Az, s e s . Such that

A partition is denoted by [Al, A ...] and in a general

27
way by [A]. Thus for n=3 we have three partitions, [3],
[21], and [111]. There are therefore three irreducible
representations, the symmetric representation corresponding
to [3], the antisymmetric representation corresponding to
[111], and the mixed symmetry representation corresponding
to [21]. The dimension of both the symmetric and anti-
symmetric representation is 1; the dimension of the mixed
symmetry representation is 2. We will denote an irreducible

representation by its partition [A]. The base function of

[3] is symmetric under interchange of any two objects;
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similarly the base function of [111] is antisymmetric
under interchange of  any pair of objects. The remain-
ing representation is spanned by two base functions

one of thch we take to be symmetric under the interchange
of objects 1 and 2, and the other antisymmetric under the
interchange of objects 1 and 2. Let us denote the
function spanning the symmetric representation by ([3]),
the function spanning the antisymmetric representation by
([111]), and the pair of functions spanning the mixed
symmetry representation by ([21], a) and ([21], s)
depending on whether the function is antisymmetric or
symmnetric under interchange of objects 1 and 2.

Derrick and Rlatt (D58, Appendix I) have given a
set of addition coefficients for combining representation
base functions, analogous to Clebsch-~Gordon coefficients
for combining angular momentum functions. Thus, if the
bése functions of the representations corresponding to
[Al] and [kz] are combined to give the Kth component of
the base functions spanning [A], then

|/ul] [2,] [A]

(A, ¥ = (11, KD ([A,), Ky)

K, \ K K., K 1 2

Kpr By \ Ky Ky

The direct product of two representations of different
operators acting on the same particles are decomposed
into the direct sum of irreducible representations. Using

the Derrick and Blatt table for the coefficients



(3] 4] [x])
we

Kl K2 K
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obtain the following results:

[21]; ® [21], = [3] + [21] + [111]

(131} = 2 {tlz11, )
/7

([21]1, s)

(1211, a)

([111]) =

+ ([211, a), (L2l ; a)z}

1 :
7% {([211, a)y (121F, a),,

« {{2Lk, 8)q L2} s},)

I

1
7% {{E21]; s) 4 ([211, a),

+ ([211, a)l ([21], s)2}

1
= { -(l21}, s)y ([21], &),

+ ([21],2); ([21], s),)

[21]1@5)[111]2 = [21]

([21] ra)

([21],s)

[21]1653[3]2 = [21]

Il

(1211, s); ([111]),

= - ([21],a); ([111]),

(1211, a) = {[21], a)q ([3])2
([211, s) = ([21], s)q ([3])2
[31, Go [111], = [111] ([1111) = (I31); ([111]),

[3], ® [3]1, = [3]

[111]1Q§)I111]2 =

[3] ([31)

Il

(131) = (I31); (I31),

(11111) ([111)),
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The one-dimensional product representations are obvious
but for completeness we have included them. The above
results can also be obtained if one uses algebraic methods
on functions which are initially defined to possess one of
the three symmetries. One observes what effect the
different exchange operators have on the functions and
also what effect they have on certain linear combinations
of products of these functions. This is the approach used
by Sachs (S53, Chapter VIII), by Schiff (S64), and by
Gibson and Schiff (GS65).

We saw earlier that the ground state of the triton
consists of a combination of LSJ states. Each of the four
LSJ states can be subdivided into states which are base
functions of irreducible representations of S3- The

components of the ground state of the triton are therefore

28+1
Ly

component is a base function.

labelled by and the partition of S3 of which the

Operational Representation

Using the "operational representation" procedure
we can systematically derive all the possible orbital
angular momentum and symmetry states. First, we define
a spin function with S=1/2 and an isospin function with
T=1/2. Since the triton iz a state with J=1/2 and T=1/2
we operate on the product of the spin and isospin function
with scalar functions of the spin vector operators and the

space vectors cof the system. We can do this without



changing the total angular momentum of the nucleus
because such functions commute with JZ. In forming the
scalar functions we must keep track of the symmetryn
Such roﬁationally invariant funcltions can only be formed
by combining the scalars, vectors, and tensors made up
from spin operators with similar forms made up from the
position vectors. Similarly, on our basic function we
can operate with a scalar function of the isospin opera-
tors because it commutes with T2.

(i) Spin and Isospin Functions

The total intrinsic spin of the system is either
1/2 or 3/2. As our basic spin state we take the function,
with S=1/2,

¢ = — (oclB2 - cc281)u3-
In this spin state particles 1 and 2 have total spin 0,
and the spin of ¢ is determined completely by the third
particle. ¢ is one component of the functions spanning

the mixed representation of Sye Both functions are

¢ = ¢(l/2)([21], a) = = (ayB, = a,8;)04

o3/ (211, 8 =/F 11720084058 ) 030 0,8

J

where we have indicated the symmetry properties. The

latter function can also be written in terms of the spin

operatofs 3(1) and 3(3) acting on ¢, i.e.
5/ (217, &) = - L @A) 3030y,

V3
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(1) (2)

The operators 5 and o bperating on = are nokt
linearly independent; in fact, because of the anti-

symmetry of the spins of particles 1 and 2,

g(l)¢ = - 3(2)¢. Therefore, we need to use only g(l)
and 3(3) as spin operators acting on ¢. We have now

exhausted the scalar spin operators that can be found to
act on ¢ so that linearly independent states are pro-
duced. The above two spin functions can be used with the
orbital angular S-state and, of course, will then give
total J=1/2 and MJ=1/2.

There are three independent spin vector operators,

namely g(l)’ 3(3), and 3(1) X 3(3)

(independent in the
sense that independent spin functions are formed when they
act on ¢) which may be combined with orbital angular
P-states to give scalars operating on ¢. However, we want
to form these three spin vector operators acting on ¢ so
that the resulting forms are base functions of representa-
tions of the symmetry group. If we operate with

(3(1) + 3(2)

+ 3(3)) on the S-state spin functions, we
obtain two vector spin functions, each of which we write

in terms of an arbitrary Cartesian component

1l

6; /P 1211, &) = 1 0Py

- Lo @ 4 @ X 3 g
3

These functions are defined except for an arbitrary phase

Il

o, /2 (1213, o)

factor. They have spin 1/2, as did the S-state functions,
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since (g(l) +

(3(1) 3(2)

3(2) + 3(3)) commutes with
+{33, 2 .
+ + g ) , and the symmetry is unaltered
since the operator is symmetric under interchange of spins.
To obtain the third spin vector we make the observation
that the two spin vectors already obtained span the mixed
symmetry representation; the third vector must span a one-
dimensional representation, either the symmetric or the
antisymmetric. It is impossible to combine the three
spins, each of which has only two states, into an anti-
symmetric configuration. Thus, the last vector must be
symmetric. Let us apply the spin operators spanning a
mixed symmetry representation to the S-state functions so
as to give a symmetric spin function. Such spin operators
are
[3(2) . 3(1)]

(211, &) = =
y/'—

3
3([211, s) =//§ GO - 18 e

Performing this operation and normalizing the resulting
function gives us
(3/2) ﬁ//z 0 >(1) _ =(3)
¢ ([3]) = 3 {10i 1/2 (o X O )i}¢
The three P-state spin functions are orthonormal. One can
show that the last function represents a quartet state by

2
(1) , 2(2) , 3(3),

acting on it with the operator (3 + + 0

The spin state that combines with the orbital
angular momentum D-state must be a quartet state. There-

fore, it must ke symmetric and transform like a spherical
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harmonic of second order. A traceless symmetric second
rank tensor formed from two vectors is such a quantity
since it has that transformation property. We form the
spin D-state by combining the Cartesian vector components

of the symmetric operator (g(l) + 3(2)

+ 3(3))i with the
. (3/2) ~ &

vector components of ¢j ([3]) to give a traceless

symmetric second rank tensor which after simplification

and normalization becomes

¢ij(3/2)([3]) _ 1/2‘%(1)03'(3) ; cjj(l)gim

(1) _ (3)
= 2/3 85 0 o TG

As before, since the operator commutes with
(3(1) + 3(2) + 3(3))2, the spin is unchanged. This state
could also have been obtained in a different way, e.g.
by combining components of the vector operators g([Zl], a)
and g([Zl], s) with the doublet spin P-function in such a
way as to obtain aAsymmetric function. Then, however, one
would have to check the total spin of such a function.
The manner in which the spin function is found is not
unicuae, but the number of independent spin fuﬁctions is,
and tlat is determined by the number of linearly independent
spin operators at our disposal.

The isospin state of the triton is T=1/2, T3= -1/2.
Analogous to the intrinsic spin S=1/2 state of the triton,

we find that there are two isospin functions spanning a

mixed symmetry representation



x(f21], a)

Il

i + - - 4+ -
— (Ey &y =~ & &5)K
/7 1 2 1 2 3

FLI21] 5 8) = = = {

V3

T4 Py frear, &)

Since we assume the triton and He3 to be states of iso-
spin T=1/2, these are the only functions we need. For
the He3 isospin function, the third nuclecn has a third
component of isospin £3+. If we wish to include in the
problem effects which are due to the charge dependence

of nuclear forces and calculate their magnitude, or if

we want to build up scattering states, we would be

forced to include T=3/2 functions, and our analysis for
isospin would be more involved. Since we assume a charge
independent and space symmetrical system, our analysis is
the same whether T,y = +1/2 or -1/2 or whether My = +1/2
or -1/2. The energy difference between He3 and H3 can be
calculated in two different ways. One can include T=3/2
comgonents in the He3 wave function and do a calculation
with the nuclear plus Coulonb force. On the other hand,
since the Coulomb force is weak compared to the nuclear
force, we can use the pure T=1/2 wave functioh found in a
triton calculation as an unperturbed wave function to
find the energy shift by means of first order perturbation
theory.

(ii) Space Functions

To specify the spatial configuration of the system

after the removal of the center-of-mass coordinates, we
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define the two vectors

p = /—%2_ (Z, - %) (1211, a)
=/ 0%, - 12, + %)) (211, s)

where ;l' ;2, and §3 are the position vectors of the
nucleons. The'two vectors, 3 and f, span a mixed repre-
sentation of the symmetry group. In order to build up
possible orbital angular momentum states we have to bear
in mind that the triton and He3 are even parity systems.
Vectors change sign under the inversion of the coordinate
system, scalars, which include scalar products of vectors,
do not. The cross product of two vectors is a pseudo-
vector which has even parity. 1In genefal, traceless
symmetric tensors formed from Cartesian components of
vectors have even parity if the rank of the tensor is even,
and odd parity if the rank is odd. The tensors constructed
from axial vectors always have even parity. When the tensor
is constructed from r vectors and an arbitrary number of
axial vectors, the parity of the tensor is (~13%.

In order to form S-states of different symmetry,
we see that we can combine the vectors into three linearly

independent scalars:

5* + m* ([31)
2T ([211, a)
p2 - 32 ({211, =)

With our choice of vectors it is difficult to see that an



antisymmetric S-state exists. But if one considers the
three scalar functions u, v, and w of a vector, it is

obvious that the function

u(¥y) vir))  w(r)
E(Fy, ¥, By) = | ulEy)  vEy)  w(Ey
u(r,) v (rj) w(r,)

is antisymmetric under the interchange of any two
particles.

For the P-state the only even parity vector that

; <+ s x . .
can be found is (p x ¥), = €,..,p:Y, . This vector is
i ijk"ivk

antisymmetric, i.e. it belongs to [111]. In order to
form D-~states we see that as with the S-state scalars,
we can form three traceless symmetric tensors of second

rank which are linearly independent:

le([3]) =2 Tij(pl p) &3 le (rr I') ([3])
Tij([Zl], a) = 2 Tij(p, r) ({21] , a)
Tij([z:l]r S) = Tij (,O, p) - Tij (r, r) ([2-1.-][ S)

>

-
Y 2 = a.b. il - Lo las . W
where Tij(a, b) 172 [ lbj + ajbl 2/3 Glj(i b)] Je
can multiply the P and D functions by any S-state function

without changing the angular momentum, e.g. we can form an

. i . 5 - -
antisymmetric D-state, f(rl, Lo r3) Tij {{3])s

(iii) Overall Wave Funcktion
We are now in a position to write down the angular

momentum states classified according to the partition of
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the function. These functions must be combined with a
scalar function of the symmetry necessary to form an
overall antisymmetric function. Such scalar functions
are denoted as internal functions and we will mention
their symmetry when referring to a state belonging to a
particular classification, e.g. the symmetric D-state is
one which has orbital angular momentum equal to two and
whose angular-isospin function is antisymmetric. In
forming the angular-isospin function we must use the rules
of combining base functions of representations of the
symnetry group 53, and we must ensure that the operator
acting on ¢ and x is a scalar. We list the angular-
isospin function as found in Cohen and Willis' paper

(CW62) except for changes in phase.

TABLE II-1
S-state Symmetry
¥, = L 1% (213, arxtrzul, e
/3
- /2 (121), s)x(1211, a)] ' ([1111)
v, = = (612 (1211, a)xtr211, a)
V2 _
+ /2 (1211, s)x(1211, )] (131)
Y3, = o 182 @21, a8
4 2
+ ¢ 1/2) (1211, s)x (1211, a)] (1211, a)
%y o = = L8R a0y, aYndiall, e
s

- o/ (211, s)x(1211, 8] (1211, s)
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P-state Symmetry
Y, = = 1612 (1211, a)x(1211, a)
vz
+ 95 M2 (1211, syxtr211, 916G x D), ((1111)
A 7
Y = = [¢, ([21), a)x([21], s)
5 vz 1
- ¢ M2 (1211, s)x(1211, 1@ x B (131)
_ (1/2)
Ye,a = oz 16, /2 (1211, axial, a
" ¢i(1/2’([211, s)x([211, 8)1(p x ), ([21], a)
B T - ¥
Yo o = y- [é; ([21], a)x (21}, s)
+ ¢, M2 (211, s)x(r211, a1 x Dy (1211, s)
v, o= 0, B2 anyan, o G x By (1211, a)
v, o =0, P/ Enx (1211, 2 6 x By ([211, )

1

(3/2)
Yo = 2= 055 /PN iz, T2, s
= x([21], s)T, (1211, a)] ([111])
_1 o, (/)
Yo = - 34 ([31) [x((21}, a)T; ([21], &)
+ x(121], 8)T;, (1211, 5)] (131)
PR -7 T
YlO,a = ¢ij €131 )x€(021] ; a)Tij([3]) {L21) , &)
Y 5 B2 s, s)my g3 (1211, s)
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D-state (cont'd) Symmetry
_ 1. (3/2)
Yll,a T ¢ij ([3]1) [x(i21], a)Tij([2l]' s)
+ X([zl]r S)Tl]([2l]r a)l ([21]1 a)
Y = 035 s xtr2n, ayrg 211, a)

l1,s /7 ¢ij
= wif2l] ,; S)Tij([Zl], s)] ([21]1, s)

Summation over repeated subscripts is implied.

The ground state wave function is written

Y =Y. .f,
- 2 |

If we take the Yi's in the order they appear in Table II-1,

then the fi's are to be taken in the following order: f

ll
fz' fa,s' - fB,a’ f4, f5, f6,s’ - f6,a’ f?,s’ - f7,a' f8’
d - A ) . :

f9, fLO,s’ £10,a’ fll,s’ fll,a' The two component fi s

are of mixed symmetry as indicated, fl’ f4, and f8 are

svimametric functions, and f f5, and f9 are antisymmetric

2
functions. Derrick and Blatt (DB58) originally obtained
only ten angular-isospin functions, i.e. three mixed
symmetry D-states instead of four D-states, two of which
are of mixed symmetry, one antisymmetric and the remaining
one symmetric. However, Derrick (D60a) has shown that the
three D-states of Derrick and Blatt are equivalent to four

D-states of the symmetry types of Cohen and Willis. This

indicates the equivalence of the two classifications.



CHAPTER IIXI

CALCULATIONS OF MATRIX ELEMENTS WITH REALISTIC FORCES

Exact Solution of the Three-Nucleon Problem

To solve the three-body Schrdédinger eguation with
"realistic" local potentials which contain central, tensor,
L-S, and guadratic (L+S) terms, is a problem of such
numerical magnitude that as yet this has not been attempted.
Since the spatial part of the three-body Hamiltonian depends
on six-coordinates, one must solve a second order partial
differential equation in six independent variables. A
simplification much like that used to reduce the deuvteron
problem to manageable form, is possible to minimize the
complexity of the exact solution of the triton.

| In the deuteron case one must sclve the two-particle

Schrodinger equation which consists of a partial differen-
tial eguation in three independent variables. But the
deuteron wave function can be expressed as the sum of 381
and 3Dl components. It is the orthogonality cof these two
angular functiong that results in the reduction of the
problem to two coupled differential equations in one
variable, which are easily solvable. The coupling of the

two equations, or states, is due to the presence of the

31
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1]

tensor force. If there is no tensor force, one has to
solve one differential equation in one unknown.

In both the Derrick and Blatt classification and
the Cohén and Willis classification of the triton states,
there are sixteen orthogonal angular momentum-isospin
functions. The angular functions are determined by three
of the six coordinates necessary to determine the spatial
part of the wave function. Thus, if one operates with the
three-body Hamiltonian on the total wave function and
takes the scalar product with each of the sixteen angular
momentum~isospin functions separately, he will obtain
sixteen coupled second order differential equations in
three independent variables. The reason for this being so
is that the matrix elements of the kinetic encrgy operator
and the potential energy operators between angular
momentum~-isospin functions can be evaluated exactly
(DCO; CW62). The tensor force is still the mechanism by
which states of different orbital angular momentum are
coupled. In the absence of the tensor force, the number

of differential equations becomes four and the ground
2

state of the triton is a pure 91/2 state. If the forces
are not only central, but also spin-independent, then the
problem reduces to one differential equation in three un-

2 .
knowns. Of the three S states Derrick and Blatt

1/2
(DB58) have pointed out, the symmetric S-state would be

the dominant component of the ground state since the anti-
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symmetric S-state and the mixed symmetry S-state would
have more kinetic energy associated with them. Even in
the case of the simplest force, which is known to be quite
unrealistic, the solution of a second order differential
equation in three unknowns must be found. To date, even

this equation is solved only by making approximations.

Equivalent Two-Body Methods

Since the two-body bound state problem is com-
pletely solvable in the non-relativistic limit, it seems
natural to try to formulate the triton problem in such a
way that the solution depends on equations which are
similar to the deuteron equation. This is first done with
the simplest triton model, viz. triton whose ground state
is a symmetric S-state, with the hope that the method can
be extended to all triton states. Rather than using a
spin~-independent potential for this case, it is possible
in the first approximation to use a force acting between
the nucleons which is the arithmetic average of spin-
singlet and spin-triplet forces (BW52, pp. 194-5) acting
only in even orbital angular momentum states. We denote
these forces as singlet-even and triplet-even respectively.
The argument is as follows. The nucleons can only inter-
act via even orbital angular momentum states in order to
preserve the total symmetry of the system. The two
neutrons are in a spin-singlet state, one neutron-proton
pair is in a spin triplet state and the other neutron-

proton pair is a mixture of equal amounts of singlet and
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triplet states. The average force per bond is then
1/2 (Vt,e + Vs,e)'

The usual method of =olving the problem of triton
or He3 in the symmetric S-state is some kind of equiva-
lent two-body method. Basically this amounts to reducing
the problem of three particles to a differential equation
which is very similar to the two-body Schrodinger equation.
Wigner (W33) initiated this approach by assuming that the
force between the neutrons is zero, and that the wave
function is separable in the remaining two coordinates.
Feshbach and Rubinow (FR55) and Morpurgo (M52) have formu-
lated equivalent two-body methods by restricting the three
spatial degrees of freedom to a single one in the action
integral and then writing down the Euler-Lagrange equation
of the action. This gives a second order differential
equation in one independent variable. Feshbach and Rubinow

used as their one coordinate R = l/2(r12 + r + r31) after

23
Feshbach (BW52, p. 196) found that

e—l/2 Riryy + ryg + ray) is an excellent trial wave function

in a variational calculation for this simple triton model.

2

Morpurgo uses as independent variable R = /&/3(r122+r232+r3l )

and also obtained a Schrodinger type differential equation.

According to McMillan (M65) the same differential eguation is

2 2 2
13 * Tgg T Tgy- s

shown the superiority of the Feshbach-Rubinow equation over

obtained if one lets R = x McMillan has

the Morpurgo equation by virtue of the fact that both
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equations are derived from a variational principle and
hence must yield an upper bound to the eigenenergy. For
identical potentials of the exponential or Yukawa type
the Morpurgo equation yields a higher upper bound than
the Feshbach-Rubinow equation. Recently, McMillan and
Best (MB67) have extended the Feshbach-Rubinow method to
include the symmetric D-state. They were able to do a
calculation with the tensor term in the potential.
Although their work is encouraging, it is a long way yet
from the inclusion of all states found in triton. Further-
more, for potentials with a hard or soft core causing
short range correlations between nucleons, the method

breaks down since the coordinate R ==l/2(r12 + r + r

31)

is

23
does not distinguish between configurations where T,
small and Yo and Taqy fairly large, or all three distances
approximately egual. With shcrt range repulsion, the wave
function should be zero or near zero in the former instance,
and should have finite amplitude in the latter. If one
wants to extend this method to mixed symmetry states and/or
antisymmetric states, then the single coordinate will have
to be replaced by several coordinates of the type

R= 172 tug Wy + Ny Fge ¥ Uy

equal but do have definite values. When the ni‘s are not

4 ]
rl3) where n;'s are not all

equal it has been shcwn that as the asymmetry factors
become larger the method gives poorer results (BNV67). It

does not appear, therefore, that an extension of this
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method will lead to a satisfactorily complete calculation
of the triton.

Further developments along the lines of two-body
methods for three-body problems have been made. Delves
and Derrick (DD63) use the angular-isospin functions of
Derrick and Blatt (DB58) and internal functions of the
form u(rlz)v(r23)w(r3l) in order to obtain a set of
coupled differential eguations for the two most important
S-states and the three D-states. They obtain eight
coupled differential equations in one variable. Unfor-
trnately these equations also have a set of variational
parameters which must be determined before an upper bound
to the solution is obtained.

Bodmer and Shamsher Ali (BA64) have developed a
similar method for only the S~state without taking into
account the triton antisymmetry, although the calculation
is the same for the symmetric S-state. They consider ABe9
as a three-body problem consisting of two alpha particles
and one lambda particle. Their spatial wave function is
of the form gl(rlz)gz(r23)g3(r3l) and inserting this form
in the action integral, they find a set of fhree coupled
integro-differential Euler-Lagrange equations by varying
with respect to the gi's. Rosati and Barbi (RB66) have
shown that with present day computers one can very effi-
ciently obtain numerical solutions to these equations.

By making the gi‘s of the same form, one has probably the

most accurate practical method of solving for the triton
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symmetric S-state. Murphy and Rosati (MR65) have shown
that Bodmer and Ali's method can be extended to arbitrary
angular momentum states. However, they do not take
account of the exclusion principle in their wave function;
it would be very tedious to project out states that are

completely antisymmetric under exchange of coordinates.

Variational Calculation

(i) Trial Wave Function

The equivalent two-body methods are unsuitable for
calculations with a realistic local force because the
resultant equations either have lost the essential features
in the simplification of the problem or else they are still
practically unsolvable. To date, therefore, the only
accurate calculations with realistic potentials have been
done using the Rayleigh-Ritz variational method. This is
the approach that we will follow. Our first task is to
choose a trial function which has the correct symmetry,
and angular momentum. There are, of course, other condi-
tions that it must satisfy. The trial function must be
localized, i.e. as twé of the particles move far apart it
must tend to zero as then the triton bound state no longer
exists. If the two-particle force is infinite at the
origin the wave function must tend to zero when the
particles come very close together. As shown in the pre-
vious chapter, we have a set of functions with the angular

momentum and symmetry character for the different states
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found in the triton. Such a function can always be multi-
plied by a totally symmetric function without changing the
symmetry of the original function, and if at the same time
the multiplying function is a scalar then the angular
momentum character of the function is unchanged. If we
restrict the function even more so that it is a scalar in
the two-body system, then the angular momentum in that
particular two-body system is unchanged.

The three particles are fixed in space by the
vectors ?l, ;2, and r.,. The system in the center-of-mass

3

frame can be specified by the vectors

-> 1 - - )
P = e (r2 e rl)
V2
v 2 -> -> ->
F e {r3 - l/2(rl + r2)}.
(p2 + r2) is a scalar quantity that is totally symmetric

under interchange of any pair of particles. Thus, the
Gaussian function e—l(p2 + x?) seems to satisfy the
symmetry requirement. It is also a three-body scalar as
well as a scalar in the system of particles one and two
since they are related only through p2. No angular co-
ordinates are present. If, on the other hand, we consider
the exponential function e—k(rIZ * Fypo r23) which is
used quite often in variational calculations, we find that
it satisfies all our reguirements except that it be a

scalar in the two-body coordinate system. Consider rio

(from symmetry we could pick any one of the three variables)
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ryp = V2 p
23 T 2.3 2. =~ 22
T3 ://5 pT ot 5 T+ Y3 (p+x)
_JITTT3 2 >3
T3 =/ TP t 3" = V3 {per)

102 L2 (22
23) " e”Af[p r Loy (p l)] The

=

X L + r

Thus e 13
w " 2 - .

exponential now is not only dependent on p~ and r™ but

‘ > > . e = . .
also on (p+r), i.e. the angle between p and r. It is this
angular dependence that introduces angular momentum com-
ponents other than L = O. This makes the exponential
function unsuitable for analytically separating out the
two-body angular momentum components. This is a necessity

for calculations with the Reid potential.

For cur calculation we have only used those state

n

which we feel will be the most important three-body states,
namely the symmetric S-state (S), the mixed symmetry

S-state (8'), the sgsymmetric P state (P), and symmetric
D-state (D). The wave function was chosen mainly to include
states having the least amount of kinetic energy and at the
same time enabling the function to use the tensor part of
the potential to the fullest extent. A function with no or
few nodes has less kinetic energy associated with it than

a function with several nodes. Derrick and Blatt (DB58)

have given a gualitative argunent for estimating the import-



the wave function does not have to vanish for any
shape of the triangle when the function is totally
symmetric; when there is a pair of functions of the mixed
symmetry type, the functions are zero when the triangle is
equilateral, and an antisymmetric function is necessarily
zero when the triangle is isosceles. We have included the
P-state because it is easy to include but we expect its
presence to have very little influence on the total binding.
The omitted states can be included by a perturbation treat-
ment applied to the variational function.

The spatial parts of the trial wave functions used
are given below. We also give the representation of the
group 53 that they span as well as the three-body orbital

angular momentum.

(22 (1))3/2 (1), 2, 2
(1) i =hy ! [pTaE=)

(7 = I a, e i - -

1 i i ,”3/2 [.)] o

5./
(2)
(2. ) (2) 2. 2
< . (2) i -\ (p“+r™)

Y = 2(3°1) Yoa. - = e i

28 i * HB/Z [21] s

5/2
(2) 5
(2%, "=*) L (2),.2 2
wzs _ (p2—r2) ? ai(2) i 77 5 Ai (pT4xr™)
i i
5/3
3 5 w . _ 18) (215 3
1!)3 s (pxr,jiai ,n_3/«2
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X e 4 [21]

_Ai(S) (o2 kr™) [3]

—Ai(s)(p2+r2) [3]

275 (p,¥) 2 a, (7 1

i % /385

9/2
ks, 1743

X e

a7 (02422
372 %

[21]

(7)) X
[T dp,p) =T (x,x2)] ' &, —_
3k A% g * /IS
9/2

Tr3/2

e—ki(7)(p2+r2)
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e i * /1065
9/2
(9)
(2. ) (9) 2.2
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- 372 e
[21]
i 2 2 (9) i
Y = (pxr)” (p°-r") I a -
8 i * v105
9/2
(9)
. (22 ) g Al(9)(p2+r2)
1T3/2
5/2
(10)
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2.2 (10) 51
v = (p“+r%) I a,
10 i 4 ﬂ3/2
kg 100 (02,2 (3]

The j superscript of w3j refers to a component of the
: . b & s A, jk jk

Cartesian vector, and jk in ¢4a ¢ W™ x w?a 7 w7s

refer to the cartesian components of the irreducible

traceless symmetric tensors, i.e. j,k= 1, 2, or 3. The

_(s)

1

. 5) :
a are the linear- and the li(s‘ are the non-linear

42
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parameters.

When we are finding the matrix elements of Vio
with these wave functions, it is evident that for poten-
tials that are repulsive near the origin, wave functions
which include a factor pn, n>1l need to be used to ensure
that the wave function is small near the origin. One
could hope, of course, that the coefficients a; in the
sums would cause the wave function to vanish when p=o,
but this will not happen for all r unless all ai(s)'s
are zero. Thus for attractive potentials, we could use all
of the states, but for potentials which have short range
repulsion we would expect only w3, ws, w6' w7, w8' wg to
make the greatest contribution in the variational calcula-
tion. It is also to be expected that because of the
centrifugal barrier, the D-state would favour functions
that vanish as p tends to zero. Thus, even for attractive
potentials, W7 may be a better D-state than w4.

If we consider only one term in each of the S-

X {2 4x2) 2 ~x (p2+r®y ,

states, wl’ wlO’ ws, we have e , (p +r2)e

2, 2
and (g-x §)2e—A(p YETF  re can be shews that dhese three

states are linear combinations of the three lowest states
in the six-dimensional harmonic oscillator (see Appendix A )
with an oscillator constant of 2\A. Our trial functions,
therefore, are basically the lowest states of the six-

dimensional harmonic oscillator with different oscillator
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L —X(p2+r2)
constants. Even though functions of the type e
for differing A do not form a complete set, we know that
the set of oscillator functions is complete. Since the
triton is a low energy system, we feel that the lowest
energy oscillator functions with several different
oscillator parameters mixed in in a variationally
favourable way will give reasonable results.

The space wave function must be combined with

the proper spin-isospin function to give an overall wave
function that is totally antisymmetric with angular
momentum J=1/2. We make use of the spin-isospin functions

defined in Chapter II and obtain the following components

of the total wave function.

¥ =T1 9,

T T e
¥y ® Iy by

Vg = Ty ¥

l117 . P4aij lP7sl:l i I1llsij lp?aij
¥g =T Vg

Yo = Tpa Vgg = Tog ¥oa

15 = T3 Py
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The Fi can be obtained with the help of the angular isospin

functions found in Table II-1l.

r =Y

1 i
Toa = ¥3,a
r25 = Y3,s
r.tois obtained from Y,, and T ij and T 1] are obtained
3 4 da is
from YS'
i 1 1/2
)t o= e, 2 211, ayxir211, a)

. vz
+ o, M2 (211, syx(r211, )

P, 0w g S92 sty i1l &)

da sl
i3 _ (3/2)
Tys = ¢ij (131 )x{l21] ; =)
It is convenient to write ¥ = Z aj(i) ¢j(i) (no sum over i).

The ¢j(l)'s are easily determined from the above expressions

and the definitions of wi. The total wave function is
10

Y = % Wi.
i=1

(ii) Normalization Matrix

The most straightforward matrix elements to calcu-
late are the normalization matrix elements. Let us define
as Ai’ and ¢i with only one subscript and no superscripts

such that i runs from 1, ..., N where N is the total number

of linear and consequently also the number of non-linear



parameters. Then N = _%j ny where n, is the number of
terms in Wi. The normgzization matrix elements are
defined as Nij = <¢i]¢j>. In order to be able to calcu-
late <¢i|¢j> we must make use of the orthogonality of the

spin-isospin functions. That is

<Pi|Pj> = o when i#j

SLylly> = <Tp [Tg> = <Tpgllge» =1
<r3ilr3j> =855

. ~ iy, k. _

ij kf_ = <T |T o= §.. By
<F4a |F4a > ds 4s ik 3L

The last expression is true only when Tij is contracted
with a traceless symmetric tensor, which is always the
case in this work.

We calculate the normalization matrix elements
between all possible states.

o S\ 3
Z/Kikj

As ¥ A
1 J
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A PV
U B e
2 o %3
_—_r 2 3 T
<‘i’]‘}’>=70 J & J
1% 7 77 \X;FA
i * J
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Y |¥g> = 710 X s 2
2V/39 j
2 el %
S /75 As 2/xixj
61710 3 GOF xj) Xy F A
2/11‘5' 4
<Hyl¥y> = | 754
i j
| 2/Xixj 43
<y V.5 o=
gl’g Xg F A
3 O
63 Ay 2/X 425
<‘y8|‘y10> = 7 Xoad F =X
VI R % 11 .18 2.%00, % x.3 i j
- * j
2/3 %5 ?
s Ll S v & 9
.4 j
2/x11j .
Wigl¥y> = 12 X T

<WS|Wt> = <Wt[WS> and all other possible combinations are

zero.
It is now obvious why we chose to insert factors
like 373 in the trial wave function. In the

i
normalization matrix elements, we obtain factors like

)xi"‘)\j/

magnitude of the exponent. This same scaling factor

2/ ks \° '
SR W which for i=j reduce to 1 regardless of the

ensures that all the matrix elements are of the same order
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of magnitude provided the Ai's do not differ by more than
an order of magnitude. In our calculations, we find that
the greatest difference between the smallest and largest
parameter is about a factor of ten. Having the matrix
elements all of comparable size avoids trouble when one
does matrix algebra.

It would have been possible to define the ¥, so
that they were all orthogonal to each other. This would
have had the advantage that the resultant normalization
matrix would have block matrices along the diagonal only.
But besides being able to evaluate each state's amplitude
in the total wave function, it is of no advantage but
rather it makes the analysis more cumbersome. We have fo
find the inverse of a non-singular matrix anyway, and
since we do this numerically a few non-zero matrix ele-

ments more or less do not matter.

(iii) Kinetic Energy Matrix

2
The kinetic energy operator is given by - i%ﬁ K
where K = V ‘ + V * + Vv 2 = % ‘ + ¥ . when operating
ry r, Iy x p

on a function independent of the coordinates of the center-
of-mass. M is the nucleon mass. Since K is a scalar
operator and totally symmetric under interchange of space
coordinates, it follows that only those matrix elements of
kinetic energy are non-zero which correspond to non-zero
matrix elements in the normalization matrix. When we cal-

culate the effect of X on one term in each of the space
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functions we obtain the following expressions:
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A useful relation that gives kinetic energy operator acting

> 2n e-x(p2+r2)

on states of the type (E X ) is

> = 2n e—l(p2+r2) 2n-2

K (3 x 7) = {an? (p%+:?) B x D)

$ BXTS13 + 4n) + Alper®)]

>, 2n e—x(p2+r2)

X (S X xr)J7}

Because of the nature of the trial functions,it turns out
that the kinetic energy matrix elements can be evaluated
explicitly. Thus contracting the above expressions with
the appropriate functions and inserting the scaling

factors we obtain:

2/% 37 Y’
<¥,|K|¥,> = —3(AiTAj) L
2k ¥, /
g Xy 2375 )
<t |[K|¥> = (A, + Agih o= 7w & 5| el
a 1 J
-\ 9
¢ T 2 B
V70 J J 1)
<Y K|, > = 5 (A, + AL) (4-3 ) e
il 6 42 i 7] Ai Ai Ai + Aj
] 21 SR T i
<¥, |R|¥. > = R ¥ 5) (2 = )
WS T EILE IR L] e \,Ai+kj/



<W3|KIW3>

<W4]K|W4>

<Y, |K|¥,> =

<Y |K|¥g>

<Y |K|¥>

<W5]K|W8>

PR
2 # kL Yin-8 ij ) </;rkili >
/105 J i i
7
1B ain g | o
- 3 A + X,
i j

2/X%; 7
-50 U\i +A5) A. + M.
i T Ag
e T
A 2/
40 3 3
L PR R (, >
/355« * J Ay Ayt Ag
- (A2 32 W '?/Alxj 9
bl B U b o R £ v ) o
174 . Bl b
o s g 2/X %5 11
L TR W W S A | %
12 | Ai Ai Ai + Aj
126 2 2
(92,% = 120505 + 2,% )

/3 x 7 x 11 x 13




2 2, 4 [N
(xi+xj)2 & s
YelR[¥e> = (A5 + 235) |2 —¢ cace RN v w0
i i i)
o 2
<Y |K|vg> = 22/10 (181,° - 39A. ). + 81, % )
5/3 x 11 % 13 J J
0 i iR AR
s S
X, Yy v
3 _v70 2 2 ul a0, ]
<w6|xlwlo> = 7 (33,7 - 29%;). + 243, )x 5 (x -
J
9
% N W
- |26 e b il | i3
<¥,|k]¥g> = {11 Wiy ® Ayl SO g J P >
i j i
Aihy 23175 s
<w8|x|w8> = 12(x; + xj) 1-5 YL Y
itAy)
W |K|¥ > = 21 (% - 13, + 16447 )
TR TE LI IS J J
I 4 11
A2 [ 2R
3 A. + AL
A i ]
j
¥ Ndy T (2R A
<Y |K|¥.> = 40, + A.) [1-9 bl
<, 9 i J [ “‘i“‘j)ZJ )\i + }‘j




54
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§ "y i

e - - N
<¥,olK[¥; 0> = 1203, 14Aixj + 3247 )

<?t|K|WS> = <WS|K|Wt> and all other possible matrix

elements are zero.

(iv) Potential Energy Matrix

The Reid potential has a different analytic form
for each different LSJ state where S is the two-body spin,
L the two-body relative orbital angular momentum, J the
two-body total angular momentum. For this reason, we
would like to project out of the wave function those
parts which have L, S, J as good quantum numbers. This is
done by inspection. If we omit the factors
Th 2n+l
(A )

(i)
3 %3 37‘2"” i

functions can be written as

s K1y, 2. 2
Aj ) the trial wave

1 1 (1) > (3)
W e oy YW S (5 . )¢x
. T B

R T ¥ 1 (1) ,2(3)
¥, = r (p" =0y, = = (p?-x?) (5 )X,

V6

-2 @Dexy - 2 65 M5B,
/2 /6

23 = W ey
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\y — (i S p ° (r ¥ g ) ¢X +
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We have used the short forms g and 9 to dencte x([211, s)
and x([21], a).

The spatial dependence of the wave functions is
given in terms of the vectors 3 and r. The vector 3 is
proportional to the vector between particles one and two.

This is to our advantage because we have to determine only



the matrix element of Vl2’ since because of the anti-
symmetry of the overall wave function
<w]V12|W> = <W]Vl3|W> = <¥|v,,|¥>.

To decompose the wave function into the proper
two-body orbital angular momentum components, we write
the wave function as a sum of terms containing factors

of the type 1, p2, 0.

i (P sB:0) ¢ wona

r Tygloapds Ty

These terms correspond to two-body S-, $-, P-, D-, F-,...

states, respectively. Furthermore, we can get the proper

(1)

spin-dependence by noting whether I operates on ¢ or
not. Since ¢ contains the antisymmetric two-body spin

function ¢o i.e.

= 1 N
¢ = 903
the operators g(l) and 3(2) are linearly dependent when
acting on ¢, i.e.
>(1) - Jxl2)
o by = 4 %
thus sy = 3@y,

" : (
The state ¢ is a two-body spin singlet; the state ci‘l)¢

is a two-body spin triplet. This can be seen from the

Ly,

i.e. it transforms

(1)

transformational properties of oy
like a vector. Combining the spatial factors with o

if it is present, we obtain the two-body angular momentum

57
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by noting the overall two-body rotational properties, e.g.

(1)
i Tisx

o] (p,p,p) gives J=2 since it transforms like an
irreducible tensor of rank 2. The cgmplete wave function
must be a scalar and therefore such two-body components

as described above must be contracted with traceless
symmetric tensors formed from one vector operator 3(3) and
the vector ¥ as many times as is necessary to obtain a
tensor of the appropriate rank. By this procedure of
finding all possible combinations for a particular three-
body state, and determining their coefficients, we decompose
Wi into a sum of terms, Wi = g k.. The kj's are given in
Table III-1. We have indicated the two-body quantum
numbers of each kj and the angular momentum associated with
the vector r. The latter quantity is useful in determining
the orthogonality of the various kj's. The kj's are not of
definite three~body symmetry; it is, therefore, imperative
that all the components, kj’ of any one Wi are retained in
the calculation in order to ensure overall antisymmetry.

At this point we can find out how the different
states are connected. The Reid potential is given, and
indeed any potential can be expressed, in such a way that
the matrix elements between pure two-body LSJ states can be
found. We can write down the integrals for the central
part of the potential; this includes 73 or L2 parts since

they conserve LSJ. We have given these integrals in

Table III-2. Whereas before we found that there were many
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zero elements in the normalization and kinetic energy
matrices, for the potential energy matrix elements there
are very few states not connected by the force.

To find the matrix elements of the tensor operator,
we express this operator as a scalar product of two second
rank tensors, S S ; Tij(p,p)Ti.(O(l), 0(2)).

12 b
0 J

doing some tensor arithmetic, we arrive at the matrix

After

elements given in Table III-3. We find that the tensor
operator couples the three-body S-state to the three-body
D-state. The P-state is coupled to the three-body D-state
also via the tensor force. The P-state is only coupled to
the S-—state in second order.

Now we are in a position to write down explicitly
the matrix elements. Let us define the following integrals

where Vi's are given in Table III-4.
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We note that V13 and V21 are not pure J states but are
the weighted averages. Since these are higher angular
momenta states, the binding energy will not be very sensi-
tive to them. The potential energy matrix elements are
given in Table III-5. All the constants appearing in the

expressions are exact,

(v) Root-mean-square Radius

The root-mean-square radius is given by /:£2>.
<R2>= Jp(r')r'sz where r' is the distance of one of the
three nucleons from the center-of-mass, and p(r') is the
probability density of the nucleon at r'. Because of the
symmetry of the system only one nucleon needs to be con-
sidered. Otherwise, an integral like the above would have
to be evaluated for all three particles and their sum

divided by three. If the problem is expressed in terms of

the interparticle distances, we obtain

_ 1 g. .32 __3 2
R o st {5'[2(rl Fr,”) ry 1} b 8y x

Y. dr.dr. d¥
r.m.s. 2

2 3 1 3

for the totally symmetric S-state (L68).
In our formalism we can determine in gencral what
the matrix elements are for the mean-sguare radius using

pz, r2, and (B~f) as coordinates. It is easy to show that

B =k B 22 +2p?
5 2 6

The matrix elements would be

P - 2 ¥ i
r? = Jw. (L 32y + & 5% 4 2 21w, adad
if 1 V/-?T 6 ]

=
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Since the product Wiyj for i and j for which Yi and Wj are
not spin-isospin orthogonal include only terms with even
powers of (3-;), the first term in the integral averages

to zero. Hence effectively

2 _ i .2 A ok 4
Rrom.s. = Jwi I3 p" + g = ]?j Grelp: s

In table III-6 we list the matrix elements of the mean-
square radius operator in terms of the normalization
matrix elements. The simple expressions for this matrix

are due to the fact that we have been using harmonic

oscillator wave functions as our basis of functions.
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TABLE II1I-~2

Diagonal Potential Energy Matrix Elements

Diagonal matrix elements exist when ki and kj
both have the same two-body LSJ dependence. By <ki]kj>

we mean matrix elements of the potential in the state

LSJ, i.e.
2 2, ~x(pZ+r?)
= : = “AND TE Ias
<ki|kj> 2 <ki(LSJ)]V12|kj(LSJ)> & Jv(p)f(p ,E )8 drdp
where A = A, + A
= J
and the isospin-angular momentum part is evaluated explicitly
and included in f(pz,rz). For notational convenience let us
write
, 2, ,
Jew?) = [vimsp? e 0T D azap

After each matrix element we give the LSJ dependence and
the three-body states in which ki and kj are found

respectively.
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TABLE III-3

Off-Diagonal Potential Energy Matrix Elements

The off-diagonal matrix elements arise because of

the tensor operator in the potential. The tensor operator

. : _ '3 (L), _2) :
is defined S1, = Tij(p,p)Tij(o 'O ). The matrix

P
elements in integral form are listed below. The same con-

ventions as used in Table II are used.
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TABLE III-4

This table indicates our notation for the various
two-body states. The pure two-body states (good LSJ) may
have a tensor part incorporated, whereas the states
coupled by the tensor operator have to be multiplied by

the factor obtained from <LSJ]512|L+28J>.

Function of x
which is the

State potential.
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which is the
potential.
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Potential Energy Matrix Elements
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Mean-Square

<¥p |R?
<) |R?|
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TABLE III-6
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Radius Matrix Elements
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1
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;.
7 i
3T Yl
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7 1 ]
3 | <¥sl¥g?
J
1
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2 i
VIR [¥gr =" %3 g <YslYy?
it
2 . 1
R Vye* = 2 gy A¥gl¥ygp
i %
2 % R
UG IB [P = Tmupingomyn , W /B8
R
2 e R
B |[R7lHg> = =3 q—gy V¥ |¥p>
i7
2 I 1
WlR%Yy 5> = 53 =3 Yl¥?
ity
2 N 1 .
¥ RT[¥y> =3 gy <Yy
| A
2 _ 1
<Yg|R¥|¥g> =5 —F <Y |¥g>
"y
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YglR%|Y 0> = =5 x5 <Ysl¥io?
P70
2 1
W [RT|¥g> =3 y—py— <¥gl¥y>
. Sl
2 e 4
<tolR7 Y5> = 3 X3 * g <¥pol¥10

T 2
<¥_|R |?t> = <¥ R IWS>

The matrix elements not defined in the above list and their

hermitian conjugates are zero.



CHAPTER IV

BINDING ENERGY AND MINIMIZATION PROCEDURES

In Chapter IITI we obtained the matrix elements of
the normalization, the kinetic energy operator, and the
potential enexgy operator. The rows and columns of the
matrices were labelled by the non-linear parameters, Ai.
In this chapter we describe methods for minimizing the
energy with respect to the linear parameters, ai's, and
the non-linear parameters. We also minimize a quantity

called the force factor, and a quantity that increases

the overall attraction of the potential.

The Rayleigh-Ritz Variational Procedure

The Rayleigh-Ritz formula gives an upper bound, E,

of the ground state energy, Eo’ by the following relation-

L <YiR|¥>
Eo € E= <V ¥

where ¥ is the trial function depending on the parameters

ship.

a; and Ai. If we fix the Ai's, we can minimize E with
respect to the ai's as follows. In the notation of

Chapter III

i BTN
p
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I aja. <¢i]H].¢>'j> ]

Thus E = =tJ - (1)
I a.,a. <¢.|[¢.>
SR B |

Let <¢i|H]¢j> = Hij and <¢i|¢j> = Nij'

Both Hij and Nij are symmetric under the exchange of sub-
scripts i and j and both are independent of the ai's. We

can rewrite equation (1) in the form

'Z. aiaj (Hij - NijE) = O (2
i,9

Variation with respect to parameters 8y gives conditions

OE
aak
equation (2) with respect to a, we get the n equations

= o for relative extrema of E. Differentiating

g (Hki - ENki) a; =o k=, s 0

In vector notation these eguations become
->
(H - EN) A =o0

.-)‘ .
where A is an n component vector and H and N are n x n

matrices. If we multiply throucgh by N_l, then

],

(N"" H-E) R = o (3)

The condition for an extremum of E has become the solution
to the matrix eigenvalue equation (3). The procedure,
therefore, is to diagonalize the matrix N_lH and find its

. . . . +
lowest eigenvalue with corresponding eigenvector Amin

The components of Kmin are the linear coefficients which

give lowest energy for a given set of Ai's. Although N
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and H are both symmetric matrices, N_lH is not necessarily
symmetric. Since it is more efficient to diagonalize a
symmetric matrix, we can form the symmetric matrix

- w178 ~1/2

H=N HN instead. Equation (3) is equivalent to

(-8 B e o : (3a)

—1/2§.

where K = N The matrix Nl/2 is defined so that

N:L/?‘Nl/2 = N. Nl/2 is found by transforming N into its
equivalent diagonal matrix by a similarity transformation,
taking the square root of each diagonal matrix element,

and then using the same similarity transformation to trans-
form back to the original basis.

Having found the ai's corresponding to minimum
energy for a particular set of Ai's, we can calculate the
potential and kinetic energy. Let us define
Ty E <¢i|T|¢j> and v, = <¢i!vl¢j>. The total kinetic

1]
and total potential energy respectively are

% aiaj i3

K.E. = =tJ
.Z. alaj ij

223
2 alaj i

P.E. = =tJ
.Z. By 9 49

1,3

For the non-linear parameters the minimization is
done using a method developed by Powell (P67a). Manning
(M67) has written a Fortran computer code for this proce-

dure which we used. This method initially minimizes the
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energy with respect to one parameter at a time, that is,
along the coordinate directions in parameter space. But
after each pass of minimization along the n directions, a
new direction is introduced in such a way that after n
iterations the directions would have become mutually
conjugate if a quadratic were minimized. As a consequence

the exact minimum of a quadratic is found in n passes.

54,

This procedure is very efficient and even for a non-quadratic
it usually requires fewer than n passes to find a reason-
able value for the minimum. In our problem we do a minimi-
zation of the linear parameters for each set of ki's used

in the non-linear parameter minimization procedure.

Calculation of the Force Factor

When one.does a variational calculation on the tri-
ton to find the minimum energy, there are two other
physical minima to which the minimization may converge.
They are the configurations of three free particles when the
energy is zero, and the configuration of two particles
bound to each other and the third particle unbound, i.e. the
deuteron state with energy =-2.226MeV. These two relative
minima have greater energy than the triton whose grcecund
state energy is -8.482MeV. To avoid minimizing to eitherc of
these two relative minima, one can introduce a quantity that
increases the strength of the potential in such a way asg to
give the experimental ground state energy. Essentially,

this means that instead of sclving the Schrodinger eguation
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(T + V)Y = EY for the eigenvalue E, we solve the equation
(T + vyW¥)¥ = Eexp Y for y. The factor vy is called the
force factor. The philosophy behind this procedure is
that the potential energy is negative so that multiplying
it by a factor greater than one increasesg the magnitude
of the.potential energy and hence the binding. This
factor is minimized with respect to the parameters at our
disposal. When the parameters that give a minimum for vy
have been found, we put y=1l and with these parameters we
calculate the binding energy. This is similar to what
Delves and Blatt have done in their calculation (DB67;
BD58) . A further minimization of the energy may be
attempted if one feels that it will incrcase the accuracy
of the results. However, when we set y=1l, the energy must
be less than the deuteron energy. Otherwise, one still
has the possibility of minimizing to the deuteron ground
state energy.

To calculate y we use a self-consistent procedure.

With some arbitrarily chosen initial Y(O) we calculate
E(O) ugsing the relationship
b3 a.(k)a.(k) (T, . + y(k)V..)
(%) 7.3 i y| ij ij
EV o= =L e YR k=o0,1,... (4)
Yooa; ’aj . Nlj
P
where E(O) is found by the minimization of linear para-

meters using the matrix method. This yields the set of

(o)

coefficients a. . Using these we find the next approxi-
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mation to y by the formula
PR G- PO
i J exp ij ij
.(k)a.(k) .«
3 J 1]

% a
Y(k+l) A, 1 )

Bt d .20 - s (5)
z a ’
i,3

(1)

so obtained is used in equation (4) to calculate

The vy
and a.(l)' (k)

5 (1)
1

d (k+1)

s. This procedure is repeated until vy

(k)

an and/or E and Eg differ by less than a

Xp
preset amount. Convergence in this procedure is very fast;
three or four iterations will produce changes in only the

second or third decimal place of y. There is equally fast

convergence of E.

Calculation of & and §

Even if one employs the force factor technique out-
- lined above, one may still not obtain an energy lower than
the deuteron energy for a force factor equal to one. 1If
this is the case, one may try to find an approximate wave
function by using the same trial function but a somewhat
distorted potential. The potential is modified to retain
its overall features of repulsion and attraction but the
strength of the repulsive part is decreased, and the
strength of the attractive part is increased in order to
give a net result of greater negative potential energy.

We realize this situation by multipiying the repulsion by
(1-€) and the attraction by (1+6). If we denote the

(r)

repulsive part of the potential by Vv and the attractive
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(a)

part by V , we can do the same kind of self-consistent

calculation for e as we did for y provided we fix the
ratio g g . The input g is e(o), from which E(o) can

be calculated using

(), ()

_ (k) (r) (k) (a)
E(k) i?j a; 3 [Tij + (l-¢ )Vij + (1+fe Vij ]
'Z. ai(k)aj(k) Nij
-

(5)
(1)

We obtain ¢ using relationship

3 a, Ky ) (g B el B,

(k+1) 1,9 * J ‘exp 1ij ij ij
£ =
I g, g, Lk
- | j
447

(6)

Vi v, @)y, ()
1] 1]

The convergence of this process, like that of y, is very
rapid. We can minimize € with respect to the non-linear
parameters. We can then use the parameters obtained in a
calculation with e=o0 and determine the binding energy; or
else we can use the result obtained with the distorted
potential and calculate the correction to it by the use of
first order perturbation theory. The energy correction is

given by

(r)

<] (ev'T) - £ev @y ys, (7)



CHAFPTER V

THE POTENTIALS

The calculations were done with several poten-
tials. The Bressel and Reid potentials are of physical
interest since they have recently been developed and fit
quite a number of data. These potentials have not been
tested in the triton but seem to give good results in
nuclear matter. The calculation with the Pease-Feshbach
potential is not so much of physical interest but more
as a check on the method that we employ. Calculations
of the triton have been performed with this potential
(PF52; BDL62) and we can compare our results with those
obtained using different trial functions. To get an idea
of the suitability of our trial functions with soft-core
potentials, we do also a calculation with a central soft-
core potential derived by Coester and Yen (CY63). The
binding energy of the triton is caleulated for the
Coester~Yen potential with both exponential and Gaussian
type trial functions that we use throughout the rest of

our work.

The Reld Potential

The Reid soft-core potential was fitted to the

108
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phase shifts of Arndt and MacGregor (AM66). The phases

which are given for energies up to 350MeV are fitted by
adjusting the parameters in the potential until the
calculated phases are the same as those of Arndt and
MacGregor within two significant figures in most cases.
The potential also fits the low energy scattering data

and the deuteron quadrupole moment. The potential fits
the phases almost as well as the experimental data fit

the phases (R68, p. 6). The potential is given separately
for each LSJ state. It has no hard core and is given by

the analytic expressions below.

-

The potentials are in MeV. X = pr where p = .7 fm ~ and
2
éﬁ'= 41.47 MeV fmZ.
1 e—x e—4x e—7x
S : V= -10.463 — - 1650.6 + 6484.2
o X X %
1 erx -2% e—4x
D2 s V = -10.463 - 12.322 = - 1112.6
X X
e—?x
+ 6484.2
X
1 e—x e—2x e-7x
G4 : V= -10.463 —— - 39,025 + 6484.2
X X X
3p . vo=-l0.463 [(L+da byl (16, 4, i ]
o * - il X 2 X X 2 X
X X
-2X -4x
¥ 275233 = ~ 790,74 % =
-7x

+ 20662, &

S



-X -4x

3 3 WP 8 2 . 6
Pl V—10.463[(1+§+—7)T_(§+__2.) x]
; X X
e—2x -3x
- 135.25 472,81 =
- -4x
3 . 5 2 2 g 8 2 e
Fy @ V=10.463 [(L+ 2+ 5) S—- (-+—5) S—]
X X
e—4x
- 729,35
il e—x e—2X e—3x
Py V = 31.309 S = 634,39 s . 183 o8 B
X X X
- -4x
3 _ 2 > Y M 8 2, e
D2 : V= - 31.389 [(1 + = + — ) et ( = + oy ) =
X X
-2X -3x
~ 920,12 % A

For the coupled states VvV =V, + V_, S + V. Ysb

C =12 LS
- -4x -6X
3 3 D483 & e e
P2 - F2 : VC = 3 ~ 933.48 + 4152.1 Prisgioen
-X
_ il il 1 e
VT—10.463 [(§-+§+'—2)T
X
-4x -3x
4 1 e e
X
e—6x
VLS= -2074.1
3 3 i P i
- . o e 4 L
Sl Dl : VC 10.463 = + 105.468 3
-4x -6X
e e

=~ 3187 +8 + 9924.3 S
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3 3 emx
Vo = - 10.463 [(1 + 2+ — ) S—
pe
_ -4x -4x
12 3 8 . i -
- (T =5 ) S 1+ 351.77 S
X
e~6x
- 1673,5 S
e—4x -6x
T 5 8,00 S = I719.1 9_§~

LS X

In the other states, the one-pion-exchange potential,

Voprp’ is employed; alternatively one could use the

potential from the highest J state of the same spin and

isospin.

-

% 1w
=

N W
p—_

|
()]

A 5 5
B A o g e T © N { s
VopEP 3 (1*%5) Loy =ag) + B, 0 4 ,

There are three kinds of integrals that must be evaluated

when calculating the matrix elements for the Reid poten-

-Bx -Bx - Bx
i s T | I )’ ] . e e e
tial, corresponding to terms like — T W™ s
b7 X’

To facilitate the evaluation of these integrals we transform
them into repeated integrals of error functions (G61).

The integrals correspcnd to potential shapes given above.

-X .
3 e ;
For the shape -—— , we have integral
; X
2n+1

2 _—
g ~{(Ap” + V2up)
Eln,d,0) = 2 % J .

21n-3 o
o ap

VY2 u
where (2n-2) is the exponent of p in Table III-2. In the
notation of Chapter III n =1,2,3,4,5,6,7 corresponds to

integrals A,B,C,D,E,F,G respectively. 1 refers to the
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ined in Table III-4. The argument 0 is

dependent on the range parameters, o = ~%: ) Dbl -
2\ v2(A, + A.)
1 3
We can write the integral as
2n+1l =
2 2 2
Aln,d,n) = —2— A __ &% | (z-a)? &% 4y
u/2x (V) "
0+l
2 -
Kln,i,a) = i_ . T e Kg (2n-1) !} g erfc(a)
w2x (V1) .
o1 : th : .
i7" (n2o0) is the n power of the integral operator
i = J , so that
o
.0
i erfc (o) = erfc (o)
i erfc (o) = J 1%L erfe (1) at
o
e X 1|
For shape o 7 A(n,i,a) = E.M2n—l (a)
For shape -— , A(n,i,0) = —5 M, , (a)
20
e 1
For shape 3 " A(n,i,0) = ~M§'M2n-3 (o)
X 4o
az n
= YT e n! i erfc (a).

where M_ (o)
n

It can be shown

shapes, the expr

. ar b

For shape S

_BXA

For shape S
X

that for the more general potential

essions are only slightly modified.

A(n,i,Ba) (Ba)

A(n,i,Bo)



-Bx ;
e ’ A
For shape X3 ’ A(n,l,B@) == 4—073— M2n—3 (BOL) &

The Bressel Potential

The Bressel potential is derived from the
Hamada-Johnston potential (HJ62) by replacing the in-
finite repulsive cores by finite cores of different
heights in different states. The Hamada-Johnston poten-

tial is of the form

> >
V = VC + VT 512 + VLS LS + VLL le

where C, T, LS, and LL refer to central, tensor, linear
> > K > > y " .
eL.-S and quadratic L-S potentials, respectively. le is

the operator defined

Ly, = {6, + e{11.352) 5y 12 & (2.3)2

VC’ VT' VLS' and VLL are given by

Vo = .08 (D) (1) .22y 31 32 yyixy 11 + a_ ¥ (x)
+ b ¥° )]

vp = .08 (D @32 FW 3P+ a Y
+ by v2 (%) ]

2
VLS = m GLS Yo (x) [1 + bLS Yi(%)]
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TABLE V-1

Parameters of the Kerman-Bressel Potential

Core Heights

.S T ;5 T8 TS
State o i S VC VT VLS VLL
Singlet even 1 0 670 - 46
Triplet odd G i} 670 -50 -374 332
Triplet even 0 1 467 99 ~157 224
Singlet odd 0 0 468 - 46
TABLE V-2
Parameters of the Kerman-Bressel Potential
Potential Parameters
State T S aC bC 2 bT GLS bLS GLL aLL bLL
Singlet even 1 O 87075 10,6 e -.2
Triplet odd 1 1 -11.2 3.28 -1.29 .55 .1961 -7.12 -,000891 -7.26 6.92
Triplet even 0 1 6.0 -1.0 -.5 .2 .0743 -.1 .00267 1.8 -.4
Singlet odd 0 O -8.0 12.0 -.00267 2.0 6.0

a1T
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Z (x)

. v2
VLL = m GLL Xz [1 + ar, Y(x) + bLL a5 8 B
_ g
where m is the pion mass, Y(x) = sty and
Z(x) = (L+ 2+ ;% ) Y (x)

X 1is measured in terms of pion Compton wavelengths

X (core radius) = .4852 meson Compton wavelengths.

The core heights are given in Table V-1. The meson mass
nn
(pp)
T=1 (np), and T = o (np) giving 137.11, 133.08, 137.34MeV

was adjusted by Bressel for the three states T = 1 .
respectively. Charge symmetry is preserved but this poten-
tial is not charge independent. Some of the Hamada-
Johnston potential parameters were amended and the latest
parameters are given in Table V-2. The potential was
fitted directly to a set of experimental data ranging in
energy from 0 to 350MeV. Since additional parameters are
used as compared to Hamada-Johnston, the fit is bound to
be superior.

In our calculation we wish to work with a charge
independent potential. We take, therefore, a weighted
average for the meson mass in the T=1 state..

1

137.34MeV u .69601615 fm

1l
1l

For T=0 , m

1

For T=1 , m 135.77MeV u .68804275 fm

1l
Il

As for the Reid potential, we must evaluate the matrix

elements which turn into integrals of the type

231

2 .
A 2(3-1
. {3-1)

Tr__A

_)\pz

A(§,i,\) = e v (p)dp
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Only the last argument of the A differs from the A

defined for the Reid potential. The a and A are related

through the equation o = -2 . We can write this as

V2X
integrals corresponding to the soft core region plus

integrals over the remaining region. If ¢ is the core

radius, and Vc i the core height in the ith state,
14
29+1 c 2 25+1
Al5,4,%) = 4% * ¥ ] 573 &R 4y 4 ogn 2
c,i
o)

N =0 2
- J p2J e~ Ap” V, (p)dp
C

The second integral we evaluate numerically; the first
integral can be expressed as an incomplete gamma function,
which in turn can be expressed as a confluent hyper-
geometric function (AS64, pp. 260-262). Then we write

23+1

: L _ 2 25+1 1 z z
A(j,i,2) = 4 Va,i ® <2j+1 VI VAT Y

where z = —Ac2

The Pease-Feshbach Potential

For comparison with other people's work, we use

the potential of Pease and Feshbach (PF52). It is poten-
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tial #3 in Table II of that paper. The potential has the

form
= o - . > (1) .’*(2) ¥ r
Vo= = {[1 59+ 590 o] E(—= ) + vS,, £(z=)
¢ t
o
where f (x) = -

The constants in the potential are

V. = 46.96 MeV

o
g = .005
Yy = .5085
ry = 1.70
r
t
g 5 1.44
c

This potential fits the deuteron binding energy, the
deuteron quadrupole moment, the singlet scattering length
and effective range, and the triplet effective range.
This potential we write in the same form as the Reid
potential, so that the matrix elements can be evaluated

the same way.

e—l.21008ur ,
Singlet states: V = -38.42 I with u= .7
e—l.21008ur
Triplet states: V = -38.81 Y
~.84034ur
-28.4162 Sq2 T

This potential is attractive, and consequently it should

be much easier to find a good trial function since we
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need not build in the trial function correlation due to

short range repulsion.

The Coester-Yen Potential

The last potential is one developed by Coester
and Yen (CY63). This is a spin-dependent central Serber
potential whose volume integral is zero. The feature
that makes it suitable for our purposes is that it has a
soft repulsive core as well as an attractive part, both
of Yukawa shape. It predicts the low energy scattering
parameters and fits roughly the Yale phase shifts
(BHLP60) for the S and D states. The potential has the
form V = V_ (4e” 2T _ &"WEy /ur  with parameters given

in Table V -3,

TABLE V-3
5 Vo(MeV) u/mﬂ
0 2126 2.81
0 2307 - . 92%
1 3991 3.26

where B = 1.413 fermis.

*These parameters are used in the present calculation.



CHAPTER VI

NUMERICAL CALCULATIONS AND THEIR INTERPRETATIONS

The Rayleigh-Ritz variational calculation gives
an upper bound of the ground state energy by varying the
parameters in the trial function until a minimum of the
ehergy is found. 1In this way one acquires the lowest
upper bound of the ground state energy that can be ob--
tained within the class of trial functions employed. The
difference between the actual ground state and the upper
bound is smaller the closer the variational wave function
is to the actual wave function. However, since the lowest
upper bound is stationary for the parameters in the trial
function, the difference in energies is an infinitesimal
of higher order than the difference between the actual and
variational wave functions (M62, chapter 18). A good
check on a trial function that gives a reasonable upper
bound on the energy is to use it to calculate other
physical observables. In our case we calculate the mass
radius of the triton and the D-state probability. The
latter quantity, however, is even more uncertain in the
triton than in the deuteron (P62, chapter 5.1) because one

would expect the exchange effects to be enhanced by the

120
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smaller size of the triton. Estimates anywhere between
2% to 8% should not be considered inconsistent with

experiment.

General Procedure of Performing the Minimization

In the present calculation one can distinguish
between two kinds of minimization. A minimum can be
found by varying the linear parameters only by the matrix
diagonalization technique described in Chapter IV. One
then assumes the non-linear parameters to be fixed. In
the second kind of minimization, one varies the non-linear
parameters also and performs a linear parameter minimiza-
tion for each set of non-linear parameters in the non-
linear parameter search process. In this way all the
parameters are varied. Whenever we refer to "minimization
with respect to the parameters" we mean it in the latter
sense, i.e. a minimization with respect to both the linear
and non-linear parameters.

In general, when we minimize some guantity, irre-
spective of whether it be the energy, force factor, or e,
we follow the procedure that we outline below. We initially
determine the state that will dominate the overall wave
function, either by general arguments about the relative
magnitudes of potential and kinetic energy, or by trial and
error. Whether we have found the dominant state or not,

will become evident when we calculate the amplitudes of the
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component states in the overall wave function.

We calculate the quantity that we wish to minimize
using two or three non-linear parameters in the dominant
state. Our initial choice of input values for the non-
linear parameters is based on certain physical considera-
tions. The root-mean-square radius of a Gaussian with

range parameter ) is 3 . When we take the triton radius,

2A
i.e. 1.7 fm., to be the approximate size of the distribution

we use Ai v .25 fm“2 as one range parameter. We then need
one or more larger parameters for short range cancellation
when we have a repulsive core and one or more small para-
meters to pick up the longer range attraction of the poten-
tial. It is impossible, however, to simulate e %P behaviour
with a sum of Gaussians for large p. It turns out that non-
linear parameters found by searching for a minimum will have
valves by and large between .05 and 5. indicating that the
search routine finds parameters of the order of magnitude
that we expect.

After we have made our initial choice of the number
and values of the non-linear parameters, we minimize with
respect to these. We then add one non-linear parameter at
a time, and minimize with respect to all of them to obtain
a new minimum. When the addition of a new parameter has
negligible effect on the minimum, i.e. of the order of 1%
or less, we stop adding more parameters. Having obtained

the number of non-linear parameters we need in the dominant
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state, we use an equal number of parameters in each of

the other states. The parameters in each of the other
states are determined by leaving the non-linear parameters
in the dominant state fixed and varying the parameters of
the additional state to obtain a minimum. This is done

for each state in turn so that we end up with a set of
non-linear parameters for each state. With the non-

linear parameters so obtained, we minimize with respect to
the linear parameters to obtain the final result. Ideally,
one should do a variation of the non-linear parameters
also but this would take too long even on modern high-
speed computers. The approximation, however, is not as
bad as it seems. In the case of the Pease-Feshbach poten-
tial we do a variation with three states according to this
procedure. After we have found the minimum in this way,

we start with the parameters for this minimum and continue
to vary all the parameters. The increase in binding energy
turns out to be less than 1%.

Initially we are interested only in an approximate
value for the minimum which may differ from the precise
minimum by as much as 5%. This is true throughout for the
force factor and €. We therefore minimize until the
approximate minimum changes by less than 1%. Minimizing
until the parameters have this accuracy would require many
more passes. We feel that this is not necessary except

when doing the final minimization of the energy so that
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the most accurate wave function can be found. The radius
and component-state probabilities are calculated only as
a final calculation.

When we are searching for the minimum, it is
possible that the minimization procedure might want to
evaluate the function for parameters which include one or
more negative Ai's. This is, of course, an unphysical
region in parameter space, and the integrals for the
matrix elements diverge. To prevent having to deal with
negative Ai's we transform the parameter space into one

in which the effective parameters are Ai' . . The

square root reduces the difference between tgéiparameters
so that the same increments can be used for all parameters,
and the reciprocal ensures that as the effective para-
meter Ai' is increased, Ai will approach zero but will
never become negative. Another effective way of searching
for a minimum which does have the possibility of looking
at parameters which are negative, but it never has in our
experience, is to work in a parameter space which has the

same parameter directions as the actual parameters but the

parameters are scaled down by the magnitude of the input
X
: T ') : .
parameters, i.e. Ai X Input ° If one takes a range
: 4
of input parameters between .l and 5 with increments of

.05 in the search procedure, one finds that the parameters
do not become negative under normal circumstances. It

must be remembered that before calculating the matrix
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elements we must apply the inverse transformation on the
parameters and after calculating the energy we must
transform back to the parameter space in which the
searching is done. |

The matrix elements are calculated using the ex-
pressions given in Chapter III. We need matrix elements
for the normalization, kinetic energy, and the potential
energy. When we calculate & we ﬁave to write separate
matrices for the repulsive and attractive part of the
potential energy. For the Pease-Feshbach, Coester, and
Reid potentials we use the closed expressions given in
Chapter V. The repeated integrals of the error functions
are evaluated in three domains. When a & .5 a power series
expansion is used

o k k
.n N (-1) o
i” erfc(a) = I — s

k=o 2 ki 'l —7—)

with terms corresponding to k = n+2, n+4, ... being zero.
For arguments of this order of magnitudée, the series con-
verges very rapidly and no subtracting of big numbers
occurs to give a small result, which is the case when
o > 1. The repeated integrals of the error functions are

regular solutions of the differential equation

—% + 20 7% - 2ny = O (1)

The following recurrence relation exists (G61)
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erfc(a) + 5% -2 erfc(a) (2)

i" erfc(a) = - 2 i

In order to calculate ik erfc (o) we can generate the

sequence wg(a), (v=n, n-1,..., 1, 0, -1) starting with
n . n - -39 . :
wn+2(a) = 0, wn+l(a) = 10 and using relation (2) for

the remaining members in the sequence. Gautschi (G61)
has shown that

n
lim wk(a) v a2
n-—re Wn () 2

-1

e ik erfc (a) (o > 0).

In order to obtain accuracy of 1 part in lO8 we use the

relation

V;<2/’2N0L+81n10+1n2>2

2/2

where N is the largest k we have to evaluate, i.e. N=13.
For o=5, v > 25 will give such an accurate result. As qo
increases v becomes smaller, but as o decreases v becomes
large. It is more efficient therefore to calculate a
table of values of the repeated integrals of the error
function for a range of arguments lying between .5 and 5,
and then to interpolate in order to obtain the value at

the required argument. It turns out that

2
fn(m) =n! e v7 i" erfc(a)

is a monotonically slowly decreasing function. We calcu-
late i™ erfc(a) by integrating the differential equation

(1) from o=5 to a=.5. The initial boundary conditions
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are obtained by using the method of the recurrence

relation outlined above, and noting that

.a%- i erfc (o) = ~35=1 erfc (o) 120, 1, 2,50

The functions fn(a) were tabulated for n=1l,...,13 and
for a=.5 to 5. with steps of .05. For the interpolation
we used Aitken's method and fitted a sixth order polynomial
to the six nearest values in the table. Near the values
o=.5 and a=5. adjustments were made so that the inter-
polation process used the end point and the nearest five
inside the domain (AS64, p. 879).

No closed expression can be obtained for the
Bressel potential matrix elements, and therefore we use
the series expansion of the integral for the core region
and use Simpson's rule outside this region. The number
of intervals and the distance of the integration is
determined by the accuracy of the integral that is required.
We integrate to the distance in which the magnitude of the
integrand has fallen to 10_8 of its maximum value, and we
keep doubling the number of steps until the value of the
integral changes by less than 10—4.

The diagonalization of the matrices is done by the
Jacobi method as written up by Greenstadt (RW59, chapter 7).
The computer code was available in the subroutine library
of the McMaster computers and was called from there whenever

it was needed.
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Pease-Feshbach Potential

The Pease-Feshbach potential is attractive every-
where. It is expected that the symmetric S-state of the
type Tl is most effective in binding the triton with this
potential. Wl has less curvature and consequently less
kinetic energy associated with it than the other symmetric
4 : and VY

S-states, VY Furthermore, it can take

- S S - L 10°
greater advantage of the attraction at zero interparticle

distance than states like VY WG’ and ¥, that vanish when

5t 8

p is zero. It is not difficult to obtain binding with ¥y
In Table VI-1l we give the results when we include four,
five or six terms and minimize the energy until the para-
meters are constant to within .0001. This usually takes

a relatively large number of passes, i.e. of the order of
ten for four terms, depending on the initial choice of

the parameters. It is seen from Table VI-1 that the
energy changes very little as we increase the number of
parameters. The small change in energy is about 1% of

the final energy that we obtain when we use all the states.
We feel, therefore, justified that for a calculation such
as this one which is designed to test the wave function

we use only four parameters per state. These four para-
meters are varied until the energy minimum does not change
by more than 1%. That the difference between the two

methods is not very great is evident from Table VI-2 where

we have similar results as in Table VI-1 except we minimize
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the energy until a change of less than 1% in the energy
occurs in one pass. The fact that the five parameter
case does not produce as low an energy as the four para-
meter case should not be alarming because the difference
is less than 1%.

In Table VI-3 we list the energies obtained as
we add four terms of another state and vary the non-
linear parameters of the added state only; all the linear
parameters are varied each time the energy is evaluated.
The trends are very clear from this arrangement of energies.
The relative importance of each state is indicated by the
amount that the additional state increases the binding
energy. If the vectors 3 and T havé angular momentum
assigned to them, it is expected that the %=o0 state for
both vectors would be the lowest state of the system. We
write this as ss. The first s refers to the angular
momentum associated with 3, the second s to the angular
momentum associated with r. We can write down such con-

stituents of the states in our work.

W4 ~vosd, ds, pp
Y N~ ss, dd

Y ~v ss, dd, gg
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Y, ~ sd, ds, pp, pf, fp, £f
¥, ™~ 88, dd, ag, 11

Y, ~ ss, pp, dd, ff

Since wS has a definite ratio of ss and dd components,
it will not bind the triton but since ¥q is pure ss it

does. For the same reason WS is more effective in in-

creasing the binding than WG or Wg and £y is more effective

than W7. One would expect WlO to have more influence
since it is also a symmetric S-state with the lowest

g " * >
possible excitation of the p or r vectors. There may be
two reasons for its apparent ineffectiveness. In the first
place, it has more kinetic energy associated with it than

does Wl, and secondly this function can be approximated by

a pair of functions of the type found in Wl’ i.e.

2. .2 2, .2
- + a - 41
(p2+r2) " ApT+rT) _ _ 2 e x{pT4x")

—A(p2+r2)

2, 2
o (A4-40) _(fi__:r ) § B

AX

~

for A)X small. Any two terms in Wl with range paramcters
which are almost equal and coefficients which are equal
but opposite in sign will give a term of the t?pe found
in ¥;,.. If functions of the latter type are desirable in

the calculation, the search procedure will adjust the

parameters of Wl in such a way as to simulate a term of
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WlO’ Functions of the type WS seem to have more effect
on the binding because they have different shape, and no
simple relation exists between Tl and WS as did between
Yl and Wlo. Furthermore, WS does introduce D-state two-
body forces in the problem which help in the binding of
the triton.

If we do a linear parameter minimization only
with the range parameters found for Wl, W4, and Ws, we
obtain an energy of -4.219MeV. If we minimize further
with respect to the non-linear parameters we obtain a
decrease in the energy of less than 1%. We feel, there-
fore, that the approach of using all the non-linear para-
meters that have been obtained systematically and minimize
them with respect to the linear parameters only is justi-
fied. The final result of the Pease-Feshbach calculation
is given in Table VI-4, Using the range parameters of
states Wl, W4, WS, WG' W7, WS, WlO we obtain a force
factor equal to 1.077 with binding of 8.5MeV.

Although this calculation employs more free para-
meters in the trial function and includes more states
than the Pease-Feshbach calculation (PF52), the energy
that we obtain is higher than the energy that they calcu-
lated, i.e. -8.48MevV. Blatt et al. (BDL62) have been
able to obtain upper bounds on the energy of the triton

with the Pease-Feshbach potentials which are about 1MeV

lower than those obtained by Pease and Feshbach themselves.



Thus Blatt et al. get about $.5MeV binding which is

almost twice as much as we obtain. They do use a more
elaborate wave function and more states. Even with a
longer more accurate parameter search, we could not hope
to come close to their binding energy. In fact, we have
to increase the potential strength by more than 8% to

come close to the value for binding that Blatt et al.
obtain. Their estimate of the Coulomb radius is about

25% smaller than that calculated from the observed Coulomb
energy in He3. The discrepancy of Pease and Feshbach
(PF52) is even greater. The radius that we obtain when
compared to an estimate of the mass radius of point
particles in the triton, is about 10% too small. The pexr-
centage D-state is the same within the relatively large
uncertainty limits that we have placed on it.

The conclusion that we have to reach concerning
the method is that the trial function we use is not as
good as the one of Pease and Feshbach or the one used by
Blatt et al. In both of the latter calculations
trial functions with exponential decay for large inter-
particle distance are used whereas our functions decay like
Gaussian functions, and therefore not enough of the long
range attraction of the potential is felt. The tensor
force contribution to the energy is calculated to the same
proportion as in the other calculations since the D-state

probabilities are the same.
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If we would want to make improvements on our
trial function, the symmetric S-state would stand in
need of the greatest modification. This conclusion will
become even more evident from the calculations with the
other potentials. The fact that we obtain a larger
radius than the previous calculations is also due to the
superposition of Gaussians in the trial function. The
Yukawa shape of the potential gives a faster increase in
the strength of the potential as the interparticle dis-
tance becomes smaller. The superposition of exponentials
in a wave function can also yield a faster increase in
amplitude as the interparticle distance becomes smaller.
The amplitude of the sum of Gaussiams increases more
slowly for smaller interparticle distances and there is,
in fact, a decrease in amplitude when the Gaussian is
multiplied by p2, p4, ... This is due to the fact that
Gaussians have zero slope at the origin whereas the ex-
ponential function has slope equal to its decay constant.
For the Yukawa shape of the potential a sum of Gaussians
tends to pick up a greater proportion of the attraction
in the intermediate region than the superposition of ex-
ponentials which picks up most of the attraction at small
interparticle distances. This explains the relatively
large radius that we have obtained. It is noteworthy that
the 8% deviation of the force factor from unity is equal
to the fraction of potential energy that is needed in

order to give experimental binding energy.
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TABLE VI-1

Minimizing the Energy with the Pease-Feshbach Potential

Number of
Range
Energy (MeV) State Parameters Range Parameters

-.891431 Mev Y 4 .037269
«1552383

.553344

2.209480

-.934747 MevV ¥ 5 .025930
.097282

« 311558

991568

3.799778

-.945459 Mev ¥ 6 017321
.058478

.170384

.476221

1.414916

5.326559

The energy is minimized by varying the parameters until

the parameters do not change by more than .0001.
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TABLE VI-2

Minimizing the Energy with the Pease-Feshbach Potential

Number of
Energy ~State Range Parameters Range Parameters

-.6683 Wl 3 078593
.310427

1.240213

~x 8363 ¥ 4 .062593
.942900

.268458

3.788709

-.8345 b 4 5 .065689
B TLT D

.943608

2.478820

7.241909

The energy is minimized by varying the parameters until a
change of less than 1% of the energy occurs in one pass

of the minimization.
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TABLE VI-3

Energies Obtained with the Pease-Feshbach Potential

Energy (MeV) States Type of State Added
- .836 Wl -
- 836 Tl, Wz mixed symmetry S-state
- 836 Wl, W3 symmetric P-state
~3« 614 Wl, ¥y symmetric D-state
-1.530 Wl, WS symmetric S-~state, (Ex;)2 Wl
-1.236 Wl, W6 symmetric S-state, (Ex?)4 Wl
-2.839 Wl, W7 symmetric D-state, (Ex—f)2 W4
-1.071 Wl, W8 symmetric S-state, (—Sx—f)6 Wl
- 836 Wl, Wg mixed symmetry S-state, (Bx—f)2 Wz
- .934 Wl, Ylo symmetric S-state, (p2+r2)‘¥l

The basic Wl state is the one with the second set of para-
meters in Table VI-2. The non-linear parameters of the
additional state and all the linear parameters are varied

to give a minimum.



TABLE VI-4

Minimization of the Energy with the Pease-Feshbach

Potential with Respect to the Linear Parameters Only

Non-linear Parameters

State

e OH e e RE e HE e wE g
W 0 N o U1 & W N -

=
o

Parameters

.065293
»116651
.070648
.083253
+090107
053228
.083684
.068727
.117906
.031624

Linear Paramecters

State

-
O 00 g O U1 &» W N =

e e E v € g

=
=
o

Parameters

.299246
.007624
.007032
-.016340
-.022878
.028832
.006604
-.025693
-.001524
.012829

.949900
.405457
.340306
1.060123
.487312
.754226
1.380015
1.027624
.466435
.474113

.381735
+011769
.043550
- 023534
- o 09002
.240685
-4 030707
-.091354
.000657
+018835

.268458
1.206929
3.748565

«341373

+181183

.195304

.503073

.268458
1.331884

«153030

.810426
.005860
-.002000
-, 028216
~% 025983
.046219
-.032506
-.014399
.001904
0699223

3.788709
3.553610
2.,179583
3.8910593
1.696295
2329725
3.99029%9
2.957207
4.388597
1.897196

.049152
.001564
.019157
-,009329
-.036144
.087046
-.016439
-, 036327
.000760
-.000279
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Energy = - 4.7919 MeV

Kinetic Energy = 42.1651 MeV

-46.9570 MeV

Potential Energy

R 1.56 fm.
rms =

PS = 96.76%

PS' = +15%

PP — e 24%

P = 2.86%
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The Coester-Yen Potential

The calculations with the Pease-Feshbach potential
indicate that the Gaussian type wave functions are unable
to produce the binding that exponential wave functions
will give. We subsequently did a calculation with the

Coester-Yen potential, which has a soft core, to see how
results with the Gaussian-shaped trial functions compared
to the results obtained when exponential trial functions
are used.

Although the Coester-Yen potential is spin-depend-
ent, we make the approximation that the force bond between
a pair of particles in the triton is l/2(Vt,e + Vs,e)
regardless of the two-body spin-state (BW52, p. 195). We
have sketched the spin-averaged potential in Figure VI-2.
With such a potential we can obtain results only with the
6" Ws and

are used in this calculation. These states have only

synmetric S-state and therefore states Wl, WS, L
10
even two-body angular momentum components because of the
total symmetry of the spatial part of these functions.

When we calculate the energy directly, we obtain no binding
with our usual set of the Gaussian type wave functions.
Thus, we proceeded with the force factor. The results are
tabulated in Table VI-5. The force factor is negative
when either state Wl or state Wlo is included. This is

understandable since both these states have relatively

large amplitude at the origin where the repulsive part of

140



141

Figure VI - 2
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the potential is strongest. Ve is the dominant state

since it is zero at the origin and has the least amount
of internal excitation of those states that are zero at
the origin.

We follow the same procedure as with the Pease-
Feshbach potential to obtain the non-linear parameters in

states Y ¥ and VY except that in the Pease-Feshbach

5" "6’ 8"

case the energy is minimized whereas in this case the

force factor, ¥y, is minimized. For states ¥, and VY we

i 10

obtain the non-linear parameters by minimizing the energy
of the system with the potential multiplied by the force

factor found using Y. only. The results are given in

5

Table VI-6. If we do a linear parameter minimization of

the force factor using the non-linear parameters of ?5,

k4 and Ws, we obtain a force factor of 1.4152., Using

6'
all the non-linear parameters that we have obtained so
far, we minimize the energy with respect to the linear

parameters when y=1.4. The results are tabulated in

Table VI-7. The angular-averaged wave function is drawn

in Figure VI-3 for three values of r=|; .
In order to be able to compare the results for

different force factors with similar results of calcula-

tions with the exponential trial functions, we obtéined a

set of values for the potential, kinetic, and binding

energy for different y. The variation of these quantities
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with respect to y is shown in Figure VI-4.
The calculation of the binding energy of the
triton with the Coester-Yen potential was done also with
a different trial function. The new trial function

assumed the form

¥ = f(rlz) f(r23) f(r3l)

1 ¥ o % : x :
where f(r) = — I c, e i with I c¢.,=o. This form
YT i=o * ji=o *

of trial function was chosen because it falls off like an
exponential function at large distances. The factor —%
is inserted because van Wageningen and Kok (VK67) foung
that exponential trial functions of this type multiplied
by r 2 gave the best results in a triton calculation when
n oy 1/2. The sum of the coefficients is zero to ensure
that the wave function is zero for zero interparticle dis-
tance.

We have derived formulae for the potential and
kinetic energy using this trial function in Appendix B.
We search for a minimum in the energy using the non-linear
parameter search routine (M67) for all the pérameters.
The decay constants of the exponentials are all free para-
meters, but the coefficients have certain conditions
imposed on them, depending on how we wish to suppress the
wave function at the origin. One condition on the co-

efficients determines the normalization, another that

fiv)=o.
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It turns out that we are unable to obtain binding
with only two terms in f£(r). In this case, we have only
two free parameters with respect to which we minimize the
energy. With threc terms and the condition that
f(o) = £'(o)=0, we arrived at some binding as indicated
in Table VI-7A The f'(o)=o condition prevents the func-
tion from increasing too quickly near the origin. When
we set £"(o)=o in the case of four parameters we do get a
substantial increase in binding. The reason that, when we
use five terms and the additional condition of f£''? (o)=0,
we do not obtain as much binding is that the function
rises too slowly near the origin and does not feel all the
attraction of the potential. We therefore relax the con-
dition £'''(o)=0 and use the additional degree of freedom
to vary one of the coefficients. Since we obtain an
increase in binding of only .5MeV in the two best calcula-
tions, we feel that the further addition of terms will not
increase the binding appreciably. The final results of

the calculation are

Il

Energy - 7.296 MeV

37.240 Mev

il

Kinetic Energy

-44 .,536 MeV

i

Potential Energy
Rrm.s. B 1.67 fm
Reoutomb = 2.39 fm

Within ﬁhe approximations of this simplified calculation,

the results agree well with the experimental values (the
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Coulomb radius, calculated from the Coulomb energy in He3
with the assumption that the charge is distributed uni-

formly throughout a sphere of radius R i 2.3 £n

Coulomb’
(D64, p. 69)). Figure VI-5 is a graph of f(r); the
behaviour of this wave function as a function of r is
independent of the position of the third particle.

We did the same calculation for several values of
the force factor in order to study the behaviour of the
potential, kinetic, and binding energy as vy varies. The
results are shown graphically in Figure VI-6. When this
graph is compared to Figure VI-4, it is seen that the ex-
ponential function gives consistently better results for
all y. The difference in the binding energy which is seen
in the two graphs must be attributed completely to the
different trial functions used since the potential is the
same in both instances. In order to be able to predict
the correction that must be applied to the binding energy
calculated with the Gaussian type wave function, we have
plotted the uncorrected binding versus the correction as
obtained from graphs VI-4 and VI-6. This graph (Figure
VI-7) turns out to be nearly a straight line. This
correction may be thought of as being independent of the
potential used but dependent only on the fact that one
calculation is done with a superposition of Gaussians

whereas the other with a superposition of exponentials.
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Figure VI-~6
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Figure VI-7

Correction to Binding Energy vs
Binding Eneargy

60T
AB

(MEV)
40T

| : '

:
o

20 0 20 40
BINDING ENERGY (MEV)

150



151
Figure VI-7 is independent of potentials provided that
potentials of the same qualitative shape are used, i.e.
potentials having a soft repulsive core followed by
attraction. The deviation of the Gaussian type wave
function from the true wave function gives us the energy
correction graph. Tat the energy correction is due to the
behaviour of the wave function rather than the potential
can also be seen in the following way.
As we explain later, the functions which have the factor
(px%) 2 have an unphysical node when |7|=o, which intro-
duces extra kinetic energy. A large part of the binding
energy correction would come from the extraneous kinetic
energy. Figure VI-7 is valid then, in the first approxi-

mation when Y. is the dominant state, which is the case

5
for the soft-core potentials. Obviously, the results of
the Pease-Feshbach potential should not be corrected using
Figure VI-7.

We made a cursory survey of the values of € which
give -7.29 MeV ground state energy. We set §=o0 because a
small change in the short range behaviour is less likely
to have a pronounced effect on the low energy scattering
properties of the potential than is a small change in
longer range attraction. The values of € are given in
Table VI-8. € is smallest for states Wl and Wlo, i.e. for
those states which caused y to turn negative.

The upshot of our calculation with the Coester-Yen
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potential is that the potential provides an upper bound
to the ground state energy which is close to the experi-
mental energy when an exponential type trial function is
used. The Coulomb and mass radii of the system are pre-
dicted quite well with this trial function. Soft-cores,
like hard-cores, in the potential serve to push out the
wave function so that the correct radius is obtained.
This simplified model calculation, however, says nothing
about the D-state probability in the total wave function.
The calculation with the Gaussian wave function
gives no binding at all unless the potential is multiplied
by at least 1.2 or unless the core strength is reduced 20%.
In both cases, the scattering properties of the potential
are altered to the extent that the potential is completely
-unphysical. If we compare the shapes of the Gaussian type
wave function with the shape of exponential type wave
function (Figure VI-8 and VI-9) for the Coester-Yen poten-
tial multiplied by 1.2, we realize the short-comings of
the Gaussian trial functions. The superposition of ex-
ponentials (Figure VI-9) is able to suppress the wave
function near the origin almost like a wave function pro-
duced by a hard core. The Gaussian type functions
(Figure VI-8) are non-zero at the origin. They also fall
off faster for interparticle distance.greater than 2 fm.
In brief, the Gaussian trial function is deficient since

it picks up too much repulsion of the potential near the
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origin and toc little attraction from the attractive
tail of the potential. The magnitudes of these effects
may not differ greatly, as we remarked above, for

"similar" potentials, e.g. Coester-Yen, Reid, Bressel.
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Figure VI-8

Wave function for Coester ~Yen Potentiol
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Figure VI-9

| Graph of €(r) with Coesier-Yen Potential
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TABLE VI-5

Minimizing the Force Factor with the Coester-Yen Potential

Force Factor Energy (MeV) §E§Eg§
Negative -8.49 Wl
1.6629 -8.49 ?5
1.4593 -8,49 WS' WG
1.5164 -8.49 ¥5, WS
Negative -8.49 WlO

TABLE VI-6
Minimizing the Energy with the Coester-Yen Potential

When the Force Factor=1.6629

Energy Force Factor | States

~17 .00 1.6629 4

17 .03 1.6628 Yy ¥



TABLE VI-7
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Minimizing the Energy with Respect to the Linear

Parameters with the Coester-Yen Potential

Multiplied by 1.4

Non-linear Parameters

State Parameters
Wl « 116537 .457265 «921581
WS .109899 «573794 1.381125
Ws 155427 .821.037 1.595433
WS 185721 1.170600 4.013400
WlO .193349 .656363 1..582937

Linear Parameters

State Parameters
Wl -.007265 «339133 .067486
WS .024160 .268653 « 177943
WG -.047554 -.,712892 -.319796
WS .007313 .278860 .035842
wlO .031238 -.065665 -.044404

Energy = -10.96 MeV

Kinetic Energy = 71.12 MeV

Potential Energy = -82.08 MeV

R = 1.29 f£m,

r.m.s.

7.7511768
2.320126
2.254615
2.446182
4.722089

- +007583
.000359
-+ 226089
.160019
~. 008595



TABLE VI-7A
Minimizing the Energy with the Coester-Yen Potential

Using Exponential Trial Functions

Kinetic Potential Number Number of
Energy Energy Enerqgy of Terms Parameters Conditions on the Function
-3.728 25.492 -29.220 3 3 f(o)=£"(0)=0
-6.718 35135 -41.849 4 4 f(o)=£f'(o)=£f"(0)=0
-5.286 26.851 =31 .137 5 5 f(o)=f"(o0)=f"(0)=£"'""'(0)=0
-7.296 37.240 -44.537 5 6 f(o)=£f"(0)=£f" (0) =0

All energies are given in units of MeV.

881
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.3089

«3986

.7150

.3088

.2807

«3276

2217

TABLE VI-8

Energy (MeV)

=13

7«29

-7+ 29

=7 25

=T w9

il a9

-7+ 28
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Minimizing € with the Coester-Yen Potential (f=o0)

States
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The Reid Potential

In order to obtain binding with the Reid poten-
tial, we have to multiply the potential by y (y>1), or
its repulsive part by (l-g) (o € € < 1). WS is the
dominant state. The optimum number of terms in each
state is found to be four. We minimize y to obtain non-
linear parameters in each state for which y remains
positive. For the states for which y turns negative we

use the y found with ¥_. as a multiplier of the potential

5
and minimize the energy. With the Reid potential y is
negative when any one of Wl, Wz, W4, or Wlo are included.
These are the four states which do not tend to zero as p
approaches zero. We have given a table of results for ¥y
in Table VI-9 and for the energy in Table VI-10. We
obtain y=1.79 for energy equal to 8.5MeV when we use the
and

non-linear parameters in states V¥ Y

Yoo 7+ Ygr Yo

minimize with respect to the linear parameters only. The

‘y6, \il

final results of the triton properties with the Reid poten-
tial multiplied by 1.7 are given in Table VI-1l. The
angular-averaged wave function of the symmetric S-state
is sketched in Figure VI-10. Only a few calculations to
obtain ¢ were done and some of the values are tabulated in
Table VI-12, and discussed in the next paragraph.

Our wave functions will not bind the Reid potential
at all unless the potential is multiplied by a factor of at
least 1.6. The fact that no binding is obtained cannot be

attributed to the failure of the trial function to take



l6l

Figure VI-I10

S-symmetric wave function for Reid

potential with 7 =17
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account of the tensor component in the force. If we re-
place the 3Sl and 3Dl interactions by the lSO and lD2
interactions and do the calculation for the three-body
symmetric S-state, we obtain smaller binding than when
we include the three-body D-state and the proper potential.
In fact, this result supports our previous conclusion thét
the symmetric S-state needs the largest improvement. The
increase of the overall potential strength will tend to
condense the system; the small radius is derived from the
large vy, therefore, € is larger than with the Coester-Yen
potential. For the Reid potential, however, we have cal-
culated € for f=o for the two symmetric S-states, Wl and
Wlo only, and we know that large part of the binding must
be derived from the tensor force interaction between the
S- and D-states. In the Coester-Yen potential the tensor
contribution to the force is simulated by a stronger
central triplet-even force.

The perturbation theory approach in which the
change in the repulsive and attractive parts of the poten-
tial are both small, does not give a small value for the
first order correction to the energy. For instance, if
we minimize € where e=¢§ for four turns in each of the
states ¥ ¥ k4

N , we obtain £=8§=.098 for a

4 Y50 Ygr P90 Yyo
binding energy of 8.5MeV. The total potential energy,
however, is -135.67MeV and the first order correction to

the energy is 85.23MeV. Since our calculation does not



163

yield a set of excited states, we cannot find the second
order perturbation energy shiftr It is clear, however,
that the wave function is inadequate to describe this
system.

Since it is impossible to obtain binding with the
Reid potential except when the potential is multiplied by
1.6 or more, we attempt to apply the correction to the
binding energy that must be employed when Gaussian type
functions are used. In order to do this we must know what
the binding is at y=1. In Figure VI-1l we have plotted
the binding energy with the Reid potential versus y. When
we extrapolate to y=1 we obtain negative binding of -17MeV.
Using the correction factor from figure VI-7, we obtain a
ground state that is unbound by 4MeV. The final value for
the binding is a very crude estimate and should be de-
limited by the amount +7MeV. We do feel that this method
of extrapolating the curves is valid almost to within the
accuracy of the extrapolation because the correction in
the binding is mainly due to the Gaussian type wave func-
tion that we used. We expect the correction to be independ-
ent of the potential since the true wave function, consisting
mainly of the symmetric S-state in the case of the Reid
potential, would be almost the same shape for both the
Coester-Yen and the Reid potential. We have sketched the
lSo interaction of the Reid potential (Figure VI-12) for

comparison with Figure VI-2. In summary, the approximations
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that were used to obtain the binding are the extrapolation
of Figure VI-1ll to the binding for y=1, the assumption
that Figure VI-7 is a straight line and is independent

of the potentials used.
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Figure VI-1|

y and Binding with Reid Potential
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Figure VI-12
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TABLE VI-9

Minimizing the Force Factor with the Reid Soft-Core Potential

Force Factor Energy (MeV) ' States
3577 -8.49 WS
3491 -8.49 WS’ TG
1.951 -8.49 WS’ W7
3.292 -8.49 Ws, Wg
3.307 -8.49 WS, Wg
3577 -8.49 WS’ W3

TABLE VI-10

Minimizing the Energy with the Reid Soft-Core Potential

Energy (MeV) Force Factor States
~10.598 3.577 ¥y, ¥y
-12.516 3:577 ¥or Yo

¥

=10 565 351} L
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TABLE VI-11
Minimizing the Energy with the Reid Soft-Core Potential
Multiplied by 1.7 with Respect to the

Linear Parameters Only

Non-linear Parameters

State Parameters

Wl .122266 .920801 .804479 .901478
Wz .294021 1.404226 .428342 1.839198
W3 . 136587 .868400 .623400 1.200800
W4 .164765 1.277994 .475161 1.614081
WS .108433 .567439 Y 373216 3.191201
Ws 154444 .774191 1.265699 4.073700
T7 .181700 .724600 1.151000 2.152800
Ws «1.36212 8347577 1.,500319 5.485319
Wg .183700 .800000 1.402100 2.060400
Wlo «1.23803 .492203 1.261718 2.792553

Linear Parameters

State Parameters
Wl .006016 629632 ka0 T8 -.764094
WZ -.000234 -.000111 -.000164 .000077
W3 -.000143 -.000492 -.000065 .000539
W4 -.000191 .000241 -.000283 -4.000119
YS 001913 .012452 .002673 -.000292
WG ~«003079 -.030947 -.010784 .002589
W7 -.000811 -.00249¢ -.002014 -, 003279
WS .000173 010152 .007386 -.001205
Wg -.000045 -.000075 -.000108 ~ + 000399
¥ -.000711 -.001421 .000468 -.000016

=
o



Table VI-11 (Cont'd)

Energy = = 5.06 MeV
Kinetic Energy = 87.28 MeV
Potential Energy = -92.34 MeV
L = 1:.36€ T,
Py = 86.16%
Poy = .47%
PP = .03%
Py = 13.35%

TABLE VI-12

Minimizing € with the Reid Soft-Core Potential

€ Energy (Mev) State
.405 -8.49 ¥y
411 -8.49 ¥

10
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The Bressel Potential

Since again we could not obtain binding we
minimize y instead of the energy with the Bressel poten-
tial. WS is the dominant state and four is the optimum
number of parameters per state. When the trial function
includes states WZ or W3, Y is negative. The non-linear
parameters are determined by the same procedure that is
followed with the Reid potential. The parameters for
those states which allowed y to remain positive are deter-
mined by minimizing vy, the others by minimizing the energy
while vy is set at the value obtained from the calculation
with WS' The results are given in Tables VI-12 and VI-13.
Y is found by minimizing with respect to the linear para-

meters in states VY ¥ Y WG’ W7, Y Wg and its value

it 4T BT 8’
is y=1.7013. Finally, the energy is minimized with respect
to the linear parameters using all ten states and y=1.7.
The results of that calculaticn are given in Table VI-14.
The angular-averaged symmetric S-state wave function is
graphed in Figure VI-13. Calculations to find € with f=1
which should simulate the least amount of change in the
strengths of the potential indicate that the perturbation
approach is very poor since the energy correction is more

than half as large as the magnitude of the potential

energy.
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Figure VI-13

Symmetric S-state wave function o0f ihe
Bressel Potenticl with =17

L. 1 1 i
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TABLE VI-12

Minimizing the Force Factor with the Bressel Potential

Force Factor Energy (MeV) States
3.62 -8.49 WS
3.21 X -8.49 Ve, Y
1,99 ~-8.49 Ve, ¥
d.31 -8.49 Ve, Yo
3.48 -8.49 WS, Wg
3.18 -8.49 WS, wlO
3.18 -8.49 Wl, WS
2.49 -8.49 Wé, WS

TABLE VI-13
Minimizing the Energy with the Bressel Potential

When y=3.623

Energy (MeV) Force Factox States
102D 3.623 ‘ Wz, WS
- 8.49 3.623 Y L



TABLE VI-14
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Minimization of the Energy with Respect to the

Linear Parameters with the Bressel Potential When y=1l.7

Non—-linear Parameters

State

o - S

W €& 9 o0 i1 & W N+

HE e e

=
o

Parameters

«137500
.141688
.088429
.105625
« 257390
« 103227
.266875
.165844
.198250
127211

Linear Parameters

State

Ve e TRE RS T vE v TRE & RE R
W 00 N 6O U b W N+

(-]
o

Parameters

.3773417

-.011329
-.004006
-.006913
.036282
017566
-.041484
-.002070
.008023
-.010716

.368750
.422130
.436149
.401562
.671836
555229
.808537
» 988212
+539025
.441068

-,271386
- 010251
-, 013622
~,035139

«316735
~+211542
-+ 108102

033903
+,001633

.041845

.881250
1.947900

«967798
1.092187
1.556250
1.331927
1.631200
1.427300
1.304960
1.489678

+523136
-.032250
-.001180
.009339
053569
-« 3257161
-+ 105997
137185
-.020704
-.063696

1.762500
1.890200
1.460887
2.240625
4,.730625
3.931375
2.47500

2.320312
2.475000
6.015927

~-+140175
.035490
.001883
.000177
- Q06797
.054505
-.078428
007535
- BU7317
~-.002685
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Table VI-14 (Cont'd)

Energy = - 8.98 MeV
Kinetic Energy = 69.34 MeV
Potential Energy = -78.32 MeV
R = 138 fm.
r.m.s.
Py = 86.81%
Poy = .36%
PP = .04%
P = 12.79%
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Comparison of the Trial Functions

We have found that the Gaussian type of trial
function will bind the triton with the Pease-Feshbach
potential but not with any potential that has a soft
repulsive core. The exponential function will bind the
triton with the Pease-~Feshbach potential (PF52) and bind
it with greater binding energy than we were able to
obtain. A superposition of exponentials will also bind
the Coester-Yen potential which has a soft repulsive core.
There are two features of the trial function that need to
be examined closely. The first is the exponential or
Gaussian decay and the other is the correlations that are
built in the trial function. Whether there is a tensor
component present in the potential or not, does not seem
to have much bearing on the type of trial function that we
use. It is true that a smaller force factor was found
with the Coester-Yen than with either of the other two
soft-core potentials, but the tensor force gives approxi-
mately the same D-state probabilities with both the ex-
ponential and Gaussian trial functions when applied to the
Pease-Feshbach potential. The large D-state probability
with both the Bressel and the Reid potential are due to the
condensed system (y=1.7) and the inadequacy of the symme-
tric S-state component of the trial function. Our dis-
cussion will by and large be limited to the symmetric

S-state whose prcbability should be approximately 95% of
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the total wave function.

In order to note the difference between the fall
off of the superposition of exponentials and Gaussians at
large interparticle distance, we should compare Figures
VI-8 and VI-9. From them it is evident that the exponen-
tial function decays slower than the superposition of
Gaussians at any of the positions of the third particle
that are indicated. This behaviour prevents the Gaussian
type trial function from picking up a large portion of
the attraction that can be derived from the potential for
distances greater than 1.5 fm. The inclusion of some
long-range terms in the superposition of Gaussians, that
we had hoped for, did not materialize. The peak of the
Gaussian type function is shifted slightly to the longer
range part of the graph when compared to the peak of the
exponential function. If we compare the location of the
peaks to the location of the minimum of the Coester-Yen
potential, we see that the exponential peak is closer to
the minimum of the potential than is the peak of the
Gaussian type functions. In short, the superposition of
exponentials gives a better shape than does the super-
position of any arbitrary number of Gaussians of the types
that we have used.

The comparison between superposition of exponen-
tials and sume of Gaussians is not altogether valid with-

out some qualifications, although the features that we
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mentioned certainly do indicate what the shortcomings of
the Gaussians are. The fact is, however, that the ex-
ponential type functions are defined such that the
position of the third particle does not influence the two
particle correlation at all. For the Gaussian type wave
function the peak of the wave function occurs at different
places for different values of r (see Figures VI-10, and
VI-13). The shift in maxima is less than .25 fm, but
within a small distance of this magnitude the potential
strength may change by as much as 30MeV (see Figures VI-2
and VI-12).

The source of this kind of correlation is that the
argument of the exponential in our Gaussian type functions
is (p2+r2). This means that as far as the decay of the
function is concerned, for a particular (pz+r2) no dis-
tinction is made between the configuration of three particles
where the distance between particles 1 and 2 is small and
the third particle a large distance removed from these two
(Figure VI-14 (b)) and the situation which has almost equal
interparticle distances (Figure VI-1l4(a)). This argument
is especially valid in the case of the Pease-Feshbach poten-
tial since Wl is dominant state with it. The same situation
arises when one does a Feshbach-Rubinow calculation (FR55)
which calculates the best wave function dependent on a

single coordinate, R = l/2(rl? + I + Such a wave

23 ¥ I13)-

function does also not distinguish between the two con-



(a)

(b)
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figurations shown in Figure VI-14. It is not surprising
therefore that neither the spin-averaged Coester-Yen
potential nor the lSo—state interaction of the Reid
potential gives binding in a Feshbach-Rubinow calculation.

In order to ensure that our trial function con-
tained terms which vanish as the interparticle distance
tends to zero, we multiplied Wl by p2n’ n=l.,2, or 3. ITf
we then expand the wave function in powers of p those terms
have as first term in the expansion p2n. When n=1, the
wave function varies as p2 for small interparticle dis-
tances. The exponential type wave function we used with
the condition that f(o) = £'(o) = £" (o) =0 varies as p5/2
for small p. Although the power of p is not exactly the
same in both cases, they are close enough so that both
functicons have the same qualitative behaviour at small
interparticle distance. Because of the symmetry require-
ment, however, we were forced to use this multiplier in
conjunction with r2n since we had to multiply Wl by
(Ex;)zn. This introduces an unphysical constraint on the
wave function. When the three particles lie almost on a
straight line, r tends to zero and hence the amplitude of
the wave function vanishes. When the interparticle dis-
tances rl3=r12=1 fm and interparticle distance i, N 2 ‘£m,
there is no physical reason why the wave function should

vanish. The feature that gives us more desirable behaviour

of the trial function at small interparticle distance has
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the side-effect of introducing an extra node in the wave
function with corresponding greater overall kinetic
energy.

The different behaviour of the wave function when
used in ceonjunction with a Yukawa-shaped barrier or with
a square barrier as found in the Bressel potential is
shown in Figures VI-10 and VI-13. With the Bressel poten-
tial the wave function is not so adverse to having a
finite amplitude at zero interparticle distance as with
the Yukawa type barrier found in the Reid potential. This
is due to the singularity of Reid's potential at the
origin; the Bressel potential has strong but finite repul-
sion throughout the repulsive force region. For the same
reason Wl has greater probability in Bressel's than in
Reid's wave function, and consequently the kinetic energy
is less for the Bressel than for the Reid potential. The
wave function has a somewhat different behaviour for differ-
ent shapes of the soft cores and comparison of results
obtained for the two different potentials should be made

with reservation.

The Binding Energy in Triton Found with the Various

Potentials

One can make several observations about the poten-
tials that we have used in the triton binding energy cal-

culation. The statements about the binding of the triton
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with the Reid or the Bressel potential, however, cannot
be as definitive as we would like because of the defi-
ciencies of the trial function.

The Coester-Yen potential binds the triton with
almost the experimental binding energy. Since we do a
variational calculation we obtain an upper bound to the
experimental ground state energy and hence the discrepancy
between . theoretical and experimental binding may be
reduced by the choice of a trial function more elaborate
than the sum of exponentials that we used. Although the
potential is very simplistic and one should not expect
very accurate results from it, the calculated radii agree
with the experimentally determined Coulomb and mass radii.

The calculations with the Reid potential indicate
that with the type of trial functions we used we cannot
obtain binding of the triton. When we introduce the
correction in binding that is necessary since we used
Gaussian type trial functions, we obtain binding of
-4 + 7MeV. This is a very rough estimate and we cannot
compare our results with the accurate results of Blatt
et al. (BD67) and Davies (D67). We can say, however, that
the upper bound of the triton ground state energy calcu-
lated with the Reid potential is not so low that the soft-
core increases the binding to the extent that the Reid
potential would give unreasonable results in the triton.

In fact, it appears that if a more accurate calculation
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were done, i.e. with the accuracy of Blatt et al., the
Reid potential would give binding energy of the triton of
the order of magnitude that Blatt et al. obtained with
the hard-core potentials. It is premature at this stage
to say whether the Reid soft-core would give an increased
binding over the hard-core potentials.

Not much more can be said of the Bressel potential
than of the Reid potential ekcept that the Bressel poten-
tial gives slightly more binding energy than the Reid
potential. Since the Hamada-Johnston poténtial binds the
triton with at least 5.7MeV binding (D67) and the Bressel
potential is derived from the Hamada-Johnston one would
expect somewhat higher binding with the Bressel than with
the Hamada-Johnston. In order to determine this con-
clusively a calculation like that of Blatt et al. should
be done with the Bressel potential, albeit with built in
short-range correlation to take account of the soft core.
For the Reid potential one would need to find a manageable
way of projecting two-body LSJ states from exponential

type wave functions and then proceed with the calculation.



CHAPTER VII

SUMMARY AND CONCLUSION

We have studied the triton variational problem
with two types of trial function and four potentials.
The superposition of Gaussians as a trial function is
ideally suited for projecting out the two-body LSJ depend-
ence from the three-body trial function. Employing the
Cohen and Willis classification (CW62) of three-body
states, we have succeeded in writing the three-body wave
function as a sum of terms each of which has definite two-
body LSJ dependence. The sum of exponentials as a trial
function is known to give good results (VK67). The super-
position of Gaussians, however, do not give as good a
result of the triton binding energy as does a superposition
of exponential trial functions. The correction that must
be applied to the binding when it has been determined by
mears of the Gaussian type trial function isrgiven in
Figure VI-7 for potentials with strong repulsive cores.
For potentials without a repulsive core, the Gaussian type
wave function gives underbinding although not so seriously
as with the soft-core potentials. With the Pease-Feshbach

potential the Gaussian type trial function gives about

183
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4 to 5 MeV too little binding.

The Coester-Yen potential, although it is a central
spin-dependent Serber potential, gives very good results
in the triton, binding it with 7.3MeV and giving a mass
radius of 1.7 fm. Our analysis shows that the Reid poten-
tial does not overbind the triton. If it did, this poten-
tial would have to be rejected for other nuclear structure
calculations. Since the Bressel potential gives only
slightly more binding than the Reid potential, it is
thought not to overbind the triton either. No definitive
values for the binding with the last two potentials can

be gquoted until different methods have been developed.



APPENDIX A
SIX-DIMENSIONAL HARMONIC OSCILLATOR FUNCTIONS AS A

BASIS FOR TRIAL FUNCTIONS IN THE TRITON

If we use the vectors which have been defined in
Chapter II, we can write the Hamiltonian for the six-
dimensional harmonic oscillator in terms of these vectors.
The Hamiltonian is

2

2 24 2 2
p+Vr)+2)\(p + r%) (1)

» 1
H = -5 (V

This Hamiltonian has a set of eigenstates and eigenvalues

which are the solution of the equation

H Yy =EJV (2)
3/2 2. .2

The ground state is wo =:<3%;> e Aip x ). This is a

typical term of the expansion in VY The ground state

1-
energy is Ej = 6X. We now define the creation and annihi-

lation operators (see D65 for a more formal treatment)

A= b 23 - ¥ R=22d + ¥
v P /2 P
(3)
Bt = 1 (aaF - V) B=-1 (aF+ V)
A VA
- = + — + —
We can show that the commutators [Ai, Aj ]—[Bi, Bj J == aij'

All other commutators are zero. The Hamiltonian can be

written in terms of these operators:

185
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H = 6) + an@sE 2 345 (4)
and & 27 = 2 [H_, e oat (5)

The excitation per mode of excitation is 2) as is indicated

by the expressions:

o
o
=
N
1

+
(En + 2)\) A Yo
(6)
>+ X +
HO(B wn) = (E_ + 2)\) B v,

n
>+ >t 5
A and B have the same permutation symmetry as the vectors
3 and ¥. We can therefore form operators from X" ana Bt

with definite symmetry. The three lowest order symmetric

operators are 1, (K+)2 +-(§+)2, R x §+)2.
by = LA + BNy, = 16 + 2007 + £ 1y (7)
vy = B x BNy = 166 x D2 - 8x(p? +?) + 61y, (8)

Thus we can write according to our notation for states in

Chapter III:

g g 2 g 3
le = (" +r )wo . i) wz v 3 1po (9)
2 1 1 9
Y. = (p x D)%Y = —= Y, + —= Y, + —= U (10)
5 o ey ey G T T e

Y Y are therefore linear combinations of

2 TS Tl

the three lowest energy states which are base functions of

The statesV

the symmetric representation and are eigenstates of the

six—-dimensional harmonic oscillator.



APPENDIX B
VARIATIONAL CALCULATION OF THE TRITON USING A
SUPERPOSITION OF EXPONENTIAL FUNCTIONS AS THE

TRIAL FUNCTION

The three interparticle distances are denoted by
a, b, and ¢. VY is an S-state wave function. All S-

states may be written as functions of p2, r2, and (3-?)
2

only. The kinetic energy operator is - %M-K where M is
the nucleon mass. For all states
- 2 2
R = ¥ # Vp (1)

If we assume ¥ is an S-state function dependent on p2, r2,

-

and (3-?) only we can write K in terms of interparticle

distances, i.e.

Rlaaf Lo B, & 2 8.2 a,2 a ghiet &
w2 nf g tamtrad T = 445
b blic®-a® 4% . c®+a®-p% a% ) -
2bc dbdc 2ca dcda

The expectation value of the kinetic energy is proportional

to

0 oo (a+b)
<Y|Kj¥> = 2| da db de ¥{ & g s &Ll5 5

la-b|
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L2480 24y 24y pho®a’ ey
a da b d ¢ de 2bc dbdc
, acp?c? %y GPratp? alv 3
2ab dadb 2ac dadc

By the use of Gauss's theorem (W61, p.235) equation (3)

can be rewritten in the form

oC o]

(at+b) 2 5
- ay - [ 8 _(ay
<Y|KR|Y> = 2 da db de { - (da> (db> <dc

0o 0

_atb?c? rav ay
2ab \ a d
2 52 0 32 d
c"+a -b avy ¥
= 2ac e <ag> (a—c‘>} abc (4)
If we assume that Y(a,b,c) is separable in the three
variables, i.e. ¥(a,b,c) = f£(a) g(b) h(c), then
{ \ 2
avy awy _ , a%y . ,
(an> (35') = ¥ Jb6ac ° Adding equation (1) and (2) and
dividing the sum by 2, we obtain
o (<) (a+b) . 5
: d™¥ a v
<YIB|¥5 = da db de' { ¥ =% + ¥ —5
2 2
da db
la-b|
o 0
2
a”y 2 av 2 ay 2 avy
+“Pa;—2‘+—a—‘ya€+5-‘yd-.—5+6\ya—é-

2 g 2 /; 2
ay [ ay a¥y
* (a?;) 1 (a};> - (az) } abe (5)
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Because of the symmetry of the three variables, expression

(5) can be written in the simple form

- 4 (a+b) 5
<¥|x|¥> =3 | da | ab ac(vil+2¢ ¢
a a
da
la-b|
0 0
2
ay
- (EE;> } abc (6)
8w2
Actually there is a factor of —— in front of the integrals
3/3

from the angular integration that was done in order to
obtain (3). This factor, however, cancels with a similar
factor appearing in the normalization integral.

Now we invoke the assumption that ¥(a,b,c) is
symmetric under interchange of particles, i.e.

Wa,b8) = £la) £1(b) £lc)s

<¥|K|¥> = J {a f(a) £"(a) - a[f'(a)]2 + 2 f(a)f'(a)lr(a)da
0

(7)

[ee)

Bla) ='| db de {bI£(b)1%}Hclf(c)1? } (8)

0

The particular form that we chose for f(a) for the varia-

tional calculation is

-1/2

£la) = a -Aja (9)

o~
Q
o}
-

(&)
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k

with by c;=0 so that £ (o) = ‘0. (10)
i=o

The ci's that are not yet determined by the normalization
and condition (10) and the Ai's are the variational para-
meters. F(a) can be evaluated explicitly with the form of

f (a) that we have chosen.

pliel s ¢ E i Sy o (Ay*hy)a
1,9 0,80 (xi+kj+xm+kn)(Ai+kj-km—xn)

Ai+lj—km—kn#o

% b2

k C G0 ¢
m n —(Ai+xj)a (11)
i,j,m,n=0 - W |

AFA.=A_-A_#0O
1'%y “m “n

The normalization integral is
. 2
N=|{ alf(a)]”} F(a)da

o}
k
B A . 2
L7p i,],Mm,n=0

Ai+Kj—Am—Xn#o

-4c.c.c_c
To W on

+Ap)(xi+xj—xm—xn)(xi+xj+km+xn)

(xi+xj+xz

k Cicjcmcn (12)
- 3 5 }
i,j,m,n=0 (xi+xj)(xi+xj+x£+xp)



The kinetic energy is

B ( k
%! , : - 1 =2
“[oyr <¥|k|¥> = 3 I cyoy {20.735 [ 5 a
: o i,j=o0
1l -1 )
+ 5 a (A +345)
2 -(A.+2.)a
- A7+ Axll) e i F(a)da
3 i J] J (a)
{13)
The potential energy is
: k ~(A:+2l) e
<y|v]y> = 3 L ocije.e TATT3TT v(a) Fla)da (14)
o i,j=o J
The expectation value of the energy is given by
E = l'{— §3.<w Ri¥> + <W]V]W>} (15)
N 2M )

k
Because of the condition I C;=0, the integrands are zero

i=o

at the origin for the kinetic enerqgy and for potentials of
exponential or Yukawa shape. The parameters Ai and ¢, are
varied until a minimum in the energy is found. One can
include as many terms as one feels are necessary due to the
complex behaviour of the potential, or as can be handled
efficiently by computer. The Coulomb radius is calculated

from the formula (BW52, p. 205)

(o)

k 2

L1, ¥ _ i
coulomb Eg' { [ % cye 2i% ] F(a)da (16)
o =0

0]
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and the mass root-mean-square radius (L68) from

¢. d 171 Pla)da (17)



APPENDIX C

TRACELESS SYMMETRIC TENSORS

When we decompose the three-body triton wave
function into components with explicit two-body LSJ
dependence, we make use of the fact that the linearly
independent components of a traceless symmetric tensor
of rank L form a basis for an irreducible representation
of dimension 2L+1. For convenience, we enumerate some
of our definitions, notations, and identities below.

The number of subscripts is the rank of the tensor. We

assume the Einstein summation convention.

Ti(a) =

> >

RN

. &
le (a,b) il | {albj + ajbl

. "
Tijk(d,b,c) = {Tij(a,b)ck + Tjk(a,b)ci + Tki(a,b)cj

2
- E [dij Tks(a,b)cS + 6jk'Tis(a'b)cs

+ 6ki Tjs(a,b)cs 11}

(a,b,c,d) {T

KT

fijkz ijk(a’b’c)dz + T?jkz(a’b’c)di

-+

Tkzi(a’b'c)dj -t Tzij(a'b’c)dk

2 s ;
- 21854 Ty (asb,e)d + 8

7 ij Tﬁlis(a'b’c)d

jk

393
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+ 621 Tjks(a,b,c)ds + Gik Tjgs(a,b,c)dS

+ ng Tiks(a,b,c)dS + sz Tijs(a,b,c)dslr

The trend is evident from the above expressions; higher
rank tensors can be written down and checked to see whether
they are symmetric and traceless.

Tensors derived from vectors, one of which is a

cross product, can be written as

o ik
Tij(a, a.x b)=§ {Tik(a'a)ejkzbz + Tjk(a’a)eikzbl}
i (a,a, a x b)) = 3 {T (a,a,a)e b
ijk (8r2y 3 Tiyplarasale o, by
+

Tjkl(a'a'a)eiﬁmbm

+ Tkil(a'a’a)ejzmbm

{

(a,a,a, a x b) = (a,a,a,a)e

o=

Tijk,Q Tijkm anbn

+ Tjkzm(a’a'a'a)eimnbn

+ Tika(a'a’a’a)Ejmnbn

+ T (a,a,a,a)e b

2ijm kmnn

where € g is the permutation symbol (S60, chapter VI).
Denoting the rank of the tensor by a bracketed superscript

and the contraction of all subscripts by a dot, we write

the following useful identities.
) @y eW ) = @B

w82 4y .2l 1y = @B)2 - 1 ap?
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3 @2 py) = @53 - 2 aB? @B
@@ ) = @B - La%? @52+ 2 atp?
13 (@) 2BV p) = EB)° - 12 a%? @B + 2 a'? @B
6) (a) .8 1) = E-B)® - 32 2% @By
+ 7 a's? @By - 2 a%°
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