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Abstract 

This thesis investigates the application of multiple model estimation algorithms to the prob­

lem of channel equalization for digital data transmission and channel tracking for space-time 

block coded systems with non-Gaussian additive noise. Recently, a network of Kalman filters 

(NKF) has been reported for the equalization of digital communication channels based on 

the approximation of the a posteriori probability density function of a sequence of delayed 

symbols by a weighted Gaussian sum. A serious drawback of this approach is that the num­

ber of Gaussian terms in the sum increases exponentially through iterations. In this thesis, 

firstly, we have shown that the NKF-based equalizer can be further improved by considering 

the interactions between the parallel filters in an efficient way. To this end, we take resort to 

the Interacting Multiple Model (IMM) estimator widely used in the area of multiple target 

tracking. The IMM is a very effective approach when the system exhibits discrete uncer­

tainties in the dynamic or measurement model as well as continuous uncertainties.in state 

values. A computationally feasible implementation based on a weighted sum of Gaussian 

approximation of the density functions of the data signals is introduced. Next, we present 

an adaptive multiple model blind equalization algorithm based on the IMM estimator to 

estimate the channel and the transmitted sequence corrupted by intersymbol interference 

and noise. It is shown through simulations that the proposed IMM-based equalizer offers 
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substantially improved performance relative to the blind equalizer based on a (static or non­

interacting) network of extended Kalman filters. It obviates the exponential growth of the 

state complexity caused by increasing channel memory length. The proposed approaches 

avoid the exponential growth of the number of terms used in the weighted Gaussian sum 

approximation of the plant noise making it practical for real-time processing. 

Finally, we consider the problem of channel estimation and tracking for space-time block 

coded systems contaminated by additive non-Gaussian noise. In many practical wireless 

channels in which space-time block coding techniques may be applied, the ambient noise 

is likely to have an impulsive component that gives rise to larger tail probabilities than 

is predicted by the Gaussian model. Although Kalman filters are often used in practice 

to track the channel variation, they are notoriously sensitive to heavy-tailed outliers and 

model mismatches resulting from the presence of impulsive noise. Non-Gaussian noise en­

vironments require the modification of standard filters to perform acceptably. Based on 

the coding/ decoding technique, we propose a robust IMM algorithm approach in estimat­

ing time-selective fading channels when the measurements are perturbed by the presence of 

impulsive noise. The impulsive noise is modeled by a two terms Gaussian mixture distri­

bution. Simulations demonstrate that the proposed method yields substantially improved 

performance compared to the conventional Kalman filter algorithm using the clipping or lo­

calization approaches to handle impulses in the observation. It is also shown that IMM-based 

approach performs robustly even when the prior information about the impulsive noise is 

not known exactly. 
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Chapter 1 

Introduction 

The global demand for wireless communications has grown apace over the last decade and 

the growth is anticipated to continue over the next decade. Future generation wireless 

communication technology promises to have increased data rate capability, larger channel 

capacity, improved spectral efficiency for the need of a greater range of services: video 

conferencing, internet services, data networks and multimedia, extended range coverage, 

and smaller and portable terminals that allow for low-power operations. In addition, these 

future systems should be reliably operated in both indoor and outdoor environments. 

Wireless channels with delay spread exceeding the symbol period introduce frequency­

selectivity. The growth in demand on the data rate capabilities of wireless systems necessi­

tates an increase in bandwidth and signaling rate. As we go for higher rates, the multipath 

distortion or frequency-selective fading caused by physical medium becomes worse. The dis­

tortion caused by the resulting overlap of received signals is called intersymbol interference 

(lSI), which, if left uncompensated, drastically deteriorates the received signal. As a con­

sequence, it is necessary for the receiver to compensate or remove these impairments from 

the received message in order to recover the transmitted message. Such a compensator for 
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the lSI is called an equalizer. The delay spreads (in symbol durations) of multipath wireless 

channels critically depends on the signaling bandwidth and physical environment. For ex­

ample, in an urban environment, a global system for mobile communication (GSM) system 

with a symbol rate of 270.83 Kbaud has a typical delay spread of Sf.-ts. On the other hand, 

a digital terrestrial TV broadcast channel uses a symbol rate of 10.78 Mbaud and can have 

worst case delay spreads in the order of 50f.-ts. The baseband digital impulse response for 

a digital TV channel has a span of about 600 symbol taps. Hence, the equalizer plays an 

important role to the design of a receiver. 

Fading, which arises mainly from destructive addition of multipaths in the propagation 

medium, is a major performance-limiting impairment on wireless channels. Diversity tech­

niques mitigate fading by transmitting multiple correlated replicas of the same information 

signal through independently fading channel realization that are much likely to fade simul­

taneously than each individually. In recent years, space-time coding (STC), which is a 

technique that exploits the combination of spatial and temporal diversity, has been shown to 

be very effective in combating fading and increasing channel capacity significantly without 

necessarily sacrificing bandwidth efficiency. Space-time codes provide both diversity and 

coding gain when using multiple transmit antennas to increase spectral efficiency over wire­

less communication systems. There are two different schemes in space-time codes, namely, 

space-time trellis coding (STTC) and space-time block coding (STBC). STTC operates on 

one input symbol at a time, resulting a sequence of vector symbols whose length represents 

transmit antennas. Like traditional trellis coded modulation (TCM) for a single-antenna 

channel, STTC provides coding gain. Disadvantage of STTCs is that they are difficult to 

design and require high complexity in encoders and decoders. On the other hand, STBC 

operates on a block of input symbols, resulting a coding matrix whose columns represent 

antennas and rows represent time. Between these two schemes, STBC looks very attractive 
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because of its simplicity in decoding scheme especially when complexity is a main issue of 

the system design. STBC achieves the same amount of diversity as STTC even though it 

does not give as much coding gain as STTC. 

1.1 Background 

In this Section, a summary of some of the previous work related to the areas of equalization 

techniques and space-time coding schemes is presented. This is not meant to be a compre­

hensive literature survey, but will provide the readers with the background references on 

some of the ongoing research in the subject areas. 

1.1.1 Equalization Techniques 

Various approaches to data detection can be broadly classified into symbol-by-symbol and 

sequence estimation [57]. The first class contains linear and decision-feedback detectors. 

The other approach to data detection is the maximum likelihood sequence estimations 

(MLSE) [26]. The most effective detection technique is MLSE. In fact, it is the optimum 

equalizer for digital signals corrupted by lSI and buried with additive noise in the sense of 

minimizing the probability of sequence error, given knowledge of the channel impulse re­

sponse [17,58]. The trellis-based Viterbi algorithm [27] solves the MLSE problem recursively 

when the memory of the channel is finite. However, the complexity of the algorithm is pro­

portional to the number of states in the trellis which grows exponentially with the channel 

memory length. For instance, if the size of the symbol alphabet is A and the number of 

interfering symbols contributing to lSI is L, the Viterbi algorithm computes AL+l branch 

metrics for each new received symbol. When the channel memory becomes large or the 

alphabet size is big, then the MLSE approach becomes impractical to track the fast fading 
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Feedback 
Filter 

Figure 1.1: Block diagram of a decision feedback equalizer. 

channels in high-speed mobile communication [7, 17, 57]. The computational burden can be 

eased by reducing the number of states and sequences in the MLSE detector as suggested by 

some schemes, e.g., reduced-state sequence estimation (RSSE) [24, 25] and delayed decision­

feedback sequence estimation (DDFSE) [23]. These approaches assume some past decisions 

as correct while estimating several most recent symbols. 

One suboptimal scheme that is widely used in practice for its simplicity in implementation 

and analysis is the linear equalizer (LE). This approach employs a linear transverse filter and 

has a computational complexity that is a linear function of the channel dispersion length L. 

For a channel introducing mild interference, the performance achieved by a conventional LE 

is often adequate. However, in suppressing the lSI, it causes noise enhancement at channel 

spectral nulls and it is often not suitable for applications where frequency-selective fading 

takes place [57]. Nonlinear equalizers show better performance than linear equalizers in 

applications where the channel distortion is severe. A popular nonlinear equalizer is the 

decision feedback equalizer (DFE). The DFE outperforms a linear equalizer of equivalent 

complexity [19]. Compared to MLSE, decision feedback equalization is a suboptimum and 

less complex equalization technique. As depicted in Figure 1.1, the DFE consists of a linear 

feedforward filter (FFF) which is used to suppress the effects of noise and precursors caused 
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by the future symbol and a feedback filter (FBF) whose task is to properly weight the 

decision of the previous symbol so that the postcursors caused by the previous symbol can 

be cancelled out. The result is then applied to a threshold device to determine the current 

symbol decision. The FFF enhances the noise, but the noise gain is not as severe as in the 

case of a linear equalizer. The DFE design is typically been carried out assuming that the 

past decisions are error free, thus simplifying the mathematics involved. However, when an 

error is made by the receiver, the output of the FBF is no longer the desired value and the 

probability of subsequent errors is increased resulting in errors that tend to occur in burst. 

The first residual-induced decision error, called a primary error, is fed back by the FBF 

causing secondary errors and creating an error burst. This phenomenon, known as error 

propagation, is more severe when tap weights and/ or the number of the feedback taps are 

large. Some of these DFEs are modified to meet the need of a specific application. Belfiore et 

al. proposed a distortion predictive DFE whose FBF is a predictor, driven by the difference 

between the outputs of the FFF and the decision device [13]. As a result, the noise and the 

residual lSI at the output of the FFF can be predicted by the FBF and subtracted from the 

FFF output. 

As an alternative to classical equalizers, Kalman filtering-based equalizers have been 

reported in [47, 54] under the assumption that the plant noise is Gaussian, which is not valid 

in the context of data channel equalization. It has been shown that Kalman filter outperforms 

the LE. Recently, an equalizer based on a network of Kalman filters operating in parallel 

has been proposed in [50] which yields improved performance compared to the DFE and the 

classical Kalman equalizer. However, it did not consider the interaction between the parallel 

filters during the estimation process. 

Blind equalization has attracted much research interest in wireless communications and 

related fields over the past few decades. Blind equalization refers to the reconstruction 
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of transmitted symbols based on the noise-corrupted channel output without knowing the 

underlying finite impulse response (FIR) channel where the transmitted digital symbols are 

distorted by the base-band equivalent discrete-time linear FIR channel, causing lSI. Since the 

performance of a linear equalizer in a severe lSI is not satisfactory, nonlinear blind equaliza­

tion techniques have been addressed recently. For instance, the algorithms in [35,62] apply a 

sequence estimator and a bank of channel estimators and alternatively optimize with respect 

to data and channel. Sequence estimation is performed by a blind search of modified trellis 

and channel estimation is accomplished by conditioning on survivor sequences in the trellis 

and constructing the corresponding maximum likelihood (ML) or minimum mean-square 

error (MMSE) channel estimate. Blind equalization approaches based on symbol-by-symbol 

maximum a posteriori probability (MAP) have also been reported in the literature, e.g., 

see [36] and reference therein. Another set of equalizers employ a hidden Markov model 

(HMM) formulation for blind (or semi blind) equalization for input sequences governed by 

Markov chains. To maximize the Kullback-Leibler measure to calculate the HMM model, 

they use either off-line [40] or on-line expectation-maximization (EM) algorithm [45]. A 

stochastic ML blind channel estimation scheme is proposed in [21] based on the HMM for­

mulation of the problem. Although on-line methods subdue the memory and computational 

cost involved in the off-line EM algorithm based method, they still need to use some kind 

of state reduction algorithm to reduce the state complexity of the state trellis. Recently, a 

blind Network of Extended Kalman Filters (NEKF) has been proposed for linear channel 

equalization in [4]. The network relies on the assumption that the density functions of the 

data signals can be represented by a weighted Gaussian sum as suggested in [3, 50]. It has 

been shown that the NEKF-based blind approach achieves good performance compared to 

the blind Bayesian algorithm proposed by Iltis et al. in [36], with a lower complexity. For a 

excellent review on channel estimation and equalization, readers are encouraged to see the 
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seminal paper by Tugnait et al. [69]. 

1.1.2 Space-Time Block Coding 

The interest in the multiple transmitter system started with the base station simulcast 

problem studied in [72]. The delay diversity scheme was suggested as a solution to this 

problem. In this scheme, replicas of one antenna are transmitted from the other antennas 

separated in time. Delay diversity [72, 73] and other related schemes [61, 71] are among the 

first techniques presented to exploit transmit diversity. Delay diversity can be viewed as 

a special case of STTC, later proposed by Tarokh et al. [65]. The generalized approach 

combines TCM with transmit diversity techniques. Although decoding complexity of these 

codes (measured by the number of trellis states at the decoder) increases exponentially 

as a function of the diversity level and transmission rate, they perform very well in slow 

fading environments. The rank and determinant criteria emerged from this work become 

a benchmark in space-time code design. Ensuring full diversity, in [30], a more structured 

method is presented. 

In addressing the issue of decoding complexity, Alamouti [2] discovered an ingenious 

STBC scheme for transmission with two antennas. This coding scheme, remarkable for 

having an elegant and simple linear receiver, becomes a paradigm in STBC. However, the 

simple decoding rule of this scheme is valid only for a flat-fading channel where the channel 

gain is constant over two consecutive symbols. The Alamouti's STBC has been generalized 

using the theory of orthogonal designs in [66,67], which have full diversity and employ linear 

ML detectors that decouple the transmitted symbols. Recently, the space-time block code 

has been further generalized in [31] to achieve a higher capacity. Naguib et al. [55] presents 

a comprehensive review of space-time coding schemes. 
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1.2 Motivation 

The objective in a signal processing problem is to process a finite number of data samples 

and extract important information which may be "hidden" in the data. This objective is 

usually achieved by combining the development of mathematical formulations with their 

algorithmic implementations (either in software or hardware) and their applications to real 

data. Various conflicting figures of merit are associated with digital signal processing tech­

niques, e.g., quality of the estimates, computational complexity, data throughput rate, cost 

of implementation, finite word-length effects, and structural properties. 

In this thesis, we focus on the application of the multiple model approaches for data 

channel equalization and channel estimation for space-time block coded systems with additive 

non-Gaussian noise. Specifically, we employ the Interacting Multiple Model (IMM) estimator 

which is based on the Kalman filtering techniques and incorporates a Bayesian framework 

dealing with dynamic situation of switching factors. The IMM estimator is a very effective 

approach when the system exhibits discrete uncertainties in the dynamic or measurement 

model as well as continuous uncertainties in state values. In the IMM method, several 

filters are used in parallel to estimate the state of a dynamic system with several modes of 

operation. In addition, the IMM algorithm is decision free [10] in the sense that at each time 

only the probabilities (conditioned on the available data) of each model being the prevailing 

one are evaluated. 

It has been shown that the NKF-based equalizer [50] outperforms the other more classi­

cal equalizers like the linear transversal equalizer, the decision feedback equalizer, and the 

classical Kalman filter equalizer while NEKF-based blind approach [4] achieves good per­

formance compared to the blind Bayesian algorithm reported in [36]. The NKF and NEKF 

equalizers rely on a weighted sum of Gaussian approximation of the density functions of 

the data signals. However, a serious drawback of these approaches is that the number of 
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Gaussian terms in the sum increases exponentially through iterations. These approaches 

compute the state estimate that accounts for each possible current model without consider­

ing any possible switching between the models. In this thesis, it is demonstrated that both 

the NKF and NEKF equalizers can be further improved by using IMM algorithm which han­

dles the interactions between parallel filters in an efficient way. The proposed approaches 

avoid the exponential growth of the number of terms used in the weighted Gaussian sum 

approximation of the plant noise making it practical for real-time processing. 

For many wireless communication systems, the estimation of time-varying channel with 

high accuracy is a challenging task in the receiver design and adaptive wireless channel 

tracking is an important way to obtain the required channel state information. Time-varying 

multipath fading is a major performance-limiting impairment on wireless channels which 

makes the wireless transmission difficult. Recently, STBC has been studied extensively as a 

method to alleviate the detrimental effects of wireless fading channels because of its simplicity 

and the feasibility to have multiple antennas at the base station. In space-time block coded 

systems, the channels are normally assumed to remain block stationary. In real life, this is not 

the situation and negligence of channel variation through the block results in degradation in 

performance. With the assumption of additive white Gaussian noise (AWGN), the problem 

of time-selective fading channel tracking for STBC has been investigated in [49] by using 

a single Kalman filter. Thus far, most of the work on this area assumes that the channel 

ambient noise is Gaussian. However, the noise in many physical channels such as urban and 

indoor radio channels [11, 12, 51] and underwater acoustic channels [52] exhibits Gaussian 

as well as non-Gaussian characteristics due to the impulsive phenomena of radio-frequency 

interference. For recent measurement results of impulsive noise in outdoor /indoor mobile and 

portable radio communications, see [12] and references therein. It is well known that filtering 

techniques based on Gaussian assumption, which underlies aforementioned channel tracking 
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algorithm, is not an appropriate one due to its nonrobustness against "outlier" introduced 

by the impulsive noise [59]. This raises the issue of devising robust wireless channels tracking 

algorithms that account the maybe impulsive behavior of the channel noise. Therefore, to 

resolve this problem, several "robust to impulsive noise" estimation algorithms have been 

studied (see [42, 59] and references therein). The typical method of the removal of impulsive 

noise is the Huber's min-max approach. The performances of these algorithms depend on 

the threshold value which is generally unknown. In this thesis, we present an alternative 

robust approach utilizing the IMM algorithm to tackle the ambient impulsive channel noise. 

It is shown that proposed approach is less vulnerable to the impulsive noise and exhibits 

superior performance compared to the KF approach with a threshold scheme. 

1.3 Organization of This Thesis 

This thesis is concerned with digital channel equalization and channel estimation in space­

time coded systems which are generic problems in the areas of signal processing and com­

munications. The thesis is organized as follows. 

In the first Chapter, we have motivated our work in the context of channel equalization 

and transmit diversity techniques for wireless communications and the need for methods 

based on the IMM estimator. We also gave a brief review of the available literature on the 

problems of channel equalization and STBC. In Chapter 2, we provide fundamental concepts 

on digital channel equalization and STBC schemes. 

In Chapter 3, multiple model estimation techniques to estimate the state of the systems 

whose models vary with time are reviewed. We also discuss that the IMM estimator is 

considered to be the best compromise between performance and complexity. 

A computationally feasible implementation for the problem of channel equalization based 



M.A.Sc. Thesis- Z. M. Kamran- McMaster- Electrical & Computer Engineering 11 

on a weighted sum of Gaussian approximation of the density functions of the data signals 

is introduced in Chapter 4. We also present an adaptive blind equalization technique to 

estimate the channel and the transmitted sequence corrupted by lSI and noise. Numerical 

examples demonstrate the effectiveness of the proposed approaches. We simulate the perfor­

mance of the algorithm and the results confirm that the new equalization techniques yield 

superior performance compared to existing algorithms. 

Chapter 5 introduces a novel multiple model based time-selective fading channels esti­

mation approach for space-time block coded systems with non-Gaussian ambient noise. The 

proposed adaptive channels tracking scheme is based on a state-space representation of the 

communication system and the prior information of the measurement noise. Again, computer 

simulations demonstrate the excellence of the incorporation of IMM estimator for solving a 

dynamic system with several behavior modes which can "switch" from one to another. 

Finally, we conclude in Chapter 6 with a summary of the thesis and avenues for further 

research. 
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Chapter 2 

Channel Equalization and Space-Time 

Block Coding 

This Chapter deals with the basic concepts pertaining to channel equalization and space-time 

block coded systems. 

2.1 Channel Equalization 

Signals that pass through a channel undergo various forms of distortion. A fundamental 

limiting factor in the performance of digital communication systems is the intersymbol in­

terference. lSI is caused by interference from the symbols that were transmitted before and 

after the given symbol. lSI-induced errors can cause the receiver to misinterpret the received 

samples. In a band-limited digital communication system (e.g., in telephone channels), the 

transmitted digital symbols are perturbed by the base-band equivalent discrete-time linear 

FIR channel, causing lSI. lSI can also arise from frequency-selectivity (fading or multipath 

propagation) in digital microwave radio and in mobile communication systems. Figure 2.1 

shows a mobile wireless propagation scenario. Since an impulse response corresponding to a 

12 
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Figure 2.1: A mobile radio propagation scenario. 

lack of lSI contains a single spike of width less than the time between symbols, the presence 

of lSI is readily observable in the sampled channel impulse response [39]. An example of 

aT /2-spaced (symbol spacing T) terrestrial microwave channel impulse response [obtained 

from the Rice University Signal Processing Information Base (SPIB) 1
] is depicted in Fig­

ure 2.2. A channel introducing such distortions is modeled by a finite-memory tapped delay 

line whose memory accounts for lSI and is followed by additive white Gaussian noise [57]. 

The equalizer is an important part of a modern digital communications receiver. It filters 

the received data to minimize the impairments from the received message in order to recover 

the transmitted message. 

1This microwave channel database can be obtained form http: I /spib . rice. edu/spib/microwave .html. 
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Figure 2.2: Magnitude of a terrestrial microwave channel impulse response with 1/T 
30 x 106 symbols/sec, (SPIB channel #9). 

In this Section, the models that are used to characterize the digital communication chan-

nels are discussed. We also give a brief discussion of the various equalizer structures depend­

ing on the state-space representation of communication systems that are used to combat the 

signal distortions caused by channel and the need for blind approach. 

2.1.1 Communication Channels 

Signals propagating through wireless channels (indoors or outdoors) usually arrive at the 

destination through a number of different paths, referred to as multipaths. These paths 

arise from scattering, reflection, refraction, or diffraction of the radiated energy off of objects 

that lie in the environment. Multipath propagation results in a received signal that is a 

superposition of several delayed and constructively and destructively interfering copies of 
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the transmitted signal giving rise to frequency-selective fading. The environment around the 

transmitter and receiver can change over time, particularly in a mobile setting, leading to 

variations in the channel response with time. This gives rise to time-selective fading. Also, 

the channels may have a dominant path (direct path in line-of-sight channels) in addition 

to several secondary paths or they may be characterized as having multiple "random" paths 

with no single dominant path. 

2.1.1.1 Frequency-Selective and Time-Nonselective Channel 

The baseband channel consisting of the modulation, a time-invariant propagation channel, 

and the receiver filters can typically be modeled by a time-invariant discrete-time FIR filter 

as 

z(k) h(q-1)d(k) + n(k) 

(ho + h1q-1 + ... + hL-1qL-1) d(k) + n(k) 

h0d(k) + h1d(k- 1) + ... + hL_1d(k- L + 1) + n(k) 
L-1 

L hzd(k -l) + n(k) (2.1) 
l=O 

where k is an integer representing the discrete time, z(k) is the sampled receive signal, d(k) 

is the sequence of transmitted symbols, { h1} are the coefficients of the FIR filter h( q-1) of 

degree L- 1 representing the channel for the desired signal, and n(k) is AWGN with zero 

mean and variance a~. Model (2.1) represents a frequency-selective linear channel with no 

time selectivity. A tapped delay line structure for this model is shown in Figure 2.3. It is 

the most commonly used model for receiver design [69]. In many models, noise is assumed 

to be independent and identically distributed (i.i.d.). In each received symbol there is some 

contribution from a number of the past symbols causing lSI. Equalizers are designed to 
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Figure 2.3: Tapped delay line model for frequency-selective channel with FIR. 

compensate the effects of lSI resulting from frequency-selective channels. 

If in (2.1) the coefficients {hz} are constant, this channel is called time-invariant channel. 

2.1.1.2 Time- and Frequency-Selective Channel 

The multipath propagation model for the channel results in signal fading. Fading channels 

with time variations in the phase and amplitude are typical examples of time-varying chan­

nels. For the fading channels, the impulse response of a channel model is no longer fixed 

constants. 

The channel model having time-varying linear system response can be represented as 

L-1 

z(k) = L hz(k)d(k -l) + n(k) (2.2) 
l=O 

where hz(k) is the channel response at time k to a unit input at time k- l. Model (2.2) 

represents a time- and frequency-selective linear channel. If in Equation (2.2) the channel 

coefficients vary with time, this channel is called time-varying channel. 

For a slowly (compared to the baud rate) time-varying system, Equation (2.2) is often 

simplified to a time-invariant system represented by Equation (2.1) where h1 = h1(0) is the 

time-invariant channel response to a unit input at time 0. 



M.A.Sc. Thesis - Z. M. Kamran - McMaster - Electrical & Computer Engineering 17 

2.1.1.3 Time-Selective and Frequency-Nonselective Channel 

If the coherence time of the channel is small compared to the duration of the received signal 

(symbol duration plus the channels delay spread) but the coherence bandwidth of the channel 

is large compared to the message bandwidth, then we have 

hl(k) = h(k)<5(l, 0) (2.3) 

where <5(l, 0) is the Kronecker delta located at 0, i.e., <5(l, 0) = 1 for l = 0 and <5(l, 0) = 0 for 

l =I= 0. Such a channel can be modeled as 

z(k) = h(k)d(k) + n(k). (2.4) 

Model (2.4) represents a time-selective and frequency-nonselective linear channel. 

2.1.1.4 Time-Nonselective and Frequency-Nonselective Channel 

If the channel is flat in both time and frequency, the received signal sample can be represented 

with the following channel model 

z(k) = hd(k) + n(k) (2.5) 

where h is a random variable (or a constant). Model (2.5) represents a time-nonselective 

and frequency-nonselective linear channel. 

All of the above channel response functions may be modeled as deterministic or ran­

dom [69]. 
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2.1.2 Equalizer Structures 

Many problems in science and engineering require estimation of the state of a system that 

changes over time using a sequence of noisy observed data. In this thesis, we concentrate on 

the state-space description of the communication systems and the focus is on the discrete­

time formulation of the problem. Hence, the evolution of the system with time can be 

modeled using difference equations and observed data are assumed to be available at discrete 

times. In order to analyze and make inherence about a dynamic system, at least two following 

models are required [10,32]. 

• System model: a model which describes the evolution of the state with time. 

• Measurement model: a model which associates the noisy measurements to the state. 

It is assumed that these models for the underlying communication systems are available in 

a probabilistic form. 

We consider the transmission of a digital data over a baseband channel. A digital com­

munication channel with lSI may be approximately modeled by an equivalent discrete time 

transversal filter with additive white noise [57]. Assuming perfect carrier and symbol syn­

chronization at the receiver, the baseband time invariant channel output z(k), at time k, can 

be represented by the following state-space model 

D(k) FD(k- 1) + Gd(k) 

z(k) = HTD(k) + n(k) 

where 

(2.6) 

(2.7) 

- F is the L x L one-step transition matrix with all elements zero except those in positions 

(i + 1, i), i = 1, ... , L- 1, which are 1, 
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- G = [1,0, ... ,Of is the L x 1 vector, 

- D(k) = [d(k), d(k- 1), ... , d(k- L + 1)JT consists of the L last transmitted symbols, 

taking values from a finite set, 

- H = [h(O), h(1), ... , h(L-1)]T is the parameter vector of the channel impulse response 

of memory length L that represents the combined effect of the transmitting filter, 

the channel, the matched filter, the sampler, and the discrete-time noise whitening 

filter [57], and 

- n(k) is the measurement noise which represents AWGN sequence independent of the 

input sequence d(k) having variance a~. 

According to this state-space model, the equalization is equivalent to estimate the state 

vector D(k) from the observation of the channel output zk = { z(k), z(k -1), ... , z(O)}. The 

estimation of d(k) can be obtained at some delayed time (k- r), where 0:::; r:::; (L- 1). 

One possible equalizer structure consists of a linear filter section followed by a nonlinear 

slicer or decision device. The linear filter is designed to minimize mean square error (MSE) 

between the filter output and 

s(k) = d(k- r). (2.8) 

In order to derive the optimal transversal equalizer the MSE is minimized subject to the 

constraint that the impulse response is finite, causal, and stable. For a less rigorous condition 

(e.g., if the impulse response is causal and stable), the solution to the minimization of the 

problem is provided by infinite impulse response (IIR) Wiener filter [54]. 

The minimum phase spectral factorization of the power spectrum of the observed data is 

the major obstacle to the design of the IIR Wiener equalizing filter. It has been shown in [54] 
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that by using a Kalman filter, the spectral factorization problem can be solved indirectly. 

The Kalman equalizer and the solution of the IIR Wiener filter are equivalent, if all processes 

are stationary and measurement noise is white [5, 54]. An attractive feature of the Kalman 

equalizer is that it yields an on-line minimum variance estimate of the complete state vector 

D(k). 

Kalman equalizer is full of promise in terms of performance and complexity if the plant 

noise, the observation noise, and the initial estimate of the state are Gaussian and mutually 

independent. The information sequence { d( k)} is typically assumed to be an i.i.d. sequence. 

Since it can take only finitely many values, it is clearly non-Gaussian. Hence, the plant noise, 

Gd(k) of (2.6) is not-Gaussian in the context of data channel equalization. 

The Gaussian assumption for the plant noise impairs the performance of the Kalman 

equalizer due to the occurrence of model mismatch of the Kalman filter. Given all available 

received data, knowledge of the probability density function (pdf) of the state provides the 

most complete possible description of the state and from this pdf any of the common types of 

estimates (e.g., MMSE or MAP) can be determined. It is extremely difficult to determine this 

density function except in the linear Gaussian case. For data channel equalization, in [50], 

a weighted sum of Gaussian probability density functions is used to approximate arbitrarily 

closely another pdf that permits the explicit calculation of the a posteriori density from the 

Bayesian recursion relations illustrated in [3]. The idea of using a weighted sum of Gaussian 

density functions for approximation of the a posteriori density function has been suggested 

in [3]. Consequently, the solution to the minimum mean square error equalization problem 

gives rise to a linear channel equalizer which consists of the convex combination of the output 

of several Kalman filters operating in parallel. A detailed discussion can be found in [50]. 
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These equalizers need the knowledge of the channel parameters or assumed to have been 

estimated earlier. When the channel is unknown and/or time-varying, which is the real­

life situation, significant trouble will be encountered with these equalizers. To resolve this 

problem, the state vector of the Kalman filter (KF) is augmented with the coefficients of 

the unknown channels. The result of this formulation is a nonlinear estimation problem to 

which an extended Kalman filter (EKF) is applied instead of the Kalman filter. Since the 

estimated state is the concatenation of the estimations of the symbol vector and channel 

vector, it corresponds to the blind estimation approach. 

2.1.3 Why Blind? 

Blind techniques have been actively studied by numerous researchers over the past 20 years. 

Blind techniques estimate the channel and/or the signals based only on the channel output. 

On the other hand, non-blind techniques require the transmitter to periodically send signals 

that are known to the receiver in order to enable channel identification. Although the use of 

training sequence is probably the most robust way to estimate the channel, there are several 

reasons for studying blind algorithms. 

• Bandwidth is conserved by eliminating or reducing training sets. 

• Training is inefficient for rapidly time-varying channels. 

• Several multipath fading during the training period can lead to poor channel estimates. 

• Training for interference is often not accessible. 

• Training requires synchronization, which may not be feasible in multi-user scenarios. 

• Training signals are not available in military applications. 
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• In distributed networks, sending training signals each time a new communication link 

is to be set up may not be feasible. 

Yet almost all current wireless cellular systems, such as the North American time division 

multiple access (TDMA) Digital Cellular System (IS-54) and the European GSM, embed 

training signals in the transmitted data. However, the channel may change within a time 

slot and blind algorithms can help track the time-varying channel. This scenario is likely 

to occur in IS-54 where each time slot is relatively long in duration. In GSM, 20% of the 

bandwidth is devoted to training and blind algorithms can be used to reduce the length of the 

training sequence. Blind methods are also more robust if the signal undergoes severe fading 

during training. These are some of the issues that make blind techniques worth research 

attention. 

2.2 Space-Time Block Coded Systems 

Recent advances in communications are driven by the requirements of next generation wire­

less systems with reliable high data rate transmission. Although the information capacity of 

wireless communication systems increases dramatically by employing multiple transmit and 

receive antennas, increasing the quality or reducing the effective error rate in a multipath 

fading channel is still a challenging task. STTC for transmit diversity reported in [65] is very 

effective and of good performance. Due to its extremely high decoding complexity, Alam­

outi's STBC scheme [2] appeared as a simple way to obtain transmit diversity. Alamouti's 

STBC has been adopted in several wireless applications due to its main attractive features 

including the following. 

• It achieves full diversity as the well known maximal-ratio receiver combining (MRRC) 

at full transmission rate for any (real or complex) signal constellation. 
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• It does not require channel state information at the transmitter. 

• It increases transmission rate with ML detection based on the linear processing at the 

receiver (due to the orthogonal code structure). 

• It not only increases the effective data rate and system capacity, but also improves the 

error performance without any bandwidth expansion or any feedback from the receiver 

to the transmitter. 

However, the main demerits of Alamouti's STBC scheme are 

• Unlike STTC, it does not provide any coding gain. 

• The decoding scheme is valid only for a flat-fading channel. 

In STBC, a vector of symbols in the time domain is mapped to a matrix of symbols in 

the space-time domain. Three parameters (N, B, P) characterize a space-time block code. 

A symbol vectors of size P x 1 turns into a space-time coded matrix M(s) of size N x B, 

where N represents the number of transmit antennas and B is the number of coded symbols 

in the time. Thus the code rate2 can be defined as 

(= p 
B 

(2.9) 

with a full transmit diversity. We consider Alamouti's STBC for which N = B = P = 2. 

Let the kth symbol block be 

s(k) A [s(Pk) s(Pk + 1) . . . s(Pk + P- 1)f 

[s(2k) s(2k + 1)]T 

2 Code rate can be defined in different manners, if the full transmit diversity is not assumed. 

(2.10) 
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where 8(k) E S is an element of the symbol alphabet S. 8(k) is assumed to be a symbol 

sequence of i.i.d. complex random variables from S and IE[82 (k)] = 0, where IE[·] is the 

statistical expectation. 

Let g(k) denote theN x 1 space-time block coded signal vector. The ith element of g(k), 

i.e., 9i(k), is transmitted through ith transmit antenna. Then the space time block code of 

(N, B, P) = (2, 2, 2) in [2] is defined by the mapping given by 

[g(2k) g(2k + 1)] 
[ 

91(2k) 91(2k + 1) l 
92(2k) 92(2k + 1) 

M(s(k)) 

[ 

8(2k) 

-8*(2k + 1) 

8(2k+1) ]· 

8*(2k) 
(2.11) 

Another space time block code of (N, B, P) = ( 4, 4, 3) in [20] is defined by the following 

mapping with a code rate of 3/4 

-8; 
s* s* 

81 .::.a.. .::.a.. 
v'2 v'2 

8* s* s* 
82 .::.a.. _.::.a.. 

M ([81 83]T) 1 v'2 v'2 82 
~ ~ -s1-sj+sz-s2 sz+s2+s1-sj 
v'2 v'2 2 v'2 

(2.12) 

~ -~ -sz-s2+s1-sj s1+sj+sz-s2 
v'2 v'2 2 v'2 

where 8i = 8(3k+i -1), i = 1,2,3. 
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Figure 2.4: STBC system with 2 transmit antennas and 1 receive antenna. 

2.2.1 STBC for Systems with One Receive Antenna 

2.2.1.1 Coding 

The baseband representation for STBC with two transmit antennas and one receive antenna 

is shown in Figure 2.4, where we consider Alamouti's space-time code mapping as shown 

in (2.11). Let hi, i = 1, 2 represent the one-tap impulse response from the ith transmit 

antenna to the receive antenna. It is assumed that the channel is flat-fading channel where 

the channel gain is constant over two consecutive symbols, i.e., hi(2k) = hi(2k + 1). 

During the time interval 2k and 2k + 1, we receive two consecutive samples z(2k) and 

z(2k + 1) given by 

z(2k) 

z(2k + 1) 

h1s(2k) + h2s(2k + 1) + n(2k) 

-h1s*(2k + 1) + h2s*(2k) + n(2k + 1) 

(2.13) 

(2.14) 

where n(k) is the AWGN and modeled as i.i.d. complex Gaussian random variable with zero 

mean and power spectral density N0/2 per dimension. Now, we define the following vectors 

- The receive signal vector z(k) ~ [z(2k) z*(2k + 1)]r. 
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- The code symbol vector s(k) ~ [s(2k) s(2k + 1)]r. 

- The noise vector n(k) ~ [n(2k) n*(2k + 1)]r. 

Hence, we have the following matrix/vector form 

z(k) = Hs(k) + n(k) (2.15) 

where the channel matrix His given by 

(2.16) 

and n(k) is a complex random vector with zero mean and covariance N012 . 

2.2.1.2 Decoding 

If we define C as the code set for all possible symbol vectors s( k) and assume that the symbol 

pair is equally likely to occur, then the optimum ML decoder can be characterized [55] as 

follows 

s(k) = arg {min llz(k)- Hs(k)ll 2
}. 

s(k)EC 
(2.17) 

By realizing the fact that the channel matrix H is a orthogonal matrix, the ML decoding 

rule in (2.17) can be further simplified. Therefore, H'HH =pi where (·)'H denotes Hermitian 

transpose and p = lh1 1
2 + lh2 1

2 . Pre-multiplying (2.15) by matrix H'H, we obtain 

[ 
z(2k) l z(k) = = H'Hz(k) = ps(k) + fi(k) 

z(2k + 1) 
(2.18) 
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where ii(k) = H'Hn(k). Using (2.18), the ML decoding rule for this scenario can be reduced 

into two separate and simple decoding rules for s(2k) and s(2k + 1), given by 

s(2k) 

s(2k + 1) 

- arg { min llz(2k)- ps(2k)ll 2
} 

s(2k)ES 

arg { min llz(2k + 1)- ps(2k + 1)11 2
} 

s(2k+l)ES 

(2.19) 

(2.20) 

where S denotes the code set for all possible symbols. Apparently, finding s(2k) and s(2k+ 1) 

requires much reduced computational complexity compared with that required by (2.17). In 

fact, for the above STBC, only two complex multiplications and one complex addition per 

symbol are required for decoding. A diversity gain of order 2 can be achieved by integrating 

this STBC scheme into the basic communication systems [55]. 

2.2.2 STBC for Systems with Multiple Receive Antennas 

2.2.2.1 Coding 

We consider for a system with two transmit antennas and M receive antennas. Let the 

received signal vector zm(k) at the mth receive antenna is given by 

(2.21) 

where nm(k) is the noise vector for the channel between the transmit antennas and the mth 

receive antenna and 

(2.22) 

is the channel matrix for the same channel with him, i = 1, 2 denoting the channel impulse 

response between the ith transmit antenna and the mth receive antenna. 
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2.2.2.2 Decoding 

In this case, the optimum ML decoding rule turns into 

s(k) = arg { min ~ llzm(k)- Hms(k)ll2}. 
s(k)EC~ m=l 

As before, the pre-multiplication of (2.18) by Hm'H gives us 

(2.23) 

(2.24) 

where pm = lh1ml 2 + lh2ml2 and n.m(k) = Hm'Hnm(k). Accordingly, the objective function in 

(2.23) can be reduced to 

M M 

L llzm(k)- pms(k)ll 2 L { llzm(2k)- pms(2k) 11 2 

m=l m=l 

and the ML decoding rule in (2.23) can be replaced by the following two separate and simple 

decoding rules given by 

s(2k) 

s(2k + 1) 

arg { min t llzm(2k)- pms(2k)ll2} 
s(2k)ES m=l 

arg { min llzm(2k + 1)- pms(2k + 1)11 2}. 
s(2k+l)ES 

(2.26) 

(2.27) 

Under the assumption that the channel response for each propagation path are mutually 

independent, the diversity order provided by this scheme is 2M [55]. 



Chapter 3 

The Multiple Model Estimation 

Approaches 

In this Chapter, the Multiple Model (MM) estimators are reviewed. Since a single Kalman 

filter assumes a fixed model for the state evolution, it results in significant performance 

degradation in terms of estimation error when it is used to estimate the state of the systems 

whose models vary with time. In such a scenario, MM estimators can handle the potential 

source of model-mismatch. The MM estimators assume that the system behaves according 

to one of a finite number of models. The models can differ in noise levels or their structure. 

In this approach, a Bayesian framework is used: starting with prior probabilities of each 

model being correct (i.e., the system in a particular mode), the corresponding posterior 

probabilities are obtained. 

A multiple model estimator can be static or dynamic. First the static case in which the 

model the system obeys is fixed, i.e., no switching from one model to another occurs during 

the estimation process (time-invariant mode) is considered. Then the optimal dynamic esti­

mator which accounts for switching from one model to another model according to a Markov 

29 
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chain is presented. Since the optimal dynamic estimator is not practical for implementation, 

two suboptimal approaches, one called generalized pseudo-Bayesian (GPB) and the other 

the interacting multiple model (IMM), are also presented. 

ifi 

3.1 The Static Multiple Model Estimator 

A static multiple model is static from the point of view of the assumed evolution of the 

models. The model, assumed to be in effect throughout the entire process, is one of q 

possible models (i.e., the system is in one of q modes) given by 

(3.1) 

The prior probability that Mj is correct (i.e., the system is in mode j) is 

(3.2) 

where Z 0 is the prior information and 

q 

L /-Lj(O) = 1 (3.3) 
j=l 

since the correct model is among the assumed q possible models. 
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Using Bayes' formula, the posterior probability of model j being correct, given the mea­

surements up to time k, zk ~ { z(j)}j=ll is given by the recursion 

starting with the given prior probabilities (3.2). 

The term p[z(k)izk-l, Mil in (3.4) is the likelihood function of mode j at time k, which, 

under linear-Gaussian assumptions, is given by 

(3.5) 

where Vj and Si are the innovation and its covariance from the mode matched filter corre­

sponding to mode j, respectively. In a nonlinear and/ or non-Gaussian situation, the same 

Gaussian likelihood functions are used. 

Thus a Kalman filter1 matched to each mode is set up yielding mode-conditioned state 

estimates and the associated mode-conditioned covariances. The probability of each mode 

being correct- the mode probability- is obtained according to (3.4) based on its likelihood 

function (3.5) relative to the other filters' likelihood functions. 

A schematic diagram of the static multiple model estimator, which is a bank of two filters, 

is shown in Figure 3.1. 

The outputs of each mode-matched filter are the mode conditioned state estimate i:i, the 

associated covariance pi and the mode likelihood function Aj. 

1 In a nonlinear situation the filters are extended Kalman filters instead of Kalman filters. 
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Figure 3.1: The static multiple model estimator for two models. 

Once the filters are initialized, they run recursively on their own estimates. Their like-

lihood functions are used to update the mode probabilities. The latest mode probabilities 

are used to combine the mode-conditioned estimates and covariances. 

Under the above assumptions, the pdf of the state of the system is a Gaussian mixture 

with q terms given by 

q 

p[x(k)IZk] = L /-Lj(k)N[x(k); xi(kik), pi(kik)]. (3.6) 
j=l 

Therefore, the combination of the mode-conditioned estimates is obtained as follows 

q 

x(kik) = LJ-Li(k)xi(kik) (3.7) 
j=l 

and the error covariance matrix of the combined estimate is given by 

q 

P(kik) = LJ-Li(k){Pj(kik) + [xi(kik)- x(kik)][xi(kik)- x(kik)]r}. (3.8) 
j=l 
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The above discussion is valid under the following assumptions: 

1. The correct model is among the set of models considered. 

2. The same model has been in effect from the initial time. 

Assumption 1 can be considered a reasonable approximation; however, assumption 2 is 

obviously not true if a maneuver has started at some time within the interval [1, k], in which 

case a model change - mode jump - has occurred. 

If the mode set includes the correct one and no mode jump occurs, then the probability 

of the true mode will converge to unity, i.e., this approach yields consistent estimates of the 

system parameters. Otherwise the probability of the model "nearest" to the correct one will 

converge to unity. 

The following ad hoc modification can be made to the static MM estimator for estimating 

the state in the case of switching models: an artificial lower bound is imposed on the model 

probabilities (with a suitable renormalization of the remaining probabilities). 

A shortcoming of the static MM estimator when used with switching models is that, in 

spite of the above ad hoc modification, the mismatched filters' errors can grow to unaccept­

able levels. Thus, reinitialization of the filters that are mismatched is, in general, needed. 

This is accomplished by using the estimate from filter corresponding to the best matched 

model in the other filters. 

It should be pointed out that the above "fixes" are automatically (and rigorously) built 

into the dynamic MM estimation algorithms to be discussed in the subsequent sections. 

First the optimal dynamic MM estimator is described. Since this is not practical for real­

time processing, sub-optimal dynamic MM estimators have to be considered. Three of them 

are described in Section 3.3. 
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3.2 The Dynamic Multiple Model Estimator 

In this case, the mode the system is in can undergo switching in time. The dynamics and 

measurements of such a system are assumed linear and modeled as 

x(k) 

z(k) 

F[M(k)]x(k- 1) + v[k- 1, M(k)] 

H[M(k)]x(k) + w[k, M(k)] 

(3.9) 

(3.10) 

where x(k) is the system state at time k, z(k) is the measurement at k, and F[M(k)] and 

H[M(k)] are the parameters describing system structure when the mode or model M(k) is 

in effect during the sampling period ending at k (i.e., the sampling period (k -1, k]). v[·] and 

w[·] are the process noise and measurement noise, respectively. Such systems are also called 

jump-linear systems. This approach can also be used for nonlinear systems via linearization. 

The mode at time k is assumed to be among the possible q modes 

(3.11) 

The structure of the system and/ or the statistics of noises might be different from model to 

model. For example, 

F[Mj] Fj 

v(k- 1, Mj) "' N[uj, Qj]· 

(3.12) 

(3.13) 

The optimal approach to filtering the sate of the system in (3.9) and (3.10) requires that 

every possible sequence of models from the initial observation through the most recent mea­

surement be considered. Thus for q models, optimal filtering requires qk filters for processing 
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Table 3.1: Mode histories for q = 2 models at time k = 2. 

1 
2 
3 
4 

1 1 
1 2 
2 1 
2 2 

the kth observation z(k) and estimating the state x(k). 

The lth mode history (sequence of models) through time k is denoted as 

where i,_,z is the model index at time "" from history l and 

1 ~ i,.,z ~ q ""= 1, ... , k. 

(3.14) 

(3.15) 

Note that the number of histories increases exponentially with time. For example, with q = 2 

at time k = 2 one has the qk = 4 possible sequences (histories) as presented in Table 3.1. 

It is assumed that the mode switching is a Markov process (Markov chain) with known 

mode transition probabilities given by 

(3.16) 

These mode transition probabilities will be assumed time-invariant and independent of the 

base state x(k). 
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The event that model j is in effect at time k is denoted as 

(3.17) 

The conditional probability of the lth history 

(3.18) 

is evaluated next. 

The lth sequence of models through time k can be written as 

(3.19) 

where sequence s through k- 1 is its parent sequence and Mj is its last element. 

Then, in view of the Markov property, 

(3.20) 

where i = Sk-l, the index of the last model in the parent sequence s through k- 1. 

The conditional pdf of the state at k is obtained using the total probability theorem with 

respect to the mutually exclusive and exhaustive set of events (3.14), as a Gaussian mixture 

with an exponentially increasing number of terms 

qk 

p[x(k)IZk] = l:p[x(k)IMk,l, zk]P{Mk,llzk}. (3.21) 
l=l 

Since to each mode sequence one has to match a filter, it can be seen that an exponentially 

increasing number of filters are needed to estimate the (base) state, which makes the optimal 
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approach impractical. 

The probability of a mode history is obtained using Bayes' formula as 

J1k,l P{Mk,lizk} = P{Mk,liz(k), zk-1} 

~ p[z(k)IMk,l, zk-1]P{MkJizk-1} 
c 

~ p[z(k)IMkJ, zk-1]P{Mi(k), Mk-1,sizk-1} 
c 

~ p[z(k)IMk,l, zk-1]P{ Mi(k)IMk-1,s, zk-1 }J.Lk-1,s 
c 

~ p[z(k)IMk,l, zk-1]P{Mi(k)IMk-1,s}JLk-1,s 
c 

where c is the normalization constant. 

(3.22) 

If the current mode depends only on the previous one (i.e., it is a Markov chain), then 

(3.23) 

where i = sk_1 is the last model of the parent sequence s. 

Equation (3.23) shows that conditioning on the entire past history is needed even if the 

random parameters are Markov. 

3.3 Practical Algorithms 

Since the optimal approach involves an exponentially increasing number of hypotheses as 

the number of observation increases, the optimal approach is not practical for real-time 

processing and suboptimal techniques have to be considered for the efficient management of 

the multiple hypotheses. 
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One approach for managing the larger number of hypotheses in the filtering problem is 

the generalized pseudo-Bayesian (GPB) algorithms [1, 10, 18, 33]. In the GPB algorithms, 

the hypotheses that differ only in the older models are combined. The first order G PB 

algorithm, denoted as GPB1, is an approximation that considers only the possible models 

over the most recent sampling period. The second-order GPB algorithm, denoted as GPB2, is 

an approximation that considers only the possible models over the two most recent sampling 

periods. Finally, the IMM estimation algorithm is discussed. 

3.3.1 The GPBl Estimator 

The GPB1 estimator runs q filters, conditioned on each possible state model, in parallel. 

At the end of each cycle of the algorithm, the estimates from these q filters are combined 

with weights /1j ( k). In other words, the q hypotheses are merged into a single hypothesis at 

the end of each cycle. The weights /1j ( k) are calculated based on the likelihood functions of 

these q filters, during each cycle. After the filters are initialized, they run recursively using 

the previous combined estimate. 

3.3.1.1 The Algorithm 

One cycle of the algorithm as shown in Figure 3.2 can be explained by the following steps. 

1. Mode-matched filtering (j = 1, ... , q): Starting with x(k- llk- 1), one computes 

i;J(klk) and the associated error covariance PJ(klk) through a filter matched to Mj(k). 

The likelihood functions 

(3.24) 
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Figure 3.2: One cycle of the GPBI MM estimator for two switching models. 

corresponding to these q filters are evaluated as 

Ai(k) = p[z(k)IMi(k), x(k- Ilk- I), P(k- Ilk- I)]. (3.25) 

2. Mode probability update: This probability that the mode j (j = I, ... , q) is in 

effect is updated as follows 

J-li(k) D. P{Mi(k)IZk} = P{Mi(k)lz(k), zk-1
} 

~ p[z(k)IMi(k), zk-1]P{Mj(k)lzk-1
} 

c 
I q 

- Aj(k) I: P{Mj(k)IMi(k- I), zk-1 }P{Mi(k- I)lzk-1
} (3.26) 

c 
i=1 

which yields with 1rij the known mode transition probabilities 

(3.27) 
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where cis the normalization constant 

q q 

c = L Aj(k) L 'lrij/-Li(k- 1). (3.28) 
j=l i=l 

3. State estimate and covariance combination: Finally, combination of the mode-

conditioned estimates and covariances are done using the following mixture equations 

q 

x(kik) L:xj(kik)J-Lj(k) (3.29) 
j=l 

q 

P(kik) LJ-Lj(k){Pj(kik) + [xj(kik)- x(kik)][xj(kik)- x(kik)]r}. (3.30) 
j=l 

3.3.2 The GPB2 Estimator 

If the system obeys one of q possible modes, the GPB2 runs q2 filters simultaneously. There 

are q filters conditioned on each mode. Estimates from these q filters are merged. The q 

merged estimates are combined to obtain the latest state estimate. Also the merged estimate 

corresponding to a particular filter is the input to one of the q filters corresponding to each 

of the q modes. 

3.3.2.1 The Algorithm 

One cycle of the algorithm as shown in Figure 3.3 can be explained by the following steps. 

1. Mode-matched filtering (i,j = 1, ... , q): Starting with xi(k-1lk-1), one computes 

xij(kik) and the associated covariance pij(kik) through a filter matched to Mj(k). The 

likelihood functions corresponding to these q2 filters 

(3.31) 
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Figure 3.3: One cycle of the GPB2 MM estimator for two models. 
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are evaluated as 

Aij(k) = p[z(k)IMj(k), xi(k- 1lk- 1), pi(k- 1lk- 1)] i,j = 1, ... , q. (3.32) 

2. Calculation of the merging probabilities (i, j = 1, ... , q): The probability that 

mode i was in effect at k - 1 if mode j is in effect at k conditioned on zk is 

J-lilj(k- 1lk) A P{Mi(k- 1)1Mj(k), zk} = P{Mi(k- 1)lz(k), Mj(k), zk-l} 

~ P[z(k), Mj(k)iMi(k- 1), zk-1]P{Mi(k- 1)lzk-1
} 

Cj 

~ p[z(k)IMj(k), Mi(k- 1), zk-1]P{Mj(k)IMi(k- 1), zk-1
} 

Cj 

·P{Mi(k -1)lzk-1
} (3.33) 

where P[·] denotes a mixed pdf-probability. Thus, the merging probabilities are 

(3.34) 

where 

q 

Cj = L Aij(k)7rijJ-li(k- 1). (3.35) 
i=1 

The mode transition probabilities 1rij are assumed to be known - their selection is 

part of the algorithm design process. 

3. Merging (j = 1, ... , q): The state estimate corresponding to Mj(k) is obtained by 
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combining the estimates as follows 

q 

xj(klk) =I: xij(klk)f-liJj(k- 1Jk) j = 1, ... , q. (3.36) 
i=1 

The corresponding covariance is 

q 

PJ(klk) = 2:1-liJj(k -1lk){Pij(klk) + [xij(klk)- xj(klk)][xij(klk)- xj(klk)]r}(3.37) 
i=l 

4. Mode probability updating (j = 1, ... , q): This is done as follows 

~ P{Mj(k)Jz(k), zk-1} = ~ P[z(k), Mj(k)Jzk-1
] 

c 

~ t P[z(k), Mj(k)JMi(k- 1), zk-
1]P{Mi(k- 1)Jzk-1

} 
c 

i=l 

(3.38) 

Hence, the updated mode probabilities are 

1 q c· 
/-lj(k) = -L Aij(k)1rij/-li(k- 1) = 2 j = 1, ... 'q 

c i=1 c 
(3.39) 

where Cj is the expression from (3.36) and cis the normalization constant 

(3.40) 

5. State estimate and covarzance combination: The latest state estimate and 
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Figure 3.4: One cycle of the IMM estimator for two models. 

covariance for output only are obtained according to 

q 

x(kjk) = z=:rj(kjk)fjj(k) 
j=l 

q 

x(k 1 k) 

P(k lk) 

(3.41) 

P(kjk) = z=J-Lj(k){Pj(kjk) + [xi(kjk)- x(kjk)][xi(kjk)- x(kjk)]r}. (3.42) 
j=l 

3.3.3 The IMM Estimator 

The IMM estimator is traditionally used in the field of multiple target tracking especially 

when the system can be described by a bank of multiple state space models [6]. Begin­

ning with [9, 14, 16], the IMM estimator has been shown to handle both maneuvering and 
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non-maneuvering targets very effectively. The use of IMM algorithm for the problem of 

target tracking with glint noise is considered in [22]. The suboptimal approaches to the 

fixed-interval smoothing problems for Markovian switching systems using IMM estimator 

are presented in [33, 34]. Recently, the application of IMM estimator has drawn much atten­

tion to solve problems in areas other than the target tracking. In [43], an efficient recursive 

algorithm based on the IMM estimator for enhancing speech signal degraded by additive 

white or colored noise is developed. The compensation of slowly evolving environment pro­

cesses in speech recognition is presented in [44]. In [48], localization of mobile phones using 

IMM estimator in CDMA environment is addressed. The feasibility of employing the IMM 

estimator for CDMA multiuser detector is studied in [8]. Further, it is employed in [60] 

to develop a secure chaotic communication system. As the IMM algorithm handles the in­

teractions between parallel filters in an efficient way, the performance of the system having 

model-mismatch is improved without much increase in computational complexity. A concise 

presentation of the IMM estimation algorithm developed in [15] is illustrated below. 

3.3.3.1 The Algorithm 

The IMM approach computes the state estimates that accounts for each possible current 

model using a suitable mixing of the previous model-conditioned estimates depending on the 

current model. Figure 3.4 describes this algorithm, which consists of two interacting filters 

operating in parallel. One cycle of IMM estimator is summarized below. 

1. Calculation of the mixing probabilities (i,j = 1, ... , q): This is the probability 

that mode Mi was in effect at k- 1 given that Mj is in effect at k conditioned on zk-I 
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and given by 

/1ili(k -1lk -1) D. P{Mi(k -1)1Mi(k),zk-1
} 

= ! P{Mi(k)IMi(k -1),zk-1}P{Mi(k -1)lzk-1
} 

Cj 

1 =- 1rij/1i(k- 1) i, j = 1, ... 'q (3.43) 
Cj 

where the normalizing constants are 

q 

Cj = L 1rij/1i(k- 1) j = 1, ... 'q. (3.44) 
i=1 

Note that the conditioning in (3.43) is zk-l whereas the conditioning in (3.33) is zk. 

This is what makes it possible to carry out the mixing at the beginning of the cycle, 

rather than the standard merging at the end of the cycle. 

2. Mixing (j = 1, ... , q): With the mixing probabilities as weights, estimates of all the 

filters at time k - 1 are mixed to produce the initial estimates for each filter. The 

mixed initial condition for the filter matched to Mj(k) is given by 

q 

x0i(k- 1lk- 1) = L xi(k- 1lk- 1)f1ilj(k- 1lk- 1) j = 1, ... , q (3.45) 
i=1 

where xi(k- 1lk- 1) is the estimate of the filter matched to model Mi at time k- 1 

and the associated covariance is given by 

pOj(k- 1lk- 1) 
q 

L11iu(k- 1lk -1){ pi(k- 1lk- 1) 
i=1 

+ [xi(k- 1lk- 1)- x0j(k- 1lk- 1)] 

. [xi(k- 1lk- 1)- x0i(k- 1lk- 1)t} j = 1, ... , q3.46) 
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3. Mode-matched filtering (j = 1, ... , q): The estimate (3.45) and covariance (3.46) 

are used as input to the filter matched to Mj(k), which uses z(k) to yield xJ(kik) and 

pj (kik). 

The likelihood functions corresponding to the q filters 

(3.47) 

are computed by the mixed initial condition (3.45) and the associated covariance (3.46) 

as 

Aj(k) = p[z(k)IMj(k), x0J(k- 1lk- 1), P0J(k- 1lk- 1)] j = 1, ... , q. (3.48) 

4. Mode probability update (j = 1, ... , q): The probability that the mode j is in effect 

is updated as follows 

/-Lj(k) 

where the normalization constant c is given by 

q 

c = L Aj(k)cj. (3.50) 
j=l 
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5. State estimate and covariance combination: Finally, combination of the mode-

conditioned estimates and covariances are done using the following mixture equations 

q 

x(kik) I: xi (kik)tLj(k) (3.51) 
j=l 

q 

P(kik) L~Li(k){Pi(kik) + [xi(kik)- x(kik)][xi(kik)- x(kik)Jr}. (3.52) 
j=l 

This combination is not part of the algorithm recursions whereas it is used only for 

output purposes. 

It is important to note that even though the IMM estimator does not make a hard 

decision, that is it does not give unity probability for the mode that is active, but the mode 

probability corresponding to the active mode will be the highest. Hence, based on the mode 

probabilities one can make the decision of which model is being active at a particular time. 

3.4 Conclusions 

This Chapter has introduced multiple model approaches which assume the system to be in 

one of a finite number of modes. First the static case in which the model the system obeys is 

fixed, that is, no switching from one mode to another occurs during the estimation process. 

While the model that is in effect stays fixed, each model has its own dynamics, so the overall 

estimator is dynamic. The static multiple model estimator is useful if there is an ambiguity 

in the system model, but it does not switch. The typical ad hoc modification of the static 

model approach to handle switching models is to impose a lower bound on the probability 

of each model. 

For systems that undergo changes in their mode during their operation, one can obtain 
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Table 3. 2: Comparison of complexities of the MM algorithms. 

I Static I GPB1 I GPB2 I IMM II 
Number of filters q q q2 q 
Number of combinations of q estimates and covariances 1 1 q+1 q+1 
Number of probability calculations q q q" +q q" +q 

the optimal multiple model estimator which, however, consists of an exponentially increas­

ing number of filters. Thus, suboptimal algorithms are necessary for the (realistic) mode 

transition situation. 

The GPB1 MM approach computes the state estimate accounting for each possible cur­

rent model. On the other hand, the G PB2 MM approach computes the state estimate 

accounting for 

• each possible current model; 

• each possible model of the previous time. 

The interacting multiple model estimator computes the state estimate that accounts for each 

possible current model using a suitable mixing of the previous model-conditioned estimates 

depending on the current model. A comparison of the complexities of different MM ap­

proaches are presented in Table 3.2. As can be seen from above, the static algorithm has 

the same requirements as the GPBl. The IMM has only slightly higher requirements than 

the GPB1, but clearly significantly lower than GPB2. In view of this, the modifications of 

the static algorithm for the switching situation are considered obsolete. 

From the point that the IMM performs significantly better than GPB1 and almost as 

well as GPB2, the IMM is considered to be the best compromise between complexity and 

performance. 



Chapter 4 

Data Channel Equalization 

In this Chapter, our main concern is the problem of detection of transmitted digital data in 

presence of lSI and additive noise. We assume that the continuous time received signals are 

sampled at the baud rate (or symbol rate) after some processing (e.g., matched filtering). 

This results a discrete time model of the channel. 

4.1 Problem Formulation 

4.1.1 Channel Model 

This Chapter considers the transmission of digital data over a baseband channel. A simplified 

block diagram of the discrete-time model of a digital communication system is depicted in 

Figure 4.1. The baseband equivalent channel of interest is composed of the transmitter, the 

physical channel, and the receiver. The channel is the physical media that connects the 

transmitter and the receiver. Examples of common physical channels include coaxial, fiber 

optic, or twisted-pair cable in wired communications and the atmosphere or ocean in wireless 

communications. At high enough data rates, all physical channels tend to exhibit lSI. 

50 
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n(k) 

Decision Device 
d(k- r) 

Figure 4.1: Discrete-time model of data transmission system. 

Let d(k) denote the symbol emitted by the digital source at time kT, where T is the 

symbol duration. The discrete time signal is modulated, filtered, sent through the commu­

nication channel, filtered and demodulated. The resulting continuous signal is given by 

L-1 

z(t) = L d(t -ZT) hz + n(t) ( 4.1) 
l=O 

where Tis the symbol period, n(t) is the additive white noise independent from the emitted 

source signals, hz is the composite time-invariant channel response encompassing the effects 

of the transmitting filter, reception filter, channel response and modulation/demodulation 

(which is assumed to be linear). The composite channel with a duration of approximately 

LT is assumed to be FIR. We consider symbol rate sampling1 which results in an equivalent 

discrete time representation given by 

L-1 

z(k) = L d(k- l) hz + n(k) 
l=O 

HD(k) + n(k) 

(4.2) 

(4.3) 

where z(k) is the received signal at time instant kT, H = [h0 , h1 , ... , h£_1] is the parameter 

vector of the coefficients of the FIR channel impulse response, and D(k) = [d(k),d(k-

1), ... , d(k- L + l)]T consists of the L last transmitted symbols. The transmitted sequence 

1This can easily be extended to multi rate sampling. 
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at the channel input { d(k)} is composed of i.i.d. symbols from a finite alphabet 'Y = { di, i = 

1, ... , q} having variance O"~ that is specific to the type of modulation and n(k) represents 

a zero-mean AWGN sequence with variance O"~. It is assumed that the noise sequence n(k) 

is independent of the input symbol sequence d(k). Although this model is suboptimal since 

the colored noise components introduced by the matched filter in the receiver are ignored, it 

is of interest in low noise applications where lSI is the limiting factor. 

It is required to obtain the unbiased linear minimum error variance estimator of each 

transmitted symbol. To solve this problem, we make use of the state-space representation 

of stochastic processes and of results derived from the discrete KF theory. 

4.1.2 State-Space Representation of the System 

For convenience, the baseband channel output z(k) is represented by the following state-space 

model 

D(k + 1) 

z(k) 

FD(k) + Gd(k + 1) 

HD(k) + n(k) 

where F is the L x L one-step transition matrix and G is the L x 1 vector given by 

0 0 0 

1 0 0 

F = 0 1 0 

0 0 0 

0 0 

0 0 

0 0 

1 0 

1 

0 

G= 0 

0 

(4.4) 

(4.5) 

(4.6) 
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Equations (4.4) and (4.5) which completely define the behavior of the channel allow us to 

interpret the channel as a linear state system. Equation ( 4.4) is the state transition equation 

where D(k) is the state vector whereas (4.5) represents the observation equation. We define 

the state or plant noise u(k) = Gd(k) in (4.4) and n(k) as the observation noise in (4.5). 

Lemma 1: The dynamic system defined by (4.4) and (4.5) is uniformly completely 

controllable and observable if hL-l =/: 0. 

Proof: A discrete time (deterministic) system is completely controllable if, given an 

arbitrary destination point in the state space, there is an input sequence that will bring the 

system from any initial state to this point in a finite number of steps. On the other hand, a 

system is completely observable if its initial state can be fully and uniquely recovered from 

a finite number of observations of its output and the knowledge of its input. 

For a time-invariant discrete system described by the state-space model (4.4) and (4.5) 

is uniformly completely controllable and observable, if the pair { F, G} is controllable, i.e., 

the controllability matrix 

(4.7) 

and the the pair {F, H} is observable, i.e., the observability matrix 

(4.8) 

have rank equal to the order of the system L [10]. 
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For the state-space model represented by ( 4.4) and ( 4.5) 

1 

0 

G= 0 

0 

0 

1 

FG= 0 

0 

(4.9) 

1 

Therefore, the controllability matrix Q0 is a L x L identity matrix and has rank equal to L. 

In addition, 

(4.10) 

hL-1 0 0 

Hence, the observability matrix 

ho h1 h2 hL-1 

h1 h2 h3 0 

Qo = h2 h3 h4 0 (4.11) 

hL-1 0 0 0 

has full rank L if h£_1 =/= 0. 
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4.1.3 The Kalman Observer 

In system theory, the objective of an observer is to estimate the actual state vector using 

the knowledge of past inputs and the actual output. For the system defined by ( 4.4) and 

(4.5), the observer then estimates the state vector D(k) which contains the channel inputs 

from time k to k - L + 1 from the observation sequences of the channel output up to and 

including time k, zk = {z(k), z(k- 1), ... , z(O)}. Followed by a decision device as shown in 

Figure 4.1 to recover the input data symbols, the observer thus performs the equalization of 

the channel. 

Since the output of the observer is an estimate of the last L inputs of the channel, the 

equalizer can recover the input channel at some delayed time (k- r) where 0::; r ::; (L -1). 

This problem has been resolved in [47, 54] by applying Kalman observer as depicted in 

Figure 4. 2 to the system ( 4. 4) and ( 4. 5) leading to the following equations. 

Prediction: 

D(klk- 1) 

P(klk- 1) 

FD(k- 1lk- 1) 

FP(k- 1lk- 1)FT + GGT 0"~ 

Estimation: 

K(k) 

D(klk) 

P(klk) 

P(klk- 1)Hr 
HP(klk- 1)HT + O"; 
D(klk- 1) + K(k) [z(k)- HD(klk- 1)] 

P(klk- 1)- K(k)HP(klk- 1) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

( 4.16) 

where D(klk- 1) and D(klk) are the predicted and estimated values of the state vector 

D(k), whereas P(klk- 1) and P(klk) are the covariance matrices of the associated errors. 
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fi(k I k) 

Figure 4.2: The Kalman observer. 

K(k) is the Kalman gain. 

The decision device performs an r-delayed estimation of the channel input d(k- r). It 

has been shown in [54] that the choice of r = 0 is sufficient for minimum phase channels 

whereas r =!= 0 may be interesting for non-minimum phase channels. For the non-minimum 

phase channels, if r > (L- 1), the state vector D(k) is merely augmented to contain (r + 1) 

elements while the parameter vector H is padded with zeros to give ( r + 1) elements as 

follows 

H = [ho, h1, ... , hL-1, 0, 0, ... , 0]. ( 4.17) 

In this case, F is a (r + 1) x (r + 1) one-step transition matrix with all elements being zero 

except those in positions (i + 1, i), i = 1, ... , r, which are 1 and G is a (r + 1) x 1 vector 

given by 

G = [1, o, o, ... , o]r. (4.18) 

Hence, the order of the Kalman equalizer is the maximum value between (L -1) and r. This 

strategy was first introduced and analyzed in [47]. 
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4.2 Weighted Gaussian Sum Approximation 

The goal of channel equalization can be briefly stated as the estimation of the state vector 

D(k) from the observation sequences of the channel output zk. It is well known that if 

the plant noise u(k), the observation noise n(k), and the initial estimate of the state are 

Gaussian and mutually independent, a standard Kalman filter yields the optimal estimate of 

the state [10, 32]. However, if the plant noise is non-Gaussian, which is valid in the context 

of data channel equalization, the Kalman filter performs poorly [10]. This problem has been 

resolved in [3] by approximating the a posteriori pdf of the state by a weighted Gaussian sum 

(WGS). The idea to compute the a posteriori pdf of a sequence of delayed symbols, in the 

context of channel equalization, using the approximation of the pdf by a WGS is reported 

in [50]. 

Since the state vector D ( k) is a random variable, knowledge of the pdf of the state 

conditioned on all available measurement data, i.e., p(D(k)IZk) provides the most complete 

possible description of the state D(k). The recursion on p(D(k)IZk) is explicitly given by 

the following Bayes' relations [3, 5] 

p(z(k)lz(k-1)) 

p(D(k)IZ(k-1)) 

p(D(k) IZ(k-1))p(z(k) ID(k)) 
p(z(k)IZ(k-1)) 

j p(z(k)ID(k))p(D(k)IZ(k-1))dD(k) 

j p(D(k)ID(k- 1))p(D(k- 1)IZ(k-1))dD(k- 1) 

where the initial condition for ( 4.19) is 

(4.19) 

( 4.20) 

(4.21) 

( 4.22) 

The likelihood of the observation p(z(k)ID(k)) and p(D(k)ID(k- 1)) are determined from 
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(4.4) and (4.5) and a priori distributions for d(k) and n(k). Except when the a prwrz 

distributions are Gaussian, it is generally impossible to determine p(D(k)IZk) in a closed 

form from equations (4.19), (4.20) and (4.21), the Kalman filter being, then, the solution. 

To this end, in [50], a network of Kalman filters has been proposed to estimate the state 

D(k) which relies on the approximation of the a posteriori pdf by a WGS. The problem 

is that the number of Gaussian terms in the sum increases dramatically through iterations 

which is not practical for real-time processing. To avoid this problem, we are motivated 

to use IMM approach to estimate the state D(k) depending on the weighted Gaussian sum 

representation of the plant noise as described below. 

We consider the a priori density function of the plant noise u(k) given by [50] 

A { Pi if d ( k) = di 
p(u(k)) = 

0 otherwise 
( 4.23) 

where d(k) can take on q possible values { di, i = 1, ... , q} associated with the probabilities 

{pi, i = 1, ... , q}. For simplicity we use binary transmission (q = 2) and symbols transmitted 

are either -1 or + 1. The extension to the general case is straightforward. This density 

function is approximated by a weighted sum of Gaussian density functions centered on the 

discrete values { ui = Gdi, i = 1, ... , q} that the plant noise can take. This approximation 

leads to the following WGS representation of the plant noise 

q 

p(u(k)) = LPiN[u(k); ui, Bi] (4.24) 
i=l 

where 

(4.25) 
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q 

I.::Pi = 1 and Pi ~ 0 Vi. ( 4.26) 
i=l 

The mean values ui establish a grid in the region of state-space that contains probability 

mass equal to Pi (or at least the significant part of it). For convenience, all of the covariance 

matrices Bi are set equal toOL where~ is a positive scalar. As~ tends to zero, each term in 

WGS approaches a unit impulse function located at the mean values ui. Hence,~ is selected 

small enough such that each term of the Gaussian sum is effectively equal to zero everywhere 

except in a small neighborhood of ui. 

4.3 IMM Approach for Data Channel Equalization 

The dynamic system of ( 4.4) and ( 4.5) is actually a special case of stochastic hybrid systems 

with additive (continuous) noise and discrete uncertainties in model evolution. Such a system 

can be described as 

D(k + 1) ( 4.27) 

( 4.28) 

where Q = {1, ... , q} is the set of possible modes. This set of models can handle uncertainties 

in the system structure and/or parameters as well as in the noise statistics but in our case, 

as will be seen, uncertainties occur only in the plant noise uj(k). 

In this Section, a hybrid system for channel equalization with Markovian switching co­

efficients is presented by multiple models with a given probability of switching between the 

models (or modes). The model is one of t hypothesized models, M1 , ... , Mt for the system 

and the event that model j is in effect during the sampling period ending at time k (i.e., 
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the sampling period (k- 1, k]) will be denoted by Mj(k). Such systems are called hybrid 

systems [10], because they have both continuous noise uncertainties (i.e., plant and mea­

surement noises) and discrete uncertainties (i.e., model uncertainties). As the plant noise 

in (4.24) is approximated by a weighted q Gaussian terms, it can be assumed that one is 

dealing with a hybrid system with q modes of operation 

D(k + 1) 

z(k) 

FD(k) + uj(k + 1) Vj E Q 

HD(k) + n(k). 

( 4.29) 

(4.30) 

Such a hybrid system state is dependent on a Markovian switching process generated by the 

symbol sequence and can be estimated effectively using an IMM algorithm [10]. 

For q models, the IMM algorithm is implemented with q Kalman filters operating in 

parallel at each cycle. The structure of the IMM algorithm is 

( 4.31) 

where Ne is the number of estimates at the start of the cycle of the algorithm and Nf is 

the number of filters in the algorithm. The switching between the models is assumed to be 

governed by a finite-state Markov chain according to 

( 4.32) 

where Kij are the transition probabilities of switching from model Mi(k -1) to model Mj(k). 

The transition probabilities Kij are assumed known, time-invariant, and independent of the 

base state. 

The IMM-based channel equalization for binary data sequence is shown in Figure 4.3. 
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D1(k-1lk-1), P1(k-1lk-1) D2 (k-llk-1), P2 (k-1lk-1) 
,u(k-1lk-1) 

z(k) 

D1(klk), 

Interaction/Mixing 

D2 (klk), P\klk) 

Mode 
Probability 

Evaluator 

,u(k) 

State Estimate 

1----------+---+1 and Covariance 
Combination 

D(k I k), P(k I k) 

Figure 4.3: One cycle of the IMM estimator for channel equalization. 

At every cycle, each Kalman filter will produce a model conditioned state estimate f>i(klk) 

and the associated covariance Pi(klk) based on its input state D0i(k- Ilk- I), covariance 

P0i(k- Ilk- I) and the current observation z(k). The details of the algorithm are similar 

to and can be easily understood from the algorithm described in the next Section. 

Under the assumption that the channel coefficients are perfectly known, an IMM approach 

is introduced for stationary channel equalization in this Section. Unfortunately, in many 

practical communication systems, the channel coefficients are unknown and/or time-varying. 

We describe next the blind estimation and equalization of time-varying channels using the 

interactive multiple model estimator. 
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4.4 Blind Channel Equalization 

In this Section, a hybrid system for blind equalization with Markovian switching coefficients 

is presented by multiple models with a given probability of switching between the models 

(or modes). 

4.4.1 Channel Model 

To account for unknown coefficients, we augment the state vector to include the channel 

parameters as states. Denoting the unknown time-varying channel parameters as a vector 

H(k) = [h0 (k), ... , hL_1(k)]T, we define the augmented state vector 

( 4.33) 

We adopt a (discrete time) Wiener process to model the time-varying channel given by 

H(k + 1) = H(k) + v(k) (4.34) 

where v(k) is an i.i.d. zero-mean Gaussian vector with covariance matrix O"~ hxL· The 

augmented state equation is then 

Y(k + 1) = FY(k) + w(k) ( 4.35) 

where 

F= [ F 
OLxL 

( 4.36) 
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and the augmented process noise 

[ 
Gd(k + 1) ] 

w(k) = . 
v(k) 

(4.37) 

The nonlinearity of this formulation arises in the observation equation 

z(k) = f [Y(k)] + n(k) ( 4.38) 

where f[Y(k)] = 2:f=1 [Yj(k)Yi+L(k)] = DT(k)H(k) and Yi+L is the channel coefficient 

corresponding to the jth input Yj. 

The non-Gaussian augmented process noise is approximated by the following WGS rep-

resentation 
q 

p(w(k)) = LPiN[w(k); wi, Bi] (4.39) 
i=l 

where wi = Gdi, {di, i = 1, ... , q} are the q values that d(k) can take associated with the 

probabilities {pi, i = 1, ... ) q}, G = [GT orr, Bi is now equal to 02L, 12L being the 

identity matrix, and~ chosen small enough so that each Gaussian density function is located 

on a neighborhood of wi with a probability mass equal to Pi· 

4.4.2 IMM Estimator for Blind Channel Equalization 

In this Section, a hybrid system for blind equalization with Markovian switching coefficients 

is presented by multiple models with a given probability of switching between the models 

(or modes). Since the non-Gaussian augmented process noise (4.39) is approximated by a 

weighted q Gaussian terms, it can be assumed that one is dealing with a hybrid system with 
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q modes of operation given by 

Y(k + 1) 

z(k) 

FY(k) + Wj(k) Vj E Q 

f[Y(k)] + n(k). 

(4.40) 

( 4.41) 

Therefore, such a hybrid system state is dependent on a Markovian switching process gener­

ated by the symbol sequence and can be estimated effectively using an IMM algorithm [10]. 

Similar to the previous method, the switching between the models is assumed to be governed 

by a finite-state Markov chain according to 

(4.42) 

where 'lrij are the transition probabilities of switching from model Mi(k -1) to model Mi(k) 

and the transition probabilities 'lrij are assumed known, time-invariant and independent of 

the base state. 

Since the measurement equation ( 4.41) is nonlinear in nature, we can linearize z( k) by 

the following approximation. To obtain the predicted measurement, the nonlinear function 

in (4.41) is expanded in Taylor series around the predicted state with terms up to first order 

to yield the first order EKF. Hence, for q models, the IMM algorithm is implemented with 

q EKFs operating in parallel at each cycle. At every cycle, each EKF will produce a model 

conditioned state estimate Yi(k!k) and the associated covariance Pi(k!k) based on its input 

state Y 0i ( k - 11 k - 1), covariance P0i ( k - 11 k - 1) and the current observation z( k). We 

perform partial derivatives of the state matched to mode j {j = 1, ... , q} evaluated in the 
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Y1(k-llk-l), P1(k-llk-1) Y2(k-lik-l), P2 (k-llk-1) ,__._..;,:j,_.__ _____ .__.____.. _____ ..., ,u(k -II k -I) 

z(k) 

Interaction/Mixing 

Mode 
Probability 
Evaluator 

,u(k) 

State Estimate 
t------------ir--~ and Covariance 

Combination 

Y(kik), P(kik) 

Figure 4.4: One cycle of the IMM estimator for blind equalization. 

predictedstatesYJ(kjk-1) = [:Djr(kik-1) fiF(klk-1)f as defined in (4.46) and denote 

8f[Y(k)]l 
8Y(k) Y(k)=Yi(klk-l) 

( 4.43) 

[fljT (kik- 1) DJT (kik -I) f. ( 4.44) 

Now, the Taylor series expansion of (4.41) up to first order term is given by 

z(k) = f[YJ(kik- 1)] + Ejr (k)[Y(k)- YJ(kik- 1)] + n(k) ( 4.45) 

which is the linearized model of (4.41) around the predicted state YJ(kik- 1). 

Therefore, the structure of the IMM algorithm requires q EKFs while each filter matched 

to mode j {j = 1, ... , q} will be implemented by the following steps. 
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Prediction: 

Estimation: 

Ki(k) 

yi(kik) 

pi (kik) 

yi(kik- 1) 

pi(kik- 1) 

FY0j(k- 1lk- 1) + Wi 

FP0i(k- 1lk- 1)FT + Bi 

Pi(kik- 1)Ei(k) 
Eir(k)Pi(kik- 1)Ei(k) + O"~ 
Yi(kik- 1) + KJ(k) [z(k)- H0jr (k- 1lk- 1)DJ(klk- 1)] 

pi(kik- 1)- Ki(k)EF (k)Pi(kik- 1). 

(4.46) 

(4.47) 

( 4.48) 

( 4.49) 

(4.50) 

Figure 4.4 depicts the IMM-based blind equalization for binary data sequence. One cycle of 

the algorithm can be summarized below. 

1. Calculation of the mixing probabilities: This is the probability that the sym-

bol corresponding to mode Mi was in effect at k - 1 given that Mj is in effect at k 

conditioned on the measurements up to time k- 1, zk-1 , for all i, j = 1, ... , q. Here 

symbols corresponding to i and j takes on values in "( and the calculation is done for 

all q values in "(. 

/-liiJ(k- 1lk- 1) t. P{ Mi(k- 1)1Mi(k), zk-
1

} 

: P{ Mi(k)IMi(k- 1), zk-
1 }P{ Mi(k- 1)lzk-1

} 
Cj 

1 
-::-1rij/-li(k- 1) i,j = 1, 0 0 0 'q (4.51) 
Cj 

where Cj = 2...:::?=1 1rij/-li(k -1) is the normalizing constant and J-li(k -1) is the posterior 

symbol probability at time (k- 1). 
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2. Mixing: Starting with Yi(k- 1lk- 1), state estimate of the EKF matched to mode 

i at time k - 1, the mixed initial condition for the filter matched to each symbol at 

time k is computed as follows 

q 

Y 0J(k -1lk -1) = LYi(k -1lk -1)1-lilj(k -1lk -1) j = 1, ... ,q (4.52) 
i=l 

and the associated covariance is 

P 0;(k- Ilk- 1) ~ t l'•l;(k- Ilk- 1){ P'(k- Ilk -I) (4.53) 

+[Yi(k -1lk -1)- Y 0j(k -1lk -1)] 

.["Yi(k -1lk -1)- -yoj(k -1lk -l)r} j = 1, ... ,q. 

3. Mode-matched filtering: The estimate (4.52) and covariance (4.53) are used as 

input to the filter matched to Mj(k), which uses observation at time k, z(k) to yield 

YJ(kik) and PJ(kik). These are the outputs of the EKFs. The likelihood functions 

corresponding to the q filters are computed as 

Ai(k) Ll p[z(k)IMi(k),zk-1
] 

p[z(k)IMj(k), Y 0j(k- 1lk- 1), P0J(k- 1lk- 1)] 

p[vj(k)] = N[vj(k); 0, Sj(k)] j = 1, ... , q (4.54) 

where vj(k) and Sj(k) are the innovation and its covariance from the mode-matched 

filter corresponding to mode j. 

4. Mode probability update: The probability that the mode j (j = 1, ... , q) is in effect 
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is updated as follows 

Mi(k) t. P{Mi(k)IZk} 

~p[z(k)IMi(k), zk-1
] P{ Mi(k)izk-1

} 
c 

~Ai(k) t P{ Mi(k)IMi(k- 1), zk-1 }P{ Mi(k- 1)lzk-1
} 

c i=1 

1 q 

-Aj(k) L 1fij/-1i(k- 1) 
c i=1 

1 
7:Ai(k)cj j = 1, ... , q ( 4.55) 

where the normalizing constant c = 2:)=1 Aj(k)cj. 

5. Estimate and covariance combination: Finally, combination of the mode-conditioned 

estimates and covariances is done using the following mixture equations 

q 

Y(kik) = LYj(kik)J1j(k) ( 4.56) 
j=1 

P(kfk) ~ t.l';(k){ P;(kfk) 

+ ["Yi(kik)- Y(klk)] [Yi(kik)- Y(klk)f }· ( 4.57) 

This combination is not part of the algorithm recursions whereas it is used only for 

output purposes. The estimated state Y(klk) is the concatenation of the so-resulted 

estimations of both the symbol vector D(kik) and the channel coefficients H(klk). It 

corresponds to a blind estimation of the channel and the transmitted data sequence 

corrupted by lSI and noise. 
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Table 4.1: Channel impulse responses. 

II Channel Number I Impulse Response Classification 

1 0.2602 + 0.9298z 1 + 0.2602z 2 Nonminimum Phase Channel 
2 0.4950 + 0.0990z 1 - 0.4901z 2 N onminimum Phase Channel 
3 0.6082 + 0.7603z 1 + 0.2280z 2 Minimum Phase Channel 

4.5 Simulation Results 

In this Section, we investigate the effectiveness of proposed approaches by computer sim­

ulations. In the simulations environment, the information symbol from independent and 

identically distributed binary phase shift keying (BPSK) signal is used. For the IMM-based 

approaches, the initial mode probabilities are 

JL(O) = [0.5 0.5]T ( 4.58) 

and the mode-switching probability matrix is given by 

[ 

7fn 1r12] = [ 0.5 0.5] 

7f21 7f22 0.5 0.5 
( 4.59) 

The observation noise n(k) is generated as a stationary zero-mean Gaussian white process 

with variance O"~. Decisions on the estimated transmitted symbols are taken with a delay r 

such that if the delay is greater than the length of the channel impulse response, the channel 

vector is padded with zeros in order to have a length that is greater than or equal to the 

delay r. We compute bit error rate (BER) as a measure of the performance of the equalizers. 

For each signal to noise ratio (SNR), the BER is computed over 100 Monte Carlo runs of 

length 10000 symbols. Equalization experiments are made up of two Subsections. In the 
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Figure 4.5: Performance of the Kalman equalizer. 

first Subsection, the performance of the equalizers are evaluated for channels with lSI while 

the channel parameters are assumed to be known. The performance of the equalizers for 

reconstruction of transmitted symbols based on the noise-corrupted channel output without 

knowing the time-varying FIR channels is described in the second Subsection. 

4.5.1 Performance Comparison of Channel Equalizers 

The impulse responses of channel models used to evaluate the equalizers are summarized in 

Table 4.1. First of all, we study the equalizer based on the Kalman filter originally proposed 

in [47]. Channel 2, which is a nonminimum phase filter, of Table 4.1 is used to model 

the communication channel. The performance of the Kalman equalizer for different delays 

is shown in Figure 4.5. As expected, the introduction of a delay in the input estimation 

improves the BER for a nonminimum phase channel. However, this Kalman equalizer is 
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based on the assumption that the plant noise is Gaussian, which is not the case in the 

context of data channel equalization. Taking this fact into consideration, we show next 

that the overwhelming performance gain can be obtained by using a bank of Kalman filters 

instead of a single Kalman filter. 

Figure 4.6 illustrates the zeros of channel 1 and its frequency response. Using this non­

minimum phase filter to model the communication channel, in Figure 4.7, we compare the 

performance of the proposed IMM-based equalizer with that of the NKF-based equalizer 

reported in [50]. Decisions on the estimated transmitted symbols are taken with a delay 

r = 4. 

For channel2, which is also nonminimum phase as depicted in Figure 4.8, the performance 

comparison of these two equalizers is illustrated in Figure 4.9 for r = 4. Next, we take into 

account a minimum phase filter to model the communication channel. Such a channel is the 

channel 3 as shown in Table 4.1. The zero plot and frequency response of this channel are 

shown in Figure 4.10. In Figure 4.11, the proposed structure is simulated and compared with 

the NKF-based approach. From these figures, we notice that the equalizer based on IMM 

algorithm improves the performance significantly compared to the NKF-based equalizer. 

4.5.2 Performance Comparison of Blind Channel Equalizers 

In this Subsection, we simulate blind equalizers for time-varying channels. The nonstationary 

channel is modeled by a (discrete) Wiener process. A time-varying channel is selected for 

simulation with channel coefficients H(O) = [1.0 0.2 0.5]T having O"~ = 5 x 10-5 . The 

resulting zero plot and frequency response of H(O) are depicted in Figure 4.12. A realization 

of this nonstationary channel modeled by the Wiener process is shown in Figure 4.13. In 

the WGS approximation, the covariance matrix Bi is taken the same for all i and equal to 

O"~ 12Lx 2£. Decisions on the estimated transmitted symbols are done with a delay r = 2. 
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Figure 4.12: Zero plot and frequency response of the channel with initial channel parameters 
H(O) = [1.0 0.2 0.5]r. 

In Figure 4.14, the performance of the proposed approach is compared with that of the 

NEKF-based equalizer by computing the corresponding BER. One hundred simulation runs 

of length 10000 symbols are used to obtain an average BER. This thus reflects the effects of 

estimator convergence. 

In evaluating the performance of the channel estimation, we define mean square error as 

follows 

MSE (k) ~ ~m ~ { ~ t IIH(i)- il,(ili)ll2
} ( 4.60) 

where Nm is the number of Monte Carlo trials and Hm(ili) is the estimate of the channel 

vector H( i) at the mth trial. The convergence of channel coefficients is shown in Figure 4.15 

where we compare the MSE of the channel estimates as a function of the number of iterations 
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for SNR = 20 dB. 

Finally, we consider a channel with initial parameters H(O) = [0.62 0.56 0.48 0.46 0.22JT 

of which the zero plot and frequency response are delineated in Figure 4.16. Figure 4.17 shows 

a realization of this channel. Figure 4.18 depicts the convergence of channel coefficients of 

this channel having O"~ = 6 x 10-6 at different SNRs. As seen in these figures, the IMM-based 

equalizer performs better than the NEKF-based approach. 

During the simulations, we have observed that the IMM equalizer is more stable at high 

SNR than the NEKF equalizer where instability arise when the real symbol predicted states 

tend more towards L-binary vectors. The superior performance of IMM equalizer is due to 

its "adaptive bandwidth" capability. 

4.6 Conclusions 

In this Chapter, we consider the application of the IMM algorithm for the problem of data 

channel equalization when the plant noise is non-Gaussian. As a solution of this problem, a 

bank of Kalman filters has been reported in the literature to achieve overwhelming gain over 

a single Kalman filter. It has been shown that the performance of the NKF-based equalizer 

can be further improved by considering efficient interactions among the parallel filters. The 

proposed equalizer based on the IMM algorithm can handle changes in the system structure 

as well as in the noise statistics. 

We also introduce a novel interacting multiple model based nonstationary channel estima­

tor and equalizer. This proposed blind equalizer results in superior performance compared 

with the previous equalizer consisting of a (static or non-interacting) network of extended 

Kalman filters. The major advantage of the IMM-based equalizer is that, unlike the NEKF­

based equalizer, it avoids the number of terms in the WGS approximation of the plant noise 
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which increases dramatically through iterations. It also avoids the exponential growth of the 

state complexity caused by increasing channel memory length in [23]. The IMM-based blind 

equalizer is also more stable at high SNR. 



Chapter 5 

Tracking Channels for STBC in 

Non-Gaussian Noise 

This Chapter investigates the problem of estimation and tracking of non-Gaussian channels 

for space-time block coded signals over a time-selective channel. Time-varying multipath 

fading is a fundamental phenomenon which makes wireless transmission difficult. In most 

scattering environments, the effect of multipath fading can be reduced by incorporating 

multiple antennas at transmitters and/or receivers [37]. 

One of the efficient ways to exploit the multiple antennas to enable high data rate com­

munications is to use space-time coding [55]. Space-time coding is designed to exploit the 

multiple antennas by inducing spatial and temporal correlation in the signals transmitted 

over different antennas. STBC is one of the space-time coding techniques which improves 

the signal quality at the receiver by simple processing using two antennas at the transmit­

ter. This type of coding/ decoding scheme, introduced by Alamouti [2], is based on channel 

estimation at the receiver in order to decode the transmitted symbol. 

In space-time block coded systems, the simple decoding rule is valid only for a flat-fading 

81 
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channel where the channel gain is constant over two consecutive symbols. However, in reality, 

this is not the case and ignoring channel variation through the block results in performance 

degradation. In addition, the assumption of Gaussian noise in communication systems is 

not always valid as it has been shown in certain circumstances [11, 53], such as indoor 

communications, the signals are corrupted by non-Gaussian noise. Therefore, some form of 

channel tracking is needed to keep track of the channel variations even in the non-Gaussian 

environment if better performance is required. 

Based on the Alamouti's coding/decoding technique, in this Chapter, we propose a robust 

IMM estimator approach for STBC in estimating time-selective fading channels when the 

measurements are perturbed by the presence of impulsive noise. 

5.1 System Description 

5.1.1 System Model 

We consider a wireless communication system in a scenario with two transmit antennas and 

one receive antenna. The baseband discrete-time equivalent transmitter and receiver model 

is presented in Figure 5.1. At the transmitter, the information symbol sequence s(k) at 

symbol rate 1/T, where T is the symbol duration, is first parsed into blocks 

s(k) ~ [s(2k) s(2k + 1)Jr. (5.1) 

Using the Alamouti's space-time encoding scheme [2], the transmitted symbols are as listed 

in Table 5.1. 

We assume that the channel delay spread is smaller than T but the channel coherence time 

is comparable toT. Under these assumptions, channels are frequency-flat but time-selective. 
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Table 5.1: Alamouti's space-time coding scheme. 

Interval 
Transmitted symbol 

Antenna 1 I Antenna 2 

2k s(2k) s(2k + 1) 
2k + 1 -s*(2k + 1) s*(2k) 

Note that Alamouti's coding scheme achieves full diversity gains in flat-fading channels. We 

consider here how this coding scheme can be applied in more realistic time-selective channels 

tracking in many situations where non-Gaussian noise is dominant. 

During the time interval 2k and 2k + 1, we receive two consecutive samples z(2k) and 

z(2k + 1) given by 

z(2k) 

z(2k + 1) 

h1(2k)s(2k) + h2 (2k)s(2k + 1) + w(2k) + b(2k) 

-hl(2k + 1)s*(2k + 1) + h2 (2k + 1)s*(2k) 

+w(2k + 1) + b(2k + 1) (5.2) 

where hi(k), i = 1, 2 denote the time-selective channel from the ith transmit antenna to 

the receive antenna, w(k) is the AWGN with variance cr! and b(k) is the impulsive noise. 

Our goal is to recover s(k) from two consecutive measurements z(2k) and z(2k + 1) in the 

impulsive noise environment. 

5.1.2 Non-Gaussian Noise Model 

Traditionally, it has been assumed that communication systems are dominated by AWGN. 

However, substantial theoretical considerations supported by experimental evidence confirms 

that the noise in many wireless channels often exhibits non-Gaussian characteristics to some 
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Figure 5.1: Space-time transmission and IMM-based tracking structure. 

extent [28, 63]. One type of these noises is the impulsive noise. 

Impulsive noise can be modeled in a number of ways. A popular model is a mixture model, 

where the noise density is a linear combination of a nominal density (typically a Gaussian) 

and a contaminating density. Other models include the alpha-stable family of probability 

distributions and the elliptical family of distributions. It has been shown that alpha-stable 

distributions can be well approximated by a finite mixtures of Gaussian pdfs [46]. 

In the following, the impulsive noise can be modeled as in [29] 

b(k) = f3(k)g(k) (5.3) 

where {f3(k)} stands for Bernoulli process, i.e., an i.i.d. sequence of zeros and ones with 

P(f3(k) = 1) = E, and g(k) is a complex white Gaussian noise with zero mean and variance 

ol such as CJ~ » CJ;. Herein, we consider CJ~ = 1w! with "' » 1. Under this model, the 
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probability density of the channel noise 

n(k) = w(k) + b(k) 

can be expressed as a Gaussian mixture 

p(n(k)) = (1- E)N[o, 0"~] + EN[O, (/"1; + 1) 0"~] 
"-..,.-"" 

(5.4) 

(5.5) 

where the parameter E is the contamination constant or the probability that an impulse 

occurs and is a potential source of model mismatch. {b(k)} is called an "E-contaminated" 

noise sequence [42,59]. The model of (5.5) is a good model for many natural impulsive noise 

sources, such as low-frequency atmospheric noise, man-made impulsive noise, and noise 

sources occurring in urban and military radio networks [41,56]. Moreover, this model serves 

as an approximation to the more fundamental Middleton Class A noise model [53, 74]. 

5.1.3 Channel Model 

In wireless mobile communications, channel time-variations arise mainly due to Doppler 

shifts and carrier frequency offsets. There are several methods of modeling time-varying 

wireless communication channels. These include Jake's method [37, 38] and autoregressive 

(AR) modeling [49, 64]. The AR or state-space method is of the most interest as it can 

fit well into the framework of channel tracking. It is shown in [64, 70] that a narrowband 

time-varying wireless channel can be approximated by the first-order autoregressive AR(1) 

model which is suitable to capture the channel variations. Therefore, we use such a channel 

model given by 

i = 1, 2 (5.6) 
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where vi(k) is an i.i.d. circular complex Gaussian variable with variance O"; and is statistically 

independent of hi(k- 1), and the a with 0 < a ~ 1 is the first-order AR coefficient which 

is assumed to have been estimated as illustrated in [68]. We assume that two channels 

hi(k), i = 1, 2 are complex Gaussian processes with zero mean and unit covariance and have 

similar time-variations, i.e., ial 2 » O";. Under these assumptions, it can be written as 

(5.7) 

and 

(5.8) 

The two channels will induce same career frequency offsets because two transmit antennas 

share the transmit oscillator. The different angles of arrival of the multipath components 

may cause different Doppler shifts for the two channels. However, this difference is negligible 

if the multipath components originate far away from the receiver. Note that, a captures the 

common part of time-variations in both channels and vi(k) stands for unmodeled differences 

in (5.6). 

5.2 Space-Time Decoding 

Given the received signal z(k) and based on channel model (5.6), we present the space-time 

decoding technique [49] in this Section. 

During the time interval 2k and 2k + 1, the received vector can be defined as 

z(k) ~ [z(2k) z*(2k + 1)]r. (5.9) 
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Hence, we have the following matrix/vector form 

(5.10) 

where 

n(k) ~ [n(2k) n*(2k + 1)]T (5.11) 

and the channel matrix 

(5.12) 

In order to decode s(k) from z(k), we compute the soft estimate y(k) ~ [y(2k) y(2k + l)JT 

as follows 

[ 
y(2k) l H [ z(2k) l 

y(2k + 1) = Hk z*(2k + 1) . 
(5.13) 

Since the outputs y(2k) and y(2k + 1) are decoupled, the independent estimate of the trans­

mitted symbols s(2k) and s(2k + 1) is possible. This is due to the fact that under the 

assumptions imposed on the channel variation, the matrix Hk is near-unitary in the mean 

sense as shown in [49]. However, in time-varying channels, the orthogonality ofHk only holds 

if lo:l 2 ~ 1. The symbols [s(2k) s(2k+ 1)JT are estimated from the vector [y(2k) y(2k+ 1)JT 

using a decision device, actually this is the ML receiver in the case of flat-fading channels. 

The orthogonality property of Hk is the key property that must be preserved both at the 

transmitter and receiver in order to achieve error free decoding. To attain this goal, good 

estimates of the channels must be available at the receiver even in presence of heavy-tailed 

non-Gaussian disturbances. To this end, in the next Section, we resort to the IMM estimator 

and develop a robust adaptive algorithm to track the channel variations by exploiting the 
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knowledge of the impulsive noise parameters ( E, ""). 

5.3 Robust Recursive Channel Tracking Based on IMM 

Estimator 

We start off with the initial channel responses which can be obtained by training sequences. 

During the training mode, the receiver knows the transmitted symbols while in decision­

directed mode, the decoded symbols take their place. After training session it switches to 

decision-directed mode as discussed in [49]. In the sequel, we concentrate on the decision­

directed mode only and assume that initial channel estimates are available. 

The "E-contaminated" channel model is here expressed via both the observation equation 

z(k) = sT(k)h(k) + n(k) (5.14) 

where 

_ Ll { [s(k) s(k + l)]T 
s(k) = 

[-s*(k) s*(k- 1)]T 

if k is even 
(5.15) 

if k is odd 

and the following state equation 

h(k) = Ah(k- 1) + v(k) (5.16) 
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where 

h(k) [ht(k) h2(k)jT (5.17) 

A = diag(a, a) (5.18) 

v(k) - [vt(k) v2(k)f. (5.19) 

As can be seen from the state-space model described by (5.14) and (5.16), the estimation of 

the channel h(k) requires the knowledge of the decoded symbols s(k). On the other hand, 

the detection of s( k) depends on the good estimates of the channel h( k). To resolve this 

joint detection-estimation problem, we first obtain the coarse channel prediction given by 

h(2kl2k- 1) ah(2k- 1l2k- 1) 

h(2k + 1l2k- 1) = a 2h(2k- 1l2k- 1). 

(5.20) 

(5.21) 

This gives a rough estimate of the correct channel assuming a zero mean process noise. Using 

this estimate, we can construct a coarse estimated channel matrix denoted by :Hie) from (5.12) 

and use (5.13) to obtain coarse estimates of s(2k) and s(2k + 1) denoted by ~(c)(2k) and 

~(c)(2k + 1), respectively. These coarse estimated symbols are then used in the appropriate 

filtering algorithm to obtain refined channel estimates h(2kl2k) and h(2k+ 1l2k+ 1). Finally, 

the refined channel estimates are used to give a more accurate set of transmitted symbol 

estimates, ~(2k) and §(2k + 1). 

It is well known that if the plant noise v(k), the observation noise n(k), and initial esti­

mate of the states are Gaussian and mutually independent a standard KF yields the optimal 

estimate of the state h(k) using the knowledge of the decoded s(k) and the observation 

z(k) [10]. However, the filtering techniques, based on an ordinary KF, completely lose their 
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optimal properties because of the spiky character of the impulsive noise which severely de­

grades the performance of a linear estimator [59]. The parameter E in (5.5) determines the 

probability of contamination and is a potential source of model mismatch. 

In order to tackle the impulsive noise, we develop a system for channel tracking with 

Markovian switching coefficients by multiple models with a given probability of switching 

between the models. The models are one oft hypothesized models, M 1 , ... , Mt for the system 

and the event that model j is in effect during the sampling period ending at time k will be 

denoted by Mj(k). Since the measurement noise of the dynamic system described by (5.14) 

and (5.16) is approximated by the mixture of a Gaussian noise with moderate variance and 

a Gaussian noise with high variance and low occurrence probability, it can be assumed that 

one is dealing with a hybrid system with two modes of operation. Hence, such a hybrid 

system state is dependent on a Markovian switching process generated by the occurrence of 

impulsive noise and can be estimated effectively using an IMM algorithm [10]. Therefore, for 

this problem we consider an IMM algorithm with two Kalman filters. One filter is matched 

to the dynamic system with nominal ambient noise N[O, a~J and the other is matched to 

the same dynamic system but with impulsive component N[O, a~]. We denote ai = a~ and 

0'2 - 0'2 
2- b• 

The switching between the models is assumed to be governed by a finite-state Markov 

chain according to the transition probabilities 1rij ~ P{ Mj(k)JMi(k- 1)} of switching from 

model Mi(k -1) to model Mj(k). One cycle of the IMM-based channel tracking as shown in 

Figure 5.2 is summarized below. At every cycle, each KF will produce a model conditioned 

state estimate hJ(kJk) and the associated covariance PJ(kJk) based on its input state h0J(k-

1Jk- 1), covariance P0J(k- 1Jk- 1) and the current observation z(k). 

1. Calculation of the mixing probabilities: This is the probability that the noise 

component corresponding to mode Mi was in effect at k - 1 given that Mj is in effect 
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Figure 5.2: One cycle of the IMM estimator for STBC. 

at k conditioned on the measurements up to time k - 1, zk-1, for i, j = 1, 2. The 

mixing probabilities are given by 

1 
-7f· ·1/.·(k- 1) - ~]r'~ 

Cj 
i,j = 1,2 (5.22) 

where ci = 2:::7=1 1rij/-li(k -1) is the normalizing constant and /-li(k -1) is the posterior 

mode probability at time ( k - 1). 

2. Mixing: Starting with hi(k -Ilk -1), state estimate of the KF matched to mode i at 

time k- 1, the mixed initial condition for the filter matched to each noise component 
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at time k is computed as follows 

2 

h0j(k -1Jk -1) = Lhi(k -1Jk -1)J1ilj(k -1Jk -1) 
i=l 

and the associated covariance is 

pOj(k- 1Jk- 1) t.l'•l;(k- Ilk- 1){ P'(k- Ilk- 1) 

+[hi(k -1Jk -1)- h0j(k -1Jk -1)] 

j = 1,2 (5.23) 

. [hi(k- 1Jk- 1)- h0j(k- 1Jk -1)f} j = 1, 2. (5.24) 

3. Mode-matched filtering: The estimate (5.23) and covariance (5.24) are used as 

inputs to the filter matched to Mj(k), which uses z(k) to yield hj(kJk) and Pj(kJk). 

These are the outputs of the KF. Using the estimated information vector ~( k) according 

to time index k, KF equations for the mode j (j = 1, 2) can be written as follows [10,32]. 

Prediction: 

hj(kJk- 1) 

Pj(kJk- 1) 

Ah0j(k- 1Jk- 1) 

AP0j(k- 1Jk- 1)AT + a~I 

Estimation: 

hj(kJk) 

Pj(kJk) 

Pj(kJk- 1)~(k) 

~T(k)Pj(kJk -1)~(k) + aJ 
hj(kJk- 1) + Kj(k) [z(k)- §T (k)hj(kJk- 1)] 

Pj(kJk -1)- Kj(k)§T(k)Pj(kJk -1) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 
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where K1(k) is the Kalman gain of the filter matched to M1(k). The likelihood func-

tions corresponding to the two filters are computed as 

A1(k) Ll p[z(k)IM1(k), zk-1] 

p(z(k)IM1(k),h01 (k -1lk -1),P01 (k -1lk -1)] 

N[v1(k); o, S1(k)] j = 1, 2 (5.30) 

where v1 ( k) and S1 ( k) are respectively the innovation and innovation variance given 

by the filter matched to M1(k). 

4. Mode probability update: The probability that the mode j (j = 1, 2) is in effect is 

updated as follows 

j = 1,2 (5.31) 

where the normalizing constant c = L~=l A1(k)c1. 

5. Estimate and covariance combination: Finally, combination of the mode-conditioned 

estimates and covariances is done using the following mixture equations 

2 

h(klk) I: h1(kik)JLj(k) (5.32) 
j=l 

P(kik) t,l';(k){ Pi(kik) (5.33) 

+[h1(kik)- h(klk)] [h1(kik)- h(klk)f }· 

This combination is not part of the algorithm recursions whereas it is used only for 

output purposes. 



M.A.Sc. Thesis - Z. M. Kamran - McMaster - Electrical & Computer Engineering 94 

The proposed IMM-based channel tracking algorithm can be summarized as follows: 

• Wait until two consecutive measurements z(2k) and z(2k + 1) become available. 

• Obtain coarse estimates h(2kl2k- 1) and h(2k + 1l2k- 1) of current and previous 

channel states using (5.20) and (5.21). 

• Make initial estimates of the current transmitted symbols §<c)(2k) and §<c)(2k+1) using 

(5.13), the observation vector z(k), and :Hie). 

• Apply IMM estimator to estimate h(2kl2k)and h(2k + 1l2k + 1) using §(c)(2k) and 

§(c)(2k + 1). 

• Construct Hk from h(2kl2k)and h(2k + 1l2k + 1). 

• Re-estimate symbols §(2k) and §(2k + 1) from Hk using (5.13). 

5.4 Simulation Results 

Computer simulations are conducted to illustrate the effectiveness of the proposed approach. 

The system we simulate use a frame length of 150 information symbols. The transmitted 

sequence of quadrature phase shift keying (QPSK) modulation is employed. The channel 

impulse response used in simulations is a time-selective fading channel (i.e., time-varying 

but frequency-flat). The time-selective fading channels are generated by initializing hi(O) as 

a complex Gaussian variable with unit variance and taking a= 0.998. 

The modes of the hybrid system evolve according to a Markov chain. In this problem, 

the impulsive noise occurs independently in time. Therefore, the mode-switching probability 
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Figure 5.3: BER as a function of SNR. 

matrix is selected as 

(5.34) 

This yields a white, binary chain for the mode evolution with probabilities 1 - E and E for 

the two modes. The parameter of the Bernoulli sequence is E = 8 x w-2 and the impulsive 

noise parameter "" = 100. In order to avoid divergence in Kalman filtering, we insert one 

pilot symbol every 12 symbols which incurs a loss of 8% bandwidth efficiency. To maintain 

fairness, when no channel tracking is used, we set the receiver with perfect current channel 

estimates every 12 symbols. 

The simulated BER performance is depicted in Figure 5.3. For each SNR, the BER is 

computed over 5000 Monte Carlo runs of 150 iterations. This thus reflects the effects of 
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Figure 5.4: IMM-based channel tracking capability. 

estimator convergence. From Figure 5.3, it can be noticed that IMM-based approach shows 

excellent behavior since the curve after cancellation of impulsive noise is only marginally 

different from the curve obtained by KF-based approach with Gaussian noise only (i.e., 

when E = 0) published in [49]. We can also remark that the proposed method outperforms 

the classical KF with a fixed threshold to tackle impulsive noise as reported in [42]. 

Figure 5.4 illustrates the migration of the channel coefficients through time and tracking 

capability of the proposed approach to follow the movement of the channel coefficients at 

SNR of 25 dB in impulsive noise environment. The solid lines in the graphs depict the true 

channel coefficients while the dotted lines are the estimated coefficients. We can observe 

that our IMM estimator yields excellent tracking capability in presence of impulsive noise 

by keeping fairly close to the true values throughout. 
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Alamouti's coding/decoding scheme is based on the orthogonality of the estimated chan­

nel matrix Hk, i.e., H~Hk should be diagonal. To demonstrate the stability of the proposed 

approach, we define the performance index as 

(5.35) 

where 

(5.36) 

is called interference to signal ratio (ISR) which measures the ratio of the power of the 

interference of the qth symbol to the power of the pth symbol estimated as in (5.13). Each 
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Figure 5.6: BER with varying SNR. 

ISR is calculated for every simulation and averaged over 100 realizations. The boxplot of the 

performance indices is depicted in Figure 5.5. For each data set, the boxplot has a box whose 

top is at the upper quartile values and bottom is the lower quartile values. The median is 

plotted as a horizontal line inside the box. The lines extending from each end show the extent 

of the rest of the results with outlier presented as crosses. It can be inferred that the IMM­

based approach is more stable than the channels tracking using KF with a fixed threshold. 

The IMM algorithm is also robust to inaccurate prior information of the impulsive noise. 

Suppose the exact values of the impulsive noise parameters ( E, K) are not known. A reasonable 

assumption for the values of E and K will yield acceptable results because the IMM algorithm 

will adjust the mode probabilities properly. Figure 5.6 depicts the BER performance of the 

proposed approach for the same dynamic system with (t: = 8 x 10-2 , K = 100) while the 

algorithm assumes the impulsive noise parameters (t:1 = 1.5t:,K1 = 1.5K). Figure 5.6 also 
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shows similar results for (t:1 = 0.75t:, K1 = 0.75K). It is seen that the BER in the IMM-based 

channels tracking is almost the same while the KF with fixed threshold has significantly 

performance degradation. 

5.5 Conclusions 

In many practical wireless channels in which space-time block coding techniques may be 

applied, the ambient noise is likely to have an impulsive component that gives rise to larger 

tail probabilities than is predicted by the Gaussian model. Although Kalman filters are often 

used in practice to track the channels variation, their performance degrades severely when 

the plant and/or measurement noises are not Gaussian. 

In this Chapter, we address a multiple model based time-selective fading channels tracking 

approach for STBC with non-Gaussian ambient noise. The proposed adaptive channels 

tracking scheme is based on a state-space representation of the STBC communication systems 

and the prior information of the measurement noise which is corrupted by the impulsive noise. 

The pdf of the measurement noise is considered here as two Gaussian terms weighted by the 

probability of appearance of Gaussian and impulsive noises. 

In this method, neither clipping nor impulses correction mechanism is applied. It has been 

shown that the proposed approach is less vulnerable to the impulsive noise and has superior 

performance compared to the KF with a threshold scheme. The IMM-based algorithm is 

consistent and also robust to inaccurate a priori information on the impulsive noise. 



Chapter 6 

Summary 

This Chapter of the thesis concludes with a summary of results and avenues for further 

research work. 

6.1 Conclusions 

The focus of this thesis has been on the development and analysis of techniques for data 

channel equalization and channel estimation for space-time block coded systems with addi­

tive non-Gaussian noise which are generic problems in signal processing. To resolve these 

problems, we applied the multiple model estimator based approaches for parameter track­

ing. Specifically, we employed the Interacting Multiple Model algorithm which incorporates a 

Bayesian framework dealing with dynamic situation of switching factors. The IMM approach 

is based on the Kalman filtering techniques and is widely used in the fields of maneuvering 

target tracking especially when the system can be described by a bank of multiple state-space 

models. 

Firstly, we proposed a practical application of the IMM estimator to the equalization 

of digital communications channels to combat the unfavorable channel effects such that the 

100 
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transmitted signal can be preserved with highest integrity. Our approach is based on the 

approximation of the a posteriori probability density functions of the symbol sequences by 

a weighted sum of Gaussian density functions, where one filter is matched to the dynamic 

system with each Gaussian density function. Recently, a network of Kalman filters has been 

applied to the problem of data channel equalization. A serious drawback of this approach 

is that the number of Gaussian terms in the sum increases exponentially through iterations. 

In order to make it computationally feasible, the Gaussian sum in the equalizer is truncated 

after each iteration, which results in significant performance degradation. In addition, it 

did not consider the interaction between the parallel filters during the estimation process. 

In this thesis, it is demonstrated that the network of Kalman filter based solution can be 

further improved by using a switching or interacting multiple model estimation approach 

that computes the state estimate accounting for possible transitions in the models from one 

time to another. 

This approach is based on the assumption that the channel coefficients are perfectly 

known. Unfortunately, in many practical communication systems, the channel coefficients 

are unknown and/or nonstationary. Next, to account for unknown channel coefficients, we 

proposed a novel interacting multiple model based nonstationary channel estimator and 

equalizer for systems with non-Gaussian plant noise. The proposed blind equalizer, which is 

completely blind towards any learning phase, can handle changes in the system structure. It 

has been shown that IMM based blind equalizer results in superior performance compared to 

the previous equalizer consisting of a (static or noninteracting) network of extended Kalman 

filters. As the IMM algorithm handles the interactions between parallel filters in an efficient 

way, performance is improved without much increase in complexity. The IMM equalizer 

is more stable in high SNR. It also avoids the exponential growth of the state complexity 
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caused by increasing memory length for blind equalization using parallel adaptive filter­

ing reported in the literature. The major advantage of the proposed approaches is that, 

unlike the NKF and NEKF equalizers, proposed equalizers avoid the number of terms in 

the weighted Gaussian sum approximation of the plant noise which increases dramatically 

through iterations. 

Finally, we considered the problem of channel estimation and tracking for space-time 

block coding contaminated by additive non-Gaussian noise. The proposed adaptive chan­

nels tracking scheme is based on a hybrid system which is the state-space representation of 

the communication system and the prior information of the measurement noise. The mea­

surement noise of this hybrid system is approximated by the mixture of a Gaussian noise 

with moderate variance and a Gaussian noise with high variance and low occurrence prob­

ability. The state of such a system which is dependent on a Markovian switching process 

generated by the occurrence of impulsive noise is estimated by the IMM estimator. We have 

shown that the IMM based channel tracking is less vulnerable to the impulsive noise and has 

superior performance compared to the traditional method available in the literature using 

the Kalman filter with a threshold scheme to combat the impulsive noise. In addition, it has 

been shown that the IMM-based approach is consistent and robust to inaccurate a priori 

information on the non-Gaussian noise component. The excellence of the IMM estimator for 

the system with several behavior modes which can switch from one to another was proven 

again. 

6.2 Future Directions 

Although this thesis has laid a theoretical basis for use of the multiple model estimator for 

channel equalization with non-Gaussian plant noise and space-time block coded systems with 
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non-Gaussian additive noise, there are several issues that remain to be explored. We discuss 

some important areas where further studies could be fruitfully directed. 

• The proposed channel equalizer considers the channels which are linear in nature. 

However, amplifier devices used in high speed data transmission and satellite com­

munications operate in saturation region. These amplifier devices introduce in the 

transmitted message memoryless nonlinearities which, combined with the effects of the 

transmitter and receiver filters, become nonlinearities with memory. Such nonlinear 

channels can be modeled by Volterra series. Hence, a future challenge could be to 

modify the proposed equalizer structure for nonlinear channels. 

• The equalizer designed by the network of Kalman filters is dependent on the a priori 

knowledge of the channel parameters and on the noise variance which is not a real life 

situation. To circumvent this obstacle, there may be some algorithms which can be 

used to make the structure adaptive. 

• In the design of blind equalizer, to account for unknown channel coefficients, we aug­

ment the state vector to include the channel parameters. A detailed analysis could yield 

some useful results, such as the initialization and stability of such blind algorithm. 

• The time-varying nature of wireless channels is mainly due to the Doppler shift. To 

model such a channel, it has been reported that a first order autoregressive process is 

suitable to capture the slow channel variations. In channel tracking for space-time block 

coded systems, it is assumed that the autoregressive coefficient has been estimated 

earlier. Hence, blind estimation of the autoregressive model parameters is an important 

area of further research. 

• Carrier frequency-offsets and Doppler shifts give rise to time-selectivity in wireless 

channels, while high data rates and multi path propagation introduce frequency-selectivity 



M.A.Sc. Thesis- Z. M. Kamran- McMaster- Electrical & Computer Engineering 104 

in wireless links. The combined time- and frequency-selective (or doubly-selective) 

channels affect critically the performance of communication systems. It is important 

and challenging task to mitigate these channels, but once acquired, they offer joint 

multipath-Doppler diversity gains. Therefore, the quality of channel acquisition has a 

major impact on the design of space-time coded systems. It remains to explore the 

techniques for tracking channels in fast time-varying fading, frequency-selective fading, 

and their extensions to doubly-selective fading environments. 
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