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CHAPTER I 

INTRODUCTION 

1.1 HISTORICAL INTRODUCTION - SUPERCONDUCTIVITY 

The liquefaction of helium in 1908 by H. K. Onnes 

led to his discovery in 1911 of superconductivity in 

mercury (l) • For the next four decades the understanding of 

this phenomenon was based on thermodynamic and phenomenolog­

ical arguments. In 1933 Meissner and Ochsenfeld (2 ) observed 

that a bulk superconductor expels a magnetic field, leading 

to a stable state which can be described by the laws of 

thermodynamics. A two-fluid model was advanced by Gorter and 

Casimir (3 ) in 1934 to describe the thermodynamic properties; 

and in 1935 London and London ( 4 ) proposed a phenomenological 

theory for the electromagnetic properties. The London theory 

was extended in 1950 by Ginsburg and Landau (5 ) to include a 

spacially dependent superfluid density; and in 1953 by 

Pippard (6 ) who proposed a nonlocal form for the theory. 

In 1950 Fr~hlich (?) recognized the importance of the 

interactions between electrons and phonons (quantized lattice 

vibrations) in forming the superconducting state. He showed 

that this interaction could lead to an effective electron-

electron interaction which is attractive for electrons near 

the Fermi surface. In the same year Fr~hlich's proposal was 

confirmed by the experimental observation of the isotope 
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effect by Maxwell (B) and independently by Reynolds et al. (9 ) 

The specific heat experiments of Corak and Satterthwaite (lO) 

and Corak et al. (ll) indicated that there is an energy gap 

for excitations from the superconducting ground state. 

In 1956 Cooper (l2 ) investigated the problem of a 

pair of electrons of zero total momentum and spin interacting 

with each other via an attractive two-body interaction in the 

presence of an inert Fermi sea. He considered a model inter-

action of constant strength when the electron energies were 

within an "average'' phonon energy of the Fermi surface, and 

zero strength otherwise. He found that an electron pair in 

such a system would form a bound state, no matter how weak 

the attractive interaction was. This indicated that in the 

presence of an attractive electron-electron interaction the 

Fermi sea would be unstable with respect to the formation of 

electron pairs. Cooper's result along with the mechanism for 

the attractive interaction proposed by Fr~hlich cleared the 

way for the theory of Bardeen, Cooper and Schrieffer (l3 ) 

hereafter referred to as BCS. 

The BCS theory treats the electron-ion system in 

terms of electrons in Block states and noninteracting phonons, 

with a residual two-body interaction between the electrons. 

This residual interaction is composed of a repulsive Coulomb 

part, and a phonon part which is attractive between electrons 

for which the energy difference between electron states is 

less than the phonon energy. When the residual interaction 
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is attractive the Fermi sea becomes unstable with respect to 

the formation of Cooper pairs, and a new ground state of the 

system is formed. The model interaction of Cooper was used 

to show that this new state gave good agreement with a wide 

range of superconducting phenomena. This BCS model intro­

duces the total effect of the phonons by means of a single 

adjustable parameter, which is the interaction strength times 

the density of electron states at the Fermi surface. Thus, 

it predicts a law of corresponding states among superconduc-

tors, and shows good agreement with experiment for a wide 

range of superconducting properties and materials (l 4 ,l5 ). 

The superconducting state energy gap was directly 

measured in 1960 by Giaever (l 6 ), who used electron tunneling 

through metal-insulator-superconductor films. This tunneling 

technique has been refined (l7 ,lB) such that the current-

voltage characteristics can provide information on the 

"superconducting phonon density of states" (l 9 - 21 ). To 

account for these and other observed deviations from the BCS 

theory, the detailed nature of the electron-phonon and 

Coulomb interactions had to be included in the theory. This 

was accomplished by Eliashberg (22 ), Nambu (23 ), Morel and 

Anderson (24 ), and Scalapino, Schrieffer and Wilkins (25 ) 

with work based on Migdal's (26 ) approach for normal metals 

and Gor'kov's (27 ) Green's function method. A number of 

thorough discussions of superconductivity have been 

published <28 , 29 ); and calculations of energy gaps, transition 



4 

temperatures, and other superconducting properties have been 

t d 
(24,30-38) repor e • 

In a pure single-crystal superconductor the energy 

gap is a function of position on the Fermi surface. The most 

direct measure of this effect is provided by tunneling 

experiments. The directional gaps have been measured in 

lead (39,40) d t
. (41,42) an 1n • A number of theoretical 

investigations have been carried out both for anisotropic 

effective electron-electron interactions <43 , 44 ) and aniso-

tropic band structure (45) More recent calculations by 

Bennett for lead (46 ) included phonon anisotropy resulting 

from the phonon spectrum, while neglecting anisotropy arising 

from the electron-phonon interaction. He found that the 

phonon contribution was the dominant source of energy gap 

anisotropy in lead, rather than band structure effects. 

Bennett later extended his calculations to include tin <47 ). 

Calculations including the full effect of phonon anisotropy 

have been performed by Balsley in tin <48 , 49 ) and Leavens 

and Carbotte (50 , 51 ) in aluminum. 
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1.2 SCOPE OF THESIS 

On the basis of reasonable assumptions (S 2 ) it is 

possible to express any motion of atoms in a crystal as a 

superposition of normal vibrations. These vibrations, or 

phonon modes, are described by a propagation vector, a 

frequency, and a direction of displacement; all of which are 

characteristic of the crystal and depend upon the atomic 

geometry and interatomic forces. In a metal the conduction 

electrons interact with the ions; thus the electronic 

properties of both the superconducting and normal states 

will be dependent upon the phonon modes. There is some 

evidence to suggest that phonon effects may account for 

most of the observed anisotropy in: 

1) the superconducting gaps of face-centred cubic 

aluminum (SO) and lead (4G), and tetragonal 

h 't t' (47,48,49) w l e ln . 

2) the normal state resistivity of white tin <48 , 49 ) 

In this thesis we present the results of a detailed 

numerical investigation of the effects of phonon anisotropy 

on the properties of the hexagonal close-packed metals zinc 

and thallium. By "phonon anisotropy" we refer to that 

anisotropy which arises from both the directional dependence 

of the phonon frequency distributions and the electron-phonon 



interaction. The rather artificial separation of these 

two effects is not considered. Zinc was initially chosen 

for these calculations because: 

a) it appears to be highly anisotropic (53) 

b) an accurate empirical pseudopotential is 

available (54 >, 

c) rather extensive phonon measurements have 

been performed and force constant models 

derived (55) 

The calculations were later extended to include thallium 

because of the availability of superconducting tunneling 

information (56 ' 57 ), and recent measurements of the phonon 

dispersion curves (5 S) along some of the high symmetry 

directions in the reciprocal lattice. 

6 

(20) (25,28,59) Within the accurate "strong-coupling" 

theory of superconductivity, the superconducting state is 

completely specified by means of a frequency (w) and wave-

vector (~} dependent gap and renormalization function. These 

quantities are determined by a set of nonlinear integral 

equations - the Eliashberg gap equations. These equations 

may be expressed in a form where all of the essential normal 

state information is contained in a set of directional depen-

dent distribution functions. 

2 a (w,k)F(w,k) 

(1.1) 
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where o denotes the Dirac delta function. The wavevectors 

k and k' are on the Fermi surface, ~is the electron velocity 

vector, and the integral extends over the entire Fermi 

surface. The electron-phonon coupling constant, gkk'j of 

section 2.2, depends upon the electron-ion pseudopotential 

and the phonon: wavevector k-~·, frequencies wk-~'j' and 

polarization vectors. We have used j to denote the phonon 

branch index. The average of equation (1.1) over all k 

directions, a 2 (w)F(w); may be thought of as a product of the 

phonon frequency distribution F(w) and a quantity a 2 (w) 

which describes, in an average way, the strength of the 

coupling between the electrons and the phonons. 

All of the properties discussed in this thesis may 

be expressed in terms of two sets of distribution functions, 

those given by equation (1.1) and another very closely related 

set, a~r(w,k)F(w,k). The a~rF functions are given by 

equation (1.1) with lgkk'. 1
2 multiplied by a simple function 

- J 
of the electron velocities vk and vk,. They both involve 

normal state information through the phonons and the electron-

ion interaction. The treatment of the normal state data and 

the subsequent calculation of these functions will be the 

subject of Chapters II and III. 

Detailed experimental phonon information is included 

in our calculations by the use of Born-von Karman force 

constant models (S 2 ), which describe the lattice dynamics of 

the metals. The effects of electronic band structure are 
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included by the use of an isotropic band mass approximation, 

in which the density of electron states at the Fermi surface 

is changed from its free electron value. Any anisotropy 

arising from the band structure is ignored. 

In section 2.1 and 2.2 the Born-von Karman theory 

and the electron-phonon interaction respectively, are 

discussed for metals with more than one atom per unit cell. 

Section 3.1 describes the particular force constant 

model which we use to describe the hexagonal close-packed 

metals. The actual force constants and pseudopotentials 

employed in our zinc and thallium calculations are given in 

sections 3.3 and 3.4 respectively. Two models are used to 

describe each metal. The zinc models have the same pseudo-

potential, but different force constants; while the thallium 

models have the same force constants, but different pseudo-

potentials. Section 3.2 outlines the calculation of the 

functions defined by equation (1.1) for each of the four 

models mentioned above. Once this has been accomplished the 

superconducting results of Chapter IV and the normal state 

results of Chapter V follow in a relatively straightforward 

manner. 

The isotropic a 2 (w)F(w) 's are used in section 4.1 to 

calculate superconducting properties in the isotropic or 

2 "dirty'' limit. From the directional a (w,k)F(w,k) 's we 

determine the superconducting gaps as a function of position 

on the Fermi surface, which may be compared with experiment. 



The resulting gap anisotropy allows us to calculate the 

transition temperature, the gap at the gap edge, the low 

temperature specific heat, and the nuclear spin relaxation 

rate for a pure single crystal superconductor. The above 

results are discussed in section 4.2 for zinc and section 

4.3 for thallium. 

9 

Also, in section 5.1 we obtain the electron-phonon 

mass enhancement parameters and scattering times as a func­

tion of temperature and position on the Fermi surface. In 

section 5.2 we investigate the anisotropy in the temperature 

variation of the electron-phonon mass enhancement on the 

zinc third band lens. The use of a "scattering time 

approximation" in section 5.3 enables us to calculate the 

directional large-angle scattering times as a function of 

temperature and conduction electron wavevector direction. 

These scattering times may be expressed in terms of the 

a~r(w,k)F(w,~) functions mentioned previously. From these 

quantities we obtain the phonon-limited resistivities 

parallel and perpendicul~r to the c-axis. The resistivities 

are also calculated using the variational approach; and the 

results of the two methods are compared. 

In Chapter VI conclusions are drawn from our calculated 

results and the comparisons with experiment discussed in 

Chapters III, IV and V. 



CHAPTER II 

PHONONS AND THE ELECTRON-PHONON INTERACTION 
~ ~ 

2.1 PHONONS AND BORN-VON KA~~N THEORY 

Inelastic slow neutron scattering (6 0) provides the 

most detailed information about phonon modes, usually for 

wavevectors in high symmetry directions. Born-von Karman 

theory (S 2 ) assumes that the lattice dynamics of a crystal 

can be expressed in terms of effective interionic potentials 

or force constants. These force constants are adjusted to 

give the best possible fit to measured phonon dispersion 

curves and any other relevant data. Then the fitted force 

constants are used to generate the frequencies and polariza-

tion vectors for any desired phonon wavevector. 

In a crystal the ionic motion consists of small 

oscillations about the equilibrium positions. Since the 

electrons move much faster than the ions, the adiabatic 

approximation (6 l) states that the electronic motion may be 

considered as contributing to the effective interionic forces, 

and need not be explicitly included in the dynamical problem. 

Thus, the total crystal potential energy ~ can be expressed 

as a function of the instantaneous ion positions. In a 

crystal with N unit cells and p ions per unit cell, we write 

the position vector ~(~K;t) of the Kth ion in the ~th unit 

cell at time t as 

10 
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where ~O is the equilibrium position and U gives the excursion 

from equilibrium. 

Since the ionic displacements are small, the harmonic 

approximation is invoked, whereby~ is expanded in a Taylor's 

series. The expansion is made in powers of the displacements; 

and only terms up to second order are retained. Thus (62 ) 

with 

and 

q,K(.Q,) = 
a au (R-K;t) a 

~KK 
1 

( .Q, .Q, 1 • = 
aS ' J 

(2 .1) 

( 2. 2) 

( 2. 3) 

where a,S = 1, 2, 3 are the Cartesian components, the 

subscript 0 denotes evaluation at the equilibrium positions, 

and ~O is the static crystal potential energy. The term 

~K(R-) gives the force in the a-direction acting on the (R-K) a 

ion, and at equilibrium this must vanish 

~~(.Q,} = 0 
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The crystal Hamiltonian in the harmonic approximation becomes 

1 "2 
H = -

2 
I M U (£K;t) + ¢ 0 £Ka K a 

1 
+ 2 ¢KK'(£ £')U (£K·t)U (£'K'·t) 

aS ' a ' S ' 
( 2 • 4) 

where the fir~>t term is the total kinetic energy of the 

lattice and MK is the mass of the K type ion. 

The force constant ¢KK' (£ £') is the force in the 
aS ' 

a-direction acting on the (£K)th ion, due to a unit displace-

ment of the (t'K')th ion in the S-direction. From the 

definition (2.3), commutation of the derivatives gives 

Throughout this section we implicitly assume an infinite 

periodic crystal made up of macrocrystals with N unit cells. 

Therefore, translation of the entire crystal by a lattice 

vector must leave the crystal potential energy unchanged. 

This implies that the force constants can only depend upon 

the relative cell index £-£', or 

( 2. 5) 

From Hamilton's equations and the crystal Hamilton-

ian (2.4) the equations of motion for the lattice are 



obtained, 

I 

l: ~~KB (1,1')UB(1'K';t) 
1'K'8 

The time dependence is removed by setting 

The resulting equation 

may be simplified by assuming a solution of the form 

UK(k) 
Cl. -

1M"" 
K 

ik• (~~ + £.{K)) 
e 

( 2. 6) 

( 2. 7) 

{ 2. 8) 

where we have written the ionic equilibrium positions as 

R0 {1K) - RO + _P{K) 
-1 
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where ~~ is the position of the origin of the .Q,th unit cell, 

th 
.e_(K) is the position_ of the K ion with respect to the 

origin of the unit cell, and k is a wavevector with N allowed 

values uniformly distributed throughout the first Brillouin 

zone. Upon substituting {2.8) into (2.7) the equations of 



motion become 

= L: DKK
1 

(k)UK
1 

(k) 
K'S aS - S -

where the el~1ents 

DKKI(k)=l: e 
-i~: (~~+.e_(K)) ¢~~~ (£,£ 1

) 

aS - £' 

define the dynamical matrix D (~_) • 

IM M I 
K K 

( 2. 9) 

ik • ( R ~ I+ .e. ( K I ) ) 

e 

(2.10) 

14 

We inj.tially set out to determine the motion of the 

23 ions expressecc in terms of 3pN (N%10 ) coupled differential 

equations (2.E). The set of linear homogeneous equations 

(2.9) has red~.ced the problem to one of diagonalizing a 3p 

by 3p matrix I·(~_) . The eigenvalues w~j , j = 1, 2, ... , 3p, 

are the squares of the phonon frequencies and the eigenvectors 

are the phonon polarization vectors, corresponding to the 

phonon of wavevector k. To make explicit the correspondence 

between the eigenvalues and the eigenvectors, we write the 

latter as £K(~,j). The convention of Born and Huang (S 2 ) is 

adopted, whereby 

E:K(k,j) 
a -

and in all that follows we assume that the eigenvectors are 

orthonormal 
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l, (E:f~(k,j))*E:K(k,jl) = 
Ct - a -

~a 

Q • • 1 J,J 

0 SO 1 a, KrK 

* where denotE!S the complex conjugate and o is the Kronecker 

delta. 

The e~'uations of motion ( 2. 9) may now be written in 

standard form <62 , 63 ) as 

( 2. 11) 

and using relation (2.5) the elements of the dynamical matrix 

become 

DKKI(k) 
aB -

-ik·RQ q,KK
1 

(Q, 0) 
- -Q, aS ' = L: e 

Q, IM M I 
K K 

- ik • ( E_ ( K) -£. ( K 1 
) ) 

e 

( 2 .12) 

From these two equations it follows that for any reciprocal 

lattice vector H -n 

-iH •p (K) 
= e -n - .£ K ( ~; j ) (2.13) 

In gen,=ral the ionic displacements may be expressed 

as a superposi 1:ion of normal modes (k, j) 

U {R-K) = a 
Q(k;j)E:K(k;j) 

- a-

i~· (~~ + Q_(K)) 
e (2.14) 
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The normal coordinates Q(k;j) are chosen to diagonalize the 

crystal Hamiltonian (2.4). They may be expressed in terms 

of phonon creation (a+) and annihilation (a) operators as (62 , 64 ) 

Q (~; j) = (~)1/2 + + 
2 (a k. a~J·) wk. - _J 

_J 
(2.15) 

where t is Planck's constant divided by 2rr, with 

and 

The above formalism will be used throughout this 

work. However, it should be mentioned that for a crystal 

with more than one atom per unit cell, there exists an 

alternative definition for the dynamical matrix which has 

also been discussed by Born and Huang (S 2 ). In this approach 

the elements of the dynamical matrix are defined as 

DKK'(k) 
a.B - B.H. = l: 

Q,' IM M I 
K K 

The eigenvalue equation then becomes 

( 2. 16) 

(2.17) 



where the pol~rization vectors satisfy 

(2.18) 

and the expan:3ion for the ionic displacements becomes 

1 

INM 
K 
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Finally, we may make the connection between these two conven-

tions by observing that 

(2.20) 

In the literature EK and EK are both referred to as polar-
-B.H. 

ization vectors. The convention followed must be specified 

if this terminology is to be unambiguous. 

Although the Born-von Karman description of lattice 

dynamics is complete, in application it may not be entirely 

accurate. The experimental data is, of necessity, limited; 

and this in tuLn restricts the number of force constants 

which may be assigned meaningful values (60) 
Also, the 

elements of th'~ dynamical matrix ( 2 .12) consist of a sum 

over all latth:e vectors; but in practice the series is 

truncated afte:::- a number {usually less than nine) of nearest 

neighbour shells have been included. This keeps the calcula-

tion tractable.: and it is reasonable because the forces between 



ions are expected to decrease with increasing distance. 

However, therE! is some indication ( 65 ) that longer range 

forces may plc:y a role in the lattice dynamics of metals. 

18 

Thus, differer.t sets of force constants may give comparable 

fits to the measured dispersion curves (66 ); but they may 

differ significantly in their predictions for other directions. 

This effect has been discussed previously for lead <
67 , 68 ), 

and we shall see more evidence of it in our zinc (section 3.3) 

and thallium (section 3.4) results. 
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2.2 THE ELECrRON-PHONON INTERACTION 

In this section we will derive an expression for the 

electron-phonon coupling, which describes the interaction 

between the lattice vibrations and the conduction electrons 

in a metal. Pseudopotential theory, which has been exten­

sively discusned by Harrison (G 9), Heine ( 70) and others (71-73} 

will be used. 

For the simple metals we may separate the electron 

states into t~~ distinct groups ( 74 }: localized core states 

and nonlocal conduction band states. The Pauli exclusion 

principle dictates that the conduction and core states must 

be orthogonal. The essence of the pseudopotential method is 

to write the effect of this orthogonalization as an extra 

repulsive term which is added to the original attractive ion­

electron potential; and both of these act upon a pseudo elec-

tron wavefunction. There is a large cancellation between 

the attractive and repulsive terms, and the resulting 

pseudopotential is weak. Thus, the pseudo wavefunction may 

be expanded in a small number of plane waves. If one employs 

n plane waves in this expansion, then the calculations are 

said to be don~~ in the n orthogonalized plane wave (OPW) 

approximation. By using this formalism we can describe the 

scattering of <~onduction electrons by the "strong" ionic 

potentials in 1:erms of plane wave scattering by a weak effec­

tive potential. 
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Rathe:~ than attempt the calculation of pseudopotentials 

from first principles, the usual procedure is to obtain them 

by fitting to experimental data (?S) This fitting is 

accomplished either by directly adjusting some starting form 

for the pseudopotential, or by assuming some simple model 

interaction and varying the parameters. We shall take the 

attitude that the ionic pseudopotential is a given potential 

which is obtained from experiment. 

In thE! diffraction model <61 , 69 ) the potential energy 

W (£) of an ele!ctron at r is given by 

W(r) -· ~ W(£- R(!K)) 
1K 

where w is the electron-ion pseudopotential, and all ions in 

the crystal are assumed to be identical. We shall work in 

the one OPW approximation in which each pseudo conduction 

band state is described by a single plane wave lk>. The 

scattering of an electron from a state lk> to a state 

lk+~> is determined by 

where V is the total crystal volume. This may be rewritten 

as 



where 

s (g) 
-iq•R(tK) 

e --

is the structure factor and 

l = 
rto 

ik•r d3r e--

(2.21) 

with rt
0 

being the volume per ion, and <~+qlwjk> is the 

pseudopotential form factor. 
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In its most general form the pseudopotential is a 

nonlocal operator <69 , 70 , 75 ). That is, the matrix elements 

<k+~lwlk> depend upon the initial and final momenta and the 

energy as well as the momentum transfer ~q. In the one OPW 

approximation ~e only consider scattering on the Fermi sphere. 

Thus, only the momentum transfer dependence remains and we 

may write 

<~+qlwl~> = w(q) 

where 0 .S q :S :~kF, and kF is the Fermi wavevector. 

h 1 t . 'l . (36) . . b T e e ec ron-1on Ham1 ton1an 1s g1ven y 

(2.22) 

+ where the operc:~tor Ckcr (Ck
0

) creates (annihilates) an electron 

of wavevector k. and spin cr. To obtain the electron-phonon 
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contribution (H 1 h) to the Hamiltonian (2.22), the structure e -p 

factor (2.21) is expanded to first order in the ionic dis-

placements 

s <g) -· s <o> <g) + s <l> <so 

where the stat:ic crystal structure factor is 

and the scattering term is given by 

s<l><g) = 
-i9_•(R~ + Q(K)) 

e • 

Next, the displacements ~(£K) are expanded in normal coordin­

ates (2.14), and using the relation 

1 
N 

we obt'ain 

ik·R0 

l: e - -£ = l: 
£ H -n 

H = el-ph ~ ~ ~~M 9..~K(q;j)Q(9_;j)w(q)C~+9_ocko 
KjO 

where M=M for all K. From relation (2.15) this may be 
K 

written as 
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H = " c+ c ( + + ) ~ g k · k k a · a · el-pr. k+SI.,_;J _+SI.a a -g_J qJ 
·~ 

jo 

where g is the electron-phonon coupling, which in the one OPW 

approximation is 

(2.23) 

If we write 

where the redu<:::ed wavevector qR is in the first Brillouin 

zone and H is a reciprocal lattice vector, then the use of -n 

equation (2.13:, gives us 

= -i ( 2NM~-.) 112 
w ( ISI.R +!in I)~ L: (g_R +!in) · E.K (g_R; j) 

SI.RJ K 

-iH ·p(K) -n -><e . (2.24) 

We shall make t.se of both expressions (2.23) and (2.24) in 

our calculations. 

It should be mentioned that the expression for g, in 

terms of the alternative dynamical matrix defined by equations 

(2.16) through (2.19), is given by the substitution of 

relation (2.20) into the above equations. 



CHAPTER III 

FORCE CONSTANTS AND PSEUDOPOTENTIALS FOR 

ZINC AND THALLIUM 

3.1 LATTICE DYNAMICS OF THE HEXAGONAL CLOSE-PACKED METALS -

THE MAS MODEL 

The arrangement of ions in the hexagonal close-packed 

(hcp) metals consists of two interpenetrating simple hexagonal 

sublattices. This crystal structure may be analyzed in terms 

of a unit cell containing two ions, with the lattice basis 

vectors given by 

~l = a(O,l,O) 

fl = a(- 2: 

~3 = c(O,O,l) 

1 
2 ,0) 

The a. have been expressed in terms of the Cartesian coordin­
-1 

ate system shown in figure 3.1.1. c is the distance along 

the z-axis between alternate planes, which are perpendicular 

to the z-axis; and a is the distance between nearest neigh-

bour ions in any such plane. 

24 
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For convenience we choose one atom to be at the 

origin of the unit cell 

.e. ( 1) _ -- ( 0 1 0 1 Q ) ( 3 .1) 

Then the posi 1:ion of the second ion is 

£. ( 2) 
1 2 1 

-- 3 al + 3 ~2 + 2 ~3 = (- (3. 2) 

These two inequivalent lattice sites give rise to six 

vibrational modes which, in the long wavelength limit, may 

be classified as three acoustic and three optic branches. 

The locations of the unit cell origins throughout 

the crystal are 

where the m. assume integer values. Reciprocal lattice vec­
l 

tors H are generated by -n 

where the n. are integers; and the basis vectors for the 
l 

reciprocal lat:tice are given in Cartesian coordinates as 

1 

13 
,1,0) 



26 

b2 
21T (- 2 ,0,0) = -a 13 

b3 
21T ( 0 1 0 I !.) ::: -a y 

with y = c/a. 

The resulting hexagonal first Brillouin zone (FBZ) 

is shown in figure 3.1.1, where the irreducible l/24th is 

drawn. in detail. The labeling of the high syrrunetry points 

follows the convention of Koster (76) However, we have 

adopted the Cartesian coordinate system of DeWames et al. (77 ), 

which is rotated by 90° from that of Koster. In any discus-

sion of hcp metals it is corrunon usage to refer to the direc-

tion defined by our z-axis as the c-axis. 

A number of force constant models have been proposed 

to describe the lattice dynamics of hcp metals: the Slutsky 

and Garland (7 B) model includes third neighbour forces, and 

the tensor force model of Collins <79 ) extends to fourth 

nearest neighbours. We note in passing that the ordering of 

neighbour shells depends upon the ratio c/a. In particular, 

the ordering of zinc neighbours differs from the ideal hcp 

structure by interchanging the fourth and sixth shells. 

We shall use the six neighbour "modified axially 

syrrunetric" {MAS) model, which was originally proposed by 

DeWames, Wolfram and Lehman <
77 ) (hereafter referred to as 

DWL) to analyze experimental data in Be and Zn. The most 

general description would have six independent force constants 
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between neighbouring ions. In the MAS model the forces 

between neighbours are expressed in terms of three independent 

force constants: a bond-stretching term along the line 

joining two ions, and two bond-bending force constants 

corresponding to restoring forces in the basal (xy) plane and 

normal to the plane (in the z-direction) . This model is an 

extension of an earlier axially symmetric force constant 

model, proposed by the same authors for Cu and Al (80) and , 

also white Sn ( 81) 
In the original model the two bond-

bending terms were assumed to be equal. 

First we briefly discuss the axially symmetric model; 

then the modifications needed to convert this to the MAS model 

will be given. It is assumed that the potential energy of 

interaction associated with the Kth ion in the Oth unit cell 

is 

V(O,K) 1 
= 2 L: 

nK 1 
IRK

1
K,-2 (C ( I) (RK

1
K.UK

1
K)2 

-n 1 n;KK -n -n 

I I 2 
+ C ( n i K K 1 

) ( ~~ ~ !:!_~ K ) ] 

where 

is the vector from the Kth ion in the Oth unit cell to the 

I th • • h th • 11 K 10n 1n t e n un1t ce . Similarly for the displacements 
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from equilibrium 

K 1 K 
Un = U(nK 1

) - ~(OK) 

The parameters c
1

(n;KK 1
) and C(n;KK 1

) are the effective bond­

stretching and bond-bending force constants respectively, 

associated with the interaction between the (OK) ion and the 

(nK 1
) ion. 

Since there are two ions per unit cell the dynamical 

matrix is 6 by 6, and from (2.12) the elements are given by 

with 

where 

and 

DKK I (q) = 
aS -

2 
1 ( 8 2: 
M KK 1 

A KK I ( ) 

aS Sf. 

a=l 

K 1 K -2 = L: · { - K ( S , K K 
1 

) I Rn ( 8 ) I s 

+ C(S,KK 1 )oaS}G(S,KK 1
) 

K(S,KK 1
) = Cl(S,KK 1

) - C(S,KK 1
) 

G(S 1 KK 1
) = l: 

n(S) 
e 

. K 1 K 
J.g_·~ (S) 

(3.3) 

( 3. 4) 

( 3. 5) 
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K 1 K 
We have writtE!n Rn (S) to indicate the vector between a K and 

a K' ion, witlt the K' ion in the Sth shell about the K ion. 

In {3.5) the sum is restricted to the Sth shell of ions. 

The notation t:sed has closely followed that of reference 80. 

The cc,nversion to the MAS model is accomplished 

the simple sutstitution in equation (3.3) of 

to give 

c(S,KK')o Q + c (S,KK')o Q 

al-l a al-l 

K 1 K -2 = l: {-K ( S , K K ' ) I Rn ( 8 ) I s 

+ C (S,KK')o 
0

}G(S,KK 1
) 

a a~-' 

and using 

C (S,KiC 1
) = C (S,KK 1

) 
X y 

The above subs·:itution is not made in the K force constant, 

which also coni:ains a C factor (equation (3. 4)). In appendix 

A of DWL the authors give explicit expressions for G(S,KK') 

KK 1 

and DaS (g_), for interactions extending to six nearest 

neighbours. Ii: has been pointed out by McDonald et al. (55) 

that there is a misprint in DWL and the expression for G(4,1-l) 
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should read 

G(4,1-l) = 2c2 z 

Before proceeding on to a discussion of calculations 

using this model it seems advisable to point out that the 

derivation of a Born-von Karman model for hcp metals is con­

siderably more involved, and probably less accurate, than for 

cubic systems. The dispersion relations along major symmetry 

directions of ~ubic metals may be expressed in terms of lin­

ear combinations of interionic force constants (60) This 

is not possibl<:~ in hcp metals because of the two interpene­

trating sublattices; thus, the fitting procedures become 

considerably more complex. Moreover, the experimental 

measurements, Hhich have been used to derive force constant 

models, in both Zn and Tl have been restricted to the basal 

plane and along the c-axis; and a large portion of the FBZ 

remains unexplored. This greatly reduces the reliability of 

the force constant fits. 
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FIGURE CAPTION- SECTION 3.1 

FIGURE 3.1.1: The first Brillouin zone for hexagonal close­

packed structures. The labeling of the high 

symmetry points of the irreducible l/24th 

follows the convention of Koster (? 6 ). The 

Cartesian coordinate system is given by x, y 

and z. The angles e and ¢ define the angular 

coordinate system, where ¢ is the angle in 

the xy plane. 
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3.2 CALCULATION OF THE a 2F AND a~rF FUNCTIONS -

DIRECTIONAL AND ISOTROPIC 

In section 1.2 we have indicated that most of our 

results follow directly from two sets of directional 

distribution functions, which we now write as 

2 2 a (w,~)F{w,k) - a F(w,k) 

and 

2 
atr (w ,~) F (w ,~) 

This change in notation is made purely for the sake of 
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convenience. We emphasize that this does not imply that we 

consider a 2 (w,k) to be independent of direction, as was the 

case in Bennett•s calculation <46 ). 

The Fermi surface averages of these functions will 

also be needed, and it is through these averages that the 

connection is made with the more familiar frequency distribu-

tions. We shall use two procedures to obtain these average, 

or isotropic, functions. One method, to be discussed later 

in this section, consists of first calculating the directional 

functions; and then taking a Fermi surface average. However, 

this method consumes a large amount of computer time. If 
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only the isotropic function is desired then a more efficient 

method, which we now discuss, is based on a modification of 

existing freq·uency distribution computer programmes. 

Comput.er programmes have been developed which 

calculate the phonon frequency distributions, F(w), from 

Born-von Karman force constant models for the cubic (82 ) 

hcp (83 , 84 ) and tetragonal (8S) metals. The hcp program of 

Raubenheimer and Gilat (S 3 , 84 ) (hereafter referred to as RG) 

uses the MAS force constant model of DWL, as described in the 

previous section, to calculate the density of phonon states 

per unit frequ9ncy 

v 
f 

d3~ 
F (w) = L: o (w-w~j) N j (271') 3 

( 3. 6) 

FBZ 

where v is the total crystal volume. The numerical method 

is described in great detail by RG, and we only give a brief 

outline here. 

The in1:egral (3.6) need only be performed over the 

irreducible l/:!4th of the FBZ, which is further subdivided 

into a "unifon1" mesh. For phonon wavevectors corresponding 

to the "center" of each mesh volume, the frequencies and 

polarization vectors are determined by diagonalizing the 

dynamical matrix. The frequencies for each elemental volume, 

obtained by extrapolation from the center evaluation, are then 

entered into ttB appropriate histogram channels of F(w). The 

normalization C·f F (w) can be determined by the sum rule <62 ) 



Joo F(u:)dw = 6 

0 

corresponding to the number of degrees of freedom per unit 

cell. 

The integral of equation (1.1) is over the true 

Fermi surface. Direct measurements of the Fermi surface 
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(3. 7) 

dimensions have been made using the de Haas-van Alphen effect. 

They show that the nearly free electron approximation is 

reasonable for the larger pieces of the Fermi surface in both 

zinc (86 ) and thallium (87 ' 88 ). Throughout this work we 

replace the actual Fermi surface by a spherical one, even 

though for certain regions the true shape may be considerably 

distorted from the spherical model. Including the actual 

Fermi surface would greatly increase the complexity of these 

calculations. However, the effects of electronic band struc-

ture may be in~luded in an approximate way by the use of an 

isotropic band mass mB, which compares the actual density of 

electron states at the Fermi level with the free electron 

value. The ba1d mass is 

= N (0) 
N(O)F.E. 

( 3. 8) 

where N(O) is the band mass electronic density of states of 

single spin at the Fermi energy, and the free electron value 
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is (89) 

N(O)F.E. 
V. mkF 

= 
2rr 2 il2 

The parameter mB may be obtained from band structure 

calculations (90), or from experimental data such as the 

specific heat (3 B). 

Equation (1.1) may be written, in the spherical 

Fermi surface approximation, as (SO) 

~~F(w,k) = N(O) J 

FS 

dS"Gk' 

"""47f ~ jgkk'j'2 o(w-w~-k'j) 

with the isotropic function given by 

dS"Gk 
- 2 - 4- ~ F (w,k) 
7T -

I 

Similarly, the second set of distribution functions, to be 

used in the resistivity calculations, become 

36 

(3. 9) 

(3.10) 

( 3 .11) 

2 
~t F(w,k) r - = N (0) f 

FS 

(l-cos(~,k'))~jgkk'j! 2 o(w-wk-k'j) 
J - --

( 3 • 12) 

where cos(~,k') is the cosine of the angle between k and k'; 

and 

r 
= J 

dS"Gk 
- 2 

- 4 - at F (w ,k) rr r - (3.13) 

FS 
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For the remainder of this section we will refer to the 

calculation of the a 2F functions; however, the same techniques 

and remarks hold for the calculation of a~rF. 

The double surface integral implied in equation (3.11) 

may be converted to the volume integral 

2 v J a F(w) = N L: 
j 

with 

L(q;j) 

d3q 
---::::-L(q;j)o(w-w .) 
(2'1T) 3 - S,J 

(3.14) 

( 3 .15) 

where m is the bare electron mass, jw2 (q)j is the pseudopotential 

form factor, and the vectors ~(K) are given by equations (3.1) 

and (3.2). We have written the one OPW coupling constant 

gkk'j in the form (2.24) where 

k - k' = q = g_R + !!n 

Upon comparing (3.6) and (3.14), it is clear that the RG 

computer program which gives F(w) may be modified to 

calculate a 2F(w} if: 

1) the g_ integration is extended from the FBZ to a 

sphere of radius 2kF' and 

2) the weighting of the phonon modes is changed from 

unity to L(~;j) of equation (3.15). 
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Carbotte and Dynes (36 ) have discussed these 

modifications for the cubic metal case, we extend their 

technique to the hexagonal close-packed metals. To describe 

how the ~ integration is extended, let us consider one of the 

mesh volumes in the irreducible part of the FBZ which is used 

to calculate F(w). The dynamical matrix is diagonalized for 

~ at the cent=r, and the phonon frequencies and polarization 

vectors are obtained. Within the sphere of integration, all 

other "equivahmt" positions ~ and the corresponding fre­

quencies and polarization vectors may be obtained by the hcp 

symmetry opera·:ions <
76 ) and translations by reciprocal lattice 

vectors. Usinq this information, the weights L(~;j) and all 

L(~;j) may be calculated from (3.15). Then the frequencies 

obtained by exi:rapolation throughout the original and trans­

lated mesh volumes are weighted with the corresponding L and 

are entered int:o the appropriate a 2F (w) histogram channels, 

as determined by the a-functions. 

The tot.al volume integral is generated by repeating 

the above procedure for all mesh volumes in the irreducible 

part of the FBZ; and the normalization is determined by the 

use of equation (3.7). Furthermore, symnetry allows us to 

restrict the volume integral to the l/24th part found by 

extending the irreducible part of the FBZ. In terms of the 

angular coordinate system (8,¢) defined in figure 3.1.1 

the integration volume is given by the conditions 0°$8$90°, 
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Some of the above points may be clarified by reference 

to figure 3.2.1. Here we have drawn the basal plane of the 

hcp reciprocal lattice with the origin at 0, and one recipro-

cal lattice vector H1 = 2~/a(2/l3,0,0). The thick solid lines 

define the projection on the plane of the volume of integra-

tion, where the radius of the solid arc is 2kF (drawn for 

zinc). The irreducible part of the FBZ has been shaded in. 

Because there are two inequivalent lattice sites, the 

determination of the polarization vectors is not quite as 

straightforward as it is for cubic systems. RG follow DWL 

in writing the dynamical matrix as a supermatrix 

D(g) = (3.16) 

KK
1 

KK 1 

The D (~) are 3x3 matrices whose elements are DaB (~) , 

where a = x, y, <: is the row index and B = x, y, z is the column 

index. Diagonalization of D(~) gives six eigenvectors £(~;j), 
' 

each having six components. Referring back to the set of 

equations (2.11), we see that they will be obtained in the 

form 
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E: ( 1) 
X 

E: ( 1) E: ( 1) 
y 

€ (1) 
z 

E: = = ( 2) 
E:x 

E: ( 2) ( 2) 
E:y 

(2) 
E: (3.17) z 

where the (q;j) dependence has been suppressed. 

However, to simplify the diagonalization subroutine 

RG actually work with the real matrix 

+ = u D(q)u 

where 

I -ii 

1 
u = (3.18) 

v'2 
-ii I 

and I is a 3x3 identity matrix. Thus, for a given ~ the RG 

program gives the eigenvectors £(q;j) obtained by diagonal­

izing D(q). From these the polarization vectors may be 

obtained by noting that 
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and using (3.17). In the RG paper <83 ) u and u+ are 

interchanged, where u is given by (3.18). 

In all our calculations, using this method to obtain 

the isotropic a 2F(w), the irreducible l/24th of the FBZ has 

been subdivided into 1539 and 1710 mesh volumes for Zn and 

Tl respectively. The difference in mesh numbers is due to 

the different ~/a values. The frequency channel widths are 

approximately ~ /100, where w is the maximum phonon frequency. c c 

To cal,:ulate the directional functions we neglect any 

anisotropy in ·the Fermi surface or in the electronic density 

of states at the Fermi surface, which gives (SO) 

dnk, 

~ ~ jgkk'jl2o(w-wk-~'j) . (3.19) 

The variable e ,. ¢ refer to the angular coordinates of the 

wavevector k = (kF,e,¢) expressed relative to the spherical 

coordinate syst:em of figure 3 .1.1. The element of solid angle 

centred at~' may be expressed as nk' = sin8'd8'd¢'. For 

these calculati.ons expression (2.23) for the one OPW coupling 

constant is moze convenient, and equation (3.19) becomes 

2 a F(w,8,¢) 

where 

__ J dnk, 
----4 ~ E L(q;j)o(w-w .) 

" - a;J j .3.. 

3Z m w2 
(q) I 

2kF
2 

M 'fi w . 
~J 

(3.20) 

(3.21) 
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and we have used k - k 1 = q along with equations (3.8) and 

(3.9). 

2 
The numerical evaluation of a F(w,8,¢) is straight-

forward, follo;ving the method of Leavens and Carbotte (Sl). 

The frequency range O<w<w is divided into 100 channels. c 

The surface of the Fermi sphere is subdivided into 4050 mesh 

areas by forty·- five lines of latitude 4 ° apart and ninety 

lines of longi·:ude also 4 o apart. A random point (kF, e 1 
, ¢ 1

) 

is generated inside each mesh area, and ~ = k - k 1 is deter-

mined. The dynamical matrix D <si) is diagonalized to give 

the phonon frequencies and polarization vectors. From these 

the weights L(~Uj)sin8 1 are calculated, which are then added 

to the appropriate frequency channels as determined by the 

delta function~:. The directional histograms which are 

presented as figures in the following chapters are calculated 

using 16,200 mesh areas. 

To norrr~lize the histogram we define 

N(w,e,¢) (3.22) 

which may be considered as a directional frequency distribu-

tion for phonons of wavevector ~ = k ~ k 1 emitted in the 

scattering of an electron in initial state k on the Fermi 

surface to every other state k 1 on the surface. The sum rule 

operating on N(~,e,¢) is analogous to (3.7) whereby for a 
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crystal structure with six degrees of freedom per unit cell 

f
oo 

N(w,8,¢)dw = 6 (3.23) 

0 

2 . 
Therefore, as a F(w,8,¢) is calculated one also computes 

N(w,8,¢) in the same manner, then from (3.23) the normaliza-

tion of both functions is obtained. 

To determine the directional variation of a
2
F(w,8,¢) 

these functions were calculated at 44 points on the "irreduci-

ble l/24th of the Fermi surface". The points are given by 

I= 0,1,2, ••. ,10 

and 

J = 0,10,20,30 

By symmetry these evaluations determine the directional 

variation over the entire Fermi surface. 

These directional functions may also be used to obtain 

the isotropic ct
2F (w) , equation (3 .11). The simplest averaging 

procedure may be written as 

(3.24) 

where the weigt.ts WIJ = 1,2 or 4 are for the point (kF,e 1 ,¢J) 

on the "corner", boundary or interior of the irreducible part 
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of the Fermi surface. The averages (3.24) were performed and 

compared to the results of the RG method, no significant 

differences were observed. However, for consistency when 

comparing isotropic and directional results we use (3.24), 

and when only the isotropic function is needed (fitting, etc.) 

the RG method Ls used. 

It should be noted that the computing time is mainly 

determined by ·:he number of matrix diagonalizations. Thus, 

if the directional functions are not required, equation (3.24) 

represents a much greater investment (~1.6 10 5 diagonalizations) 

as compared to equation (3.14) (~1.6 10 3 diagonalizations). 

One further point remains to be discussed relating 

to the calculat;ion of the a 2F and a~rF functions. The one OPW 

approximation i.s not adequate to describe an electron state 

near a Bragg reflection plane. This defect shows up as an 

unphysical divergence in the electron-phonon coupling constant, 

equation (2.24), for acoustic modes with momentum transfer 

a approximately equal to a reciprocal lattice vector H f 0 • .:=. -n 

The straightforward way of removing this difficulty is to use 

. . (48,91) I f . h b a many OPW approx1mat1on . n act, 1t as een 

shown (Gl) that in the two OPW approximation the coupling 

constant approa~hes zero as the reduced momentum transfer 

approaches zero. However, these calculations are of much 

greater complexLty than those using the one OPW approximation. 

In a re,::ent calculation Allen and Cohen <
92 ) give a 

2 simple modifica·:ion, of the one OPW result for a F (w) , which 
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may be used to simulate the effect of a multiple OPW 

calculation. They suggest that the lower 1/5 of the frequency 

histogram should be multiplied by Sw/w , or some higher power c 

of this factor. This is reasonable because one OPW calcula-

tions in Al (36 ) and our Zn and Tl results show a linear 

behaviour for small w, while it is believed that a 2F(w) should 

approach zero approximately as w2 (20 ' 68 ). Since, in our 

calculations, the strongest weight given to the low frequencies 

is much weaker than l/w2 , the low w regions will be unimportant 

as long as they show roughly the correct behaviour. We utilize 

this suggestio;1, with slight modifications, and give the de-

tails of the renormalizations used in the appendix. Also, we 

follow Leavens and Carbotte (Sl) and apply this low frequency 

renormalization to the directional functions. 

It is :~nteresting to note that for some k directions 

the one OPW ca:_culation of a 2F(w,k) and a~rF(w,k) is entirely 

adequate and tl~ above renormalization is of little signifi-

cance. While for other directions this approximation breaks 

down. Figure :1.2.1 illustrates how this arises. The dashed 

circle of radius kF (for zinc) is the intersection of the 

basal plane and the "scattering sphere" k - k', where 

k = (kF,90°,0°) and k' varies over the Fermi surface. Let us 

only consider the reciprocal lattice point H
1

. In this posi­

tion the dashec circle is not close to ~l and the one OPW 

calculation will hold for this k direction. However, as e 

and ¢ are varied it is apparent that the scattering sphere 



will intersect H
1

. It is for these values of e and¢ that 

lead to interEection (or close approach) of the scattering 

sphere and any reciprocal lattice vector that the one OPW 

approximation fails, and the low frequency renormalization 

becomes necessary. 
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We emphasize that the phonons which must be renormal­

ized are those acoustic umklapp processes of small reduced 

momentum transfer ~R; but the particular renormalization 

chosen is not significant, as long as it is roughly correct 

(see the appendix). However, we will stress the importance 

of the low frequency phonon branches to our anisotropy calcula­

tions. These Inodes occur for larger reduced momentum transfer, 

they introduce structure in the distribution functions and are 

not renormaliznd. 
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FIGURE CAPTION - SECTION 3.2 

FIGURE 3.2.1: Basal plane of the hcp reciprocal lattice with 

the origin at 0 and one reciprocal lattice 

vector ~l = 2TI/a(2/I:3,0,0). The shaded region 

is the irreducible part of the FBZ. The thick 

solid lines define the projection of the RG 

method volume of integration. The dashed cir­

cle of radius kF (zinc) is the intersection 

of the~= (kF,90°,0°) scattering sphere and 

the basal plane. 
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3.3 PSEUDO?OTENTIAL AND FORCE CONSTANTS: ZlNC 

The essential raw materials of our calculations are 

the force constants, which give the crystal lattice vibrations; 

and the pseudopotential, which describes the interaction 

between the conduction electrons and the ions. The zinc 

pseudopotential is well determined. The neutron measurements 

from which force constant models have been derived, although 

rather extensive, are not what could be considered as complete. 

Therefore, as we shall see in this section, zinc is a conveni-

ent system in which to investigate the importance of the low 

frequency phonon branches to phonon anisotropy. 

Stark and Falicov (S 4 ) have proposed an accurate 

empirical nonlocal pseudopotential for zinc. This pseudopo-

tential was determined by fitting the calculated Fermi surface 

extremal cross-sectional areas to measured de Haas-van Alphen 

results. Agreement with experiment was obtained to within a 

few percent. Determination of other Fermi surface properties 

has also yielded good agreement (9 0) Since we only consider 

scattering on the Fermi sphere, just the OPW form factors 

w(q) are needed; these (93 ) are shown in figure 3.3.1. They 

were determined by using the full nonlocal pseudopotential to 

calculate w(H ); and then a smooth curve was interpolated -n 

between these values and the point w(O) = -2/3 EF' where EF 

is the Fermi energy. The resulting local form, which we use 
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throughout ouJ~ zinc calculations, has been shown to yield good 

agreement with experimental determinations of the electron-

phonon mass enhancement (90) 

The most recent and complete set of neutron inelastic 

scattering mectsurements of the zinc phonon dispersion curves, 

from which a force constant model has been derived, is that 

reported by McDonald, Elcombe and Pryor <
55 ) (hereafter refer-

red to as MEP). They used a triple-axis neutron spectrometer 

to determine the phonon modes along the directions fM, MK, 

Kf (all in the basal plane), and fA (along the c-axis). The 

directions are shown in figure 3.1.1. A least-squares fit 

to their data was used to generate a set of seventeen inde-

pendent MAS model force constants. The resulting fit, shown 

in figure 3 of MEP, appears to be quite good. However, we 

have observed that these force constants predict imaginary 

frequencies for phonon wavevectors in the region of the H-

point in reciprocal space. 

Since the MEP fit to experiment is quite good, it was 

decided that t:1ese force constants (table 2 of :t-iEP) should be 

modified to remove the incorrect behaviour at the H-point, 

while causing as little change as possible to the fit along 

the measured d.Lrections. This was accomplished by changing 

the MEP value of K(6,11) = -3053 dyn cm-l to 

-1 
K(6,11) = -2500 dyn em ; the reasons for this choice will be 

discussed belo~r. We refer to this set of force constants 

with the modif:.ed K(6,11) value as MEPM. The lattice para­

meters <77 ) are~ taken to be a= 2.6648 A and c = 4.9467 A. 
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Along the measured directions, the only effect of th.is 

modification is to cause a slight upward shift of two branches 

along the fA direction, as shown in figure 3.3.2. Figure 3.3.3 

gives the phonJn dispersion curves calculated using MEPM 

force constants, along the high symmetry directions measured 

by MEP. The dots are the lowest observed phonon branches in 

the basal plane:~. We emphasize that all the fM, MK, Kf and two 

of the fA branches are identical to those predicted by the 

original MEP force constants. 

However, the situation along the unmeasured directions 

is quite different, as seen in figure 3.3.4. The solid lines 

are obtained from MEPM force constants, and the dashed curves 

are the predict.ions of the original MEP model. The modifica-

tion of K(6,11), although leaving the higher frequency branches 

almost unchanged, has drastically altered the lowest branch. 

In particular, the low frequency mode at H is very sensitive 

to the value of K(6,11). 

To determine a reasonable value for this force constant, 

we imposed the constraint that the calculated and empirical 

electron-phonon mass enhancement parameters A should be in 

reasonable agre,~ment. The effective increase in electron 

mass due to its interaction with the lattice ions is given by 

the par arne ter (·59 ) 

dw 2 - a F (w) 
w t3. 25) 



Thus, the use of this constraint incorporates information 

about ~ 2F(w} in an average way; even though the detailed 

a 2F(w) 's for weak coupling superconductors, such as zinc, 

have not been measured. 
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The solid curve of figure 3.3.5 shows the calculated 

a 2F(w} using the local form of the Stark-Falicov pseudopoten­

tial, the MEPM force constants, and the calculated (gO) band 

mass value 

~(zinc) = 0.59 (3. 2 6) 

From equation (3.25), we obtain 

A. = 0.425 

Allen and Cohen (3 B) have used specific heat data to derive 

an empirical value of A.Expt = 0.43, agreement between these 

two values is excellent; and both of our constraints have 

been satisfied by our choice of K(6,11). 

However, the above agreement should not be taken too 

seriously. Neglecting electron-electron effects, which are 

believed to be small (38 ' 94 ), the specific heat mass is given 

by 

m* = mB(l +A.) (3. 27) 
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and 

m* = .YExpt. 

YF.E. 
(3. 2 8} 

(89) 
where YF.E. is the free~electron specific heat coefficient 

One determination of the experimental electronic specific 

heat coefficient is given by Garland and Silver~an (9S) as 

-4 -1 -2 
YExpt. = 1.56 x 10 cal. mole deg. . These authors 

reanalyzed the results of two previous experiments by Seidel 

and Keesom <96 ) and Phillips <97 ). If we use this value in 

the above equations we obtain ~E t = 0.47~ and the agree­xp . 

ment between ~ and ~E t , although not as good, is still xp • 

within 10%. 

We have also carried through our superconductivity 

calculations with another older set of force constants 

proposed by DWL, which are also listed in table 2 of H.EP. 

These were determined by a fit to neutron data along the rM 

and fA directions. The resulting dispersion curves are given 

in figures 3.3.6 and 3.3.7. The dots are the experimental 

results of MEP for the lowest phonon branches in the basal 

plane. These DWL branches are considerably higher than 

experiment, while the MEPM model is in much better agreement. 

Comparing figures 3.3.7 and 3.3.4, the lowest branch in the 

H-point region is also higher for the DWL model. Of course, 

all of the other branches have shifted somewhat; but for our 

purposes the above mentioned differences are the most relevant. 
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The solid curve of figure 3.3.8 gives the calculated 

a 2F(w) using the DWL force constants. The structure is very 

similar to that seen for the MEPM result of figure 3.3.5. 

The most significant points to notice are that the onset of 

structure and the position of the low frequency peak have 

been shifted upwards in energy, about 3 meV and 2 meV respec-

tively, relative to the MEPM results. Apparently, in both 

our zinc models, the onset of structure is determined by the 

lowest H-point frequency, and the peak position is determined 

by the ''flat" portions of the lowest frequency branches in 
t 

the basal plane directions. We point out that the DWL value 

of A = 0.338 is much lower than the empirical values. This 

is to be expected since the DWL low frequency modes have been 

shifted upwards in energy, and these are the modes which are 

most heavily weighted in (3.25). 

A number of other deductions may be made from the 

figures presented in this section. The large energy differ-

ence between the two lowest acoustic modes in the fM direc-

tion (figures 3.3.3 and 3.3.6) illustrates the highly aniso-

tropic nature of zinc. Since, they correspond to lattice 

waves vibrating in different directions, one in the basal 

plane and one normal to it. 

The dashed curves of figures 3.3.5 and 3.3.8 are the 

frequency distributions for MEPM and DWL force constants 

respectively. Comparison of F(w) with the corresponding 

a 2F(w), the solid curve, shows that these function are 

qualitatively similar in zinc. However, the presence of 
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umklapp procenses tends to enhance the importance of the 

lower frequency region of a 2F(w) over that of F(w). Thus, 

the coupling function a 2 (w) will decrease with frequency, at 

least over the~ lower energy range. The assumption which is 

sometimes made• <98 ), that a 2 (w) =constant, is obviously not 

a particularly accurate approximation for zinc; but it may 

be adequate fc,r qualitative comparisons. 

Durins the writing of this thesis a comprehensive 

determination of the zinc phonon dispersion relations has 

been published by Almqvist and Stedman <99 ). The result 

which is of mcst significance to our work is that the lowest 

frequency at the H-point is considerably higher than that 

predicted by either the MEPM or DWL models. This would seem 

to imply that the MEPM force constants will give an upper 
i 

limit on the effects of phonon anisotropy in zinc, unless the 

pseudopotential is modified. 

In summary, this section has dealt with the pseudopo-

tential and phonons to be used in our zinc calculations. We 

use the local form of the accurate empirical Stark-Falicov 

pseudopotent.ial. Two force constant models, MEPM and DWL, 

have been disc~ssed. The MEPM force constants give a good 

fit to the measured dispersion curves of MEP, and also the 

electron-phono.1 mass enhancement A. The DWL force constants 

predict low fr,~quency phonon branches which are generally 

higher than th)se of MEPM; and the DWL value of A is much 

smaller than t::1e experimental value. 



FIGURE CAPTIONS - SECTION 3.3 

FIGURE 3.3.1: Local form of the zinc Stark-Falicov 

pseudopotential form factors. 

FIGURE 3.3.2: Two zinc phonon branches along the fA 

direction. The experimental data <!> is 

from reference 55. These are the only two 

measured branches which are affected by the 

change from (---)MEP force constants to 

(----)MEPM force constants. 

FIGURES 3.3.3 Zinc phonon dispersion curves as calculated 

56 

and 3.3.4: with the HEPM force constants (solid lines). 

The dots are the lowest measured <55 ) phonon 

branches in the basal plane. The dashed 

curves are the original MEP model results in 

the AL, LH and HA directions. 

FIGURE 3.3.5: The phonon frequency dependence of the Fermi 

surface averaged a 2F(w) (solid line) and the 

frequency distribution F(w) (dashed line) for 

zinc, using MEPM force constants. 
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FIGURES 3.3.6 Zinc phonon dispersion curves as calculated 

and 3.3.7: 

FIGURE 3.3.8: 

with the DWL force constants. The dots are 

the lowest measured (55 ) phonon branches in 

the basal plane. 

2 The phonon frequency dependence of a F{w) 

(solid line) and the frequency distribution 

F (w) (dashed line) for zinc, using DWL force 

constants. 
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3.4 PSEUDOPOTENTIALS AND FORCE CONSTANTS: THALLIUM 

A good deal of agreement is found to exist between 

the phonon spectrum derived from superconducting tunneling 

experiments and that obtained by inelastic neutron scattering 

data. However 1 some discrepancy apparently exists in thallium. 

In this section, we discuss the reasons for these differences, 

and show how they can be largely eliminated. While, at the 

same time, determining the force constants and pseudopoten­

tials to be used throughout our calculations. 

Inelastic neutron scattering yields the phonon 

dispersion curves in metals and other systems, usually along 

high symmetry directions. These are fit by a Born-von Karman 

force constant model, which is then used to generate the 

phonon frequency distribution F(w). For a strong coupling 

superconductor, such as thallium, there exists an independent 

method of obtaining very much the same information. It is 

superconducting tunneling (20 , 21 ) on diodes involving strong 

coupling systems. In the current-voltage characteristics of 

such devices there exists an image of the phonons. 

The I-V data can be "inverted" by the technique of 

McMillan and RO'Nell (20) to yield the phonon function a 2F(w). 

As mentioned previously, this function may be thought of as 

a product of some average electron-phonon coupling strength 

a 2 (w), times the phonon frequency distribution F(w). In as 
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much as the as!:.umption that a.
2 

(w} does not vary significantly 

with energy is valid, we obtain an independent measure of F(w) 

which can be ccmpared with neutron data. 

A review of such comparisons has been made by Rowell 

and Dynes (9 8} Generally, a considerable degree of agreement 

is obtained between these two techniques. At the moment, 

however, Tl appears to be an exception. 

worlton and Schmunk <58 } (hereafter referred to as 

WS} have recently used neutron inelastic scattering to 

measure the Tl phonon dispersion curves in the fM and fA 

directions, at 77°K and 296°K. They analyzed their data in 

terms of the MAS model (section 3.1}, and used a least-squares 

fit to derive the force constants. Since we are primarily 

interested in low temperature calculations we restrict our 

attention to th1:ir 77 °K results, for which WS present three 

force constant models. We discuss model lA <58 }, because its 

fit to experiw~nt is as good or better than the other two 

models. 

The dispersion curves as predicted by the WS model 

lA are given in figures 3.4.1 and 3.4.2, where we have used 

(100} 0 
0 

the lattice parameters a = 3.4496 A and c = 5.5137 A. 

It is interesting to note that the more than linear increase 

in some of the acoustic modes, for small q, has been pre­

dicted by van dE!r Hoeven and Keesom (lOl} on the basis of 

specific heat measurements in Tl. 
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The fr«~quency distribution, calculated using the lA 

model, is shown in figure 3.4.3 by the dashed line. The 

I-V characteriBtics of thallium have been measured (S 6 ,S?), 

and the dots in this figure correspond to the inverted data 

of Dynes (S?,lll 2 ) There is almost no agreement between 

F(w) and the experimental a 2F(w). The position and magnitude 

of the peaks are different, and in particular there is a 

marked difference in the low energy structure. 

However, the comparison should actually be made 

between the experimental data and a 2F(w) calculated from the 

lA force const2.nts. In addition to the phonons, this 

calculation re~~ires the pseudopotential and the band mass. 

The band mass rrtay be estimated from the experimental value (lOl) 

of the coefficient of the electronic specific heat 

-1 -2 
YExpt. = 1.47 rrJ mole deg , which, from equation (3.28) 

implies that ~ t = 1.13. The use of Dyne's value 
~xp . 

AE t = 0.78 in equation (3.27) gives xp • 

mB(Expt.) = 0.64 

(57) 

For the time being, we take mB = 0.64 to be one of the 

constraints imposed on our pseudopotential fit to the 

experimental a 2r(w). 

(3.29) 

The initial pseudopotential used is that of Animalu 

and Heine (l0 3 ) calculated by the Heine-Abarenkov (l0 4 ) 

method, and tab~lated in Harrison <69 ) In this method the 
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pseudopotential is fitted to spectroscopic data on the free 

ions. It has been found that these form factors generally 

give satisfactory results for the electronic properties, 

although not in all cases. The dashed curve of figure 3.4.4 

shows the Tl Heine-Abarenkov form factors. Using the above 

quantities we are able to calculate a 2F{w), which is shown 

in figure 3. 4.:1 as the solid line. 

Unforttmately, agreement with experiment is no better 

for the calculated a 2F{w) than it was for F{w); and, if 

anything, it h: actually worse; since, the low frequency 

structure has been decreased in importance relative to the 

high frequency peaks. However, the absolute magnitude of 

the calculated and experimental results appear to be in 

agreement, and this implies that the chosen mB value is 

adequate. 

To see how these discrepancies can be removed we 

compare F(w) and a 2F{w) in figure 3.4.3, and also the zinc 

results of figures 3.3.5 and 3.3.8. In general, inclusion 

of the coupling function a 2 (w) modulates the heights of the 

F(w) peaks; but it does not affect the peak number or 

position. Therefore, to bring the Tl calculated and 

experimental a 2F(w) 's into agreement, both the pseudopotential 

and the force constants must be modified. 

In WS it was assumed that the force constants'in the 

z-direction were proportional to those describi~g forces in 



70 

the basal plane. DWL found that, although Be data could be 

fit with this assumption, it had to be dropped for Zn. Thus, 

there is no real reason to apply this constraint to Tl, and 

this would affect the least squares fit of WS. The Tl 

dispersion curves show large changes as the temperature is 

decreased from 296°K to 77°K, therefore, the 77°K phonons 

may not be entirely representative of the phonons at 

superconducting temperatures. Also, WS required that the 

lA model should reproduce the elastic constants. Section 3.2 

and the appendix stress that these phonons are of little 

importance to our results. Finally, some of the experimental 

error bars are quite large. For these reasons, and the 

sensitivity of the MAS model, we feel that we are justified 

in modifying the force constants. 

The lA model force constants were adjusted with the 

idea that the resulting peak structure of F(w) should 

correspond to the experimental a 2F(w). Also, the fit to the 

measured phonon branches should be comparable to that 

obtained by the original lA model. The modified force 

constants chosen (which we shall refer to as WSM) are listed 

in table 3.1, along with the corresponding lA values. 

Figure 3.4.5 compares the resulting WSM fit (solid lines) 

and the original lA fit (dashed lines) to the experimental 

data of WS. The major change occurs for the E
3 

optic 

branch, for which agreement has been improved. The ~ 5 and 



* MAS 

Force Constants 

* 

K (1) 

ex (1) 

Cz(l) 

K (2) 

ex (2) 

cz (2) 

K(3) 

ex (3) 

Cz(3) 

K (4) 

Cx(4) 

Cz(4) 

K (5) 

ex (5) 

cz (5) 

K(6) 

Cx(6) 

cz (6) 

TABLE 3.1 

** Tl-lA 

(10 4 dyn. em. -l) 

1.02475 

-0.19278 

1.05406 

-0.00733 

-0.23860 

0.08603 

-0.14887 

-0.02527 

0.18162 

0.00314 

-0.11599 

0.01008 

The ( K, K' ) depe:1dence has been dropped. 

** 

•, 

Tl-WSM 

(10 4 -1 dyn. em. ) 

1.02475 

-0.19278 

0.41769 

1.19332 

-0.14659 

-0.21445 

-0.14592 

0.05470 

-0.12602 

-0.30554 

-0.02527 

0.04833 

0.18162 

0.00314 

-0.04518 

0.02327 

0.01008 

0.11127 

This column is from reference (58), where Cz = crB Cx 

with crB = -1.91:~67. 
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branches remain unchanged, and the fits to the other 

branches are not very different. 

Figures 3.4.6 and 3.4.7 show the high symmetry 
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dispersion curves as given by our WSM model. Comparing with 

the lA model results, figures 3.4.1 and 3.4.2, it is apparent 

that the branches along the unmeasured fK and MK directions 

have been considerably shifted. This is particularly notice-

able at the point K. Also, the lowest H-point frequency 

has been decreased and phonon modes in this region will now 

contribute to the low energy peak in F{w) and a 2F{w). 

Figure 3.4.8{b) gives a 2F{w) as calculated using our 

WSM force constants and the Heine-Abarenkov pseudopotential. 

Agreement with experiment (dots) has been considerably 

improved, with the peaks occurring at approximately the 

correct energies. However, large differences still exist in 

the peak magnitJdes. 

To remo·ve this remaining discrepancy the pseudopoten-

tial must be ch.:mged. We choose one of the simplest models, 

the "empty-core model" <75 > proposed by Ashcroft {l0 5 ), 

which assumes the following form for the ionic pseudopotential 

vion{r) = 0 for r < R c 

{3.29) 

Ze 2 
= - -- for r > R r c 



Rc is an adjust~able parameter to be determined from 

experiment, and z is the ionic charge in units of the 

electronic charge e. Then the pseudopotential form factor 

is given by 
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w{q) Z 4 2 cos (qR ) 
Tie c = no 7 t:(q). 

(3.30) 

where we have included the Hartree self-consistent screening (69) 

t:(q) = 1 + {1 + _l_(k2 
qkF F 

2 q+2kF 
Cq/2> > tn I q- 2k I} 

F 
(3.31) 

and kF is the Fermi wavevector. 

The function a 2F(w) was calculated using the 

experimental estimate mB = 0.64, the WSM force constants, 

and the above Ashcroft pseudopotential. The parameter Rc 

was varied until good agreement with experiment was obtained. 
0 

This was achieved with R = 0.875 A, where figure 3.4.9 c 

compares the calculated a 2F(w) (solid line) with the 

experimental result of Dynes (dots). It seems fair to say 

that the overall agreement is very good. However, it should 

be remembered that the force constants and pseudopotential 

have been adjusted with just this result in mind. 
0 

The R = 0.875 A pseudopotential form factors are c 

given in figure 3.4.4. They are very different from the 

Heine-Abarenkov curve. This result need not be unreasonable 

as may be seen by referring to figure 2 of reference 38, 
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where the Heine-Abarenkov form factors for cadmium are 

compared to accurate empirical results derived by the Stark-

Falicov method. In this case, also, the differences are very 

large. 

Holths~m and Priestley {l0 6 ) have recently obtained a 

good fit to tt..allium de Haas-van Alphen data by using a local 

pseudopotentia.l. Their pseudopotential Fourier coefficien~s 

are given in figure 3.4.4 by the black dots, where these 

values were determined by adjusting the Heine-Abarenkov form 

factors (dashed line). We decided to attempt to fit the 

experimental a 2F(w) with another pseudopotential, whose form 

factors are more similar to the Holtham-Priestley results. 

However, in this case it was found that both Rc and~ had 
0 

to be adjusted to roB = 0.44 and Rc = 0.435 A to obtain the 

very good agreement with experiment shown in figure 3.4.10. 

These form factors are also given in figure 3.4.4. 
2 . 

We note that the a F(w) 's given by our pseudopotentials 

Tl(0.875) and rl(0.435) are almost identical. However, the 

band masses are different and they will give different values 

for the specific heat mass. Figure 3.4.8(a) has been included 

in this section to illustrate that agreement with experiment 

cannot be obta.ined by just varying the pseudopotential and 

leaving the lA force constants unchanged. 

From figure 3.4.8(b) one can roughly predict the sort 

of change in the pseudopotential (from the Heine-Abarenkov 

form) which is needed to obtain agreement with the experimental 
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a 2F(w). It appears as if the strength of the umklapp (large 

q) process must be increased to build up the low energy peak. 

This may be dJne by increasing the value of lw(q) 1
2 near 

2kF; which co~responds to shifting the node of the form 

factors to th! left (figure 3.4.4) or farther to the right, 

past 2kF. 

If we shift to the left, then the umklapp processes 

will 'be built up - hopefully at the expense of higher 

frequency con1:ributions. This is essentially what has been 

accomplished by the Ashcroft Tl(0.875) pseudopotential. If 

the shift is 1:o the right, the low frequency peak will be 

increased; bu1: the high frequency peak will also be built 
., 

up, as lw(q) ,~. is increased throughout the whole 

0 ~ q ~ 2kF rEnge. Therefore, a shift to the right may 

reproduce the shape of a 2F(w); but the magnitude will be too 

large. A decrease of the band mass parameter mB will then 

be needed to cbtain agreement with experiment. This is what 

has occurred for our Tl(0.435) model. 

In summary, it has been shown that there is no real 

discrepancy between the superconducting tunneling and 

inelastic neutron scattering results. The original poor 

agreement shown in figure 3.4.3 is apparently due to the 

force constant model and pseudopotential used to process the 

neutron data. A set of force constants (WSM) has been found 

which reproduc:s the observed peak structure in a 2F(w). 

These force ca1stants are used throughout our Tl calculations. 
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Two very different Ashcroft pseudopotentials have been 

obtained, which (when combined with the WSM force constants) 

give almost identical a 2F(w) 's; and very good agreement with 

experiment is obtained. The first pseudopotential Tl(0.875) 

takes the experimental estimate mB = 0.64; while the second 

Tl(0.435) has a band mass value of mB = 0.44. 

We point out that (from figures 3.4.9 and 3.4.10) 

thallium seems to be a case where a 2 (w) shows a strong 

increase in the low frequency peak region, above its value 

near the high frequency end of the spectrum. This is 

significant since it may not always be justified, even as a 

first approximation, to ignore the frequency dependence of 

a 2 (w) when comparing a 2F(w) and F(w). 



FIGURES 3.4.1 

and 3.4.2: 

FIGURE 3.4.3: 
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FIGURE CAPTIONS - SECTION 3.4 

Thallium dispersion curves as calculated with 

the lA model force constants of reference 58. 

2 The phonon frequency dependence of a F(w) 

(solid line) and F (w) (dashed line) for Tl, 

compared with the experimental a 2F(w) (dots) 

of Dynes. These calculations were performed 

with the lA model force constants, and the 

Heine-Abarenkov pseudopotential. 

FIGURE 3.4.4: Thallium pseudopotential form factors 

considered in this section. The dashed curve 

is the Heine-Abarenkov result and the dots 

are the Fourier coefficients of Holtham and 

Priestley. The two "empty-core model" 

pseudopotential form factors, which we have 

fit to the experimental a 2F(w), are given by 

the solid lines. 

FIGURE 3.4.5: The thallium phonon dispersion curves as 

measured (dots) by Worlton and Schmunk, and 

fit by their lA model force constants (dashed 

lines). The solid lines show the fit obtained 

by our WSM force constants. 
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FIGURES 3.4.6 The thallium dispersion curves as calculated 

and 3.4.7: with our WSM force constants~ 

FIGURE 3.4.8: Comparisons of calculated (solid lines) and 

experimental (dots) a 2F(w) 's, which illustrate 
' 

some of the intermediate steps in fitting the 

pseudopotentials. Figure (a) uses the lA 

force constants and the Tl(0.875) pseudopoten-

tial. Figure (b) uses the WSM force constants 

and the Heine-Abarenkov pseudopotential. 

FIGURE 3.4.9: A comparison of calculated (solid line) and 

experimental (dots) a 2F(w) 's, using the WSM 

force constants, the Tl(0.875) pseudopotential 

and mB = 0.64. The dashed curve gives the 

frequency distribution F(w). 

FIGURE 3.4.10: A comparison of calculated (solid line) and 

experimental (dots) a 2F(w) 's, using the WSM 

force constants, the Tl(0.435) pseudopotential 

and ~ = 0.44. The frequency distribution 

is the same as that shown in figure 3.4.9. 
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CHAPTER IV 

SUPERCONDUCTING PROPERTIES 

4.1 ISOTROPIC SUPERCONDUCTING PROPERTIES: ZINC AND THALLIUM 

Leavens and Carbotte (l0 7 ) have shown that, on the 

basis of reasonable assumptions, the complicated Eliashberg 

equations may be reduced to a greatly simplified set of 

integral equations determining the gap at the gap edge in a 

weak coupling superconductor. For this class of superconductor 

the gap is much smaller than the important phonon energies, 

and this may be used to further reduce the equations to an 

explicit analytic form for the zero temperature gap. By 

analogy with BCS theory (l3 ), expressions for the transition 

temperature and the isotope shift are also obtained. The 

derivations are discussed in detail in reference 107, and 

we only outline the main results here. At the end of this 

section the above formalism is applied to the two zinc and 

two thallium models described in sections 3.3 and 3.4 

respectively. 

The Eliashberg equations of the strong coupling theory 

of superconductivity (2S,S 9 ) are a set of nonlinear integral 

equations, which relate normal and superconducting state 

properties. Within this theory a superconductor is completely 

specified by two functions 6(w,k) and Z (w,k), which are the - s -

frequency and wavenumber dependent gap and renormalization 

89 
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functions respectively. For an isotropic superconductor at 

zero temperature 

w 

b. (w) z (w) = J c dw' Re [ 6 (w') J [K+(w,w')-]..1*] 
s 

/w• 2 -6. 2 (w') 0 ( 4 .1) 

r [ ] [1-Zs(o)]w w' K (w,w') (4.2) = dw' Re 

0 Jw• 2 -6. 2 (w') 

with 

dv~ 2F(v) [ 
1 + ± 1 +] 

w'+w+v+iO w'-w+v-iO 
(4.3) 

where we is the upper phonon cutoff frequency. The normal 

state information is contained in the function ~ 2F(v) and 

the number ]..l *. 
The isotropic ~ 2F(v) is given by equation (3.11) in 

the spherical Fermi surface approximation by 

drlk drlk, 
2 rJ - -~ F(v) = N(O) J ~ ~ ~ 

J 
( 4. 4) 

The input data (Chapter III) needed to calculate (4.4) is 

the band structure density of states at the Fermi surface, 

the electron-ion pseudopotential, and, the phonon frequencies 

and polarization vectors~ 

The number ]..l* describes, in an average way, the 

effect of the Coulomb interaction on scattering at the Fermi 

surface. First principle calculations of ]..l* are not 
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considered to be very reliable at present, and it is usually 

treated as an adjustable parameter {S?). We shall adopt 

this attitude, and choose its value such that the correct 

superconductiag transition temperature, Tc' is given by the 

analytic expr1:ssion { 4 .19) • This procedure has been followed 

by Meservey and Schwartz {l4) with the BCS T equation. 
c 

Now WE~ begin the reduction of Leavens and Carbotte. 

At zero temperature the energy gap !J.{!J. 0 ) = tJ. 0 and the 

renormalization function Zs{tJ. 0), at the gap edge, are real. 

The gross frequency dependence of !J.{w') is included by 

assuming the nodel 

where 

!J.(w') = !J. 
0 

= !J. c 

' 

for w' > w c 

( 4. 5) 

{ 4. 6) 

and we is the highest single phonon frequency, which is given 

by the high fiequency cutoff of a 2F(w). This gap model 

ignores detailed retardation effects and damping. 

Substituting (4.5) and {4.6) into the Eliashberg 

equations for the gap at the gap edge; they obtained the 

following, greatly simplified, set of approximate equations 
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w 

dw [a2F(w)K(w,w0 ,~ 0 )~ 0 - . 2w J r c 
~Ozs<~o> = J ll * .Q.n ( ~~) ~O ( 4. 7) 

0 
w 

r(w,wc'~O) zs(llo) J c 2 
+ 2 J ( 4. 8) = 1 + dwa F(w) w+wc 

0 

2 
K(w,wc,~o> - L: J. (w,w ,~ 0 ) ( 4. 9) 

i=l 1 c 

1 2 
(-l)i+l L(w,w ,ll ) - XQ L: p. J. (w,w ,~ 0 ) ( 4 .10) 

c 0 i=l 1 1 c 

[M ~ 1 
w +p.- w -l!.

0 
+ 

J.(w,w ,ll) .Q.n c 1 c 0 
·-

1 c 0 
~ w +p.-jw2-~2 - Jp~-~~ c 1 c 0 

X 
~o+pi-/pf-~~ 

( 4. 11) 

~o+pi+/pf-~~ 

pl -- w + ~0 (4.12) 

and 

( 4 .13) 

where the conc.i tion ~O, I ~c I << w 1 for w 1 > w has been used. c 

These results also assume that, since the phonon density of 

states for loK energies is small, the contribution from 

w < 2~ 0 is not important; and a 2F(w) may be set equal to zero 

for w : 2~ 0 . The calculated gaps are not sensitive to the 
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exact cutoff. The above equations (4.7) through (4.13) will 

form the basis for our analysis of superconducting properties. 

To obtain an analytic expression for ~O two more 

approximations are required. The important phonon frequencies 

in weak and medium coupling superconductors are usually much 

greater than the gap value. Thus, K(w,w ,~ ) is expanded in 
c 0 

powers of (~ 0/w) , and to second order in the expansion 

parameter 

K(w,wc:,~O) 

This has been shown (l0 7 ) to be a very good approximation 

{4.14) 

for weak coupl.ing superconductors such as zinc: and a fairly 

good approxims.tion for medium coupling superconductors, such 

as thallium. Also, for a weak coupling superconductor it is 

a good approximation to replace Zs{~ 0 ) by Zn(O), the zero 

frequency norrral state renormalization function, where (Sg) 

and 

Z (0) = 1 + :\ 
n 

{4.15) 

( 4 .16) 
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The isotropic a 2F(w) functions for the zinc and 

thallium models are given in figures 3.3.5, 3.3.8 and 3.4.9, 

3.4.10 respect.ively. Table 4.1 compares Zs(ll 0 ) from 

equations (4."7) and (4.8) and Z (0) from (4.15), the details . n 

will be given later. 

TABLE 4.1 

COMPARISON OF SUPERCONDUCTING AND NORMAL STATE 

RENORMALIZATION PARAMETERS 

Zn(MEPH) 

Zn (DWL) 

Tl(0.875) 

Tl (0.4~;5) 

1.425 

1.338 

1. 838 

1.832 

1.424 

1.338 

1.822 

1.815 

z ( 0) 
n 

1.001 

1.000 

1.009 

1.009 

Equation (4. E·) is an excellent approximation for Zn. For 

medium couplirg Tl it is accurate to within ~ 1%, which is 

the approximat.e accuracy of the entire Eliashberg 

(2 0) formulation 
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Substituting (4.14) and (4.15) into equation (4.7), 

and defining ·::he parameter 

A- 2 (c 
0 

the following equation for the zero temperature gap is 

obtained 

110 = ~·w exp c [_l+A+X""] 
A - 1J * 

(4.17) 

(4.18) 

We mention in passing that if 11
0 

as given by equation (4.18) 

is used as an initial value in the iteration of the simplified 

integral equations (4.7) and (4.8); then convergence to 

within 0.01% is obtained in a few seconds on the CDC6400 

computer. 

To obtain an approximate analytic expression for the 

superconducting transition temperature, T , the weak coupling c 

version of (4.7) is used. The generalization to finite 

temperature is made by analogy with BCS theory; and the 

effect of thernal phonons is ignored. Then on the basis of 

reasonable app~oximations, such as were used to obtain 

(4.18}, this finite temperature equation is reduced to 

+ A. (T.c}. 

A - 11 * (4 .19) 
• 



96 

The temperatu::-e dependent electron-phonon mass enhancement 

A(T) will be discussed in section 5.1, under normal state 

properties. For the moment we merely point out that in the 

superconducting temperature range A(T) is a slowly increasing 

function ofT. The value A(T) is at most a few percent c 
larger than A = A (0), for both Zn and Tl. 

From E!quations (4.18) and (4.19) the following ratio 

is found 

(4.20) 

The exponentia.l factor in (4.20) gives a small positive 

correction to the BCS ratio value of 3.53. 

An ex~ression for the isotope shift exponent, S, may 

be obtained by differentiating both sides of equation (4.19) 

with respect to the average ionic mass M, 

(1 + A(T) + X"") 
].1 * 2) (1 - c 

2 
s = 1 (A - ].1 *) (4.21) 2 dA (T

0
) 

1 (1 + T dT (A - ].1 *)) c c 

This result assumes that Tc is proportional toM-S, and the 

approximate analytic form for J.l* is taken from reference (24). 

Tables 4.2 and 4.3 collect the parameter values used 

in and calculated from the equations given in this section. 

We will now re~iew the models and discuss the tables in 

detail for zn ~nd Tl, respectively. 



TABLE 4. 2 

ZINC PARAMETERS - CALCULATED AND FITTED 

PARAMETER 

w (rreV) c 

A. 

~ 

T (OK) 
c 

A. (Tc)/A. (0) 

ll* 

~IT 
0 (meV) 

11AN 
0 

(meV) 

(2!1AN/k T ) 
0 B c 

d).. (T) I 
dT T 

(oK-1) 

c 
s 

~ 
m* 

(a) Reference 55 

(b) Reference 108 

(c) Reference 38 

Zn 
EXPERIMENT 

25.85 
(a) 

0.849(b) 

0.37 (b) 

0.86 (c) 

Zn{MEPM) 

25.33 

0.425 

0.599 

0.849 

1.0006 

0.086 

0.1295 

0.1290 

3.53 

0.0 

0.435 

0.59 

0.84 

Zn{DWL) 

26.20 

0.338 

0.436 

0.849 

1.0004 

0.043 

0.1293 

0.1290 

3.53 

o.o 

0.481 

0.59 

0.79 
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TABLE 4.3 

THALLIUM PARAMETERS - CALCULATED AND FITTED 

PARAMETER 

w (meV) c 

A 

x-
Tc (OK) 

A (Tc)/A (0) 

J.l* 

fliT 
0 (meV) 

l!AN 
0 

(meV) 

(2l!AN/k T ) 
0 B c 

dA (T) I 
dT T 

(oK-1) 
c 

8 

~ 
m* 

Tl 
EXPERIMENTt 

10.75 

0.780 

0.983 

2.33 

0.127 

0.369 

0.369 

3.68 

1.13 

Tl(0.875) 

10.75 

0.838 

1.070 

2.33 

1.014 

0.127 

0.380 

0.360 

3.59 

0.008 

0.442 

0.64 

1.18 

Tl(0.435) 

10.75 

0.832 

1.051 

2.33 

1.012 

0.127 

0.380 

0.359 

3.58 

0.008 

0.442 

0.44 

0.81 

tAll of the experimental values are taken from references 

98 

57 and 102, except them* value which is from reference 101. 



In Zn the availability of the accurate empirical 

Stark-Falicov pseudopotential <54 ) allows us to set the 

pseudopotential and band mass (90) with some confidence. 

Two models for the force constants were chosen. The MEPM 

force constani:s show good agreement with the measured 
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phonons of reference 55. The other model, DWL, is based on 

less extensive phonon data, and shows poorer agreement with 

experiment. In particular, the lowest frequency phonon 

branches of miL are significantly higher than both the 

experimental and MEPM results. 

In table 4.2 the upper phonon cutoff frequencies w c 

are taken from the force constant fits of MEPM and DWL. The 

isotropic a 2F:w) functions are calculated as described in 

section 3.2, t~en \ and~ are given by equations (4.16) and 

( 4 .17) respect:i vely. The small values for the ratio 

\{T )/\{0) show that for Z , we may take \(T) = \(0) and c n c 

(d\(T)/dT) IT = 0. 
c 

Using equation (4~19), ~* is fit to the experimental 

value of Tc, cmd then the gap value t,~N is obtained from the 

analytical formula (4.18). Since \{Tc) = \{0), equation (4.20) 

gives just thE! BCS ratio (2.!} 0/kBTc) = 3. 53. Using t,~N as the 

starting valuE! in equations ( 4. 7) and ( 4. 8) , these equations 

are iterated t.o convergence to determine t,~T. It is apparent 

that, for wea~ coupling superconductors, the analytic gap 

expression (4.18) is a very good approximation to the integral 

equations (4.i) and (4.8) 
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The a:>ove parameter values allow the calculation of 

the isotope s::1ift coefficient, B, from equation (4.21). 

Although the J1EPM model B is certainly much closer to 

experiment, n~~igher model shows very good agreement. Using 

~ = 0.59 and m* = mB(l+A) the predicted specific heat masses 

are obtained. We recall that the good agreement between the 

MEPM value and experiment was one of the constraints used to 

determine the force constant modification. However, the DWL 

value is sign:.ficantly smaller than experiment. One further 

point remains to be mentioned, the values ~* ~ 0.09 appear 

to be the general rule (24 , 38 ); and again the MEPM model 

appears to be the most reasonable. 

For Tl we use one force constant model, WSM, which 

gives a good f'it to the measured dispersion curves; and also 

reproduces the peak structure of a 2F(w), as observed in 

tunneling expEriments (S?) . It was found that two very 

different pseudopotentials, denoted Tl(0.875) and Tl(0.435), 

gave almost identical results in showing very good agreement 

with the experimental a 2F(w). 

The thallium table 4.3 was obtained by the same 

procedure as discussed earlier for zinc, except that the w c 

value is obtained from experiment. We note that all of the 

gap values are in very close agreement, as is to be expected 

since we fit t~ T . For medium coupling superconductors .the c 

analytic gap e~uation (4.18) appears to be a good approxima-

tion to the integral equations (4.7) and (4.8) 
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The only significant difference between the two Tl 

pseudopotentic:cls appears in the mB and m* values. The band 

mass values we,re determined by fitting to the experimental 

a 2F(w). Since the calculated A.'s are essentially the same, 

the difference in mB shows up in the predicted specific heat 

mass, through equation (3.27). The Tl(0.875) model is in 

good agreement with experiment, while Tl(0.435) value is 

significantly lower. 
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4.2 ANISOTROPIC SUPERCONDUCTING PROPERTIES: ZINC 

The strong coupling theory of superconductivity 

characterizes the superconducting state by a renormalization 

function Z (w,k) and a gap ~(w,k) which are associated with s - -

an electronic state of wavevector k. Both of these functions 

depend on the orientation of k with respect to the crystal 

axes. In a pure single crystal superconductor the electrons 

are able to take maximum advantage of this anisotropy in 

forming the superconducting state. If there are impurities 

present, a "dirty" superconductor (lOg), the electronic 

states become smeared over the Fermi surface, the energy gap 

becomes essentially isotropic; and the effect is a weakening 

of the superconducting state. 

. (110-113) It has been exper1mentally observed that 

the addition of impurities lowers the superconducting 

transition temperature. Markowitz and Kadanoff <44 ) were 

able to account for this effect by considering the simple 

anisotropic pairing potential 

vkk' = {1 + a{n}}V{l + a(n'}} 

where nand n• are the angular coordinates of k and k'. 

Clem {ll4 } used the above matrix elements, and weak coupling 

BCS formalism, to investigate the effects of energy gap 
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anisotropy on the thermodynamic properties of a pure single 

crystal superconductor. 

Bennet:t ( 46 ) performed a realistic first order 

calculation of the gap anisotropy in lead, due to anisotropy 

in the phonon density of states. Band structure effects were 

later included as a perturbation. He assumed that whenever 

~(w,k) appeared in an integrand of the strong coupling 

equations it could, to first order, be replaced by the 

isotropic value ~(w) for dirty lead. This directly relates 

the energy gap anisotropy to the anisotropy in the phonon 

kernels, equation (4.3). He assumed that the coupling 

function a 2 (w,8,¢) was constant, independent of both direc-

tion and energy. Also, he expressed both the phonon 

dispersion curves and the directional frequency distributions 

in series of Kubic harmonics, which were truncated after 

three terms. 

In this section we closely follow the work of Leavens 

and Carbotte (Sl). Reference 51 contains detailed discussions 

of their method, which we only briefly sketch here. Bennett's 

reduction procedure is applied to the simplified integral 

equations (4.7) and (4.8), to give the first order equations 

for the directional energy gap 

- ll * (4.22) 
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and 

+ 2 ] 
w+w c 

(4.23) 

where K(w,wc,60) and L(w,wc,60) are given by equations (4.9) 

through (4.13). In these equations 6 0 is the solution 

obtained by iterating (4.7) and (4.8) to convergence using 

h . . 2 ( ) t e 1sotrop1c a F w • 

Beyond this point Leavens and Carbotte do not follow 

Bennett's method. Rather, the phonon frequencies and polariza-

tion vectors are obtained from Born-von Karman force constant 

models. From this information the combined anisotropy, 

arising from the directional dependence of both the phonon 

frequency distributions and the electron-phonon interaction, 

may be directly calculated. 

We recall that all of the essential information 

about the phonon anisotropy is contained in the functions 

2 a F(w,e,cp} 
dnk' 

= N (0) I """"4TI L: 
j 

(4.24) 

where k and ~· are on the assumed spherical Fermi surface. 

The electron-phonon coupling constant gkk'j is given by 

equation (2.23); and N(O) is the free electron density of 
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states at the Fermi surface, multiplied by the band mass 

11J3· 
Figure 4.2.1 presents the a 2F(w,8,¢) functions for 

three high symmetry directions, as calculated for Zn with 

the Stark-Falicov local pseudopotential and MEPM force 

constants. The results for the DWL force constant model 

will be presented at the end of this section. The predominant 

feature displayed in figure 4.2.1 is that, as k = (kF,8,¢) 

is varied from the c-axis (8 = 0°) to the basal plane 

(8 = 90°), the low frequency peak decreases drastically and 

the middle range of frequencies is increased in importance. 

The angular coordinate system, (8,¢) is defined in figure 

3.1.1. These directional functions should be compared with 

the Fermi sur::ace average a 2F (w) of figure 3. 3. 5. All four 

functions are considerably different. 

2 We point out that the peaks in a F(w,k) arise from 

phonon modes "Hhich contribute from "flat" regions of wkj 

versus k space. As ~ is varied the peak positions will not 

shift, rather their weightings change as different phonons 

are picked up by the scattering sphere (see figure 3.2.1). 

If a peak is nade up of contributions from several flat 

regions, then this change in weighting may give the appear-

ance of a shift in position. 

The electron-phonon mass enhancement for an electron 

at the Fermi :::urface with wavevector direction ( 8, <P) is 



/..(8,¢) dw 2 a. F(w,8,¢) w 
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(4.25) 

Averaging this parameter over all (8,¢) directions gives the 

electron-phonon correction to the electronic specific heat 

mass, m* of equation (3.27). The MEPM model results for 

/..(8,¢) are shclWn in figure 4.2.2. The maximum value occurs 

in the c-axis direction and the minimum is in the basal 

plane. All re~sul ts in this thesis which are presented in 

the format of figure 4.2.2 have actually been calculated at 

eleven points along each ¢-direction (9° intervals) , and a 

smooth curve r.as been interpolated between these points. 

To obt.ain the correct gaps t,.
0 
(~) one should obtain 

t,.Jl) (k) from j4.22) and (4.23), then substitute t,.Jl) (~) into 

the right hani. side of (4.7) and (4.8) to give t,.J 2 ) (k), and 

repeat the process until convergence is obtained. However, 

each iteratior.. involves a large investment in computer time; 

and doing the many iterations (Sl) is out of the question. 

Leaver.s and Carbotte calculated both the first and 

second iteration results'for Al. They concluded that the 

effect of the second iteration is to increase the average 

value of the ~ap, while leaving the anisotropy essentially 

unchanged. Ttus, we follow their suggestion and obtain the 

gap anisotropy from the first order equations (4.22) and 

(4.23), then the average value <t,. 0 {~}> is obtained from an 

analytic expression to be discussed below. 
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To calculate the first order gaps from (4.22) and 

(4.23) we need the a 2F(w,6,¢), discussed previously in this 

section; and the parameters ~O' we' ~* and mB, which are given 

in section 4.1. The resulting gaps ~6l) (6,¢) are presented 

in figure 4.2.3, for the moment we ignore the absolute 

magnitudes. 

The gap anisotropy parameter ak, which is defined by 

(4.26) 

may be obtained from the ~6l) (6,¢) values. Since we assume 

that successive iterations do not appreciably change the 

anisotropy, we may write approximately 

~ (1) (k) - <~ (1) (k) > 
- 0 - 0 -
= <~(l)(k)> 

0 -

To completely determine the pure single crystal gaps, 

equation (4.26), all that remains is the calculation of 

The av~~rage energy gap of a pure single crystal 

weak coupling 3Uperconductor is obtained from equations 

(4.7} and (4.8). First the anisotropy parameters ak, bk 

and bk are defined by equation (4.26) and 

(4.27) 

(4 .28} 



where 

<f <~.> > 

is the Fermi nurface average of any function f(k). The 

functions ~(k;, equation (4.25), and 

J
oo dw 2 W 

X"(~) -· 2 w a F(w,k)Q.n(l + we) 

0 
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(4.29) 

(4.30) 

2 are calculated directly from the a F(w,e,¢). In our previous 

notation we h~we 

~ = <)(k)> 

and 

Now definitions (4.26), (4.28) and (4.29) are 

substituted into (4.7) and (4.8). Since 

the equa·tions are expanded in terms of these small quanti ties; 

and to second order in these parameters Leavens and Carbotte 
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quote 

1 + (1 + 1 <a 2> + 2<ab>)A. + (1 + <ab>)f 
2 - 2<a >ll * l 2 ] 

( l + < ab > ) A. - ll * 
(4.31) 

We note that there are no first order terms, since by 

definition 

The pure Zn crystal anisotropic gaps, ~ 0 (8,¢) as 

given by the MEPM force constant model, are shown in figure 

4.2.3. These are just the first order gaps scaled by the 

ratio <6
0

(8,¢)>/<6J 1 > (8,¢)> where equation (4.31) has been 

2 used with the parameters <a > = 0.014, <ab> = 0.015 and 

<ab> = 0.019. The avera~e gap is indicated in the figure 

by the arrow placed on the vertical axis. 

A numb:;r of experiments have been analyzed in terms 

of gap anisotr,)py models. They indicate that the maximum 

gap occurs alorrg the c-axis and the minimum is in the basal 

plane. This is in agreement with figure 4.2.3. Although 

the numerical results are somewhat model dependent, we may 

use them for a qualitative comparison with our calculated 
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gaps. Table 4.4 summarizes the experimental thermal 

d . 't (115) . b . (116) d 'f' con uct1v1 y , m1crowave-a sorpt1on , an spec1 1c 

heat (53 ) results. 

TABLE 4.4 

EXPERIMENTAL ESTIMATES OF THE Zn SUPERCONDUCTING GAPS IN 

REFERENCE 

Reference 115 

Reference 116 
MODEL A 

Reference 116 
MODEL B 

Reference 53 

UNITS OF kBTc 

1.75 

2.0 

2.45 

l. 79 

11 a 

MINIMUM IN 
BASAL PLANE 

1.20 

1.55 

1.55 

1.00 

11 /11 c a 

1.46 

1.29 

1.58 

1.79 

From figure 4.2.3 our MEPM model gives 11 = 2.34 kBT , c . c 

11a = 1.41 kBTc and (11c/11a) = 1.66; and our calculated results 

are consistent with experiment. 

We may also compare with the ultrasonic attenuation 

measurements of Lea and Dobbs (ll 7 ). Since these results 

depend on weighted averages of the gaps over the Fermi 

surface, only a rough qualitative comparison is possible. 
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However, experiment indicates that the gaps along the 

¢ = 30° direction are larger than those along ¢ = 0°. This 

behaviour is opposite to that seen in figure 4.2.3. 

Leavens and Carbotte (Sl) also obtain the transition 

temperature, ~~sc, for a pure single crystal superconductor 

as 

l + (l + <ab>)A.(T) + (l + <ab>)~ c 

( l + < ab > ) A. - ~ * 

In deriving this result it is assumed that the anisotropy 

(4.32) 

parameters are independent of temperature in the small 

temperature range between T = 0 and T = Tpsc. We shall see 
c 

in section 5.1 that this holds very well for bk; and, 

therefore, also for bk. Leavens and Carbotte have calculated 

ak in Al at T == 0 and T = 0. 98Tc, and they find no significant 

variation in the gap anisotropy parameter. 

Using i:he MEPM values of 

equation (4.32) we have 

2 <a >, <ab> and <ab> in 



and from equation (4.31) 

= 1.03 

Combined with relation (4.20), these give 

2<~0(~)> 

k TPSC 
B c 

= 3.44 
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for Zn, as compared to the BCS ratio of 3.53 for an isotropic 

weak coupling superconductor. Since TPSC is greater than 
c 

the isotropic result we see that anisotropy has enhanced the 

superconducting state, as expected. 

We now go on to a calculation of the nuclear spin-

lattice relaxation rate; and later we consider the electronic 

specific heat <)f a pure single crystal superconductor. 

The ra·tio of the superconducting and normal state 

relaxation rab::s is given by (59,ll 4 ) 

where B 

Rs(T) 

~(T) 
"{ 2 dwf(w) [1- f(w)] <n(T,Q,w)> 

-oo 

- 2 + <n(T,Q,w)> } 

= (k T', -l and B . 

(4.33) 

(4.34) 
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is the Fermi-Dirac distribution function. In the above 

equation n{T,~:,w) is the temperature dependent anisotropic 

quasiparticle density of states 

{4.35) 

similarly 

n{T,n,w) {4.36) 

The temperature dependent anisotropic gap has been written 

as ~ 0 {T,n), n is the angular position on the Fermi surface; 

and the < > denote a Fermi surface average. The energy 

variable w is :neasured relative to the Fermi level, and the 

sign of the sq1are root is chosen such that 

~2 vw - .~ (T ,n) + w as lw! + oo 

It is <::onvenient to use the anisotropy distribution 

function P(a), first introduced by Clem (ll 4 ). This function 

has the proper~:y that P (a) da is the fraction of the Fermi 

surface for wh:_ch the gap anisotropy parameter a (n) has a 

value between a and a + da. 

To calculate P(a) some method is needed to interpolate 

between the gap values which we have determined on the 

irreducible l/:~4th of the hcp Fermi surface. This was 
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accomplished, following Leavens and Carbotte {Sl), by 

fitting the calculated gaps with a least-squares polynomial 

in both the e and ¢ variables. The least squares procedure 

was found to be necessary to eli~inate "wiggles" in the gap 

surface. Then this polynomial was evaluated at approximately 

105 points, and the P{a) histogram was generated and 

normalized to unity. 

The anisotropy distribution function, P(a), for the 

zinc MEPM force constant model is shown in figure 4.2.4. 

We note that t:~is distribution is far from rectangular as 

was assumed by Clem. However, it must be remembered that 

the Clem model is meant to reproduce gap anisotropy arising 

from all sources, while we have only included phonon effects. 

The Fe:nni surface average of any function F of the 

anisotropic gap ~ 0 (n) can always be written as an integral 

over P{a), 

<F{~ 0 (n))> = J da P{a)F(<~0 (n)>(l+a)) {4.37) 

The first three moments of P(a) are 

r 

f ~ 
P{a)da = 1 

P(a)da = 0 

and 

I a2 P(a)~a = <a2> 
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As discussed previously, we may take a(Q) to be temperature 

independent. Therefore, P(a) is also independent of tempera-

ture, and this allows us to write 

r 
<F(6 0 (T,n))> = J da P(a)F(<6

0
(T,w)>{l+a)) (4.38) 

where <6 0 (T,Q)> is the average gap in a pure single crystal 

at temperature T. 

Now we return to the calculation of the nuclear spin-

lattice relaxation rate, equation (4.33). In the range 

T < 0~3 T the temperature variation of the gap may be c 

neglected; and the Fermi surface averages may be calculated 

once to obtain Rs(T)/~(T), see reference 51. However, for 

T > 0.3 T the averages <n> and <n> must be calculated for c 

each temperature considered, and this is very time consuming. 

There is a simJlle way out of this difficulty. 

To compute (4.33) over the whole temperature range 

0 ~ T < 

where 

T we i:ransform to the dimensionless variable c 

w = <6
0

(T,n)>w' 

Using (4.39) a~.d (4.38) in equation (4.33) gives 

WI I 

(4.39) 

Rs ('I') 

~(T) 
= S<li 0 (T,Q)>l:dw'f(<60 (T,n)>w') (l-f(<6

0
(T,n)>w')) 

2 -2 {p (w') + p (w')} (4.40) 
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where 

p(w') = <Re (4.41) 

and 

p(w') = <Re (4.42) 

are independent of temperature; and need only be calculated 

once for the whole range 0 ~ T ~ T • The temperature c 

independent quasiparticle density of states p(w') is plotted 

in figure 4.2.5; and we see that it reflects the structure 

of P(a) from figure 4.2.4. 

In figure 4.2.6 we show the overlap of the thermal 

factors in (4.40) with the function p
2 {w') + p2 (w'). It is 

this overlap which determines Rs/~. 

2 lowered below •r 1 less and less of p c 

As the temperature is 

-2 + p is sampled and 

the nuclear sp.Ln-lattice relaxation rate should drop. Our 

results for this temperature variation are presented in 

figure 4. 2. 7 (·:.he dashed DWL curve will be discussed later). 

A similar calculation has been performed for Al (llS) 1 where 

good qualitative and fair quantitative agreement with 

experiment was obtained. 

In general, the temperature variation of the average 

gap for a pure single crystal need not be the same as that 

for an isotropi.c superconductor. We have evaluated {4.40) 
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using P(a) of figure 4.2.4, and both a BCS and a rectangular 

Clem model (ll 4 ) (<a 2> = 0.0014) temperature variation for 

the average gap. The differences, as expected, were 

extremely small. All of the Rs(T)/~(T) curves presented in 

this thesis represent either temperature variation equally 

well. 

One last point remains to be mentioned about the 

spin-lattice relaxation calculation. Although the transfer-

mation (4.39) allows p and p to be calculated once for the 

whole temperature range, figure 4.2.6 shows that we must 

know these functions for very large w' values. However, for 
. 2 

large w', the fact that <a > << l may be used to obtain an 

approximate analytic expression for p and p. Expanding the 

square root in (4.41) and (4.42) to second order in the gap 

anisotropy parameter and to seventh order in (w)-l gives 
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and (4.42) was restricted to approximately w' < 3, for 

larger w' the analytic forms (4.43) and (4.44) were used. 

For this value of w' :t 3 the approximate expressions were 

found to be accurate to better than one part in 10 4 . 

In the range 0 < T < 0.3 T the temperature - c 

dependence of the energy gap may be neglected and the lmv 

temperature electronic specific heat of an anisotropic weak 

coupling superconductor is given by Clem (ll 4 ) as 

roo 
Cs(T) = 2N(O)kBB

2 J dw w
2
f(w)[l-f(w)]<n(r2,w)> 

-oo 

The temperature dependence of the anisotropic quasiparticle 

density of states, n(r2,w), has been dropped. Making the 

transformation (4.39) we obtain 

= 
-oo 

[1- f(<~ 0 (n)>w')]p(w') (4.45) 

where p(w') is given by (4.41), or for large w' (4.43). 

Our re:3ul ts for the zinc MEPM force constant model 

are shown in figure 4. 2. 8, where comparison is made vti th both 

BCS theory and experiment. The inclusion of anisotropy has 

raised the spe<;ific heat values from those of BCS theory. 

However, the e~~perimental results of Ducla-Soares and 

Cheeke (S 3 ) are much higher than either. It is apparent 
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that to explain this experimental data, on the basis of 

phonons, a much larger anisotropy is needed. It seems more 

likely that band structure effects must be included in any 

calculation of the zinc low temperature electronic specific 

heat. 

Thus far we have only discussed the Zn results for 

the MEPM force constant model. Now we will quickly present 

the results of the DWL model. Exactly the same procedure 

was followed for DWL as has been described for MEPM. 

Figure 4.2.9 shows the DWL model a 2F(w,8,¢) for 

three high s~netry directions. These functions should be 

compared with i:he isotropic result, figure 3.3.8, and all 

four functions are considerably different. Comparison with 

figure 4.2.1 shows that the MEPM and DWL a 2F(w,8,¢) are 

similar. However, as was noted in the isotropic case, in 

DWL the onset of structure and the low frequency peak positions 

have been significantly shifted towards higher energies. 

Also, the low energy peak in the DWL (0,0) direction is of 

considerably less weight than the corresponding peak for MEPM. 

The sismificance of the above differences is apparent 

in figure 4.2.1.0 for \(8,¢) and figure 4.2.11 for ~ 0 (8,¢), 

where the maxirr~ no longer occur in the c-axis direction. 

As discussed previously, experiment supports the assignment 

of the largest gap to the (0,0) direction, as is predicted 

by the MEPM model. 

From the gaps of figure 4.2.11 the P(a) function is 
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derived. This function, shown in figure 4.2.12 is very 

different from the MEPM model P(a), figure 4.2.4. The DWL 

result displays considerably less anisotropy (note the 

change of sca:.e along the a-axis) with <a2 > = 0.006, as com-

2 pared to the MEPM value of <a > = 0.014. Using the other 

DWL parameter values of <ab> = 0.008 and <ab> = 0.012 we 

obtain, from equations (4.31) and (4~32), 

<~o(~)> 
1.02 = 

~0 

TPSC/T 
c c = 1.03 

and 

= 3.49 

The ter1perature independent quasiparticle density of 

states p(w') for the DWL model is shown in figure 4.2.13, 

and again it i~: quite different from the MEPM result of 

figure 4.2.5. The nuclear spin-lattice relaxation rate is 

shown in figurE 4.2.7, where it lies somewhat higher than 

the MEPM prediction. This is to be expected, since the DWL 

model shows less anisotropy it should be closer to the BCS 

result which diverges at T = T (Sg). 
c 

The low temperature electronic specific heat has been 

calculated, but not shown. Because of the smaller anisotropy, 
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the DWL specific heat values are smaller than the MEPM 

results; and lie between the BCS and MEPM curves shown in 

figure 4.2.8. Thus, agreement with experiment is even worse 

for the DWL model. 

In conclusion, the MEPM force constant model shows 

better agreement than DWL with all experimental results 

considered: the measured phonons, the specific heat mass, 

the isotope effect, the low temperature electronic specific 

heat and the superconducting gaps. The major difference 

between these two models was in their fit to the low 

frequency phonon branches. We have seen that these modes 

play a very important role in superconductivity. 
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I'IGURE CAPTIONS - SECTION 4.2 

FIGURE 4.2.1: a 2F(w,8,~) for three high symmetry directions 

in Zn, calculated with the MEPM force constants. 

The directions are labeled by (8,~). 

FIGURE 4.2.2: Zinc (MEPM) electron-phonon mass enhancements 

A. (8,~)/>.. (0,0) with A (0,0) = 0.565. The Fermi 

surface averaged value is given by the 

position of the arrow on the vertical axis. 

FIGURE 4.2.3: Zinc (MEPM) zero temperature superconducting 

gaps ~ 0 (8,~>(~ 0 (0,0) with ~ 0 (0,0) = 0.171 mev. 

The Fermi surface averaged value is given by 

the position of the arrow on the vertical axis. 

FIGURE 4.2.4: Zinc (MEPM) gap anisotropy distribution function 

P (a) • 

FIGURE 4.2.5: Zinc (MEPM) temperature independent quasi­

particle density of states p(w') as a function 

of w' (dimensionless). 
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FIGURE 4.2.6: The overlap of the thermal factors (solid 

curves) in equation (4.40) with 

[(p
2 (w') + ~2 (w')] (dashed curve). The 

thermal factors, for temperature t = T/T , c 

have been multiplied by a factor of 10. The 

variable w' is dimensionless, and the functions 

are calculated using the zinc MEPM force 

constant model. 

FIGURE 4.2.7: Ratio of the Zn superconducting and normal 

state nuclear spin-lattice relaxation rates 

Rs(T)/~(T) as a function of temperature. 

Both force constant models are shown: 

MEPM (solid line) and DWL (dashed line) . 

FIGURE 4.2.8:. Low temperature behaviour of the electronic 

specific heat of Zn. The lowest solid curve 

is the BCS result for an isotropic supercon-

ductor. The higher solid curve is our MEPM 

model result, and the experimental data (S 3 ) 

is indicated by the dashed curve. 

FIGURE 4.2.9: a 2F(w,8,¢) for three high symmetry directions 

in Zn, calculated with the DWL force constants. 

The directions are labeled by (8,¢). 
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FIGURE 4.2.10: Zinc (DWL) electron-phonon mass enhancements 

A ( 8, <P) /A ( 0 1 0) with A ( 0 1 0) = 0. 3 83. The Fermi 

surface averaged value is given by the position 

of the arrow on the vertical axis. 

FIGURE 4.2.11: Zinc (DWL) zero temperature superconducting 

gaps 6 0 (8 1 <J>)/6 0 (o~o) with 6
0

(0 1 0) = 0.146 mev. 

The Fermi surface averaged value is given by 

the position of the arrow on the vertical axis. 

FIGURE 4.2.12: Zinc (DWL) gap anisotropy distribution function 

P (a) • 

FIGURE 4. 2 .13: Zinc (Dh'L) temperature independent quasiparticle 

density of states p(w') as a function of w' 

(dimensionless) . 
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4.3 ANISOTROPIC SUPERCONDUCTING PROPERTIES: THALLIUM 

In this section we present our results for the 

anisotropic superconducting properties of thallium. As 

discussed in ~:ection 3.4, we carry through all the calcula-

tions with two Tl models. Both use the WSM force constants 

and Ashcroft form pseudopotentials. One has a pseudopotential 
0 

parameter Rc == 0.875 A and band mass mB = 0.64, while the 
0 

other uses Rc = 0.435 A and mB = 0.44. The models are 

presented together, and comparison is made between them. 

The method of calculation is the same as that discussed for 

zinc in the previous section. 

We recall that both Tl models give almost identical 

results for the isotropic a 2F(w); and agreement with 

experiment is very good, figures 3.4.9 and 3.4.10. The 

three high symmetry direction a 2F(w,8,¢) 's for the Tl(0.875) 

and Tl(0.435) models are shown in figures 4.3.1 and 4.3.2 

respectively. We note that, for each model, the isotropic 

and each of the directional functions are quite different. 

Comparing figures 4.3.1 and 4.3.2 it is observed 

that, although there is qualitative agreement between the 

directional results for these two models, there are also 

rather large differences. These differences arise solely 

as a result of the different weightings which the two 

pseudopotentials give the phonon modes through the L(~;j) 

factor in equation (3.20). 
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Unlike Zn, the Tl low frequency peak of a 2F(w,O,O) 

is not very much larger than those observed in the basal 

plane directions. At the same time, the basal plane functions 

have a much larger contribution from.frequencies significantly 

lower than the low frequency peak value. These observations 

lead one to expect that neither the directional mass enhance-

ment nor the :3uperconducting gap will show a maximum along 

the c-axis di:::-ection ( 8 = 0 °, cp = 0 °) • This is indeed the 

case, as is shown in figures 4.3.3 and 4.3.4, where we give 

A(B,cp} and 6
0

(8,cp) respectively. As can be observed in Zn 

(section 4.2) and Al (SO), the electron-phonon mass enhance-

ment parameters and the gaps are highly correlated. However, 

the gap curve~; appear to be "smoother"· and more uniform. 

A verl' qualitative comparison may be made between 

longitudinal t.l trasonic attenuation measurements ( 119 ) and 

our gaps of figure 4.3.4. Sound propagation along the (90,0) 

direction picks up larger gap values than propagation along 

(90,30). Since the important electrons for ultrasonic 

attenuation are those with velocity vectors perpendicular 

to the direction of propagation, experiment indicates that 

6
0

(8,0) < 6
0

(8,30). This is the ordering given by our Tl 

models. However, it must be remembered that this is a very 

rough comparison, because ultrasonic attenuation involves 

~~ghted angular av~rages over the gaps. 

The gap variation as a function of angle, figure 

4.3.4, is similar for both Tl models. The gap anisotropy 
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distribution functions P(a) are shown in figure 4.3.5. The 

structures of these two functions are somewhat different. 

These differences are directly related to the absolute and 

secondary maxima and minima of figure 4.3.4. 

The minimum gap value for the Tl(0.875) model occurs 

at approximately (72,0). Since the 6 0 (8,~) enter the 

calculation of P(a) with a weight of sin(8), there will be 

a strong contribution from this region and P(a) will show 

a sharp strons· increase for the most negative a-values. The 

Tl(0.435) model has the minimum at (0,0) and from the sin(8) 

weighting there will be a weak contribution to the most 

negative a-region. When the a-values reach the region of 

the secondary minimum at (72,0) there will be a sharp increase 

in P(a). This effect is seen in figure 4.3.5 as a negative-

a "tail" in P(a) for Tl(0.435), which is absent in the 

Tl(0.875) function. 

Now let us consider the effect of the maxima. The 

Tl(0.875) model has a secondary maximum 6
0

(90,30), as the 

a-variable is increased beyond the value corresponding to 

this gap there will be a sharp decrease in P(a). This 

decrease will :::>e followed by a peak from gaps in the region 

e ~ 30°, since these gap values are all larger than 6
0

(90,30). 

-~seen in fi~1re 4.3.5, this structure is absent for the 

Tl(0.435) model, because the gap maxima at 8 = 90° and 

8 ~ 35° are of almost the same magnitude. Thus, small 

shifts in the gap variation over the Fermi surface may 

produce large changes in P(a). 



The R = 0.875 (0.435) model gives anisotropy 
c: 
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parameters: <a2 > = 0.0024 (0.0017), <ab> = 0.0046 (0.0033) 

and <ab> = 0.0073 (0.0053). Then equation (4.32) with>.., 

\(T ), ~and~* values from section 4.1 gives c 

= 1.006 (1.004) 

As discussed in section 4.2, the presence of anisotropy has 

enhanced the strength of the superconducting state. Phonon 

anisotropy was found to have a much smaller effect on the 

average gap than on T , and for thallium we set 
c 

{<~o<~)>/~o) = l.o. 

Figure 4.3.6 shows the calculated temperature 

independent quasiparticle densities of states. The structure 

of the P(a) functions is directly reflected in the p(w'). 

The nuclear spin-lattice relaxation rates are shown in 

figure 4.3.7. As expected the Tl(0.435) results, which show 

less anisotro~f, lie slightly above the Tl(0.875) curve in 

the temperatur·~ range indicated. We have also calculated 

the low temper.3.ture electronic specific heats. Since the 

anisotropy is 7ery small, these values lie between the BCS 

and MEPM curve::; of figure 4. 2. 8. 

In su~nary, both of our thallium pseudopotentials 

~every similar anisotropic superconducting properties. 

Small differences are observed in the variation of the mass 

enhancements and gaps as of function of position on the 

Fermi surface. 
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~IGURE CAPTIONS - SECTION 4.3 

FIGURE 4.3.1: a 2F(w,8,¢) for three high symmetry directions 
0 

in Tl, calculated with the R = 0.875 A c 

pseudopotential. The directions are labeled 

by ( e, <P > • 

FIGURE 4.3.2: a 2F(w,8,¢) for three high symmetry directions 
0 

in Tl, calculated with the R = 0.435 A c 

pseudopotential. The directions are labeled 

by ( e, <P > • 

FIGURE 4.3.3: Thallium electron-phonon mass enhancements 

A (8,¢)/A(O,O) with A(O,O) = 0.707 for the 

Tl(0.875) model, and A(O,O) = 0.681 for the 

Tl(0.435) model. The Fermi surface averaged 

values are given by the positions of the 

arrows on the vertical axes. 

FIGURE 4.3.4: Thallium zero temperature superconducting 

gaps ~ 0 (8,¢)/~ 0 (0,0) where ~ 0 (0,0) = 0.349 meV 

for the Tl(0.875) model and ~ 0 (0,0) = 0.338 meV 

for the Tl(0.435) model. The Fermi surface 

averaged values are given by the positions 

of the arrows on the vertical axes. 



FIGURE 4.3.5: Tl(0.875) and Tl(0.435) gap anisotropy 

distribution functions P(a). 
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FIGURE 4.3.6: Tl(0.875) and Tl(0.435) temperature independent 

quasiparticle densities of states p(w') as a 

function of w' (dimensionless). 

FIGURE 4.3.7: Ratio of the thallium superconducting and 

normal state nuclear spin-lattice relaxation 

rates Rs(T)/~(T) as a function of temperature. 

The results for both models Tl(0.875) and 

Tl(0.435) are shown. 
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CHAPTER V. 

NORMAL STATE PROPERTIES 

5.1 ANISOTROPY IN THE TEMPERATURE VARIATION OF THE ELECTRON-

PHONON MPBS ENHANCEMENT AND SCATTERING TIMES: ZINC 

AND THALLIUM 

In this section we investigate the effect of finite 

temperature (~) on the electron-phonon mass enhancements 

A.(k,T), and the electron-phonon scattering times T 1 h(k,T). - e -p -

Because of the similar qualitative behaviour shown by these 

properties for all models considered, we present our Zn and 

Tl results together. 

Grimvall (l20) has shown theoretically that the 

renormalizatio1, A, of the electronic effective mass due to 

the electron-~1onon interaction can have a significant temper-

ature variatio:1. This temperature dependence can in principle 

b d . 1 t . (121-123) e measure 1n a eye o ron resonance exper1ment • 

Data have been reported on A(T) in zinc (124 ), lead (125 ) 

and mercury (1:~ 6 , 127 ). For the moment we merely note that 

the directional quantities A(~,T) are relevant to these 

experiments, and not necessarily the isotropic result A (T). 

This point wil:_ be illustrated in section 5. 2. 

~ The energy of an electron near the Fermi surface in 

a state jk> will be modified by the electron-phonon 

151 
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interaction. It can be expressed as <92 ) 

( 5.1) 

where Ek = t 2
k 2/2m, m is the bare electron mass and L(~,Ek) 

is the electron self-energy due to the electron-phonon 

interaction. The electron-phonon mass enhancement factor 

for an electron of momentum tk is 

a: [Re L (k,w)] lw=E =0 
k 

where the energy is measured relative to the Fermi level. 

The electron self-energy is given by 

L(k,w) =flO dw 1 ro dEk 1 a 2F(w,k 1
) 

0 -oo 

( 5. 2) 

X [wl + n ( w 
1 

) ...,.. f ( Ek 1 
) + 

- Ek 1 - W1 
- iO+ w - Ek 1 

n (w 1
) + f (Ek I) ] 

+ W1 
- iO+ 

(5.3) 

where f(Ek 1 ) and n(w 1
) are the Fermi-Dirac and Bose-Einstein 

distribution functions, respectively. 

Using (5.2) and (5.3) we may write A(k,T) as a 

simple frequency integration 

-~~ependent of the material, 

w 
over a thermal factor G(T) 

and the function a 2F(w,k) 

characteristic of the material and direction under 



consideration; that is 

A (kIT) 

where 

dw 2 w 
w a F(w,k)G(T) 

dX 1 
2 cosh X 

Therefore, the problem of calculating (5.4) reduces to a 

2 knowledge of o. F(w,k), where we recall that 

r dr.k, 
= N(O) J 4TI ~ 

j 
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( 5. 4) 

(5.5) 

(5.6) 

in the spherical Fermi surface approximation. These functions 

have already been obtained in sections 4.2 and 4.3. We note 

that for T = 0, expression (5.4) reduces to the correct zero 

temperature equation (4.25). 

The function G(*) is plotted in figure 5.1.1, and 

the isotropic A. (T) 's for our Zn and Tl models are shown in 

figure 5.1.2. These isotropic functions are obtained by 

taking the Fermi surface average of equation (5.4). Because 

of the similarity of a 2F(w) calculated from our two thallium 

pseudopotentials, the single Tl curve represents both models 

~,0.875) and Tl(0.435) equally well. 

The qualitative behaviour seen in figure 5.1.2 is 

characteristic of all A (T) and A (k,T); there is an initial 
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rise from the zero temperature value, a maximum is reached 

at relatively "low" temperatures, followed by a decrease to 

zero for T ~ 0 '. This behaviour is a direct consequency of 

w the G (;f) funct:ion shown in figure 5 .1.1. The thermal function 

starts from zero for cf1w/2kBT) = 0, reaches a maximum of 

~ 1.2 at (tw/2kBT) ~ 1.9 and then asymptotically approaches 

unity. 

Therefore, for a given temperature, the phonon modes 

which are most heavily weighted are those of energy tw ~ 4kBT; 

and we would expect A to be maximum when T is of the order of 

1/4 the energy of the "most important" lower frequency modes. 

The Tl low energy peak occurs at twp ~ 4 meV and by the 

above discussion the A maximum should be at TM ~ ll°K, for 

the zinc MEPM nodel twp ~ 6 meV with TM ~ l8°K, and for the 

zinc DWL model twp ~ 8 meV with TM ~ 23°K. For temperatures 

larger than TM, the smaller than unity region of G(*) begins 

to "cutoff" th1::! low frequency part of the a 2F spectrum and 

>.. decreases. 'rhis is essentially the behaviour seen in 

figure 5.1.2. 

Figure:> 5.1.3 through 5.1.6 show A (8,¢,T)/A (8,¢,0), 

and the Fermi :mrface averaged variation A (T) /A ( 0) for both 

Zn and Tl mode:_s in the low temperature region. The Tl 

temperature scale has been expanded relative to the Zn 

-~~le. The re~ml ts for our Zn models are very different. 

Relative to the DWL model, the MEPM electron-phonon mass 

enhancements show more anisotropy, increase much faster as a 
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function of temperature and peak at a lower temperature. 

For our Tl models the (0,0), (90,30) and Fermi surface 

average resul1:s are very similar; but it is interesting that 

the (90,0) curves are considerably different. 

The l:_miting values of G(f) are given by <92 ) 

2 kBT 2 
G(w) rJ 1 + (!_) <n;> T rJ 3 

for (5. 7) 

' G (w) rJ 7 r;, (3) ( i1w) 2 
T rJ 

2rr 2 kBT 
for ( 5. 8) 

where r;,(x) denotes the Riemann zeta function. In the case 

where the con1:ribution to A from small w is not important 

(see the appendix), the first limiting expansion gives 

A (T) - A(O) ~ T
2

, for small T. This T2 variation has been 

b d 
(124 .127) 

o serve . 

Figures 5.1.7 and 5.1.8 show the change in anisotropy 

of A(8,¢,T) an a function of temperature for the Zn(MEPM) and 

Tl(0.435) models respectively. We have plotted the ratio of 

A(8,¢,T) to the isotropic value A(T), and the qualitative 

behaviour is very similar for both metals. The anisotropy 

remains appro~~imately constant for very small temperatures. 

Then it reaches a maximum for some temperature ~ TM. Where 

we recall tha1: A (TM) is the maximum value as shown in figure 

~,1.2; and the position of this maximum is primarily deter-

2 mined by the :_ow frequency peak of a F (w) • This is followed 

by a rapid decrease in anisotropy as the temperature is 
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increased further. The temperature variation of the anisotropy 

shown in these figures illustrates the importance of the low 

frequency phonon modes for anisotropy calculations in both 

zinc and thallium. 

The decrease in anisotropy of the electron-phonon 

mass enhancement as the temperature is increased is illustrated 

in another way in figures 5.1.9-Zn(MEPM), 5.1.10-Tl(0.435), 

and 5.1.11-Tl{0.875). Here, for each model, we have plotted 

A (8,¢,T)/A (O;O,T) at two temperatures: T = 0°K and T = 60°K 

for zinc, and T = 0°K and T = 26°K for thallium. Comparing 

the results at: the two temperatures allows a quick determina-

tion of which A(k,T) are strongly influenced by the low 

frequency pho~on modes. For example, in zinc (figure 5.1.9) 

at 60°K the region e ~ 0° has been decreased relative to the 

other mass enhancements. Similarly for thallium the two 

maxima along ¢ = 30° at 26°K have been decreased in magnitude 

relative to the other values. 

The lifetime of an electron in a state jk> on the 

Fermi surface, due to the electron-phonon interaction, is 

given by the imaginary part of the self-energy as <123 ) 

-1 
Tel-ph = 2 Im ~ (k,w) 

~m (5.3) the z~ro frequency lifetime T 1 h(k,T) as a e -p -

function of te:nperature and position on the Fermi surface 

( 5. 9) 



is 

-1 
T l h(k,T) e -p -
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~ J dw 
2 

= n a F(w,k) 

(5.10) 

The Fermi surface average of the electron-phonon scattering 

times are presented in figure 5.1.12. we·have only drawn 

the MEPM model for Zn; and because the a 2F(w) functions are 

so similar for both Tl models, the curve labeled Tl represents 

either model equally well. 

Figures 5.1.13-Zn(MEPM), 5.1.14-Tl(0.435) and 

5.1.15-Tl(0.875) show T l h(8,¢,T)/T l h(O,O,T) forT= 20°K e -p e -p 

and T = 300°K. It is apparent that the anisotropy in the 

electron-phonon lifetimes decreases as the temperature is 

increased. We have not shown the very low temperature 

scattering times because the thermal factor in (5.10) is 

peaked at w = 0, and as T is decreased the low frequency 

phonons are em:;>hasized more and more. This is the region of 

our a 2F (w ,k) f~1nctions which we consider to be the least ,well 

determined because of the breakdown of the one OPW approxima-

tion, for certain directions. This point has been discussed 

in section 3.2 and the appendix. 
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FIGURE CAPTIONS - SECTION 5.1 

FIGURE 5.1.1: The thermal factor G(*) of equation (5.5), 

which determines the temperature variation of 

the electron-phonon mass enhancements. 

FIGURE 5.1.2: The temperature variation of the Fermi surface 

averaged electron-phonon mass enhancements 

A(T)/A(O) for all four models considered in 

this thesis. The two zinc models are labeled 

by MEPM and DWL. The curve labeled Tl 

represents both thallium models, to within 

the accuracy of this graph. 

FIGURE 5.1.3: The solid lines give the Zn(MEPM) temperature 

variation of the directional electron-phonon 

mass enhancements A (8,¢,T)/A (8,¢,0) for three 

high symmetry directions. The dashed curve 

is the Zn(MEPM) Fermi surface averaged result 

A (T) /A ( 0) • 

FIGURE 5.1.4: As in figure 5.1.3, but for the Zn(DWL) model. 

~ 

FIGURE 5.1.5: As in figure 5.1.3, but for the Tl(0.435) 

model. 



FIGURE 5.1.6: As in figure 5.1.3, but for the Tl(0.875) 

model. 

FIGURE 5.1.7: Zn(MEPM) temperature variation of the 
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anisotropy in the electron-phonon mass 

enhancements for three high symmetry directions, 

labeled by (8,¢). One other direction (63,0) 

is also presented. 

FIGURE 5.1.8: Tl(0.435) temperature variation of the 

anisotropy in the electron-phonon mass 

enhancements for three high symmetry directions, 

labeled by (8,¢). 

FIGURE 5.1.9: Comparison at two temperatures of the Zn(MEPM) 

electron-phonon mass enhancements as a func­

tion of position (8,¢) on the Fermi surface, 

with A (0,0,0°K) = 0.565 and A (0,0,60°K) = 0.330. 

FIGURE 5.1.10: Tl(0.435), as in figure 5.1.9 with 

A ( 0 , 0 , 0 ° K} = 0 • 6 81 and :\ ( 0 , 0 , 2 6 ° K) = 0 • 6 56 . 

FIGURE 5.1.11: Tl(0.875}, as in figure 5.1.9 with 

A ( 0 , 0,, 0 ° K ) = 0 • 7 0 7 and A ( 0 , 0 , 2 6 o K ) = 0 . 6 7 9 . 



160 

FIGURE 5.1.12: The temperature variation of the Fermi 

surface averaged electron-phonon scattering 

times T 1 h(T) for the Zn(MEPM) and Tl e -p 

models. The results for the Tl(0.435) and 

Tl(0.875) models are equally well represented 

by the single Tl curve. 

FIGURE 5.1.13: Comparison at two temperatures of the Zn(MEPM) 

electron-phonon scattering times as a function 

of position (8,¢) on the Fermi surface, with 

T 1 h(0,0,20°K) = 5.72xlo-13 sec. and e -p 
-15 T 1 h(0,0,300°K) = 7.36xl0 sec. e -p 

FIGURE 5.1.14: Tl(0.435) as in figure 5.1.13 with 

-13 
T 1 h(0,0,20°K) = 2.92xl0 sec. and e -p 

-15 
T el-ph(0,0,300°K) = 6.0lxl0 sec. 

FIGURE 5.1.15: Tl(0.875) as in figure 5.1.13 with 

-13 
Tel-ph(0,0,20°K) = 2.76xl0 sec. and 

-15 
Tel-ph(0,0,300°K) = 5.79xl0 sec. 
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5.2 ANISOTROPY IN THE TEMPERATURE VARIATION OF THE ELECTRON-

PHONON M~SS ENHANCEMENT ON THE ZINC THIRD BAND LENS 

The temperature (T) variation of the electronic 

effective mass~' due to the el~ctron-phonon interaction, 

can be measured in a cyclotron resonance experiment. In this 

section we will only be concerned with zinc for which metal 

Sabo (124 ) has obtained results for three distinct cyclotron 

orbits on the third band lens: the limit point orbit (the 

magnetic fielj H I I c-axis) , the rim orbit (H I I c-axis) 

and the belt orbit (H l c-axis). 

In the range of temperature studied by Sabo, he 

found that~ (T)/~ (0) could be fit very·well by a T2 law with 

a different proportionality constant for each orbit. This 

"T2 " dependence has been discussed in section 5.1. Allen 

and Cohen (92 ) have reported a calculation of ~(T) in Zn, 

which is in rough qualitative agreement with experiment. 

However, their calculation is for the Fermi surface average 

of the mass renormalization, a quantity which is not directly 

relevant to cyclotron orbits. 

In this section we present the results of our 

calculations for the directional average effective masses, 
~~~ . 

for each of the three orbits measured by Sabo. We shall 

restrict our discussion mainly to the zinc MEPM model results, 

and only mention the DWL model for comparison purposes. 
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The lens part of the Zn Fermi surface is defined in 

our angular coordinate system by 0° .$ 8 .:::; 36.2°. It is 

believed to bE~ very free electron like (86 , 128 , 129 ) Thus, 

as is the cas(~ throughout this thesis, we base our calcula-

tions on the ::;pherical Fermi surface approximation and only 

include the a:1isotropy in A. that arises from the phonons. 

No effects of band structure anisotropy are included. 

The unrenormalized cyclotron effective mass is given 

by a line inb~gral over the Fermi surface orbit in k-space (92) 

(5.11) 

A 

where £k is t:1e free electron energy; and nk is a unit vector 

at k normal t·J the orbit Ok and in the plane perpendicular 

to the magnetic field. Using relations (5.1), (5.2) and (5.3) 

of section ·s.l, the renormalized cycl9tron effective mass 

as a function of temperature becomes 

( 5 .12) 

where 

(5.13) 
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with 

A {k, T) 
dw 2 w 
w a F{w,k)G{T) {5.14) 

The material independent 

{5.5), and the functions 

thermal factor G{*) is defined by 

2 a F{w,~) have been written many 

times { 5. 6) • 

2 The a F{w,~) are averaged over the cyclotron orbit 

Ok using the procedure described by equation {3.24). This 

2 gives an a F{w,Ok) for the orbit from which the temperature 

variation of A{Ok,T) can be calculated using (5.14). The 

zinc MEPM force constant model results for the limiting point 

and rim orbit are compared in figure 5.2.1. We note that 

important differences exist between these two functions. 

These differences arise predominantly from a modulation of 

magnitude and not from a shifting of peak positions. In 

particular, the low frequency peak has more relative impor-

tance for the limit point orbit than it does for the rim 

orbit. It is important to stress that these differences 

arise solely as a result of phonon anisotropy and have nothing 

to do with the band structure of zinc. They give rise to 

differences in both the absolute magnitude and temperature 

variation of the cyclotron mass for different orbits. 

In figure 5.2.2 we have plotted A (Ok,T)/A{Ok,O) for 

the three orbits considered by Sabo. It is seen that our 

calculations give considerably different curves for the 
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three cases: 

a) The limit point orbit results (solid line) are 

compared with the experimental points of Sabo which were 

read from his published graph. To extract these results 

from the measured cyclotron mass Sabo needs to assume some 

value for the orbital band mass mc(Ok). For the limit point 

orbit he takes the free electron mass, m. This seems to be 

a reasonable choice since the limit point orbit samples a 

region of the true Fermi surface which is believed to be 

very free electron like. 

b) Our results for the belt and rim orbits are 

given in figure 5.2.2 by the dashed curves, with the belt 

orbit showing the greater temperature variation. We do not 

include Sabo's results for these orbits because the experi­

mental points are very sensitive to the value assumed for 

mc(Ok) and its value for each of these two orbits is quite 

uncertain. Sabo's choice for the mc(Ok) gives an ordering 

of rim and belt results which is opposite to ours. However, 

he considers that an equally reasonable choice of orbital 

band masses would reverse the order. Also, Sabo does not 

specify the orientation of the magnetic field in the basal 

plane; and since our belt orbits show very little anisotropy 

(~ 1%) as a function of ¢, we have drawn the ¢-averaged belt 

~it in figure 5.2.2. 



A num:Jer of points remain to be mentioned. The 

reduction of the bare data to the \(Ok,T)/A(Ok,O) curves 

will depend U?On any electron-electron mass enhancement. 
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Sabo did not include this correction. Also, the calculated 

results contain the low frequency renormalization for 

umklapp process with small reduced momentum transfer as 

discussed in section 3.2 and the appendix. It should be 

point;ed out t:1at this renormalization does not affect the 

limit point o~bit results. Although it is important for the 

belt and rim Jrbits, we have found that the results for 

these orbits ~re not sensitive to the particular renormaliza-

tion used. 

Up to this point we have only considered the MEPM 

model, it can be seen that the DWL model gives very poor 

results for the limit point orbit by comparing the (0,0) 

curves in figJ.res 5 .1. 3 and 5 .1. 4. The DWL curve is much 

lower than ex?eriment. However, both MEPM and DWL predict 

the same orde~ing of orbital temperature variations. This 

may be seen by considering \(8,¢)/A (0,0), figures 4.2.2 and 

4.2.10, in the region of third band lens (0 ~ e $ 36.2°). 

For small e, ~s 8 is increased the main effect is to decrease 

the importance of the low frequency peak. This shifts the 

maximum of A(8,¢,T) to higher temperatures, which in term 

~ecreases the magnitude of the temperature variation. 
-::::.;'~ 

In sumnary, data on the temperature variation of the 

cyclotron mass may be reduced to give the temperature 



variation of the electron-phonon mass enhancement A (Ok,T) 

for each measured cyclotron orbit. The limit point orbit 
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is not affected by the one OPW low frequency renormalization, 

and the value of the cyclotron band mass is well determined. 

For this orbit we find quantitative agreement with experiment. 

However, it must be stated that the degree of agreement may 

be somewhat fortuitous. We think it more significant though, 

that by only including phonon anisotropy we find that at a 

given temperature the orbital variation of A(Ok,T) is of the 

same order as is observed experimentally. 
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FIGURE CAPTIONS - SECTION 5.2 

FIGURE 5.2.1: The .orbital averages of a2F(w,~) for: 

(a) the limit point orbit and (b) the rim 

orbit. For this figure the free electron 

value of N(O) has been used, that is mB has 

been set equal to unity. 

FIGURE 5.2.2: The temperature dependence of A(Ok,T)/A(Ok,O) 

for the zinc third band orbits considered. 

The solid line gives our calculated results 

for the limit point orbit, and the experimental 

points (124 ) also correspond to this orbit. 

The dashed lines (a) and (b) give our results 

for the belt and rim orbits respectively. 
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5.3 ANISOTROPY AND THE PHONON-LIMITED RESISTIVITY OF HCP 

METALS: ZINC AND THALLIUM 

In a completely isotropic system, such as a free 

electron gas, the conductivity tensor a may be considered 

as a scalar o, and the resistivity becomes 

-1 mvF 
P = a = --2-

ne A 

where: e is the electronic charge, n is the conduction 

electron denEity, m is the free electron mass, vF is the 

Fermi velocit.y, and A is the electron mean free path. The 

mean free path may be written as 

A = 

which define~: T, the conduction electron relaxation or 

scattering t.ime. 

In a cubic system the conductivity is isotropic. 

Since the vector mean free path ~k is always parallel to the 

electron velocity v(k), a temperature dependent scattering 

time function T(k,T) may be defined over the Fermi 

~rface (l3 0) • Then the standard Ziman variational 



resistivity formula (l3 l) corresponds to 

pV(T) = m < 1 > 
-2 T(k,T) 
ne 

where the < > denote a Fermi surface average. 

Robinson and Dow (132 ) (hereafter referred to as 
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(5.15) 

RD) have pointed out that (5.15) averages over the resistiv-

ities, when actually the conductivities should be averaged 

to give 

p (T) 
m 1 = --2 <T (k,T) > 

ne 
( 5 .16) 

These authors give a prescription for calculating T(~,T) in 

cubic materials from which the resistivity may be obtained 

via equation (5.16). 

Throughout the remainder of this section we suppress 

the explicit temperature dependence of T(k,T) and write T(~). 

It is interesting to note that, in the cubic case, 

if the T(~) of RD are averaged according to (5.15) then one 

obtains exactly pv as given by the variational formulation. 

This is not cbvious because of the approximations used to 

obtain T(k) ty the RD method. The resistivities of the 

alkali metals have been calculated (133 ) using both (5.15) 

~ (5.16), v;ith significant differences obtained at low 

temperatures. These differences decrease as the temperature 

is increased. As we will show, essentially the same 

behaviour is obtained in the hcp metals. A discussion of 



the use of relaxation times in the noble metals has 

recently been given by Springford (134 ). 

Unfortunately the situation in noncubic metals is 

considerably more complex: the conductivity must be 

considered in tensor form, it is not possible to define a 
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unique relaxation time function T(k), and there are two 

accepted formulae for the hcp metal polycrystalline resis-

tivity. However, by applying the RD technique to noncubic 

metals it is possible to uniquely define an approximate 

T(k). Also, in the hcp polycrystalline sample limit the 

results of the RD and variational formulations become 

equivalent, except for the averaging procedure discussed 

above. 

For an hcp metal the resistivity is given by (135 ) 

-1 

<J. 0 0 pl. 0 0 

-1 
0 0 0 0 (5.17) (J = (J.l = ~ 
0 0 oil 0 0 Pn 

where p~ is the resistivity observed for electric fields in 

the basal plane normal to the c-axis, and p is the 
II 

resistivity for fields parallel to the c-axis. Thus, to 

completely specify the resistivity we must calculate p and 
1 

pll , or equivalently, cr.L and cr
11 

These are obtained from 

the Boltzmann equation. 
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The electrons are scattered between states by the 

emission or absorption of phonons. The Golden Rule 

transition probability for scattering from k to k' by the 

absorption of a phonon or wavevector q = k' - k is 

where Ek is the energy of an electron in state ~, relative 

to the Fermi energy. Using H 1 h from section 2.2 the e -p 

above expression becomes 

where n . and fk are the phonon and electron distribution 
qJ -

functions, respectively; and gkk'j is the electron-phonon 

coupling given by equation (2.23). 

The total rate of change of the electron distribution 

function is the difference between scattering into and out of 

the state k caused by the emission and absorption of phonons 

af j = 
at scat. 

X{[(n. + l)f'(l-f)- n .f(l-f')]o(E'-E-tiw .) 
S,J SlJ SlJ 

+ [n .f'(l-f)- (n. + l)f(l-f')]o(E'-E+hw .)} 
qJ v qJ 

(5.18) 
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To simplify the notation we have used f, E, f' and E' for 

fk, Ek' fk, and Ek,, respectively. In the absence of 

magnetic fields and thermal gradients the scattering term 

appropriate to the Boltzmann equation for the electron 

system with an applied electric field u is (l3 l) 

~~ e af 
at scat. = ~ u·ak 

To simplify equations (5.18) and (5.19) it is 

usual to make the assumption that the phonon system is in 

equilibrium with n . = n°. given by the Bose-Einstein 
qJ qJ 

distribution function. The electron distribution is 

(5.19) 

expanded about the equilibrium Fermi-Dirac distribution f 0 

to give 

where the relation 

3f 0 

3E 

-1 
holds with 6 = (kBT) . 

Equat.ing (5.18) and (5.19), then using (5.20) and 

(5.21) along with the notation 

(5.20) 

(5.21) 
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pk
1 

_ 2TI E jg 
1
2 no. fo(l-.flo) 

k fl j kk 1 j qJ 

sfi.w . 
{o(E 1 

- E- tw~j} + e ~J o(E 1 
- E + fi.wqj)} 

the Boltzmann equation becomes 

(3 E 
kl 

(5.22) 

(5.23} 

The solution of this equation determines the phonon-limited 

resistivity. We shall discuss two methods of solution -

first the variational approach, and later the scattering 

time approximation. 

Ziman (l3 l) discusses in detail the variational 

solution of equation (5.23}, and it is sufficient to quote 

his result that the solution ¢k of the Boltzmann equation 

minimizes the resistivity pv given by 

rJ 2 k I 
13 J ( ¢~ 1 -¢~} Pg: d~d~ 1 

: J df
0 

2 .2j e~ (k} ¢k aE dk I 

In practice the calculation proceeds by assuming a simple 

(5.24) 

trial function for ¢k which satisfies the symmetry require­

ments. The usual choice, which we follow is 

(5.25) 



where a is a constant which cancels from (5.24); and we 

also assume a spherical Fermi surface where 

11k 
v (k) = m 

Substituting (5.25) and (5.26) into (5.24) and following 
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(5.26) 

the reduction of Ziman, we finally arrive at the variational 

result for the resistivity 

v 
p = 4nmB 

R(w) N(O) 

where the thermal factor is given by 

R(w) 

A 

u is a unit electric field vector and n is the conduction 

electron density. 

It should be noted that pv is independent of the 

(5.27) 

(5.28) 

band mass. ~he electronic band mass density of states, N(O) 

of equation (5.27), is mB times the free electron value and 

the roB factors cancel from equation (5.27). This may also 

be seen by referring to equation (5.24) where the energy 

. 1 . 2 f . b h h d h 1ntegra s g1ve a roB actor 1n ot t e numerator an t e 

denominator. This conclusion has been reached by others (136) 
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It should be pointed out that the thermal factor quoted by 

Balsley ( 4 B) is missing the tw factor in the numerator. 

Equation (5.27) is calculated in the same manner as 

a 2F(w), which is discussed in section 3.2. b 
. v 

To o ta1n p 
II 

one merely takes ~ to be along the c-axis, and p; is obtained 
A 

by placing u along the x or y-axis. 

There are two formulae (137 ) available for calculating 

the resistivity, pPoly' of a polycrystalline sample of a hcp 

metal. One corresponds to averaging the resistivities to 

give 

+ 2p ) 
J. 

and the other averages the conductivities 

+ p 
.L 

If there is no anisotropy ( ~ = pll ) then these two 

expressions become the same. From the p 
II 

and p results 
J. 

(5.29) 

(5.30) 

to be present.ed later, it is easily determined that pPoly from 

equation (5.29) and (5.30) differ by approximately 2 to 3% 

for Zn, and ~.t most 0.3% for Tl. These differences will not 

be significar.t for our results, and we prefer to chose pPoly 

to be consist.ent with the Fermi surface averages used to 

obtain p anc. pl 
II 



As has been mentioned previously the variational 

formula averages the resistivities, therefore, we take 

Using this expression, 

+ 2p ) 
.1 

the result ( 5 . 2 7) for p and pJ. , 
II 
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(5.31) 

and the definition of 2 
atrF(w) from (3.12) and (3.13) we have 

(5.32) 

which is in 1:he form of the resistivity expression given by 

Allen (l3 S) 

Figures 5.3.1, 5.3.2(a) and 5.3.2(b) show the 

isotropic a~rF(w) for the zinc MEPM model and the thallium 

Tl(0.875) and Tl(0.435) models, respectively. Upon comparison 

with the a 2F(w) functions of sections 3.3 and 3.4 we see that 

the a~rF(w) ::unctions are qualitatively similar. However, 

there are siqnificant differences, which are due to the heav-

ier weightinq given to large jql 

2 
particular W(~ note that atrF may 

') 

processes in a~rF. In 

not be obtained from a 2F by 

the use of a constant scaling factor. 

Recalling that the a 2F(w) functions for our two Tl 

models are almost identical, the differences between the 

2 
atrF (w) of f.i.gure 5. 3. 2 appear to be quite striking. The 

differences .i.n the relative peak heights can be ascribed to 

the large 1~1 weighting factor of a~rF' and the pseudopotential 



models; while the difference in absolute magnitude is 

mainly a result of the mB values for the two Tl models 

(see section 3.4). 
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v . 
In figure 5.3.3 we compare pPoly from equation (5.32) 

with the experimental results compiled by Meaden (l37 ). 

The agreement with experiment over the whole temperature 

range appears to be quite good for Zn and very good for Tl. 

This agreement is striking when it is considered that the 

parameters ir..volved in these calculations were entirely 

determined by the phonons and zero temperature experimental 

results. No attempt has been made to incorporate the effect 

of volume chcmges ( 13 9 ) , the anisotropic expansion of Zn 

and Tl (l 40), or the temperature dependence of the phonons (SB) 

The resistivity curve labeled Zn is for the MEPM 

force constant model. The zinc DWL model was dropped for 

th'is section because in all the previous work described in 

this thesis it did not give results as good as the MEPM 

model. Borcbi et al. (l3 G) have used formula (5.32) to 

calculate the resistivity of Be, Mg and Zn, with Zn results 
' 

similar to those seen in figure 5.3.3. 

The 'l'l curve of figure 5.3.3 represents both Tl(0.435) 

and Tl(0.875) model results, to within the accuracy of the 

graph. This is to some extent fortuitous since, when fitting 

the pseudopot:ential to the experimental a 2F (w) function, 

small shifts in R can be allowed. These changes would tend c 
v 

to separate t~e two Tl model results for pPoly in the figure. 
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However, it does seem significant that two very different 

pseudopotentials can give almost identical results for 

a 2F(w) and the resistivity, both in excellent agreement with 

experiment. 

v Our results for p 
II 

and pv will be presented towards 
J. 

the end of this section, after we derive the scattering 

time resistivity formulae. In our discussion of the 

scattering time approximation for noncubic metals we closely 

follow the fcrmalism of Taylor (l 4l) and the method of RD, 

which they used for the cubic case. 

The total current density J is given by 

€ 
J = v L: v (k) f 

k 
(5.33) 

where V is tte total volume and the summation is over both 

spin directicns. The electron distribution function f, 

shortened notation for fk' is expanded about the equilibrium 

Fermi-Dirac ~.istribution f 0 and only terms linear in the elec-

tric field u are retained. This statement implies that the 

total change in f, caused by u, is just the sum of the 

changes whict. would be caused by the three components of u 

acting separ~.tely. In this case we may define (l 4l) a 

"vector mean free path" J\k which is independent of u, and 

which satisfies 

()fO 
f = f 0 

- ei\ ·u -­-k- 8E (5.34) 
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This expansion corresponds to that used in the variational 

approach, except that for the trial function, ~k of equation 

(5.25), k has been replaced by_ the general vector ~ to give 

(5.35) 

Now substituting (5.34) into (5.33), and noting that in 

equilibrium the current density is zero 

J = (5.36) 

is obtained. 

The conductivity tensor cr is defined by 

J = cr·u 

thus 

cr = (5.37) 

It is seen that the vector ~k provides a complete description 

of the conductivity with three independent numbers for each 

point of k-space. Using (5.35) in the Boltzmann equation 

(5.23), and integrating the right hand side over E' and the 

whole equation over E leaves <142 > 
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v(k) = 4rrS I dw R(w) N(O) I 

(5.38) 

The thermal factor R(w) is given by (5.28), and the above 

equation is yrri tten in vector form. 

The problem of calculating the conductivity tensor 

has been reduced to solving equation (5.38) for Ak. 

Taylor (l3 0) has given a formal solution for ~k in terms of 

an infinite l::um. However, this sum is very slowly converging 

and the time required to calculate more than the first term 

or so is prohibitive. Instead we prefer to proceed in 

analogy with the derivation of RD, and assume that 

Ak ~ T (k) v (~_) ( 5. 3 9) 

where the equality holds for cubic systems. Then equation 

(5.38) becomes 

d!;tkl 

k = 4rrS I dw R(w) N(O) I ---;rrr ~ 

X { T (k) k - T (k I)~ I } 0 ( w - w . ) 
q] 

where we have used the spherical Fermi surface relation 

v(k) 'V k. In the curly brackets T(k)~ 1 is added and 

(5.40) 



subtracted to obtain 

and 

{T(~_) (~- ~ 1 ) + [T(k) - T(k 1 ))k 1
} 

k·k' 
X { T ( k) ( 1 - cos ( k I k I ) ) + [ T ( k ) - T ( k I ) ] - 2 } 

kF 

>c o (w - w . ) 
q] 

where k· has been taken on both sides of (5.40). 
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(5.41) 

At tt.is point it is observed that the first term in 

the curly brc;ckets is always positive, while the second term 

is positive c.nd negative. In fact, for a general point k 

the second term will pass through zero 24 times as the k' 

integral is performed. The contribution from this term is 

expected to be small and we shall neglect it, as did RD in 

the cubic caE.e (132) 

Finally we obtain the scattering time formula 

(5.42) 

2 where we have~ used the definition (3.12) of a.trF(w,k). The 

anisotropic resistivities p and pJ. are now simply obtained 
II 



by using the T(k), obtained from equation (5.42), in the 

conductivity equation (5.37). It is interesting to note 

2 
that the T's depend on the mB value through atrF. This 
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dependence drops out when the integral in (5.37) is performed 

to obtain the conductivities, or equivalently, the resistiv-

ities. 

We shall take the polycrystalline sample resistivity 

ST 
PPoly' in the scattering time approximation, to be given by 

(5.30) which is consistent with averaging the conductivities 

. S'I' ST 
to obta1n p and p 

II .1 
Therefore, we may write, in terms of 

the scattering times of equation (5.42), 

ST 
PPoly = 

m 1 
2 <T(k)> 

ne mB 

and equation (5.32) for the variational result becomes 

(5.43) 

(5.44) 

It is seen that the variational and scattering time results 

are in direct~ correspondence, except for the averaging 

procedure for T(k). Again we point out that (5.43) and 

(5.44) are independent of roB, since T-l "'~· 

Calculations using the formalism outlined in this 

section were performed using the Zn(MEPM) model, and both 

Tl(0.435) and Tl(0.875) models. In figures 5.3.4, 5.3.5 

2 
and 5.3.6 we plot at F(w,k) for three high symmetry directions 

r -
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in each of the three models mentioned above. Comparing 

with the results of sections 4.2 and 4.3 it is seen that 

2 2 a F and atrF are qualitatively similar; but that they differ 

by more than a constant scaling factor. The differences can 

be ascribed to the heavier weighting given to the large 1~1 

2 
scattering processes in trF. There is also a considerable 

k dependence within each model. The two Tl models differ 

both in absolute magnitude and in the relative peak heights. 

The difference in absolute magnitude is mainly due to the 

band mass va:.ues, where roB= 0.44 for Tl(0.435) and roB= 0.64 

for Tl(0.875;. 

Figures 5.3.7, 5.3.8 and 5.3.9 show the scattering 

times T(8,Q>)/T(O,O) at two temperatures T = 20°K and 

T = 3 00 °K. ~~he most obvious features are that there is a 

considerable variation as a function of Fermi surface position, 

and the anisotropy decreases as a function of temperature. 

It is also interesting to compare these results with the 

electron-phonon scattering times of section 5.1, and we note 

that these tuo scattering times show very similar variations 

with direction. 

The i:emperature variation of <T(8,Q>)> is shovm in 

figure 5.3.10, and by equation (5.43) the scattering times 

-1 
go as p However, as indicated in figure 5.3.3, the resis-

tivities of i:he two Tl models are almost the same while the 

scattering times are considerably different. 

by the diffeJ~ence in band mass values since T 

is independent of roB. 

This is caused 

'V m-l while p 
B 
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The effect of the two different averaging procedures 

in equations (5.43) and (5.44) is shown in figure 5.3.11 

where (p~oly/p~;ly) = (<T-l(~)>/<T{~)>-l) is plotted. The 

variational result is larger than the scattering time poly-

crystalline resistivity. This difference may be very large 

at low temperatures, and it decreases as the temperature is 

increased. However, in a highly anisotropic material this 

(13 3) 
effect may be significant even at room temperatures . 

For example, in our Zn calculation the difference in averag-

ing procedures is 9% at 60°K and 5% at 300°K. If the material 

is not very snisotropic, then for higher temperatures this 

effect becomes insignificant as compared to other uncertain-

ties. For ot.r Tl models the difference is only ~ l% at 40 °K, 

although it ~:ains in importance for the very low temperature 

resistivitieE. We note that if ST had been plotted in PPoly 

figure 5.3.3 1 then agreement with the experimental low 

temperature resistivities would be improved. 

In tlte final two figures we present a very sensitive 

test for any resistivity calculation in a noncubic material. 

The quantity pll /~ has been plotted, where the solid line 

uses the scai:tering time formula (5.37) and the dotted line 

is the varia1:ional result (5.27). 

Comparison of these curves in figure 5.3.12 for Zn 

and 5.3.13 for the Tl models indicates that they agree 

qualitatively in both temperature dependence and magnitude. 

However, theJ~e are considerable quantitative differences 
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between the variational and scattering time p /p ratios. 
II .l 

Also, figure 5.3.13 illustrates that this ratio can be 

extremely dependent on the pseudopotential used. In fact, 

of all the properties calculated in this thesis the p /p 
II .1. 

ratio is the most sensitive test for differentiating between 

the two Tl pseudopotentials. 

The variational formula (5.27) for p and p.L repre-
11 

sents a much smaller investment in computing time than is 

required for the complete scattering time approximation. 

However, 
-1 

(5.27) calculates averages of the form <T > when 

-1 
actually the correct averages should be <T> We may use 

our scattering time results to investigate the effect of 

this averaging on p /p • 
It .l 

The calculation of p
11 

and p in the scattering time 
.l 

approximation has already been discussed, and the results 

are shown as the solid curves in the last two figures. We 

have repeated exactly the same procedure except that the 

-1 
averaging was done over T rather than T. The results are 

displayed in figures 5.3.12 and 5.3.13 as the dashed curves. 

In all cases, for T > l0°K the variational type average has 

decreased the calculated anisotropy. Therefore, it appears 

as if the variational formula (5.27) will underestimate the 

pfl /p.L ratio ·,vhich would be obtained by a variational 

. -1 
calculation u3ing the correct <T> averages. This may be 

quite signifi<:::ant as in the Tl(0.435) model where the 

averaging procedure causes a difference of a factor of two 

in (p /p ) -1. 
II l 
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In figure 5.3.12 we include a number of experimental 

d . . (143-145) f h . I . It . etermlnatlons o t e Zlnc p p ratlo. lS 
lt .1 

seen that our calculated ratio is in qualitative agreement 

with that observed experimentally. This is significant in 

that we have only included phonon anisotropy, and all aniso-

tropic band structure effects have been neglected. 

The degree of agreement seen in figure 5.3.12 is 

about as good as can be expected considering the uncertainties 

in the Zn force constant model used. As stated earlier, we 

expect the MEPM force constants to place an upper limit on 

the effects of phonon anisotropy in Zn. Thus, the overesti-

mate of p /p is not surprising. 
II .1 

B~haviour similar to that seen in figure 5.3.12 has 

been observeec in tin by Case and Gueths (146 >. These authors 

interpret their results in terms of a model ellipsoidal 

Fermi surface; while our results and those of Balsley (4
B) 

would indicat.e that the phonons may be the predominant source 

of anisotropy in the p /p ratio. 
II .1 

In summary, we have obtained expressions for pPoly' 

p
11 

and pJ_ using both the variational approach and the 

scattering time approximation. We find good agreement between 

experiment and our calculated polycrystalline resistivities 

for both Zn and Tl. By only including the effects of phonon 

anisotropy we find qualitative agreement with experiment for 

the zinc p /p ratio; 
II .1 



204 

FIGURE CAPTIONS - SECTION 5.3 

FIGURE 5.3.1 Zn(MEPM) Fermi surface averaged "transport fre-

2 2 
quency di~tribution" atrF(w). The function atrF 

is dimensionless. 

FIGURE 5.3.2 Permi surface averaged "transport frequency 

2 
distributions" atrF(w) for (a) the Tl(0.875) 

nodel, and (b) the Tl(0.435) model. 

FIGURE 5.3.3 ~~he polycrystalline sample resistivity pPoly 

:.n units of ).lrl-cm. The experimental values for 

:dnc (x) and thallium (O) are from Meaden (l 3 ?) 

~~he solid curves are calculated using the vari-

ational formula (5.32). The curve labeled Zn 

::.s for the MEPM force constant model; and the 

~n curve represents both Tl(0.435) and Tl(0.875) 

models equally well. 

FIGURE 5. 3. 4 :~n (MEPM) model electron-phonon 11 transport fre­

<IUency distributions" a
2
t F(w,k) for three high 

r -

:3ymmetry directions. The directions are labeled 

by (e,cp) where k = (kF,e,cp). 

FIGURE 5.3.5 '['1(0.435) model, as in figure 5.3.4. 
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FIGURE 5.3.6 Tl(0.875) model, as in figure 5.3.4. 

FIGURE 5.3.7 Comparison at two temperatures of the Zn(MEPM) 

transport scattering times as a function.of 

position (8,¢) on the Fermi surface, with 

0 -13 0 T(0,0,20 K)=2.89xl0 sec. and T(0,0,300 K)= 

-15 6.36xl0 sec. 

FIGURE 5.3.8 Tl(0.435), as in figure 5.3.7, with T(0,0,20°K) 

-13 -15 =1.86xl0 sec. and T(0,0,300°K)=6.35xl0 

sec. 

FIGURE 5.3.9 Tl(0.875), as in figure 5.3.7, with T(0,0,20°K) 

-13 -15 =1.20xl0 sec. and T(0,0,300°K)=3.98xl0 

sec. 

FIGURE 5.3.10 The temperature dependence of the Fermi sur-

face averaged transport scattering times 

<T(k,T)> • The curve labeled Zn is for the 

zinc MEPM force constant model, and both thall-

ium models are shown. 

FIGURE 5.3.11 Comparison of the polycrystalline resistivities, 

V ST 
as a function of temperature, pPoly and PPoly 

calculated by the variational equation (5.32) 

and the scattering time equation (5.43) 



FIGURE 5.3.12 
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respectively. The zinc graph is for the ~illPM 

force constant model; and the thallium graph 

has the solid line for the Tl(0,435) model, and 

the dashed line for the Tl(0.875) model. The 

vertical scale for the thallium curves has been 

~xpanded by a factor of four relative to the 

zinc scale. 

•remperature dependence of the Zn (MEPM) resisti-

'li ty ratio pll /~ Th l 'd . ST/ ST e so ~ curve ~s p p 
II .L 

calculated in the scattering time approximation 

by equations (5.37) and (5.39), where the -r(k) 

are given by (5.42). The dotted curve is 

pv /p.LV calculated by the variational approach, 
II 

equation (5.27). The dashed curve is the resis-

i:ivity ratio as calculated in the scattering 

1:ime approximation except that the average in 

1:5.37) has been taken over -r-1 (k), (a "variation-

cll 11 average)., The experimental points (G), (0) 

.:nd (x) are from references 143, 144 and 145 

respectively. 

FIGURE 5. 3.13 .A.s in figure 5. 3.12, except that the curves are 

for the two thallium models : Tl(0.435) and 

Tl(0.875). 
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CHAPTER VI 

CONCLUSIONS 

A unified approach, employing effective phonon 

frequency distributions a 2F and a~rF' was used to investigate 

the electron-phonon interaction in the hexagonal close­

packed metals. Particular emphasis was placed on the effects 

of phonon anisotropy, which arises from both the directional 

dependence of the phonon frequency distributions and the 

anisotropy in the electron-phonon interaction. 

Zinc and thallium were used as models in this detailed 

numerical investigation; and many superconducting and normal 

state properties were calculated. Experimental phonon 

information w~s included by the use of Born-von Karman force 

constant models, and pseudopotentials were used to describe 

the electron-ion interaction. The major assumption made 

throughout this work was that the true Fermi surface could 

be replaced b:t a spherical model with a modified electronic 

density of states. Inclusion of the actual Fermi surface 

would have gn~atly increased the complexity of the calculations. 

The local form of the Stark-Falicov pseudopotential 

was employed ·:hroughout the zinc calculations. Using the 

modified axially symmetric model, a set of zinc force 

constants (MEPM) was derived which reproduced both the 

measured phonon dispersion curves and the electronic specific 
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heat effective mass. Very recent neutron measurements 

indicate that this MEPM model should place an upper limit 

on the effects of phonon anisotropy in zinc. 

Recent experiments in thallium have indicated that 

there are rather alarming discrepancies between the phonon 

frequency distribution F(w) derived from inelastic neutron 

scattering ex:?eriments and the superconducting phonon 

frequency distribution a 2F(w) obtained from tunneling 

measurements. We have shown ·that these discrepancies are 

more apparent than real, and result from the force constant 

model and pseudopotential used to process the neutron data. 

In fact, we have used tunneling data to obtain information 

about the phonon dispersion curves that have not been 

directly meast.red by neutron spectroscopy. 

It wa!: observed that thallium appears to be a case 

2 where a (w) shows a strong frequency dependence. This is 

significant since it may not always be justified, even as a 

first approximation, to ignore the frequency dependence of 

a 2 (w) when comparing a 2F(w) and F(w). 

The thallium force constant model used throughout 

this work was determined by fitting the calculated phonons 

to both the measured dispersion curves and the peak positions 

of the experim~ntally determined a 2F(w). Two very different 

"empty-core model" pseudopotentials were found which gave 

almost identical a 2F(w) 's, both in good agreement with 

experiment. One pseudopotential gives good agreement with 
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the experimental electronic specific heat mass; but it does 

not agree with the structure factors determined by Holtham 

d . 1 (106) an Pr1est ey . The other thallium model is in better 

agreement with the Holtham and Priestley results; but the 

specific heat mass is much lower than experiment. In general 

these pseudopotentials gave very similar results for most of 

the other calculated properties; except the anisotropic 

resistivity ratio discussed towards the end of this section. 

We have performed the first realistic microscopic 

calculation of the gap anisotropy in pure superconducting 

hcp crystals. The superconducting gaps as a function of 

position on the Fermi surface were determined by: 

a) performing a first order iteration of an approxi-

mate set of strong coupling equations discussed 

by Leavens and Carbotte (Sl), and 

b) obtaining the pure single crystal average gap 

from the analytic formula derived by the same 

authors. 

The gaps showed considerable variation as a function of Fermi 

surface position. The maximum deviation from the average 

gap value was as much as 29% for Zn and 11% for Tl. 

It was found that phonon effects were sufficient to 

explain the e:>{perimentally observed positions and magnitudes 

of the Zn maximum and minimum gaps, and also the ¢-variation 

(figure 3 .1.1) of the Tl gaps. We have only made a very 

rough quali tai:ive comparison between the gap ¢-variation 
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and the results of longitudinal ultrasonic attenuation 

measurements. As a function of ¢, our Zn gaps show an order­

ing which is opposite to that indicated by experiment. 

However, even in this case the phonon effects are still 

significant and must be allowed for in any more detailed 

calculation. 

We have used this gap anisotropy to calculate the 

transition temperature, the low temperature electronic 

specific heat and the nuclear spin-lattice relaxation rate 

for pure single crystal superconducting Zn and Tl. The 

results for the Zn electronic specific heat indicate that 

phonon anisotropy is not sufficient to explain experiment, 

and band structure effects must be included in the calcula-

tion of this property. 

The j_sotropic or "dirty-limit" superconducting 

properties were also calculated, using the formalism of 

Leavens and Carbotte (lO?) 

The electron-phonon mass enhancements are obtained 

from the real part of the electron self-energy. These mass 

enhancements and the imaginary part of the electron self­

energy were calculated as a function of temperature and 

position on the Fermi surface. The anisotropy in the imag­

inary part of the self-energy increases as the temperature 

decreases. As the temperature is increased from zero, tpe 

anisotropy in A remains constant for very low temperatures, 

reaches a ma~imum for temperatures of the order of ~ the 
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lowest impor1:ant phonon energy, and then rapidly approaches 

zero as the i:emperature is further increased. 

We have calculated the temperature variations of the 

electron-phonon mass enhancements for three cyclotron orbits 

on the Zn third band lens, which were measured by Sabo (124
> 

Quantitative agreement with experiment is obtained for the 

limit point orbit results. However, it must be stated that 

the degree of agreement may be fortuitous. We think it more 

significant that, by only including phonon anisotropy, the 

orbital variation of the mass enhancements is of the same 

order of magr.itude as is observed experimentally. 

We hsve defined large-angle transport scattering 

times for nor.cubic crystals in terms of effective "transport" 

phonon frequency distributions, a~rF. It was observed that, 

2 in general, the shape of the atrF functions may be consider-

ably different from either a 2F or F. The transport scattering 

times were calculated as a function of temperature and 

position on the Fermi surface. They display a large amount 

of anisotropy at low temperatures, which decreases as the 

temperature is increased. 

These scattering times, T(~), were used to calculate 

the isotropic polycrystalline resistivities, pPoly' and the 

anisotropic single crystal resistivities, p and p • The 
II .1. 

calculated PP~ly was found to be in good agreement with 

experiment for both Zn and Tl. The qualitative behaviour of 

the resistivity ratio p /p was found to be the same for 
II .l 
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all cases considered. At high temperatures the ratio is 

approximately constant and greater than unity. As the 

temperature :.s lowered, pll /p.L increases monotonically to a 

maximum value at :t 25°K in Zn and :t l3°K in Tl. A further 

decrease in i:emperature results in a sharp drop in the 

resistivity ratio. This behaviour has been experimentally 

observed in ~:inc; and we emphasize that it appears to be a 

direct result: of phonon anisotropy. 

The resistivities pPoly' p
11 

and p were also 
.L 

calculated u~:ing the variational approach. The scattering 

time and variational polycrystalline resistivity formulae 

are in direct correspondence, except that the Fermi surface 

. -1 -1 
averages are taken to be <T(~)> and <T (~)>respectively. 

The variational average, while incorrect, involves a much 

smaller investment in computer time; however, we have observed 

that it will tend to overestimate the low temperature pPoly" 

The resistivity ratios were also calculated, and they were 

found to be qualitatively the same as the scattering time 

results. 

As stated earlier the t~:lo Tl pseudopotentials tend 

to give very similar results for most properties, including 

the qualitative behaviour of the resistivity ratios. However, 

the quantitative p
11 

I 5., results are quite different. For 

example, the low temperature maxima are ~ 1.10 for the 

Tl(0.875) model and ~ 1.03 for the Tl(0.435) model. 
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For comparison purposes most of the zinc 

calculations were repeated with another set of force constants 

(DWL), which were based on less extensive phonon data. In 

general, the DWL model gave low frequency phonon branches 

which were higher than both experiment and the MEPM model 

results. It was found that, for all properties calculated 

in this thesis, the DWL model did not give as good agreement 

with experime~t as the MEPM model did. Comparison of the 

results for t.1ese two force constant models illustrates the 

importance of the low frequency phonon branches in phonon 

anisotropy ef.Eects. 
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APPENDIX 

ONE OPW LOW FREQUENCY RENORMALIZATION 

As discussed in section 3.2, for certain k directions 

the one OPW coupling constant a 2 (w,k) artificially diverges 

as w approaches zero. This leads to an approximate linear 

behaviour of the low frequency region of the Fermi surface 

2 average a F(w). There is some evidence to suggest that this 

region should actually vary quadratically with w. Allen and 

Cohen (92 ) have proposed a simple method for removing this 

difficulty. They suggest that the lowest 1/Sth of the 

a 2F(w) spectr~m should be multiplied by Sw/w , where w is c c 

the maximum phonon frequency. Throughout this thesis we 

follow their suggestion, with the minor modifications 

discussed beh)W, and apply this renormalization to all 

isotropic and directional phonon distribution functions. 

The zinc MEPM force constant model displays the most 

anisotropy of the four models (two Zn and two Tl) considered 

in this work. Thus, this should be the most sensitive test 

of the low frequency renormalization. 

The contribution to the 0 ~ w ~ w /5 region for the c 

zinc MEPM model is made up of three parts: 

a) normal processes, 

b) ur~lapp processes of large reduced momentum 

transfer, which occur in the region of the 
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H-point where the lowest frequency is less than 

w /5 (figure 3.3.4), c 

c) umklapp processes of small reduced momentum 

transfer, which cause the divergence of the one 

OPW coupling constant. 

These three contributions were separated and only the umklapp 

processes of small reduced momentum transfer were renormalized 

in this region. 

Three renormalizations were considered: multiplica-

tion by 5w/w which has been used throughout this thesis, 
c 

multiplication by (5w/w ) 2 , and the final form considered c 
. 2 

was to take the unrenormalized a F and set the lowest 1% of 

the spectrum equal to zero. The superconducting results 

given by the three renormalizations are shown in table A.l. 

It is apparent from these results that the particular 

method of renormalization chosen is not important. This is 

reasonable since the strongest weight given to the low 

-2 frequencies is much weaker than w , and the low w regions 

will not be important as long as they show roughly the 

correct behaviour. 

Because of the insensitivity of the MEPM results to 

the low frequency renormalization, the DWL phonon distribution 

functions were renormalized by multiplying by 5w/w in the 
c 

region 0 ~ w ~ w /5. We note that for the DWL force constant c 

model there a~e no large reduced momentum contributions to 

this region. 
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COMPARISON OF ZINC SUPERCONDUCTING PARAMETERS CALCULATED 

WITH THE "MEPM" FORCE CONSTANTS FOR THREE DIFFERENT LOW 

PARAMETER 

* l.l 

t.IT 
0 

8 

<ab> 

<ab> 

TPSC/T 
c c 

<t.o(k)>/t.o 

FREQUENCY RENORMALIZATIONS 

Zn (MEPM) 

5w 
we 

0.425 

0.599 

0.086 

0.1295 

0.435 

0.84 

0.014 

0.015 

0.019 

1.06 

1.03 

0.416 

0.577 

0.083 

0.1294 

0.439 

0.84 

0.014 

0.015 

0.020 

1.06 

1.03 

* Zn(MEPM) 

0.448 

0.664 

0.094 

0.1299 

0.425 

0.85 

0.015 

0.016 

0.022 

1.06 

1. 03 

2 * The lowest 1% of the a F spectrum is set equal to zero 

for this column. 
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Similarly for the thallium models, the low 

frequency regions 0 ~ w ~ w /4 were multiplied by 4w/w . c c 

The Tl renormalization was extended to 1/4 of the frequency 

range because this seemed to be indicated upon comparison 

with the experimental a 2F(w). 

It should be mentioned that the very low temperature 

scattering times will show some sensitivity to this renorm.al-

ization because the thermal factors are strongly peaked at 

the origin and the distribution functions will be heavily 

weighted in the renormalization region. A multiple OPW 

calculation would be needed to accurately calculate these 

quantities for very low temperatures, and this is beyond the 

scope of this work. 




