Evaluation of Diffuse Reflectance Spectroscopy and Fluorescence Spectroscopy for Detection of Glioma Brain Tumors
Evaluation of Diffuse Reflectance Spectroscopy and Fluorescence Spectroscopy for Detection of Glioma Brain Tumors

by

VINH NGUYEN DU LE, M.Sc.

A Thesis

To Be Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

McMaster University

© Copyright by Vinh Nguyen Du Le, 2016
DOCTOR OF PHILOSOPHY (2016)

DEPARTMENT OF MEDICAL PHYSICS & APPLIED RADIATION SCIENCES

MCMASTER UNIVERSITY

HAMILTON, ON

CANADA

TITLE: Evaluation of Diffuse Reflectance Spectroscopy and Fluorescence Spectroscopy for Detection of Glioma Brain Tumors

AUTHOR: Vinh Nguyen Du Le, M.Sc., B.Sc. (The Catholic University of America)

SUPERVISOR: Qiyin Fang, Ph.D.

NUMBER OF PAGES: xiv, 159
Abstract

Imaging instruments are required for accurate tumor resection during neurosurgery, especially in the case of glioblastoma multiforme (GBM) - the most common and aggressive malignant glioma. However, current intraoperative imaging techniques for detection of glioma either suffer low sensitivity and low specificity or require a significant capital cost. Advances in diffuse reflectance spectroscopy and fluorescence spectroscopy have offered high sensitivity and high specificity in differentiating tumors from normal tissues with much lower capital cost. Whereas diffuse reflectance spectroscopy alone and fluorescence spectroscopy alone has been used in limited studies to differentiate normal brain tissues from brain tumors with moderate sensitivity and specificity, low specificity and sensitivity were usually observed when studying high grade glioma (HGG) such as GBM. Furthermore, optical properties and diffuse reflectance signal of HGG and low grade glioma (LGG) have not been observed separately, and thus a relation between optical properties and glioma progression has not been established. Intraoperative differentiation of GBM and LGG can be helpful in making treatment plan at the first surgery.

This thesis focuses on characterizing a previous integrated system of diffuse reflectance spectroscopy and fluorescence spectroscopy to extract optical properties and fluorescence properties of LGG and GBM. First, tissue-simulating phantom models were developed to calibrate the integrated system. The direct method and Mie theory were used to calculate optical scattering of the phantoms while Beer-Lambert’s law was used to calculate optical absorption. Second, an experimental method was introduced to recover intrinsic fluorescence because the measured fluorescence signal is likely distorted by the presence of scatterers and absorbers in tissue (i.e. hemoglobin). Third, an experimental method was developed to recover optical properties of both GBM and LGG. In addition, the sensitivity and specificity of the integrated system was optimized.
Acknowledgements

I am very grateful to my Ph.D. supervisor, Dr. Qiyin Fang, for his thoughtful advices, and for valuable learning opportunities he has provided throughout my studying period. I would also like to thank my supervising committee members, Dr. Thomas J. Farrell, Dr. Joseph E. Hayward for their helpful discussions in each project meeting, and for their time and effort on guiding me and editing the manuscripts. In addition, I would like to express my thanks to Dr. Michael S. Patterson who had gave me valuable advices to improve my manuscripts, to Dr. John Provias who had gave me informative discussion on histopathology of brain tumors, and to Dr. Naresh Murty for his time and efforts of delivering brain tumor specimen for the study.

Moreover, I would like to say thank you to all of my good friends and colleagues, who have been always so helpful and giving me such a great experience at McMaster during these years. In particular, I want to thank Zhaojun Nie for her detailed explanation on the time-resolved fluorescence system, Derrek Cappon for his helpful discussion on the diffuse reflectance spectroscopy. In addition, I would like to thank Sharon Goh for her help ordering the chemicals, and to Dr. Leyla Soleymani for giving me permission to access her laboratory during phantom making, and to people who work in Dr. Soleymani’s laboratory including Jie Yang and Barnabas Fung for their guiadances.

Finally, I would like to thank my brother Duy, and my grandfather Thanh for their warm supports through my studies.
This thesis is to honor the memory of my mother (1955-2000), and of my grandmother (1930-2001).
Table of Contents

Abstract ..iii
Acknowledgements ..iv
Table of Contents ..vi
List of Figures ...ix
List of Tables ..xiv

Chapter 1: Research Motivation, Objective and Contribution ...1
 1.1 Research motivation ..1
 1.2 Research objective and contribution ...3

References ..6

Chapter 2: Background Introduction ..12
 2.1 The brain, glioma and glioblastoma multiforme ...12
 2.1.1 The brain ..12
 2.1.2 Brain tumors statistics ...14
 2.1.3 Glioma and glial cells ..14
 2.1.4 Astrocytoma: Types and histopathology ..19
 2.2 Conventional methods for intraoperative diagnostics of gliomas ...22
 2.2.1 Biopsy and preoperative magnetic resonance imaging (MRI)22
 2.2.2 Intraoperative MRI ...23
 2.2.3 Intraoperative ultrasound ..24
 2.3.4 Contrast enhanced fluorescence imaging ..25
 2.3 Overview of tissue optics ...27
 2.3.1 Basic interaction of light with tissues ..27
 2.3.1.1 Remission and diffuse reflection ..27
 2.3.1.2 Scattering ...29
 2.3.1.3 Absorption, fluorescence and heating ..30
 2.3.2 Measurement of tissue optical properties ...35
 2.3.2.1 Direct measurement of optically thin sections: ex vivo application36
 2.3.2.2 Indirect measurement of bulk tissues ...39
 2.3.2.2(a) Diffuse approximation ...39
 2.3.2.2(b) Adding doubling model ...40
 2.3.2.2(c) Monte Carlo simulations ..41
 2.3.2.2(d) Experimental lookup table ...42
 2.3.3 Effect of sampling volume on the detection of fluorescence ...42

References ..43
Chapter 3: Paper I - Measurements of Extrinsic Fluorescence in Intralipid and Polystyrene Microspheres

Introduction to paper I .. 55

Contents of Paper I .. 56

3.1 Abstract ... 56
3.2 Introduction ... 57
3.3 Methods .. 59
 3.3.1 Intralipid phantoms .. 59
 3.3.2 Microsphere phantoms and Mie theory .. 60
 3.3.3 Instruments .. 61
3.4 Results .. 62
 3.4.1 Scattering of phantoms compared to mucosal tissues .. 62
 3.4.2 Fluorescence of Intralipid and Microsphere phantoms .. 66
 3.4.3 Fluorescence decays of Intralipid and of Polystyrene Microsphere .. 70
3.5 Conclusions ... 72
Acknowledgements .. 73
References .. 73

Chapter 4: Paper II - Experimental Recovery of Intrinsic Fluorescence and Fluorophore Concentration in the Presence of Hemoglobin: Spectral Effect of Scattering and Absorption on Fluorescence

Introduction to paper II ... 78

Contents of paper II .. 79

4.1 Abstract ... 79
4.2 Introduction ... 80
4.3 Methods .. 83
 4.4.1 Tissue simulating phantoms .. 83
 4.4.2 Instrumentation .. 85
 4.4.3 Retrieving of intrinsic fluorescence .. 87
4.4 Results .. 91
 4.4.1 Effect of hemoglobin absorption on fluorescence ... 91
 4.4.2 Effect of India ink absorption on fluorescence ... 97
 4.4.3 Effect of microsphere scattering on fluorescence ... 101
4.5 Discussion and Conclusions ... 106
Acknowledgments ... 108
References .. 109

Introduction to paper III .. 116

Contents of paper III .. 117

5.1 Abstract .. 117
5.1 Introduction ... 118
5.2 Materials and methods .. 121
 5.2.1. Optical phantoms and the inverse solution ... 121
 5.2.2. Brain tissue samples ... 124
 5.2.3. Instruments .. 125
5.3 Results .. 126
 5.3.1 Validation of the inverse solution .. 126
 5.3.2 Brain tissue measurements ... 130
5.4 Discussion and conclusion .. 136
Acknowledgements ... 138
References ... 140

Chapter 6: Concluding Remarks .. 146

6.1 Achievement summary ... 146
6.2 Future work ... 149
6.3 Conclusion ... 150
 References ... 151

Appendix ... 153

A.1 Data analysis software in Chapter 3 ... 153
A.2 System schematic view and clinical set-up .. 155
A.3 Summary of previous research work .. 156
A.4 List of publications ... 158
List of Figures

Chapter 2

Fig. 2.1 Basic macroscopic anatomy of the human brain. Reprinted ref [1]. Copyright © 2014, Springer-Verlag Wien. Reprinted with permission..13

Fig. 2.2 Distribution of primary brain and CNS tumors. Reprinted from ref [5]. Glioblastoma is grade IV astrocytoma, which is one of the gliomas. Copyright © 2015, Oxford University Press. Reprinted with permission...............................17

Fig. 2.3 Distribution of malignant primary brain and CNS tumors. Reprinted from ref [5]. Copyright © Oxford University Press 2015. Reprinted with permission.........................18

Fig. 2.4 Distribution of primary brain and CNS gliomas. Reprinted from ref [5]. Copyright © Oxford University Press 2015. Reprinted with permission..19

Fig. 2.5 The hematoxylin and eosin (H&E) stained section of (a) cerebellar pilocytic astrocytoma in a 7-year-old boy, (b) low grade astrocytoma in left frontal lobe of a 26 year old man, (c) GBM in the hypothalamus of a 57-year-old woman. In (a), image shows a tumor of low cellularity, forming a dense fibrillary matrix (arrows). In (b), image shows a fibrillary astrocytoma with low cellularity and numerous retention cysts. In (c), image shows a glioblastoma with focal necrosis (N). Reprinted from ref [20]. Copyright © 1995 Wiley-Liss, Inc. Reprinted with permission..21

Fig. 2.6 Some examples of GBM histological appearances with H&E stain: (a) small homogeneous cells with high cellularity and high mitotic activities showing scant cytoplasm with round to oval nuclei; (b) pleomorphic shaped cells with bizarre nuclei. The term “pleomorphic" designation indicates that the tumor displays significant variety of cellular and nuclear size/shape; (c) multinucleated giant cells. Reprinted from ref [21]. Copyright © 2006, Copyright © 2006 by the American Association of Neuropathologists, Inc. Reprinted with permission...21

Fig. 2.7 (a) A ray of light incident on an interface between air with refractive index \(n_1\) and tissue with refractive index \(n_2\), (b) Specular reflection of a ray of light using Eq. (1.1) for non-polarized light considering \(n_2 = 1.33\) and 1.5. Note that the angle of incidence \((\theta_1)\) is related to the angle of refraction \((\theta_2)\) by the index of refraction in Snell’s law \((n_1 \sin \theta_1 = n_2 \sin \theta_2)\). Reprinted from ref [52]. Copyright © 2010, Springer Science and Business Media B.V. Reprinted with permission...28

Fig. 2.8 (a) Specular reflection occurs when light reflects off an optically smooth surface, (b) Diffuse reflection occurs when light reflects off an optically rough surface. Reprinted from ref [53]. Copyright © 2010, Springer Science and Business Media B.V. Reprinted with permission...29

Fig. 2.9 The Jablonski diagram: absorption of light leads to excitation from S0 to S3 after which the absorbed energy can return to the ground state via internal conversions (with or
without emission of light) or via an intersystem crossing to the triplet state. An absorption of another photon can lead to excitation in the triplet state. Fluorescence emission is from the lowest rotational level within the lowest vibrational level of the S1 state. Reprinted from ref [53]. Copyright © 2010, Springer Science and Business Media B.V. Reprinted with permission.

Fig. 2.10 Techniques for direct measuring optical properties with optically thin tissue sections: (a) Total attenuation coefficient μ_t, measuring the pencil beam transmission using a collimated detector. (b) Absorption coefficient μ_a, measuring the transmitted and scattered light using an integrating sphere. The specular reflectance is rejected through the input port, and the baffle prevents light scattered from the sample reaching the detector directly without re-scattering from the sphere. (c) Scattering coefficient μ_s, measuring the total scattered light. The unscattered primary photons exit via a small coaxial port. (d) Scattering phase function $p(\cos\theta)$, measuring the angular distribution of singly-scattered light using a collimated detector mounted on a rotating arm. Reprinted from ref [86]. Copyright © 2010, Springer Science and Business Media B.V. Reprinted with permission.

Chapter 3

Fig. 3.1 (a) Scattering coefficients (μ_s) as a function of lipid concentration at 450 nm and 500 nm, (b) Predicted μ_s of Intralipid 10%: extrapolated data (current) vs. previous literature data by van Staveren et al. [30] and Flock et al. [31].

Fig. 3.2 Reduced-scattering coefficients (μ_s'): Intralipid phantoms at different lipid concentration versus literature data [2].

Fig. 3.3 Numerical calculation of Mie theory using current program compared to Prahl's calculator [27]: (a) scattering coefficients of 0.72% microsphere phantom, (b) anisotropy.

Fig. 3.4 Calculated reduced scattering coefficients (μ_s') of microsphere phantoms versus μ_s' of mucosal tissues.

Fig. 3.5 Fluorescent intensity of Intralipid phantoms with different lipid concentrations: 2%, 3%, 5% (a), 0.25%, 0.5%, 1%, and 1.5% (b). The inset in (b) shows auto-scales of the same curves.

Fig. 3.6 Fluorescent intensity of Intralipid phantoms with different lipid concentrations: 2%, 3%, 5% (a), 0.25%, 0.5%, 1%, 1.5% (b). The inset in (b) shows auto-scales of the same curves. Data was collected with a time-resolved fluorometer.

Fig. 3.7 Fluorescent intensity collected with a time-resolved fluorometer (TRF) and spectrometer (SPEC) at 450 nm as a function of lipid concentration or μ_s' values at 450 nm. Intensity of phantoms in each case was normalized to that of phantom with lipid concentration 5%.

Fig. 3.8 (a) Fluorescence of microsphere phantoms using a spectrometer, and (b) a time-resolved fluorometer.
Fig. 3.9 Fluorescence of Intralipid compared to microspheres: The measurements were performed with a spectrometer. ...70

Fig. 3.10 Normalized fluorescence decays of Intralipid phantoms with lipid concentration of 2% and microsphere phantom with sphere concentration of 0.72%.71

Chapter 4

Fig. 4.1 Schematics of the fiber probe geometry. Diffuse reflectance/steady-state fluorescence (DR/SSF) detection fibers are bundled together into three groups, each at the indicated distance (0.23, 0.89, 1.67 mm) from the DRS/SSF source fiber (measured from the centers of each fiber). In addition, a central fiber was used for time-resolved fluorescence (TRF) spectroscopy measurements. Diameter of DR/SSF fibers is 200 µm and of the TRF fiber is 400 µm ...86

Fig. 4.2 (a) Absorption coefficients μ_a of hemoglobin phantoms (Hb3.5: 3.5 mg/ml), (Hb10: 10 mg/ml), (Hb20: 20 mg/ml) as a function of wavelength, and (b) reduced scattering coefficients μ_s' of polystyrene microspheres and μ_a of Fluorescein as a function of wavelength. In these phantoms, the concentration of microsphere and Fluorescein was kept constant at 0.4% w/v and 10^{-4} M, respectively. The inset in (b) compares μ_a of Fluorescein 10^{-4} M measured in the current study (“Measured”) to that extracted from the literature (“Reference”) [50] ..92

Fig. 4.3 (a) Measured fluorescence (F_{xm}) of phantoms (Hb3.5), (Hb10) and (Hb20), (b) normalized emission spectra, (c) and normalized intensity as a function of μa at the emission peak 520 nm for all three collection distances. In (c), the intensity at the emission peak of phantoms was normalized to that of the sample consisting solely of Fluorescein 10^{-4} M in DI water (intrinsic). In all cases, the concentration of Fluorescein was 10^{-4} M and microsphere was 0.4% w/v, respectively, and SDD of 0.59 mm was used.93

Fig. 4.4 (a) Fluorescence lifetime for phantom (Hb3.5) at selected emission wavelengths and (b) average fluorescence lifetime of the phantoms (Hb3.5) and (Hb10). The intrinsic signal was collected using Fluorescein 10^{-4} M in diluted ethanol without additional scatterer or absorber. ..94

Fig. 4.5 (a) Diffuse reflectance of the phantoms (Hb3.5), (Hb10) and (Hb20); (b) Measured fluorescence (F_{xm}), the retrieved fluorescence (f_{xm1}), the fitted fluorescence (f_{xm2}) and the ideal intrinsic fluorescence for phantom with Hemoglobin concentration of 3.5 mg/ml, and (c) of 10 mg/ml; (d) Absolute percentage difference in signal intensity with respect to the ideal intrinsic signal for Hb3.5 phantom. In all cases, Fluorescein concentration of 10^{-4} M, microsphere concentration of 0.4% w/v, and SSD of 0.59 mm was used. In (b and c), F_{xm} is fluorescence under influence of hemoglobin absorption and microsphere scattering while f_{xm1} is the recovered fluorescence using Eq. (4.5), f_{xm2} is the fitted spectrum of f_{xm1}, and the intrinsic signal is the signal measured in ideal conditions in which the phantom consists solely of Fluorescein 10^{-4} M in DI water. ..95
Fig. 4.6 (a) Absorption coefficients, \(\mu_a \), of the India ink in phantoms I1 to I5 as a function of wavelength, and (b) reduced scattering coefficients, \(\mu_s' \), of polystyrene microsphere and \(\mu_a \) of Fluorescein as a function of wavelength. In these phantoms, the concentration of India ink increases from phantom (I1) to (I5) while the concentration of microsphere and the Fluorescein was kept constant at 0.72% w/v and \(10^{-4} \) M, respectively .. 98

Fig. 4.7 (a) Measured fluorescence emission spectra of the phantoms (I1) to (I5), (b) normalized fluorescence emission spectra and (c) the corresponding diffuse reflectance spectra. These data were collected with the fiber at SDD = 0.59 mm. In all phantoms, Fluorescein concentration was \(10^{-4} \) M ... 99

Fig. 4.8 (a) Fluorescence lifetime for phantom (I3) at selected emission wavelengths, and (b) average lifetime of the phantoms (I3) and (I5) at emission wavelength. The intrinsic signal was collected using Fluorescein \(10^{-4} \) M in diluted ethanol without additional scatterer or absorber. .. 100

Fig. 4.9 (a) Reduced scattering coefficients \(\mu_s' \), and (b) absorption coefficients \(\mu_a \) of phantoms S1 to S6. In these phantoms, the concentration of microspheres increases from phantom S1 to S6 while the concentration of Fluorescein was kept at \(10^{-5} \) M. No other absorbers were added. .. 101

Fig. 4.10 Measured fluorescence emission spectra of the phantoms using (a) SDD = 0.23 mm, (b) SDD = 0.59 mm, and (c) SDD = 1.67 mm. Microsphere concentration increases from sample S1 to sample S6. Fluorescein concentration was kept constant at \(10^{-5} \) M ... 102

Fig. 4.11 (a) Normalized fluorescence intensity as a function of \(\mu_s' \) at emission peak of 520 nm for all three SDDs, (b) corresponding total diffuse reflectance spectra at SDD = 0.59 mm, (c) normalized fluorescence intensity. Fluorescein concentration was kept constant at \(10^{-5} \) M ... 104

Fig. 4.12 (a) Fluorescence lifetime for phantom S6 at selected emission wavelengths and (b) average lifetime of the phantoms S4 and S6 at emission wavelength. The intrinsic signal was collected using Fluorescein \(10^{-5} \) M in diluted ethanol without additional scatterer or absorber ... 105

Chapter 5

Fig. 5.1 Matrix of optical phantoms for LUT development: (a) Top surface images of 24 phantoms captured with a standard digital camera, (b) absorption coefficients \(\mu_a \) and (c) reduced scattering coefficients \(\mu_s' \). In (a), 6 concentrations of black India ink are 0.025%, 0.05%, 0.1%, 0.2%, 0.35% and 0.5% , and 4 concentrations of microspheres are 0.2%, 0.45%, 0.7% and 1% w/v. These concentrations correspond to 6 spectra of \(\mu_a \) in (b) and 4 spectra of \(\mu_s' \) in (c). .. 122

Fig. 5.2 (a) Examples of diffuse reflectance \(R \) for six different ink’s concentrations while microsphere concentration remains constant and SDD = 0.23 mm, and (b) \(R \) as a sparse matrix mapped to optical property space \(R(\mu_a(\lambda), \mu_s'(\lambda)) \) for SDD = 0.23 mm and 0.59
mm. In (a), concentration of microsphere is 0.7% whereas concentrations of black India ink are 0.025%, 0.05%, 0.1%, 0.2%, 0.35% and 0.5%, corresponding to 6 spectra (i) to (vi). In (b), the sparse matrix represents reflectance data per SDD collected from 24 phantoms (6 ink concentrations x 4 microsphere concentrations).

Fig. 5.3 An example of data analysis for a phantom with Hb concentration of 8 mg/ml, microsphere concentration of 0.7%: (a) Diffuse reflectance collected with fiber at SDD of 0.23 nmm and 0.89 mm, (b,c) Theoretical (target) vs. extracted optical properties. Eq. (5.1) and (5.2) were used to extrapolate data in 350-430 nm. In addition, f_1 and f_2 value of 3.3 ± 0.3 mg/ml and 96% ± 3% was obtained by using Eq. (5.1).

Fig. 5.4 Evaluation of LUT over ten different hemoglobin phantoms. In general, average percentage error of 9% and 6% was obtained for μ_a and μ_s', respectively.

Fig. 5.5 LGG group vs. GBM group average spectral analysis: (a) diffuse reflectance, (b) absorption coefficient μ_a, (c) reduced scattering coefficient μ_s'. Data was averaged over all sites (12 GBM sites and 10 LGG sites) and error bars are the standard deviations.

Fig. 5.6 LGG group (10 sites) vs. GBM group (12 sites): (a) Diffuse reflectance at 650 nm (R_{650}), (b) μ_a at 650 nm, and (c) μ_s' at 650nm. Data at 650 nm was selected for due to small blood absorption in this region, and thus it is less likely for blood absorption to affect tumor discrimination.

Fig. 5.7 LGG group vs. GBM group: (a) steady state fluorescence spectrum and (b) fluorescence life-time τ spectrum, (c) ratio of fluorescence to reflectance at 460 nm $(F/R)_{460}$ vs. reflectance at 650 nm (R_{650}). Fluorescence intensity has been normalized to integrating time and laser power corresponding to each measurement. In (a) and (b), data was averaged over all sites (12 GBM sites and 10 LGG sites) and error bars are the standard deviations.

Fig. 5.8 Summary of sensitivity and specificity when using different parameters for GBM discrimination: diffuse reflectance at 650 nm (R_{650}), optical properties at 650 nm ($\mu_{a,650}$ and $\mu_{s',650}$), ratio $(F/R)_{460}$ vs. R_{650}.

Appendix

Fig. A.1 Software user interface for Mie theory calculation of scattering properties of polymer microsphere, including the data preprocessing and graphing.

Fig. A.2 Flowchart of Mie theory program developed in MATLAB®.

Fig. A.3 (a) The schematic view of an integrated spectroscopy system, (b) The integrated spectroscopy instrument housed in a mobile cart, (c) Sterilizable fiber optic probe used to collect fluorescence and reflectance signals. Reprinted from ref [62] in Chapter 1. Copyright © 2016, IEEE. Reprinted with permission.
List of Tables

Chapter 2

Table 2.1 Sensitivity and specificity of conventional imaging techniques for diagnostics of gliomas ... 26

Table 2.2 Summary of fluorescence characteristics of common fluorophores in human tissues .. 34

Chapter 4

Table 4.1 Average percentage difference (AVG) of F_{xm}, f_{xm1}, f_{xm2} with respect to the ideal intrinsic fluorescence over 490-620 nm. Analysis for all three phantoms (Hb3.5, Hb10, Hb20) is shown. .. 97

Table 4.2 The recovered Fluorescein concentration (c) in three hemoglobin phantoms from Eq. (4.5). The controlled concentration of Fluorescein in these phantoms was 10^{-4} M. ...97

Table 4.3 The recovered Fluorescein concentration in ink-microsphere phantoms. The controlled concentration of Fluorescein in these phantoms was 10^{-4} M......................... 100

Table 4.4 Overal average lifetime of Fluorescein in different phantoms (in region 480-550 nm). Concentration of Fluorescein in these phantoms was 10^{-4} M. Concentration of microspheres was 0.4 % w/v and 0.72% w/v in hemoglobin and India ink phantoms, respectively. ... 101

Table 4.5 The extracted Fluorescein concentration (c) in microsphere phantoms from Eq. (4.5). The controlled concentration of Fluorescein in these phantoms was 10^{-5} M........... 105

Table 4.6 Overal average lifetime in region 480-550 nm of Fluorescein for phantom S1 to S6. ... 105

Chapter 5

Table 5.1 Average over all GBM and LGG sites: diffuse reflectance at 650 nm (R_{650}), optical properties at 650 nm ($\mu_a,\mu_{s}',650$), ratio of fluorescence to reflectance at 460 nm ($F/R)_{460}$, and fluorescence life-time at 460 nm (τ_{460})... 136
Chapter 1: Research Motivation, Objective and Contribution

1.1 Research motivation

Glioblastoma multiforme (GBM) is a high grade glioma (HGG) that accounts for nearly 55% of malignant brain tumors, and affects over 12,000 people in the United States per year [1-4]. GBM prognosis is very poor and its median survival is less than 2 years [5-7]. Currently, neurosurgeons define the extent of a GBM resection using brain biopsy combined with preoperative magnetic resonance (MR) images, or intraoperative ultrasound, or intraoperative MR imaging. Unfortunately, these methods suffer low sensitivity and specificity in detecting GBM. Chapter 2 further discusses the statistical and pathological significance of GBM, and summarizes conventional imaging techniques used to detect GBM as well as their sensitivity and specificity.

Diffuse reflectance spectroscopy (DRS) and fluorescence spectroscopy have been used to detect tissue abnormalities, and are potential techniques to detect brain tumors. DRS and fluorescence spectroscopy are optical techniques that employ a point contact optical probe to measure light (from ultraviolet to near infra-red) intensity as a function of wavelength with high spectral resolution [8]. In early studies, it was shown that DRS alone and fluorescence spectroscopy alone could be used to detect tumors in the breast [9-13], the brain [14-17], the mucosa such as cervix [18,19], colon [20-22], and the skin [23,24]. In general, diffuse reflectance signal can be modeled to extract tissue optical properties [23,25-27] whereas fluorescence signal can be used to identify the principal fluorophore present in the tissue based on fluorescence characteristics such as emission peaks and
fluorescence life-time \([14,15,28,29]\). Information on optical properties and fluorescence characteristics of the tissue have diagnostic values because their dynamic changes are bound to tissue neoplastic progression. Background in tissue optics is reviewed in Chapter 2.

While many recent studies have combined both DRS and fluorescence spectroscopy to improve accuracy in detecting tumors in human breast [30-35], skin [36-41], oral cavity [42-47] and cervix [48-54], very limited studies have used both techniques to study brain tissues [57-59]. For example, Lin et al. were able to identify infiltrating tumor margins from normal brain tissues with a sensitivity of 100% and a specificity of 76% [57], and Toms et al. could identify glioma margins with sensitivity of 94% and specificity of 93% [58]. In these studies, separate analyses and observations for GBM and LGG were not available [57,58-61]. In general, intraoperative differentiation of GBM and LGG can be helpful in making treatment plan at the first surgery. For example, a complete removal of tumor is usually curable for LGG whereas a combination of surgery and radiation therapy is usually required for GBM [62]. If brachytherapy is applied, the radioactive seeds can be planted in the tumorous sites at the first surgery [63-64]. In addition, if brachytherapy is required for treatment of both LGG and GBM, radiative seeds with high dose rate (> 30 cGy/hr) are applied to GBM whereas seeds with low dose rate (10 cGy/hr) are applied to LGG [64].

In order to apply the integrated system of fluorescence spectroscopy and DRS to differentiate GBM from LGG during intraoperative procedure, it is necessary to evaluate
and pre-establish the performance of the integrated system during \textit{ex vivo} measurements on LGG and GBM specimens.

1.2 Research objective and contribution

The objective of this thesis is to evaluate the ability of the previously developed integrated system of DRS and fluorescence spectroscopy \cite{Cappon2019} in identifying GBM during \textit{ex vivo} measurement of brain tissue specimens. The approach relies on the interaction of light with tissue to extract optical properties and fluorescence properties.

The DRS system used in this thesis was previously developed by Derek Cappon \cite{Cappon2019} whereas the fluorescence spectroscopy system and fitting algorithms to extract fluorescence life-time were previously developed by Zhaojun Nie \cite{Nie2019}. Schematic view and clinical set-up can also be found in the Appendix A.2. Both systems were assembled as a single unit of the integrated system by Zhaojun Nie, Derek Cappon and me \cite{Cappon2019}.

The rest of the thesis will be organized in the following structure: In Chapter 2, we will briefly introduce the significance of glioma and GBM, their pathological appearances, conventional imaging techniques to detect glioma, and the background on tissue optics. **Chapter 3 to 5** will focus on my research contributions which include (i) developing tissue-simulating optical phantom models to characterize the integrated system (**Chapter 3**), (ii) developing models to recover intrinsic fluorescence spectral shape and intensity (**Chapter 4**), (iii) developing models to extract brain tissue optical properties during \textit{ex vivo} measurement, and optimizing the system’s sensitivity and specificity in detecting GBM (**Chapter 5**). In Chapter 3, 4, and 5, I developed the phantom models and experimental
models to recover optical properties, oxygen saturation and fluorescence intensity, and collected and analyzed all spectral data from the brain tissue measurements. Zhaojun Nie helped me with initial system trouble-shooting in Chapter 3. In Chapter 5, brain tissues were cut by Dr. Naresh Murty whereas histological analysis and tumor grading were performed by Dr. John Provias.

Chapter 3 (Paper 1) explores the options to use polystyrene microsphere and Intralipid to simulate scatterers in optical phantom models for calibration of the integrated system. Chapter 3 relies on the direct measurement to estimate scattering properties of Intralipid, applies Mie theory to calculate scattering properties of polymer microspheres, and discusses the benefits of polystyrene microsphere in optical phantoms toward the calibration of the integrated system.

Chapter 4 (Paper 2) introduces a simple experimental method to rapidly retrieve intrinsic fluorescence by using diffuse reflectance signal to compensate the effect of background scattering and absorption. To provide an accurate judgment on the amount of fluorophore present in tissue, a method must be developed to recover the intrinsic fluorescence. Furthermore, Chapter 4 explores the effect of background absorption and scattering on fluorescence spectral intensity.

Chapter 5 (Paper 3) introduces an experimental method to retrieve tissue optical properties and oxygen saturation number. In addition, Chapter 5 includes *ex vivo* measurements of GBM and LGG, and calculates the sensitivity and specificity of the integrated system by accessing optical properties, diffuse reflectance signal and fluorescence signal.
Chapter 6 summarizes and discusses the significances of the dissertation, and presents future work.
References

2. J. G. Scott et al., "Aggressive treatment is appropriate for glioblastoma multiforme patients 70 years old or older: a retrospective review of 206 cases," Neuro-oncology nor005 (2011).

Chapter 2: Background Introduction

2.1 The brain, glioma and glioblastoma multiforme

2.1.1 The brain

The brain is the human body’s control center which controls movement, speech, emotions, consciousness and internal body functions, such as heart rate, breathing and body temperature [1]. As shown in Fig. 2.1, the macroscopic level of the brain has three main parts: cerebrum, cerebellum, and brain stem [1]. At microscopic level, the brain is made of two main cell types - neurons and glia (glial cells) [1]. The cerebrum is the largest part of the brain, followed by the cerebellum and brain stem. The outer surface of the cerebrum is called the cerebral cortex or grey matter, the inner surface of the cerebrum is called white matter. The grey matter consists of glial cells, synapses, capillary, numerous neuronal cell bodies, and relatively few myelinated axons while white matter contains relatively very few cell bodies and is composed mainly of long-range myelinated axon tracts [1]. The dominated lipid content of myelin in white matter is responsible for the bright appearance in white matter [2-4].

The cerebrum can be sub-divided into frontal, parietal, temporal and occipital lobe. The frontal lobe controls movement, speech, memory, emotions, intellectual functioning. The parental lobe controls sensation and special orientation. The temporal lobe controls hearing and the occipital lobe control vision. The cerebellum is located under the cerebrum and is responsible for movement, postures, walking, talking. Similar to the cerebrum, the cerebellum has grey matter on the outer surface and white matter on inner area. The brain
stem is located at the base of the brain, and is responsible for connecting the cerebrum to the spinal cord and sending messages between different parts of the body and the brain.

Fig. 2.1 Basic macroscopic anatomy of the human brain. Reprinted ref [1]. Copyright © 2014, Springer-Verlag Wien. Reprinted with permission.
2.1.2 Brain tumors statistics

Brain tumors can start in the brain (primary brain tumors) or can spread into the brain from a cancer at other organs (secondary brain tumors). Primary brain tumors (PBTs) are generally more invasive than secondary brain tumors, and will be discussed here. PBTs have the average age-adjusted annual incidence rate of about 22 per 100,000 population [5], and are responsible for nearly 16,000 deaths per year in the United States [6]. PBT incidence rate is about 5.6 per 100,000 population for age group of 0-19, and about 29 per 100,000 population for age group of 20 and above.

In general, malignant PBTs are more common in males than in female with ratio of 11:9 while non-malignant PBTs are more common in females than males with ratio of 16:9. For males in the U.S., the risk of developing a malignant PBT is about 0.69%, and the risk of dying from a malignant PBT is about 0.51%. These numbers are 0.55% and 0.41% for females. Five-year survival rate in the U.S. is approximately 31.7% for males and 34.4% for females [5].

2.1.3 Glioma and glial cells

Glioma - tumor starting in glial cells, is the most common PBT (30%) (Fig. 2.2), and accounts for nearly 80% all malignant PBTs (Fig. 2.3) [5]. Although glioma can occur outside the brain (i.e. spinal cord), majority of glioma occurs inside the brain. More specifically, there is 19.8% chance glioma occurs in the temporal lobe, 25.9% in frontal lobe, 12% in parietal lobe, and 3.1% in the occipital lobe of the brain (Fig. 2.4). According to WHO classification, the three main types of glioma are oligodendrocytoma, astrocytoma,
ependymoma which starts in oligodendrocytes, astrocytes, and ependymal cells, respectively [7,8]. Glial cells are more numerous than neural cells in the brain, and occupy about half of the brain’s volume. In general, glial cells control microenvironment of the brain, maintain an appropriate amount of ions, and regulate the formation of myelin sheaths around axons [9-11]. Furthermore, astrocytes can control the brain-blood barrier that protect the CNS from unwanted substances whereas oligodendrocytes can form electrical insulation around nerve fibres and ependymal cells regulate the production of cerebrospinal fluid. Glial cells are generally smaller than neural cells, and lack of axons and dendrites [9-11].

Although tumor invasion is the key feature of glioma, the degree of invasion is variable [12]. For example, about 30% of high grade gliomas (HGG) have limited invasion, infiltrating cells less than 1 cm from the edge of gross tumor whereas about 20% of HGG have more extensive invasion, infiltrating cells more than 3 cm from the edge of gross tumor. At the presence, HGGs cannot be separated based on their extension of invasion, and must be treated the same way by combining maximal removal, chemotherapy and radiotherapy [12]. It has been showed that conventional brain imaging techniques such as computed tomography and magnetic resonance imaging have failed to improve the identification of glioma margins [13-16].

Histological analysis enables brain tumor grading so that low grades are WHO grade II, and high grades are WHO grade III and IV [7,8]. The grading is determined by the level of nuclear atypia, mitosis, microvessel proliferation, and necrosis. Among all gliomas, astrocytoma is the most common glioma, responsible for 76% of all gliomas while
glioblastoma multiform (GBM), a grade IV of astrocytoma, is the most malignant form of glioma with a median survival of less than 2 years, and accounts for nearly 55% all malignant PBTs [5,17]. GBM has the highest incidence among all malignant PBTs, approximately 3.2 per 100,000 population [5]. In the United States, there are about 12,000 patients were diagnosed with GBM per year. GBM is more common in male than female (ratio 3:2), and usually occurs in individuals at 60 years of age (90% of cases) [18,19].

Currently, GBM has the lowest survival rate among all malignant brain tumors, approximately 37.2% for first year, 15.2% for second year, 8.8% for third year and 6.3% for fourth year. Whereas its median survival is less than 2 years for a complete resection [17], the mean survival time is in the range of 6-9 months for an incomplete surgical resection [20].
Fig. 2.2 Distribution of primary brain and CNS tumors. Reprinted from ref [5]. Glioblastoma is grade IV astrocytoma, which is one of the gliomas. Copyright © 2015, Oxford University Press. Reprinted with permission.
Fig. 2.3 Distribution of malignant primary brain and CNS tumors. Reprinted from ref [5]. Copyright © Oxford University Press 2015. Reprinted with permission.
Due to the common occurrence of astrocytoma among all gliomas (76%), astrocytoma is the principal target of current study, and its progression and histopathology is the topic of discussion here. Astrocytoma can be subdivided into four groups: pilocytic astrocytoma (WHO grade I), low-grade astrocytoma (WHO grade II), anaplastic astrocytoma (WHO grade III), and GBM (WHO grade IV) [18-20]. Grade III and IV are considered as high grade. Pilocytic astrocytoma (PA) is believed to be benign, and does not evolve into more malignant tumors. A complete surgical excision is considered curative for PA patients. PA
is commonly diagnosed in children with peak at age between 8 and 13 years [20]. Histologically, PA is characterized by bipolar, fusiform, or “piloid cells with dense fibrillation. The word pilocytic refers to the fiber-like appearance of the tumor cells [Fig. 2.5(a)]. Low grade astrocytoma (LGA) affects young adults with peak at age between 30 and 40 years. Histologically, the LGA cells can be stellate, spindle-shaped with fiber like processes, or plump with a large cytoplasmic mass, and can form microcysts [Fig. 2.5(b)]. If left untreated, LGA can progress into anaplastic astrocytoma which has an increase of cellularity. Anaplastic astrocytoma is characterized by mitotic activity which is absent in LGA. Anaplastic astrocytoma rapidly progresses into GBM.

GBM has a wide range of histological appearances, and can consist of different cell types such as those with round and oval shape [Fig. 2.6 (a)], or those with pleomorphic shape [Fig. 2.6(b)], or those with “giant” size [Fig. 2.6(c)] [21]. In addition, necrosis is an essential characteristics for histological identification of GBM [Fig. 2.5(c)] [20]. Necrosis may occur in more than 80% of GBM mass due to the insufficient blood supply. In addition, microvasculature proliferation (angiogenesis) is often observed in GBM because GBM cells can contribute significantly to the blood vessels supporting tumor growth by differentiating into functional vascular endothelium [22,23].
Fig. 2.5 The hematoxylin and eosin (H&E) stained section of (a) cerebellar pilocytic astrocytoma in a 7-year-old boy, (b) low grade astrocytoma in left frontal lobe of a 26 year old man, (c) GBM in the hypothalamus of a 57-year-old woman. In (a), image shows a tumor of low cellularity, forming a dense fibrillary matrix (arrows). In (b), image shows a fibrillary astrocytoma with low cellularity and numerous retention cysts. In (c), image shows a glioblastoma with focal necrosis (N). Reprinted from ref [20]. Copyright © 1995 Wiley-Liss, Inc. Reprinted with permission.

Fig. 2.6 Some examples of GBM histological appearances with H&E stain: (a) small homogeneous cells with high cellularity and high mitotic activities showing scant cytoplasm with round to oval nuclei; (b) pleomorphic shaped cells with bizarre nuclei. The term “pleomorphic" designation indicates that the tumor displays significant variety of cellular and nuclear size/shape; (c) multinucleated giant cells. Reprinted from ref [21]. Copyright © 2006, Copyright © 2006 by the American Association of Neuropathologists, Inc. Reprinted with permission
2.2 Conventional methods for intraoperative diagnostics of gliomas

2.2.1 Biopsy and preoperative magnetic resonance imaging (MRI)

When a brain tumor is suspected during neurological evaluation (i.e. mental status), magnetic resonance imaging (MRI) scans or computed tomography (CT) scans are used to identify the mass [18,19]. If a tumor is detected, a biopsy is usually done. Biopsy is the surgical removal of small amount of tumor tissues for pathological analysis [18,19,24]. There are two types of biopsy: stereotactic biopsy and open biopsy. Stereotactic biopsy involves the removal small incision of the scalp and the drill of small hole to insert the needle to remove the tissues. Open biopsy involves the removal of portion of the skull through a procedure called craniotomy. Whereas open biopsy is applied for patients with superficial lesions that can be accessed via a small craniotomy, stereotactic biopsy is reserved for patients with deeper lesions.

In either cases, a sample of the suspected tumor is removed, and analyzed by the pathologist in order to establish the tumor phenotype for treatment plan. Preoperative MRI with high field strength (1.5-3 Tesla) has been used as a standard guidance tool in neurosurgery [25-27]. However, the shift of the brain and cerebrospinal fluid during surgical procedure can lead to inaccurate registrations between the image spaces with the actual tissue space, resulting in navigation on the wrong track which could cause low sensitivity and specificity in brain tumor diagnosis [28,29]. It has been shown that during neurosurgery, the cortical surface can displace up to 1 cm while the brain tissue surface can shift up to 5 cm [30-32]. FitzGerald et al. demonstrated that preoperative MRI might have
sensitivity of 81% and specificity of 53% when brain tumor margin error was 10 mm [33], and of 92% and 0%, respectively when margin error was 20 mm [33]. Similarly, Pauleit et al. reported a high sensitivity (96%) and low specificity (53%) in differentiating 26 glioma residues from 26 normal tissues [34]. Therefore, intraoperative imaging methods are crucial for real-time tumor resection during neurosurgery.

2.2.2 Intraoperative MRI

Intraoperative MRI with contrast enhancement has been used to determine the extent of tumor removal by visualizing the accumulation of contrast medium at the tumor border. Recent studies have adapted high field strength intraoperative MRI (iMRI) scanner for operating room usage, and showed that, iMRI could improve the extent of brain tumor resection up to 60% [35], increase the number of patients having complete tumor resection by 40% [36], and achieve moderate specificity (75%) with low sensitivity (55%) in detecting residual tumor in patients harboring a GBM [37]. The main disadvantage of iMRI is that it lengthens the anesthesia and surgical time [38]. Specifically, iMRI neurosurgical procedure requires an additional of 1.6-2 surgical hours due to scanning, imaging transfer and interpretation. Furthermore, iMRI limits the surgical space due to its bulky coil, requires compatible surgical tools for high magnetic field, and increases installation cost for independent operating and scanning sites [40,41]. The cost of a surgical suite with a MRI machine can be within US$3-8 million [36,38].
2.2.3 Intraoperative ultrasound

Cost effective intraoperative ultrasound was first introduced to neurosurgery in 1982 to localize cystic and solid brain tumors, to assist guiding needle during stereotactic biopsy [42]. It was later applied to detect brain shift, and to define brain tumor margins [43-45]. The possibility of using ultrasound as an intraoperative imaging technique has been controversial because the plane of ultrasound imaging is restricted to the available bone window, limiting the scanning area and causing information loss [46]. Recent studies has evaluated the significance of intraoperative ultrasound in accessing the resection degree of brain glioma. For example, Yu et al. used an ultrasonic scanner at probing frequency of 3-5 MHz to differentiate 87 glioma tumor residues from 273 samples without residues [47]. Although the technique achieved high specificity (92.8%), it suffered low sensitivity (62.8%) [47]. Coburger et al. showed that using a linear array intraoperative ultrasound could achieve a specificity of 75% and sensitivity of 76% in differentiating 52 glioma samples from 16 normal brain samples [37]. Furthermore, it was shown that although GBM was well delineated with ultrasound prior to resection, there was a significant drop of accuracy during resection due to the contribution of cavity wall, debris, air bubble and blood to ultrasound artifacts [48]. More specifically, sensitivity and specificity was both 95% before resection, and was 26% and 88%, respectively after resection [48]. These studies indicated that intraoperative ultrasound might not improve the accuracy of brain tumor detection that was established with preoperative MRI.
2.3.4 Contrast enhanced fluorescence imaging

The use of 5-aminolevulinic acid (5-ALA) contrast enhanced fluorescence imaging is one of the most advanced imaging techniques for surgical resection of malignant brain tumor [49]. In principal, oral administration of 5-ALA can cause over-production of a fluorophore called protoporphyrin IX (PpIX) in malignant tumor cells [50]. On the other hand, in non-cancerous cells, exogenous application of 5-ALA results in the production of PpIX which is rapidly metabolized to non-fluorescent heme. Because PpIX strongly absorbs blue light (at wavelength of 400 nm) and emits red light (at wavelength of 640 nm), optical techniques for detection of PpIX’s fluorescence signal have diagnostic values. Roberts et al. showed that although 5-ALA fluorescence-guided surgery can achieve a sensitivity of 75% and a specificity of 71% in differentiating glioma, the method suffers high false negative rate (74%) because of the absence of fluorescence signal in necrotic tumor area [51].

Therefore, it is crucial to develop a more accurate and more cost effective imaging method for tumor detection during intraoperative neurosurgery. Table 2.1 summarizes sensitivity and specificity of conventional imaging techniques for diagnostics of glioma brain tumor.
Table 2.1 Sensitivity and specificity of conventional imaging techniques for diagnostics of gliomas

<table>
<thead>
<tr>
<th>Methods</th>
<th>Sampling</th>
<th>Systems</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FitzGerald et al., 1997</td>
<td>11 patients: 8 brain tumors, 1 benign cyst, 1 epilepsy, and 1 cavernous angioma</td>
<td>1.5-T MRI scanner (Signa), T1-weighted images</td>
<td>(margin error of 10 mm)</td>
<td>81% 53%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(margin error of 20 mm)</td>
<td>92% 0%</td>
</tr>
<tr>
<td>Pauleit et al., 2005</td>
<td>28 glioma suspected cases; 52 biopsy samples: 26 glioma residues, 26 without residues</td>
<td>1.5-T MRI scanner (Sonata), T1-weighted image</td>
<td></td>
<td>96% 53%</td>
</tr>
<tr>
<td>Intraoperative MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coburger et al., 2015</td>
<td>20 glioma cases; 68 biopsy samples: 52 glioma residues, 16 without residues</td>
<td>1.5-T iMRI scanner (Magnetom Espree), T1-weighted image</td>
<td></td>
<td>55% 75%</td>
</tr>
<tr>
<td>Intraoperative ultrasound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yu et al., 2015</td>
<td>120 glioma suspected cases; 340 biopsy samples: 87 with glioma tumor residues, 273 without residues</td>
<td>colour US scanner (Aloka), small convex array probe at 3-6 MHz</td>
<td></td>
<td>93% 63%</td>
</tr>
<tr>
<td>Coburger et al., 2015</td>
<td>20 glioma cases; 68 biopsy samples: 52 glioma residues, 16 without residues</td>
<td>linear array US, probed at 7-15 MHz</td>
<td></td>
<td>76% 75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conventional US (Philip), probed at 2-7 MHz</td>
<td></td>
<td>24% 96%</td>
</tr>
<tr>
<td>Ry et al., 2008</td>
<td>19 GBM patients; 186 biopsy samples (10 frozen)</td>
<td>SonoWand US, probed at 5 MHz</td>
<td></td>
<td>87% 42%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26% 88%</td>
</tr>
<tr>
<td>Intraoperative protoporphyrin IX fluorescence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberts et al., 2011</td>
<td>11 GBM patients, 124 biopsy specimens: 86 red fluorescence and 38 non-fluorescence</td>
<td>surgical microscope (Carl Zeiss Surgical GmbH) with excitation at 400 nm, bandpass filter (620–710 nm)</td>
<td></td>
<td>75% 71%</td>
</tr>
</tbody>
</table>
2.3 Overview of tissue optics

2.3.1 Basic interaction of light with tissues

Upon incidence with tissue surface, light can be either absorbed or not. The light that is not absorbed, can either return back to the source (remission) or is transmitted through or out of the tissue (transmission). Within the tissue, light can either travel straight or change its direction via interaction with the scatterers present in tissues (through scattering process). If the light is absorbed in the tissue (through absorption process), the absorbed energy can be re-emitted as light (emission process) or can be converted into heat. The interaction of light with tissue is determined by the properties of light source (i.e. wavelength, power), tissue optical properties (i.e. absorption and scattering coefficients), and tissue fluorescence properties (i.e. emission peaks and fluorescence life-time) [52,53].

2.3.1.1 Remission and diffuse reflection

Remission is the process in which light is reflected from the tissue surface or is scattered within the tissue, leaving tissue and propagating toward the source. For example, if we consider a laser beam being delivered to tissue surface from air [Fig. 2.7(a)], according to Fresnel’s law, a portion of laser beam will be reflected at the surface due to the difference in index of refraction, n, between air ($n = 1$) and tissue ($n \approx 1.33$) [52]. The amount of reflected light depends on the incident angle and the difference between the two refractive indices [Fig. 2.7(b)]. The dependence of specular reflection (R_s) on incidence angle and refraction angle can be described by Fresnel’s law (Eq.2.1).
Fig. 2.7 (a) A ray of light incident on an interface between air with refractive index \(n_1 \) and tissue with refractive index \(n_2 \), (b) Specular reflection of a ray of light using Eq. (1.1) for non-polarized light considering \(n_2 = 1.33 \) and 1.5. Note that the angle of incidence (\(\theta_1 \)) is related to the angle of refraction (\(\theta_2 \)) by the index of refraction in Snell’s law (\(n_1 \sin \theta_1 = n_2 \sin \theta_2 \)). Reprinted from ref [52]. Copyright © 2010, Springer Science and Business Media B.V. Reprinted with permission.

\[
R_s(\theta_1) = \frac{1}{2} \left[\frac{\tan^2(\theta_1 - \theta_2)}{\tan^2(\theta_1 + \theta_2)} + \frac{\sin^2(\theta_1 - \theta_2)}{\sin^2(\theta_1 + \theta_2)} \right] \quad (2.1)
\]

When the surface is flat, all the reflected light leaves the surface at the same angle, in the same direction and the process is called specular reflectance [Fig. 2.8(a)]. In reality, tissue surface is not optically flat but is rough, causing variation in the angle of incidences and in the intensity reflected light across tissue surface. The process in which the reflected light leaves the surface in various directions is called diffuse reflectance [Fig. 2.2(b)]. In addition to reflectance at the surface, the portion of light propagating within the tissue can
be scattered (scattering process), and then propagates back to the surface to be detected by the detector.

![Fig. 2.8](image)

Fig. 2.8 (a) Specular reflection occurs when light reflects off an optically smooth surface, (b) Diffuse reflection occurs when light reflects off an optically rough surface. Reprinted from ref [53]. Copyright © 2010, Springer Science and Business Media B.V. Reprinted with permission.

2.3.1.2 Scattering

Scattering is the process in which the propagation light change its direction upon interaction with tissue. There are two types of scattering: elastic scattering and inelastic scattering [53]. In elastic scattering, the wavelength of light does not change during the scattering process. In inelastic scattering (Raman scattering), there is a change in wavelength of light due to the transfer of the small amount of photon energy to molecules in tissue, leading to the excitation of molecules. The spatial fluctuation of refractive index within tissue is responsible for scattering of light in tissue. If the spatial fluctuation occurs on a scale smaller than wavelength of light (size of particle is smaller than wavelength), the
scattering process is called Rayleigh scattering. If the spatial fluctuation occurs on a scale larger than wavelength of light (size of particle is larger than wavelength), the scattering process is called Mie scattering. Mie scattering and Rayleigh scattering (both are elastic scattering) are the two primary forms of scattering in biological tissues [54]. Although Mie scattering theory applies to spherical particles, studies have been successfully utilizing Mie theory to model light scattering in biological tissues such as brain, muscle and colon tissue [55,56]. Furthermore, Mie theory has been widely used to control scattering properties of polystyrene microsphere in standard optical phantoms [57].

Because scattering arises from the refractive index mismatch, organelles with different refractive indices from their surrounding are major sources of scattering [58]. Although cells may be viewed as sources of small angle scatterers in flow cytometry where cells can be measured individually, the cell as an entity is not as important for in vivo scattering diagnostics because it is always surrounded by other cells or tissues of similar refractive index within the extremes of water (n = 1.33) and fat (n = 1.45) [59-61]. Potential organelles functioning as major source of scatterer are mitochondria, lysosome and peroxisome. Diameter of these organelles ranges from 0.5 µm to 1.5 µm. Nucleus is another significant source of scatterer because it is the largest organelles in the cells, and nucleus size can change significantly during neoplastic progression [58-61].

2.3.1.3 Absorption, fluorescence and heating

Upon absorbing light, the absorbing molecules within the tissue can transition from ground state to an excited state, and Jablonski diagram can be used to depict such transitions.
(Fig. 2.9) [53]. In Fig. 2.9, the ground, first, second, and third electronic state is depicted as S_0, S_1, S_2, S_3, respectively. Electrons can exist in one of the two states: the singlet state or the triplet state. Singlet spin refers to spin with multiplicity, $(2S+1)$, of 1. S is number of electrons multiplying with the spin quantum number which could be $+1/2$ (spin up) or $-1/2$ (spin down). A pair of electron usually has opposite spins so that multiplicity is $[2(+1/2 + (-1/2)) + 1] = 1$ (singlet). When the electrons are both up, then the spin multiplicity is $[2(+1/2++1/2) +1] = 3$ (triplet).

Molecules at excited state rapidly relax to lower state through a process called internal conversion, which can occur with or without the emission of light. When an internal conversion occurs with the emission of light, then the process of emission is termed fluorescence. Fluorescence can be defined as the singlet-singlet radiative transition between the first excited state (S_1) and the ground state (S_0). Although other type of transition in fluorescence process might occur such as that from S_2 state to S_0 state in free radicals, fluorescence in S_1-S_0 transition is the far most common type in tissue optics. Furthermore, internal conversion usually completes prior to fluorescence because internal conversion generally occurs within 10^{-12} second or less while fluorescence life-time is typically near 10^{-8} second [62]. Hence, fluorescence emission generally results from a thermally equilibrated excited state, that is, the lowest energy vibrational state of S_1.

Fluorophores in the S_1 states can undergo a spin conversion to the first triplet state T_1. The emission from T_1 is called phosphorescence, and the conversion of S_1 to T_1 is called intersystem crossing. Generally, phosphorescence can occur long (seconds to minutes) after the absorption, and is generally shifted to longer wavelengths (lower energy) relative to the
fluorescence. Fluorescence life-time and fluorescence emission spectrum are important characteristics of biological fluorophores. Common fluorophores in human tissues are collagen, nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) [63-65]. It has been shown that NADH and collagen concentration increases with dysplasia, and detection of such changes can be used to identify tissue abnormality [65-67]. A summary of life-time and emission wavelength for common fluorophores in human tissues are shown in Table 2.2.

Fig. 2.9 The Jablonski diagram: absorption of light leads to excitation from S0 to S3 after which the absorbed energy can return to the ground state via internal conversions (with or without emission of light) or via an intersystem crossing to the triplet state. An absorption of another photon can lead to excitation in the triplet state. Fluorescence emission is from the lowest rotational level within the lowest vibrational level of the S1 state. Reprinted
Table 2.2 Summary of fluorescence characteristics of common fluorophores in human tissues

<table>
<thead>
<tr>
<th>Fluorophore</th>
<th>excitation wavelength (nm)</th>
<th>emission wavelength (nm)</th>
<th>fluorescence life-time (ns)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAD(P)H free</td>
<td>300-380</td>
<td>450-500</td>
<td>0.3</td>
<td>[68]</td>
</tr>
<tr>
<td>NAD(P)H free protein bound</td>
<td>300-380</td>
<td>450-500</td>
<td>2.0-2.3</td>
<td>[68]</td>
</tr>
<tr>
<td>FAD</td>
<td>420-500</td>
<td>520-570</td>
<td>2.91</td>
<td>[69]</td>
</tr>
<tr>
<td>flavin mononucleotide (FMN)</td>
<td>420-500</td>
<td>520-570</td>
<td>4.27-4.67</td>
<td>[70]</td>
</tr>
<tr>
<td>protoporphyrin IX</td>
<td>400-450</td>
<td>635,710</td>
<td>< 15</td>
<td>[71]</td>
</tr>
<tr>
<td>collagen</td>
<td>280-350</td>
<td>370-440</td>
<td>≤5.3</td>
<td>[68]</td>
</tr>
<tr>
<td>elastin</td>
<td>300-370</td>
<td>420-460</td>
<td>≤2.3</td>
<td>[72]</td>
</tr>
</tbody>
</table>

Besides the fluorescence process, a large portion of the absorbed energy is converted to heating. In general, temperature rise due to absorption of light is proportional to tissue absorption coefficients and the power of the radiance source. For example, assuming that there is no diffusion (the absorbed energy does not leave the area of the absorption during the optical pulse), temperature rise in tissue due to a short pulse of light is given by Eq. (2.2).

\[
\Delta T = \frac{\mu_a H}{\rho c} \quad (2.2)
\]

In Eq. (2.2), \(\mu_a \) is the absorption coefficient (cm\(^{-1}\)), \(H \) is the radiant exposure (J. cm\(^{-2}\)), \(\Delta T \) is the temperature rise (°C), \(\rho \) is the tissue density (g.cm\(^{-3}\)), and \(c \) is the specific heat capacity (J. °C\(^{-1}\).g\(^{-1}\)). For tissue, \(\rho c \approx 4.2 \text{ J. cm}^{-3}. \text{°C}^{-1} \) [53]. For example, a radiant exposure of 1 J.cm\(^{-2}\) can result in 12 °C rise if \(\mu_a = 50 \text{ cm}^{-1} \). In non-invasive optical diagnosis, temperature of tissue must be kept below the damaging temperature or critical temperature \(T_c \) [73]. Some of the examples for irreversible tissue damage expected as tissue temperature
rise above T_c are: tissue welding and vaporization at $T > 100 \, ^\circ\text{C}$, tissue pyrolysis at $T > 350 \, ^\circ\text{C}$. Both vaporization and pyrolysis are characteristics of laser surgical removal of tissue with thermal ablation [73]. In this thesis, the energy of excitation laser was kept under 3 μJ to avoid the potential thermal damage of biological tissue [74-76].

2.3.2 Measurement of tissue optical properties

The most difficult task of tissue optics is to develop methods that are fast, non-invasive, cost effective to measure optical properties of tissues, including absorption coefficient (μ_a), scattering coefficient (μ_s), and anisotropy (g) [52]. To reduce complexity, μ_s and g are often lumped into a reduced scattering coefficient, $\mu_s' = \mu_s (1-g)$ [77]. Studies have shown that optical properties tight to the concentration of absorbers and scatterers present in the tissue, and can be used to differentiate types of tissue and to detect any abnormal growth. For example, studying light scattering at cellular level, Drezek et al. and Arifler et al. showed that the level of light scattering increased during dysplastic progression due to changes of nuclei such as nuclear atypia [78,79]. At tissue level, Palmer et al. showed that μ_s' in breast tumor was 71% higher than normal breast tissues [80]. Furthermore, angiogenesis is a marker of precancer and cancer [81-83], and might cause an increase in hemoglobin concentration, resulting in an increase in light absorption [84]. Therefore, a quantitative and reliable approach for detecting neoplasm or tumor progression can be resulted from advances in optical properties measurement.

There are many different methods that have been used to measure optical properties of biological tissues. These methods can be divided into two categories: indirect and direct
measurement [85,86]. The advantages and disadvantages of each method is discussed below.

2.3.2.1 Direct measurement of optically thin sections: ex vivo application

Direct measurement refers to a method that can extract optical properties directly without using a model of light propagation. Direct method associates with the preparation of thin sample slides (thickness d), and is usually carried out using an integrating sphere. An intensive description of how to measure tissue optical properties using direct method can be found elsewhere [86,87], and can be summarized in Fig. 2.10. Principally, the total attenuation μ_t of the sample can be calculated from the measured transmission T_C using Eq. (2.3). The absorption coefficient μ_a is calculated using Eq. (2.4), where N_0 is the number of photons incident on the sample and N_a is the number of all photons transmitted or scattered by the sample and detected by the detector. In Eq. (2.4) and (2.5), η is the fraction of all photons within the integrating sphere that is detected (because integrating sphere has a highly diffuse reflective coating).

The scattering coefficient μ_s is calculated using Eq. (2.5) where N_s is the number of scattered photons detected. As shown in Fig. 2.10(c), when measuring μ_s, all collimated (unscattered) photons must be allowed to escape and not be detected along with N_s. In order to calculate anisotropy g using Eq. (2.6) [86,87], phase scattering function $p(\cos\theta)$ must be determined as illustrated in Fig. 2.10(d).

$$\mu_t = -\frac{1}{d} \ln T_C \quad (2.3)$$
\[\mu_a = -\frac{1}{d} \ln \left(\frac{N_a}{\eta N_0} \right) \]
(2.4)

\[\mu_s = -\frac{1}{d} \ln \left(1 - \frac{N_s}{\eta N_0} \right) \]
(2.5)

\[g = \int_{-1}^{1} p(\cos\theta) \cos\theta \, d(\cos\theta) \]
(2.6)

Unit of \(\mu_t, \mu_a,\) and \(\mu_s\) is inverse unit of thickness \(d\). In order to neglect multiple scattering in the thin sample, the sample thickness \(d\) must satisfies \(d < 1/\mu_s\). Typically, in human tissue \(\mu_s\) is within the range 20-100 cm\(^{-1}\) \((g = 0.94 - 0.98)\) in wavelength range 400-800 nm [88]. This requires the sample thickness within a range of 10-200 \(\mu m\). For this reason, as described in Chapter 3, direct measurement of Intralipid scattering coefficient with 1-mm thick quartz cuvette was applied only to solution with low lipid content (low scattering).

Direct method for measuring tissue optical properties is associated with several disadvantages. The preparation of thin samples via sectioning of frozen tissues can alter optical properties, comparing to intact tissues. For example, 11\% decrease in \(\mu_a\) and 47\% increase in \(\mu_s'\) were observed in soft tissue samples (human aorta and rat jejunum) as the results of cryopreservation at 4 °C for 12 hours [89,90]. In addition, the thin sample must be supported by cuvette or glass slides which may introduce scattering artifacts. Due to the complications of sample preparation, direct method does not have potential for \textit{in vivo} application [86,87].
Fig. 2.10 Techniques for direct measuring optical properties with optically thin tissue sections: (a) Total attenuation coefficient μ_t, measuring the pencil beam transmission using a collimated detector. (b) Absorption coefficient μ_a, measuring the transmitted and scattered light using an integrating sphere. The specular reflectance is rejected through the input port, and the baffle prevents light scattered from the sample reaching the detector directly without re-scattering from the sphere. (c) Scattering coefficient μ_s, measuring the total scattered light. The unscattered primary photons exit via a small coaxial port. (d) Scattering phase function $p(\cos \theta)$, measuring the angular distribution of singly-scattered light using a collimated detector mounted on a rotating arm. Reprinted from ref [86]. Copyright © 2010, Springer Science and Business Media B.V. Reprinted with permission.
2.3.2.2 Indirect measurement of bulk tissues

Indirect measurement refers to method that extracts optical properties with the use of a light propagation model to solve the “inverse problem”. That is the optical properties are placed into either a light propagation model, and the values of the measured parameters (i.e. diffuse reflectance) are fitted into optical properties [86]. Popular light propagation models used to provide approximate solutions to the radiation transport equation are: diffuse approximation [91,92], Monte Carlo simulations [80,93], and inverse adding-doubling (IAD) model [95-97]. Each of these methods has its own limitations and is discussed below.

2.3.2.2(a) Diffuse approximation

Diffuse approximation to radiative transport equation is valid only when scattering dominates absorption in the media ($\mu_s' \geq 10\mu_a$) [87], and when the point of interest (POI) is far enough from the source with a minimum at four reduced mean free path, $4/(\mu_a+\mu_s')$ [92]. For example, given that the first condition is satisfied at $\mu_a = 0.1$ cm$^{-1}$ and $\mu_s' = 15$ cm$^{-1}$, a minimum source-POI distance of $4/26 \approx 0.27$ cm $= 2.7$ mm must also be satisfied. Furthermore, it was established that the ratio of μ_s'/μ_a in human tissues is much less than 8 in visible wavelength range, especially at 540 and 580 nm region of hemoglobin absorption [88,98,99]. Therefore, diffuse approximation only applies to simulation of non-contact illumination set-up, especially with near infrared illumination source (diffusive regime), and does not apply to contact illumination set-up, especially with visible light source (highly absorptive region) [100].
2.3.2.2(b) Adding doubling model

Adding-doubling refers to a numerical method to solve the radiation transport equation. The inverse adding doubling (IAD) solves for the optical properties using the measured transmission and reflectance. IAD starts with an initial guess of optical properties, and calculates the reflectance and transmission [94,95]. This process is repeated until a match is found, and the optical properties resulting in the matched values of transmission and reflectance are assumed to be the optical properties of the sample. IAD have several advantages over the direct method. While both μ_a and μ_s' were obtained from measurement of reflectance and transmission in IAD method, additional measurement for phase function is required in order to estimate g and μ_s' with direct method. In addition, because IAD already accounts for scattering artifact at boundaries (i.e. Fresnel refraction at air-glass surface), IAD is more accurate (with error less than 3%) in measuring of samples within glass slides. Furthermore, IAD is applicable for homogenous turbid slab with any optical thickness while direct method requires sample thickness d to be less than $1/\mu_s$ [52,87]. The main disadvantages of IAD associate with requirements of perfect measurement scenarios. For example, the slab has to be homogenous and uniformly illuminated. In addition, the sample has to be large enough to cover the entrance of integrating sphere, and has to be significantly larger than the beam diameter to avoid light loss to the sample side [96,97]. Light loss to the samples side results in overestimation of absorption coefficient of the sample [97]. Such perfect measurement scenarios usually limits IAD use to ex vivo measurement [86,87].
2.3.2.2(c) Monte Carlo simulations

Monte Carlo (MC) is the most common numerical method to solve the radiation transport equation [87]. An important advantage of MC is its capability to simulate a variety of contact and noncontact illumination, and detection setups [100]. Although inverse MC-based models are flexible and can be used to extract optical properties under different conditions such as variety of light sources, tissue types, and illumination geometries, they can be computationally intensive during forward simulations which typically require millions of photon ($\gg 10^6$) to obtain adequate signal-to-noise ratio. While a standard forward MC simulation can reach 100 hours per 4×10^7 photon launched for high scattering media ($\mu_s' = 100 \text{ cm}^{-1}$) [101], some of the fastest MC methods with modern computer power can accomplish a simulation time of less than 10 hours considering a number of photons in the order of 10^8. For example, Wang et al. and Le et al. used a condensed MC to achieve simulation time of 10 hours per 4×10^8 photons launched on an IBM 3650 M2, 8 CPUs (each at 2.67 GHz) with 24 GB RAM [101,102], or Fang and Boas’s MC achieved a simulation time of approximate 2.4 hours for 10^8 photons launched on G92 graphic processing unit [103]. Note that this is the time for only one single simulation for a pair of input optical properties at one specific wavelength. To develop an accurate MC-based inverse model for broadband white light measurement of optical properties, a reflectance database could be generated from as low as 20,000 pairs of optical properties [104,105]. Therefore, it is very time-consuming to develop a MC based inverse model to extract optical properties.
2.3.2.2(d) Experimental lookup table

A more recent indirect method to measure tissue optical properties relies on an experimental lookup table (LUT) generated from experimental measurement of optical phantoms [106-109]. There are several key advantages of the LUT-method over other indirect methods. LUT method relies solely on measurement of optical phantoms, and does not require any computational models of light propagation to calculate optical properties. Furthermore, LUT can be used to map a broader range of optical properties than permitted with current diffuse approximation methods. For example, diffuse approximation can no longer extract μ_a when $\mu_s/\mu_a < 4$ while LUT can achieve accuracy of 10% [106]. In general, diffuse approximation works best for a reduced albedo a' larger than 0.9, where $a' = \mu_s' / (\mu_a + \mu_s')$ whereas LUT method valid for a' value as low as 0.35 [106-109], and for a source-detector distance up to 1.48 mm [109]. LUT method has been used to measure optical properties and extract oxygen saturation of skin cancer [106,110,111]. In this thesis, a LUT method was developed to extract optical properties of brain tissue specimen using a fiber optic probe with source-detector distance of 0.23 mm and of 0.59 mm. Detail on the LUT can be found in Chapter 5.

2.3.3 Effect of sampling volume on the detection of fluorescence

In earlier studies, one of the problem encountered when measuring fluorescence from tissue samples is that the sampling volume varies due to the aggregation and micro-environmental changes [112-114]. Such variation could alter the fluorescence quantum yield of the fluorophore, resulting the difference between in vivo fluorescence and ex vivo
fluorescence intensity. In more recent studies, Pogue et al. and Lee et al. designed the optical fiber probe which was tested on optical phantoms to study this phenomenon [115,116]. It was concluded that the detected fluorescence signal was not strongly affected by tissue optical properties when sampling volume was smaller in dimension than the average mean free path (~ 100 µm) [115-118]. Furthermore, Pogue et al. investigated the spatial variance of the measured fluorescence in vivo, and showed that the use of 100 µm fibers could accurately measure the mean fluorescence intensity with a millimeter size scale [119].

References

103. Q. Fang, and D. A. Boas, "Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units," Optics Express 17, 20178-20190 (2009).

Chapter 3: Paper I - Measurements of Extrinsic Fluorescence in Intralipid and Polystyrene Microspheres

Vinh Nguyen Du Le1*, Zhaojun Nie2, Joseph E. Hayward1, Thomas J. Farrell1 and Qiyin Fang2,3

1Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
2School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
3Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada

Received 5 Mar 2014; revised 27 May 2014; accepted 16 Jul 2014; published 22 Jul 2014

Published in Biomedical Optics Express, 5(8), 2726-2735(2014)
Printed with permission
©2010 Optical Society of America
Introduction to paper I

In this paper, the investigation of materials to produce optical phantoms for fluorescence studies was performed. To validate the measured fluorescence life-time and intensity, it is important that the observation of fluorescence from the target fluorophore is separated from that of back-ground fluorescence. Intralipid has been widely used in research to simulate optical phantoms for diffuse reflection and fluorescence studies with the assumption that lipid’s fluorescence is minor and can be ignored. However, experimental validation of Intralipid extrinsic fluorescence has not been the subject of extensive study in the biomedical optics literature. As the result, a widespread ignorance of Intralipid’s fluorescence has occurred without rigorous validation. Although it was suggested that lipid content is likely to fluoresce visible radiation when illuminated with ultraviolet radiation, supportive data was not available. In order to elucidate Intralipid fluorescence in a quantitative manner, this paper measured Intralipid fluorescence intensity and life-time as a function of lipid concentrations and scattering coefficients. A similar analysis for polymer microsphere was also performed, and compared.

In this paper, I developed the phantom models and Mie calculator, and carried out all experimental measurements and data analysis. Zhaojun Nie helped me with initial system trouble-shooting.

The manuscript was written by me, and edited by Drs. Farrell, Hayward, and Fang. Zhaojun did not contribute in the writing of the manuscript.
The manuscript has been slightly altered to confront the style of the thesis as whole, such as font, spacing, numbering of pages, equations, and figures and tables.

Contents of Paper I

3.1 Abstract

The fluorescence of Intralipid and polystyrene microspheres with sphere diameter of 1 μm at a representative lipid and microsphere concentration for simulation of mucosal tissue scattering has not been a subject of extensive experimental study. In order to elucidate the quantitative relationship between lipid and microsphere concentration and the respective fluorescent intensity, the extrinsic fluorescence spectra between 350-650 nm (step size of 5 nm) were measured at different lipid concentrations (from 0.25% to 5%) and different microsphere concentrations (0.00364, 0.0073, 0.0131 spheres per cubic micrometer) using laser excitation at 355 nm with pulse energy of 2.8 μJ. Current findings indicated that Intralipid has a broadband emission between 360-650 nm with a primary peak at 500 nm and a secondary peak at 450 nm while polystyrene microspheres have a single peak at 500 nm. In addition, for similar scattering properties the fluorescence of Intralipid solutions is approximately three-fold stronger than that of the microsphere solutions. Furthermore, Intralipid phantoms with lipid concentrations \sim 2% (simulating the bottom layer of mucosa) produce up to seven times stronger fluorescent emission than phantoms with lipid concentration \sim 0.25% (simulating the top layer of mucosa). The fluorescence decays of Intralipid and microsphere solutions were also recorded for estimation of fluorescence lifetime.
3.2 Introduction

Mucosal tissues in the oral cavity, pharynx, esophagus, and digestive system are targets of mucosal cancer, which is responsible for approximately 200,000 deaths annually in the United States [1]. Optical spectroscopic methods have been investigated as potential minimally-invasive techniques for early diagnosis and treatment [2-4]. In these studies, phantoms simulating key tissue optical properties (e.g. absorption and scattering coefficients) are extensively used in developing theoretical models [2-4]. Mucosal tissues have two distinguished layers – the epithelium on top of the stromal layer [5,6]. The reduced-scattering coefficients (μ_s') of the stromal layer is about 6-fold higher than that of the epithelium [5,6]. The epithelial layer thickness is approximately 300 µm [7], which is only a small fraction of the bottom layer thickness [7,8]. Therefore, simulating scattering of the stromal layer of the mucosa is important to mimic mucosal tissues.

Intralipid® 10% (defined as: 10 grams of lipids per 100 ml of suspension solution) is commercially available from Fresenius Kabi (Uppsala, Sweden) and Kabivitrum (Stockholm, Sweden) [9]. Dilution of stock Intralipid has been used to simulate tissue scattering in optical phantoms due to the resemblance of its reduced scattering spectrum to that of human tissues, its low absorption [10-13], and low cost [14]. In many studies, the fluorescence of Intralipid was assumed to be small or negligible in the visible region (350-650 nm) [11-13]. On the other hand, Pogue and Patterson [14] suggested that the lipid content of Intralipid phantoms is likely to fluoresce in the visible region when illuminated with ultraviolet excitation. Anand et al. reported that the fluorescence of Intralipid with lipid concentration as low as 0.25 % v/v is significant between 390-420 nm when they
attempted to use Intralipid as the background scattering to measure the time-resolved fluorescent spectrum of tyrosine dye (emission peak at 290 nm) [15]. Therefore, the endogenous fluorescence of Intralipid is likely to interfere with diffuse reflection measurements in phantom studies and thus influence the prediction of optical properties. However, because of the low concentration of lipid (below 0.25%, notation “v/v” is omitted in further discussion of Intralipid) used in the previous study [15], the simulated scattering of the phantoms was much lower than scattering of human tissue, especially the mucosal tissues. In order to produce Intralipid phantoms simulating mucosal scattering, lipid concentrations of above 1.5% (1.5 grams of lipids per 100 ml of suspension solution) should be used.

Polybead microsphere with sphere diameter of 1 µm is the other common choice for simulating tissue scattering [16-19]. These spheres were preferred not only due to their similar scattering to that of tissues but also their well-controlled size and index of refraction, and their excellent agreement of scattering properties with Mie’s theory [16-18]. A previous study using fiber optics spectroscopy claims that fluorescence of microsphere (diameter of 1 µm) phantoms with concentration of 0.72% (defined as 0.72 gram of particles per 100 ml suspension solution, corresponding to approximately 0.0131 spheres per cubic micron) after mixing with hemoglobin solution is small and negligible [19]. However, hemoglobin strongly absorbs photons in the visible region, and fluorescence signal from this region might not be detected.

While matching Intralipid and polystyrene microspheres scattering to tissue scattering is certainly a key requirement in the fabrication of optical phantoms for fluorescence and
diffuse reflectance studies, the assumption that their fluorescence is small and can be neglected has not been rigorously validated. The purpose of this study is to establish the fluorescence profile of both Intralipid and polystyrene microspheres in optical phantom studies for the broadband spectral region 360-650 nm by separately evaluating the fluorescent intensity of the Intralipid and microsphere phantoms at concentrations that mimic tissue scattering. This was achieved by performing fluorescence spectroscopy of the phantoms using an optical fiber coupled with a spectrometer. In addition, the fluorescence decays of these phantoms were measured with a time-resolved fluorescence spectroscopy system and the average fluorescence lifetime was retrieved for comparison with that of other fluorescent dyes of biological importance.

3.3 Methods

3.3.1 Intralipid phantoms

Three sets of seven Intralipid phantoms (total of 21 phantoms) with concentrations of 0.25%, 0.5%, 1%, 1.5%, 2%, 3% and 5% were created for fluorescence measurements. These phantoms were prepared by diluting the concentrated Intralipid® 20% solution (manufactured by Fresenius Kabi, Uppsala, Sweden and distributed by Baxter Healthcare Corp., Deerfield, IL) in de-ionized water. The volume of each phantom was 10 ml which was contained within 12 ml test tubes. A separate set of phantoms with much lower lipid concentration 0.05% - 0.25% was also prepared for transmission measurements using a collimated xenon lamp light source from a spectrometer (Ultraspec 3000, Pharmacia Biotech Inc., NJ). The transmission data (T) were used to calculate scattering coefficients.
(\(\mu_s\)) by applying the relationship \(\mu_s = -\ln(T)/L\), where \(L = 1\) mm is the path length of the quartz cuvette used [20]. The measurements allowed extrapolation of \(\mu_s\) for phantoms with higher lipid concentration.

3.3.2 Microsphere phantoms and Mie theory

Three microsphere phantoms with concentrations of 0.72 %, 0.4%, 0.2% solids w/v aqueous suspension were prepared by diluting the 2.5% (the notation of w/v is omitted in further discussion of microspheres) stock solution of 1 \(\mu\)m diameter polystyrene microspheres (Polysciences Inc., Warrington, PA). The corresponding number of spheres per cubic micrometer in these phantoms is 0.0131, 0.0073, 0.00364 which were found by applying the relationship in Eq. (3.1). In this equation, \(N\) is number of spheres per cubic micrometer, \(x\) is particle concentration in gram per milliliter (\(x = 0.0072, 0.004, 0.002\) g/ml, respectively), \(y = 1.05\) g/ml is the density of polystyrene [21,22], and \(d = 1\) \(\mu\)m diameter of sphere in micrometers.

\[
N = \frac{6x}{yd^3}
\]

(3.1)

Mie theory was used to calculate the scattering coefficients of the microsphere phantoms in the wavelength region 350-650 nm. The numerical calculations for the Mie theory was performed using MATLAB® (Mathworks, Natick, MA) routine which was described elsewhere [23]. This particular script can only perform single wavelength calculations; however, a simple modification was added to enable multi-wavelengths calculations by incorporating the wavelength dependent characteristics of the index of refraction of water.
and of the microspheres. The index of refraction of water, n_{water} was calculated using Eq. (3.2) which was derived in previous studies [24, 25]. In Eq. (3.2), λ is the wavelength in nanometers.

$$n_{\text{water}}(\lambda) = 1.313 + \frac{15.762}{\lambda} - \frac{4382}{\lambda^2} + \frac{1145500}{\lambda^3}$$ \hspace{1cm} (3.2)

The index of refraction of the polystyrene microspheres, n_{sphere}, was calculated using the Cauchy dispersion relation as shown in Eq. (3.3) [26]. In Eq. (3.3), λ is the wavelength in micrometers.

$$n_{\text{sphere}}(\lambda) = 1.5725 + \frac{0.0031080}{\lambda^2} - \frac{0.00034779}{\lambda^4}$$ \hspace{1cm} (3.3)

As a verification of the program, the reduced scattering coefficients for microsphere phantom 0.72% were also calculated with Prof. Prahl’s Mie calculator [27]. Since Prof. Prahl’s calculator can only perform single wavelength calculations, the comparison with current program was performed at wavelengths with step of 25 nm.

3.3.3 Instruments

Fluorescence measurements of the Intralipid phantoms were performed using an excitation pulsed laser at 355 nm (PNV-001525-140, Teem Photonics, Meylan, France), a single optical fiber with core diameter of 600 µm and numerical aperture of 0.12 for illumination and detection, a calibrated spectrometer (UV-NIR-200, StellarNet Incorporation, Tampa, FL) to record fluorescence at a broadband wavelength range 350-650 nm, and a calibrated acousto-optic-tunable-filter (AOTF) -based time-resolved
spectrometer for estimation of lifetime and verification of fluorescence signals. Details of the time-resolved system can be found elsewhere [28,29]. The advantage of using excitation wavelength at 355 nm in tissue is that most of biological fluorophores such as NADH, collagen, and elastin, etc. can be excited at this wavelength to emit light in visible region.

In all phantom measurements, the fiber tip was held perpendicular to the phantom surface and was immersed within the phantoms at a depth of approximately 2 mm from the surface. The laser power was set at approximately 2.8 µJ and the integrating time of the spectrometer was set at 0.75 second. These values were chosen to maintain good signal for observation while avoiding spectrometer saturation. Background fluorescence was also taken into account by subtracting fluorescence of the phantoms from that of test tube filled with only de-ionized water.

3.4 Results

3.4.1 Scattering of phantoms compared to mucosal tissues

The linear relationship between lipid concentration and μ_s with R-squared values within range of 0.97 and 0.99 was obtained for all wavelengths within 350-650 nm. Figure 3.1 shows examples of linear regressions at 450 nm and 500 nm with R-squared values of 0.98.
Fig. 3.1 (a) Scattering coefficients (μ_s) as a function of lipid concentration at 450 nm and 500 nm, (b) Predicted μ_s of Intralipid 10%: extrapolated data (current) vs. previous literature data by van Staveren et al. [30] and Flock et al. [31].

The μ_s values of Intralipid 10% was extrapolated using the linear regression method and was compared to previous data reported by van Staveren et al. [30] and by Flock et al. [31] (Fig. 3.2). As shown in Figure 1b, an agreement (within 10% error) in μ_s values between extrapolated data and the data from van Staveren et al. [30] was obtained. Our method of measuring Intralipid’s scattering coefficients is quite similar to that of van Staveren et al. [30]. The main difference is that the current transmission measurement was performed over broadband wavelength range 350-650 nm with 1-mm-thick quartz cuvette while van Staveren et al.’s transmission measurement was performed with lasers (457.9, 514.5, 632.8 and 1064 nm) and 3.55-mm-thick glass cuvette. Therefore, the current method did not require fitting assumption to obtain the scattering spectrum and was able to measure transmission of solution with higher lipid concentration. The current prediction of μ_s of Intralipid 10% was also in agreement with Aernout et al.’s prediction which applied invert
adding doubling (IAD) method to predict bulk optical properties from the integrating sphere measurement of total transmission and total reflection from thin slabs [32]. In van Staveren’s study, anisotropy (g) was calculated as $g = 1.1 - (0.00058) \lambda$, where λ is wavelength in nanometers [30]. In this study, a similar calculation was applied to obtain μ_s' values for Intralipid phantoms from the measured and extrapolated μ_s values.

Comparing with previously reported μ_s' values of mucosal tissue [5,6], it was shown that Intralipid phantoms with lipid concentrations between 0.25% and 0.5% are best for simulation of epithelial scattering while those with lipid concentration between 1.5% and 2% are best for simulation of stromal scattering (Fig. 3.2). Phantoms with lipid concentration 3% and 5% were also produced to further observe the fluorescence trend at high μ_s' values.

![Graphs showing reduced-scattering coefficients (μ_s'): Intralipid phantoms at different lipid concentration versus literature data [2]](image)

Fig. 3.2 Reduced-scattering coefficients (μ_s'): Intralipid phantoms at different lipid concentration versus literature data [2]

Figure 3.3 compares the current numerical calculation to Prof. Prahl’ calculator for scattering coefficients μ_s of microsphere phantom 0.72% (Fig. 3.3a) and the sphere’s
anisotropy values g (Fig. 3.3b). An excellent agreement between the two programs with average percentage error less than 0.1% was obtained. As shown in Figure 3b, the anisotropy of 1 μm microsphere is within range of 0.88-0.93 with the peak at around 475 nm.

![Graphs showing scattering coefficients and anisotropy values](image)

Fig. 3.3 Numerical calculation of Mie theory using current program compared to Prahl’s calculator [27]: (a) scattering coefficients of 0.72% microsphere phantom, (b) anisotropy g

Figure 3.4 shows the calculated reduced scattering coefficients μ_s' for all microsphere phantoms used. The μ_s' values for mucosal tissues were also plotted in the same graph for comparison. As shown in Fig. 3.4, microsphere 0.72% is optimum for simulation of stromal scattering. The resulted spectrum also agrees with previous experimental measurements with optical fiber spectroscopy and neural networks [19]. The advantage of the current approach over Prof. Pralh’s calculator is the ability to calculate broadband spectrum of μ_s and anisotropy g with single input of sphere concentration and sphere diameter. Therefore,
the current method was able to perform fast calculation of μ_s' of the microsphere phantoms over broadband wavelength range 350-650 nm without using fitting approach (Fig. 3.4).

![Graph showing reduced scattering coefficients (μ_s') of various materials.](image)

Fig. 3.4 Calculated reduced scattering coefficients (μ_s') of microsphere phantoms versus μ_s' of mucosal tissues.

3.4.2 Fluorescence of Intralipid and Microsphere phantoms

The fluorescent intensity spectrum of Intralipid phantoms collected with the spectrometer between 360-650 nm was shown in Figure 3.5. Background fluorescence was taken into account by subtracting fluorescence of the phantoms to that of test tube filled with only de-ionized water. All error bars shown in these graphs were obtained from standard deviation calculation of measurements of different phantoms with respect to a specific lipid concentration. As shown in Figure 3.5, the fluorescence generally increases gradually from 360 nm to 450 nm with a peak at around 450 nm, and increases more rapidly from 477 nm to 500 nm with a peak at 500 nm. Fluorescence decreases quickly from 525

66
nm to 650 nm (Fig. 3.5). In these results, the excitation wavelength is not seen because dichroic mirror and filter were used to block back scattered excitation light [28,29].

![Figure 3.5](image)

Fig. 3.5 Fluorescent intensity of Intralipid phantoms with different lipid concentrations: 2%, 3%, 5% (a), 0.25%, 0.5%, 1%, and 1.5% (b). The inset in (b) shows auto-scales of the same curves.

Figure 3.5 also shows that increasing lipid concentration from 0.25% to 2% increases fluorescent signals up to seven-fold (14-fold for lipid concentrations up to 5%). To validate the results from the spectrometer, the AOTF time-resolved fluorometer was also used to obtain fluorescent spectra of the lipid phantoms in the wavelength range 400-480 nm. As shown in Fig. 3.6, the trends in the fluorescence emission spectrum from the time-resolved fluorometer is in good agreement with the spectrometer measurements so that lipid 5% produced maximum fluorescent intensity, followed by lipid 3%, 2% and so on.
Fig. 3.6 Fluorescent intensity of Intralipid phantoms with different lipid concentration: 2%, 3%, 5% (a), 0.25%, 0.5%, 1%, 1.5% (b). The inset in (b) shows auto-scales of the same curves. Data was collected with a time-resolved fluorometer.

Fluorescent intensity at 450 nm as function of lipid concentration (or reduced scattering coefficients) collected with both systems is plotted on the same graph in Figure 3.7 for demonstration. In Figure 3.7, the fluorescent intensity at 450 nm of the Intralipid phantoms was normalized to that of the Intralipid 5% phantom when using the spectrometer and the AOTF time-resolved fluorometer, respectively. Figure 3.8 shows the fluorescent intensity of the microsphere phantoms measured with the spectrometer [Fig. 3.8(a)] and with the time-resolved fluorometer [Fig. 3.8(b)]. Again, a trend agreement was obtained with both methods so that maximum fluorescent intensity was observed with microsphere concentration of 0.72% (0.0131 sphere per cubic micron), followed by microsphere concentration of 0.4% (0.0073 sphere per cubic micron). The main peak in microsphere fluorescence was seen at 500 nm and was more pronounced at the sphere concentration at 0.72% [Fig. 3.8(a)].
Fig. 3.7 Fluorescent intensity collected with a time-resolved fluorometer (TRF) and spectrometer (SPEC) at 450 nm as a function of lipid concentration or μ_s' values at 450 nm. Intensity of phantoms in each case was normalized to that of phantom with lipid concentration 5%.

Fig. 3.8 (a) Fluorescence of microsphere phantoms using a spectrometer, and (b) a time-resolved fluorometer.
However, the fluorescent intensity of the 0.72% microsphere phantom is much smaller than that of the 2% Intralipid phantom (Fig. 3.9) while both have similar scattering to that of the stromal layer (Fig. 3.2 and Fig. 3.4). On average, fluorescence of the 2% Intralipid phantom was approximately 3 times stronger than that of the 0.72% microsphere phantom (Fig. 3.9). As shown in Figure 3.9, even the 1.5% Intralipid phantom which has lower scattering than the 0.72% microsphere, 1.5% Intralipid phantom produces fluorescence signals with intensity approximately twice as strong as the 0.72% microsphere phantom (Fig. 3.9).

![Fluorescence of Intralipid compared to microspheres: The measurements were performed with a spectrometer.](image)

3.4.3 Fluorescence decays of Intralipid and of Polystyrene Microsphere

Fluorescence decays of Intralipid and microsphere phantoms were also recorded with the digitizer for estimation of lifetime. Figure 3.10 shows examples of the normalized fluorescence decays for phantoms with lipid concentration 2% and microsphere 0.72% at...
emission peak 455 nm. A bi-exponential deconvolution method was used to retrieve the intrinsic response function from measured fluorescence signals [33]. Based on the fractional contribution of each component [33], an average lifetime of 4.53±0.21 ns and 1.81±0.1 ns was obtained for Intralipid and microspheres, respectively. Similar decays were obtained for phantoms with other lipid and microsphere concentrations. The calculated lifetime (τ) of Intralipid is in the similar range of the lifetime of other visible-emission-dyes used in various fluorescent studies such as Fluorescein ($\tau = 4$ ns), Pyrene ($\tau = 2.97$ ns), 4',6-Diamidino-2-phenylindole or DAPI ($\tau = 2.78$ ns), Rhodamine 123 ($\tau = 3.97$ ns), Alexa 532 ($\tau = 2.53$ ns), and FAD ($\tau = 2.91$ ns) [34]. Therefore, the possibility for Intralipid to interfere with fluorescence measurements of these dyes is high if used together in a tissue phantom.

![Graph](image)

Fig. 3.10 Normalized fluorescence decays of Intralipid phantoms with lipid concentration of 2% and microsphere phantom with sphere concentration of 0.72%.
3.5 Conclusions

These measurements have provided a quantitative measurement of fluorescence of Intralipid and polystyrene microspheres (diameter of 1 \(\mu \text{m} \)) in the wavelength range 360-650 nm with consideration of microsphere and lipid concentrations that match \(\mu_{s}' \) of human mucosal tissue. It has been shown that Intralipid phantoms have a primary emission peak at 500 nm and a secondary emission peak at 450 nm while microspheres appear to have a single peak around 500 nm. The fluorescence intensity of Intralipid is significantly stronger (average approximately 3-fold) than that of microspheres considering lipid and microsphere concentration at levels which simulate tissue scattering. In addition, the calculated fluorescence lifetime of Intralipid is approximately 2.5 times longer than that of microspheres (4.53 ns vs. 1.81 ns). Most fluorescence dyes used in research strongly fluoresce in region 450-600 nm and have the average life time as close as that of Intralipid. For example, Fluorescein and Rhodamine 123 has strong emission at around 450-500 nm and 520-600 nm, respectively and average life-time of 4 ns and 3.97 ns, respectively [34]. Consequently, the probability for fluorescence of Intralipid to interfere with fluorescence of the studied fluorophore is much higher than that of microspheres. Therefore, the fluorescence of microsphere phantoms might be neglected in optical phantom studies. However, the same assumption may not be accurate in the case of Intralipid phantoms.

In fluorescence studies, background medium consists of pure absorber and pure scatterer which do not fluoresce so that the fluorescence of fluorophore can be studied independently [11-13, 35]. Furthermore, in diffuse reflectance studies the reflected light from the phantoms is usually subtracted to background signal collected from DI water or
instrument’s noise [8,19]. However, this method might introduce error if Intralipid is used as scatterer because it fluoresces strongly, and its fluorescence intensity might not be negligible as previously claimed [31]. Therefore, a careful data processing method such as subtraction of average fluorescence response to raw signal [36] is necessary to correctly analyze optical properties and intrinsic fluorescence of the target fluorophore. Although mimicking tissue scattering with low-cost materials is a key factor in the use of Intralipid phantoms, our measurements indicate that fluorescence of Intralipid with lipid concentrations to mimic stromal scattering (1.5 % and 2%) is significant and should not be ignored.

Acknowledgements

The authors would like to thank Prof. Leyla Soleymani of the Department of Engineering Physics at McMaster University for access to her laboratory during phantom fabrication. This project is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada, Canada Foundation for Innovation (CFI), Ontario Ministry of Research and Innovation (MRI), and Canada Canadian Cancer Society Research Institute (CCSRI). QF holds the Canada Research Chair in Biophotonics.

References

Chapter 4: Paper II - Experimental Recovery of Intrinsic Fluorescence and Fluorophore Concentration in the Presence of Hemoglobin: Spectral Effect of Scattering and Absorption on Fluorescence

Vinh Nguyen Du Le,a Michael S. Patterson,a,b Thomas J. Farrell,a,b Joseph E. Hayward,a,b and Qiyin Fangc

aMcMaster University, Department of Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8, Canada

bJuravinski Cancer Centre, Hamilton, Ontario L8V 5C2, Canada

cMcMaster University, Department of Engineering Physics, Hamilton, Ontario L8S 4L8, Canada

Received Aug. 1, 2015; accepted for publication Nov. 12, 2015; published online Dec. 22, 2015

Published in Journal of Biomedical Optics, 20(12), 127003-127003 (2015)
Printed with permission
© 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
Introduction to paper II

This paper presented an experimental method that allows rapid retrieval of intrinsic fluorescence and fluorophore concentration. During tissue measurement, fluorescence is likely to be distorted by the presence of absorbers and scatterers in the tissue. This distortion can result in either a change in intrinsic fluorescence intensity or fluorescence spectral shape. Intrinsic fluorescence is an important parameter that may allow the concentration of fluorophore to be determined.

The experimental ideas presented in this paper were inspired by an earlier theoretical study to compensate the effect of hemoglobin absorption in the measured fluorescence. The proposed method was tested on a series of hemoglobin-based phantoms with polystyrene microspheres as background scatterers. The results demonstrated that this method could achieve similar results to previous Monte Carlo based methods. In addition, the manuscript investigated how spectral shape of scatterers and absorbers affect spectral shape of fluorescence. Concentration of Fluorescein was also recovered.

In this paper, I developed the phantom models and carried out all experimental measurements and data analysis. The manuscript was written by me, and edited by Drs. Patterson, Farrell, Hayward, and Fang.

The manuscript has been slightly altered to confront the style of the thesis as whole, such as font, spacing, numbering of pages, equations, and figures and tables.
4.1 Abstract

The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies successfully retrieved fluorescence spectral shape of known fluorophores, the techniques used usually came with heavy computation cost, and did not apply for strongly absorptive media while the intrinsic fluorescence intensity and fluorophore concentration was not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of Fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g. Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g. black India ink, polystyrene microspheres)

Keywords: intrinsic fluorescence signal; hemoglobin; optical properties; diffuse reflectance; fluorescence quantum yield
4.2 Introduction

Many biological fluorophores in human mucosal tissues such as collagen, nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) can absorb light at shorter wavelengths (e.g. in the ultraviolet region) and emit fluorescence at longer wavelengths (i.e. in the visible region) [1]. Their fluorescence properties (e.g. intensity and lifetime) and relative concentration can be used to obtain the status of the studied tissues [2-9]. For example, the fluorescence of NADH and FAD may increase as cells become dysplastic due to the disruption of extracellular matrix [2,3] while collagen density or concentration increases during tumor progression [4]. However, during in vivo measurements, background absorbers and scatterers strongly distort the intrinsic fluorescence and make it difficult to obtain the correct concentration of the fluorophore. The term “intrinsic fluorescence signal” (IFS) was adapted by different research groups to describe the fluorescence without the interference of other absorbers and scatters [10-12]. Details of the physical definition of IFS can be found in section 2.3 of the manuscript. In soft tissues, typical absorbers are hemoglobin (primary absorber), collagen crosslinks, NADH and FAD (secondary absorbers) while scatterers include cell nuclei, organelles and collagen fibers [5]. The fluorophore concentration can be extracted only if the effect of absorption and scattering is compensated and the IFS is retrieved.

Many studies have attempted to retrieve the IFS using theoretical modeling, experimental approaches, or a combination of both. For example, Palmer and Ramanujam developed a Monte-Carlo (MC) method incorporated with Mie’s theory and a non-linear optimization algorithm to recover the IFS of Furan dye within 10% error [13]. Kanick et
al. extended MC algorithms to investigate the effect of absorption on the measured fluorescence intensity but the information regarding intrinsic fluorescence and fluorophore concentration was not recovered [14]. MC algorithms were also used to calculate the optical fiber’s calibration factor, which was later used to recover the IFS from the measured diffuse reflectance [12]. Although the MC based method is flexible for different illumination-collection geometries, it requires intensive computation during forward modeling even if modern computational power is applied [15-21]. Therefore, it is necessary to develop a simpler approach that can perform fast recovery of fluorescence and can be adapted to different systems. In Diamond et al.’s studies, the fluorophore concentration was extracted by applying diffusion theory for the measured fluorescence and diffuse reflectance [22]. However, optical properties extraction based on the diffusion approximation may not be accurate for tumorous tissues with high angiogenesis (such as glioblastoma) or for intraoperative surgery where bleeding is unavoidable. In such case, absorption level usually dominates scattering level and diffuse approximation becomes inapplicable [23].

Finlay and Foster used a forward adjoint model of fluorescence to recover the shape of intrinsic fluorescence spectra and hemoglobin absorption with the prior knowledge of concentration of known absorbers, and of known fluorophore [24]. The approach, however, was not able to retrieve the absolute fluorescence intensity and fluorophore concentration [24]. In studies by Kim et al., an analytical method was developed to correct the fluorescence line shape and fluorophore concentration based on the assumption that fluorescence is in a linear relationship with diffuse reflectance at emission wavelengths [25]. However, such an assumption is valid only if an excitation wavelength within 380-
450 nm is used so that the migration path of emitted photons is approximately the same as that of reflected photons [25]. Furthermore, previous phantom studies considered Furan 2 as the fluorophores [12] and red marking dye as the background absorber [16]. Such materials are not relevant to most of tissues investigations and the fluorescence intensity and fluorophore concentration was not recovered. For example, Furan 2 has an emission peak at 400-420 nm while many endogenous fluorophores such as NADH, FAD, and elastin have emission peaks at longer wavelengths (450-550 nm) [1]. Hoy et al. attempted to recover intrinsic fluorescence line shape of Fluorescein based on the recovered optical properties with the single fiber fluorescence (SFF) technique [26]. However, the fluorescence intensity and fluorophore concentration were not recovered for comparison. Moreover, the validation of SFF was performed on phantoms with high concentration of Intralipid while using 365 nm as the excitation source [26]. A recent report has shown that Intralipid fluoresces strongly at this concentration and has longer fluorescence lifetime (4.5 ns) if compared to Fluorescein (4.8 - 4 ns) [1,27]. Therefore, its fluorescence properties should not be ignored. Although different studies were able to recover the intrinsic fluorescence and concentration of Protoporphyrin IX (PpIX) in the human skin using excitation light at longer wavelengths from 600-800 nm [28-30], many fluorophores in human mucosa and brain such as NADH, FAD, and collagen absorb light at shorter wavelengths from 350-500 nm [1]. Therefore, additional evaluations on phantoms or tissues with hemoglobin as the dominant absorber are necessary if these approaches [28-30] are to be applied to image mucosal tissues or brain tissues.
In this paper, we explored the ability of a simpler approach [31] for fast recovery of fluorescence peaks and fluorophore concentration in highly absorptive media using excitation wavelength at 355 nm. The approach was validated on tissue-simulating phantoms using Fluorescein as fluorophore, polystyrene microspheres as background scatterers, and black India ink and Ferrous-stabilized hemoglobin as background absorbers.

4.3 Methods

4.4.1 Tissue simulating phantoms

Stock solution of Fluorescein with a concentration of 10^{-3} M was prepared by dissolving Fluorescein powder (46955-100G-F, Sigma-Aldrich, MO) in concentrated ethanol 95% (Commercial Alcohols, GreenField Specialty Alcohol Inc., ON). Fluorescein concentrations of 10^{-4} and 10^{-5} M were prepared by simply diluting the stock solution in DI water. The absorption and emission spectra of Fluorescein are extremely sensitive to the alcohol residue and careful sample preparation is necessary to obtain accurate measurements [27]. To simulate tissue scattering, polystyrene microspheres with diameter of 1 μm (07310-15, Polysciences Inc., PA) were used. These spheres were preferred because their scattering properties are similar to biological tissues, their well-controlled size and index of refraction [17,18,32], and accurate estimation of scattering properties calculated using Mie theory [33-35]. To investigate the effect of scattering on fluorescence, six phantoms (S1 to S6) with six different concentrations of microspheres (from 0.05 % to 0.72% w/v) were created. These concentrations were obtained by diluting the original concentration of 2.65% w/v in deionized water [27].
To simulate tissue absorption, both black India ink (Higgins Ink, Chartpak Inc., MA) and hemoglobin (H0267, Sigma-Aldrich, MO) were used. Black India ink is widely used to simulate absorbers in tissue optics because of its similar exponential decrease of absorption with wavelength as that of NADH and FAD, its low cost, spectral stability, and low-fluorescence activity [2,5,36-40]. Applying the same assumption made by previous studies [38,40], the current study treated India ink as a pure absorber. Absorption and scattering coefficients of black India ink and microspheres are shown in section 4.4.2. Ferrous-stabilized hemoglobin was selected because its absorption spectrum is close to that of human blood [18], and due to its high and stable oxygen saturation (~ 100%) [33,41]. Absorption coefficients of hemoglobin phantoms are shown in section 4.4.1. A stock solution with hemoglobin concentration of 30 mg/ml was prepared by diluting Hb powder in DI water.

To observe the effect of hemoglobin absorption on fluorescence, three phantoms with hemoglobin concentration of 3.5, 10 and 20 mg/ml (Hb3.5, Hb10, Hb20) and microsphere concentration of 0.4% w/v were produced. To investigate the effects of secondary absorbers on fluorescence, five phantoms (I1 to I5) with various India ink concentrations (0.05% to 0.6%) and microsphere concentration of 0.72% w/v were created. In all phantoms, optical properties were controlled and calculated by applying Beer-Lambert’s Law to the absorbance of pure solute absorbers (Fluorescein, India ink or Hemoglobin) measured with a spectrophotometer (Ultraspec 3000, Pharmacia Biotech Inc., NJ) for absorption coefficient (μ_a) and Mie theory for reduced scattering coefficient (μ_s'). Scattering anisotropy (g) of polystyrene microsphere can be found in previous study [27]. Volume
and depth of each phantom was 6 ml and 5.5 cm, respectively. Each phantom was contained in a test tube with diameter of about 12 mm.

4.4.2 Instrumentation

Diffuse reflectance (DR) signal from the phantoms was generated using a broadband light source (Dolan-Jenner MI-150, Edmund Optics, NJ) for illumination while steady state fluorescence (SSF) signal was generated using a solid-state laser (PNV-001525-140, Teem Photonics, Meylan, France) at 355 nm with 300 ps full width at half maximum (FWHM) for excitation. Measurements of both DR and SSF signals were performed with the same customized optical probe \cite{42}. Fig. 4.1 shows the geometry of optical probe, including a diffuse reflectance /steady-state fluorescence (DR/SSF) source fiber, different DR/SSF detection fibers bundled into three groups at three source-detector distances (SDD) of 0.23, 0.59, and 1.67 mm, and a center fiber for time-resolved fluorescence (TRF) measurement. Three spectrometers (UV-NIR-200, StellarNet Incorporation, Tampa, FL) were used to record the reflectance signal and steady state fluorescence signal and were controlled by a moderately equipped computer (IBM Core 2 Duo L7500, 2 GB RAM). The position of the fiber probe was unchanged during both measurements. This enabled the correction of fluorescence using the diffuse reflectance measured at the same location.
Fig. 4.1 Schematics of the fiber probe geometry. Diffuse reflectance/steady-state fluorescence (DR/SSF) detection fibers are bundled together into three groups, each at the indicated distance (0.23, 0.89, 1.67 mm) from the DRS/SSF source fiber (measured from the centers of each fiber). In addition, a central fiber was used for time-resolved fluorescence (TRF) spectroscopy measurements. Diameter of DR/SSF fibers is 200 µm and of the TRF fiber is 400 µm.

Later, the fluorescence lifetime of Fluorescein in each phantom was recorded using center optical fiber with core diameter of 400 µm and numerical aperture of 0.12 (Fig. 4.1), and a calibrated acousto-optic-tunable-filter (AOTF)-based time-resolved spectrometer [43]. Details of the time-resolved system can be found elsewhere [43,44]. In all measurements, the fiber-optic probe was held perpendicular to the phantom surface and slightly touched the phantoms. The time-resolved measurements merely served as a secondary verification of the stability and the consistency in fluorescence properties of
Fluorescein in all phantoms (the primary verification was spectrometer measurement of absorbance spectra), and had no role in retrieving Fluorescein concentration. In the current study, experimental measurements with India ink and microspheres were performed on different days with different batches and concentrations of Fluorescein. Therefore, a consistency in our time-resolved measurements would also ensure that the use of additional absorbers and scatterers does not alter the chemical structure of Fluorescein, and that the same alcohol concentration was present in all the phantoms.

4.4.3 Retrieving of intrinsic fluorescence

When the excitation light with intensity I_x was used to illuminate the sample, fluorescence was emitted with a spectral distribution $f_{xm}(\lambda_m)$. However, due to absorption and scattering in the tissue sample, only a fraction of f_{xm}, defined as $F_{xm}(\lambda_m)$, was collected. The subscripts x and m indicate the dependence of the quantity on excitation and fluorescence emission wavelengths (λ_x and λ_m), respectively. Hence, F_{xm} and f_{xm} represents the measured fluorescence and intrinsic fluorescence at emission wavelength m due to excitation wavelength x, respectively. Müller et al. and Zhang et al. defined f_{xm} as the total fluorescence intensity of a thin slab of thickness l (cm) of a material that does not absorb nor scatter photons while containing the same concentration of fluorophores [12,16,31]. In a closed form, f_{xm} can be written in terms of Eq. (4.1) where $\mu_{a,x}$ is the absorption coefficient (cm$^{-1}$) due only to the slab’s fluorophore at excitation wavelength x, and ϕ_{xm} (dimensionless) is the fluorescence quantum yield [12,16,31].
In Eq. (4.1), ratio $\frac{\lambda_x}{\lambda_m}$ corrects for the difference in photon energy at excitation and emission wavelength while the product $l\mu_{afx} $ ($<<1$) represents the probability of a photon at excitation wavelength λ_x to be absorbed by the fluorophore, and ϕ_{xm} represents the probability of a photon at emission wavelength λ_m to be generated after the absorption event at λ_x. Because $\mu_{afx} $ can be defined as $c \varepsilon \ln(10)$ where c is fluorophore molar concentration (M) and ε extinction coefficient (cm$^{-1}$ M$^{-1}$) at λ_x. Because f_{xm} directly relates to c, Eq. (4.1) can be re-written in form of Eq. (4.2) with a consideration of a mixture of i fluorophores:

$$f_{xm} = \frac{\lambda_x}{\lambda_m} I_x l \ln(10) \sum_i \varepsilon_i c_i \phi_{xm}$$ \hspace{1cm} (4.2)

By using the escape probability distribution function (ρ), the phase-function dependence of the scattering was separated from the scattering and absorption coefficients, and the diffuse reflectance (R) and the measured fluorescence (F_{xm}) can be modeled using Eq. (4.3) and (4.4) \cite{12,31}.

$$R = \sum_{n=1}^{\infty} \rho_n w_n$$ \hspace{1cm} (4.3)

$$F_{xm} = \frac{\lambda_x}{\lambda_m} I_x \sum_{n=1}^{\infty} \sum_{i=0}^{n-1} \rho_{ni} w_{ni}$$ \hspace{1cm} (4.4)

, where $w_n = a^n = \left(\frac{\mu_s}{\mu_a + \mu_s} \right)^n$, $w_{ni} = a_{ni} = \frac{f_{xm}}{\lambda_{sx}} a_{ni}$, and $\rho_n = R_0 (e^{S(1-g)} - 1) e^{-nS(1-g)}$
In Eq. (4.3) and (4.4), n is the number of scattering events (dimensionless), S is a constant calibration factor for each individual fiber (dimensionless), w is the photon weight (dimensionless), a is the albedo (dimensionless), μ_a is the absorption coefficient (cm$^{-1}$), μ_s is the scattering coefficient (cm$^{-1}$), g is the anisotropy parameter (dimensionless), and R_0 is the diffuse reflectance from a standard sample containing only scatterers (dimensionless).

By combining the expressions of R and F_{xm} into Eq. (4.1), a relationship between f_{xm} and F_{xm} can be written as Eq. (4.5).

$$f_{xm} = \frac{\mu_{sx} * F_{xm}}{\left(\frac{R_{0x} R_{xm}}{e^{S(1-g_a)} - 1}\right)^{1/2} \left(\frac{R_{tx}}{R_{0x}} \frac{R_{xm}}{R_{0m}} + e^{S(1-g_a)} - 1\right)} \quad (4.5)$$

In Eq. (4.5), R_t is the diffuse reflectance from the targeted samples. In the studied phantoms, μ_s and g were obtained by applying Mie theory for specific microsphere diameter and concentration [27]. To calculate the diffuse reflectance R, the measured reflectance intensity of the sample, $I_{r,\text{sample}}$, was normalized to the reflectance intensity of a standard spectrolon sample with 99.9% reflectivity, $I_{r,\text{std}}$ (Labsphere, Inc., NH, USA) after subtracting the background signal intensity, $I_{r,\text{bg}}$. This method is described via Eq. (4.6).

$$R = \frac{I_{r,\text{sample}} - I_{r,\text{bg}}}{I_{r,\text{std}} - I_{r,\text{bg}}} \quad (4.6)$$

The retrieved signal f_{xm} in Eq. (4.5) can be used to recover the concentration of fluorophore for a known value of ϕ_m. In the current study, fluorescence quantum yield of Fluorescein in basic ethanol was assumed to be 0.97 at emission peak [45,46]. In experimental measurement, due to strong intensity of laser a neutral density filter with
optical density of two and a short exposure time (~ 1 ms) was applied when measuring I_x to avoid saturation at spectrometers. Therefore, to enable accurate estimation of c from Eq. (4.2) a correction factor k was applied so that $k = 10^{2/(1/1130)}$, where $1/1130$ is the ratio of exposure time used for I_x and that for F_{xm} (or f_{xm}). The concentration c of Fluorescein in the phantom can be experimentally estimated in Eq. (4.7).

$$c = k \frac{f_{xm}\lambda_m}{I_x\lambda_x I \varepsilon \phi_{xm} \ln(10)} \quad (4.7)$$

To obtain the calibration factors l and S in Eq. (4.5), the least squares fitting routine fminsearch() in MATLAB® was used to fit the measurement of f_{xm} (from the reference non-scattering phantom), F_{xm} and R_{xm} of calibration phantoms into Eq. (4.5). This optimization method is based on the Nelder-Mead simplex algorithm and has been used widely for spectral analysis in spectral imaging [47-49]. In the fitting routine, the ideal intrinsic fluorescence f_{xm} was measured directly on a phantom consisting solely of Fluorescein 10^{-4} M (in DI water) while F_{xm} and R_{xm} were measured with phantoms consisting of Fluorescein 10^{-4} M and various India ink and microsphere concentrations. To simplify the fitting routine, l was set at 1 cm. Fitting routines for known spectra of f_{xm}, F_{xm} and R_{xm} yielded values of 54.6, 45.5 and 48.2 for fibers with an SDD of 0.23, 0.59 and 1.67 mm, respectively. These S values were later used to retrieve f_{xm} in hemoglobin phantoms.

Similar to previous methods [12,31], the current method utilized the ideas that enabled the retrieving of intrinsic fluorescence from the measured diffuse reflectance. The main difference lies upon the calibration approaches. The current method incorporated the system characteristics such as light source intensity and position of the fiber probe into the
calibration. Therefore, the current method enabled recovery of absolute fluorescence intensity via Eq. (4.5) and of fluorophore concentration via Eq. (4.7) while the previous methods could recover only the relative fluorescence intensity and spectral shape.

4.4 Results

4.4.1. Effect of hemoglobin absorption on fluorescence

Fig. 4.2 shows μ_a of hemoglobin (Hb) and Fluorescein, as well as μ'_s of polystyrene micropsheres used in the hemoglobin-based phantoms (Hb3.5, Hb10, Hb20). In these phantoms, the concentration of Fluorescein and microspheres remained the same while hemoglobin concentration was varied. The inset of Fig. 4.2(b) shows that the measured μ_a was in excellent agreement with reference μ_a values for Fluorescein 10^{-4} M in alcohol [45,50]. The reference μ_a was calculated by multiplying Fluorescein concentration to that of its tabulated molar extinction coefficients [50]. As indicated elsewhere, a hemoglobin concentration of 3.5 mg/ml best simulates back-ground absorption in mucosal tissue [18]. In addition, a microsphere concentration of 0.4% w/v (~ 0.0073 spheres per cubic micrometer) was used to simulate background scattering.
Fig. 4.2 (a) Absorption coefficients μ_a of hemoglobin phantoms (Hb3.5: 3.5 mg/ml), (Hb10: 10 mg/ml), (Hb20: 20 mg/ml) as a function of wavelength, and (b) reduced scattering coefficients μ_s' of polystyrene microspheres and μ_a of Fluorescein as a function of wavelength. In these phantoms, the concentration of microsphere and Fluorescein was kept constant at 0.4% w/v and 10^{-4} M, respectively. The inset in (b) compares μ_a of Fluorescein 10^{-4} M measured in the current study (“Measured”) to that extracted from the literature (“Reference”) [50].

Fig. 4.3(a) shows the measured steady state fluorescence (F_{xm}) from three phantoms using SDD of 0.59 mm. Due to the similarity in the measured fluorescence spectra at different fibers, only the signal at one fiber is shown [Fig. 4.3(a)]. In general, increasing absorption (from 4.5 to 20 mg/ml) decreases the measured fluorescence intensity due to the decrease in the number of emitted photons escaping to the tissue surface. To compare the spectral shapes, the fluorescence spectrum of Fluorescein in DI water (intrinsic) and in hemoglobin and microspheres (distorted) is shown in the same graph [Fig. 4.3(b)]. As shown in Fig. 4.3(b), the spectral shape of the measured fluorescence was highly distorted in the wavelength regions where hemoglobin strongly absorbs photons (540 nm and 580 nm).
Fig. 4.3 (a) Measured fluorescence (F_{cm}) of phantoms (Hb3.5), (Hb10) and (Hb20), (b) normalized emission spectra, (c) and normalized intensity as a function of μ_a at the emission peak 520 nm for all three collection distances. In (c), the intensity at the emission peak of phantoms was normalized to that of the sample consisting solely of Fluorescein 10^{-4} M in DI water (intrinsic). In all cases, the concentration of Fluorescein was 10^{-4} M and microsphere was 0.4% w/v, respectively, and SDD of 0.59 mm was used.

Despite the distortion in the measured steady-state fluorescence, it was observed that average lifetime in the phantoms remains unchanged, indicating that lifetime was not affected by background absorption (Fig. 4.4). A bi-exponential deconvolution method was
used to obtain the lifetime information of the measured fluorescence signals [43]. Fig. 4.4(a) shows that fluorescence lifetime is consistent at the emission wavelength for a phantom with Hb concentration of 3.5 mg/ml. In addition, Fig. 4.4(b) shows that the fluorescence lifetime of Fluorescein in hemoglobin phantoms agreed with that of intrinsic signal within one standard deviation. In Fig. 4.4(b), the fluorescence lifetime was averaged over six repeated measurements, and standard deviations were calculated and shown as error bars.

Figure 4.5(a) shows the corresponding diffuse reflectance of three hemoglobin-based phantoms using SDD of 0.59 mm. In general, the drops of reflectance at 540 nm and 580 nm regions were due to hemoglobin absorption in these regions [Fig. 4.2(a)] while the drop at 470-520 nm was mainly due to Fluorescein absorption [Fig. 4.2(b)]. Fig. 4.5(b) and Fig. 4.5(c) compare the measured fluorescence (F_{xm}) to that of recovered and intrinsic
fluorescence for a phantom with Hb concentration of 3.5 mg/ml using SDD of 0.59 mm. The recovered fluorescence (f_{xm1}) is fluorescence signal calculated using Eq. (4.5). The least square fitting routine fminsearch() was also applied to fit f_{xm1} to the shape of the intrinsic spectrum (ideal) and obtain the fitted spectrum, f_{xm2}, of f_{xm1}. The square errors between f_{xm1} and f_{xm2} were used to optimize the results of the fitting. Figure 4.5(d) compares the percentage difference between F_{xm}, f_{xm1} and f_{xm2} with respect to the ideal intrinsic fluorescence for phantom Hb3.5 (hemoglobin concentration of 3.5 mg/ml).

Fig. 4.5 (a) Diffuse reflectance of the phantoms (Hb3.5), (Hb10) and (Hb20); (b) Measured fluorescence (F_{xm}), the retrieved fluorescence (f_{xm1}), the fitted fluorescence (f_{xm2}) and the ideal intrinsic fluorescence for phantom with Hemoglobin concentration of 3.5 mg/ml, and (c) of 10 mg/ml; (d)
Absolute percentage difference in signal intensity with respect to the ideal intrinsic signal for Hb3.5 phantom. In all cases, fluorescein concentration of 10^{-4} M, microsphere concentration of 0.4% w/v, and SSD of 0.59 mm was used. In (b and c), F_{xm} is fluorescence under influence of hemoglobin absorption and microsphere scattering while f_{xm1} is the recovered fluorescence using Eq. (4.5), f_{xm2} is the fitted spectrum of f_{xm1}, and the intrinsic signal is the signal measured in ideal conditions in which the phantom consists solely of fluorescein 10^{-4} M in DI water.

On average over 480-620 nm, the percentage error was approximately 81%, 24% and 8% for F_{xm}, f_{xm1} and f_{xm2}, respectively. These numbers were (91%, 26%, 9%) and (99%, 30%, 13%) for phantom Hb10 and Hb20, respectively (Table 4.1). On average over 480-620 nm, the accuracy of the signal was improved by 70% without fitting and by 90% with fitting. Considering only peak emission at 522 nm, percentage errors of F_{xm}, f_{xm1} and f_{xm2} are 79%, 3% and 8%, respectively. The recovered fluorescence at 522 nm was used to calculate the concentration of fluorescein using Eq. (4.7). With x of 355 nm (excitation peak) and m of 522 nm (emission peak), the value of I_{355} and of $f_{355,522}$ is 61225 counts and 45093 counts, respectively. Extinction coefficient ε_{355} of fluorescein was assumed to be 0.04 cm$^{-1}$ M$^{-1}$ [50], and $\phi_{355,522}$ was assumed to be 0.97 [45]. Therefore, c value of 1.07×10^{-4} M was estimated using Eq. (4.7). Table 4.2 summarizes the extracted concentration of fluorescein in three Hb phantoms. On average, the extracted concentration was within 10% of the controlled value of 10^{-4} M.
Table 4.1 Average percentage difference (AVG) of F_{xm}, f_{xm1}, f_{xm2} with respect to the ideal intrinsic fluorescence over 490-620 nm. Analysis for all three phantoms (Hb3.5, Hb10, Hb20) is shown.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Percentage error (%) for each phantom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hb3.5</td>
</tr>
<tr>
<td>F_{xm}</td>
<td>80.8±2.7</td>
</tr>
<tr>
<td>f_{xm1}</td>
<td>24.1±12.4</td>
</tr>
<tr>
<td>f_{xm2}</td>
<td>8.1±1.5</td>
</tr>
</tbody>
</table>

Table 4.2 The recovered Fluorescein concentration (c) in three hemoglobin phantoms from Eq. (4.5). The controlled concentration of Fluorescein in these phantoms was 10^{-4} M.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Phantom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hb3.5</td>
</tr>
<tr>
<td>$f_{355,522}$ (counts)</td>
<td>45,093±786</td>
</tr>
<tr>
<td>$F_{355,522}$ (counts)</td>
<td>9472±165</td>
</tr>
<tr>
<td>c (M)</td>
<td>1.07E-04</td>
</tr>
<tr>
<td></td>
<td>±4E-06</td>
</tr>
</tbody>
</table>

4.4.2 Effect of India ink absorption on fluorescence

To further investigate the absorption effect on fluorescence, black India ink with increasing concentration from phantom I1 to I5 was used to simulate background absorption while a microsphere concentration of 0.72% was used to simulated background scattering. Fig. 4.6 summarizes the optical properties of the phantoms used in this section. The goal of this subsection is to investigate the effects of a monotonic decreasing
absorption on fluorescence intensity and spectral shape, and to compare it to the hemoglobin cases.

Fig. 4.6 (a) Absorption coefficients, μ_a, of the India ink in phantoms I1 to I5 as a function of wavelength, and (b) reduced scattering coefficients, μ_s', of polystyrene microsphere and μ_a of Fluorescein as a function wavelength. In these phantoms, the concentration of India ink increases from phantom (I1) to (I5) while the concentration of microsphere and the Fluorescein was kept constant at 0.72% w/v and 10^{-4} M, respectively.

Fig. 4.7(a) summarizes the measured fluorescence (F_{xm}) from phantom I1 to I5 while Fig 4.7(b) compares the spectral shape of F_{xm} and f_{xm}, and Fig 4.7(c) summarizes the corresponding R. These data were collected at SDD = 0.59 mm. A similar trend to that of Fig. 4.3(a) was observed in Fig. 4.7(a): steady state fluorescence decreases as absorption increases. However, there is a significant difference between Figs. 4.3(b) and 4.7(b): the spectral shape of the fluorescence for phantoms with ink as background absorber was not distorted and remained similar to that of the intrinsic signal (measured with only Fluorescein in DI water). This can be explained by referring to either the India ink absorption spectra [Fig. 4.6(a)] or the phantom diffuse reflectance spectra [Fig. 4.7(c)]. Similar to the
Hb phantom cases, increasing absorption (from I1 to I5) decreases the reflectance signal collected [Fig. 4.7(c)]. However, in contrast to the Hb phantoms, there are no peaks in the India ink absorption spectra [Fig. 4.6(a)] or diffuse reflectance spectra [Fig. 4.7(c)]. Note that the drop of diffuse reflectance at 500 nm in Fig. 4.7(c) was due to the strong absorption of Fluorescein at this region. Again, Eq. (4.7) can be applied to extract Fluorescein concentration. An average error of 5% was obtained for the recovered Fluorescein concentration (Table 4.3).

Fig. 4.7 (a) Measured fluorescence emission spectra of the phantoms (I1) to (I5), (b) normalized fluorescence emission spectra and (c) the corresponding diffuse reflectance spectra. These data were collected with the fiber at SDD = 0.59 mm. In all phantoms, Fluorescein concentration was 10^{-4} M.
Table 4.3 The recovered Fluorescein concentration in ink-microsphere phantoms. The controlled concentration of Fluorescein in these phantoms was 10^{-4} M.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Phantom</th>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I4</th>
<th>I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{355,522}$ (counts)</td>
<td></td>
<td>43,652±741</td>
<td>46,230±420</td>
<td>46,589±744</td>
<td>42,442±837</td>
<td>41,342±823</td>
</tr>
<tr>
<td>$F_{355,522}$ (counts)</td>
<td></td>
<td>10,479±149</td>
<td>8778±58</td>
<td>8282±112</td>
<td>7281±115</td>
<td>5918±93</td>
</tr>
<tr>
<td>c (M)</td>
<td></td>
<td>1.04E-04</td>
<td>1.10E-04</td>
<td>1.11E-04</td>
<td>1.01E-04</td>
<td>9.84E-05</td>
</tr>
</tbody>
</table>

Furthermore, the fluorescence lifetime of India ink phantoms remained the same as that of intrinsic signal as expected (Fig. 4.8). Table 4.4 provides a brief summary of the average fluorescence lifetime of Fluorescein in Hb and India ink phantoms over the emission region of 480-550 nm. Overall, the fluorescence lifetime remained constant, and agreed with previously reported values for Fluorescein in diluted alcohol [1].

Fig. 4.8 (a) Fluorescence lifetime for phantom (I3) at selected emission wavelengths, and (b) average life time of the phantoms (I3) and (I5) at emission wavelength. The intrinsic signal was collected using Fluorescein 10^{-4} M in diluted ethanol without additional scatterer or absorber.
Table 4.4 Overall average lifetime of Fluorescein in different phantoms (in region 480-550 nm). Concentration of Fluorescein in these phantoms was 10^{-4} M. Concentration of microspheres was 0.4 % w/v and 0.72% w/v in hemoglobin and India ink phantoms, respectively.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Phantom</th>
<th>intrinsic</th>
<th>Hb3.5</th>
<th>Hb10</th>
<th>Hb20 (I3)</th>
<th>(I4)</th>
<th>(I5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ (ns)</td>
<td>4.92±0.12</td>
<td>4.96±0.16</td>
<td>4.97±0.31</td>
<td>4.95±0.32</td>
<td>4.78±0.26</td>
<td>4.84±0.25</td>
<td>4.74±0.26</td>
</tr>
</tbody>
</table>

4.4.3 Effect of microsphere scattering on fluorescence

Fig. 4.9 summarizes the optical properties of phantoms S1 to S6. In these phantoms, microsphere concentration increases from S1 (0.05% w/v) to S6 (0.72% w/v) [Fig. 4.9(a)] while the concentration of Fluorescein is kept constant at 10^{-5} M. No other absorbers were added. Fig. 4.9(b) shows the μ_a spectrum of Fluorescein 10^{-5} M solution. The goal of this subsection is to inspect the effects of a monotonically decreasing reduced scattering on fluorescence intensity and spectral shape.

![Fig. 4.9](image)

Fig. 4.9 (a) Reduced scattering coefficients μ_s', and (b) absorption coefficients μ_a of phantoms S1 to S6. In these phantoms, the concentration of microspheres increases from phantom S1 to S6 while the concentration of Fluorescein was kept at 10^{-5} M. No other absorbers were added.
Fig. 4.10 Measured fluorescence emission spectra of the phantoms using (a) SDD = 0.23 mm, (b) SDD = 0.59 mm, and (c) SDD = 1.67 mm. Microsphere concentration increases from sample S1 to sample S6. Fluorescein concentration was kept constant at 10^{-5} M.

The measured steady-state fluorescence of the phantoms is shown in Fig. 4.10 for all collection distances: 0.23 mm [Fig. 4.10(a)], 0.59 mm [Fig. 4.10(b)] and 1.69 mm [Fig. 4.10(c)]. In general, adding microspheres decreased the fluorescence intensity at first due to the effect of scattering (intrinsic versus S1). The fluorescence intensity eventually increased if more microspheres were added from S1 to S6. Fig. 4.11(a) further illustrates
this trend by plotting the normalized intensity at the emission peak as a function of μ_s' (at 520 nm). This phenomenon was consistent with what was reported previously [12]. To compare the intensity trend between SDDs, the fluorescence collected at each SDD was normalized to the intrinsic fluorescence at the same SDD [Fig. 4.11(a)]. The current results indicated that increasing SDD from 0.23 mm to 0.59 mm might increase the fluorescence signal up to 40% in highly scattering media although further increasing of SDD showed the reverse [Fig. 4.11(a)]. The corresponding diffuse reflectance of phantoms for SDD = 0.59 mm is also shown in Fig. 4.11(b) while the normalized measured fluorescence and intrinsic signal are plotted in Fig. 4.11(c).

In general, increasing scattering increases the probability of detection, thus increasing the reflectance intensity to be collected by the detection fiber (Fig. 4.11(b)). This is a reversed trend of increasing absorption in India ink cases (Fig. 4.7(c)). Similar to the India ink cases, the spectral shape of the fluorescence in microsphere phantoms remains unchanged [Fig. 4.11(c)]. India ink absorption coefficient and microsphere reduced scattering coefficient are related to wavelength in the form of $\mu = a\lambda^{-b}$, where a and b are positive fitting coefficients, λ is the wavelengths and μ represents absorption coefficients in the India ink case and reduced scattering coefficients in the microsphere case [34,35]. Therefore, the results shown in Figs. 4.7(b) and 4.11(c) might indicate that exponential decrease of scattering or absorption with increasing wavelengths do not have effects on the fluorescence spectral shape. Eq. (4.7) was applied to retrieve the concentration of Fluorescein in the phantoms S1-S6, considering SDD = 0.59 mm,
exposure time ratio of 1/11700 and I_x value of 63056 counts. As shown in Table 4.5, an average percentage error of 8% was observed in the recovered Fluorescein concentration. In addition, the fluorescence lifetime remained within the standard deviation (Fig. 4.12). Table 4.6 provides an overall summary of the average life-time in region 480-550 nm for phantoms S1 to S6.

![Graphs showing normalized fluorescence intensity and diffuse reflectance spectra](image)

Fig. 4.11 (a) Normalized fluorescence intensity as a function of μ_s' at emission peak of 520 nm for all three SDDs, (b) corresponding total diffuse reflectance spectra at SDD = 0.59 mm, (c) normalized fluorescence intensity. Fluorescein concentration was kept constant at 10^{-5} M.
Table 4.5 The extracted Fluorescein concentration \(c \) in microsphere phantoms from Eq. (4.5). The controlled concentration of Fluorescein in these phantoms was \(10^{-5} \) M.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{355,522}) (counts)</td>
<td>40,550±1247</td>
<td>51,902±872</td>
<td>43,682±945</td>
<td>54,050±462</td>
<td>49,208±1145</td>
<td>51,367±916</td>
</tr>
<tr>
<td>(F_{355,522}) (counts)</td>
<td>10,036±211</td>
<td>10,998±178</td>
<td>13,493±258</td>
<td>15,688±160</td>
<td>24,617±377</td>
<td>29,294±236</td>
</tr>
<tr>
<td>(c) (M)</td>
<td>9.05E-06</td>
<td>1.16E-05</td>
<td>9.75E-06</td>
<td>1.21E-05</td>
<td>1.10E-05</td>
<td>1.15E-05</td>
</tr>
</tbody>
</table>

Fig. 4.12 (a) Fluorescence lifetime for phantom S6 at selected emission wavelengths and (b) average lifetime of the phantoms S4 and S6 at emission wavelength. The intrinsic signal was collected using Fluorescein \(10^{-5} \) M in diluted ethanol without additional scatterer or absorber.

Table 4.6 Overall average lifetime in region 480-550 nm of Fluorescein for phantom S1 to S6.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau) (ns)</td>
<td>4.96±0.20</td>
<td>4.85±0.18</td>
<td>4.69±0.20</td>
<td>4.73±0.19</td>
<td>4.81±0.12</td>
<td>4.71±0.21</td>
</tr>
</tbody>
</table>
4.5 Discussion and Conclusions

The current study has shown that hemoglobin absorption strongly distorted the fluorescence spectra of Fluorescein at emission wavelength regions near 540 nm and 580 nm. Most endogenous fluorophores in human tissues emit in this wavelength region upon irradiation with ultraviolet light [1]. Using the proposed method and the constructed phantoms with optical property ranges reported for mucosal tissues and brain tissues (μ_a of 1.2-20 cm$^{-1}$ and μ_s' of 1.7-24.5 cm$^{-1}$ at 540 nm) [2,5,18,33-35,51,52], Fluorescein concentration was recovered with an average error of 10% (Fig. 4.5, Table 4.1) considering only the emission peak at 522 nm. On average over 450-650 nm, the intrinsic fluorescence intensity of Fluorescein was recovered with an error of 27% (versus 90% with raw signal). While spectral fitting reduced error in recovering fluorescence by 66% on average over 450-650 nm, the percentage error of fitted data was higher than that of non-fitted data at the emission peak 522 nm (3% versus 8%). Although absorption affects fluorescence and diffuse reflectance differently due to the difference in light path shown in Eqs. (4.3) and (4.4), this difference was accounted for in Eq. (4.5).

In addition, the absorption distortion on $f_{x\text{-}m2}$ line shape was accounted for by the ratio of R_{tm}/R_{0m} in Eq. (4.1) [12]. The proposed method was also efficient in retrieving Fluorescein’s concentration in India ink and microsphere phantoms with an average percentage error of 5% and 8%, respectively (Tables 4.3 and 4.5). The current approach used the same concept as previous studies to the extent in which the measured diffuse reflectance was used to compensate the effect of hemoglobin absorption on fluorescence signal [12,31]. What made our approach unique were the ability to recover absolute
fluorescence intensity and to estimate fluorophore concentration via the experimental calibration of individual fibers without the expense of complicated computation. Our ultimate goal is to recover fluorophore concentration using diffuse reflectance and fluorescence measurements and optical properties of the targeted volume. In this manuscript, we demonstrated that the proposed method is feasible to recover fluorophore concentration if optical properties are known. In the next step, an inverse solution is being developed to recover optical properties, and to demonstrate this approach is able to perform real-time tissue measurement. This addition will make the current approach more practical in studying tissue samples.

Although a single fluorophore was used in our study, this should not limit the application of the proposed method in media with multiple fluorophores. As demonstrated in the current study, the recovered intensity at the emission peak is crucial to extract fluorophore concentration. In biological tissues, each fluorophore (NADH, FAD, and collagen) has a known emission peak which can be recovered using Eq. (4.1), allowing extraction of its concentration via Eq. (4.7). Although Muller and Hendriks were unable to recover fluorophore concentration, their studies demonstrated the ability of the proposed method to recover multiple fluorescence peaks via Eq. (4.1) [16].

The current results also show that scattering and absorption materials whose attenuation coefficients decay exponentially with wavelengths (such as black India ink and polystyrene microspheres) have minor effect on the spectral shape of the fluorescence [Figs. 4.7(b) and 4.11(c)]. These observations were made when studying the broadband emission signal of Fluorescein in 500-625 nm. This finding might indicate that absorption and scattering from
NADH, FAD and collagen fibers do not have significant effects on the fluorescence spectral shape because their attenuation coefficients decay exponentially with wavelength, similar to those of India ink or microspheres [2,5,34]. Therefore, hemoglobin is the only absorber of concern. In addition, a consistency in the average fluorescence lifetime measured with the time-resolved system verified that the chemical structure of Fluorescein was not affected by the introduction of India ink, microsphere or hemoglobin.

Furthermore, the current results suggested that increasing SSD from 0.23 mm to 0.59 mm has the potential to increase the fluorescence signal in highly scattering media, especially for S4 to S6 [Fig. 4.11(a)]. Therefore, a small increase in collection distance could increase the probability of detection. However, a larger increase of SDD would decrease the probability for an emitted photon to reach the detection fiber. As a result, fluorescence intensity was high at SDD of 0.59 mm, and low at SDD of 1.67 mm. Additional theoretical analysis is necessary to confirm this result, and to optimize the design to maximize the measured fluorescence signal.

Acknowledgments

The authors would like to thank Professor Leyla Soleymani of the Department of Engineering Physics at McMaster University for access to her laboratory during phantom fabrication. This project was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada and Canadian Cancer Society Research Institute (CCSRI). QF holds the Canada Research Chair in Biophotonics at McMaster University.
References

19. Q. Fang, and D. A. Boas, "Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units," Optics Express 17(22), 20178-20190 (2009).

Vinh Nguyen Du Le is a PhD student in the Medical Physics program at McMaster University (Hamilton, ON). He received a B.Sc. degree (2009) and a M.Sc. degree (2010) in Biomedical Engineering from the Catholic University of America (Washington, DC). He was a research engineer at the U.S. Food and Drug Administration from 2010 to 2012.

Michael S. Patterson is the director of medical physics at Juravinski Cancer Centre (Hamilton, ON). He received a B.Sc. degree (1973) from Queen’s University, a M.Sc. degree (1976) from McMaster University, and a Ph.D. degree (1984) from the University of Toronto.
Thomas J. Farrell is a Medical Physicist at the Juravinski Cancer Centre and the chair of the Medical Physics department at McMaster University. He received a Ph.D. degree (1990) from McMaster University.

Joseph E. Hayward is a Medical Physicist at the Juravinski Cancer Centre and an Associate Professor of the Medical Physics department at McMaster University. He received a Ph.D. degree (1993) in lasers and electro-optics in Engineering Physics from McMaster University.

Qiyin Fang is an Associate Professor of Engineering Physics and the chair of Biophotonics at McMaster University. He received a B.Sc. degree (1995) in physics from Nankai University, a MSc. Degree (1998) in Applied Physics and a Ph.D. degree (2002) in Biomedical Physics from East Carolina University.
Chapter 5: Paper III - Dual Modality Optical Biopsy of Glioblastomas Multiforme with Diffuse Reflectance and Fluorescence: Ex Vivo Retrieval of Optical Properties

Vinh Nguyen Du Le,¹* John Provias,² Naresh Murty,³ Michael S. Patterson,⁴ Zhaojun Nie,⁵ Joseph E. Hayward,⁴,⁶ Thomas J. Farrell,⁴,⁶ William McMillan,⁴,⁷ Wenbin Zhang,⁸ and Qiyin Fang ⁵,⁹

¹Radiation Sciences Graduate Program, McMaster University, Hamilton, Ontario, Canada
²Department of Anatomical Pathology, McMaster University, Hamilton, Ontario, Canada
³Department of Surgery, McMaster University, Hamilton, Ontario, Canada
⁴Juravinski Cancer Centre, Hamilton, Ontario, Canada
⁵School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
⁶School of Interdisciplinary Science, McMaster University, Hamilton, Ontario, Canada
⁷Department of Oncology, McMaster University, Hamilton, Ontario, Canada
⁸Shanghai 9th People’s Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
⁹Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada

Submitted to Journal of Biomedical Optics.
Introduction to paper III

This paper is to evaluate the abilities of the dual optical modality, diffuse reflectance spectroscopy and fluorescence spectroscopy, in differentiating glioblastomas multiforme (GBM) from low grade glioma (LGG) during \textit{ex vivo} measurements of brain tumor specimen. To estimate the sensitivity and specificity of the method, different parameters including diffuse reflectance, optical properties, oxygen saturation, fluorescence properties (emission signal and fluorescence life-time) were used. An experimental model was developed to extract tissue optical properties which were used to access tumor grade. Prior to tissue measurement, the model was evaluated on tissue-simulating phantoms with controlled optical properties. The key novelty of this work is the ability to measure multiple optical parameters of GBM and LGG separately from the primary brain tumor group, and to optimize these parameters for tumor differentiation without relying on heavily computational models of light propagation.

In this paper, I developed the inverse solution model and the optical phantom models, and carried out all the experimental measurements and data analysis. Brain specimen were cut and delivered by Dr. Murty, the neurosurgeon. Histological analysis and tumor grading were done by Dr. Provias, the pathologist. The manuscript was written by me, and edited by Drs. Patterson, Farrell, Hayward, and Fang.

Zhaojun Nie, Wenbin Zhang, William McMillan, Drs. Provias and Murty did not contribute in the writing of the manuscript.
The manuscript has been slightly altered to confront the style of the thesis as whole, such as font, spacing, numbering of pages, equations, and figures and tables.

Contents of paper III

5.1 Abstract

Glioma itself accounts for 80% of all malignant primary brain tumors and glioblastoma multiforme (GBM) accounts for 55% of such tumor. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising non-invasive methods to improve the accuracy of brain tissue resection. In this study, optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in LGG and absorption coefficient is 48% higher. The results reported here show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from low grade glioma (LGG) during *ex vivo* measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool to aid neurosurgeons to determine the extent of surgical resection of glioma, improving intra-operative tumor identification for guiding surgical intervention.
5.1 Introduction

Glioma is a term used to describe all tumors arising from glial cells in the brain. There are three subgroups - astrocytoma, oligodendroglioma, and ependymoma - represent 30% of all primary brain tumors and 80% of all malignant primary brain tumors [1]. Glioblastoma multiforme (GBM), the highest tumor grade in astrocytoma, accounts for nearly 55% of such tumors, and affects over 12,000 people in the United States per year [1-4]. GBM prognosis is very poor and its median survival is reported to be from less than 14 months [5] to 2 years [6,7]. Currently, neurosurgeons define the extent of a brain tumor resection using techniques such as brain biopsy [8,9], intraoperative ultrasound [10], or visual inspection with the assistance of pre-operative magnetic resonance (MR) images [11]. Unfortunately, each method has considerable limitations. Brain biopsy is invasive hence limits the number of specimens taken, leading to large sampling errors. Brain tumors frequently resemble normal brain tissues in ultrasound images, causing incomplete removal of margins [12]. In addition, non-rigidity of brain tissues might cause positional shifts during the operation making the defined margins on pre-operative MR images unreliable [13,14]. This problem may lead to either unplanned resection of normal brain or incomplete resection of tumor [15,16]. Therefore, a non-invasive method is desired to allow real-time identification of GBM tissue.

Early studies have shown that diffuse reflectance spectroscopy (DRS) has the potential for non-invasive detection of mucosal abnormalities via differences in tissue optical properties [17-19], and that fluorescence spectroscopy has the ability to detect malignant tissues by analyzing fluorescence characteristics such as emission spectrum [20,21] and
decay lifetime \([22,23]\). Optical properties including absorption coefficient \((\mu_a)\) and reduced scattering coefficient \((\mu_s')\) are wavelength dependent quantities that govern light propagation in tissues \([24-27]\). In human mucosa, the principal absorbers are hemoglobin in blood, collagen crosslinks, nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) \([28-30]\). Meanwhile, density and the morphology of cells are the main source of the scattering signal \([31]\). Tissue optical properties are tied to the concentration of absorbers and scatterers present in that tissue. For example, a high number density of cells leads to high \(\mu_s'\) \([32]\) while high blood vessel density suggests high \(\mu_a\) \([33,34]\). In Lin \textit{et al.}'s studies, it was shown that DRS alone could be used to discriminate brain tumor from normal brain tissues during \textit{in vivo} measurements of 12 patients with a sensitivity of 95\% and a specificity of 66\% \([35]\).

Although the emission peaks in the steady-state fluorescence spectrum could be used to identify the principal fluorophores, the fluorescence signal is usually distorted by absorption and scattering of absorbers and scatterers present in the tissue \([36,37]\). To correct the measured fluorescence, and to enable tissue discrimination using steady-state fluorescence, diffuse reflectance must be used in parallel \([36,37]\). By combining steady-state fluorescence and diffuse reflectance, Lin \textit{et al.} were also able to identify infiltrating tumor margins from normal brain tissues with a sensitivity of 100\% and a specificity of 76\% \([38]\). In similar studies with the integrated system, Toms \textit{et al.} could identify glioma margins of 24 glioma patients with sensitivity of 94\% and specificity of 93\% \([39]\), and Valdés \textit{et al.} was able to achieve sensitivity and specificity of 94\% in differentiating 2 LGG patients and 5 GBM patients \([40]\). Without using DRS, Butte \textit{et al.} showed that
fluorescence spectroscopy alone had the potential to discriminate low grade gliomas (LGG) with a sensitivity of 100% and a specificity of 98% [22,23]. Unfortunately, the technique suffered low sensitivity (47%) for detection of high grade gliomas (HGG) [22,23]. In these studies, however, the spectral analysis for specific tumor grades, especially for LGG and GBM was not analyzed separately [35,38-40], and the optical properties were not recovered [22,23,35,38,39]. In general, intraoperative differentiation of GBM and LGG can help neurosurgeons determine the extent of neurosurgical resection, which is a significant factor influencing post-surgical recurrence and prognosis [40-42]. Knowledge of optical properties can also be used to calculate oxygen saturation which is expressed as the percentage of oxy-hemoglobin in the total hemoglobin [43-45]. Although Asgari et al. were able to show that oxygen saturation was lower for LGG groups (36 ± 21%) and higher for GBM (52 ± 18%) due to the existence of arteriovenous shunts and metabolic shunts in GBM, optical properties were not measured [46]. Whereas attempts to extract optical properties of healthy brain tissues and gliomas were performed in vitro by Gebhart et al. [47], and in vivo by Valdés et al. [40], optical properties were averaged for all gliomas, and separated observations for LGG and GBM were not available [40,47].

In this paper, ex vivo diffuse reflectance and fluorescence measurements were performed to differentiate GBM from LGG in a total of 22 sites of seven glioma patients. An experimental look-up table (LUT) combined with a fitting routine was used to extract optical properties from 350-700 nm. The approach was validated on liquid tissue-simulating phantoms containing hemoglobin, polystyrene microspheres and India ink.
5.2 Materials and methods

5.2.1. Optical phantoms and the inverse solution

Similar to a previous study [48], the inverse solution to extract optical properties from the measured diffuse reflectance combines an experimental look-up table (LUT) and fitting algorithms. The LUT was generated by measuring the diffuse reflectance from tissue-simulating phantoms with known optical properties. To simulate tissue scattering, polystyrene microspheres with diameter of 1 μm (07310-15, Polysciences Inc., PA) were used. To simulate tissue absorption, black India ink (Higgins Ink, Chartpak Inc., MA) was used. A 6 x 4 matrix of 24 phantoms consisting of 6 different concentrations of black India ink (0.025%, 0.05%, 0.1%, 0.2%, 0.35% and 0.5% of the concentrated ink solution) and 4 different concentration of microspheres (0.2%, 0.45%, 0.7% and 1% w/v) was created (Fig. 5.1). Within the selected concentrations of India ink and microspheres, a μ_a range of 0.05-47 cm$^{-1}$ and μ_s' range of 5-42 cm$^{-1}$ were covered for wavelength range 430-700 nm (Fig. 5.1b and c). These optical properties were selected based on various reports studying human brain tissues and mucosal tissues [20,29,30,47,49]. To evaluate the LUT, selected phantoms containing ferrous stabilized hemoglobin (H0267, Sigma-Aldrich, MO) and microspheres with different concentrations were created. The diffuse reflectance from these phantoms was measured and the recovered optical properties were compared to target values.
Fig. 5.1 Matrix of optical phantoms for LUT development: (a) Top surface images of 24 phantoms captured with a standard digital camera, (b) absorption coefficients μ_a and (c) reduced scattering coefficients μ_s'. In (a), 6 concentrations of black India ink are 0.025%, 0.05%, 0.1%, 0.2%, 0.35% and 0.5%, and 4 concentrations of microspheres are 0.2%, 0.45%, 0.7% and 1% w/v. These concentrations correspond to 6 spectra of μ_a in (b) and 4 spectra of μ_s' in (c).

In all phantoms, target optical properties were controlled, and calculated by applying Beer-Lambert’s law to the actual absorbance of pure solute absorbers (India ink or hemoglobin) measured with a spectrophotometer (Ultraspec 3000, Pharmacia Biotech Inc., NJ) for μ_a, and by applying Mie theory to microsphere concentration for μ_s' [50]. Hemoglobin H0267 has an absorption spectrum similar to that of human blood with
secondary absorption peaks at 540 nm and 580 nm and stable f_2 [49,51,52]. Polystyrene microspheres with diameter of 1 μm were preferred as scatterers because their scattering anisotropy is in a similar range to that of many biological tissues ($g = 0.89-0.93$ in UV-Vis), and because their well-controlled size and index of refraction permits accurate calculation of scattering properties using Mie theory [45,50,53]. Black India ink is widely used to simulate secondary absorbers in tissue due to its exponential decrease of absorption with wavelength, its low cost, spectral stability, and low-fluorescence [54-57].

To fit the optical properties, the least squares fitting routine `fminsearch()` in MATLAB® was used so that the absorption coefficients and the reduced scattering coefficients were constrained in the form of Eq.(5.1) and (5.2). This optimization method is based on the Nelder-Mead simplex algorithm and has been used widely for spectral analysis in spectral imaging [58-60]. The total absorption coefficient, μ_a, accounts for absorption of a primary absorber (human blood) and of secondary absorbers (i.e. NADH, FAD, collagen) [20,28,49]. In general, the absorption coefficients of secondary absorbers exponentially decay with wavelength [20,28] while the absorption coefficients of blood are determined by predominantly by those of Hb and HbO$_2$ [44,61]. A similar fitting method for total absorption coefficients can be found elsewhere [48,61].

$$\mu_a(\lambda) = A \cdot e^{B \cdot \lambda} + \ln (10) \cdot f_1 \cdot [f_2 \cdot \varepsilon_{\text{HbO}_2}(\lambda) + (1-f_2) \cdot \varepsilon_{\text{Hb}}(\lambda)]$$ \hspace{1cm} (5.1)

In Eq. (5.1), A and B are fitting coefficients determining the contribution of secondary absorber so that A (cm$^{-1}$) is the amplitude constant while B (nm$^{-1}$) is the rate constant; λ is wavelength; f_1 (mol.litre$^{-1}$) is the total concentration of hemoglobin, f_2 (dimensionless) is
oxygen saturation, and $\varepsilon_{\text{HbO}_2}$ (cm$^{-1}$M$^{-1}$) and ε_{Hb} (cm$^{-1}$M$^{-1}$) are molar extinction coefficients of oxygenated and deoxygenated hemoglobin, respectively. In tissue measurements, A, B, f_1, f_2 were calculated by applying the least squares fitting to the LUT-recovered μ_a, and the known spectra of $\varepsilon_{\text{HbO}_2}$ and ε_{Hb} [62]. In hemoglobin phantoms without collagen and NADH, A was set to zero and the extracted f_2 should be nearly 100% due to the nature of ferrous stabilized hemoglobin [52]. In human tissues, μ_s' is monotonically decreasing with wavelength and the fitting equation for μ_s' can be expressed in form of Eq. (5.2) where a with unit of cm$^{-1}$ is the factor characterizing magnitude of scattering, b (dimensionless) is the factor that characterizes wavelength dependence of scattering, λ is the wavelength in nanometers [30, 44, 61].

$$\mu_s'(\lambda) = a \cdot \lambda^b$$ (5.2)

5.2.2. Brain tissue samples

Fresh brain specimens were obtained from brain tissue removed during tumor resection surgery. The study protocol is approved by the McMaster/Hamilton Health Science Integrated Research Ethics Board and patients consented to participate. Prior to the DRS measurement, each specimen was washed with saline, and the spectroscopic measurements were performed within 30 minutes of the surgery. A total of 22 sites were measured from specimens of seven patients. At each site, reflectance and fluorescence measurements were repeated four times to allow averaging, and standard deviation calculation. Following the measurements, each site was marked with tissue marking dyes (Davidson Marking system, Bradley Products Inc., Minneapolis, MN) in different colors. After the optical
measurements, the specimens were preserved in Formaldehyde and then cut into 5 µm thick slices with hematoxylin and eosin (H&E) stain. Tumor grade was assigned by a single pathologist (JP), using World Health Organization guidelines [63]. The biopsy results identified four GBM patients (12 sites), and three LGG patients (10 sites). Surface area of tissue samples is at least 5 times larger than the surface area of the optical probe which has a diameter of 3 mm. Thickness of tissue samples is at least 0.5 cm, and is much larger than the optical penetration depth range of 100-300 µm for human brain tumor at visible wavelengths.

5.2.3. Instruments

Diffuse reflectance signals between 430-700 nm were generated using a broadband light source (Dolan-Jenner MI-150, Edmund Optics, NJ), while fluorescence signals were generated using a solid-state laser (PNV-001525-140, Teem Photonics, Meylan, France) at 355 nm with 300 ps pulses. Note that optical properties in the 350-430 nm range were extrapolated using the calculated parameters (A, B, f₁, f₂, a, and b) from the fitting results.

Measurements of both diffuse reflectance (DR) and steady state fluorescence (SSF) signals were performed with the same customized optical probe consisting of one source fiber and three detection fibers at source-detector collection distances (SDD) of 0.23, 0.59, and 1.67 mm. A schematic and detailed description of the system can be found elsewhere [64-66]. All fibers used in DRS and SSF measurements have a core diameter of 200 µm and numerical aperture of 0.22. After DRS and SSF measurements were performed, the fluorescence decay was recorded using a 400 µm core optical fiber in the bundle [67]. When
observing highly absorbing phantoms, only background noise was collected with the furthest fibers, thus reducing the prediction accuracy of the inverse solution. Therefore, in the current study, only the two detection fibers closest to the source fiber were used to develop the LUT, and to extract optical properties from the measured reflectance. To calculate the diffuse reflectance R from the sample, the measured reflectance intensity of the sample was normalized to the reflectance intensity of a reflection standard with 99.9% reflectivity (Labsphere, Inc., NH) after subtracting background [64].

5.3 Results

5.3.1 Validation of the inverse solution

Fig. 5.2(a) shows examples of diffuse reflectance spectra collected from six phantoms with the same microsphere concentration (0.72% w/v), and different India ink concentrations (from 0.05% to 1%). Fig. 5.2(b) shows the sparse matrix of diffuse reflectance collected from all 24 phantoms at SDD of 0.23 mm and 0.59 mm. The LUT was evaluated with randomly selected phantoms consisting of hemoglobin and microspheres. Fig. 5.3(a) and 5.3(b) compare the extracted and the target optical properties spectra for a selected phantom with microsphere concentration of 0.7% w/v and hemoglobin concentration of 3.5 mg/ml. The target optical properties are those calculated with Beer-Lambert’s law and Mie theory while the extracted values are those calculated from the inverse solution. As shown in Fig. 5.3(a) and 5.3(b), the method was able to retrieve μ_a and μ_s' with average errors of 6% and 3%, respectively, from 350-700 nm. Additional phantoms consisting of hemoglobin, India ink and microspheres with a total of 1,750 pairs of target
optical properties were also used for further evaluation of the inverse solution (Fig. 5.4). On average, errors of 12% and 6% was observed for μ_a and μ_a', respectively. Furthermore, the fitting approach was able to retrieve f_1 and Sto2 in all hemoglobin phantoms with average errors of 5.8% and 7%, respectively. For example, the recovered f_1 and Sto2 values for the phantom shown in Fig. 5.3 were 3.3 ± 0.3 mg/ml and $96\% \pm 3\%$, respectively, versus target values of 3.5 mg/ml and 100%, respectively.
Fig. 5.2 (a) Examples of diffuse reflectance R for six different ink’s concentrations while microsphere concentration remains constant and SDD = 0.23 mm, and (b) R as a sparse matrix mapped to optical property space $R(\mu_a(\lambda), \mu_s'(\lambda))$ for SDD = 0.23 mm and 0.59 mm. In (a), concentration of microsphere is 0.7% whereas concentrations of black India ink are 0.025%, 0.05%, 0.1%, 0.2%, 0.35% and 0.5%, corresponding to 6 spectra (i) to (vi). In (b), the sparse matrix represents reflectance data per SDD collected from 24 phantoms (6 ink concentrations x 4 microsphere concentrations).
Fig. 5.3 An example of data analysis for a phantom with Hb concentration of 8 mg/ml, microsphere concentration of 0.7%: (a) Diffuse reflectance collected with fiber at SDD of 0.23 nm and 0.89 mm, (b,c) Theoretical (target) vs. extracted optical properties. Eq. (5.1) and (5.2) were used to extrapolate data in 350-430 nm. In addition, f_1 and f_2 value of 3.3 ± 0.3 mg/ml and $96\% \pm 3\%$ was obtained by using Eq. (5.1).
Fig. 5.4 Evaluation of LUT over ten different hemoglobin phantoms. In general, average percentage error of 9% and 6% was obtained for μ_a and μ'_s, respectively.

5.3.2 Brain tissue measurements

Fig. 5.5 compares the diffuse reflectance [Fig. 5.5(a)], and optical properties [Fig. 5.5(b) and 5.5(c)] measured for the GBM group and the LGG group. In Fig. 5.5, data were averaged over all 12 GBM sites and 10 LGG sites. On average over the entire spectrum (Fig. 5.5), diffuse reflectance was 3.2 times higher, μ_a was 48% higher, and μ'_s was 140% higher for the GBM group. Data at 650 nm are also shown for comparison (Table 5.1). Note that 650 nm was selected because this is the region where blood absorption is small, and it is less likely that bleeding during surgery will affect tumor discrimination with optical measurement [35-39]. As shown in Table 5.1, at 650 nm diffuse reflectance was 2.8 times higher, μ_a was about 3 times higher, and μ'_s was 2.4 times higher for the GBM group.

Fig. 5.6 shows the diffuse reflectance [Fig. 5.6(a)], and optical properties [Fig. 5.6(b)&(c)] at 650 nm for all GBM and LGG sites. If we define sensitivity as the percentage of GBM
sites that were correctly identified as GBM, and specificity as the percentage of LGG sites that were correctly identified as not GBM, the discrimination had a sensitivity of 100% (12/12) and specificity of 80% (8/10) if a cut-off at 20% was applied for diffuse reflectance at 650 nm to optimize the discrimination [Fig. 5.6(a)]. Sensitivity and specificity of 92% and 80% were achieved if a cut-off of 0.6 cm\(^{-1}\) was applied to \(\mu_a\) at 650 nm [Fig. 5.6(b)]. These numbers were 100% and 90% if a cut-off of 10 cm\(^{-1}\) was applied to \(\mu_s'\) at 650 nm [Fig. 5.6(c)]. Although oxygen saturation was calculated at 83.4±17.3% for GBM and 55.4±9.9% for LGG using Eq. (5.1), the results might be affected by long period air exposure of the brain tissue specimen, and were not used to optimize the discrimination for the \textit{ex vivo} measurements.
Fig. 5.5 LGG group vs. GBM group average spectral analysis: (a) diffuse reflectance, (b) absorption coefficient μ_a, (c) reduced scattering coefficient μ_s'. Data was averaged over all sites (12 GBM sites and 10 LGG sites) and error bars are the standard deviations.
Fig. 5.6 LGG group (10 sites) vs. GBM group (12 sites): (a) Diffuse reflectance at 650 nm (R_{650}), (b) μ_a at 650 nm, and (c) μ'_s at 650nm. Data at 650 nm was selected for due to small blood absorption in this region, and thus it is less likely for blood absorption to affect tumor discrimination.
Fig. 5.7 shows the average fluorescence intensity with an emission peak at 460 nm (Fig. 7a), the average fluorescence lifetime [Fig. 5.7(b)], and the ratio of fluorescence and diffuse reflectance at 460 nm \((F/R)_{460}\) versus diffuse reflectance at 650 nm \((R_{650})\) for GBM sites and LGG sites. Although the measured fluorescence signal could identify the characteristic emission peak of brain tissues at 460 nm [Fig. 5.7(a)], the measured fluorescence signal alone is not able to discriminate tumor types due to high tissue absorption in this wavelength range. To enable tumor discrimination, a graph of the ratio of fluorescence to diffuse reflectance at the emission peak \((F/R)_{460}\) versus \(R_{650}\) was used instead [38,39]. If a cut-off of 20 for \(F_{460}/R_{460}\) was applied, sensitivity and specificity of 100% and of 90% was achieved. As shown in Fig. 5.7b and table 5.1, fluorescence lifetime alone was not able to discriminate GBM due to the high variation of life-time values, most likely caused by the low signal-to-noise ratio of the autofluorescence and high degree of heterogeneity in GBM [23]. Fig. 5.8 summarizes sensitivity and specificity when different parameters were used to discriminate GBM from LGG. In general, \(R_{650}, \mu_s',650\) and ratio \((F/R)_{460}\) versus \(R_{650}\) could achieve discrimination with sensitivity of 100%. Combining diffuse reflectance and steady-state fluorescence show an increase in specificity from 80% to 90%.
Fig. 5.7 LGG group vs. GBM group: (a) steady state fluorescence spectrum and (b) fluorescence life-time τ spectrum, (c) ratio of fluorescence to reflectance at 460 nm (F/R_{460}) vs. reflectance at 650 nm (R_{650}). Fluorescence intensity has been normalized to integrating time and laser power corresponding to each measurement. In (a) and (b), data was averaged over all sites (12 GBM sites and 10 LGG sites) and error bars are the standard deviations.
Fig. 5.8 Summary of sensitivity and specificity when using different parameters for GBM discrimination: diffuse reflectance at 650 nm (R_{650}), optical properties at 650 nm ($\mu_{a,650}$ and $\mu_{s',650}$), ratio ($F/R)_{460}$ vs. R_{650}

Table 5.1 Average over all GBM and LGG sites: diffuse reflectance at 650 nm (R_{650}), optical properties at 650 nm ($\mu_{a,650}$ and $\mu_{s',650}$), ratio of fluorescence to reflectance at 460 nm ($F/R)_{460}$, and fluorescence life-time at 460 nm (τ_{460}).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GBM</th>
<th>LGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{650} (a.u.)</td>
<td>0.44±0.03</td>
<td>0.16±0.01</td>
</tr>
<tr>
<td>$\mu_{a,650}$ (cm$^{-1}$)</td>
<td>1.31±0.11</td>
<td>0.41±0.07</td>
</tr>
<tr>
<td>$\mu_{s',650}$ (cm$^{-1}$)</td>
<td>18.8±1.4</td>
<td>7.7±0.7</td>
</tr>
<tr>
<td>$(F/R)_{460}$ (a.u.)</td>
<td>9.9±1.2</td>
<td>26.2±2.7</td>
</tr>
<tr>
<td>τ_{460} (ns)</td>
<td>3.2±0.3</td>
<td>3.1±0.05</td>
</tr>
</tbody>
</table>

5.4 Discussion and conclusion

Although the current LUT approach was similar to previous ones which aimed to study skin abnormality [Error! Reference source not found.], the current LUT covered optical
properties of human brain tissues and mucosal tissues. More specifically, μ_a range of 0.05-47 cm$^{-1}$ and μ_s' range of 5-42 cm$^{-1}$ were covered for wavelength range 430-700 nm. The developed inverse solution was thoroughly evaluated, and was able to retrieve optical properties with an average relative error of 9% for μ_a, and 6% for μ_s' using phantoms with known optical properties. Furthermore, the developed LUT was used to establish broadband optical properties for GBM and LGG (Fig. 5.5 and 5.6). Within the errors of the inverse solution, *ex vivo* measurements showed that μ_s' for GBM was 2.4 times higher than that for LGG [Fig. 5.5(c)]. Because cell density in GBM is two to three times higher than that in LGG [68,69], and because the scattering probability is proportional to cellular density [32], the GBM group is expected to have higher μ_s' than the LGG group. Furthermore, it is believed that GBM is highly vascular due to high degree of angiogenesis [70,71]. This may imply that GBM has higher blood content or higher μ_a. In fact, with the observation at 650 nm, the current study showed that μ_a was about 3 times higher in GBM than that in LGG [Fig. 5.6(b) and Table 5.1]. Combining diffuse reflectance and steady-state fluorescence did not change the sensitivity (100%), but increased the specificity from 80% to 90%. Similar to previous studies [35,38], the current study is limited by the small number of samples due to the limited number of glioma patients enrolled. Nevertheless, the current study has been able to discriminate GBM from LGG by accessing diffuse reflectance, optical properties measurement, and fluorescence (with diffuse reflectance). Although the measured oxygen saturation (f_2) values were higher than that in Asgari *et al.*'s study, they were in an agreeable trend so that GBM has higher f_2 than LGG, specifically 83.4±17.3% for GBM and 55.4±9.9% for LGG. These numbers were vs. 52±18% for GBM.
and 36±21% in the previous study [46]. The difference in magnitude of \(f_2 \) between the two studies is mainly due to the fact that the current samples have been exposed to air during \textit{ex vivo} measurements while intraoperative measurements were performed in the previous study. Meanwhile, it is believed that arteriovenous shunts and metabolic shunts can cause more oxygen than required in GBM, and are responsible for high oxygen saturation levels in GBM [72]. The preliminary results of the \textit{ex vivo} measurements indicates that the current technique has the potential for \textit{in vivo} discrimination of GBM by accessing the tumor’s optical characteristics including diffuse reflectance, steady state fluorescence, optical properties, and possibly oxygen saturation.

Acknowledgements

This project is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Ontario Centres of Excellence, the Ontario Ministry of Research and Innovation, and the Canadian Cancer Society Research Institute (CCSRI). QF holds the Canada Research Chair in Biophotonics at McMaster University.

Vinh Nguyen Du Le is a PhD student in the Radiation Sciences Graduate Program at McMaster University. He received a Bachelor’s (2009) and a Master’s degree (2010) in Biomedical Engineering from the Catholic University of America (Washington, DC). He was a Research Engineer in the Optical Diagnostics Laboratory at the Center for Devices and Radiological Health of Food and Drug Administration (Silver Spring, MD) from 2010 to 2012.

John Provias received the M.D. degree from McMaster University. He is currently an Associate Professor in the Pathology and Molecular Medicine, McMaster University. His is also the Neuropathologist for Hamilton Regional Cancer Centre.

Naresh Murty received the B.Sc. degree in biology from Dalhousie University and the M.D. degree from Kasturba Medical College (India). He is currently an Associate Professor
in the Division of Neurosurgery, McMaster University. He is also the Head of neurosurgery service at Hamilton General Hospital.

Michael S. Patterson is the director of medical physics at Juravinski Cancer Centre. He received a B.Sc. degree from Queen’s University, a M.Sc. degree from McMaster University, and a Ph.D. degree from the University of Toronto.

Thomas J. Farrell is a Medical Physicist at the Juravinski Cancer Centre and the chair of the Medical Physics department at McMaster University. He received a Ph.D. degree from McMaster University.

Joseph E. Hayward is a Medical Physicist at the Juravinski Cancer Centre and an Associate Professor of the Medical Physics department at McMaster University. He received a Ph.D. degree in lasers and electro-optics in Engineering Physics from McMaster University.

Qiying Fang is an Associate Professor of Engineering Physics and the chair of Biophotonics at McMaster University. He received a B.Sc. degree in physics from Nankai University, a MSc. Degree in Applied Physics and a Ph.D. degree in Biomedical Physics from East Carolina University.

William McMillan is an Associate Professor at McMaster University’s Department of Oncology. He received the B.Sc. and M.Sc. degree from McMaster University, a BA from Queen’s University and a MB.CHB degree from University College.
References

2. J. G. Scott et al., "Aggressive treatment is appropriate for glioblastoma multiforme patients 70 years old or older: a retrospective review of 206 cases," Neuro-oncology nor005 (2011).

49. M. Friebel, A. Roggan, G. Müller, and M. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100nm using Monte Carlo

Chapter 6: Concluding Remarks

6.1 Achievement summary

Advancement in technologies for real-time detection of brain tumor can offer intraoperative guidance for neurosurgeons to perform a more accurate and complete surgical removal [1,2]. Although significant developments have been made to the conventional diagnostic technologies such as magnetic resonance imaging (MRI) and ultrasound, translation of these technologies to the operating room still remains challenges such as high capital cost, low accuracy, or prolonged operative time (Chapter 2). Diffuse reflectance spectroscopy (DRS) and fluorescence spectroscopy are relatively new technologies that have the potential to guide surgeons to detect malignant tissues, and may be able to overcome the challenges for neurosurgical application of the current conventional imaging techniques.

As mentioned in Chapter 1, although many studies have combined both DRS and fluorescence spectroscopy to improve accuracy in detecting tumors in human breast, skin, oral cavity, and cervix, only a few studies have used both techniques to study brain tissues whereas optical properties analysis across a range of glioma histologies have not been established to allow intraoperative differentiation of GBM and LGG for accurate and complete surgical resection. Therefore, more investigations are needed before the integrated DRS and fluorescence spectroscopy systems can be translated to the operating room setting for patient care.
In this dissertation, we have investigated the potential of the integrated DRS and fluorescence spectroscopy system in identifying brain tumors by: (i) developing fast and simple experimental algorithms to recover intrinsic fluorescence, to extract tissue optical properties, and (ii) performing \textit{ex vivo} measurements of brain tissue specimens, specifically GBM and LGG.

As for the algorithms, prior to the work in Chapter 4 and 5, the recovery of intrinsic fluorescence in the research community was mostly performed with the aid of Monte Carlo simulations whereas the measurement of brain tissue optical properties was usually performed using integrating spheres coupled inverse adding doubling model. As discussed in Chapter 2, 4 and 5, such methods could be either time-consuming or not applicable for neurosurgery. To overcome such limitations, this dissertation has established experimental approaches that are simple, less time-consuming, and more applicable for real-time brain tissue measurement. Such approaches were extensively validated via experimental measurements of optical phantoms with controlled fluorescence properties and optical properties. In Chapter 4, the optical fiber’s experimental collection efficiency was calculated and used to recover fluorescence peak in optical phantoms with average error of 3%. In Chapter 5, a combination of fitting algorithms and an experimental look-up table (LUT) were developed to extract optical properties with an average error of 12% and 6% for μ_a and μ_a', respectively. Furthermore, the experimental results of Intralipid fluorescence properties in Chapter 3 have brought to researchers’ attention that careful treatment must be made when using lipid to produce optical phantoms for system calibration, and that polymer microspheres are recommended over Intralipid given available resources.
As for \textit{ex vivo} measurements, a total of 21 data points were collected from seven glioma patients (Chapter 5). Histological analysis confirmed that three were LGG and four were GBM. Prior to this work, optical properties of LGG and GBM were usually averaged together and reported as optical properties of glioma group whereas separate optical observation for GBM and LGG was not available [3,4]. In this dissertation, it was found that, μ_s is 2.4 times higher in GBM considering any wavelengths while μ_a was 48% higher within 350-700 nm. If wavelength at 650 nm was considered, on average, μ_a was about 3.2 times higher in GBM. These results are consistent with neoplastic progression described in Chapter 2, which likely cause an increase in cellular density and cell nuclei size (source of scatterers) [5,6] and an increase in microvessel proliferation or hemoglobin concentration (source of absorbers) [7]. Using both diffuse reflectance and fluorescence signal (Chapter 5), the sensitivity of 100% and specificity of 90% was obtained in differentiating GBM from LGG.

Given the flexibility of the current approach, it can also be used to study tumor progression in the breast. In fact, the current approach is being applied to study breast cancer during \textit{ex vivo} measurement of breast tissue specimens [8], and the results will be reported in a near future. Meanwhile, using similar integrated systems, previous studies have shown that combining DRS and fluorescence spectroscopy could archive an accuracy of above 95% in differentiating invasive ductal carcinomas from normal breast tissues [9-11], and thus indicated the potential application of the current integrated system in breast cancer studies.
6.2 Future work

It is known that changes at cellular levels and tissue levels occur during tumor progression (Chapter 2). It is also known that the magnitude of scattering coefficients reflects the size and concentration of scatterer, and the magnitude of absorption coefficients reflects the level of disorganized vasculature (Chapter 2). Although this thesis was able to establish the relation between optical properties and glioma progression (from LGG to GBM) at reasonable trends, a quantitative relation between changes of cellular components and dynamic changes of optical properties have not been established. Such analysis will be useful in identifying different histological appearances of GBM or high grade glioma (i.e. different levels of cell density or of disorganized vasculature and microvessel proliferation) by accessing its optical properties. This can be accomplished if histopatholgical images of the brain tissue specimens were made available for further analysis, and if immunohistochemistry analysis is performed to access micro-vessel density.

In addition, although an experimental method was developed to recover intrinsic fluorescence on controlled phantoms, a quantitative relation between fluorescence and fluorphore concentration in brain tissue was not established. This will be accomplished if enzymic analysis of GBM and LGG is performed to extract and confirm the concentration of NADH in brain tissues [12]. For example, enzymic analysis of breast tissues showed that concentration of NADH concentration is about $0.82\pm0.33 \, \mu M/g$ in malignant breast tissues and about $0.44\pm0.25 \, \mu M/g$ in normal breast tissue [12]. Such quantitative analysis helped understanding spectroscopic observations which showed that the fluorescence intensity
from malignant breast tissue was about 2 times higher than that from the normal and benign tumor tissue [13].

Because the current sensitivity and specificity was optimized from a small sample size of seven glioma patients, it might undermine the reliability of the current approach although it was extensively validated on optical phantoms. In future work, more *ex vivo* measurements can be performed to increase the sample size.

Furthermore, in order to obtain a sufficient fluorescence signal to noise ratio in *ex vivo* brain specimen (Chapter 4 and 5), exposure time of spectrometers (UV-NIR-200, StellarNet Incorporation, Tampa, FL) was set to a minimum of 1 minute. This may limit the number of data collected during *in vivo* studies. To improve fluorescence signal to noise ratio, and to reduce the waiting time, a spectrograph coupled a charge couple detector camera can be used to replace current spectrometers [9].

6.3 Conclusion

In conclusion, this thesis successfully calibrated the integrated DRS and fluorescence spectroscopy system on the developed optical phantom models, established experimental models to extract brain tissue optical properties and optimized the system’s sensitivity and specificity in differentiating GBM from LGG. The preliminary *ex vivo* results are promising, and indicate that the current technique has the potential for future *in vivo* detection of GBM and LGG, and that it might be a promising tool to aid neurosurgeons to determine the extent of surgical resection of glioma. Additional *ex vivo* measurements,
advancement in instrumentation, and tissue processing will make it more feasible for the translation from the current *ex vivo* studies to future *in vivo* studies.

References

Appendix

A.1 Data analysis software in Chapter 3

Mie theory was used to calculate scattering properties of polymer microsphere. The program was developed in the MATLAB® (2013a, MathWork). Inputs are concentration of particle in gram per 100 ml of suspension solution (X), wavelength (λ), and sphere diameter (d). Principal outputs are scattering efficiency, (Q_s) scattering coefficient (μ_s), anisotropy (g), and reduced scattering coefficient (μ_s'). Fig. A.1 shows the developed graphical user interface of the program and Fig. A.2 shows the flowcharts of the data preprocessing. Note that to obtain the unit of cm$^{-1}$ for μ_s and μ_s', units of inputs are converted correspondingly.

![Fig. A.1 Software user interface for Mie theory calculation of scattering properties of polymer microsphere, including the data preprocessing and graphing.](image-url)
Fig. A.2 Flowchart of Mie theory program developed in MATLAB®
In Fig. A.2, a_l and b_l are Mie coefficients used to describe the amplitudes of the scattered field, and are calculated using MATLAB’s built-in double-precision Bessel functions. Details derivation of Mie theory can be found in ref [23] of Chapter 3.

A.2 System schematic view and clinical set-up

Fig. A.3 (a) The schematic view of an integrated spectroscopy system, (b) The integrated spectroscopy instrument housed in a mobile cart, (c) Sterilizable fiber optic probe used to collect fluorescence and reflectance signals. Reprinted from ref [65] in Chapter 1. Copyright © 2016, IEEE. Reprinted with permission.
A.3 Summary of previous research work

A.3.2 Measurement of optical properties in layered tissues

This work was performed in my first year (2010) as a research engineer at the Center for Devices and Radiological Health (CDRH) of the U.S. Food and Drug Administration (FDA). The objectives of this work were to develop and validate a fiber optics diffuse reflectance spectroscopy to measure optical properties of layered tissues using UV light. Mucosal tissues such as those lining the colon and cervix have two distinguished layers – the epithelium on top and the stroma at the bottom. During neoplastic progression, optical properties in each layer change differently. Therefore, accurate measurement of optical properties in each layer might improve mucosal disease diagnostics quality. The results showed that optical properties have mean errors of 19% from the theoretical analysis, and 27% from experiments, indicating that diffuse reflectance spectroscopy technique can provide moderately accurate estimates of optical properties in layered turbid media [1,2].

A.3.2 Quantification of vessel contrast in narrow-band and white light imaging

This work was performed in my second and third year (2011-2012) as a research engineer at CDRH-FDA [3-7]. Narrow band imaging (NBI) techniques have been widely used in the clinics as well as in research to enhance vessel contrast. However, prior to this work, theoretical analysis of NBI has not been the subject of extensive study in the biomedical optics literature, and widespread acceptance of supposed NBI mechanisms has occurred without rigorous validation. Specifically, tissue scattering was commonly cited as the primary mechanism behind spectral variations (415 to 540 nm) in vessel depth-
selectivity for clinical narrow band imaging of mucosa. In order to elucidate NBI mechanisms as well as white light imaging such as this in a quantitative manner, computational simulations and experimental measurements in tissue-simulating phantoms were performed [3-7]. The results showed that white light produced the lowest contrast for small vessels and intermediate contrast for large vessels at deep regions whereas 415 nm illuminations provided superior contrast for smaller vessels at shallow depths, and 540 nm provided superior contrast for larger vessels in deep regions. In addition, the simulation results indicated that the importance of three key mechanisms in determining spectral variations in contrast are: intravascular hemoglobin (Hb) absorption in the vessel of interest, diffuse Hb absorption from collateral vasculature, and bulk tissue scattering [3-7].

A.3.3 Measurement of skin oxygenation and perfusion

This work was performed during my graduate studies at the Catholic University at America (2010-2012). The objective of the study was to develop a skin sensor that allows measurement of oxygenation and perfusion of individuals with spinal cord injuries [8,9]. Wheelchair bound patients with a spinal cord injury likely experience pressure ulcers which are linked to skin hypoxia and loss of perfusion. Therefore, accurate measurements of skin oxygenation and perfusion can help to detect pressure ulcers. The sensor consists of a set of fiber optics probes, spectroscopic and Laser Doppler techniques that are used to obtain parameters of interest [8,9].
A.4 List of publications

Previous work

1. Q. Wang, V. N. Du Le, J. Ramella-Roman, J. Pfefer “Broadband UV-Vis optical property measurement in layered turbid media”, Biomedical Optics Express 3 (6), 1226-1240 (2012).

9. J. Ramella-Roman, T. Ho, V. N. Du Le, A. Nguyen, A. Lichy, S. Groah, “Monitoring the impact of pressure on the assessment of skin perfusion and oxygenation using a
novel pressure box”, In SPIE BiOS, pp. 85760N-85760N. International Society for Optics and Photonics, 2013 (Proceeding article & presentation).

Current work

