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Abstract

Recent work on fractionally-supervised classification (FSC), an approach that allows

classification to be carried out with a fractional amount of weight given to the unla-

belled points, is extended in two important ways. First, and of fundamental impor-

tance, the question over how to choose the amount of weight given to the unlabelled

points is addressed. Then, the FSC approach is extended to mixtures of multivariate

t-distributions. The first extension is essential because it makes FSC more readily

applicable to real problems. The second, although less fundamental, demonstrates

the efficacy of FSC beyond Gaussian mixture models.
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Chapter 1

Introduction

In a typical classification application, some of the observations are unlabelled and

the objective is to predict the labels of the unlabelled points, for details see Mc-

Nicholas (2016a). In such situations, classification is generally semi-supervised or

supervised (also called discriminant analysis). These two species of classification

differ in whether any weight is given to the unlabelled points in the prediction of

their labels. In semi-supervised classification, the labelled and unlabelled points are

given equal weight; however, in supervised classification, the unlabelled points are

given zero weight. Vrbik and McNicholas (2015) introduce a general approach, called

fractionally-supervised classification (FSC), where classification can be carried out

with a fractional amount of weight — anything between none and all — being given

to the unlabelled points.

The approach of Vrbik and McNicholas (2015), which is rooted in the mixture

model-based paradigm but can be applied more generally, is extended in two impor-

tant ways herein. First, the question of how to choose the fraction, i.e., the amount

of weight to give the unlabelled points, is addressed. Second, the FSC approach is
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extended to mixtures of multivariate t-distributions.
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Chapter 2

Background

2.1 Finite Mixture Models and Model-Based Clus-

tering

The finite mixture model was first used for model-based clustering in Wolfe (1965)

and has become one of the most common methods for model based clustering. A

finite mixture model assumes that an observation x comes from a population with G

subgroups. The density function of x is given by

f(x|ϑ) =
G∑
g=1

πgfg(x|θg) (2.1)

where πg > 0,
∑G

g=1 πg = 1, are called the mixing proportions, fg(·) are the component

densities, and ϑ = (π1, π2, . . . , πG,θ1,θ2, . . . ,θG).

Because of its mathematical tractability, the Gaussian mixture model has been

looked at extensively in the literature. In addition to Wolfe (1965), other examples of

3
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earlier work in the area of model-based clustering using Gaussian mixtures include,

Baum et al. (1970), Scott and Symons (1971) and Orchard and Woodbury (1972). For

more details on the history of model based clustering, see McNicholas (2016b). More

recently, there has also been a fair amount of work using non Gaussian mixtures such

as the t-distribution (Peel and McLachlan, 2000) and skewed distributions (Vrbik and

McNicholas, 2012, 2014; Franczak et al., 2014; Dang et al., 2015).

2.2 Three Species of Classification

Let the N × D matrix, X = (x′1,x
′
2, . . . ,x

′
N)′, be our data matrix, where the xi are

D-dimensional vectors and N is the number of data points. We can then split X into

two sub-matrices X1 and X2, where X1 = (x′11,x
′
12, . . . ,x

′
1n1

)′ are data points with

known labels, and X2 = (x′21,x
′
22, . . . ,x

′
2n2

)′ are observations with unknown labels.

We can then write X = (X1,X2)
′.

We can also define Z = (Z1,Z2)
′, to be a matrix of indicator vectors. Specifi-

cally, we define Z1 = (z
(1)′

1 , z
(1)′

2 , . . . , z
(1)′
n1 )′, were z

(1)
i are G dimensional vectors with

elements 0 or 1. For convenience, we will denote element g of z
(1)
j by z

(1)
jg where

z
(1)
jg =

 1 if x1j is in group g

0 otherwise

We can likewise define Z2 in the same manner. Furthermore, z
(2)
jg for j = 1, 2, . . . , n2

are analogous to z
(1)
jg for the unlabelled observations.

We can then define DO = {X,Z1} to be our set of observed data, and DC =

{X,Z} to be our completed data. We can furthermore denote the observed data

4
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corresponding to labelled observations by DL = {X1,Z1}, and the data corresponding

to unlabelled observations by DU = {X2}.

Using the above notation, we can now look at the three species of classification.

The first species is discriminant analysis, see McNicholas (2016a) for details. Discrim-

inant analysis makes use of only labelled data to build a classifier. The likelihood

function in the case of a discriminant analysis can be written as

LDA(ϑ|DL) =

n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg . (2.2)

The second species is cluster analysis, and can take on one of two forms. The first

form is the one that we will primarily consider, and makes use of only unlabelled data

points and ignores the labelled points. In this case, the likelihood function is given

by

Lclust(ϑ|DU) =

n2∏
j=1

G∑
g=1

πgfg(x2j|θg). (2.3)

The second form of the cluster analysis is to utilize both labelled and unlabelled

points, but treat the labelled points as unlabelled.

The third species is semi-supervised classification. This makes use of all of the

observed data, DO, and treats labelled and unlabelled points equally when building

a classifier. The likelihood function for semi-supervised classification is given by the

product of LDA(ϑ|DL) and Lclust(ϑ|DU) to give

Lsemi(ϑ|DO) =

n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg ×

n2∏
j=1

G∑
g=1

πgfg(x2j|θg). (2.4)

5
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2.3 Fractionally Supervised Classification

Introduced by Vrbik and McNicholas (2015), FSC allows for a solution intermediate

to the three species of classification. This is achieved by introducing the weight

α1 = α to labelled observations, and α2 = 1 − α to unlabelled observations, where

0 ≤ α ≤ 1. Using these weights, the arguably most natural form of the weighted

observed likelihood can be written as

L
FSC

(ϑ|DO, α) = [LDA(ϑ|DL)]α × [Lclust(ϑ|DU)]1−α

=

[
n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg

]α
×

[
n2∏
j′=1

H∑
h=1

πhfg(x2j′|θh)

]1−α
, (2.5)

where z
(1)
jg is the gth element of z

(1)
j . Although H does not necessarily have to equal

G, we will make the assumption that H = G.

We can then write the complete-data log-likelihood function as

`(ϑ|Dc) =
2∑
i=1

ni∑
j=1

G∑
g=1

αiz
(i)
jg [log(πg) + log(fg(xij|θg))] . (2.6)

The expectation-maximization (EM) algorithm, Dempster et al. (1977) can then

be used to maximize (2.6). The EM algorithm is an iterative algorithm that consists

of an expectation step and the subsequent maximization of the expectation. We first

initialize the parameters, and we denote this by ϑ(0). The t + 1 iteration of the EM

6
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algorithm proceeds as follows

E Step: Calculate Q
(
ϑ|ϑ(t)

)
= EZ2|X

[
` (ϑ|Dc) |DO,ϑ

(t)
]

(2.7a)

M Step: Find arg
ϑ

max Q
(
ϑ|ϑ(t)

)
(2.7b)

Check for convergence. If the convergence criterion was not met, set t = t+ 1 and repeat.

(2.7c)

In the case of a Gaussian model, steps (2.7a) and (2.7b) simplify to

E Step: Update

ẑ
(2)
jg =

π
(t)
g φ(x2j|µ(t)

g ,Σ
(t)
g )∑G

g=1 π
(t)
g φ(x2j|µ(t)

g ,Σ
(t)
g )

. (2.8)

Because the z
(1)
jg are known, we set ẑ

(1)
jg = z

(1)
jg .

M Step: Update the estimates of πg, µg and Σg by calculating

π(t+1)
g =

Sg∑G
g=1 Sg

(2.9a)

µ(t+1)
g =

∑2
i=1

∑ni
j=1 αiẑ

(i)
jg xij

Sg
(2.9b)

Σ(t+1)
g =

∑2
i=1

∑ni
j=1 αiẑ

(i)
jg (xjg − µ(t+1)

g )(xjg − µ(t+1)
g )′

Sg
(2.9c)

where Sg =
∑2

i=1

∑ni
j=1 αiẑ

(i)
jg .

We note that the three different species of classification fall out naturally as special

cases of FSC. If α = 1, then all of the weight is given to the labelled observations, and

the unlabelled observations are ignored. In this case, we are performing discriminant

analysis. If α = 0.5, then the labelled and unlabelled observations are given equal

7
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weight, and we are then performing semi-supervised classification. Finally, if α = 0,

then no weight is given to the labelled observations, and thus we are performing a

cluster analysis.

One issue involved with FSC is the selection of the weight α. Vrbik and McNicholas

(2015) looked at criteria to find an optimal weight. However, these criteria were

considered undesirable as they would either always choose one of the three species,

or were computationally expensive.

As the primary goal of the aforementioned paper was to look at clustering and

classification performance, the authors considered taking candidate weights, and then

choosing the optimal weight based on the adjusted Rand index (ARI; Hubert and Ara-

bie, 1985). The ARI compares two different partitions of a dataset, and in the classi-

fication paradigm, a value of 1 would correspond to perfect classification, whereas a

value of 0 indicates that the classification solution is essentially the same as randomly

assigning the labels.

2.4 The Multivariate t-Distribution

An extension of Student’s t-distribution, the p-dimensional t-distribution with ν de-

grees of freedom, location parameter µ and scale matrix Σ, arises from a special case

of a normal scale mixture (Peel and McLachlan, 2000). Specifically, we can write the

normal scale mixture as

εφ(x|µ,Σ) + (1− ε)φ(x|µ, νΣ), (2.10)

8
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where φ(·) denotes the multivariate Gaussian density with mean µ and covariance

matrix Σ and ε is small. We can then rewrite (2.10) as

∫
φ(x|µ,Σ)dH(ω),

where we take

H(ω) =
1

Γ
(
ν
2

) (
ν
2

) ν
2

ω
ν
2
−1 exp

{
2ω

ν

}
, (2.11)

the probability density function of a gamma(ν/2, ν/2) random variable, where Γ(·) is

the gamma function. The resulting density for the multivariate t, then becomes

ft(x|µ,Σ, ν) =
Γ
(
ν+p
2

)
|Σ|− 1

2

(πν)
1
2
pΓ
(
ν
2

) [
1 + δ(x,µ,Σ)

ν

] 1
2
(ν+p)

, (2.12)

where δ(x,µ,Σ) = (x− µ)′Σ−1(x− µ) is the squared Mahalanobis distance.

Maximum likelihood estimation for the t-distribution, in the context of model

based clustering, utilizes the introduction of latent variables, Wig. These variables

are such that

Wig|zig = 1 ∼ gamma (νg/2, νg/2) ,

2.5 Parsimonious Models

The eigen decomposition of a matrix is a parametrization that is widely used in both

mathematics and multivariate statistics. In the context of mixture models, we can

write a covariance, or scale, matrix in the form

Σg = λgΛgDgΛg
′,

9
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where λg is a constant, Dg is a diagonal matrix with entries that are proportional to

the eigenvalues, and Λg is a matrix of eigenvectors. We can then impose the following

constraints

λg = λ, Λg = Λ, Λg = I, Dg = D, Dg = I,

where I is the identity matrix.

In Banfield and Raftery (1993), Celeux and Govaert (1995), and Fraley and

Raftery (1998, 2002b), combinations of the above constraints were applied to the

covariance matrices in a Gaussian mixture model to form a family of 14 different

Gaussian parsimonious clustering models (GPCMs). Of these 14 models, 10 form the

MCLUST family of models available in the R software (R Core Team, 2015) package

mclust (Fraley and Raftery, 2002a; Fraley et al., 2012).

Andrews and McNicholas (2012) considered an extension of the MCLUST family

of models, to the t-distribution, called the tEIGEN family. Originally the tEIGEN

family consisted of the same constraints for the scale matrix as the MCLUST family.

These ten models, combined with either the equality or inequality of the degrees of

freedom over each group led to twenty different models in the tEIGEN family. In

Andrews and McNicholas (2012), the tEIGEN family was extended to include two

additional scale matrix constraints, leading to a total of 24 different models. The

current form of the tEIGEN package (Andrews et al., 2015) in R supports all 14

GPCMs, and hence all 28 tEIGEN models. A table summarizing these 28 tEIGEN

models is given in McNicholas (2016a), and shown in Table A.1 in Appendix A.

10
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2.6 Model Selection Criteria

We now discuss a couple criteria that are commonly used to select an appropriate

parsimonious model. The Bayesian information criterion (BIC; Schwarz, 1978) as

an alternative to the Akaike information criterion (AIC; Akaike, 1974) for statistical

model selection. The criterion is given by

BIC = 2`obs(ϑ|DO)− p logN,

where `obs is the maximized observed likelihood, p is the number of free parameters,

and N is the total number of data points. The BIC has been frequently used for

parsimonious model selection such as in Fraley and Raftery (1998) and McNicholas

and Murphy (2008).

Another criterion that is widely used is the integrated complete likelihood (ICL;

Biernacki et al., 2000), which penalizes the BIC for classification uncertainty. Ap-

proximated using the BIC, the ICL is given by

ICL ≈ BIC− 2

ng∑
i=1

G∑
g=1

MAP(ẑig) log(ẑig),

where

MAP(ẑig) =

 1 if arg maxh=1,...,G{ẑih} = g, and

0 otherwise.
.

11



Chapter 3

Methodology

3.1 Alternate Form of the Likelihood

We have already seen that the observed weighted likelihood can be written as

LFSC(θ|DO, α) =

[
n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg

]α1

×

[
n2∏
j′=1

G∑
g=1

πgfg(x2j′|θg)

]α2

,

and the complete weighted likelihood can be written as

Lcomp(θ|DC, α) =
2∏
i=1

[
ni∏
j=1

G∏
g=1

[πgfg(xij|θ)]z
(i)
jg

]αi
. (3.1)

One of the properties in Dempster et al. (1977) states that when integrating the

complete likelihood over the space of unknown quantities, in our case Z2, the result

is the observed likelihood. The observed likelihood as given in (3.1), however, does

12
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not hold this property. Indeed,

∫
Z2

Lcomp(ϑ|DC, α)dz2 =

∫
Z2

(
n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg α ×

n2∏
j=1

G∏
g=1

[πgfg(x2j|θg)]z
(2)
jg (1−α)

)
dz2

=

n1∏
j=1

G∏
g=1

[πgfg(x1j|θ)]z
(1)
jg α

n2∏
j=1

(
G∑
g=1

[πgfg(x2j|θ)](1−α)
)
, (3.2)

Clearly, this is not the same as the form given in (3.1). We therefore propose, in order

to maintain the relationship between the complete and incomplete weighted likelihood

as presented in Dempster et al. (1977), using the form of the incomplete weighted

likelihood as given in (3.2) and denote this by Lalt. A mathematical derivation of

(3.2) is given in Appendix B.

We do note that there are two extreme cases that should be considered separately.

The first extreme case is when α = 0. In this case,

∫
Z2

Lcomp(ϑ|DC, α = 0)dz2 =

∫
Z2

n2∏
j=1

G∏
g=1

[πgfg(x2j|θg)]z
(2)
jg (1−α) dz2 =

n2∏
j=1

G∑
g=1

πgfg(x2j|θ),

which is equivalent to (3.2) when α = 0.

The second extreme case, which turns out to be more interesting, is when α = 1.

In this case,

∫
Z2

Lcomp(ϑ|DC, α = 1)dz2 =

∫
Z2

n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg dz2 =

n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg ,

which is the same as LDA, the observed likelihood for a discriminant analysis. However,

13
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in (3.2), when α = 1,

Lalt(ϑ|DO) = n2

n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg = n2LDA(ϑ|DL). (3.3)

When α = 1 we are performing a discriminant, analysis, and so the form of the

observed and weighted likelihoods should be the same, which is clearly not the case.

Therefore, we propose when α = 1 to use LDA for our observed likelihood.

For both the original and altered observed likelihood, the complete likelihood is

identical. Therefore, if we were to take a Gaussian model, the updates in the M step

would be the same as those given in Chapter 2.3 regardless of taking the original or

altered likelihood However, the updates for ẑ
(2)
jg in the E step, would become

ẑ
(2)
jg =

[
π
(t)
g φ(x2j|µ(t)

g ,Σ
(t)
g )
](1−α)

G∑
g=1

[
π
(t)
g φ(x2j|µ(t)

g ,Σ
(t)
g )
](1−α) .

3.1.1 Simulation Comparing the Original and Altered Like-

lihoods

We performed simulations to compare the performance of the original and the pro-

posed altered likelihood. We simulated 100 datasets with 300 samples. 150 of these

samples belonged to one group which followed a N2(0,Σ1), and the remaining 150

belonged to another group which followed a N2(∆,Σ2), where

∆ = [0,∆]′ ,

14
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and

Σ1 =

 1 0.7

0.7 1

 Σ2 =

 1 0

0 1


We took ∆ ∈ {1, 5} corresponding to different levels of clustering difficulty. For each

dataset we looked at p ∈ {10, 20, . . . , 80, 90}, where p is the percentage of labelled

data.

To choose the weights for FSC, we looked at 11 different values of α. These values

were taken to be α ∈ αari where αari = {0, 0.1, 0.2, . . . , 1}. We then calculated

the ARI for each of these weights for the 100 datasets and took the average ARI for

each weight. We then choose the weight that had the highest average ARI. We will

denote the resulting FSC solution for each weight α by FSCα. Furthermore, for the

FSC solution with the chosen weight resulting from the highest average ARI, we will

denote by FSCARI. Finally, in the special cases corresponding to the three species

of classification α = 0, 0.5, 1, we denote the FSC solution by FSCclust, FSCclass and

FSCDA respectively.

In Figures 3.1 and 3.2, we show different line plots for ∆ = 1 and ∆ = 5 respec-

tively. In each plot, we show the average ARI against the percentage of labelled data

p. We also show in a dotted black line the result for FSCARI with the corresponding

chosen weight shown above each point. The first row in each plot shows the results

when using all the weights, and the second row singles out the three different species

of classification and FSCARI The standard errors were calculated by taking the ARI

for all 100 datasets of the chosen weight of FSCARI and calculating one (darker grey)

and two (lighter grey) standard deviations from the mean ARI.

15
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Figure 3.1: For ∆ = 1: (a) and (b) FSCα and FSCARI (α ∈ αARI) for the original and
altered likelihood respectively. (c) and (d) FSCclust, FSCclass, FSCDA and FSCARI for
the original and altered likelihood respectively.

We see that, in general, the overall classification performance between the altered

and original likelihoods are similar. The chosen weights for FSCARI, however, do

differ in general between the two forms of the likelihood. We notice for ∆ = 1, this

difference is less pronounced than in the ∆ = 5 case. More specifically, for ∆ = 1, the

difference between the weights for all but 10%, 30% and 50% differ by at most 0.1, if

not exactly the same. In the ∆ = 5 case, however, the differences between the chosen

weights are greater, and there are fewer proportions for which the difference is small.

We also see that at lower percentages of labelled data, there is more variability in the

average ARI between the different weights.
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Figure 3.2: For ∆ = 5: (a) and (b) FSCα and FSCARI (α ∈ αARI) for the original and
altered likelihood respectively. (c) and (d) FSCclust, FSCclass, FSCDA and FSCARI for
the original and altered likelihood respectively.

In conclusion, although the choice of the weights are different between the two

likelihoods, the overall classification performance when using the chosen weight in

each case are the same. Moreover, the altered form is not technically a proper like-

lihood. We therefore will henceforth use the original form of the likelihood as it is

the more natural form, and the altered form does not result in significantly higher

classification performance.
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3.2 Extension of FSC to the Multivariate t-Distribution

We now look at extending the concept of FSC to non Gaussian mixture models.

There are many possible extensions, however we felt that the most natural extension

would be the multivariate t-distribution. The main complication when compared to

using a Gaussian mixture is the update for the degrees of freedom. This update,

unfortunately, has no closed form and has to be calculated using numerical methods.

The incomplete weighted observed likelihood when using multivariate t component

densities would be given by

Lobs(ϑ|DO, α) =

[
n1∏
j=1

G∏
g=1

[πgft(x1j|µg,Σg, νg)]

]α
×

[
n2∏
j′=1

G∑
g=1

πgft(x2j′ |µg,Σg)

]1−α
,

where ft(·) is the density for the multivariate t-distribution defined in (2.12). To

find arg maxθ Lobs, we use a multicycle ECM algorithm similar to Andrews and Mc-

Nicholas (2012). After initializing z
(i)
jg and ω

(i)
jg , the t + 1 iteration of the multicycle

ECM algorithm would proceed as follows:

E Step: Update

ẑ
(2)
jg =

π̂gft(x2j|µ̂(t)
g , Σ̂

(t)

g , ν̂
(t)
g )

G∑
g=1

π̂gft(x2j|µ̂(t)
g , Σ̂

(t)

g , ν̂
(t)
g )

(3.4a)

ω̂
(i)
jg =

ν̂
(t)
g + p

ν̂
(t)
g + δ(xij, µ̂

(t)
g , Σ̂

(t)

g , ν̂
(t)
g )

(3.4b)

First CM Step: Update π̂g, µ̂g and ν̂g. The updates for π̂g, and µ̂g are given in
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closed form as

π̂(t+1)
g =

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg

2∑
i=1

ni∑
j=1

G∑
g=1

αiẑ
(i)
jg

(3.5)

and

µ̂(t+1)
g =

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg ω̂

(i)
jg xij

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg ω̂

(i)
jg

(3.6)

The updates for the degrees of freedom νg, as mentioned before, do not have a closed

form and have to be calculated using numerical methods. In the unconstrained case

one has to solve (3.7) for ν̂new
g .

−Ψ
(

1

2
ν̂new

g

)
+ log

(
1

2
ν̂new

g

)
− Ψ

(
ν̂g + p

2

)
− log

(
ν̂g + p

2

)
+ 1

+
1

mg

2∑
i=1

ni∑
j=1

αiẑ
(i)
jg

(
log ω̂

(i)
jg − ω̂

(i)
jg

)
= 0

(3.7)

where

mg =
2∑
i=1

ni∑
j=1

αiẑ
(i)
jg

and Ψ(·) is the digamma function. We then set ν̂
(t+1)
g = ν̂new

g . We note that we used

the uniroot function available in R to solve (3.7).

E Step: Update ẑ
(2)
jg and ω̂

(i)
jg using (3.4a) and (3.4b) with the current parameter

estimates.

Second CM Step: Update Σg. In the completely unconstrained case, the update
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is given by

Σ̂
(t+1)

g =
1

mg

2∑
i=1

ni∑
j=1

G∑
g=1

αiẑ
(i)
jg ω̂

(i)
jg (xij − µ̂(t+1)

g )(xij − µ̂(t+1)
g )′ (3.8)

We performed k-means clustering (MacQueen, 1967) with 50 random starts to ini-

tialize the ECM algorithm, and the Aitken acceleration procedure described in Mc-

Nicholas et al. (2010) as our convergence criteria.

Because of the updates for the degrees of freedom, fitting FSC with a t mixture

becomes more computationally expensive than fitting a Gaussian model. However,

because of the heavier tails of the t-distribution, the t mixture would be more robust

to outlying observations.

3.3 Weight Selection Criteria

We have already discussed using the ARI as a weight selection criteria. This, however,

is only useful when exploring the overall performance of FSC in simulations and

datasets where all the labels are known. In a general dataset, not all the labels would

be known and hence the ARI would not be applicable. We therefore propose other

criteria for weight selection.

The first criteria we considered was the BIC or ICL. We do not show the results

here, but both of these criteria were seen to be monotone in α, and a boundary point

would always be chosen. We looked at three different classification based criteria, the

mean entropy and an alternate form of the entropy, Celeux and Soromenho (1996)

and a U criterion, Bensmail et al. (1997).
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In our case, the entropy E, can be written as:

E =
2∑
i=1

ni∑
j=1

G∑
g=1

MAP(ẑ
(i)
jg ) log ẑ

(i)
jg =

n2∑
j=1

G∑
g=1

MAP(ẑ
(2)
jg ) log ẑ

(2)
jg ,

where

MAP(z
(i)
jg ) =


1 if ẑ

(i)
jg = max

g=1,2,...,G
(ẑ

(i)
jg )

0 otherwise

and taking 0 log 0 = 0. This criterion is always negative, and no uncertainty in

the clustering solution would result in an entropy of 0. Therefore when using this

criterion, we would maximize E to choose the optimal weight.

An alternate form of the entropy is sometimes used that eliminates the MAP, and

the resulting criterion, in our case, is given by

AE =

n2∑
j=1

G∑
g=1

ẑ
(2)
jg log ẑ

(2)
jg .

Once again, we wish to maximize this criterion to find the optimal weight.

The last classification based criterion that we looked at was the U criterion. In

our case, this is given by

U =
2∑
i=1

ni∑
j=1

min
g=1,2,...,G

(1− ẑ(i)jg ) =

n2∑
j=1

min
g=1,2,...,G

(1− ẑ(2)jg ).

We observe that U is always positive and if there is no uncertainty in the classification

solution, U would be 0. We would thus like to minimize U to find the optimal weight.

In addition to these three different classification based criteria, we considered two

non parametric criteria. Before the BIC was introduced in the literature, the sum
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of squares matrix was considered as a criteria to choose the number of groups in a

model, for example Friedman and Rubin (1967). Assuming that our data matrix X

has been partitioned into G groups, we can define the total sum of squares matrix to

be

S =

ng∑
i=1

G∑
g=1

(xig − x̄g)(xig − x̄g)
′.

Using a decomposition of S we can write

S = W + B,

where W is the within cluster sum of square matrix defined as

W =
G∑
g=1

ng∑
i=1

(xig − x̄g)(xig − x̄g)
′,

where x̄g is the sample mean of group g, and B is the between cluster sum of squares

matrix defined as

B =
G∑
g=1

(x̄g − x̄)(x̄g − x̄)′,

where x̄ is the grand mean.

Although the principle of using the sum of squares matrix was considered all the

way back in the 1960’s, it is still seen in the modern literature such as Andrews

and McNicholas (2014). We therefore propose two different criteria using the within

cluster sum of squares matrix W. The first criterion is to take the trace of W and

the second criterion is to take the determinant.
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3.4 Specifying the Number of Groups

For the purposes of our simulations and data analyses, we assume that the number of

groups are equal to the number of components present in the known labels. However,

this could be potentially problematic as there could be a group present in the popu-

lation that is not represented in the labelled data, for details see McNicholas (2016a).

This is especially prevalent if only a small proportion of the data points are labelled.

On the other hand, it is also possible for the true number of groups to be less than

that indicated by the labels. This can occur when the labels identify an underlying

subgroup structure within a group. The former case can be handled by fitting FSC

with a different number of groups H ≥ G in the cluster analysis component of the

likelihood, and then using a criterion such as the BIC or ICL to choose the number

of groups. The latter case, however, would need to be treated more carefully.
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Chapter 4

Analyses

4.1 Simulations

We performed simulations similar to those in Chapter 3.1.1 . We simulated two

groups each with 200 samples. The first group followed a t2(0,Σ1, ν1) distribution

where ν1 = 3, and

Σ1 =

 1 0.7

0.7 1

 .
The second group was taken from a t2(∆,Σ2, ν2) distribution where ∆ = [0,∆]′,

ν2 = 70, and

Σ2 =

 1 0

0 1

 .

In this case, one group has a multivariate t-distribution, while the other group is

approximately normal since ν2 is quite large. This time, we took ∆ ∈ {1, 2, 3, 4, 5},

and we took the same percentages of labelled data, p, as we did previously. In Figure
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Figure 4.1: Typical datasets for each ∆.

4.1, we show example datasets for each ∆. The weight α for FSCARI was chosen in

the same manner as in Section 3.1.

In Figure 4.2 we show line plots similar to what was shown in 3.1.1 for ∆ = 1.

On the left hand side, we show the average ARI against the percentage of labelled

data for all of the weights, the three species and FSCARI. On the right hand side, we

isolate the three species of classification, and FSCARI.

For ∆ = 1, we notice that the line for FSCclust does not appear as the average ARI

for each percentage of labelled data is quite small in comparison to the other weights.
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Figure 4.2: For ∆ = 1: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA

and FSCARI.

Furthermore, for all other values of ∆, FSCclust has the worst performance at higher

percentages of labelled data, which is somewhat expected.

For ∆ = 1, we see that all of the chosen weights correspond to a non-species

solution. Furthermore, it is interesting to point out that for lower percentages of

labelled data, more weight is given to the labelled points, and at higher percentages,

with the exception of 80%, less weight is given to the labelled observations.

For the remaining values of ∆, of the 36 different cases the chosen weight cor-

responds to a species of classification only 9 times. Of these 9 occurrences, 8 of

them correspond to semi-supervised classification, one corresponds to a discriminant

analysis, and none of them correspond to a cluster analysis.
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Figure 4.3: For ∆ = 2: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA

and FSCARI.
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Figure 4.4: For ∆ = 3: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA

and FSCARI.
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Figure 4.5: For ∆ = 4: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA

and FSCARI.
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Figure 4.6: For ∆ = 5: a) FSCα and FSCARI for α ∈ αARI, b) FSCclust,FSCclass, FSCDA

and FSCARI.
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Estimation

In addition to classification performance, we also considered the accuracy of the esti-

mates. We look at the parameter estimates for FSCARI from our previous simulation,

for p =20%, 50%, and 80% of points labelled, and ∆ = 3. These results are seen in

Table 4.1. We observe that in all cases the estimates are very close to the actual val-

ues. We do note that there is a lot of variability in the estimate for ν2. However, this

is to be expected because the t-distribution is asymptotically Gaussian, and because

the second component is approximately Gaussian, we can expect a large amount of

variability in this estimate.

Table 4.1: Average parameter estimates for ∆ = 3 for 20%, 50% and 80% of points
labelled with component wise standard deviations in brackets

20% (α = 0.6)
Group 1 Group 2

ν1 (sd) µ1 (sd) Σ1 (sd) ν2 (sd) µ2 (sd) Σ2 (sd)

3.21
(0.766)

[
−0.00698
−0.00352

]
([

0.100
0.100

])
[

1.01 0.703
0.703 1.01

]
([

0.200 0.154
0.154 0.184

])
63.2

(57.0)

[
0.00535

2.99

]
([

0.0772
0.0845

])
[

0.988 -0.00720
-0.00720 0.978

]
([

0.133 0.0881
0.0881 0.138

])
50% (α = 0.6)

3.19
(0.742)

[
0.00186
0.00476

]
([

0.0956
0.0913

])
[

1.03 0.716
0.716 1.03

]
([

0.195 0.143
0.143 0.170

])
67.3

(57.4)

[
−0.00270

3.00

]
([

0.0760
0.0799

])
[

0.990 0.000940
0.000940 0.980

]
([

0.127 0.0811
0.0811 0.140

])
80% (α = 0.4)

3.20
(0.716)

[
−0.00242
0.00122

]
([

0.0951
0.0906

])
[

1.02 0.712
0.712 1.02

]
([

0.194 0.149
0.149 0.170

])
67.1

(52.7)

[
−0.00254

3.00

]
([

0.0730
0.0737

])
[

0.995 -0.00215
-0.00215 0.978

]
([

0.124 0.0804
0.0804 0.120

])
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4.2 Applications to Datasets

We now look at a few datasets and compare the performance of using a t mixture and

a Gaussian mixture to model the data. We took 100 random splits for each dataset for

each percentage of labelled data, p ∈ {10, 20, . . . , 80, 90}. We used the same criterion

(ARI) as in the simulations to choose the optimal weight. As with the simulations we

used a completely unconstrained model for both the covariance structure and, in the

case of the t-distribution, the degrees of freedom. We note that for lower percentages

for some of the datasets, we were not able to perform a discriminant analysis, and for

higher percentages we were not able to perform a cluster analysis.

Iris Data

We first looked at the Anderson Iris data in the R package datasets. This dataset

looked at four different attributes of three different species of iris. The measurements

(in centimetres) were the sepal length and width, and the petal length and width. In

Figure 4.7 we show the line plot. On the left hand side we show the results for the t

mixture, and on the right hand side we show the results for the Gaussian. Comparing

these two plots, we see that the overall classification performance is similar between

the t mixture and the Gaussian mixture. Moreover, except at p = 60%, the weights

chosen for both the t and Gaussian mixtures are very similar if not exactly the same.

Crabs Data

The next dataset that we looked at was the crabs dataset in the R package MASS,

Venables and Ripley (2002). It consisted of 5 measurements on four different types of
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Figure 4.7: Iris Data: FSCα for α ∈ αARI and FSCARI for a) the t mixture and b) for
the Gaussian Mixture. FSCclust,FSCclass, FSCDA and FSCARI for c) the t mixture, and
d) the Gaussian mixture.

rock crabs (two species, male and female in each species). These measurements were

the frontal lobe size, carapace length and width, and the rear length and width. In

Figure 4.8, we show similar plots to Figure 4.7. We see, like with the iris data, that

the classification performance for the t and Gaussian mixtures are similar. Moreover,

the weights chosen are very similar. It is interesting to note that almost all the weights

are around 0.5

Wine Data

The third dataset we looked at was the 13 variable wine dataset in the R package

gclus (Hurley, 2004). This dataset looked 13 characteristics of three different classes
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Figure 4.8: Crab Data: FSCα for α ∈ αARI and FSCARI for a) the t mixture and b)
for the Gaussian Mixture. FSCclust,FSCclass, FSCDA and FSCARI for c) the t mixture,
and d) the Gaussian mixture.

of wine. We show the familiar line plots in Figure 4.9. One interesting aspect to note

is that in general, (until one gets to the higher proportions of labelled data), the t

mixture performs slightly better than the Gaussian. Another thing to note is that,

like the crabs data the cluster analysis does not perform well at all in comparison to

the other values of α. Finally, the chosen weights for the t and Gaussian models are

fairly similar and tend to choose larger weights for the labelled observations at all

proportions.
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Figure 4.9: Wine Data: FSCα for α ∈ αARI and FSCARI for a) the t mixture and b)
for the Gaussian Mixture. FSCclust,FSCclass, FSCDA and FSCARI for c) the t mixture,
and d) the Gaussian mixture.

Bankruptcy Data

The last dataset we looked at was the bankruptcy data found in the R package MixGHD

(Tortora et al., 2015). This dataset looked at the financial situation of 66 American

firms. Each firm was labelled as either bankrupt or financially sound. We show the

plots in Figure 4.10. These results show the greatest difference between the t and

Gaussian mixtures when compared to the other datasets we looked at. The first item

to note are the chosen weights. The weights chosen using a t mixture are very different

than those chosen when using the Gaussian mixture. The second item to note is, that

like the wine data, the t mixture results in better classification performance at lower

percentages of labelled points. Finally, we note the difference in variability. For the
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Gaussian mixture, at lower percentages, we see a lot more variability in the error bars

than for the t mixture. Also, in general, there is more variability between the different

weights for the Gaussian mixture. This could suggest that the selection of the weight

should be treated a bit more carefully for the Gaussian mixture in this case, as the

selection of a non optimal weight could result decreased classification performance.

This is especially true, once again, at lower percentages.
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Figure 4.10: Bankruptcy Data: FSCα for α ∈ αARI and FSCARI for a) the t mixture
and b) for the Gaussian Mixture. FSCclust,FSCclass, FSCDA and FSCARI for c) the t
mixture, and d) the Gaussian mixture.
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4.3 Weight Selection Criteria for Parsimonious Mod-

els

We previously discussed parsimonious models, as well as five different weight selection

criteria. We now compare the performance of the criteria. To do this, we looked at

the Wine, Bankruptcy, Crabs and Iris datasets. We took 50 different splits for each

dataset, with 80% of data labelled and used a mixture of multivariate t-distributions.

We took the same candidate weights as we did before. For each candidate weight, we

choose the model using the BIC, and then calculated each of weight selection criteria

mentioned earlier. We then choose the optimal weight based on each of the selection

criteria, and calculated the ARI. Also, we looked at the highest ARI of all the weights

after choosing the model to evaluate the overall performance of each of the criteria. In

Figure 4.11, we show box plots of the resulting ARI values using each of the criteria,

as well as the box plot for the distribution of the highest ARI.

The distributions of the ARI values for the three classification based criteria show

that the resulting ARI from the chosen weight is generally much lower than if we were

to use the highest ARI. Moreover, the variability is generally much higher. Specifi-

cally, for the bankruptcy and crabs data, the chosen ARI values cover practically all

possible values for the ARI.

On the other hand, the trace of the within sum of squares matrix, performs well

in comparison to the three classification based criteria for the wine and bankruptcy

data. Furthermore, in the case of the bankruptcy data, it performs the best of all 5

criteria, when comparing the medians, and has a distribution closest to that of the

highest ARI. However, in the case of the crabs data, it performs very poorly, and
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Figure 4.11: Distribution of ARI values for each of the criteria as well as the distri-
bution of the highest ARI for the four datasets. The BIC was used to choose the
model.

has the worst performance of the other criteria. For the iris data, the performance is

similar to the alternate entropy and the U criterion.

Finally, we see that the determinant in general performs well for all of the datasets.

In the case of the wine data, except for a couple outliers, the distribution is very similar

to that for the highest ARI. Furthermore, it performs the best of all of the proposed

criteria in all of the datasets except for the bankruptcy data. In this case, the trace

performs better, but the distributions are still similar, and the determinant does not

have the same problems as the trace does for the rest of the datasets. We therefore

propose the determinant of the within sum of squares matrix to be a possible criterion

to select the weight α.
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The Determinant as a Model Selection Criterion
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Figure 4.12: Distribution of ARI values for (a) the first procedure, and (b) the second
procedure for each of the four datasets.

We have already seen that the determinant of W appears to be a fairly good

selection criterion for the weight in FSC, and we now look at the possibility of using

this criterion for selecting the model. To further explore this idea, we once again

consider the four datasets, and performing 50 random splits with 80% of the data

points having known labels. This time, we looked at two different procedures. In the

first procedure we proceed as before and choose the model based on the BIC, and

then the weight using the determinant of W. In the second procedure we choose the

model based on the determinant, and then the weight also based on the determinant.

We once again took the ARI values after choosing the model and the weight using

one of these two procedures, and we took the maximum ARI value amongst all of the

weights.

In Figure 4.12, we show the histograms of the distribution of the ARI values. In
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(a) we show the results for procedure 1, and in (b) we show the results for procedure

2.

There are a few interesting items to note. First, for the wine dataset, we see that

when using the determinant to choose the model, the distribution of the maximum

ARI has a lot less variability. Also, these maximum ARI values are generally larger

after using the determinant to choose the model. One final note on the Wine dataset,

is that the median of the ARI values using procedure 2 is higher than those from

procedure 1. For the Bankruptcy data, we see that the distribution of the maximum

ARI is the same regardless of using the BIC or determinant to choose the model.

However, after choosing the weight, we see that the distribution of the ARI values for

procedure 2 shows more variability than procedure 1. For the crabs data, we see the

opposite, procedures 1 and 2 produce approximately the same distribution, however,

the distribution of the maximum ARI values is different favouring using the BIC to

select the model. Finally, for the Iris data, all of the distributions are very similar.

From these results, we conclude that neither procedure greatly out performs the

other, and even the differences that we do see are not extremely pronounced. We

therefore conclude that using the determinant as a criterion for model selection is a

possibility that could be looked at in future work.

4.4 Justification for a Cluster Analysis

If some of the points are labelled, it may not be immediately clear as to why a

cluster analysis should even be considered. However, there are situations in which

performing a cluster analysis is just as good, if not better, than putting more weight

on the labelled observations.
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Figure 4.13: Two different possible datasets with different organizations of labelled
points with the true classification.

In Figure 4.13, we show two different situations where this would be the case. In

Table 4.2, we look at the ARI and the determinant of W for each of the weights for

the two different cases. In the first case only 10% of the points are labelled, and all

labelled points are around the intersection of the two clusters. In this case, we see

from the ARI and determinant values that we would only want give very little weight,

or no weight to the labelled observations.

Table 4.2: ARI and determinant values for each candidate weight for both of the two
cases in Figure 4.13.

Weight Case 1 Case 2
ARI Det ARI Det

0.0 0.9341 81006 1 82849
0.1 0.9341 81006 1 82849
0.2 0.9341 81006 1 82849
0.3 0.9126 81984 1 82849
0.4 0.9126 81984 1 82849
0.5 0.9126 81984 1 82849
0.6 0.8914 84250 1 82849
0.7 0.8914 84250 1 82849
0.8 0.8914 84250 1 82849
0.9 0.0075 178858 1 82849
1.0 -0.0016 187192 1 82849

In this case, we see that a cluster analysis would actually be better than using
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higher weights, and just as good as using smaller weights. In the second case, 90%

of the points are labelled, and the unlabelled points lie on the outside of the two

clusters. We see from the ARI and determinant values, in Table 4.2, that all weights

give perfect classification, including a cluster analysis, and thus a cluster analysis

would perform just as well as the other weights in this case.
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Chapter 5

Conclusions and Future Work

A major contribution of this thesis is the use of the determinant of the within sum

of squares matrix as a weight selection criterion in FSC. Although quite an old idea,

this criteria is shown to outperform alternatives such as the near-ubiquitous BIC.

Moreover, the determinant criterion, unlike the ARI used previously, can be used

for a general dataset. The FSC approach is also shown to be effective for mixtures

of multivariate t-distributions. For example, we saw in our simulations that in very

few cases did the selected weight correspond to one of the three species of classifi-

cation. Furthermore, in our real data analyses, the use of a mixture of multivariate

t-distributions was shown to either perform just as well or, in the case of the Wine

and Bankruptcy datasets, better than the mixture of multivariate Gaussian distribu-

tions. This is partly due to the t-distribution being more robust to outliers than the

Gaussian distribution.

Future work will investigate using the determinant of the within sum of squares

matrix as an alternative to the BIC for model selection in model-based clustering,

classification, and discriminant analysis. Using the FSC approach in a wider range
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of situations will also be explored. For example, FSC could be applied in the area of

item response theory.
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Appendix A

tEIGEN Models

Table A.1: Model nomenclature and number of free covariance parameters of tEIGEN
models with constrained (C), unconstrained (U) and identity (I) elements.

Model λg = λ Λg = Λ Dg = D νg = ν No. of Free Covariance Parameters
CIIC C I I C 1+1
CIIU C I I U 1+G
UIIC U I I C (G-1)+1
UIIU U I I U (G-1)+G
CICC C I C C p+1
CICU C I C U p+G
UICC U U C C p+(G-1)+1
UICU U I C U p+(G-1)+G
CIUC C I U C Gp-(G-1)+1
CIUU C I U U Gp-(G-1)+G
UIUC U I U C Gp+1
UIUU U I U U Gp+G
CCCC C C C C [p(p+1)/2]+1
CCCU C C C U [p(p+1)/2]+G
UCCC U C C C [p(p+1)/2]+(G-1)+1
UCCU U C C U [p(p+1)/2]+(G-1)+G
CUCC C U C C G[p(p+1)/2]-(G-1)(p)+1
CUCU C U C U G[p(p+1)/2]-(G-1)(p)+G
UUCC U U C C G[p(p+1)/2]-(G-1)(p-1)+1
UUCU U U C U G[p(p+1)/2]-(G-1)(p-1)+G
CCUC C C U C [p(p+1)/2]+(G-1)(p-1)+1
CCUU C C U U [p(p+1)/2]+(G-1)(p-1)+G
CUUC C U U C G[p(p+1)/2]-(G-1)+1
CUUU C U U U G[p(p+1)/2]-(G-1)+G
UCUC U C U C G[p(p+1)/2]+(G-1)(p)+1
UCUU U C U U G[p(p+1)/2]+(G-1)(p)+G
UUUC U U U C G[p(p+1)/2]+1
UUUU U U U U G[p(p+1)/2]+G

43



Appendix B

Mathematical Derivation

Recall that we derived an altered likelihood in that satisfies the property given in

Dempster et al. (1977). Herein, we present the derivation of the altered likelihood.

∫
Z2

Lcomp(ϑ|DC, α)dz2 =

∫
Z2

(
n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg α ×

n2∏
j=1

G∏
g=1

[πgfg(x2j|θg)]z
(2)
jg (1−α)

)
dz2

=

n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg α

∫
Z2

n2∏
j=1

G∏
g=1

[πgfg(x2j|θg)]z
(2)
jg (1−α) dz2

=

n1∏
j=1

G∏
g=1

[πgfg(x1j|θg)]z
(1)
jg α

n2∏
j=1

(∫
Z2

G∏
g=1

[πgfg(x2j|θg)]z
(2)
jg (1−α) dz2

)

=

n1∏
j=1

G∏
g=1

[πgfg(x1j|θ)]z
(1)
jg α

n2∏
j=1

∑
zj∈B

G∏
g=1

[πgfg(x2j|θ)]z
(2)
jg (1−α)


=

n1∏
j=1

G∏
g=1

[πgfg(x1j|θ)]z
(1)
jg α

n2∏
j=1

(
G∑
g=1

[πgfg(x2j|θ)](1−α)
)
,
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where

B =

{
zj =

(
z
(2)
j1 , z

(2)
j2 , . . . , z

(2)
jG

) ∣∣∣ z(2)jg ∈ {0, 1},∀g ∈ {1, 2, . . . , G},
G∑
g=1

z
(2)
jg = 1

}
.
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