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14, INTRODUCTION

The eccentric annular geometry has many
engineering applications such as in heat exchanger and
nuclear reactor design. Empirical relationships describing
the turbulent flow heat transfer phenomena in eccentric
annuli do exist, but to date no satisfactory theoretical
analysis has been developed. However, before a solution
to this problem can be obtained, the velocity and the fluid
stress distributions in the flow field must be thoroughly
understood. The present analysis does this by predicting
the location of the line of maximum velocities, the
velocity field and the shear stress variations on the inner

and outer walls of eccentric annuli.

Briefly, the solution was attempted in the
following manner. Force balances on incremental areas
between the assumed line of maximum velocities and the
two walls yielded the local wall shear stresses. These
parameters were used in a one dimensional velocity
distribution calculated from each wall to obtain two values
of the local maximum velocity. The line of maximum

velocities was then shifted until these values were equal.



By repeating this procedure for successive incremental
areas, the velocity and wall shear stress distributions

were found for the complete flow field.

Because of the lengthy nature of the solution,
the analysis was performed numerically on an IBM 7040
computer. The final results were then correlated in
dimensionless form and presented graphically for a wide

range of eccentricities and Reynolds numbers.
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2. LITERATURE SURVEY

One of the attempts at a solution for the turbulent
flow velocity profiles in eccentric annuli was developed by
Heyda ﬂ)} The orthogonal co-ordinate system consistent with
the boundaries of an eccentric annulus was developed as part of
the solution for point velocities in the laminar flow field of
an annulus. The location of the line of maximum velocities
was found by setting g%%;zo in the solution for the laminar
case and a simplified approximate equation was determined for this
location. Heyda then assumed that the line of maximum velocities
for turbulent flow coincides with that for laminar flow. Assuming,
in effect, that the wall shear stresses were constant over each
boundary, a force balance was performed on the area bounded by
the wall in question and the line of maximum velocities to
determine the boundary shear stress. An iterative procedure was
used to determine the correct shear stresses at the wall and hence
the pressure gradient in the axial direction for a given average

velocity .

The velocity profile suggested by Heyda was that
due to Van Driest (2) who has developed a continuous velocity
profile describing the sublayer, the transition region and the
turbulent core by considering the damping effect of the wall

on simple harmonic fluid oscillations. This profile was

1. () indicates references listed in Section 8.
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derived for fully developed flow over a flat plate but a
favourable comparison was made by Van Driest with
experimental results for pipe flow. For the sublayer the

profile approached the accepted relation
+ =
U =Y
The outer region of the profile approached the relation

ut= L YT+ C

which is the universal velocity distribution due to

Prandtl.

In Heyda's paper the distances from the
walls were calculated along lines which were members of
the family orthogonal to the walls. In essence, Heyda
has assumed that the geometry of the flow field is the
governing factor for the application of the velocity profile
law. (A further discussion of this problem is presented in

Section 4).

Although a note in Heyda's paper stated that
a preliminary programme had been written, no information
could be found to establish the general validity of his
solution. However, a review of his assumptions shows
that an extension of his work is in order. Since an
eccentric annulus is a two dimensional flow field rather than

one which is axisymmetric, a shear stress variation around



both the inner and outer walls would be expected. His
further assumption that the line of maximum velocities for
the turbulent flow case coincides with that for laminar flow
is not necessarily valid. These two assumptions are more

realistically dealt with in the present analysis.

Deissler and Taylor (3,4) have generalized their
previous analysis of flow in tubes to apply in an annulus.
An initial estimate of the location of lines of constant
velocity was made to facilitate sketching the velocity
gradient lines orthogonal to the constant velocity lines
shown in Figure 4. Values of the local wall shear stress
were determinad by performing force balances on the area
bounded by the wall in question and two adjacent velocity
gradient lines. As a result of these calculations a new
set of constant velocity lines were then obtained using
straight lines normal to the wall midway between the previous
velocity gradient lines as wall distance parameters in a set
of equations describing a generalized velocity distribution

for fully developed turbulent flow in smooth tubes.

Deissler and Taylor's choice of wall distance
parameters is considered in depth in Section 4. The only
locations where this choice is fully apparent are at the

lines describing maximum and minimum separation. As the



authors have pointed out, some difficulty in obtaining
orthogonality of the constant velocity lines and velocity
gradient lines was experienced in cases of high eccentricity.
This may have been caused by the choice of straight lines

normal to the walls as distance parameters.

There is little or no experimental data
available to substantiate Heyda's or Deissler and Taylor's
analyses. However, sufficient reliable information exists
for the case of zero eccentricity in turbulent flow. This
work is briefly reviewed so that a partial comparison to

the foregoing analyses may be made.

Two separate investigations were conducted
by Brighton and Jcnes (5) and Ivey (6) for radius ratios
from .0625 to .7 and over a Reynolds number range of
10,000 to 327,000. Particular attention was paid to
finding the location of the point of maximum velocity.
both investigators found that the location was nearer the
inner wall than for laminar flow, the deviation being
greatest for small radius ratios. It was found that the
location was virtually independent of Reynolds number and
the hydraulic diameter of the annuli. Heyda's assumption
of coincidence of the location of the line of maximum
velocities in the laminar and turbulent cases is, therefore,

unjustifiable. Deissler and Taylor's analysis was carried



out for one radius ratio only; however, their friction

factor evaluation for a radius ratio of 3—%- was in

agreement with Brighton and Jones' findings.



3. ANALYS IS

Eefore the boundary shear stress distribution
and the velocity field may be determined, the plane geometry
of the flow field must be described by a suitable co-ordinate
system. Such a system requires that lines along which a
velocity distribution is assumed to apply are orthogonal
to both the inner and outer walls. To facilitate this,
leyda developed the (71, § ) coordinate system with
respect to ordinary Cartesian coordinates with an origin
on the common annular diameter to the right of the outer
wall. The 72 coordinate family, which defines the inner
and outer walls, consists of a set of circles with centres
along the negative x-axis,and the € family, orthogonal
to the 77 family, is a set of circles with centres along
the y-axis (cf Figure 1). The development of the (7, € )
system is reviewed in detail in the Appendix @ection 7.1),
and the justification for adopting this system in the present

analysis 1s discussed in Section 4.

With the field geometry specified, a force
balance may be performed on a fluid element between the
boundaries and the line of maximum velocities to determine

the variation of the wall shear stresses. This information



may be used in a form of the Van Driest profile to obtain
the velocity field. It is convenient to describe the
annular geometry in (7?,€ ) coordinates as shown in Figure

J B

For an inner radius,li, an outer radius,rs,
and an eccentricity , €, the outer and inner boundaries are

described by 7, and 7]; which are given by

U = coshd ?'— [Jé_s - (;—s) e} ’ 0))]
and
ik g)
7: = sinh (r.- @
where S = -E‘— ’ ©))
and c = Ta sinh 'no . 4)

Heyda approximated the location of the line of maximum

velocities for laminar flow by

Nent = sech"%(fu--r.,,,m,-)un...un,)‘ ¥ \/u +Tanh M) 1-tanh 723)-(5)
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This equation will be used as a first approximation in the

present snalysis.

Noting that g,

are determined as

= - A H)
5 §- &5
and €2 = § + 92—6

and &,,shown in Figure 1,

©)

Y]

the incremental areas,A{ and Ao,identified by a particular

value of &, are given by
Nm &

Aj = — Cz/\' dN d§
(c05h7'[+4:os§')z

n &

and As = _cif d7 Jf .
cosh M+ cos§)

Am &

©®

The (7,€§) coordinates of any point may be

transformed to Cartesian coordinates by means of the

equations

—¢ sinh M

cosh ’TI + cos &

5 (10)
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and Y: C sin g (11)
cosh ’Tz + cos §

These equations allow the chord length,L.ﬂ,between two
points at (%, €,) and (M, €;) to be determined as

Lys= {(x(’ﬂ, ) —x(n, (»,‘g))z + (y(meg)-y(n, g,))l} % : 12)

Similarly, the chord length,L_q,between two points on a line

of constant & may be calculated.

As developed in the Appendix the arc lengths

around the inner and outer walls between §, and §, are

Sfli = —.2 c sin-' {Lﬂ( sinh 7?‘} 5 (13)
sinh 723 2c

Similarly arc lengths along constant § lines from the inner

or outer wall,as the case may be, are determined by

Sgi = _Sizncg sin” {—L—J—L ;ai;n } (15)

for the inner region,and

- i—' Lo in
S¢. = o " (Lo sl f (16)



for the outer region.

With the important aspects of the field geometry

completed, the forces acting on an element of fluid of unit
axial length and cross sectional area A;may be considered
for fully developed turbulent flow. In this case SLP

4
is constant over the flow area. Since ideally the line
of maximum velocities describes locations where §__U =0 ,
the shear stress at these locations may be assumed to be

zero. If the net effect of the fluid shear acting on the

faces €, and §, is negligible and the wall shear stress

Tw: 1is assumed constant over the incremental face 571; 5

a force balance on the element will yield

. ¢ = dP A,
Twi iy dz
or
Twi = '3‘? ':'Sei; . (17)

A similar treatment of the outer element of fluid will

yield

Q.
v
P
(]

I
l

Two (18)

Q

N
wn
3
°

13
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These two equations may be used to determine
the shear velocities,Jjéia‘,required for the Van Driest
profile which is assumed to apply along lines of constant

g - The arc length from the wall in question may be used
as a wall distance parameter. In this case the dimension-
less velocities and distances for use in the profile are

given for the inner region (MmgNg ﬂ; ) as

vt Y, ' (19)
Twi ac
g

and

’Twi e
Y+: Sei s " (20)

v

for the outer region (77°$77$ 7lm) » they are given by

U e eadens @1

and

. 22)

These quantities are related in the Van Driest velocity

distribution, shown in Figure 2, in the following manner:

+ 2d¥Y"
Uu=17 Jlr & KEY T {1—exp(=Y7p*) %

@3)

0
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where the values K = 0.4 and A+ = 26 are as suggested by

Van Driest. At the line of maximum velocities it is
possible to calculate two values of velocity. One 1is
referred to the inner wall and the other to the outer wall.
Thus, the condition that these two velocities must agree

may be used to determine the correct location of the line of
maximum velocities by shifting ?m in a trial and error
procedure and recalculating the wall shears for the new
location of 7|m. A consideration of successive values of

g around the flow area then permits the calculation of the

entire velocity field.

The average velocity of the flow field is
evaluated by integrating the point velocities over the area.

Thus

Uav = ,X,UJA /A . (24)

mw

g
= —2c? Un,g)dndeg
guam c fj fbash 7] »2on 2
A 77/ o

No T
+ - ’
(cosh 77 +cos §)

Tim
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5 2
and A= 1 (r vy (26)

Based on the hydraulic diameter DH’ the Reynolds number is

defined as

Re = ——U”VD” : @7)
For an annulus
Dy,= 2(%-r) . 28)

This information is used to determine a
dimensionless average shear stress - Reynolds number

relationship.

It is apparent that the complete solution
requires the application of the foregoing equations to a
large number of finite sections of the flow field. The
Van Driest profile and the area integrations must be
evaluated several times for each value of € chosen because
of the trial and error method of locating the line of
maximum velocities. Consequently, the solution was
programmed for an IBM 7040 computer. This solution in
FORTRAN IV language is shown in detail in the Appendix

SGection 7.2).



4. DISCUSSION OF THE FIELD GEOMETRY

Before the results of the analysis are
presented, the compatibility of the choice of the field
geometry with the velocity distribution will be re-examined.

This is best done by first considering two familiar cases.

For fully developed flow over a flat plate
or in a circular pipe, simple coordinate systems conveniently
describe the velocity field. In the first case, the Cartesian
coordinate system defines the lines of constant velocity
and the orthogonal lines which are,by definition,velocity
gradient lines. Figure 3, a graphical presentation of flow
over a flat plate, shows that one set of the coordinate
lines, the velocity gradient lines, and the edge views of
the profile curves are inseparable in this simple flow
geometry. The same concept applies to flow in a circular
pipe. Constant velocity lines, which are a set of
concentric cirecles, and velocity gradient lines, a set of
radii, are described by the polar coordinate system. In both
of these cases, edge views of the velocity profiles are
identical with the coordinate lines normal to the walls.
However, in the application of accepted velocity distributions
to the eccentric annular configuration, this simplicity does

not exist.

18
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Intuitively, the flow field in this case is
expected to be similar to that determined by Deissler and Taylor.
Figure 4 shows the lines of constant velocity made dimension-
less with respect to the average velocity for a range from
1.36 to 0.40. The broken lines are velocity gradient lines
which by definition are orthogonal to the constant velocity
lines. Deissler and Taylor assumed that the velocity profile
applied along the straight solid lines perpendicular to the
inner and outer walls. However, since these lines are not
normal to the line of maximum velocities, a component of
velocity gradient would be resolved along them from the
gradient existing along the line of maximum velocities.

This would manifest itself in a relatively large slope of

the velocity profile at the point of maximum velocity.

In Heyda's analysis this problem is
diminished by choosing the constant ﬁ lines (see Figure 1),
which are very nearly orthogonal to the line of maximum
velocities, for application of the Van Driest distribution.
Two of the 7 coordinates describe lines of zero velocity
corresponding to the two boundaries and are orthogonal to
the (3 coordinates. Since the (7,§ ) coordinate system
satisfies the requirements of orthogonality, it is justifiably
adopted for the present analysis. A further advantage is that

this system ic formulated mathematically and is, therefore,






readily adapted to a machine solution.

8]
[38]



5. DISCUSSION OF RESULTS

The equations were solved with the aid of the
computer programme developed in Section 7.2 for five
eccentricities at Reynolds numbers up to 100,000 for a

radinus ratio of 1/3.5.

The velocity fields are first considered
by mapping the lines of constant velocity on the cross
section of the flow area. A typical mapping is shown in
Figure 5 where the lines of constant velocity have been
made dimensionless with respect to the average velocity.
Where the velocity lines cross the line of maximum
velocities, a discontinuity in shape occurs at the point
of intersection. This is due to the finite slope of the
Van Driest profile at the position of maximum velocity.
Generally, however, the constant velocity lines indicate
that the highest velocities, and hence the largest per-
centage of the flow per unit area, occur in the region
where the separation of the boundaries is the greatest,
and that the velocities and flow rates decrease to a

minimum at the narrowest section of the flow field.

23
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An indication of this decrease is shown in
Figure 6 where the variation of the velocity along the line
of maximum velocities is plotted against an outer wall
location parameter. (The actual parameter, oo, is defined
and related to a corresponding inner wall location, «;,
in Figure 7 with both parameters being measured from the
point of minimum separation). The slight lowering of
values of Um/Uav for increased Reynolds numbers is
attributed to the flattening of the velocity distribution.
In the region of minimum separation in the 80% eccentric
case, the reversal of this trend is caused by the small
radius of curvature of the inner wall and the steep

gradient along the line of maximum velocities.

Of equal importance to the maximum velocity
distribution is the location and shape of the line along
which this variation exists. Figure 8 shows that the
M coordinates of the line of maximum velocities are
independent of Reynolds number and very nearly constant
through the field for each eccentricity. Thus, it is
possible to describe these lines approximately by circles
which are eccentric with respect to the outer wall. The
radius and eccentricity of such circles are given in

Figures 9 and 10 as functions of the annulus eccentricity
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and are compared with Heyda's laminar approximation of
equation 5. As the boundaries become more eccentric,
the line of maximum velocities shifts towards the inner
wall in both cases; however, the turbulent radius is
smaller than that of laminar flow in the range considered.
This prediction is in keeping with the concentric case
which will be discussed separately after the wall friction

effects have been presented.

The variations of the inner and outer
wall local shear stresses made dimensionless with respect
to the local maximum velocities (by dividing by 1/2 ?lJ: )
are shown in Figures 11 and 12 for various Reynolds numbers.
These friction coefficients are, of course, constant around
the walls in the concentric case but are dependent on

Reynolds number as shown in Figure 13.

Figure 14 compares the Moody friction factor-
Reynolds number relationship for different eccentricities.
The decrease in friction factor and thus, of pressure
gradient, predicted for increased eccentricity at constant
Reynolds number is explained qualitatively by the previously
mentioned factor of the large volumetric flow rate in the
wide portion of the annulus. As the eccentricity is

increased, inspection of Figures 11, 12 and 13 suggests
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that the average value of the dimensionless wall shear
stresses is decreased for approximately equal Reynolds
numbers with the overall effect of lowering the friction
factors.

A widely used application of the annular
geometry is the concentric case. This has been investi-
gated extensively by many experimenters and some of their
results will be used as a partial test of the foregoing
analysis. The friction factors obtained by Brighton and
Jones are compared with the predicted variation in
Figure 15 for a Reynolds number range from 10,000 to about
400,000. It is seen that the present analysis fits the
data somewhat better than the curve for a smooth pipe of the
same hydraulic diameter for Reynolds numbers above 40,000.
Below this point the present curve lies above the experi-
mental data. Brighton and Jones' data indicates that no
significant effect of radius ratio on friction factor exists,
and a run of the programme at a radius ratio of 1/2.0 partially

confirmed this for the present solution.

Another test of the general validity is
obtained by comparing the dimensionless radius of maximum
velocity - radius ratio curve with the data of Brighton
and Jones, and Ivey in Figure 16. As mentioned in

Section 2, they found that these locations were independent
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of Reynolds number and hydraulic diameter. This fact was
confirmed by developing a special programme, described in
Section 7.3, and running it for Reynolds numbers of
approximately 50,000 and 100,000, and an inner radius of
.25 inches and .50 inches with no significant variations
being noted. Figure 16 shows that good agreement was
obtained with the results for radius ratios greater than
about .2. The curve obtained for this analysis 1lies

below the laminar solution for all radius ratios.



6.  CONCLUSIONS

Velocity fields in both concentric and
eccentric arnuli have been predicted for fully developed
turbulent flow. In the region of the line of maximum
velocities the assumed velocity distribution produced an
unreasonable mapping of the constant velocity lines.
The solution also located the lines of maximum velocities
which were found to be independent of Reynolds number
and nearer the inner wall than for the laminar solution. In
the concentric case the analysis agreed satisfactorily

with experimental data above a radius ratio of 0.2.

Both the local wall shear stress variations
and the average friction factors were predicted to be
dependent on Reynolds number and eccentricity. The
concentric friction factors were in good agreement with

experimental data.

40



7. APPENDIX

7.1 GEOMETRY OF AN ECCENTRIC ANNULUS

The orthogonal coordinate system consistent
with the boundaries of an eccentric annulus is described
by Heyda. [t is given by the complex potential of a source
and sink of equal unit strength located at Z=c and Z=—¢

respectively on the complex x-y plane.

Such a potential is given by

W = 'n(jé:;&) .

Z +c

Noting in Figure Al that Z may be written

9
as Z=-¢C +ne * ,

and Z

]
(2]
+
"
0

equation Al bzcomes

W = In% + i(6-06,) .

However, points in the W plane may be

described by W = N + i€ .

41
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Thus , T = i B, (A6)
P

and E= 6,-6. - (A7)

In the Z plane n, r,, 6,,and ©, may be

expressed as

= J(x—C)z + re

o= J(x+c>2+>’zj

& o Tan™ X i'c

By = Tan” % Zc_
Hence D= In j{‘:::;: :_' ;’: . (A8)
and £ = T3nﬂxzc — T““-'xrc . (A9)

By writing equation A8 in the exponential form and squaring
both sides it can be shown that a constant 72 line in the W
plane is transformed into the circle

2
(x + ¢ ccﬂ'h?'z)2 + vi=z c? csch n (A10)

in the Z plane. By taking the tangents of both sides of
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equation A9 and simplifying,constant & lines in the W plane

are transformed into circles

x* + (v —c cotg) = c*cofiy (A11)

in the Z plane.

In order to describe a particular annulus with an
inner radius ,r, an outer radius, ro, and a distance between
? ’

the centres, 4 , the equations

rs = € CSC)"’ 77:' ’ (A12)
re = ¢ esch 7o, (A13)
and d= c(coth 7o = ccth Mi), (Al4)

which are obtained from equation Al0, must be solved for 7]i and
No - In doing this, a radius ratio, §, and an eccentricity,

€, may be defined as

s = % " (A15)
and € = = . (A16)




With these definitions, it is possible to show that 7], is
given by
2 coshMo = A8 — (-s)€ (A17)

. €

Rewriting equations Al2 and Al3 gives

€ = Yo sinh 7?9 . (A18)
and sinh Mi = & - (A19)

Solving equations Al0 and All for x and y in

terms of 72 end g yields the transformation equations

X = — ¢ sinh T (A20)
cosh'r? +cos €

and y c sin £ . (A21)

cosh’l]\-cos §

1"

The arc length, d Sg, along a constant § line

can be shown to be

d S, -c dM . (A22)

cosh 7? + cos§

Similarly, the arc length, d S’l along a constant 72 line 1is
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given by

dSn = cdf (A23)
coshT + cos§

An element of area, dA,is

dA - - e* d7T d€ (A24)
(cosh’)? + cos {)z

These three equations are difficult to integrate. While
equation A24 may, best be integrated numerically, a direct
geometrical approach may be used to replace equations A22 and

A23.

For example, in Figure A2, the chord length
between two points (7, § ) and (Nm , € ) on a constant €

line 1is

Le- /(x(ﬂo,e)-xmm.e))‘ + (ymo,e)—y(nm,g))'ﬁ’ (A25)

where x(n,g) and y (7, &) are given by equations A20 and
A21. Thus, the half angle enclosed by the radii from the
centre of the circle € = a constant to the points (7.,€ )

and (ﬂm,g ) dis
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1294 - s;n“< Le )

2c¢ csce

The arc lcngth,Sq, along the constant € curve between the two

points 1is

Sg = 2c csc& sin-'( Le¢ ) ,

2¢ cscg
or
Se= _2c sin'( Lgsing (A26)
sing ( 2c ) 1 '

Similarly, the chord length along a constant 72

line between (7], €,) and (77, §2 ) 1is

L= [0, €)=x(M, 80" + (y(Moe)—y(M, ¢ . (A27)

The half angle, _%’l is
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Ba _ o7y L
z = " ataw)

and the arc length, Sq, is

Sy = _2c¢ sin”' (Ln 5""”"7> ) (A28)
sinh’f( ac



7.2 COMPUTEF SOLUTION FOR THE VELOCITY FIELDS IN ECCENTRIC
ANNULI

By the application of FORTRAN IV language
to the equations developed in Section 3, a numerical solution
for the velocity fields in eccentric annuli can be obtained.
The final form of the solution is included in this section
with explanatory remarks on appropriately placed comment
cards. These cards in the programme are identified by a
letter c in the extreme left hand space. They serve to
explain and identify the calculations performed in the
immediately following portion of the programme. In
addition, a summary of the important FORTRAN symbols and
a brief description of the programme are included to clarify

the actual solution.

First, the important symbols are tabulated

below:

FORTRAN DESCRIPTION

SYMBOL

A(J,IA) Inner and outer incremental areas, Ai and
Ao, respectively.

AR (J,K) Intermediate incremental areas for specified

value of g

50



FORTRAN
SYMBOL

AWS

CF(J,IA)

DISS (J,IA)

DPDZ

EPS(I)

EPSM (1)

EPSP (1)
ETA(1)
ETA(2)
ETA(3)

ETAS

EXC

DESCRIPTION
Final value is average velocity, Uav

Inner and outer wall dimensionless shear

stress , Cg

Inner and outer wall location parameters,

o and e

Pressure gradient, EU?
z

E coordinate

€, value identified with q

M
»

values identified with €

coordinate of inner wall, 7%
coordinate of outer wall, ﬁ%

coordinate of line of maximum velocities

23 .3 |3

for laminar flow, 7?nﬂ

coordinate of line of maximum velocities

=3

for turbulent flow, 7?",

Sccentricity of the annular geometry, €

c



FORTRAN
SYMBOL

IA

RA(1)
RA(2)

RADIUS (IA)

RE

REY (IN)
RHO
RI

RO

o
o

DESCRIPTION

Moody friction factor, f
Gravitational constant = 32.174, ¢
Index used in connection with increasing

values of €

Index used to describe values of ﬁ at

which the solution is applied

Index used to reference inner or outer section.
For the inner section J = 1, for the outer

J =2

Index used to describe values of 7] along a

constant € line

Subscripted form of radius of inner wall, 7
Subscripted form of radius of outer wall, r

Radius of constant g line specified by IA

Reynolds Number of calculated velocity field,
Re

Approximate Reynolds Number at input

Fluid density, ¢

Inner wall radius, T

Outer wall radius, re



FORTRAN
SYMBOL

SWJ,I)

SUM(J)

VIS

VV (J,IA,K)

WW(J, IA)

WWW ()

Y (J,K)

YY (J, IA,K)

DESCRIPTION

Incremental lengths identified with a value

of § along the inner and outer walls, .Sn

Summation of  S(J,I)s from &= 0O line

Kinematic viscosity, W

Velocity distribution throughout the

flow field

Volumetric discharges through areas identified
by values of §' at which the solution was

applied

Volumetric discharges for each value of £

identified by EPS(I)
Distance of point (7, E ) from the wall in
question along constant € line, Y

72coordinate determined by integration method

along constant § lines.



54

The input data for the programme consists of
the inner and outer wall radii, the eccentricity, the fluid
density and kinematic viscosity, the gravitational constant
and the approximate Reynolds Numbers. The first step in
the programme is to evaluate the 7] coordinates of the inner
and outer walls and the approximate line of maximum velocities
for laminar flow. This value is used later as a first

estimate of ﬁ,for turbulent flow.

Since the solution of the velocity field
results from a1 known pressure gradient, the actual Reynolds
Number 1s unknown until the calculations are completed.
However, control over the final Reynolds Number is obtained
by using a linear approximation to the Moody diagram in
conjunction with the input Reynolds Number. Thus, a realistic
pressure gradient is determined for use in the succeeding

calculations.

As the solution depends on the use of finite
incremental areas, a problem existed in determining a suitable
increment of the § coordinate to be used in the numerical
calculations. Some preliminary work evaluated the total

flow area by means of equations 8 and 9 using fourteen point



w
(92

Gaussian integrations in each coordinate direction with
g,and £, differing successively by T/igo radians. The
values so obtained for the five configurations agreed to
at least the fifth significant figure with the area
calculated by A=T(r-1), Thus, the increments were

chosen to be17gofor the computer programme.

For convenience, the programme was developed
to consider successive values of § equal to T/3e¢0, 3T/360,
-++ 3597 /360,with corresponding values of §, equal to o, 7/ g0,--

179m/igo,and &, equal to M/igo, RM/go,-- .  The incremental
arc lengths around the inner and outer walls between §.
and §, are evaluated for each value of E - For the first
and last valuzs of § and about twenty intermediate values
spaced around the outer wall, the computer proceeds to

determine the correct value of 7?m .

This is done by evaluating the two incremental
areas and wall shear stresses in order to obtain two values
of velocity at each estimated value of 7/m .  These two
velocities arc matched to within o1 % by shifting the

value of 7]» in a trial and error manner.

The programming method is such that the
values of velocity along constant t lines are calculated

at the values of 7 determined by the Gaussian integration
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subroutine. Similarly, numerical representations of
small sections of the incremental areas are identified
with the samz values of 7] . Thus, by using the same
integration subroutine, the volumetric discharges through

the incremen:al areas are readily calculated.

This procedure is repeated for the values
of & mentioned previously. Then, the total discharge
is obtained by a five point interpolation for the inter-
mediate values and summation over the entire area. After
the correct values of the Reynolds Number and friction
factor are calculated, the inner and outer radii, the
eccentricity, the Reynolds Number, the Moody friction

factor and the average velocity are printed out.

At this stage in the calculations, the
problem is essentially solved. The velocity distribution,
the wall sheer stress and the 7)., coordinate value are known
for conveniently spaced constant ¥ lines. However, the
data may be put into a more concise form for graphical

presentation.

The velocity distribution is made dimension-
less with respect to the average velocity. By interpolation

to find the (7], £) coordinates of specified values of U/U.,,



the (x, y ) coordinates of points on representative

constant velocity lines are determined. This permits the
use of an on _.ine plotting subroutine to produce a constant
velocity map of the flow field. (This mapping is not
desired in al. cases and can be prevented, with a noticeable
saving of running time, by setting the input value of VERS

equal to zero. .

Determining the inner and outer wall location
parameters corresponding to the values of & which were used
and making the wall shear stresses dimensionless with respect
to the local maximum velocities.complete the computer
calculations. The output data consists of the values of %
at which the solution was obtained, the 7]m distribution, the
variation of the ratio Um/Ua., the inner and outer wall
location paraneters, and the dimensionless wall shear stress

coefficients.

This programme was run for a radius ratio
of 1/3.5,and for eccentricities of .001, .20, .40, .60, .80.
(The digital solution produces a floating point overflow if
the eccentricity is set equal to zero). Input Reynolds
Numbers from 20,000 to 100,000 in steps of 20,000 were used
for each configuration to produce the results discussed in

Section 5.



$IB%TC EAVP3
% DIMENSION ETA(3)sRA(2) sWWW(180)95(2+180)sA12525)sT(2525)9sQ(2)sSL(2
; 1)9BU2) sWW(2925) s X(25) sYYY(25)9SUM(2) s COSHI2F sSTNH(2) s XSM(2) 9 ¥YSM(2)
'ésXSP(Z);YSP(Z)sVELﬁ(ZU)9XXL(6UU),YYL(6OO)FNN(25)9V(2’25) s XA(2)s

3DISS(2925)9CF (2425 sREY(5)

‘ COMMON‘IyJ’KsEPSM(lBU),EPS(lso)9EPSP(180)£XS(2925)9Y5(2925)9RADIUS
5 iy 3

1

1025)9YY(2525515) AR (2515)5CCOSHsPP(2515) sMV(2525515) sY(2s15)sCsIA
e %EAD IN DATA |
| READ(5s1)RIsR0O»EXC
1 FORMAT (3F6e3)
READ(5+2)RHOsGs VIS
|2 FORMAT(3F1U.7)
| READ(S 5000 VELOLIT) » 1121912 3
500 FORMAT (12F4e2)
| READ(55501) (REYCIN) sTN=155)sVERS
551 FORMAT (6F1040)
C  JQALCULATE CONSTANTS OF ANNULAR GEOMETRY
PI=4 o *ATAN(140)
DUM=(1+4+RI/R0O) /EXC+(14—RI/RO)*EXC
% ETA(2)=ALOG(DUM/2e+SQRT (DUM*DUM/4a=14) )
L C=  (EXP(ETA(2) ¥=EXP(~ETA(2)11/2+  *RO
ETAG1)=ALOG(C/RI+SART (C*C/RI/RI+1e) )
DUM=o5% (SQRT ({14=TANH(ETAC1))) #( 1o +TANHIETA (239 ) ) +SORT (01 o +TANH(ET

1A E1)) )% 1e=TANHLETA(2)))))



2 fF:fT'( 3)=ALOG
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GENERATE VALUES OF EPSsEPSMeANDSEPSP
EPSP(I1)=D*PI1/180.
EPS(I)=EPSP(1)-DUM

EPSM(TI)=EPS(I)~DUM

1

|

i

1

; DO 3 J=1s2
2. 1F (BSGT BB 70 6

f DUMI=EXP(=ETA(J))

? COSHUJI=(EXPIETA(J) )+DUM1) /2,

é S?NH(J)=COSH(J)—DUN1

% XSM(J)==C*SINH(J)/ (COSH(JI+COS(EPSMIT)))

| YSM(J)==XSM(J)/SINF ( J)*SINCEPSM(T)
| GO TO 23
6 XSM(J)=XSP(J)

L YSM(J)=YSP(J)

DO
R

DUP=COSH(J) +COS(EPSP(T))

| XSP(J)==CXSINH(J)/DUP

| YSP{J)=C*STN(EPSP(I))/DUP -

GALCULATE VALUE OF INCREMENTAL -LENGTH ALONG THE;w;LLS
5(J91)=RA(9)*ARSIN(SQRT((XSP(J)—XSM(J))**2+(+SP(J)—YSM(J))**2)/2./
1RA(J) Y*2., :

3 SUM(J)=S(Js T ¥+SUM(J) 7

éEGIV VELOCITY DISTRIBJTION CALCULATIONS FOR SUITABLE VALUES OF EPS

IF(1+EQe1) GO TO 40 3

I5(1.EQ. 180160 TO 43

IF(SUM(2)«LT«OQUTER) 3O TO &
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40 SUM(2) =0

i RADIUSHIAY=C/SINCE2STT I
NNCIA)=1

[FlIe«EQel) ETAS=ETA(3)

L=1

i
1

START OF ITERATION LOOP FOR LINE OF MAXIMUM VELOCITY
S-BOES- JI=15 2

3

I

JJ

<=1
é IF{Le6GTel) GO TO 21
XS(Js TA) ==C*SINH (J)/(COSH(J)+COSIEPSIT)) )
YS(Js TAY==XS(JsTA) /SINHCI)*SINIERS(T) )
;INCREMENTAL AREA CALCULATION
|
121 A(JsTA)=C*CXGINTZ4(AREASETA(JIHETAS)
; DUML=EXP (~ETAS)
; CCOSH=(EXP(ETAS)+DUM1) /2.
| SSINH=CCOSH-DUM1
; XX==C#*SSINH/ (CCOSH+COS (ERS(1)))
§ YX==XX/SSTNH*SIN(EPS(1))
;DISTANCE OF LINE OF MAXIMUM VELOCITY FROM' THE WALLS ALONG CONSTANT
EPS LINE '
'i Y(Js15)=RADTUS(TA)*ARSIN(SQRT ((XX=XS(Js TAN) ¥%24 (Y X=YS (JsIA) ) %¥%2) /2
| 1./RADIUS(IA))%2. 3 '
’SHEAR‘STRFSS’AT WALLS

s T(J;IA)=DPDZ*A(J9IA)/S(J¢I)/12q

|
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SV=SQRTA(T (Js IA) /RHO*GY)
ppp:oo

\/L=O.

C MELOCITY PROFILES ALONG CONSTANT EPS LINE
% DD K=1%25
L PPIUsK) =Y (JsK) /126:¢SV/VIS
| UV(JsIAsK)=SV*¥GINT.Z4(VELsPPPsPP(JsK))+VL
PPP=PP (JsK)
i7 VL=V (JsTAK)
@3 V(JsIA)=VVI(JsTAs15)
¢ ;HECK OF MATCHING AT LINE OF MAXIMUM VELOCITY
[F(ABS(1e=V(19sIA)//(2sFA))elLTae001) GO TO 9
[F(LeGTel) GO TO 8
C |[FIRST PREDICTION OF ETAS
Q(1)=V(1sIA)
@(2;=V(2.IA)
E=ETAS
FTAS=ETAS++03
15=P
G0 TO 5
C SECOND AND SUBSEQUENT 2REDICTION OF ETAS
| 800 12 J=112
| SLEJ)=(V(JsTIA)-Q(J) I/ (ETAS-E)
12 3(J)=V(JsIA)=SL(J) *ETAS

SIAS=(B{27=B (19 FELSL (T E=GL L 2))



€

63

L=L+1
| IF(L.GT.20)STOP
i GO TO &
]

CALCULATE VOLUMETRIC DISCHARGE FOR INCREMENTAL AREAS

19 DO 14 JJ=1s2
1
1

WW(Js IA)=C*CHGINTZL(VOLSETA(J) sETAS)

IF(WW(JsTA) el TeUe0) WWIJsTIA)==WW(JsIA)

- YY(JsIA,15)=ETAS

14 CONTINUE

IA=1A+1

4 CONTINUE

IA=TA-1

WRITE(7)(NN(I)sYY(1s1515)sI=1s1A)

K=3

AWS=0.,

INTERPOLATION OF VOLUMETRIC DISCHARGE IN INTERMEDIATE SECTIONS
DO 31 I=1sIA '
41 XEKY=WW(1sT)+WW(2s1)

| NNN=NN(I)

| YYY(K)=EPS(NNN)

Mk

% K=K+1

3h CONTINUE

s



X1 = %649
| x(2)=x(31
A adI&BE T Al T
YYY(2)==YYY(3)

X(K)=X(M)

YYY(K)=PI/18Ue*180C45
DO 32 I=15180
AX=EPS(1)

L=0

N=5
DO 35 K=1sM
[F(XXeEQeYYY(K)) G TO 36
(35  [FUXKaGTaY YYAKY o AN D X X LT YYY (K+ 1)) k=K ~2
f IF(LeLEsOIL=1
f IF(LeGTeM=3) L=M=-3
| NWW(T)=POLINTCYYYsXsNsXXslL)
5 50 T0 32
;36 AWW (T ) =X(K)
C $UMMAT10N OF VOLUMETRIC DISCHARGE OVER FLOW AREA
130 AWS=AWS+WWW (1) '
£ dETERMINE AVERAGE VELOCITY
} AWS=AWS/PT/ (RO**2=RI*%2) %2,
C gCALCULATE CORRECT F AND RE
| F=DPDZ*(RO-R1)*G/AWS/AWS/RHO/3.

RE=(RO=RI)*AWS/64/VIS
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- WRITE(69103)ROsRI s ZXCoRESF2AWS
103 FORMAT(1H15/// s 1HU» 13HOUTER RADIUS=3sF10e3510Xs13HINNER RADIUS=+F10
| 14391UXs13HECCENTRICITY=9F10439//1H0516HREYNOLDS NUMBER=3F8e0s 9X»
; 216HFRICTION FACTOR=5F8e5s 9X»17HAVERAGE VELOCITY=sF743)
| YMAX=XXL(2)+RO
| YMIN=XXL(2)=RO=+25
XMAX=RO
XMIN=0,
WRITE (69515)
515 FORMAT (1HUs6H TNDEX»4Xs2HXI 97X s 4HETA% 96X s 4HVMAX 56X s 6HALPHAT »8X 9 3HC
| 1F1,8x,eHALPHAo,8X,3HCF0)
i DO 43 J=1s2
@3 XA () =XXL (J)+RA (J)
being aa-i1=1s1h
| DO 45 J=1s2
L 50 46 Kalsls
C NAKE VELOCITY DISTRIBJTION DIMENSIONLESS
;46 UV (JsTsK)I=VVIJsTsK)/AWS
C DETERMINE INNER AND OUTER WALL LOCATION PARAMETERS
| DISS(J> TV =ARSIN(SQRT ( (XA(JI=XSL 1)) #%2+YSTIel) %%2) /24 /RACI) ) %24/
=101
C  MAKE WALL SHEAR STRESSES DIMENSIONLESS
45 CE(JsT)=T(JsT)/ (RHI*¥V(Js1)%%2)%2 e %G
NNN=NN(T)

;1U WRITE(AsBU2)INNCTI ) sZPS(NNN) oYY (101915)sVV(191915)s(DISS(Jsl)sCF(Js]



1rsJd=192)

SPZ FORMAT (1HO»1593F104492(F10e43FE15e4))

IF(VERS«EQe0+0) GO TO 48

g

ETHOD OF MAPPING CONSTANT VELOCITY LINES BY-ON LINE PRINTER

DO 47 J=1s2

DO 4T I =T Th

I x(2)=0

| YYY(2)=ETALY)

11 DO 13 K=3517
XIKI=VV(JsIsK=2)
13 YYY(K)=YY(JsTok=2)
X(11==X(3)
YYY(L)=YYY(3)

DeE39-11=Fs12

L=0
XX=VELOC(II)
IFIXXeGTaX(17))GO TO 15

DO 401 K=1ls16

401 TF(XXeGEeX(K)eANDeXXoLE «X(K+1))L=K=2
IF(LeLELO) L=1

b IF(EaGT.13) L=13

N=5

IF(LeEQel) N=4

402 COOR=POLINT(XsYYYsh sXXsL )

GO 'FO 18
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15 COOR=YYY(17)

j WRITE(6951U)X(17)9XXsl

%10 FORMAT(1HO92F5e2515)

!16 DUMY=EXP(—CO§R)

| CCOSH=(EXP(COOR ) +DJMY) /2.4

SSINH=CCOSH=DUMY

NNN=NN (1)

KXL(KK)=-¢*§SINH/(ZCOSH+COS(EP5(NNN)))"

YYL (KK ) ==XXL (KK) /SSINH*STN(EPS (NNN) )

KK=KK+1

%9 [F(XXeGTeX(17)) GO TO 47

%7 CONTINUE

| KK=KK=1

I CALLPLOTBEYYL s XXL s <Ko YMAXsYMINsXMAX s XMINs20051109200)
%8 CONTINUE

% STOP
,

i

END

lgle%rc VEL
é FUNCTTON VEL (X)
é, COMMON IsJsKsEPSM( 1BU) sEPS(180)sEPSP(180)9X5(2525) s¥S(2525) sRADIUS
!
16250 sYY (2925515) sAR(2515) s CCOSHSPP (25 15) sVV{2025315)sY(2+15) sCs 1A
AL=o 4% X¥ (10 =EXP (=X/264) ) |

VEL=2e/(1e+SQRT (1le-+4e*AL*AL))

2 RETURN

END

VSRS ——
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3
§

$IBFTC AREA
|
|

H

FUNETION AREA(Z)
COMMON IsJ9K9EP5M(18J)9EPS(180)9EP5P(180}’X5(2925)’Y5(2925)9RADIU5

| 1(25)9YY(2925915)9AR(2915)sCCOSHIPP(2+15)sVV(2s25315)sY(2515)sCsIA
EXTERNAL AREA1

YY(JsTAsK)=2Z

DUM=EXP (=2
CCOSH=(EXP(Z)+DUM) /2.
AREA=GINTX4(AREALSEPSMET)9EPSP(1))
AR(JsK)=AREA

IF(JeEQe2)AREA=—AREA

SINH=CCOSH=-DUM

A S CEr Ty

XX==C*SINH/ (CCOSH+COS(EPS(T1)))
| YX==XX/SINH#¥SIN(EPS (1))
Y(JsK)=RADIUS(IA)*ARSIN(SQRT ( (XX=XS(JsTA) ) %%2+(YX=YS(JsIA) ) ¥%2)/2,

1/RADEUS(TA) ) %2,

. RETURN
i

END |

$IBETC AREA1
FUNCTION AREA1(2Z)
COMMON I9JsKsEPSMI18U)sEPS(180)sEPSP(180)9sXS5(2+25)sYS(2925)sRADIUS

1025)9YY(2525915)9AR(2515)9CCOSHIPP(2:15)9VVI(2325915)9Y(2515)sCsIA

| AREA1==1./(CCOSH+CO5(ZZ))*%2







7.3 COMPUTEE SOLUTION FOR THE POSITION OF MAXIMUM VELOCITY
IN CONCENTRIC ANNULI

The position of maximum velocity in
concentric annuli was found by Ivey, and Brighton and
Jones to be dependent on radius ratio and independent of
Reynolds Number and hydraulic diameter. The following
programme was written to apply the present analysis to
this simple case and predict the curves shown in Figure 16

and discussed in Section 4.

First the important FORTRAN symbols in the

programme wil! be described.

FORTRAN DESCRIPTION

SYMBOL

DPDZ Axial pressure gradient, %g

F Moody friction factor, f

G Gravitational constant = 32,174, ge
RE Reynolds Number, Re

RHO Density, €

RI Inner wall radius, T,

RM Turbulent flow location of maximum

velocity, rm
RML (1) Laminar flow location of maximum

velocity, T
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FORTRAN

SYMBOL

RO
S(I)

SM(I)

SML(I)

TI

VIS
VMI
VMO

TO

DESCRIPTION

Outer wall radius, ro
Radius ratio, $
Dimensionless radius of maximum
velocity for turbulent flow, ;2

°
Dimensionless radius of maximum velocity
for laminar flow, ?ﬂ

°

Inner wall shear stress, Twi
Kinematic viscosity, ¥
Velocity at B referenced to inner wall

Velocity at L referenced to outer wall

Outer wall shear stress, Tweo
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The order of calculations in the programme
listed in this section is as follows: Various radius
ratios, the irner wall radius, the Reynolds Number, the
kinematic viscosity, the gravitational constant and the
density of the fluid are read in numerically. The friction
factor is calculated from a linear approximation to the
Moody diagram. For each radius ratio, the outer radius,
the axial pressure gradient and the radius of maximum velocity
for laminar flow are evaluated. With the initial estimate
that the radius of maximum velocities for turbulent flow
coincides with that for laminar flow, force balances on the
two sections of the flow area divided by the line of maximum
velocities yield the inner and outer wall shear stresses.
Thus, two values of velocity may be calculated at the radius
of maximum ve.ocity using the asympotic form of the Van Driest
velocity profile,

* |

+
U = U l" Y v
K + &

The one velocity is referenced to the inner wall and the other
to the outer wall. The two values of velocity are then
matched by shifting the radius of maximum velocity in a trial
and error procedure and repeating the calculations until

the velocities agree to within 0.1 percent. This set of
calculations is repeated for each radius ratio with the radius

ratio, and the dimensionless radius of maximum velocity for



laminar and turbulent flow being printed out for each

case.
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RESULTS

Laminar Turbulent

Flow Flow
e Yml /e ML
05 .408 237
.10 .464 . 329
=15 .508 +399
# 25 .582 .509
30 +615 #9556
.40 .667 .638
.50 « 736 711
.60 « 192 w117
.70 . 845 . 838
.80 . 898 «895

.90 +950 . 949
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