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1 • I NTRO DUCT I ON 

The eccentric annular geometry has many 

engineering applications such as in heat exchanger and 

nuclear reactor design . Empirical relationships describing 

the turbulent flow heat transfer phenomena in eccentric 

annuli do exist, but to date no satisfactory theoretical 

analysis has been developed . However, before a solution 

to this problem can be obtained, the velocity and the fluid 

stress distributions in the flow field must be thoroughly 

understood. The present analysis does this by predicting 

the location of the line of maximum velocities, the 

velocity field and the shear stress variations on the inner 

and outer walls of eccentric annuli. 

Briefly, the solution was attempted in the 

following manner. Force balances on incremental areas 

between the assumed line of maximum veloci t ies and the 

two walls yielded the local wall shear stresses. These 

parameters were used in a one dimensional velocity 

distribution calculated from each wall to obtain two values 

of the local maximum velocity. The line of maximum 

velocities was then shifted until these values were equal. 
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By repeating this procedure for successive incremental 

areas, the velocity and wall shear stress distributions 

were found for the complete flow field. 

Because of the lengthy nature of the solut ion, 

the analysis was performed numerically on an IBM 7040 

computer. The final results were then correlated in 

dimensionless form and presented graphically for a wide 

range of eccentricities and Reynolds numbers. 
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2. LITERATURE SURVEY 

One of the attempts at a so l ution for the turbulent 

flow velocity profiles in eccentric annuli was developed by 
1 

Heyda U). The orthogonal co-ordinate system consistent with 

the boundaries of an eccentric annulus was developed as part of 

the solution for point velocities in the laminar flow field of 

an annulus. The location of the line of maximum velocities 

was found by setting aU = o in the solution for the laminar 
'd1J. 

case and a simplified approximate equation was determined for this 

l ocation. Heyda then assumed that the line of maximum velocities 

for turbulent flow coincides with that for laminar flow. Assuming, 

in effect, that the wall shear stresses were constant over each 

boundary, a force balance was performed on the area bounded by 

the wall in question and the line of maximum velocities to 

determine the boundary shear stress. An iterative procedure was 

used to determine the correct shear stresses at the wall and hence 

t he pressure gradient in the axial direction for a given average 

veloci ty . 

The velocity profile suggested by Heyda was that 

due to Van Driest ~) who has developed a continuous velocity 

profile describing the sublayer, the transition region and the 

turbulent core by considering the damping effect of the wall 

on simple harmonic fluid oscillations. This profile was 

1. ( ) indicates references listed in Section 8. 
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derived for fully developed flow over a flat plate but a 

favourable comparison was made by Van Driest with 

experimental results for pipe flow. For the sublayer the 

profile approached the accepted relation 

The outer region of the profile approached the relation 

+ u J_ In Y+ + C 
K 

which is the universal velocity distribution due to 

Prandtl. 

In Heyda's paper the distances from the 

walls were calculated along lines which were members of 

the family orthogonal to the walls. In essence, Heyda 

has assumed that the geometry of the flow field is the 

governing factor for the application of the velocity profile 

law. ~ further discussion of this problem is presented in 

Section 4) . 

Although a note in Heyda's paper stated that 

a preliminary programme had been written, no information 

could be found to establish the general validity of his 

solution. However, a review of his assumptions shows 

that an extension of his work is in order. Since an 

eccentric annulus is a two dimensional flow field rather than 

one which is axisymme tric, a shear stress variation around 

4 



both the inner and outer walls would be expected. His 

further assumption that the line of maximum velocities for 

the turbulent flow case coincides with that for laminar flow 

is not necessarily valid. These two assumptions are more 

realistically dealt with in the present analysis. 

Deissler and Taylor (3,4) have generalized their 

previous analysis of flow in tubes to apply in an annulus. 

An initial estimate of the location of lines of constant 

velocity was ade to facilitate sketching the velocity 

gradient lines orthogonal to the constant velocity lines 

shown in Figure 4. Values of the local wall shear stress 

were determined by performing force balances on the area 

bounded by th wall in question and two adjacent velocity 

gradient line As a result of these calculations a new 

set of consta t velocity lines were then obtained using 

straight line normal to the wall midway between the previous 

velocity gradi ent lines as wall distance parameters in a set 

of equations describing a generalized velocity distribution 

for fully deve loped turbulent flow in smooth tubes. 

Deissler and Taylor's choice of wall distance 

parameters is considered in depth in Section 4. The only 

locations whe e this choice is fully apparent are at the 

lines describ i ng maximum and minimum separation. As the 
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authors have pointed out, some difficulty in obtaining 

orthogonality of the constant velocity lines and velocity 

gradient lines was experienced in cases of high eccentricity. 

This may have been caused by the choice of straight lines 

normal to the walls as distance parameters. 

There is little or no experimental data 

available to substantiate Heyda's or Deissler and Taylor's 

analyses. However, sufficient reliable information exists 

for the case of zero eccentricity in turbulent flow. This 

work is briefly r eviewed so that a partial comparison to 

the foregoing analyses may be made. 

Two separate investigations were conducted 

by Prighton and J nes (5) and Ivey (6) for radius ratios 

from .0625 to .7 and over a Reynolds number range of 

10,000 to 327,000. Particular attention was paid to 

finding the locati n of the point of maximum velocity. 

futh investigators found that the location was nearer the 

inner wall than for laminar flow, the deviation being 

greatest for small r adius ratios. It was found that the 

location was virtually independent of Reynolds number and 

the hydraulic diamet e r of the annuli. Heyda's assumption 

of coincidence of the location of the line of maximum 

velocit i es in the laminar and turbulent cases is, therefore, 

unjustifiable. Deis s ler and Taylor's analysis was carried 



out for one r adius ratio only; however, their friction 

factor evaluation for a radius ratio of 1 was in IT 
agreement with Brighton and Jones' findings. 
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3. ANALYSIS 

fufore the boundary shear stress distribution 

and the velocity field may be determined, the plane geometry 

of the flow field must be described by a suitable co-ordinate 

system. Such a system requires that lines along which a 

velocity distribution is assumed to apply are orthogonal 

to both the i nner and outer walls. To facilitate this, 

H eyda develop d the ( 11 , ~ ) coordinate system with 

res pect to or inary Cartesian coordinates with an origin 

on the common annular diameter to the right of the outer 

wall. The ~ coordinate family, which defines the inner 

and outer wa l l s, consists of a set of ci rcles with centres 

a l ong the neg ative x-axis,and the~ family, orthogonal 

t o the ~ f~1ily, is a set of circles with centres along 

the y-axis (cf Figure 1) • The development of the ( 71 , ~ ) 

sys t em is rev i ewed in detail in the Appendi x t)ection 7 .1), 

and t he j usti f ication for adopting this system in the present 

analysis is di scussed in Section 4. 

hlth the field geometry specified, a force 

balance may be performed on a fluid element between the 

boundaries and the line of maximum velocities to determine 

the variation of the wall shear stresses. This information 
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9 

may be used i n a form of the Van Driest profile to obtain 

the velocity field. It is convenient to describe the 

annular geometry in ( '7, ~ ) coordinates as shown in Figure 

1. 

For an inner radius,~ 1 an outer radius,ro, 

and an eccent icity ,€, the outer and inner boundaries are 

described by 'flo an d "li which are given by 

' (1) 

and 

'f/i - sinh_, ~~J (2) 

where s = ' (3) 

and c sinh 'l{o (4) 

Heyda approximated the l ocation of the line of maximum 

velocities for laminar flow by 
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This equation will be used as a first approximation in the 

present :m al sis. 

Noting that ~· and ~z., shown in Figure 1, 

are determined as 

~· = (6) 

and ~2 = (7) 

the incremen t al areas,Ai and Ao, identified by a particular 

value of ~, are given by 

11m ( 2 

A; = cf f d?1 d' (8) 
(cosh 71 +cos~ ) 2 

1'/i (· 

If an d Ao = cz cJ'fl d~ (9) 
(cos h "7 + co s ~ ) z. 

'Tlm ~. 

The C"?, ~) coordinates of any point may be 

transformed t o Cartesian coordinates by means of the 

equations 

X = -c sinh?] 
' (l 0) 

cosh "J + cos ~ 



and y = c srn ~ 

cosh 'l + cos If 

These equati ons allow the chord length,l-~,between two 

points at C'f/ , (, ) and C"l, ~l.) to be determined as 

(11) 

(12) 

Simil arly, the chord length,l.~,between two points on a line 

of constant t; may be calculated. 

As developed in the Appendix the arc lengths 

around the inner and outer walls between f 1 and f 2 are 

51'!, :::: 2 c sin-' { L-w /~nh 1/.;] 
sin h 'fl.• 

(13) 

and $ '1o :: 
2.c sin-• [Ln .. 

2 
:inh n .. } 

inh 'flo (14) 

S imilarly arc lengths along constant ~ lines from the inner 

or outer wall, a s the case may be, are determined by 

s~i = 
2c 

in~ 

for the inner egion,and 

s ~0 = 2c 
Sin~ 

(1 S) 

(16) 
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for the outer region. 

~ith the important aspects of the field geometry 

completed, th forces acting on an element of fluid of unit 

axial length nd cross sectional area Aimay be considered 

for fully dev loped turbulent flow. In this case ~ 
dz: 

is constant o er the flow area. Since ideally the line 

of maximum ve l ocities describes locations where ~ = O 
~'71 

the shear stress at these locations may be assumed to be 

zero. If the net effect of the fluid shear acting on the 

faces ~, and fz is negligible and the wall shear stress 

T w i is assumed constant over the incremental face S rt i 

a force balance on the element will yield 

or 

Twi 

dP A; 
dz 

A similar treatment of the outer element of fluid will 

yi eld 

Two :: d p 
dz 

(1 7) 

(18) 

13 



These two equations may be used to determine 

the shear velocities,J~w8c~ required for the Van Driest 

profile which is assumed to apply along lines of constant 

~ The arc length from the wall in question may be used 

as a wall dis t ance parameter. In this case the dimension-

less velociti s and distances for use in the profile are 

given for the inner region ( "lm-' 71 '- 7[1 ) as 

+ u :::: u (19) 

and 

+ y = (20) 

for the outer region C77o'71' 'fl'"), they are given by 

-?-u = u (21) 

and 

+ 
y S /

r ...... :;lc' 
~0 ~ (22) 

Th ese quantitie s are related in the Van Driest velocity 

distribution, shown in Figure 2, in the following manner: 

y+ 
+ 1 2 d y+ 

U = J-1 •---;Jr=l +=4:=K=r1 =:=y~+~a {7.1=-=e=x=p=;=/ =_=::y~~:;=A +:=:=) J'fia:n•- (2 3) 

0 
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where the values K = 0.4 and A+ = 26 are as suggested by 

Van Driest. At the line of maximum velocities it is 

possible to calculate two values of velocity. One is 

referred to the inner wall and the other to the outer wall. 

Thus, the condition that these two velocities must agree 

may be used to determine the correct location of the line of 

maximum velocities by shifting ~m in a trial and error 

procedure and recalculating the wall shears for the new 

location of ?'lm. A consideration of successive values of 

~ around the flow area then permits the calculation of the 

entire velocity fiel~. 

The average velocity of the flow field is 

evaluated by integrating the point velocities over the area. 

Thus 

(24) 

1 rr 

f U JA = -zc•(J Ju(??.~) d?7d~ 
(cosh 7( +cos 5) 

A "7• 0 

no 7r 

) + JJ U(7(,~)J'f7d{ (25) 

(cosh '/ +cos 'f )z ' 
'flm o 
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and 2 2) 
A= rr(r..- n (26) 

fused on the hydraulic diameter EB• the Reynolds number is 

defined as 

Re - (27) 

For an annulu 

2(ro-n) (28) 

This information is used to determine a 

dimensionless average shear stress - Reyno l ds number 

relationship. 

It is apparent that the complete solution 

r equires the application of the foregoing equations to a 

l arge number of finite sections of the flow field. The 

Van Driest pro f ile and the area integrations must be 

evaluated seve al times for each value of ~ chosen because 

of the trial and error method of locating the line of 

maximum velocities. Consequently, the solution was 

programmed for an IBM 7040 computer. This solution in 

FORTRAN IV language is shown in detail in the Appendix 

~ection 7.2). 
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4. DISCUSS ION OF THE FIELD GEOMETRY 

Before the results of the analysis are 

presented, t e compatibility of the choice of the field 

geometry wit h the velocity distribution will be re-examined. 

This is best done by first considering two familiar cases. 

For fully developed flow over a flat plate 

or in a circular pipe, simple coordinate systems conveniently 

describe the elocity field. In the first case, the Cartesian 

coordinate sys tem defines the lines of constant velocity 

and the orthogonal lines which are,by definition,velocity 

gradient line . Figure 3, a graphical presentation of flow 

over a flat plate, shows that one set of the coordinate 

lines, the velocity gradient lines, and the edge views of 

the profile curves are inseparable in this simple flow 

geometry. The same concept applies to flow in a circular 

pipe. Consta t velocity lines, which are a set of 

concentric cir les, and velocity gradient lines, a set of 

radii , are des ribed by the polar coordinate system. In both 

o f these cases , edge views of the velocity profiles are 

identical with the coordinate lines normal t o the walls. 

lfowcver, in the application of accepted velocity distributions 

to the eccentric annular configuration, this simplicity does 

not exist. 

18 
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Intuitively, the flow field in this case is 

expected to be similar to that determined by Deissler and Taylor. 

Figure 4 shows the lines of ' constant velocity made dimension

less with respect to the average velocity for a range from 

1.36 to 0.40. The broken lines are velocity gradient lines 

which by definition are orthogonal to the constant velocity 

lines. Deissler and Taylor assumed that the velocity profile 

applied along the straight solid lines perpendicular to the 

inner and out r walls. However, since these lines are not 

normal to the line of maximum velocities, a component of 

velocity gradi ent would be resolved along them from the 

gradient exis ing along the line of maximum velocities. 

This would rna ifest itself in a relatively large slope of 

the velocity rofile at the point of maximum velocity. 

In Heyda's analysis this problem is 

di minished by choosing the constant ~ lines (see Figure l) , 

which are ve ry nearly orthogonal to the line of maximum 

velocities, for application of the Van Driest distribution. 

Two of the 7( coordinates describe lines of zero velocity 

corresponding to the two boundaries and are orthogonal to 

the ~ coordi nates. Since the ( 71, ~ ) coordinate system 

satisfies the requirements of orthogonality, it is justifiably 

adopted for t he present analysis. A further advantage is that 

this system i formulated mathematically and is, therefore, 
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FIGURE 4 

CONSTANT VELOCITY MAP DUE TO DEISSLER S 

TAYLOR SH OWING ujuQ., F OR S= 1/'3·5 S 

ECCENTRICITY= 60% 
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readily adap t ed to a machine solution. 



5. DISCUS ION OF RESULTS 

The equations were solved with the aid of the 

computer pr gramme developed in Section 7.2 for five 

eccentricities at Reynolds numbers up to 100,000 for a 

radius ratio of 1/3.5. 

The velocity fields are first considered 

by mapping t e lines of constant velocity on the cross 

section of t e flow area. A typical mapping is shown in 

Figure 5 where the lines of constant velocity have been 

made dimensi onless with respect to the average velocity. 

Where the ve l ocity lines cross the line of maximum 

velocities, a discontinuity in shape occurs at the point 

of intersect i on. Thi s is due to the finite slope of the 

Van Driest pr ofile at the position of maxi mum velocity. 

Generally, h wever, the constant velocity lines indicate 

that the hi g est velocities, and hence the largest per

centage of the flow per unit area, occur in the region 

where the separation of the boundaries is the greatest, 

and that the velocities and flow rates decrease to a 

minimum at the narrowest section of the flow field. 

23 
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An indication of this decrease is shown in 

Figure 6 wh re the variation of the velocity along the line 

of maximum elocities is plotted against an outer wall 

location parameter. (The actual parameter, ~o, is defined 

and related to a corresponding inner wall location, 0(; , 

in Figure 7 with both parameters being measured from the 

point of minimum separation). The slight lowering of 

values of Um/Uav for increased Reynolds numbers is 

attributed to the flattening of the velocity distribution. 

In the region of minimum separation in the 80% eccentric 

case, the reversal of this trend is caused by the small 

radius of curvature of the inner wall and the steep 

gradient along the line of maximum velocities. 

Of equal importance to the maximum velocity 

distribution is the location and shape of the line along 

which this variation exists. Figure 8 shows that the 

~ coordinat s of the line of maximum velocities are 

independent f Reynolds number and very nearly constant 

through the f ield for each eccentricity. Thus, it is 

possible to escrihe these lines approximately by circles 

which are ec entric with respect to the outer wall. The 

radius and e centricity of such circles are given in 

Figures 9 and 10 as functions of the annulus eccentricity 
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and are compared with Heyda's laminar approximation of 

equation 5. As the boundaries become more eccentric, 

the line of maximum velocities shifts towards the inner 

wall in bot cases; however, the turbulent radius is 

smaller tha that of laminar flow in the range considered. 

This prediction is in keeping with the concentric case 

which will be discussed separately after the wall friction 

effects have been presented. 

The variations of the inner and outer 

Wall local shear stresses made dimensionless with respect 

2 
to the local maximum velocities (by dividing by 1/2 ~ u~ ) 

are shown in Figures 11 and 12 for various Reynolds numbers. 

These friction coefficients are, of course, constant around 

the walls in the concentric case but are dependent on 

Reynolds number as shown in Figure 13. 

Figure 14 compares the Moody friction factor-

Reynolds number relationship for different eccentricities. 

The decrease in friction factor and thus, of pressure 

gradient, predicted for increased eccentricity at constant 

Reynolds number is explained qualitatively by the previously 

mentioned factor of the large volumetric flow rate in the 

wide portion of the annulus. As the eccentricity is 

increased, inspection of Figures 11, 12 and 13 suggests 
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that the average value of the dimensionless wall shear 

stresses is decreased for approximately equal Reynolds 

numbers with the overall effect of lowering the friction 

factors. 

A widely used application of the annular 

geometry is the concentric case. This has been investi-

gated extensiv~ly by many experimenters and some of their 

results will be used as a partial test of the foregoing 

analysis. The friction factors obtained by Brighton and 

Jones arc compared with the predicted variation in 

Figure 15 fo a Reynolds number range from 10,000 to about 

400,000. It is seen that the present analysis fits the 

data somewhat better than the curve for a smooth pipe of th e 

same hydraul i c diameter for Reynolds numbers above 40,000. 

Below this p int the present curve lies above the experi-

mental data . Brighton and Jones' data indicates that no 

36 

significant e ffect of radius ratio on friction factor exists, 

and a run of the programme at a radius ratio of 1/2.0 partially 

confirmed this for the present solution. 

Another test of the general validity is 

obtained by comparing the dimensionless radius of maximum 

velocity - radius ratio curve with the data of Brighton 

and Jones, and Ivey in Figure 16. As mentioned in 

Section 2, thy found that these locations were independent 
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of Reynolds number and hydraulic diameter. This fact was 

confirmed b developing a special programme, descrjbed in 

Section 7.3, and running it for Reynolds numbers of 

approximately 50,000 and 100,000, and an inner radius of 

.25 inches and .SO inches with no significant variations 

being noted. Figure 16 shows that good agreement was 

obtained wit the results for radius ratios greater than 

about .2. The curve obtained for this analysis lies 

below the la inar solution for all radius ratios. 
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6. CONCLUSIONS 

Velocity fields in both concentric and 

eccentric a nuli have been predicted for fully developed 

turbulent f l ow. In the region of the line of maximum 

velocities the assumed velocity distribution produced an 

unreasonabl mapping of the constant velocity lines. 

The solutio also located the lines of maximum velocities 

which were f ound to be independent of Reynolds number 

and nearer the inner wall than for the laminar solution. In 

the concent r ic case the analysis agreed satisfactorily 

with experirrental data above a radius ratio of 0.2. 

Both the local wall shear stress variations 

and the average friction factors were predicted to be 

dependent on Reynolds number and eccentricity. The 

concentric friction factors were in good agreement with 

experimental data. 
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7. AP PENDI X 

7.1 GEOMETRY OF AN ECCENTRIC ANNULUS 

The orthogonal coordinate system consistent 

with the bou daries of an eccentric annulus is described 

by Heyda. (t is given by the complex potential of a source 

and sink of equal unit strength located at Z = c and Z =- c 

res pect i vely on the complex x-y plane. 

as 

and 

Such a potentia l is given by 

W= ln(Z -c) 
Z +c 

Noting in Figure Al that Z may be written 

iez 
Z=-C +r2 e 

Z= c + iG, r, e 

equation Al b comes 

W = 

desc r ibed by 

In !l + 
12 

j ( e, - ez) 

However, points in the W plane may be 

W=rt+ 

4 1 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 
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Thus , 1l = 

and e . - ez 

In the 2 p l ane r;, r., e , , and 9 2 may be 

expressed as 

r, = 

rl = 

e, ::. 

62 = 

lienee '!( = 

and 

J<x-C) 2 
+ 

j( x+C)~ + 

T"a,., -I _Y_ 
x-c 

t"Qn 
_, 

_Y _ _ 
)( +C 

j, 

y 
z I 

y a.' 

_ , y 
i an _ _ 

)( + C 

By writing e uation A8 in the exponential form and squaring 

both sides it can be shown that a constant n line in the W 

plane is transformed into the circle 

2 
(x + c coth?{ ) + 

2 
c sc h 7l 

in the Z p 1 an e . By taking the tangents of hath sides of 
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(A6) 

(A 7) 

(AR) 

( :\9) 

(AlO) 
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equation A9 nd simplifying, constant ~ lines in the VV plane 

are transformed into circles 

il 
X - t- (Y- C 

2 
cot~) "" (All ) 

in the Z p lane . 

In orde r to describe a part icular annulus with an 

inner radius , r ; , an outer radius , ro, and a distance between 

the centres , c:/ , th e equations 

r; = c c.sch 'Tl; , (Al 2) 

ro :: c csch 'T/o, (Al3 ) 

an d d = C ( coi"h 'f/o - co"th 'f/i) , (Al 4) 

whi ch a re ob tained from equation AlO, must be solved for ~i an d 

'f{o In doing this, a radius ratio, S, and an eccentricity, 

E , may be de f ined as 

S= r'i (A l S) ro 

and € :: ---S!_ (Al6 ) 
r..-n 



With these d finitions, it is possible to show that ~o is 

gi ven by 

2 c o sh '77o = (I- S) € 

Rewritin g equations Al2 and Al3 gives 

an<.l 

c = l"o sinh 'flo 

sinh 'l7i = .£ 
r; 

Solv i ng equations AlO and Al l for x an d y in 

t e rms of 71. nd ~ yields the transformat i on equations 

X = 

an d y ::. 

- c .sinh77 
cosh 77 + cos~ 

cosh "7. 1- cos 5 

45 

(Al 7) 

(Al8 ) 

(Al 9) 

(A2 0) 

( /\ 21) 

The a rc len gt h , cJ S ~, a long a const ant ~ l inc 

can he shown to be 

d S ( = __ -:--:-c_d_'l(..:..___ 
CO£ h "l 1- COS~ 

Similar ly , t h a rc l ength, ol S '1 alon g a constant 'fl. l ine is 

(A22 ) 
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given by 

d s"~ = c d ~ (A23) 

cosh 7'l +co~~ 

An element o f area, cl A, is 

dA == - c
2 cl'Tl cl~ 

(cos h'f/+ cosf )
2 

(A24) 

Th ese three equations are difficult to integrate. While 

equation A24 may, best he integrated numerically, a direct 

geometrical approach may he usc<~ to replac e equations A22 an d 

A23 . 

For example, in Figure A2, the chord length 

between two p ints ( 1/.o 1 S ) and ( 'flm , ( ) on a constant ~ 

line is 

(A25) 

where x(71,5) and y ("l , 0 are given by equations A20 and 

A2l . Thus, t he half angle enclosed by the radii from the 

centre of the circle ~ = a constant to the points (1/o, ~ ) 

an d ( 'r/, , 5 ) i s 
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f!.t. = 
2. 

sin ~ -I( l 
2 c esc~) ' 

4 8 

The arc length, S ~, along the constant ~ curve between the two 

points is 

s~ = 2 c 

or 

esc ~ 
. -1 

s1n 

Similarly, the chord length along a constant ~ 

l i ne between (7( , ~' ) and ( 7?, S2. ) is 

The half angl e , ~ is 
2 

(A26 ) 
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_, L 
s in ( '7 ) 

2c csch'TJ. 

and the arc 1 ength ' s"'l, is 

(A28) 



7. 2 COMPUTEF~ SOLUTION FOR THE VELOCITY FIELDS IN ECCENTRIC 
ANNULI 

By the application of FORTRAN IV language 

to the equations developed in Section 3, a numerical solution 

for the velocity fields in eccentric annuli can be obtained. 

The final form of the solution is included in this section 

with explanatory remarks on appropriately placed comment 

cards. These cards in the programme are identified by a 

letter c in the extreme left hand space. They serve to 

explain and identi fy the calculations performed in the 

immediately fJll owing portion of the programme. In 

addition, a s1mmary of the important FORTRAN symbols and 

a brief descr Lption of the programme are included to clarify 

the actual so lution. 

below: 

FORTRAN 
SYMBOL 

A(J ,IA) 

AR (J, K) 

First, the important symbols are tabulated 

DESCRIPTION 

Inner and outer incremental areas, A. and 
1 

A , respectively. 
0 

Intermediate incremental areas for specified 

value of ~ 

so 



FORT RAN 
SYMBOL 

AWS 

CF(J ,IA ) 

DISS (J , IA) 

DPDZ 

EPS(I) 

EPS~1 (I) 

EPSP(I) 

ETA (1) 

ETA(2) 

ETA(3) 

ETAS 

EXC 

DESCRIPTION 

Final value is average velocity, lJ Qv 

Inner and outer wall dimensionless shear 

stress , C; 

Inner and outer wall location parameters, 

O( i and O(o 

Pressure gr adient, JP 
az: 

~ coordinate 

~~ value identified with ~ 

~ 2 values identified with ~ 

'fl. coordinate of inner wall, '1/i 

"l coordinate of outer wall, 'f1o 

'l coordinate of line of maximum velocities 

fo r laminar flow, 'T(mf 

~ coordinate of line of maximum velocities 

for turbulent flow, ??rn 
~ ccentricity of the annular geometry, € 
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FORTRAN 
SYMBOL 

F 

G 

IA 

J 

K 

RA ( 1) 

RA (2) 

RADIUS (IA) 

RE 

REY(IN) 

RHO 

RI 

RO 

52 

DESCRIPTION 

Moody f r iction factor, f 

Gravitat i onal constant = 32 . 174 1 f}c 

Index used in connection with increasing 

values of ~ 

Index used to describe values of ~ at 

wh i ch the solution is appl ied 

Index used to reference inner or outer section. 

For the inner section J = 1 , f or t he outer 

J = 2 

Index used to describe values of ~ a long a 

constant { line 

Subscripted form of radius of i nner wall , r; 

Subscripted form of radius of outer wal l , ro 

Radi us of constant ( l ine speci f ied by IA 

Reynolds Number of calculated velocity field, 

Re 

Approximate Reynolds Number at input 

Fluid density, f 

Inner wall radius, r,· 

Outer wall radius, ro 



FORTRAN 
SYMBOL 

S (J, I) 

SUM(J) 

VI S 

VV (J, IA, K) 

WW (J , I A) 

WWW (I) 

y (J , K) 

YY (J , IA, K) 

DESCRIPTION 

Incremental lengths identified with a value 

of ~ along the inner and outer walls, s~ 

Summation of S(J,I)'s from S = o line 

Kinematic viscosity, ~ 

Velocity distribution throughout the 

flow field 

Volumetric discharges through areas identified 

by values of S at which the solution was 

applied 

Volumetric discharges for each value of S 
identified by EPS(I) 

Distance of point (7[, ~ ) from the \vall in 

question along constant ~ line, Y 

~coordinate determined by i ntegration met hod 

along constant ~ lines. 
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The input data for the programme consists of 

the inner and outer wall radii, the eccentricity, the fluid 

density and kinematic viscosity, the gravi tational constant 

and the approximate Reynolds Numbers. The first step in 

the programme is to evaluate the ?{ coordinates of the inner 

and outer walls and the approximate line of maximum velocities 

for laminar flow. Th is value is used later as a first 

estimate of ~~for turbulent flow. 

Since the solution of the velocity field 

results from ~known pressure gradient, the actual Reynolds 

:--l umber is unknown until the calculations are completed. 

However, cont :ro 1 over the final Reynolds Number is obtained 

by using a liuear appro ximation to the Moody diagram in 

conjunction wi th the input Reynolds Number . Thus, a realistic 

pressure grad j ent is determined for use in the succeeding 

cal culations. 

As the solution depends on the use of finite 

incremental areas, a problem existed in determining a suitable 

increment of the S coordinate to be used in the numerical 

cal culations. Some preliminary work evaluated the total 

f low area by means of equations 8 and 9 using fourteen point 
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Gaussian integrations in each coordinate dire ct ion with 

~· and Sa di Hering successively by 71'/,so radians. The 

values so obtained for the five configurations agreed to 

at least the fifth significant figure with the area 

calculated by A= 71( roz.- r;•). Thus, the increments were 

chosen to be,~eofor the computer programme. 

For convenience, the programme was developed 

to consider successive values of s equal to 1Tj3bO, 37(/360, · · 

.•• 3597T/3bo, with correspond ing values of ~. equal to o, tr;1ao, .. 

. . t791f/tBo,and ~a. equal to 7(/tso, 2'"ff/rso,-· ··· 7r'. The incremental 

arc lengths around the inner and outer walls between ~· 

anJ f 2 are ev a luated for each value of ~ . For the first 

an d last valu es of ~ and about twenty intermediate values 

spaced around the outer wall, the computer proceeds to 

determine the correct value of 'Y( m • 

This is done by evaluating the two incremental 

are as an d wall shear stresses in order to obtain two values 

of velocity at each estimated value of 'f{m These two 

velocities an~ matched to within O·l% by shifting the 

value of 'fl.., Ln a trial and error manner. 

The programming method is such that the 

values of velocity along constant ~ lines are calculated 

at the va l ues of 'f/ determined by the Gaussian integration 
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subroutine. Similarly, numerical representations of 

small sections of the incremental areas are identified 

with the sam~ values of ~ Thus, by using the same 

integration _;ubroutine, the volumetric discharges through 

the incremen~ al areas are re~dily calculated. 

This procedure is repeated for the values 

of ~ mentioued previously. Then, the total discharge 

is obtained by a five point interpolation for the inter

mediate valuc!S and summation over the entire area. After 

the correct values of the Reynolds Number and friction 

factor are ca lculated, the inner and outer radii, the 

eccentricity , the Reynolds Number, the Moody friction 

factor and t he average velocity are printed out. 

At this stage in the calculations, the 

problem is essentially solved. The velocity distribution, 

the wall shear stress and the ~m coordinate value are known 

f or conveniently spaced constant ~ lines. However, the 

data may be put into a more concise form for graphical 

presentation. 

The velocity distribution is made dimension-

less with respect to the average velocity. By interpolation 

to find the ('fl, ~ ) coordinates of specified values of U/Uo•, 
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the (x, y) coordinates of points on representative 

constant velocity lines are determined. This permits the 

use of an on l ine plotting subroutine to produce a constant 

velocity map of the flow field. (This mapping is not 

desired in a L cases and can be prevented, with a noticeable 

saving of runuing time, by setting the input value of VERS 

equal to zero ) . 

Determining the inner and outer wall location 

parameters co responding to the values of { which were used 

and making th!! wall shear stresses dimensionless with respect 

to the local ~1aximum velocities . complete the computer 

calculations. The output data consists of the values of ~ 

at which the ~ . elution was obtained, the 'f/m distribution, the 

variation of t.he ratio U ... /Uav, the inner and outer wall 

location para 1eters, and the dimensionless wall shear stress 

coefficients. 

This programme was run for a radius ratio 

of l/3.S,and f or eccentricities of .001, .20, .40, .60, .80. 

(The digital s olution produces a floating point overflow if 

the eccentricjty is set equal to zero). Input Reynolds 

Numbers from 20,000 to 100,000 in steps of 20,000 were used 

f or each con f jguration to produce the results discussed in 

Sect i on 5. 
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$IF3FTC EAVP3 

f) I HENs I 0 /'.J ETA ( 3 ) ' R I\ ( 2 ) ' \'! \•J 1;\; ( 1 8 0 ) ' s ( 2 ' 1 8 0 ) ' A ( 2 ' ? 5 ) ' T ( 2 ' 2 5 ) ' 0 ( ? ) ' s L ( 2 

u , B(2J , vJ~tJ(2 , 25l , XC?5l , yyy(25l , surv1(?J , coSHC?.l , SINI-H2l , xs-.1(2) , ys,..1 (ZJ 

2 ' X S P ( ? ) ' Y S P ( ? ) , V E L ') ( 2 0 l ' X XL ( 6 0 G l ' Y Y L ( 6 0 C l , ."l r~ ( 2 5 l , V { ? , 2 5 l ' X A ( ? l , 

3DISS(2 , 25J , CFC2 , 25 , REYC5l 

C: 0Yifv1 0 N I ,J ' I( ' E P S H ( : 8 0 l ' E P S ( 1 8 0 l , E P S P ( 1 8 0 l ' X S ( 2 , 2 S l ' Y S ( ? , 2 5 l ' RADIUS 

J ( 2 5 l ' YY ( 2 ' 2 5 ' 15 l ' AF~ ( 2 ' 15 l ' CCOSH ' PP ( 2 ' l"' l • VV <? ' 2 5 , 15 l , Y ( 2 , 15 l ' C ' I A 

C REAl) IN DATA 

~EAD(5 , 1JRI , RQ , EXC 

1 FOR~·1AT(3F6.3l 

REAG ( 5 , 2 JRHQ , G , VIS 

2 FORfV1ATC3F1U . 7) 

READ(5 , 50ul { VE L O < II l di=1d2 

5Gu FOR~AT(12F4 . 2l 

r-< EAD ( 5 ' 50 1 l ( RFY ( IN l , IN= 1 , 5 l , VERS 

501 FORMAT(6F1U . Ol 

C CALCULATF CONSTAN TS OF ANNULAP GEO~ETRY 

PI =4 . -)~AT AN ( 1 . 0 l 

DU~= <1 . + RI/ROl/FXC+(l . -RI/ROl*~XC 

ETA( 2 l= AL OGCDUMI? . +SORT(DUM*DUY/4 . - 1 . 1 J 

C= (EXPCETAC2l l - EXPC-ETA(2J l J/2 . *RO 

ETA(1l=ALOG(C/RI+SQ~T(C*C/RI/RI+1 . J l 

D J fvi = • 'l->< ( SORT ( ( 1 • - T A'~ H ( E l (\ ( 1 l I l * ( 1 • + T A \J H ( F T A ( ? l l I l +SORT ( ( 1 • +TANH ( [ T 

1A (1J l l*(1 . - TANH <ETA(2ll ll l 



[ T A ( 3 ) =A L 0 G ( ] • I D u ~ I +- s Q R T ( 1 • I D u '11 D u i.J -1 • ) ) 

I) U /'V1 = • 5 ~r P I 11 8 0 • 

I~ A ( 1 l =R I 

I~ A ( 2 l = F<O 

OuTER =P Hri~OI21 . 

[XTEf~NAL Af~EA 

EXTERNAL VOL 

::XTERNAL VE.L 

DO 48 IN=1,5 

.)0 33 J=1 , 2 

CENT=-CITANH(ETA<Jl l 

X:XL(Jl=CENT 

'33 r'YL(J)=u . 

C n~T~RMINE F AND DPDZ =OR APPROXIMATE RF 

<E=f~EY (IN l 

~=EXP<-u . 2338~ALOG<RE)-1 . 341 

)PDZ=F-J;-(RE*6 . *VISI<RO-RI I )-~><21( (I:W-f'I )-YcGI3 . )~<RHO 

~RITE<7 , 7~uJRI , RO,~XC , RE , LPDZ ,[TA<ll , rTA(2l 

700 ~oR~AT<3F6 . 3 , Flv . u , 3E15 . 8l 

SUIV(l)=U . 

SUf\1(2l=v . 

<K=3 

IA=l 

)0 4 I=ldB J 

)=I 
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C GENf:RA TE VALUES OF EP-n FPSrJI , J\~W , EPSP 

LPSPI I l=D*PI/18U . 

EPS<I l=EPSPI I)-DUM 

FPSM(IJ=EPS(J)-DUM 

[10 3 j = 1 ' 2 

IF<I . GT . l) GO TO 6 

CUMl=EXP<-ETA(J) l 

C O.SH ( J l = ( EXP I ETA ( J l l +DLJfvll I I 2 . 

5 I NH ( J l =COSH ( J l -DUI' ll 

XSMCJl=-C*SINH(JJ/ICOSH{JI+COS<EPS~(II I) 

YSi'J.(JI=-XSiVl(Jl/SINI- IJI*SINCEPS,l( Ill 

GO TO 23 

6 XSHIJ)=XSP(J) 

YSM(J)=YSP(J) 

23 DUP=COSH<Jl+COSIEPSPIIJ l 

XSP(Jl=-C*SINH(JJ/DUP 

YSP(Jl=C*SINIFPSP(I l 1/DUP 

C CALCULATE VALUE OF INCREi·~ENT!\L LE,~GT!l ALONG THE. wALLS 

60 

S(J , I I=RA(JJ*ARSIN(SQRT( IXSP(JJ-XS~(J) l**2+(YSP(Jl-YS•,(Jl 1**2112 . 1 

lf~~(j) 1*2 . 

3 SJM(JJ=S(J , I)+SUfvliJJ 

C BEGI~ VELOCITY DISTRIBJTION CALCULATIJNS FOR SUITABLE VALUES OF EPS 

r=<I . EQ . ll GO TO 40 

r=cr . EO . l8UJGO TO 4) 

r r=<SUfv1<2J . LT.OUTERJ ]0 TO 4 



4v SUM(2)=U . 

~ADIU~<IAl=C/SIN(FJS(Il l 

:-JNCIAl=I 

IFCI . EQ . l) t.TAS=ETrl3l 

-= 1 

C STA T OF ITFRATION LOJP FCR LiriF '"'F I 'XI U" V~="'LOCITY 

5 )0 63 JJ=1 , 2 

J=JJ 

<=1 

IF<L . GT . 1l 00 TO 21 

XS(Jd.L\l=-C*SINH<JJ/(COSH(Jl+C SIFPSI Ill l 

Y~(J , J.L\l=-X~(J , JAl/3INH(Jl*SIN<E 5( Il) 

C I'\JCH: iENT.L\L AREA Ci'\LCLJLATIO 

?1 A(J , IAl=C*C*GI~TZ4<ARFA , ETAIJl , ETASl 

U '.11 = F X P ( - E T S l 

CCOSH=<FXPIFTASl+DUM1l/2 . 

SS I f\IH=CCOSH-DU~v1 1 

XX=- *SSI'\JH/(CCOSH+COSIEP~<Il ll 

YX=-XX/SSINH* .. :di\J(EPS< Ill 
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C DISTA CE OF LINF: OF H\XI"u'' VLLOCITY F1\0I"' THE .~LLS AL01\jG C 'STAid 

C EPS LI'\JE 

Y(Jd'Jl=f~ADIUS( IAl*Af\SIN<~QRTI (XX-XS(Jd' l ~~~*?+(Y -YS(JdA) l.,...*?ll? 

] . IR/I.DIUSI IAI )t-c2 . 

C SIIFAR STRFSS AT 1; LLS 

T(J , TAl=DPDZ*A(J , IAl/S(J , Tl/12 · 



~' V =SO ·H ( T ( J , I A l I R HO*G ) 

PPP=O . 

\IL=O . 

C VELOCITY Pf~OFILFS ALOIJG COSTA T fPS LINE 

DO 7 K=1 , 15 

PP(J , I()=Y(J , t )112 . -~SVIVIS 

IV ( J , I A , "- J = S V* GIN T.~ 4 ( VEL , PP P , PP ( J ' K l J +V L 

PPP=PP(J , I(J 

7 lfL=VV(J , JA , KJ 

6~ /(J , IAl=VVIJ , IA , 15l 

C CHFC:K OFf ATCHING AT _INt OF fvlAXI. v VELOCITY 

IFIAGSIJ . -VI1dAJI/12d/dl . LT •• 01) GO TO 9 

lFIL . GT . 1J GO TC 8 

C FIRJT PREDICTIO OF EfAS 

I)( l J=VI 1 , IAJ 

012J=VI2 , IAl 

'=-=FTAS 

:::-TAS=FTAS+ . 0'3 

I =2 

C:jO TO 5 

C SECO~D AND SUB EQUENT ~REDICTIO OF ETAS 

8 )0 12 J=1 , 2 

3L I J l =IV ( J ' I A J -Q I J J l I I ET S-E l 

12 ~(Jl=V(J , IAJ-SL(Jl*ETAS 

.:::- T AS= ( li ( 2 l -B ( l l l I ( 3L ( l l -SL ( 2 l l 
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L=L+1 

l F(L . GT . 20JS TOP 

CiO TO 5 

C CALCULATE VOLUhETRIC lliSCHAf~GE FOR INCRE HEN TAL AREAS 

9 DO 14 JJ=1 ' 2 

~=JJ 

K=1 

\1\wt.._,, IAl=C-X-C*GINTZL ( VOL , ETA(J) , ETASJ 

I F ( w w ( J , I A J • L ,· • u • o J vJ w ( J , I A J = - 1N ~v ( J , I A J 

YY(J d A d 5 l= ETAS 

14 CON TI NUE 

IA.=I A+1 

4 CONTINUE 

63 

JA=IA-1 

WRIT F ( 7 l ( NN ( f l ' Y Y ( 1 , I , 15 l ' I= 1 , I A l 

K=3 

A.NS=U . 

C INTE~POLATION OF VOLUf,lETFnC GISCHARG!:. IN I NTERHEDIATE SECTIONS 

DO 3 1 I= 1 , I A 

41 X(KJ= WW (1 , JJ+WW(2 , I l 

NNN=NN (Il 

YfY(KJ=EPS(NNNl 

M==K 

K=K +l 

31 CONTINUE 



,(lJ=X(4) 

:< ( 2) =X ( 3 l 

'(YY(l)=-Y'1Y<4l 

'(YY ( 2) =-YYY ( 3 l 

:< ( I( l =X < M l 

fYY(I<.)=PI/18 • *180 . 5 

DO '3 2 I = 1 , HH.1 

<X=EPS ( I l 

L=G 

~= 5 

I) 0 3 5 K = l ' ~. 

IF<XX . F . YYY<Kll G) TO 36 

~t:; IF<XX . Gf . YYY(Kl . AN) . XX . LT . YYY< +lll L= -? 

IF<L . LE . Oll=l 

IF(L . GT . -3) L=~-~ 

~~~<I l=POLINT(yyy , x , N, XX , Ll 

GO TO 32 

36 1.-H· (I )=X( 

C U M Jvi T I 0 N 0 F V L u 1 E T R I : u I SCHAR G E V ~ R f L 0 1\f A R E A 

?7 L\WS=A• S+ •J\•J (I l 

C DETF MINE AVERAG~ VFLOCITY 

AWS=A~S/PI/(R0**2- I**2l*2 • 

C CALCULATf COl RECT F AND RE 

F=DPJZ*( 0- Il*GIA iS/A~S/RH0/3 . 

E=<RO-Ril~~ S/6 . /VI~ 
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WR I Tf(6 , 1~~1RO , RI , _XC , R[ , F , AWS 

1u~ FOR~ATI1H1 , 111 , 1Hv , 1~HOUTLR RADIGS= , F10 . ~ , luX , 13HINNER RADIUS= , FlO 

1 .. 3 , J u X , l ~ H fCC EN T R I : IT '= ' F l 0 . 3 ,; 11 H (; d 6 H R f f 0 L D S N l.A,H:, r f~ = ' F 8 • 0 ' g X ' 

2l6HFI~ICTION F-ACTOI<= , FR · 5 ' 9Xd7HAVERAGE VELOCITY=,F7 · 31 

'fMAX=XXL I 2 l +f 0 

YMIN=XXLI21 - P0 - . 25 

:<rv1AX = RO 

:< M I I= 0 . 

loJRITEI6 , ~'.>15l 

c; 1 '1 F 0 R M A f I l H v ' 6 H I N f) t < ' 4 X ' ? H X I ' 7 X ' t~ H E T A -:<-, 6 X ' 4 H V . 1-1 X , A X ' A rl A L P f-l A I ' 8 X , ?. H C 

1~I , RX , 6HALPHAQ , BX , 3HCFOl 

DO 43 J=l , 2 

43 ~AIJJ=XXLIJJ+RAIJ) 

DO 1 u I = 1 , I A 

1)0 4 5 J= 1 ' 2 

DO 46 K=ld? 

C v1AKF VFLOCITY DISTRIBJTION DIMENSIONLfSS 

4 6 '/ V I J , I ' K l = V V I J , I , K l I A w S 

C DETE1<f"'INE If'.. FR AND CJLHEI ~·IALL LOCAT Tv PAl</\ ,FTEkS 

,) I S S I J ' I l =A R S I N ( S Q < T I I X A I J I - X S I J ' I ) l * ,~ 2 + Y S I J ' I ) * -:~ 2 l I 2 • I ~A ( J I l * 2 • I 

C MAK~ WALL SHEA< STRES3ES DIMENSIO~L~SS 

4c; (FIJ ,J l=TIJ ,J JIIRHJ*VIJ d l*-l;-2)""2 . -!:-G 

'-JNN=I'JN I I l 

, u 'v R I T f < 6 , "'~..,? J N • < I l , = P s < N N i'J 1 , Y Y 1 , I , 1 5 1 , v v 1 1 , I , 1 5 l , < D T s c, 1 J , I 1 , c F 1 J , I 



c 

]J , J=l , 2l 

5 2 FORYAT I IHU , I5 , 3Flu , 4 , 2 1Fl u . 4 , FlS . 4) l 

FIVfRS . E~ •• Ol GO TO 48 

ETHOD OF i'1APPI lCJ CUN,)T!\ IT VE:.LvCITY LIIH::_S E Y 

DO 47 J=l , 2 

[>0 4 7 I= 1 , I A 

>12)=0 

'rYYI2l=ETAIJl 

11 CO 13 K=3 d7 

XIKJ=VV(Jd , K- ? l 

11 YYYIKJ=YY(J,I , ~ - 2) 

Xlll=-XI3l 

YYYill=YYYI3l 

DO 39 II=ld2 

L= u 

XX =V ELO ( I I l 

IFIXX . G f . XIl7l l GO TO 15 

DO 401 =1 d6 

4 U 1 I F I X X • G E: • X I k. l • ;, N [) • X X • L L • X I K + 1 l l L = ' - 2 

IFIL . LE . O l L=l 

I=-IL . GT .l3) L=l 3 

N =5 

I - IL . F:O . l l N=4 

402 C< OR =POLI T{X , YYY , f\I , XX , L) 

GO TO ]6 
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15 :::oor~=YYY!17J 

AIR IT E ( 6 , 'J 1 v l X ( 17 l , XX , I 

510 FORMAT ! 1H0 , 2F5 . 2 , I3J 

16 )U~Y = EXP(-COO~l 

:::COSH=!EXP!COORl+DJMYJ/2 . 

3SINH=CCOSH - DU'v1Y 

'lNN =NN ( I l 

<XL ( KK l = - CkSS I NH I ( :::COSH+COS ( FPJ ( 1 , 1t, l l l 

'( Y L ( K K l = - X XL ( < K l I S 3 I N f f x- S I ~' ( E P S ( N ~ ~ l l 

I~K=KK+ 1 

'39 IF(XX . GT. X(17Jl GO TO 47 

47 (ONTINUf 

f' K=KK-1 

( A L L D L 0 T ~ ( Y Y L , X X L , ~ K , Y '..I A X , Yf\ I I ~1 ' X I' i\ X , X r•1 I i l , 2 v 0 , 1 1 0 , ? 0 0 ) 

48 co 1TINUE 

STOP 

END 

$113-~="TC VFL 

FUNCTION VFL(Xl 
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( 0M'v1 0 N I ' J ' r' ' f:" P S ~' ( L p, v l ' E P S ( 1 R 0 l , E P S P ( 1 R C l , X..) ( ? , ? c:; l , Y S ( ? , ? 5 l , ~~ /1. f) I US 

l 2 5 l ' Y Y ( ? ' ? c; ' 1 5 l ' AI< ( 2 ' 1 5 l ' C C OSI-i ' P P ( 2 ' 1 c:; l ' V V ( 2 ' 2 c; ' 1 c; l ' Y ( 2 ' 15 l ' C , I;.. 

AL= . 4*X*(l . -EXP(-X'26 . J) 

\1 E L = 2 • I ( 1 • + S Q R T ( 1 • + 4 • * /1 L *"A L l ) 

2 f-~ E. TURN 

t"ND 
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s; I RFTC 1-\REA 

FUI\iCTION AREAIZl 

C OMI'W N I ' J ' K ' E P S f\1 ( .. 8 J l ' F P S ( 1 8 0 l ' E P S P ( 18 0 l ' X .S I 2 ' 2 5 l ' Y S ( 2 , 2 5 l ' R AD I US 

1 I? 5 l ' YY I 2 ' 2 5 ' 15 l ' Ar~ I 2 , 15 l 'CCOSI·h PP I 2 , 11) l ' VV I 7 ' ?I) , 15 l , Y ( 2 ' 15 l ' C, I A 

E-XTERNAL ARE;\1 

YY ( J , IA , KJ=Z 

DU~1=EXP I - ll 

CCOSH=IEXPIZJ+D0Mlt2 . 

~ R E A = G I N T X t1 I A R Er'\ 1 , E P S I" II I J , E P S P I I l l 

~R ( J , KJ=AREA 

IFIJ . EQ . 2lAREA=-AREA 

S I NH=CCOSH- DU~~ 

XX= - C*SINH/ICCOSH+COSIEPSIIJ l l 

YX =-XX/SINH*SINIEP~IIJJ 

YIJ , Kl=RADI0SIIAl*ARSINISQRTI IXX-XS(J , IAll**?+IYX-YS(J , IAll**2ll2 . 

1/RADIUSI IAJ l*2 . 

K=K+l 

RETURN 

END 

'!iiRFTC AREAl 

FJNCTION AREAliZZl 

C ) M ~A 0 N I ' J ' :( ' F P Sf' I 1 8 u l ' E P S I 1 8 li l ' F P S P I l 8 G l ' X S I 7 ' ? 5 l ' Y S I ? , ? 5 l ' R AD I US 

1 I? "i l ' YY I 2 ' ? 5 ' 1 "i l ' AR I 2 ' 15 l ' CCOSH ' PP I? ' l"i l 'VV I 2 ' 2 c; ' 15 l ' Y ( 7 ' 1 ') l 'C ' I A 

A~EA1= - l . /ICCOSH+C051ZZll**2 



J~ETURN 

f:ND 

S:.IBFTC VOL 

FUNCTION VOL(Z) 
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Cm.1fv10N I , J , K , EPSr.-1( l8v) , EpS( 180) ' EPSP( 18C) , xscz , z5l , yscz , z5J , RADILJS 

1 1 ?5J , yycz , z'Sd5J , Ar~C?d5l ,ccosH , PP<?d5) , VVC? , zsd5J , yczdsl , c,rA 

VOL=AR ( J , K J *VV ( J , I ,1, , K J 

TF<J . EQ . 2JVO L=- VOL 

K=K+l 

r~ETURN 

C:ND 



7. 3 COMPUTET: SOLUTION FOR THE POSITION OF MAXIMUM VELOCITY 
IN CONCENTRIC ANNULI 

The position of maximum velocity in 

concentric annuli was found by Ivey,and Brighton and 

Jones to be dependent on radius ratio and independent of 

Reynolds Number and hydraulic diameter. The following 

programme was written to app ly t he present analysis to 

this simple case and predict the curves shown in Figure 16 

and discussed in Section 4. 

First the important FORTRAN symbols in the 

programme wi 1.1 be described. 

FORTRAN 
SYMBOL 

DPDZ 

F 

G 

RE 

RHO 

RI 

RM 

RML(I) 

DE SCRIPTION 

Axial pressure gradient , d P 
dz 

Moody friction factor, f 

Gravitational constant = 32.174, ~c 

Reynolds Number, Re 

Density, ~ 

Inner wall radius, r. 
1 

Turbulen t flow location of maximum 

velocity, r 
m 

Laminar flow location of maximum 

velocity, rmi 
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FORTRAN 
SYMBOL 

RO 

S (I) 

SM (I) 

SML (I) 

TI 

VIS 

VM I 

VMO 

TO 

DESCRIPTION 

Outer wall radius, r 
0 

Radius ratio, s 

Dimensionless radius of maxi mum 

velocity for turbulent flow, r~ 
ro 

Dimensi onless radius of maximum velocity 

for laminar flow, [!!!.! 
ro 

Inner wall shear stress, ~wi 

Kinematic viscosity, ~ 

Velocity at r referenced to inner wall m 

Velocity at r referenced to outer wall m 

Outer wall shear stress, Two 
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The order of calculations in the programme 

listed in this section is as follows: Various radius 

ratios, the ir.ner wall radius, the Reynolds Number, the 

kinematic vis c:osi ty, the gravitational constant and the 

density of th~ fluid are read in numerical l y. The friction 

factor is cal culated from a linear approximation to the 

Moody diagram. For each radius ratio, the outer radius, 

the axial pre~sure gradient and the radius of maximum velocity 

for laminar f l ow are evaluated. With the initial estimate 

that the radi us of maximum velocities for turbulent flow 

coincides wi t 'h that for laminar flow, force balances on the 

two sections of the flow area divided by the line of maximum 

velocities yi e ld the inner and outer wall shear stresses. 

Thus, two values of velocity may be calculated at the radius 

of maximum ve :,oci ty using the asympotic form of the Van Driest 

ve l ocity profi.le, 

u+ = j_ In Y+ 
K 

+ c 

The one veloci ty is referenced to the inner wall and the other 

to the outer ~ r all. The two values of velocity are then 

matched by sh i fting the radius of maximum velocity in a trial 

and error procedure and repeating the calculations until 

the velocities agree to within 0.1 percent . This set of 

calculations i s repeated for each radius ratio with the radius 

ratio, and the dimensionless radius of maximum velocity for 
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laminar and turbulent flow being printed out for each 

case. 



DI'lE~,SifJ"'J S(lUl , Rt l (lC) , S:V~L(lvl , sr·' ( lJ l 

~EAJ ( :-, ~ 1 l ( S ( I l , I = 1, 9 l , ~I 

1 ~=" <; R •i /1. T ( 1 '1 F 8 • 3 l 

RFAl(5 , 3JR~,VIS , G , RHO 

~ FOPi1AT(L+F · . J) 

F = [X P ( - ' l • :? 3 ? P ~U1 L 0 G ( R L l - l • -; 4 l 

'18 2 I = 1 , '1 

r~ '1 = I' I I '"" ( I l 

D PC L' = F-r-- ( R F~*" 6 • ~~VI S I ( ~ 0 - ~ I l l ~H~ 2 I ( ( r~ J - R I l -lc(' I 3 • P ~~ HO 

R>'ol( I l=S'JRT( <RO-'H'? - (I -~~"<?ll ( ? . -*lLOG ( l . IS ( Ill l l 

5 •'l ( I l = F' ~ i L ( I ) I R Ci 

Rt=r''L(Il 

L = l 

4 T I = I P "' Z I Z • * ( 1 " -:He 2 - I~ T -:* :( 2 l f'.J I I 1 2 • 

T () = D P 'l Z I 2 • ':- ( r< 0 ~H~ 2 - R 1-lHc 2 l I ~ (' I 1 2 • 

V!=SORT<TIIPhO*Gl 

v'C=S,!RT ( TOI~"lo;:-G) 

V ,,. I = V J ~c ( ? • c.* J\ L 0 r ( ( ? ' - P I l I 1 ? • -:c V T IV I S l + ') • c:; l 

V''O=VC'H~ (? . ')~:-Al 0~ ( ( :> i - R' i l I 12 . ~cVOIV IS l +5 • 5) 

r 1: < I' l' :,-; < v ' I 1 v r 1 ':'1- 1 • l • _ E- •• u c 1 l r;,.... T n 7 
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RESULTS 

Laminar Turbulent 
Flow Flow 

'('Vt"'o .,..,.,.Vro y-,.., /r., 

.OS .408 .237 

.10 .464 . 329 

.lS .S08 . 399 

.25 . S82 .S09 

. 30 .61S .SS6 

.40 .667 .638 

.so . 736 .711 

.60 .792 .777 

. 70 . 84S .838 

. 80 . 898 .89S 

.90 .9SO .949 
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