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In this paper some fundamental concepts of information 

theory and their potential for classification construction in geography 

are discussed. The concepts of information and uncertainty are shown 

to be equivalent. Three different information measures are discussed 

and the particular situations for which each is appropriate are identi-

fied. Hith this background the available literature on the application 

of information theory to classification is reviewed and reinterpreted. 

A classification algorithm for objects characterized by multistate 

ordinal attributes is presented and tested. Recommendations for 

further research include the consideration of explicitly spatial 

infor~ation measures and the examination of more general information 

metrics. 
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INTRODUCTION 

From time to time in the historical development of most dis

ciplines some new words or phrases enter their vocabulary. Some of these 

words, in an unexplained manner, acquire a mythical or "magical" status. 

Among the words of this type in contemporary human geography are entropy 

and information theory. The word entropy has a long fascinating history 

(cf. Dutta 1968), but until 1948 it was largely confined to the 

physici.st 's repertoire. Then Shannon in his classic work on information 

theory (Shannon and Weaver 1949), had the insight to see that the entropy 

measure of the physicists could also be used as an information measure. 

Very soon entropy and information were becoming magic words in a number 

of disciplines, including biology (Quastler 1953), sociology (Van Soest 

1954), psychology (Rapoport 1956, Garner 1962), and ecology (Margalef 

1958, Pielou 1969). In some cases the pioneers in the field were over

optimistic, as in psychology, (Whitla 1968), and biology (Johnson 1970). 

In recent times the concepts of entropy and information have 

made their way into the literature of economics (Georgescu-Roegen 1971, 

Mogridge 1972, Marschak 1974), and geography (Wilson 1970, Medvedkov 1970, 

Lee 1974, Webber 1975). In geography entropy or information measures have 

been used for two somewhat different purposes. On the one hand, there is the 

work pioneered by Wilson, which is mostly concerned with generating most 

likely probability distributions to predict patterns of spatial behavior. 

This body of v10rk using the entropy maximizing paradigm has been largely 
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influenced by the ideas of Jaynes (1957) and Tribus (1969). ·On the other 

hand, there are those who use information measures to provide a statistical 

summary of spatial distributions, (Medvedkov 1967a, b, Gurevich 1969a, b, 

Garrison and Paulson 1973). In these applications information statistics 

are used to measure the uncertainty present in distributions, since 

Shannon's entropy or information measure "is the correct measure of the 

"amount of uncertainty" in a probability distribution" (Jaynes, 1963a). 

This paper is concerned with the second type of application of information 

statistics in geography. 

The purpose of this paper is to demonstrate the potentialities 

of information theory for the construction of classifications in geography. 

With this purpose in mind the first chapter is devoted to a discussion 

of the basic concepts of information theory that are necessary for an 

understanding of the remainder of the paper. In particular, the equi

valence between the concepts of information and uncertainty, and the 

question of which information measure one-should use in a particular 

situation, are examined. In the second chapter the classification 

problem is stated. Existing information theoretic approaches dealing 

with this problem are reviewed and modified so that they can be applied 

to geographic problems. In the third chapter an algorithm for classi

fying individuals characterized by scores on multistate ordinal attributes 

is presented. The algorithm is used to discover groups within a sample 

of 198 individuals. Many possible applications of the algorithm, of 

interest to behavioral geographers, are indicated. Finally, in chapter 

four a short summary of the paper is given, along with some conclusions 

and outlines for further research. 



CHAPTER I 

INFORMATION THEORY SOME CONCEPTS AND MEASURES. 

Introduction 

One of the main concerns of information theorists has been the 

quantification of information. In general the quantification of infor

mation, as outlined in Shannon and \Jeaver (1949), Goldman (1953), Khinchin 

(1957) and Kullback (1959) is related to a known set of alternatives - an 

exhaustive set of mutually exclusive possibilities which is assumed to 

be known. This set is usually referred to as an ensemble or universe 

of possible states or outcomes from an experiment. In information 

theory one is never concerned with the realization of a particular state 

or outcome as such, but rather with its realization within the universe 

of all possible states or outcomes. Therefore, information is provided 

by a selection from the universe of possible states, a selection which 

reduces the a priori uncertainty of what was going to happen. 

The universe of all possible states defines our a priori 

uncertainty, freedom of choice or doubt. Clearly the larger the universe 

of possible states the greater will be our a priori uncertainty. Infor

mation then may be considered to be that quantity which reduces our 

uncertainty, curtails our freedom of choice or removes our doubt. Fur

thermore, associated with the concept of information is an element of 

surprise, unexpectedness or improbability. The information to be gained 

from an experiment then depends on the set of possible outcomes and 
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the likelihood of each. In the words of Rapoport (1954) "the repertoire 

of the source from which the message is chosen" is all-important when 

measuring the information content of a message. 

The purpose of this chapter is to outline and clarify the basic 

concepts of information theory that will be necessary for an understanding 

of the remaining chapters. In later chapters the discussion will focus 

on measuring the information content of areal distributions and on ways 

of arranging (classifying) the areal units so as to minimize the uncer

tainty of the distribution. Here the measurement of the information 

content of messages and its relation to uncertainty are examined. This 

is followed by a study of three information n1easures and a discussion 

of the appropriate measure to use in a given situation. Information 

measures are given for objects characterized by a number of non

independent variables. The interrelationships between the concepts of 

information, entropy and order are discussed and clarified. Finally, the 

value or usefulness of the information contained in a message is examined. 

Information and Uncertainty 

Suppose we have a series of observations as a result of experi

mentation on some phenomenon X. The states that X can attain are assumed 

to be discrete and to belong to the sequence x1, x 2 , ..••.••. ,xi, ••••• 

One may think of X as being a message and the xi as being the symbols or 

letters that could be used to make up the message. Similarly, X could be 

the landuse pattern of say some city at a particular time, while the xi 

would be the different la.nduses that could occur at that time. Following 

Goldman (1953) and Good (1956) the amount of information to be obtained 

from observing that X = xi may be defined to be 



= 
prob (X = xi) after the observation 

log [ ----------~-------------------
prob (X = xi) before the observation 

5 

Clearly, if there are no errors involved in the observation 

the numerator in (1.1) is unity, and 

= 

(1·1) 

(1. 2) 

where Pi is the denominator in (1.1) and k is the logarithmic base. 

From the definition, (1.1), one can consider the expression,-

log P. to be a measure of the information content or self-information 
l. 

(Ingels 1971) of the message X =xi. Hence the information content of 

any message is a function of the improbability of its occurrence. Hence-

forth -log Pi is considered to be a measure of the amount of potential 

information,P.I.,that can be obtained from the observation that X= xi' 

since strictly speaking one is concerned with the amount of information 

that can be obtained, rather than the actual amount obtained from the 

realization of a particular state x .. 
l. 

It was indicated earlier that information is that quantity 

which reduces our uncertainty. Hence it should be possible to interpret 

(1.2) as a measure of our uncertainty with respect to xi. Intuitively 

it is reasonable to expect that our uncertainty is equivalent to the 

minimt~ amount of information needed to select a particular xi from a set 

of possible x's. If our uncertainty in any situation is defined to be 

the minimtlffi number of k - nary questions (k > 1, kslR ) needed in order 

to answer a specific question in the light of specific evidence, then 
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-logk Pi can be shown to measure this uncertainty, where Pi is the 

probability of occurrence of the event about which we are uncertain. 1 

Suppose some experiment X is repeated N times. Let the outcome 

of each experiment be denoted by xi, i = 1, 2, 3, •••• , N. Further assume 

that the outcomes of the N experiments are all different. Then the minimum 

number of k-nary questions required to determine the particular xi that 

represents the outcome of a given.experiment is U = logk N. However, 

since all the xi are equally likely to represent the outcome of the 

experiment, the probability that X= xi is Pi = 1/N. Then by (1.2) the 

P.I. content of the message X =xi is. I (X =xi) = -logk Pi which, of 

course, is equal to logk N = U. 

It is not necessary to assume that all the outcomes of an 

experiment are equiprobable to demonstrate the equivalence between the 

definitions of information content and uncertainty. For some experiment 

X let there be m different outcomes. Assume that in a series of N, (N>m), 
m 

experiments the outcome X= xi occurs ni times, where I n. = N, > 
i=l l. ni = o, 

all i. Our uncertainty in this case is equivalent to the minimum number 

of questi0ns required to determine which particular x. represents the 
l. 

outcome of a given experiment. In any sequence of N experiments the 

number of different outcomes that could each be observed ni times is N/ni, 

i = 1, 2, •••• , m. Therefore, to determine the outcome of a particular 

experiment the minimtnn number of k-nary questions that it is necessary to 

ask is log N/n., where n
1
• is the number of times the particular outcome 

k l. 

1 
The concepts of information and uncertainty have been studied from a 
different standpoint by De-Groot (1962). 
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occurs in the sequence of N experiments. Equivalently our uncertainty 

about the outcome of this particular experiment is U =log N -log ni. 

Conversely, the amount of potential information to be obtained from 

observing that xi is the outcome of one performance of the experiment 

Hence the definitions of information content and uncertainty 

are equivalent. Therefore -log Pi can also be regarded as a measure of 

the amount of information needed to select a particular xi from the set 

of possible x's. Itfollows immediately from the definition of uncertainty 

that -log Pi is the minimum amount of information needed to select the 

particular xi. From (1.2) one may observe that the more improbable a 

particular xi is the more information that is needed to select it from 

the universe of possible x's. The foregoing discussion is now summarised 

in the following list of equivalent interpretations of the expression 

= Amount of potential information received from message X=xi 
= Potential information content of message X=xi 
= Uncertainty about content of message X=xi 
= Minimum amount of information needed to select the 

message X=xi from the set of all possible messages. 

One may observe here that for (1.3a) to be equivalent to (1.3b) it is 

necessary to assume that the information we are receiving is being 

(1.3a) 
(1. 3b) 
(1. 3c) 

(1. 3d) 

transmitted to us in the absence of noise. Throughout the remainder of 

this paper the first interpretation, (1. 3a), will be used. Its equivalence 

to the other interpretations will be rarely restated, but it will be 

constantly assumed. 
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The rationale for using the logarithm of the information 

function is that it satisfies the following two desiderata. First it 

allows one to establish a formal equivalence between information and 

uncertainty measures, as indicated aoove. Secondly it satisfies the 

requirement that the P.I. obtained from two independent events be 

equal to the sum of the P.I. received from each event separately. In 

fact if one makes the definition of the amount of P.I. to depend solely 

on probabilities and if one insists on it having the additive property 

for probabilistically independent events, then minus the logarithm of 

the probability is the only 'possible definition, (Good 1956). 

Shannon's Information Measure 

It has been established that the amount of potential infor-

mation obtained from observing any state xi of some phenomenon X can 

be measured by -log Pi where Pi is the probability of X being in the 

state xi. If all the states that X can assume are a priori equi-

probable then clearly the amount of P.I. to be obtained from observing 

say m states is -m(log Pi). In general, however, all the states do not 

have equal prior probabilities, as is evident from the landuse example 

given earlier. Therefore, the amount of P.I. to be obtained from each 

state Xi has to be weighted by the probability of its occurrence. We 

may now define the mean amount of potential information to be obtained 

from each state xi in a sequence of xi's as 

11 = - I p log P. (1. 4) 
i i l. 

where P. > 0, all i and I P. = 1. 
l.-

i 
l. 
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Expression (1.4) corresponds to Shannon's well known measure of infor-

mation or entropy. By (1.3d) one may also interpret r
1 

as a measure of 

the minimum amount of information needed, on average, to select a parti-

cular xi from the set of possible xi's. This type of interpretation led 

McKay (1950) to suggest the term "selective information" for r 1 • From 

(1.3b), (1.3c) and (1.4) it follows that the mean information content, 

mean uncertainty and the entropy of a sequence of messages are all 

equivalent. 

The choice of logarithmic base for (1.4) is arbitrary. Infor-

mation theorists use logarithms to base two, and the information units 

then are called binary digits or bits. When natural logarithms are used 

MacDonald (1952) suggested that the information units be called "nits" 

and for logarithms to base ten it has been suggested that the units be 

called decimal digits (Good 1953), Hartleys (Abramson 1963) or decits 

(Pielou 1966a). In the remainder of this paper natural logarithms will 

be used, unless an occasion demands otherwise. 

In applications of r 1 the prior probabilities Pi may be unknown. 
A 

Then the maximt~ likelihood estimators of the Pi' Pi = ni/N, are used 

where ni is the frequency of occurrence of the state xi in a sample of 

size N. Then r 1 may be rewritten as 

= 

where l. n 
i i 

ni n· - L N log~ 
i 

n• 
= N and l ~ = 1 • 

i N 

(1. 5) 

In this case r
1 

is the geometric mean of the amount of P.I. 

obtained from observing any state xi. 



This can be easily shown. 

Let Pi = n./N. 
l. 

10 

The amount of potential information obtained from a particular sample of 

. TI (P.)ni sl.ze N is -log 
i l. 

If every state had the same probability P of occurrence then the mean 

amount of P. I. to be obtained from the observation of any state ~vould be 

-log P, by (1.2). Then if we ask what function f satisfies the condition 

that 

I (X) =-log P = - log f (TI (P) ni) 
i 

the answer is, of course, that f is the Nth root. Therefore, the mean 

amount of potential information obtained from each observation in the 

sample is 

I (X) 

= -I ni/N log (ni/N) 
i 

= 

" The sampling distribution of I
1 

has been studied by Basharin 

A 

(1959) and Bowman et. al. (1971). Basharin showed that r 1 is a biased, 

consistent, asymptotically normal estimate of I 1 , and that its mean and 

variance have the following values, 
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= I - S-l log e + 0 (N-2) 
1 2N 2 

1 
N 

(1.6) 

(1.7) 

where S is the number of states that X can assume and 0 (N-2)designates 

a quantity of order N-a, a > 0. When the S statesare equally likely I 1 

has been shown to be x2 distributed, (Bowman et al. 1971). Formula (1.7) 

can be used in a test for equality of I 1 from two samples following a 

method proposed by Hutcheson (1970). However, the fact that in calcula-

ting the variance formula it is necessary to assume that the number of 

states that can occur in the sampling universe is known,may limit the 

applicability of this procedure to geographic situations. 

It has been suggested by Pielou (1966a) that 11 can never be 

regarded as strictly equal to I 1 • The reason offered is that to do so 

would involve making two assumptions, first that the population at hand 

is a sample from some undefined, conceptually infinite population, and 

second that it is an exactly representative sample. These assumptions 

are made when invoking the Law of Large Numbers to equate the probabi-

lities Pi with Pi= ni/N, (Von Mises 1957). Here it is felt that this 

mode of reasoning is conditional on one's interpretation of what is 

meant by the term probability. The mode of reasoning that Pielou 

exemplifies follows from adopting an objectivist and relative frequency 

interpretation of probability. However, if one subscribes to the 

subjective school of probability (Jeffreys 1939, Good 1950, Savage 1954, 

Barnard 1962) where a probability statement is considered to represent 

one's degree of belief in propositions, then one does not have to appeal 



12 

to the Law of Large Numbers nor to vague undefined infinite populations. 

The probabilities may still be defined in relative frequency terms, but 

now one can interpret the observed relative frequencies as being the 

true population probabilities consistent with what information is avail-
A 

able. These probabilities can then be used to calculate I 1 from the 

sample data at hand, and I 1 will be equal to I
1

, since now the probabi

lities are being defined subjectively as Pi= Pi= ni/N, representing 

our belief that the system being studied is in certain states. Hence 

r1 can be equal to I
1

, if the probabilities are defined subjectively. 

Brillouirrs Information Measure 

An alternative way of measuring the mean information content 

of a message was proposed by Brillouin (1956). He considered a situation 

where N different things might happen. He also assumed that each of the 

N possible outcomes were equally probable a priori. The information 

content of the event that actually happened then was defined as 

I = K log N, K a constant. (1. 8) 

Of course, this definition is mathematically equivalent to the one given 

earlier in (1.2). 

In the light of this definition of the information content of an 

event one can easily derive a measure of the mean information content of 

a particular outcome from a series of experiments. Assume an experiment 

X is performed N times and that for each experiment there are m possible 
m 

outcomes. The outcome xi occurs n1 times such that L n. = N. 
. 1 l. 
1.= 

number of different permutations of the N outcomes subject to the 

The 



condition that the ith outcome occurs ni times, all i, is 

w = 
m 

N! I IT 
i=l 

n.! 
l. 
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When each of these permutations are equally probable the potential infor-

mation content of the one that is realized is B = log W. Then, of course, 

the mean information content of each of the N outcomes that occur is 

m 

= B/N = .!. [ log N! 
N I log n.! 

l. 
(1. 9) 

i=l 

If, and only if, all the ni are large Stirling's approximation, 

log x! ~ x log x- X~ may be applied to (1.9). Then a good approximation 

of 1
2 

for large N is 

= L(ni/N) log (ni/N) 
i 

(1.10) 

Otherwise, in order to evaluate (1.9) the more complete form of Stirling's 

approximation, log x! ~ x log x- x + 0.5 log (2Tix), should be applied, or 

(1.9) may be calculated directly from the table of log x!, x = 1, 2, .•••• , 

1000, given by Pearson and Hartley, (1954). 

At this point one may observe that while the formulae for 11 
-and t 2 are identical, quite different interpretations are given to the 

A A -results depending on whether 1
1 

or I 2 is being calculated. 11 provides 

an estimate (albeit a biased one) of 

to 12 • Thus whenever the expression 

--11, while 12 

- L ni/N log 
l 

provides an approximation 

ni/N is used it should 

always be indicated whether it is being used as an estimator or as an 

approxi~ation measure. Unfortunately, in the literature this distinction 

is rarely made explicit. 
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In the literature (Margalef 1958, Pielou 1967, 1969, Lloyd et. 

al. (1968), Orloci 1968, 1970) it has been suggested that r 2 is the appro-

priate measure to use to determine the mean information content of any 

event in a population of events which is completely sampled, since 

Shannon's measure r 1 is, strictly speaking, defined only for an infinite 

population. This question of when to use the Shannon or Brillouin 

measure is now examined in more detail. 

Comparison of the Shannon and Brillouin Measures 

The Brillouin information measure, !2, is always less than 

"' or equal to the Shannon measure, r 1 , or its estimate r 1 • 

= 

1 N! 
~ 

n. 
= N 

[ log + ni log .2 ] 
nl!n2! •••• nm! ~ N 

1 N! m 
(ni)ni] = - - log n1 ln2 ! .... nm! II 

N i=l N 

The expression in square brackets is equivalent to a multinomial probability 

(Feller 1968, p.l68) and is, therefore, necessarily less than or equal to 

unity. 

Hence (1.11) 

However, the expression in brackets is equal to unity only when one of the 

ni is equal toN and all the other ni's are zero. This corrP-sponds to a 

situation where the same result is achieved from each performance of an 

experiment. In this situation the potential information content of any 
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result is zero, whether it is measured by I 1 or I 2 • Hence, I1 ~ Iz 

with equality if, and only if, one event occurs with probability one 

and the others with probability zero. 

Given this mathematical result the next intriguing question 

is how or why does it arise?. The answer to this question is especially 

interesting when it is remembered that both I 1 and I 2 are, by definition, 

measures of the mean information content of a message selected from a set 

of possible messages. The distinction between the Shannon and Brillouin 

methods of calculating the mean information content of a message lies in 

the way the probabilities, that a particular message represents a certain 

event, are calculated. In Shannon's measure it is assumed that these 

probabilities are known a priori, cf (1.1) and (1.4), and that they remain 

the same for each message. Hence they must be defined in some way 

external to the events being studied. However, for Brillouin's measure 

the probabilities for each message are calculated from the events being 

studied. The probabilities are defined in relative frequency terms, but 

these relative frequencies cannot be determined until all the events, 

whose mean information content we wish to measure have already occurred. 

Therefore, when we apply Brillouin's measure we already know the total 

number of events that have occurred and the relative frequencies of the 

different types of events. It is precisely because we possess this 

structural information that Iz is less than I 1 . To see this consider a 

typical situation to which Brillouin's measure would be applied. 

An experiment X for which there are m different outcomes is 

performed N times. The first outcome occurs n1 times, the second n2 times 

and so on such that 
m 
~ n = N. L i 

i=l 
Then Brillouin's measure is, by (1.9) 



= 1 
N 

m 
[ log Nl - L log nil 

i=l 

16 

It is known that for large values of N, r 2 provides a good approximation to 

Shannon's measure, r 1 =- I P. log P. , where each P
1
. is estimated by . ]. ]. 

,... ]. ,... 
Pi= ni/N. When we estimate each Pi by Pi= ni/N we are in fact assuming 

that our prior probability of the occurrence of each of the outcomes of 

type i does not change throughout the sequence of experiments. However, 

if our sample forms a complete population, then before we proceed to 

calculate the information content of a message about the outcome of any 

experiment we possess some structural information, i.e. we know the total 

number of experiments that have been performed and also the frequencies 

of each of the different outcomes. This information must be taken into 

account when we calculate the probabilities that are used to determine the 

information content of each outcome. In this situation the sampling 

procedure is without replacement and the probability of any outcome, as 

the sequence of experiments proceeds, becomes dependent on the outcomes 

of the experiments that have already been performed. If after performing 

some number, say K (K < N), of the experiments it is found that the 

m 
frequencies of the different outcomes are given by the sequence {ki} , 

i=l m 
(k. ~ n., all i) such that l. ]. I ki = K, then there are only ni - ki 

i=l 
outcomes of type i from the remaining N - K experiments. Then the probabi-

lity of the K + 1st outcome being of type i is rather than ni/N, 

and the information content of this outcome is 

n 1· - ki 
-log = log (N- K) - log (ni- ki). 

N- K 
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Using this method to calculate the information content of each outcome it 

follows that the total information content of the N outcomes is 

N-1 
I 

K=O 

m 
log (N-K) - I 

i=l 

m 

= log N! - I log nil 
i.:::l 

= B, (cf. example in Appendix A). 

(1.12) 

As usual the mean information content of each outcome to the experiment is 

r 2 = B/N. 

From this derivation of Brillouin's measure we may conclude that 

r 2 measures the mean information content of any event in a finite population 

of events when the whole population is sampled. If, however, the events 

being studied form a random sample from a very much larger population then 

the size of the population and the frequencies of the different types of 

events within it may be unknown. Lacking this information we can only 

assume that the probability Pi of any event being of type i will be the 

same for all events. Then the mean information content of each event in 

the large population will be measured by r1 = - L P log P. where the Pi 
i i l. 

are defined exogeneously or calculated from the relative frequencies in a 

random .sample from the population. From (1.12) observe that when K = 0 

the information content of the outcome of the first experiment is -log ni/N 
A 

and on average this value is - I ni/N log ni/N = r 1 , the estimate of· the 
i 

mean information content of any outcome as measured by Shannon. Therefore, 

the mean information content of the first outcome or observation in a 

sample is the same by either measure. Hence Shannon's measure, 11 , may 
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be applied to calculate the mean information content of the first obser-

vation in a collection that may be a population itself or a sample from 

a very much larger or conceptually infinite population. When the collection 

represents a sample from a larger population r 1 provides a measure of the 

mean information content of each observation in the population. Whether 

or not it is necessary to assume that the sample is from a conceptually 

infinite population depends on whether one is taking a relative frequency 

measure to represent a subjective or an objective probability. 

Earlier it was shown that I1 is also a measure of our mean 

uncertainty about the outcome of any experiment. So also is Brillouin's 

measure, 12 • Both r 1 and r 2 measure the minimum number of questions we 

need to ask, on average, to determine the outcome of any experiment. Our 

uncertainty about the outcome of the first experiment, on average, is 

the same whether it is measured by r 1 or r 2 • In a completely sampled 

population, however, after each experiment the uncertainty about the out-

comes of the remaining ones is reduced, by the information obtained from 

identifying the outcomes of the experiments that have occurred. Some 

further properties of 12 are examined now. 

The expected reduction in the information content of a sample 

when one randomly chosen observation is omitted is the same for either 

measure, (Baer, 1953). 

Consider two samples, one of size N and the other of size N-1. 

The total information content of the sample of size N may be wri~ten as 

= 

The probability that the omitted observation represents the occurrence of 

an event of type i is Pi = ni/N. The expected amount of information to be 



obtained from the sample of size N-1 then is 

m ni (N-1)! 
= 2 -- log ---------

i=l N n1 !n21 ••• (ni-l)! •• nm! 

The expected difference in the information content of the samples is 

E (llB) 
N N-1 

= E(B ) - E(B ) 

= 

= 

n. N! 
2 __:_ log [----
i N n1!n2!···fim! (N-1)! 

A consequence of the previous result is that the expected 

effect of omitting a randomly chosen observation from a sample is to 
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(1.13) 

decrease the sample average amount of potential information per obser-

vation, when the information is measured by 12 . 

The mean information content of any observation in the 

sample of size N is I~ = BN/N • Similarly, the expected mean information 

N-1 N 1 content of any observation in the sample of size N-1 is E(I 2 ) = E(B - ) 

/N-1 • Then the expected difference in the mean information content of 

each observation is 

E(llr 2) TN N-1 
= ~2 E(I2 ) 

BN E(BN-1) 
= 

N N-1 

E(llB) BN 

= 
N-1 N(N-1) 

N! 
m ni ni 1 II ] = log ( -) . . 

N(N-1) In I fim' nl. 2 · • · • · i=l N 
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As before the expression in square brackets corresponds to a multinomial 

probability and is, therefore, less than or equal to unity. Hence 

with equality if, and only if,ni = N for one i, say i 0 , and ni = 0 for 

all i f io • In terms of uncertainty the last result may be interpreted 

as follows: on the average our mean uncertainty about the type of any 

event decreases as the number of events in the sample decreases. 

If the Shannon estimator, r1 , were used the result of dis-

regarding a randomly chosen observation may be either au increase or a 

decrease in the average amount of potential information to be obtained 

from any observation. The result depends on the frequency of occurrence 

of the type of event represented by the disregarded observation. If the 
Af At 

frequency is high the result is an r 1 > r1 where r 1 is an estimate of 

the average amount of potential information to be obtained from any 

observation in the sample of size N-1. Conversely, if the disregarded 

observation is atypical in the sense that the event that it represents 
"r 

has a low frequency then the result is r 1 < r 1 • 

Finally, the sensitivity of the two information measures to 

the sample size, N, is examined. By definition if the probability 

distribution remains constant Shannon's measure, r 1 =-I P. log Pi , is 
i 1 

not affected by varying N. However, Brillouin's measure, r 2 , is an 

increasing function of N for all ni and N satisfying the following 

condition, 

N 

IIn. 
i .1 

< ( 2rr ) m-1 
, e 
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where m is the nt~ber of different types of events that occur and e is 

the natural logarithmic base. When this condition is satisfied 12 

increases at a decreasing rate with respect to N. 

To see this write 

12 = ~ [ log N! -I log NPi! ] , where I NPi = N. 
N i i 

Applying the extended version of Stirling's approximation, 

log x! 
1 1 

~ (x + ~ log x - x + - log (2TI) , 
2 2 

1
2 

may be rewritten as 

Then 

1 1 1 m 1 
1

2 
= N [(N +f) log N- N + 2 log (2TI) -i~l ((NPi + 2) log NPi 

=-

--= 
oN 

1 
- NP + 

2
- log (2TI)) 

i 

t m-1 1 '\' 

i
t... Pi log Pi - <. ZN) log 2TIN - -- l. log Pi 

2N i 

( m-1) { ( ) } + __!___ '\' log 2TIN - 1 L log Pi 
2N2 2N2 i 

This derivative is strictly positive when 

m 
(m-1) loge (2TIN) - (m-1) + L 

i=l 

m 

log p. > 0 
e J. 

m-1 
<==> log (2TIN) + log II Pi 

i=l 
> (m-1) 

m-1 
<==> log { (2TIN) . 

m 

II Pi } > m-1 
i=l 



<==> 

<-> 

(m-1) 
{ (2rrN)m-l • II Pi } > e 

i 

( 2rrN . ni-l 1 
-)· >-

e·· 
II P. 
i l. 

Write Pi= hi/N where ni varies proportionately with N. 

Then ( ~ )m-1 if! 
>--

e II n. 
i l. 

N 2Tr )m~l or < ( 
II e n. 
i l. 
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(1.15) 

The reason that 12 increases with N when (1.15) holds is because the 

information about the sample size and the relative frequencies decreases 

in its importance as N becomes large. 

To examine the sensitivity of 12 to N three relative frequency 

distributions have been studied for various values of N ranging from 

N = 20 to N = 2000. The situation may be envisaged as one where an 

experiment X is being performed N times. There are six possible outcomes 

to each experiment. It is assumed that the relative frequency of 

occurrence of the different outcomes, ni/N,i=l, •.. 6, is independent of 

the the sample size. To determine if the sens~tivity of 12 to N is a 

func.tion of the shape (i.e. smooth versus peaked ) of the relative 

frequency distribution the measure 12 has been calculated at various 

levels of N for three distributions ranging in shape from an almost 

uniform (A) to a very peaked one (C) . The relative frequencies 



corresponding to each distribution are expressed in decimal form in 

Table 1. 

DISTRIBUTION 

A 
B 
c 

1 

0.10 
0.05 
0.00 

2 

0.20 
0.05 
0.05 

OUTCOME 

3 

0.20 
0.10 
0.05 

4 

0.20 
0.65 
0.08 

TABLE 1. Relative Frequency Distributions. 

5 

0.20 
0.10 
0.05 

6 

0.10 
0.05 
0.05 
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The computed values of r 2 for each of the three distributions 

at different levels of N are listed in Table 2 and shown graphically on 

Fig. 1. 

DISTRIBUTION A B c 
N 

20 0.6132* 0.3995 0.2533 
40 0.6683 0. 4411 0.2822 
60 0.6984 0.4594 0.2952 
80 0.7045 0.4700 0.3029 

100 0.7131 0.4770 0. 3071 
120 0. 7191 0.4820 0.3117 
140 0. 7230 0.4858 0.3145 
160 0. 7272 0.4888 0.3166 
180 0.7300 0.4916 0.3184 
200 0.7339 0.4932 0.3199 
300 0.7398 0.4996 0.3247 
400 0.7439 0.5030 0.3273 
500 0.7465 0.5053 0.3290 

1000 0.7520 o. 5103 0.3329 
1500 0. 7541 0.5121 0.3342 
2000 0.7552 0.5131 0.3349 

TABLE 2. Brillouin information measures for distributions A, B, and C. 

*all the information units are decits. 



DEC ITS 

0.75 . 

0.70 

0.65 

0.60 

20 30 50 70 100 150 200 300 500 700 1000 1500 2000 

DISTRIBUTION A SAMPLE SIZE 

0.55 

0.50 ~------------------------------------~======::::::::::::================ 

0.45 

0.40 

0 

20 30 50 70 100 150 200 300 500 700 1000 1500 2000 

DISTRIBUTION B SAMPLE SIZE 

FIGURE 1 Sensitivity of Brillouin's Information Measure to Sample Size, for distributions A and B 

The horizontal line in each graph is the measure obtained !rom Shannon's formula. 

t-.) 

+:--



DEC ITS 

0.35 

0.30 

0.25 

% 

25 

20 

15 

10 

5 

20 30 50 

FIGURE 1 cont'd. DISTRIBUTION C 

c 
B 

A 

20 30 50 

70 100 150 200 300 500 700 1000 1500 2000 

SAMPLE SIZE 

70 100 150 200 300 500 700 1000 1500 2000 

FIGURE 2 Structural Information Indices for distributions A, B and C. 

t.) 

l.n 



26 

From these data it is clear that 12 is a monotonically increasing function 

of log N, rising rapidly at first for N up to about 200 and then levelling 

off to converge to 11 • To determine how the sensitivity of 12 toN is 

affected by the shape of the distribution it is necessary to establish 

a method for comparing the results obtained from each distribution. It 

" has been shown that for most distributions 11 > 12 , (1.11) above, and 

" that 11 is unaffected by varying the sample size if the relative 

frequency distribution is held constant. By utilizing these properties 

of 11 it is possible to define a structural information coefficient, S.I., 

for each distribution at various levels of N. By the structural information 

content of a population is meant the information about its size, N, and 

the relative frequency of occurrence of different types of events in it. 

For comparative purposes the coefficient may be expressed in percentage 

terms as 

S. I. = (1.16) 

Taking the relative frequencies as subjective probabilities 

the Shannon measure 11 has been calculated for each distribution. Here 

it is assumed that the probabilities of the different outcomes remain 

the same for each experiment. At all levels of N the values of 11 for 

the three distributions are 

= 0. 7572 = 0.5168 = o. 3377 

where the superscripts A, B and C refer to the corresponding distribution. 

Using these values of 11 the structural information coefficient for each 

of the distributions has been calculated at different levels of N. The 
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results are listed in Table 3 and appear on Figure 2. The results indicate 

clearly that the sensitivity of I
2 

to N is a function of the shape of the 

distribution. Specifically, the more peaked is the distribution the 

greater the sensitivity of I 2 to N. The structural information will be 

at least 5% in samples of size up to 130 when the distribution is nearly 

uniform, like A, and in samples of size up to 200 when the distribution 

is peaked, like C above. 

DISTRIBUTION 
A 

N 
B c 

20 19.23 22.69 24.99 
40 11.97 14.64 16.43 
60 8.27 11.10 12.58 
80 7.20 9.05 10.30 

100 6.08 7.70 9.05 
160 4.21 5.42 6.25 
200 3.33 4.56 5.27 
500 1.67 2.21 2.57 

1000 0.93 1.06 1.42 

TABLE 3. Structural Information Coefficients. 

The interpretational significance of these properties of I2 can 

be illustrated by some examples. Suppose some experiment X is performed 

N times. There are five possible outcomes to each experiment. In one 

sequence of twenty experiments each of the five outcomes occur equally 

often. For this sequence 

0.6990 I(l) = 0.5743 
2 



28 

In a second sequence of twenty experiments it is observed that only four 

different outcomes occur and that these are equiprobable. The correspond-

ing information measures are 

(2) 
I

1 
= 0.6021 I(Z) = 0.5035 

2 

In a third sequence of two hundred experiments it is again observed that 

there are only four different equiprobable outcomes. The informati~n 

measures are 

= 0.6021 0.5848 

If it were asaumed that I
1 

and r
2 

were both measures of our mean 

uncertainty about the outcome of any experiment (without specifying the 

nature of the sample data), then r(2)< I(l)and I(Z) < r
2
(l) would be 

1 1 . 2 

intuitively reasonable results. So also would be the result r
1
(3) < I(l) 

1 ' 

but ri3) > ril) would appear to be counter-intuitive, since it would imply 

that our uncertainty as to the outcome of any experiment is less after 

performing twenty experiments from which there are five equiprobable 

outcomes than after performing two hundred experiments which indicate that 

there are four equally likely outcomes to any one experiment. Given the 

possibility of results of this type Peet (1974) suggested that Brillouin's 

measure would he unacceptable for measuring heterogeneity in ecological 

distributions. 

If, however, the interpretations given to r 1 and r 2 in this 

paper are adopted, then the seemingly internal inconsistencies in the 

results from r 2 vanish. ~ben r 2 is interpreted as a measure of our mean 

uncertainty about some event in a completely s&~pled population of events 
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and I, is interpreted as a measure of our mean uncertainty about some 
.1. 

event in a large population of events, from which we have only a sample 

then all the information measures calculated above vary in the way that 

one would expect them to. The reason why the result r~l) < r~3 ) is 

obtained is because the structural information in the first sequence 

is of greater importance, since the sample is small. As the sample size 

increases the structural information declines in importance, and hence 

I
2 

increases. 

The fact that I 2 increases with N may be a disadvantage if 

it is desired to compare the information measures obtained from different 

studies. In ecological situations, however, Pielou (1967) has argued 

that the information or uncertainty measure (which she uses to measure 

diversity) should be a function of the sample size, and hence she advocates 

the use of Brillouin's measure. The sample size effect may be overcome 

to a large extent by using a relative information index, rather than the 

actual information measure. The proposed relative information index is 

= 

1 Nl 
where I = log--~----------~~----------

2 Max N {[N]! }m-r {([N] + 1 ) ! }r 
m m 

·and N is the sample (population) size, 
m is the number of different outcomes observed, 
[N/m] is the integer part of N/m, 
r = m (N/m- [N/m]). 

When N is an exact multiple of m, r = 0. 

(1.17) 

(1.18) 
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The index RI2 ranges between zero and unity. When RI 2 = 0 we 

obtain no information from a message, because we were already certain about 

its contents. RI2 = 1 when we are maximally uncertain about the content 

of a particular message. Hence the index RI 2 may be used to provide an 

indication of the importance of the constraints that are operating in .a 

particular experimental environment, (Gurevich, 1969a, b). 

The advantage of using the relative information index in conjuction 

with the actual information measure may be illustrated by the following 

example. In a population of twenty events five different types of event 

are represented and each occurs four times. In this case our mean 

uncertainty about the type of any event is I 2 (l) = 0.5743. In another 

population of 200 events it is observed that four different types of event 

each occur 38 times, while a fifth type of event occurs 48 times. Our 

mean uncertainty about the type of any event in this population is 

I~2 ) = 0.6746. I
2 

(2) is greater than Iil) because the structural infor

mation in the second sample is less useful to us. In the first population 

there is a uniform distribution of the different types of events, while in 

the second population the distribution is almost uniform. This difference 

in the uniformity of the distributions is reflected by the relative 

information indices, which are RI~l) = 1.000 and RI~2 ) = 0.99697 

respectively. Hence the relative information index provides a useful tool 

for comparing the internal uniformity or homogeneity of completely sampled 

populations. 

Clearly for large populations, from which we may have only 

sample data to use when estimating the probabilities of the different types 

of events occurring,the relative information index is 
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= (1.19) 

where r1 Max = log m* 

and m* is the number of different types of events that occur in the total 

population of events. 

Good's Information Measure 
A 

In the Shannon estimator, r 1 an objectivist is assuming that 

ni/N provides a good estimate of the true population probability Pi • This 

will only be the case if each of the ni are large. Furthermore, in the 

Shannon and Brillouin measures it is assumed that the number of outcomes 

that can occur from an experiment X is known a priori. Oftentimes this 

may not be the case. Good (1953) has provided an information measure for 

these circumstances. His approach can be summarised as follows. 

Take a random sample from the outcomes of an experiment X. 

Let Sr denote the number of outcomes that occur r times in the sample such 

that L S = N, where N is the sample size. Let qr be the unknown population 
r r 

proportion of an arbitrary outcome that occurs r times in the sample. 

Then Good has proved that Shannon's measure r 1 is given exactly by 

1 ~ 1 
= - I E (S ) { - + - + 

N r r r+l r+2 

1 d + - - - log E (S ) 
N-r dr r 

(1. 20) 

Here 1
3 

= 1
1 

is the mean amount of P.1. obtained from any outcome of an 

experiment conducted a very large number of times. To estimate 13 from 

sample data it is necessary to "smooth" the sequence s1 , s2 , .••• Sr, •• · 

' ' ' and replace it by the sequence s
1

, s
2

, ••• , Sr' .•• ; see Good (p. 242-3) 

for a description of the smoothing methods. Using these smoothed values 



then as an estimator of I
3 

or I
1 

we can write 

= 1 \' ' d ,. log N - - L r Sr (g + -- log Sr) 
N r r dr 

where g = 
r 

r 1 
I . - Y 

j=l J 

and y = 0.577215 . . . . . ' is the Euler Mascheroni constant • 
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(1. 21) 

d ' For large values of r the factor (g + -- log S ) may be replaced by log r 
r dr r 

to a good approximation. Good (1953) has provided some examples to 

illustrate the steps involved in computing this measure. 

Non Probabilistic Measures of Information 

The three information measures, I 1 I 2 , I 3 , discussed above are 

based on probability notions. In fact until 1962 it was generally accepted 

that information theory was a branch of probability theory, see for instance 

Good (1956), Khinchin (1957). In 1962 the mathematical foundations of 

information theory were defined without the use of probability notions by 

Ingarden and Urbanik, thereby showing that the dependence of information on 

probability could be reversed and that the two notions are equivalent in 

the abstract. They have demonstrated the formal equivalence of the abstract 

notions of probability and information within a measure theoretic framework. 

This approach has been further developed in a series of subsequent papers, 

for a complete set of references see Urbanik (1972). In this paper, however, 

the discussion will be limited to applications of the probabilistically 

defined information measures given earlier. 
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The Appropriate Measure In Different Geographic Situations 

The appropriate measure to apply to a particular set of data 

will depend on whether the data represent, on the one hand a population in 

itself or, on tl1e other hand, a random sample from some conceptually larger 

population. If the events being studied form a random sample from some 

larger population then the appropriate measure to use is Shannon's, I1, 

or its estimate r 1 . The measure that is calculated represents our mean 

uncertainty about any event in the total population, relative to what is 

known. On the other hand, if the events being studied represent a complete 

population of events then the appropriate measure is Brillouin's, I 2• The 

measure that is calculated then represents our mean uncertainty about any 

event in the population relative to what we know about the population. For 

large, completely sampled, populations of events Brillouin's measure may be 

- -approximated by r 2• I2 will always be an overapproximation and for popula-

tions smaller than 200 the approximation will be greater than the true 

value by at least 5%, unless the distribution is completely uniform, cf 

data in Table 2. Hence for small populations the mean information measure 

should be calculated directly from I 2 • Generally as the population becomes 

very large one can only collect data on a sample from it. TPe information 
A 

measure to be used in this situation is Il = - I ni/N log ni/N which provides 
i 

an estimate, albeit a biased one, of the mean information content of each 

event in the population. The variance of the estimate obtained from any 

sample can be calculated from (1.7) and the estimates obtained from 

different samples may be compared by Hutcheson's (1970) method. If in a 

random sample from a larger population some types of events are only rarely 

represented or, perhaps, it is felt that types of events that occur in the 
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population are not represented at all in the sample, then the appropriate 

A 

information measure is Good's, 13 , or its estimator, 13• 

The following example may help to illustrate the type of situ-

ation for which each of the measures is appropriate. Suppose we wish to 

measure the diversity of urban land use patterns. We equate the diversity 

of a pattern with the amount of information needed to describe i.t, and hence 

the more diverse the pattern the more information that will be needed to 

describe it. We study one large urban region, say Toronto. Denote the 

total area of the urban region by N, the number of landunits devoted to 

each landuse i by ni such that l 
i 

n. = N. 
]. 

If we are only interested in the 

diversity of the Toronto landuse pattern then we use Brillouin's measure, 

I 2 , and calculate our mean uncertainty about the landuse type that occurs 

in any given land unit. If our interest lies in estimating the diversity 

of urban landuse patterns ;i.n general then we w·ould use Shannon's estimate 11 

where the probabilities are estimated by Pi = ni/N. This measure estimates 

our mean uncertainty about the landuse type that will occur in any landunit 

of any urban region. 

Suppose we are interested in measuring the diversity of the 

horticultural or market gardening zone found around many urban regions. We 

could take a sample region. and calculate, say, the number of landunits 

devoted to the cultivation of each plant or vegetable. We may find that in 

our sample region some plants or vegetables are not widely grown. This 

factor may cause us to doubt if we have considered all the plants that are 

likely to be grown in these types of areas. To estimate the plant and 

vegetable diversity of these regions in general the appropriate measure 
A 

to use is Good's estimate, I
3

. 
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The advantages of using r
3 

are that it does not require that the population 

proportions of land devoted to each plant i, say, be estimated by ni/N and 

it is not nec~ssary to know all the different plants that occur in these 

regions in general. A disadvantage of r 3 is that it requires a large 

sample, since large values of Sr are required to permit acceptable smooth-

ing of the sequence s1 , s2 , •••• , Sr' •••• • 

Multivariate Information Measures 

The three information measures (Shannon's, Brillouin's and Good's) 

discussed above have been defined strictly for univariate distributions. 

In geographic applications of these measures it is more likely that we will 

be dealing with phenomena characterized by more than one variable. Without 

assuming that the variables are independent we can define a multivariate 

counterpart of r
1 

and r 2 • 

Suppose we have a collection of n objects, each characterized by 

a vector containing s entries. The s entries in each vector represent the 

values assumed by a particular object on s variables x1 , Xz, .... , Xs. It 

is assumed that each object is characterized by the same s variables. For 

example, the objects could represent census tracts within an urban area and 

the s variables could represent s different landuses types that occur in 

the urban area. Then each census tract would be characterized by a vector 

with each entry representing the number of units of a particular landuse 

that occur in that tract. Alternatively, the objects could be individuals 

with the variables representing questions (to which there are a fixed number 

of possible responses) designed to determine, say, some activity patterns of 

people. Each individual would be characterized by a vector, each entry in it 
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representing the response of the individual to a particular question, 

where the responses are coded nominally. 

When the n objects form a random sampie from a much larger 

population of objects the mean amount of information needed to select 

the vector that characterizes a particular object in the population can 

be shown to be 

(1. 22) 

= P (x • x2k • • • • • • xsk ) • lkl 2 s 

(1. 23) 

where for any ~. 2 < ~ < s 

r 1r 2 •••• r.t 
= - L P (xlkl, x2k2' •••• x~k.t) 

klk2 .••• k~ 

log P(x.tk lxlk ,x2k '•. • • ,x (n ) ) 
. ~ 1 2 ~-1 kc~-1> 

(1. 24) 

In the special case when the s variables are mutually independent (1.22) 

reduces to 

= (1. 25) 

for proof see Appendix B. 
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In words formula (1.22) may be interpreted as follows. The 

mean amount of information needed to select the s values that characterize 

any object is equal to the mean amount of information needed to select 

the first value plus the mean amount needed to select the second value 

given the first one, plus the mean amount needed to select the third 

value given the first and second values, and so on. When the variables 

are independent the mean amount of information needed to select the s 

values in any vector is equal to the sum of the mean amounts needed to 

select each value, as indicated by (1.25). 

If the n objects being studied form a complete population 

then the mean amount of information needed to select the vector that 

characterizes a particular object is given by 

I2(Xl, X2, •••• , Xs) = I2(Xl) + I2(Xz1Xl) + I2(X31Xl, Xz) 

+ ..•.••. ,+ r 2 <xslx1 , x2 , ••• , xs_1). (1.26) 

where for any t, 2 2 t ~ s, 

= 1 [ 
n 

rl rz • • • r (t-1) 
l log 

k1k2 ••• kt-1 

t 

t-1 
( n nik ) l 

i=l i 

log ( n nik. ) ! ] ' 
i=l J. 

(1. 28) 



Uik4 is the number of times the value X·k occurs for the variable 
• 1 i 

Xi, ki = 1, 2, 3, ••••t ri; i = 1, 2, •••• , s, and nikiflnjkj is the 

number of joint occurrences of the value xiki for Xi and xjkj for Xj 

such that 
s 
II { 

i=l 

s ( n n.k ) } = 
i=l 1 i 

n • 

When the s variables are mutually independent (1.26) reduces to 

= 

for proof see Appendix B. 
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(1. 29) 

When all the niki are large r2 (x1 , x2 , .... , Xs) is a good approximation 

of r1 cx1 , x2 , .... , Xs) , (Lemma 1, Appendix A). 

It was suggested in the univariate case that the sensitivity 

of Brillouin's measure to the population size could be overcome to a 

large degree by using a relative information index. In the multivariate 

case the relative information index is 

.... , X ) 
s 

• • • • ' Xs)M ax 

The maximum value, r2 Cx1 , x2 , •••• , Xs)Max 

(1. 30) 

occurs when the s variables 

are mutually inGependent and the distribution of values on each is 

uniform. Therefore, 
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= 

where ri is the number of possible values for each variable Xi' i=l,2, ••• s. 

[_E_] n is the integer part of---
r· J. ri 

When n is an exact multiple of each r. 
s J. 

and (1.31) simplifies to 

Information, Entropy, Order 

I log ri, for large n • 
i=l 

0, all i, 

In many applications of information statistics the expression 

I = - L 1 . 
J. 

Golledge 

Pi log Pi has been called a measure of the entropy (Semple & 

1970), order (Medvedkov,l967a, b), or information received 

from a distribution (Williams and Lambert 1966a, Marchand 1972, 1975). 

These terms have been used interchangeably, although the relationship 

between information, entropy and a third concept, negentropy, has been 

a controversial one, (Rothstein 1951, 1952, Tillman and Russell 1961, 

Brillouin 1962, 1964, Marchand 1972, Nauta 1972). Part of this 

controversy arises from the confusion caused by using r 1 as a definition 

of information (Brillouin 1956, Chp. 1 and p. 265-67) and a failure to 

maintain a clear distinction between our prior information about the 

system we are studying and the information we obtain from experimenting 

with the system. 
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The statistical measure of the entropy of a closed system is 
n 

given by S = - k L P. log Pi where n is the number of states that the 
. 1 1. 
1.= 

system can be in, Pi is the probability of the system being in the ith 

state, and k is some constant. l~en all the Pi are equal S attains its 

maximum value. These probabiliites, P., can be calculated in such a 
1. 

way that they reflect all our knowledge about the system before carry-

ing out any experiments on it, (Jaynes 1957, 1968, Tribus 1969). Then 

1
1 

or S measure the mean amount of information we need to select the 

outcome of any experiment, or the mean information content of the out-

2 
come of any experiment, by (1.3b) and (1.3d) above. When our prior 

knowledge or information about the system is minimal we can only 

legitimately assume that all the outcomes to an experiment are equi-

probable. Such a system is said to lack order. In this case the 

entropy, S, of the system is at a maximum and the mean amount of 

information needed to select the outcome of any experiment on the system 

is also at a maximum. Conversely, when our prior information is large 

some of the outcomes to an experiment are more likely than others and 

therefore the entropy and the mean amount of information needed to 

select the outcome of any experiment are reduced. Such a system dis-

plays some order. Therefore, by increasing the prior ( e.g. prior to 

carrying out some experiment ) information about a system the entropy 

and the mean amount of information needed to select the outcome of any 

2 
There is still some controversy among physicists and engineers as to 
whether the entropy of information theory and the entropy of thermody
namics are the same concepts. TerHaar (1956), Jauch and Baron (1972) 
and Skagerstam (1975) argue that they are not equivalent, while Tribus 
(1961, 1966) has argued that information theory provides a basis for 
thermodynamics. 
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experiment on it are decreased. In the literature, however, it has not 

always been made clear that the information we must increase to reduce 

the entropy of a system is our prior information about the system before 

experimenting with it. This information can be increased by either 

imposing order (e.g. by simplifying the system) or by discovering order 

already existing in the system. Brillouin (1956, 1962, 1964) has 

erroneously equated increases in information with decreases in entropy 

by failing to maintain a clear distinction between the information we 

possess about a system prior to experimenting on it and the information 

we obtain from each experiment. He suggested that information I be 

equated with negentropy, N, where I = N = - S. A similiar line of 

reasoning has been followed by Somenzi (1962) and Bell (1967). 

However, if information is equated with negentropy, where 

negentropy is taken to be the negative of entropy, this implies that 

information is being measureed in negative quantities, clearly an 

undesirable property. A more appropriate definition of negentropy is 

N = S Max - S or N = I 1 Max - I 1 • In this definition negentropy 

measures the amount of information we possess about a system before 

performing an experiment to select the next state it will be in, and 

N is always non-negative. When N = 0, the prior information is minimal, 

then the most unbiased assertion we can make is that each of the states 

the system can be in are equiprobable, (Jaynes 1957). When N = I Max 

the prior information is maximal and we can predict with certainty the 

next state the system will be in. The entropy expression, S, or I 1 , 

measures the mean information content of any experiment on the system, 
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or the mean amount of information needed to select the outcome of any 

experiment from the set of possible outcomes. Therefore, in short, 

the more disorder that exists in a system the larger will be its 

entropy and the smaller its negentropy or the amount of prior infor

mation available about it. Conversely, when the system displays more 

order its entropy is smaller and its negentropy larger. 

If the system under examination is not well defined then care 

should be exercised when equating entropy with the degree of order 

or organization in the system (Klein 1953, Landsberg 1961). For instance, 

in Chapman (1970, 1973) the entropy does not depend explicitly on the 

interactions between the points. It is in these interactions, however, 

that the structure of the system is reflected and it is this structure 

which is associated with the concept of organization. When information 

measures are employed to measure the degree of order in a system it 

should always be clearly stated what kind of order is being measured, 

i.e. is it biological, physical, sociological, etc? For example, 

Quastler (1964) offers different estimations of the information content 

of a specific bacterium to measure its physical, chemical and biochemical 

order (cf Nauta 1972 p. 262). Unfortunately, at times we read unquali

fied statements to the effect that entropy measures randomness or dis

order in a system. Such unqualified statements .are meaningless; the 

important question is what kind of randomness or disorder does the 

entropy measure in a particular situation. Every attempt should be 

made to insure that the system under examination in any study should be 

as well defined as possible, particulary if the entropies of different 
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systems, or of the same system at different points in time, are to be 

compared. In any study, perhaps, this is the most difficult problem 

of all - to learn how to state clearly: What is the specific question 

we are trying to answer? 

Finally, it is necessary to reiterate the viewpoint of Jaynes 

(1965) that it is incorrect to consider entropy or any information 

statistic as an objective measure, as Orloci (1968, 1970) does. The 

entropy or information measure is an anthropomorphic concept not only in 

the statistical sense that it measures our uncertainty as to the state 

of a system, but also in the phenomenological sense because it is a 

property not of the system, but of the particular experiments one 

chooses to perform on it. 

The Value of Information 

Some workers have expressed their concern about the value or 

usefulness of the information we obtain from information theoretic 

measures, Belis and Guiasu (1968), Marchand (1972, 1975), Behara (1974). 

The point at issue here is, of course, the non-equivalence of transmiss

ional (Shannon) and semantic information. As Shannon indicated when 

introducing his mathematical theory of communication the semantic 

aspects of communication are irrelevant to the engineering aspects, with 

which he is concerned. For him "the word information in communication 

theory relates not so much to what you say as to what you could say. 

That is, information is a measure of one's freedom of choice when one 

selects a message" (Shannon and Weaver 1949, p. 100). In information 

theory the information content of a message is a function of the 
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inprobability of its occurrence. The usefulness or relevance of that 

information for the receiver is ignored. These qualitative aspects of 

the information will be related to its utility. for the fulfillment of 

some goal. A modification of the Shannon information measure to 

incorporate the qualitative aspects as well as the quantitative aspects 

of the information content of a message has been proposed by Belis and 

Guiasu (1968). 

Let E1 , E2, E3, ••• ,En be a set of events, representing the 

possible outcomes of some experiment X having the probabilities P1, P2 , 

••• , Pn and utilities u1 , u2 , ••• , un respectively. The potential 

information content of any event of probability p and utility u, being 

dependent on both variables is written as I(u,P). It is reasonable to 

expect that the information measure I(u,P) should satisfy the following 

two criteria - (1) the potential information content of any two indepen-

dent events must be equal to the sum of the potential information content 

of each event separately and (2) the potential information content of an 

event having a certain probability P must be directly proportional to 

the utility of that event. Belis and Guiasu have shown that an information 

measure satisfying these two criteria is 

I(u,P) = - k u log P (1.32) 

where k is some arbitrary constant. 

It can be shown that the mean information content of any 

experiment X having as possible outcomes E1 , E2 , ••• ,En with the probabi-

lities P1, P2 , ••• , Pn and utilities u1 , u2 , ... ,lin respectively is 

= - k 2 u.Pi log Pi • 
i ~ 

(1.33) 
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If all the outcomes have utility equal to unity and k = 1, then I4 = 1. 

This information measure has recently received further attention from 

Skala (1974). 

While this attempt at measuring the qualitative aspects of 

information appears attractive at first sight, it is clear that it 

depends on an individual's ability to set up a numerical distribution of 

values on different events. For a start this would probably limit the 

number of possible events or outcomes to six or seven (Miller 1956). 

Furthermore, if the amounts of potential information received by 

different individuals from an event were to be compared it is likely 

that the utilities would have to be measured on a ratio scale. It is 

very doubtful if we could reasonably make that assumption, Simon(l957), 

Shepard (1964). For more elaborate discussions of the various types 

of information, see in particular McKay (1950, 1956, 1965) and Nauta 

(1972). 

Summary and Conclusions 

The purpose of this chapter was to outline and clarify some 

of the basic concepts of information theory that will be necessary 

for an understanding of the remainder of this paper. In this chapter 

the formal equivalence of the concepts of information and uncertainty 

has been demonstrated. Three information measures have been examined 

in detail and an attempt has been made to identify the particular type 

of situations to which each should be applied. Most of the controversy 

in the literature has been over the question of when to use Shannon's 

or Brillouin's information measure. By identifying the process which 
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gives rise to Brillouin's measure it is clear that this measure applies 

strictly to completely sampled populations, where the population size 

and the relative frequencies of different types of events within it are 

knmvn. Shannon's measure is defined for conceptually large populations. 

The prior probabilities about the types of different events are defined 

in some way external to the events being studied. From the conceptual 

population we usually have some sample data which is used to define the 

probabilities of different types of events in the population. The 

Shannon and Brillouin measures have been generalized to accommodate 

objects characterized by a number of nonindependent variables. The 

relationships between the concepts of information, entropy and order 

have been examined and hopefully clarified. Part of the confusion 

that has surrounded these problems has been due to a failure to distin

guish between two different types of information - the information we 

possess before we perform an experiment and the information we can 

get from the experiment. The former type of information corresponds 

to negentropy while the latter type corresponds to the entropy of the 

system on which we are experimenting. Caution is urged when applying 

the concept of entropy to describe social or economic systems which 

may not be well defined. 



CHAPTER 2 

CLASSIFICATION INFORMATION-THEORETIC APPROACHES. 

Introduction 

The objective of any classification exercise is to impose 

some order and coherence on the vast inflow of information we obtain 

from the real world. As Harvey (1969, p. 326) put it "By grouping 

sense perception data into classes or sets we transform a mass of 

unwieldy information so that it may be more easily comprehended and 

manipulated". Our ability to classify things is one of the basic 

tools we use when dealing with the world around us. 

In general, the classification problem may be stated as 

follows: given a set of N objects (areal units, towns, individuals) 

and for each object a set of M attributes, form a partition of the 

M-dimensional vector space within which each of the objects may be 

represented as a point, such that the objects within each class or 

region of the vector space are maximally similar to one another, in 

terms of some given definition of similarity. In the terminology of 

information theory the problem may be considereed to be the partitioning 

of the set of objects into classes such that ones uncertainty about the 

class a given object belongs to is maximal, while ones uncertainty about 

the attributes of that object, given the class it is in, is minimal. 

The different classificatory strategies have been reviewed in 

some detail by Williams (1971). Here attention will be focussed only 

47 
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on those classificatory strategies that are used most frequently, 

namely those labelled "exclusive, intrinsic, hierarchical" by Williams 

(1971). These classification strategies are exclusive in the sense 

that a given object occurs in one class and one class only; the 

population is divided into a set of mutually exclusive subclasses 

which nowhere overlap in their membership. They are intrinsic in the 

sense that all the attributes used are regarded as equivalent. These 

classifications are hierarchical in the sense that they always optimize 

a route between the entire population and the set of individuals of 

which it is composed (Williams 1971). Hence a characteristic of these 

types of classification is that they always optimize some objective 

function. The algorithms of Johnson (1967), Ward (1963), ·and Wishart 

(1968) are of this type. 

In hierarchical classifications several strategies are avail

able. On the one hand, the classification strategy may be agglomerative 

or divisive. An agglomerative strategy is one that proceeds by pro

gressive fusion, beginning with the individuals and ending with the 

complete population (e.g. Berry 1965). This procedure is simply called 

"classification" by Grigg (1965, 1967). A divisive strategy progres

sively splits the population into classes of diminishing size by the 

process termed "logical division" by Grigg (1965). On the other hand, 

the classification strategy may be either monothetic or polythetic. 

In a monothetic classificat:ion every class at every stage is definable 

by the presence or absence of specified attributes. In a polythetic 

classification the classes are defined by their general overall 
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similarity of attribute structure. 

In practice the choice of method is usually between divisive 

monothetic or agglomerative polythetic, since agglomerative monothetic 

methods can only exist in a trivial sense and the divisive polythetic 

methods that have been devised usually take too long to execute on 

standard computers. The most rigorously constructed method, perhaps, 

is that of Edwards and Cavalli-Sforza (1965) which examines all 

dichotomous choices at each division. However,since for N individuals 

this involves the examination of (2N-l_l) possibilities at each division, 

the method is usually computationally impracticable for large values 

of N. For instance Gower (1967) states that for N = 41 the process 

would require more than 54,000 years on a computer with 5 y sec. 

access time. 

An important characteristic of a divisive procedure is that 

the final classification is totally dependent on the order in which 

the attributes are selected to effect division at each stage. In 

developing classifications of this type, therefore, it is necessary 

to select the attributes in some order of significance. This of 

necessity assumes that we know a good deal about the objects being 

classified; or, in other words, that we possess some theory to help 

us to identify the important attributes of these objects. Alter

natively, the attribute that gives the optimal split at each stage in 

the classification will be used and this attribute will be determined 

through the objective function that is to be optimized. 
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Agglomerative methods have the advantage that they are 

faster to execute. A disadvantage of an agglomerative classification, 

however, is that i.t is inherently prone to a small amount of misclassi-

fication, the ultimate cause of which is that the fusion process begins 

at the bottom of the hierarchy, at the interindividual level, where 

the possibility of error is greatest (Lambert 1972). The distortion 

of the data progressively increases up the hierarchy and, therefore, 

the distortion is greatest in the uppermost classes, which are usually 

the ones that one is interested in. Divisive classifications are less 

likely to suffer from this disadvantage since they start at the top 

of the hierarchy and progressively subdivide the population into classes. 

In this chapter existing information - theoretic approaches 

to classification are reviewed and an indication is given of how they 

can be applied in a geographic context. In terms of the agglomerative 

/divsive and monothetic/polythetic dichotomies the procedures to be 

examined may be classified as follows; 

DIVISIVE 

MONOTHETIC 

. (!)INFORMATION 
ANALYSIS 

(WILLIAMS 
1968d) 

POLYTHETIC 

(:,i.)RESCIGNO AND 
11ACCACARO (1960) 

(ii)WALLACE AND 
BOULTON (1968) 

AGGLOMERATIVE 

MONOTHETIC 

(i)THEIL (1967) 
SEMPLE (1972) 
BATTY (1974) 

POLYTHETIC 

(i)THEIL (1967) 

(ii)INFORMATION 
ANALYSIS 

(WILLIAMS 
1966) 

(iii)CONTINGENCY 
TABLE ANALYSIS 

(KULLBACK 1959) 
ORLOCI (1968, 

1970) 
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The methods used by each of these authors will be examined separately. 

It will be indicated that the method of information analysis due to 

MacNaughton-Smith (1965) and Williams and his associates (cf. list of 

references) is the most widely used information based classification 

algorithm. For this reason it will be compared with standard classi-

fication procedures to indicate some of its advantages and disadvantages. 

Finally, in this chapter, the problem of constructing spatial-temporal 

classifications will be ex~~ined. 

Divisive Monothetic Classification 

In a divisive classification one seeks to dichotomize the 

population at each stage in some way that maximizes the dissimilarity 

of the resulting classes. When the initial collection of objects is 

divided into subclasses there is a reduction in the amount of infor-· 

mation needed to describe each object; or, in other words, there is 

a reduction in our uncertainty about the attributes of a given object. 

The more dissimiliar are the subclasses the greater is the reduction 

in our uncertainty. 

Suppose we have a collection of n objects, each characterized 

by a vector containing s entries, corresponding to the scores of the 

object on s variables. Assume the variables are statistically inde-

pendent - if they are not they may be orthogonalized via principal 

components analysis or factor analysis. Let nij denote the score of 

the jth object on the ith variable, and let ni( = 

score on the ith variable such that I ni = n, the 
i 

I nij) be 
j 
total sum 

the total 

of the 

scores on all the variables. For example in a landuse classification 
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the n objects to be classified could be some basic spatial units (e.g. 

census tracts or blocks of a city, counties of a country) and the s 

variables could correspond to s different landuse types. Then :Uij would 

be the area devoted to landuse i in the jth spatial unit, ni would be 

the total area devoted to landuse i in a whole city or country and n 

would be the total area of the city or country. The information content, 

or the amount of information needed to describe, the unclassified objects 

may be measured by 

s n nij n·. 
Is = I [ n. I __ log 1]· 

i=l 
1 

j=l ni ni 

s n 
= I [ ni log ni - L (nij log nij) ] 

i=l j=l 
(2 .1) 

s n 
or IB = I [ log ni! - I log (nij)! ] 

i=l j=l 
(2.2) 

depending on whether Shannon or Brillouin's measure is used. If Shannon's 

measure is used then it is assumed that the objects being classified form 

a random sample from some conceptual population and hence the classification 

produced can be considered to be a representation of the way the objects 

in the conceptual population should be classified. If the collection of 

objects being classified is considered to be a completely sampled popu-

lation then by the arguments in the previous chapter an information 

measure based on Brillouin's should be used. For this reason, throughout 

the remainder of this chapter Shannon and Brillouin based measures will 
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be presented together, they can be distinguished by the subscripts s 

and B respectively. Similary, when we are not sure that our sample 

collection of objects reflects all the sources of variability in the 

parent population an information measure based on Good's, equation (1.21) 

above, should be used. From (2.1) and (2.2) we can determine by how much 

each variable increases the total amount of information we need to des

cribe the objects. Hence the variables can be ranked in terms of their 

ability to differentiate the population. The fission strategy in a 

divisive monothetic classification is to dichotomize the population at 

each stage by a particular variable. This assumes that we can order 

the variables in some way according to their significance. As just 

indicated, we can do this by examining the way in which (2.1) and (2.2) 

are calculated. 

Therefore, for a divisive monothetic classification we calculate 

the total amount of information needed to describe the unclassified objects 

and then rank the variables according to their ability to differentiate 

the population. Using the variable of highest rank we then dichotomize 

the population of objects into two subgroups of those possessing or 

lacking a score on the variables or, perhaps, those having a score 

greater than or less than some critical level on the variable. The 

groups formed by the first division are first order groups. These first 

order groups are then dichotomized by the variables of second highest 

rank, to give second order groups. The classification continues in 

this way until it reaches a stage where it is deemed to satisfactorily 

serve the purpose for which it is being constructed. The classification 

will be unique only so long as no two variables have the same different!-
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ating ability. This classification method is simple, involving a 

minimum amount of calc·.1lation. Hence it should be possible. to handle 

large data sets in a short time. As yet, however, there have not been 

any applications of this method. 

Divisive monothetic systems for binary data have been extant 

for a number of years and have reached a high level of efficiency 

(Lance and Williams 1965, 1968d). Given a collection of n individuals, 

each characterized by s binary attributes, such that ni individuals 

possess the jth attribute Lance and Williams define the information 

content of the collection as 

= 
s 

s n log n - I 
i=l 

• (2. 3) 

As observed above, a Brillouin based measure may be more appropriate: 

s 
IB = I [ log(n!)- log(ni!)- log (n-ni)! ] 

i=l 

Let I(n) denote the amount of information required to describe the n 

(2. 4) 

individuals, without regard to whether the measure is Shannon or Brillouin 

based. Suppose the collection is subdivided into two supgroups of sizes 

h and k such that h + k = n. Let the corresponding information measures 

be I(h) and I(k) respectively. The reduction in the information measure 

due to the division may be written as 

~I{n, h k) = I(n) - I{h) - I(k) (2.5) 
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The fission strategy is to dichotomize the population on each attribute 

in turn and calculate the corresponding ~I. The population will be 

subdivided into classes of order one on that attribute for which ~I is 

maximum. The subgroups that give the maximum ~I are most dissimilar. 

The process is repeated on each of the subgroups of order one, and 

continues until the required number of subgroups is achieved. It is 

not necessary that each of the classes of order one be subdivided into 

classes of order two on the same attribute. MacNaughton-Smith (1965) 

indicated that this process defines a near optimum split. We may 

remark here that this method, called divisive information analysis by 

Lance and Williams (1968d), will only yield a unique classification so 

long as no two attributes have the same ~I at any level in the hierarchy. 

Originally, information analysis, both divisive and agglomera

tive (as will be seen later) was defined for binary data. This type of 

classification was of use to ecologists who often are only interested 

in whether or not certain species of plants occur in given plots of land. 

There have been some attempts to make this classification method appli

cable to other types of data. It has been extended to handle-mixed data 

with promising results, Lance and Williams (1971). A number of attempts 

have also been made to make this algorithm applicable to purely quanti

tative data. The important problem, of course, with quantitative data is 

that of defining a suitable measure of information for a continuous 

distribution. Provided that the form of the distribution is known then 

such a measure can be defined, but generally the form of the distribution 

is unknown. There is only one alternative, to define a series of classes 
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covering the range of the quantitative variable and record only presence 

or absence in a class rather than an actual value. This is the approach 

adopted by Lance and Williams (1967c) when they propose that continuous 

variables be "chopped" into multistate ordinal attributes, by dividing 

the range of observed values into m equal sized sets. The choice of m, 

however, is arbitrary, and this clearly affects the final results. The 

computed information measures increase with m, but so also does the 

amount of computation time required. Lance and Williams suggested that 

m might be taken equal to eight. 

The problem of measuring the information content of quanti-

tative data has also received attention from Dale (1971) and Dale et al. 

(1971, 1972). The first proposal by Dale involves making a conceptual 

distinction between the units to be classified and the samples recorded. 

Suppose some basic spatial unit to be classified is composed of n sub-

units. For each of s independent variables the number of subunits 

characterized by the ith variable is denoted by ni as usual. The infor-

mation content of the basic spatial unit is 

= 

or 

= 

s 
s n log n- I [(ni log ni) + (n-ni) log (n-ni)] 

i=l 

s 
I [log n!- log ni!- log (n-ni)! ] 

i=l 

(2.6) 

(2.7) 

This approach insures that each basic spatial unit to be classified has 

an information content greater than zero at the commencement of the 

classification. The classification then proceeds in the usual fashion. 
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The second proposal by Dale was to measure the information 

content of the collection of objects to be classified in a way which 

was similiar in spirit to the measures given above by (2.1) and (2.2). 

Williams (1972) has developed a model which can be used for either 

qualitative or quantitative data and which partitions the information 

into its qualitative and quantitative components. This problem was 

examined earlier by Orloci (1968), though not in a rigorous conceptual 

manner. 

In general to form a classification of n objects, each 

characterized by s independent multi-state variables we may proceed as 

follows. For each variable j let there by rj possible states that it 

can assume, j=l, 2, •••• , s. Let nij be the number of times the jth 

state occurs for the jth variable such that 

= and I I 
i j 

n .. 
~J 

Then = 

If nj = n, all j, then 

= s n log n - L L (nij log nij) 
i j 

The Brillouin based measure is 

s rj 

= n 

= L [log (nj!)- L log (nij)!] 
j~l i=l 

(2. 8) 

(2.9) 
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Classification proceeds in a way that is similar to William's method 

for binary data. The population of objects is divided into classes 

on each variable in turn and an information loss measure, ~I, is 

calculated for each division. The population is divided into classes 

of order one on that variable for which ~I is maximal. The process is 

repeated on each of the resulting subgroups. The amount of computation 

needed for these classifications is not excessively large. Furthermore, 

these methods have some advantages over standard methods as will be 

seen below. However, as yet there have not been any applications of 

this type of divisive classification in the literature. 

Divisive Polythetic Classification 

Attempts t~ develop information based algorithms for divisive 

polythetic classification have been made by Rescigno and Maccacaro (1960) 

and Wallace and Boulton (1968). Both of these algorithms are mathemati-

cally more complicated than. the algorithms for divisive monothetic 

classification. In the following a brief outline is given of the 

strategy involved in each algorithm. First we deal with the work of 

Rescigno and Maccacaro. 

Assume that one has a set X of objects to be classified. 

Let m different variables Yi(i=l, 2, .... , m) be defined so that each 

Yi is able to divide X into Pi(Pi ~ 1) subsets. To the set X let some 

variable Y (1 < a < m) be applied 
a - -

of order one: xia)' xia)' ..... , 

so that X is partitioned into subsets 

x<a) 
Pa • Let ni be the number of 

elements in each subset X~a). Then the mean information content of 

each element in X is H(Ya) = - L ni/N log ni/N , where N is the total 
i 



number of elements in X. The authors, in an attempt to establish a 

new terminology, call H(Ya) the repartment effected by Ya. The mean 

repartment which can be effected by some variable Yb
1 

in the subsets 

defined by Ya is taken to be 

where H(Ya, Yb
1

) is the repartment effected by the successive appli

cation of the variables Ya and Yb
1 

. 
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S(Ya; Yb
1

) is interpreted as being a measure of the disorder 

existing inside the subsets defined by Ya in respect of the variable 

Yb
1

. The authors then show that the disorder existing inside the sub

sets defined by Ya in respect of all the other variables taken one by 

one, two by two and so on up to i by i can be measured by 

= 

m-i 
- -r-

~ 

L H(Y ,Yb , •• ,Yb ) (2.10) 
blb2 ••• b (i-1) a 1 (i-1) 
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The corresponding measures computed on the whole set, instead of on the 

subsets defined by Ya are 

= 

(2.1 

To measure the relative disorder existing inside the subsets 

defined by Ya in respect of all the other variables taken one by one, 

two by two and so on up to i by i they use the following ratios, 

= 

= 

(2.12) 
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Let 
m-1 

= I R.(Ya) 
i=l ~ 

(2.13) 

The variable Ya for which R(Ya) is minimal is used to divide 

the set X into subsets of order one, which may be called classes of 

order one. Then byapplying the same algebraic process to each of the 

classes of order one a collection of classes of order two can be 

obtained for each of them. In like manner, for each class of order 

two a collection of classes of order three can be obtained, and so 

on to classes of order m. This progressive division of the set X 

through classes of various order produces the classification. 

The final classification arrived at by this procedure is 

unique only if no pair of variables have the same value of minimum 

relative disorder at any hierarchical level. There do not appear to 

have been any applications of this procedure reported in the literature 

of biology, ecology or geography. The reason for this is probably the 

excessive amount of computation time that would likely be required for 

any data set of reasonable size. As indicated in the introduction to 

this chapter this is a characteristic of most divisive polythetic 

classification procedures. 

A second information based divisive polythetic classification 

algorithm has been developed by Wallace and Boulton (1968a,b). This is 

probably the most rigorous probabilistic procedure yet proposed. The 

authors treat the classification problem as an exercise in optimal 

coding: the best classification is considered to be that which results 

in the briefest recording of all the attribute information. The 
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measurements that are recorded on the objects to be classified are 

considered as messages about these objects. The information measure 

used in this algorithm is much more detailed than the one used by Lance 

and Williams in their information analysis. In this algorithm the 

information measure takes into account the number of the class to which 

any individual x belongs, the type of class it is - this can be any 

one of a predefined dictionary of classes (e.g. normal, uniform), the 

parameters of the class and the position of the individual x with 

respect to the class (e.g. the distance of x from the mean of the class 

values). Shannon and Brillouin based formulae for the information 

measure are given in the (1968a) and (1969) papers by Wallace and 

Boulton. This algorithm can be applied to quantitative as well as 

qualitative data. However, while a program has been developed for 

the algorithm (Wallace and Boulton 1968b), as yet there do not appear 

to have been any applications of it in the literature. 

Agglomerative Monothetic Classification 

As indicated in the introduction to this chapter classifi

cations of this type can only exist in a trivial sense. Suppose we 

are given a collection of objects, characterized by values on one 

variable (attribute). The problem is to agglomerate these objects 

into classes in a way that will optimize some objective function. The 

usual objective function tri.es to maximize the between class variance 

and minimize the within class variability. In information theory 

terminology this amounts to maximizing the amount of information we 

need to select the class a particular object belongs to, while 
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minimizing the information needed to select the score of a particular 

object on the variable. Various clustering schemes which incorporate 

this notion have been used in geographical studies {Spence and Taylor 

1969). An attractive decomposition procedure has been proposed by 

Theil (1967, 1972), based on Shannon's third axiom, (Shannon and 

Weaver 1949). The procedure has been used extensively by Semple et 

al. (1971, 1972, 1973) to measure inequality in spatial distributions. 

Suppose some variable phenomenon X is distributed over m 

regions and let each region j contain rj subregions (j = 1, 2, 3, ••• , 

m). Let Pj be the probability of the variable occurring in the jth 

region and let Pij be the probability of the variable being represented 

in subregion i of region j. Then a measure of the between regional 

and within regional information content of the distribution is 

m m rj p .. 
Is = - I p. log Pj - I p. ( l pij log _22 ) (2.14) 

. 1 J . 1 J J= J= i'=l Pj pj 

r· m 
where IJ pij = pj and I P. = 1 

i=l j=l J 

The corresponding Brillouin based measure can be derived in the follow-

ing way. Suppose n units of some variable X are distributed over m 
m 

regions in the proportions nl, nz, •••• ,~such that I nj = n. For 
j=l 

example n could be the total income arising in a country, or the total 

population of a country. Then nj would represent the total income, 

measured indollars, arising in region j or the population of region j. 

A measure of the between region variability in the distribution is 
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, 

B = 
1 - [ log 
n 

m 
n! - L log nj! 

j=l 
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Assume each region is composed of rj subregions and that the variable X 

is distributed 

n . , where 
rjJ 

over these subregions in the proportions nlj' n2j' •••• , 
r. 
\'J_ 
l nij = nj • 

i=l 

Then a measure of the information content of the distribution within region 

j is 

1 
[ log n. I -

nj J 

r· 
\'J 
1.. log (ni j) ! ] 

i=l 

and the mean within-region measure is 

~ ~j 
l nj/n {1/nj [ log n.! - 1.. log (nij)! ] } 

j=l J i=l 

II 

Combining IB and IB , the total between-region and within-region information 

content of the distribution is 

1 = n [ log n! -
m m 
L log nj! ] + L nj 

j=l j=l n 

r. 
1 \'J 

( _ [log nj!- 1.. log (nij)! ] ) 
nj i=l 

(2.15) 

Writing P. = nJ./n, PiJ' = n .. /n. and applying Stirling's approximation, if n 
J l.J J 

is large, it is seen that (2.15) corresponds to (2.14). 

The first term on the right hand side of (2.14) and (2.15) is a 

between-region information measure, whereas the second term is the within 

region measure. Nutenko (1970) has shown that on aggregating the subregions 
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the between region measure decreases monotonically as the size of the 

region increases, and that the within region measure is monotonically 

increasing. In classification the aim is to maximize the between region 

measure and minimize the within region measure. Batty (1972) used the 

Shannon based measure, (2.14), to aggregate zones in Reading, following 

the method of aggregation devised by Ward (1963). At each stage in the 

hierarchy the between region measure is maximised by computing the measure 

for every possible aggregation of single spatial units to their spatially 

adjacent regions. A spatial form of (2.14) was presented by Batty (1974). 

He argued that this procedure was likely to produce a suboptimal solution 

at any level in the hierarchy, although what the author considers to be 

an optimal solution is not defined. Therefore, he proposed an alternative 

algorithm which starts with a basic feasible solution and then proceeds 

in a trial and error fashion to derive a new solution which minimizes the 

within region information measure. 

Agglomerative Polythetic Classification 

In the light of the foregoing discussion the most obvious way 

to construct an agglomerative polythetic classification is to generalise 

the measures given above, by (2.14) and (2.15), and to apply the same 

aggregation strategy. Assume that instead of one there are s independent 

variables distributed over m regions. The information measures corres-

ponding to (2.14) and (2.15) then are 

s 
l { 

k=l 

m m rJ· 
l PJ-=k log p 'k - l pJ.k ( l Pijk log _P~....::.· j_k-') } 
'1 J '1 '1 p J= J= ~= Pjk jk 

(2.16) 
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and 

(2.17) 

where Pjk is the probability of variable k being represented in region j. 

Pijk is the probability of variable k being represented in subregion 

i of region j. 

nk is the total nlli~ber of units of variable k occurring in region j. 

nijk is the number of units of variable k occurring in subregion i 

of region j. 

As before the aggregation method will follow Ward's (1963) procedure. 

The method of information analysis in its original formulation 

by MacNaughton-Smith (1965) and Williams (1966) was an agglomerative 

polythetic procedure for binary data. The information measures used are 

the same as those used for divisive classification. The information 

content of the objects or groups of objects to be fused is measured in the 

usual manner. If the s variables that characterize a group of objects are 

not mutually independent then instead of (2.8) and (2.9) the following 

measures should be used, 
rlr2 ••• rs 

s s 
Is = n log n - I ( 11 n.k ) log ( n n.k ) 

klk2 ••• ks j=l J j j=l J j 
(2 .18) 

rlr2 ••• rs s 
or IB = log n! - I log ({) n.k ) ! 

klk2 ••• ks j=l J j 
(2.19) 
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where njkj is the number of times the state kj occurs for variable j, cf. 

equations (1.23) and (1.27) above, and Appendix B. ~llien two objects or 

two subgroups h and k are fused the information measure l(n) for the 

composite group is greater than the sum of the information measures I(h) 

and I(k), for hand k respectively. The more dissimilar are hand k the 

greater is the increase in the information measure due to the fusion. 

Thus at any stage in the hierarchy those two objects are to be fused so 

that their union produces the smallest increase, 6!, in the information 

measure, where 

~I = I(n) - [ I(h) + I(k) ] 

This method of classification has been extensively used by Williams and 

his associates (see list of references), with considerable success. As 

far as this author is aware there have been only two applications of this 

algorithm in the geographical literature. Alexander (1972) used this 

method to classify districts within central Perth according to their land-

use patterns and Bryant (1974) used this technique to classify areal units 

on the basis of the types of agricultural and urban changes that were taking 

place in the Paris region. These authors used information analysis in its 

simplest form, i.e. when the recorded data are treated as binary. 

A further approach to agglomerative polythetic classification 

is through the use of contingency tables. The data for an individual or 

group of n individuals characterized by s attributes (variables) may be 

arranged in a variable/size class matrix, where the observed states on 

each variable may be partitioned into certain classes. Let r denote the 

number of size classes for each variable. Assume the variables are the 
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rows and the size classes are the columns of the matrix. Let n .. be the 
~J 

number of individuals having values within the jth size class of variable 

i. Let the row sums be ri(= I nij), and let the grand 
j 

For example the individual to be classified might be a 

sum beN= I I ni·· 
i j J 

subregion where s 

represents the number of different landuse types that occur and r represents 

the number of different intensity levels possible for each landuse. Then 

. nij would be the number of landunits devoted to landuse i at the jth level 

of intensity in the subregion. 

The analysis of contingency tables by information statistics has 

been extensively studied by Kullback (1959), Kuppermann (1959), Kullback 

et.al. (1962), Good (1963, 1965) and Tribus (1969). The total information 

content of the matrix described above may be written as 

s r 
N log N - I I (nij log nij) 

i=l j=l 

The information content of the variables ignoring the size classes is 

s 
N log N - I (ri log ri) 

i=l 

and for each variable the information measure associated with the division 

into size classes is 

r 
ri log ri - I (nij log nij) 

j=l 

The last measure can be summed over all the variables and then the total 

information content of the matrix may be partitioned as follows 
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N log N - L L (nij log nij) = { N log N - L (ri log ri) } 
i j i 

+ { L [ ri log ri - L nij log nij ] } 
i j 

Total ( variables ignoring size classes 
= ) + ( ) size classes within variables 

Alternatively, the partition may be given as 

N log N ~ L L (nij log nij) 
i j 

= { N log N - L (cj log cj) } 
j 

+ { L [ cj log cj - L (nij log nij) ] } 
j i 

Total = ( sizes ignoring ) + ( variables \vithin ) 
variables sizes 

Then the row--colrnnn interaction may be measured by 

(2.20) 

The corresponding Brillouin based measure would be 

s 
[log N! - L log ri! ] - L [log cj!- L log (niJ.)!) ] 

i=l j i 
(2. 21) 

This measure is known as the mutual or transinformation (Kotz 1966). If 

the variable classification of the data is denoted by X and the size class 

classification by Y then (2. 20) and (2. 21) may be denoted by I (X; Y) where 
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I(X;Y) = I(X) - I(XjY) (2. 22) 

and I(XjY) is the information received from the X classification, given 

the Y classification. In terms of the example given earlier the Y classi-

fication relates to how intensively the different landunits in the subregion 

are utilized and the X classification relates to the actual landuses occurr-

ing in the subregion. I(X;Y) provides a measure of how these classifications 

are interrelated. 

There are a number of measures available for assessing the 

relatedness of two classifications, X and Y. One such measure is Rajski's 

(196lb) coherence coefficient which i.s given by 

R(X,Y) 

where 
d(X, Y) 

and I(X,Y) = 

= 

= 

= 

vf1- d2 (X,Y)] 

l _ I(X;Y) 
I (X, Y) 

I(XjY) + I(YjX) 

I (X, Y) 
' by (2. 22) 

N log N - L L (nij log nij) 
i j 

The coefficient d(X,Y) has been shown to be a metric measure in the set of 

(2.23) 

(2. 24) 

all discrete probability distributions, (Rajski 196la). The value of R(X,Y) 

varies between zero and unity. Like the correlation coefficient when 

R(X,Y) = 0, X andY are independent and R(X,Y) = 1 implies X andY are 

functions of each other. 
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An alternative measure of the relatedness of the X and Y 

classifications, for large samples, is given by x2 with (s-1) (r-1) 

degrees of freedom because of the asymptotic equality of 2I(X;Y) and 

x2 , (Wilks 1935, Kullback 1959). Rapid calculation of 2I(X;Y) can be 

performed from the table of 2n log n by Woolf (1957) or the table of 

n log n provided by Kullback (1959). Some other information based 

measures of the degree of correlation between variables were given 

by Linfoot (1957). 

In the classification of subregions whose mutual information 

content has been measured by I(X;Y) the fusion strategy is the same as 

usual. For any pair of subregions h and k a coefficient 

= 

is calculated. That pair of subregions for which ~Ihk is minimal are 

fused first. The whole procedure is reiterated until all the subregions 

have been classified. 

Information measures based on contingency tables have been used 

by Orloci (1968, 1969, 1970a, b, 1971) in his cluster analyses where the 

fusion strategy is the same as used here. The equivocation information 

measure, which corresponds to the total information content of a matrix 

minus the information content of the row-column interaction (the mutual 

information), was used in a classification by Williams et.al. (1973). 

However, the measure failed to give satisfactory results. 

Some Properties of Information Analysis 

The technique of information analysis developed by MacNaughton

Smith and Williams is the one that has been used most extensively by 
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ecologists and biologists. There have been a number of studies where the 

results provided by this technique have been compared with results obtained 

from applying other algorithms to the same data sets, e.g. Williams et.al. 

(1966), Lambert and Williams (1966) and Lance and Williams (1966). The 

algorithms against which information analysis has been compared are 

generally those using a centroid sorting fusion strategy and similarity 

coefficients such as the correlation coefficient or a variant of the 

Euclidean distance measure. Comprehensive reviews of the large number 

of similarity measures available have been given by Sokal and Sneath (1963) 

and Williams and Dale (1965). 

In comparison with other algorithms information analysis appears 

to have many advantages. 

(i) The similarity measure, b.I, in information analysis 

increases monotonically with successive fusions. Therefore, there is no 

ambiguity when determining the stage at which different fusions occur in 

the classification. Euclidean distance measures and the correlation 

coefficient, however, are liable to occasional failure ofmonotonicity, 

(Lance and Williams 1966). 

(ii) Information analysis is the only algorithm for which there 

is a known theoretical reason why the population should be fused into 

clearly separated groups and why the "chaining" effect should rarely occur. 

By the "chaining" effect is meant the tendency for a given group to grow 

in size by the addition of single individuals or groups much smaller than 

itself rather than by fusion with other groups of comparable size. Since 

the information content of a group increases with group size the algorithm 

will tend to delay the fusion of large groups, or the addition of outlying 



individuals to existing groups until relatively late in the analysis. 

The effect will be demonstrated more formally below. 

(iii) The information statistic provides a measure of the 

heterogeneity or diversity of a class at each stage in the hierarchy. 
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If two regions h and k are combined to form a new region n then the most 

commonly used algorithms, using correlation coefficients or variants of 

Euclidean distance as similarity measure, provide a measure of how similar 

the regions h and k are, but they do not provide a measure of the 

heterogeneity of n. In this sense, it is reasonable to assume that the 

more dissimilar h and k are, the more heterogeneous will be n, so far as 

a single fusion or fission is concerned. If these measures could be 

accumulated over the hierarchy then a genuine measure of the heterogeneity 

of n could be obtained. However, neither the correlation coefficient nor 

the'variants of Euclidean distance are additive in this sense. The con

vention in the past has been to take the (h, k) coefficient, technically 

a measure of a single fusion, as the best available measure of the 

heterogeneity of n, taken over the whole hierarchy up to the point at 

which n occurs. 

However, the situation is changed completely when the information 

statistic is used, for this may be considered as an (n, h k) coefficient, 

defining the difference between n on the one hand and h and k jointly 

on the other hand. The information measure is completely additive for 

if we let I(n) be the information content of the composite group n then 

by definition 

I(n) I(h) + I(k) + ~I(n, h k) 
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Hence the information measure can be accumulated successively and a measure 

of the diversity or heterogeneity of a group at each level in the hierarchy 

can be determined. 

(iv) A further advantage of information analysis is that it is 

completely insensitive to skewed distributions. In Euclidean models such 

distributions are usually standardized by variance. Then the rare events 

assume disproportionate importance and, therefore, distort the final results. 

(v) The treatment of ordinal data by information statistics is 

completely rigorous. Hence their potential should receive more attention 

from those especially concerned with psychological data, where it is safest 

not to assume a metric structure in the data one is dealing with. 

(vi) In the literature attention has been given to the fact that 

the information statistic has properties that may be used to construct a 

stopping rule on the hierarchy. Kullback (1959) showed that for large 

samples 2~I is approximately distributed as x2 with as many degrees of 

freedom as there are attributes. Lambert and Williams (1966) have advocated 

using 2~I with its x2 approximation to test for homogeneity in the two final 

groups. The initial null hypothesis must be that the two final groups are 

samples from a single population. If the null hypothesis is accepted then 

no further tests will be required. If, however, the null hypothesis is 

rejected then this implies the acceptance of the hypothesis of two or 

more underlying populations. In order to continue testing, a new null 

hypothesis must be postulated - the only logical one is that the two final 

groups are each samples from two distinct populations. Then the subgroups 

within each of these populations are compared, by the x2 
test. The pro-

cedure continues until the null hypothesis is accepted. This procedure, 
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however, has been objected to by Bottomley (1971), who has indicated 

that it is incorrect to consider the subgroups as random samples from 

the population under consideration, since the individuals in the sub-

groups have been fused in a specific way. 

Field (1969) suggested starting at the base of the dendrogram 

and testing each fusion in turn. Again he is testing whether two subgroups 

may be regarded as coming from one initial population. This procedure is 

also open to Bottomley's objection. Furthermore, a serious disadvantage 

in testing a dendrogram from the base is that the initial fusions necessarily 

involve very small sample sizes. In this type of situation the x2 approxi-

mation is far too crude to give useful results. 

Information analysis, however, is not without some disadvantages. 

The technique is subject to what is, perhaps, a unique form of misclassi-

fication. If the population of individuals to be classified contains 

several substantially homogeneous subgroups with each of which is associated 

one or more outlying members, information analysis is liable to classify 

all such outlying members into .a single "nonconformist" group, irrespective 

of their individual affinities. For example, in a study by Edye, Williams 

and Pritchard (1970) where there were only fifty one individuals in the 

population information analysis produced two nonconformist g~oups. 

The nonconformist groups arise because of the sensitivity of 

the information statistic to group size. This effect can be demonstrated 

in the following manner. 

Let b.. I denote the information measure between two individuals. 

fj,Ii denote the information measure between an individual and a group. 

b..Ig denote the information measure between groups of equal size. 

~I ' denote the information measure between two entities (i.e. either 

or both may be individuals or groups). 
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Consider two groups, one of m and the other of n individuals such that 

the members of each group are identical; every member of one group 

possesses and every member of the other group lacks a single binary 

attribute. Then, by (2.6) 

t:,.I' = (m+n) log (m+n) - m log m - n log n 

Assume m ~ n, then m = a n, a > 1 and 

' /:,.I = n { (a+l) log (a+l) + (a+l) log n ·- a log a 

- a log n - log n } 

= n { (a+l) log (a+l) - a log a } 

To obtain /:,.I let n = a = 1 • 

Then /:,.I = 2 log 2 • 

For /:,.Ig let a = 1, n ~ 1, so that /:,.Ig = 2 n log 2 = n /:,.I • 

Therefore, in comparisons between groups of equal size the information 

measure increases directly with group size. For /:,.Ii, the information 

measure between an individual and a group, let a ~ 1, n = 1 • 

Then /:,.Ii = (a+l) log (a+l) - a log a 

= log a + (a+l) log (1 + 1/a) 

= (log a) + 1 + l/2a - l/6a2 + 

(log a) + 1 (Williams, Clifford, Lance 1971). 

Therefore, for an individual waiting to be assigned to a group the likeli-

hood of fusion diminishes as the group grows, according to the logarithm 

of the current group size and this effect continues indefinitely. It 
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follows that an outlying member of a large and otherwise fairly homogen

eous group may have its fusion delayed so long that the information gain, 

~I, for fusion with another substantially unrelated single element may 

be less than that for fusion with the group whose members it most closely 

resembles. It is this situation that gives rise to the nonconformist 

groups. This is also the reason why the "chaining" effect does not occur. 

The seriousness of the tendency to produce nonconformist groups 

depends ultimately on the purpose for which the classification is being 

constructed. In taxonomy where every individual must be accounted for 

in the best possible way the tendency for nonconformist groups to occur 

cannot be tolerated. In truly taxonomic situations Lance and Willians 

(1966) suggest that tl1e information analysis results should be checked 

against the results of another strategy - they suggested centroid 

sorting with the nonmetric similarity coefficient used by ecologists 

because of the relatively good grouping and monotonicity properties of 

this strategy. If one is interested in identifying relatively homogeneous 

groups and keeping the anomalous individuals separate, as ecologists 

appear to be (Lance and Williams 1967b), then information analysis gives 

satisfactory results. It is easy to identify the nonconformist group(s) 

by calculating the diversity of each group. The nonconformist group(s) 

have a disproportionately high diversity measure in comparison with the 

other groups. 

Information analysis as it was in~tially formulated can only 

be applied to binary data. While there have been some attempts to extend 

the procedure to quantitative data these have not been very successful. 

For continous variables it has been suggested that the sum of squares 
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method of Burr (1968, 1970) is more appropriate since it is less likely 

to produce nonconformist groups. However, this method suffers from being 

sensitive to skewed distributions. 

A further point of concern for ecologists about information 

analysis is the way in which it gives equal weight to the joint presence 

or joint absence of attributes, (Webb et. al. (1967), Field (1969), Austin 

(1972) ). This property may affect the fusion sequence and result in 

non-homogeneous groups. For example, the fusion of a pair of individuals 

with a large number of attributes in common may be delayed until after 

the fusion of a pair possessing few or maybe no attributes in common. 

Field (1969) suggested that for heterogeneous systems it is more appro-

priate to use only the joint presence of attributes when calculating 

the information measures. The appropriate information measures then are 

Is = ( ? nj) log ( L n·) - I (nj log nj) 
J j J j 

(2.25) 

and IB = log ( I n.)! - L log (nj)! 
j J j 

(2.26) 

where nj is the number of individuals possessing the jth attribute. 

From the foregoing discussion it should be clear that infor-

mation analysis has many advantages, and for this reason it should re 

receive more attention from geographers than has hitherto been the case. 

Spatial-Temporal Classification 

The problem of devising statistical techniques for spatial-

temporal analysis has not yet received much attention in the literature. 

There are a host of techniques available for analyzing spatial and 

temporal patterns separately. However, the number of techniques avalable 
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for the simultaneous analysis of spatial and temporal patterns is very 

limited. The following is an outline of a simple method, largely modified 

from Dale et. al. (1970) and Williams et. al. (1969). If it assumed that 

a temporal sequence possesses the Markov property that the future probabi-

lity behaviour of some system under study is uniquely determined once the 

state of the system at the present stage is known, then it is the tran~ 

sitions between the states, rather than the states themselves, that carry 

the important information. The first necessity then is to set up a matrix 

of the observed transitions. Here we may note that other probability 

processes (e.g. Bernoulli) are classifiable in this manner also. 

Consider a region R composed of the subregions R1, R2, .•••• , ~· 

Let the time interval T be subdivided into equal-length subintervals, 

T1, T2 , •••• , Tt, where Ti-l< Ti, i = 1, 2, •••• , t. Assume the simplest 

case where the subregions are characterized by only one variable (attribute) 

which can assume any one of r1 different states. For any one of the sub~ 

regions, say Rk, consider the sequence of states that occur for the 

variable. This sequence may be represented by a vector 

where akt' is the state assumed by subregion k on the variable at time t' 

I 

1 ~ k ~ n, 0 < t < t. There are n of these vectors, one for each sub-

region. From these vectors a matrix of transition frequencies may be 

constructed. This is an r 1 x r 1 matrix where the (i, j)th entry represents 

the frequency with which the jth state succeeds the ith state. Denote the 

frequencies by nij; i,j = 1, 2, 3,.~ ••• , r 1 such that 
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I 
j 

n·. 
~J 

= ni ' the i th row total. 

I 0·. = n. 
' 

the jth colunm total. 
i 

~J J 

I I 
i j 

nij = N ' the grand total. 

Denote the transition matrix for subregion Rk by Mk. The maximum likeli

hood estimate of the probability that given the ith prior state, the jth 

state will follow is nij/ni and the mean information content of each 

transition from the ith prior state is 

= 

The information content of all the transitions from the ith prior state 

is ni(r!). Then summing over all prior states the information content 

of the entire matrix Mk is 

rl rl 
= I [ ni log ni - I (nij log nij) ] 

i=l j=l 

The corresponding Brillouin based measure is 

= 

rl 
[ log (ni)! - I log (nij)! ] 

j=l 

(2.27) 

(2. 28) 

These information measures can now be used as a basis for the usual infor-

mation based classification procedures. Consider two subregions Rh and 

Rk with transition matrices Mh and Mk respectively, and denote the infor-

mation contents of these matrices by Ih and Ik. Combine Rh and Rk to 

produce a larger region R£ where the transition matrix of R£ is M£ and 
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Mz is the element by element sum of Mh and Mk. Denote the information 

content of M2 by It • The information gain associated with the fusion 

As usual agglomerative classification proceeds by fusing at each stage 

that pair for which ~I is minimum. 

If the subregions being classified are characterized by a 

nt~ber of independent variables, say s, then the information measures 

are 

s rx 
= I { I 

x=l j=l 

or s r rx 
\ \X [ X \ X L { L log n.!- L log (ni.)! ] } 

x=l i=l 1 j=l J 

where n~. = the number of times the jth state succeeds the ith state on 
1J 

variable x. 

= 
rx 
\ h . th . . 1 . h . . . f L nij , t e 1-- row tota 1n t e trans1t1on matr1x o 

j=l 

variable x. 

rx = the number of different states that variable x can assume. 

(2. 29) 

(2. 30) 

The statistics presented above to measure the information content 

of the transition matrices have one undesirable property. For instance 

if .some of the subregions do not pass through all the possible states for 

a variable then the rows in the transition matrix corresponding to these 

states will contain all zero elements. If there are more than two sub-
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regions like this then there is a possibility that a pair of them will 

combine at a very early st~ge in the analysis even though they may have 

none, or very few states in common. 

This difficulty can be overcome if in addition we include in 

the analysis a measure of the information content associated with the 

partition of the grand total into row totals. For subregion Rk 

characterized by a single variable this information measure may be 

* written as Ik where 

or 

rl 
= N log N - I 

i=l 

= log N! -I log (ni)! • 
i 

Then an alternative measure of the information content of the transition 

matrix for Rk is 

= 

Then combining equations (2.27) and (2.31), 

rl rl 

N log N - I l (nij 
i=l j=l 

log n· .) l.J 

Similarly, combining .(2.28) and (2.32), 

= 
~1 r1 

log N! - I I 
i=l j=l 

log (n .. )! 
l.J 

(2.31) 

(2. 32) 

(2. 33) 

(2.34) 
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If the subregions are characterized by more than one variable then it 

follows immediately that for s independent variables 

-1 s 
[ ~ log rr-

rx rx 
X X 

Ik = I I I nij log n·. 
s :x:=l i=l j=l 

l.J (2 0 35) 

and -1 s rx rx 

I [ log ~! I I 
X 

IkB = - log (nij!) 
x=l i=l j=l 

(2 0 36) 

where~ = the grand total of the entries in the transition 

matrix of the states for variable x in Rk. 

The row totals do not appear in (2.33) - (2.36). In fact the expressions 

(2.33) and (2.34) are those that would be obtained by regarding the tran

sition matrix as a single nominal multistate attribute with r~ states. 

This type ofclassificationshould receive some consideration from 

agricultural geographers who have hitherto been content to construct static 

classifications of agricultural land use, while it is clear that agricultural 

landuse patterns vary from year to year~ In general this classification 

method can be applied to any sequential data. 

In this chapter the classification problem was presented and some 

of the most commonly used strategies to deal with it were outlined. The 

classification procedures based on information theory that have been 

developed by ecologists and biologists have been reviewed and it has been 

indicated how these procedures may be applied to spatial classification. 
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The method of information analysis developed by the William's school 

has been the one most extensively used, Some of the proporties of this 

method have been outlined. Finally, a simple information based algorithm 

for spatial-temporal classification was discussed. 

From the literature reviewed in this chapter it is clear that 

information theory provides us with a number of statistics that can be 

used to construct classification algorithms. Hitherto most of the 

applications of these statistics to classification methods have been by 

ecologists, though generally under the restrictive assumption of independ

ent variables. Here that assumption has been relaxed in some cases. 

Furthermore, almost all the measures that have been given in the liter

ature are Shannon based. This measure is appropriate in ecologic and 

biologic situations where one is usually constructing species classifi

cations from sample data and these classifications are designed to have 

universal applicability. However, in geographic situations the collection 

of objects to be classified, at times forms a completely sampled population. 

Then, by the arguments in the first chapter the information measures should 

be based on Brillouin's. From the literature reviewed it is also clear 

that as yet geographers have failed to take advantage of these potentiali

ties of information statistics for classification. In the next chapter 

an algorithm for classifying individuals, characterized by scores on 

ordinal multistate attributes, will be developed. It is felt that this 

algorithm should be of relevance to behavioral geographers, who often 

have to manipulate psychological data. 



CHAPTER 3 

A CLASSIFICATION ALGORITHM FOR ORDINAL DATA 

Introduction 

In recent years many disciplines, including geography 

(Johnston 1968, 1970), have displayed an increasing interest in 

taxonomic procedures. An extensive review of some of the recent liter-

ature was provided by Spence and Taylor (1970). An integral part of 

all taxonomic procedures is a similarity or proximity measure. In the 
. 

natural sciences the most commonly used similarity indices are based 

on some Euclidean distance measure. These similarity measures are 

almost always assumed to be metric and based on interval or ratio 

scale data. This is not a serious assumption when the objects to be 

classified are inanimate. If, however, one wishes to classify a 

collection of individuals into groups on the basis of some psychological 

attributes, then the requirement that the similarity measures have the 

properties of a metric may be too stringent. If one assumes that an 

individual's psychological system can be represented as an abstract 

metric system then one must also assume that the psychological system 

has the properties of a metric space. These properties are 

(i) d(x,y) 
(ii) d (x,x) 

(iii) d(x,y) 
(iv) d(x,y) 

> 0 
= 0 
= d(y,x) 
< d (x , z) + d ( z , y) , 

Positivity. 
Reflexivity. 
Symmetry 
Triangle Inequality. 

where d(x,y) is a distanr.e measure between x andy, (Cullen, 1968). 

85 



86 

Psychological data, however, are most reliable in an ordinal 

form. Psychological attributes have no known unique zero, precluding 

ratio data, and it is not often easy for respondents to supply even 

reliable interval data, (Simon 1957). Data in rank order or ordinal 

form such as preference data (Gould 1965, Gould and White 1974) may 

not satisfy the reflexivity or symmetry properties of a metric. 

Shepard (1964) has indicated that interstimulus similarities are likely 

to violate the triangle inequality. In choice theory the assumption 

corresponding to the triangle inequality is that of transitivity of 

preferences. In reality this assumption is again rather restrictive, 

(Simmons, 1974). 

Nevertheless, in one form or another metric approaches 

initially pervaded almost the entire field of psychological scaling. 

Among the proponents of this approach were Stevens (1951) and Torgerson 

(1958). Nonmetric approaches were advanced in the early sixties by 

Shepard (1962) and later developed by successive workers, notably 

Kruskal (1964a, 1964b). Coombs (1964) quite correctly argued that 

simple qualitative judgements can usually be made, not only with 

greater ease and assurance, but also with greater reliability and 

validity than numerical or quantitative judgements. 

In recent years psychologists have developed multidimensional 

scaling, MDS, procedures that take nonmetric data as imput and impose 

a metric structure on them. The potential of these techniques for 

research in behavioral geography has been indicated recently in mono

graphs by Golledge and Rushton (1972) and Brummell and Harman (1974). 

Since MDS techniques are designed to locate n stimuli and/or individuals 
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as points in an r-dimensional space, they may be regarded as special 

types of classificatory procedures, because they impose a certain 

amount of order on the data. Also, since the output from MDS techniques 

has a metric structure, the commonly used clustering algorithms, such 

as those of Berry (1961), and Johnson (1967) may be applied. 

In this chapter a classification algorithm which takes the 

raw data in their non-metric form as input is presented. The algorithm 

calculates an index of the diversity of the individuals to be classified. 

The most typical individual is identified and the first cluster is formed 

around him. All individuals for which their similarity with the most 

typical one is greater than a critical value, ALPHA, go into the first 

cluster. Then all of these individuals are removed from the data set 

and the same overall procedure is applied to the remaining set. The 

process continues until every individual is classified. A simple 

example to illustrate the steps involved is given and some possible 

extensions of the algorithm are outlined. Then the algorithm is applied 

to a sample of 198 individuals, each characterized by scores on twelve 

independent factors. Finally a wide range of situations where this 

algorithm could be applied are indicated. 

The Algorithm 

(1) The Data; Assume that one has a sample of M individuals and that 

for each individual one has N pieces of information on N attributes. 

The N pieces of information about the ith individual may be arranged in 

a vector 

X. = (X , X. 
2

, • • • • • • , X· N) 
-1 il 1 1 

i = -1, 2, 3, •••••• , M. 
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For each variable j let there be rj different values that it can assume 

where 

2 < < co j = 1, 2, •••• , N. 

For example, if the sixth variable measures an individuals educational 

attainments and five different levels are allowed, then r 6 = 5. The 

data for theM individuals are recorded in an M x N matrix,X = {xij} , 

where the x .. entry represents the value (score) assumed by individual 
l.J 

i on variable j , i = 1, 2, ••• M, j = 1, 2, ••••• N. 

It is assumed that the data are ordinal. All that is known 

about any two values concerns only which one is larger. Nothing is 

explicitly stated about how much larger. The actual numerical values 

have no quantitative meaning, but serve only as coding identifiers. 

(2) Infor.mation Content Of The Data; Consider the following statement, 

"individual i asstnnes the value k on variable j". The information content 

of that statement is by definition, 

Information 

Content = log 

the receiver's probability that i asstnnes the 
value k on variable j after the statement. 

the receiver's probability that i assumes the 
value k on variable j before the statement. 

Clearly, in the absence of noise, the numerator in (3.1) is unity. 

Writing the denominator as Pij(k), then (3.1) may be rewritten as 

Information Content = -log Pij(k) 

(3.1) 
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In general, the information content of any entry xij = k in the data 

matrix X is 

I (xij = k) = - log P ij (k) 

where 
p ij (k) = Prob (xij = k) 

Assume that all the information one has about the sample of 

(3. 2) 

individuals is contained in X. The probabilities, Pij' are calculated 

from the observed frequencies in the matrix. Pij(k) is the receiver's 

prior probability that any individual i assumes the value k on variable 

j. If the sample of individuals being studied are representative of 

a larger group then Pij(k) is the receiver's prior probability that 

any individual i in the larger group assumes the value k on variable j. 

Then, by the arguments of chapter one, Pij(k) does not vary from one 

individual to the next. Pij(k) is then taken as 

= pj (k) = 

where njk is the number of times the event xij = k (i = 1, 2, ••••• , M) 

is observed. If, however, the collection of individuals being studied 

form a complete population then, again by the argument in chapter one, 

Pij (k) will vary from one individual to the next. Specifically, for 

the first individual Plj (k) == njk/M. and for the L + 1st , (L < M) , 

individual 

p (L+l) j (k) = 
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where i.k is the number of times the event xiJ' = k occurs among the 
J r· 

J 
first L events observed, and I ~jk = L. 

k=l 

The total information content of X depends on whether the data 

are from a sample or a population. If the former is the case, then one 

may denote by njk (k = 1, 2, ••••. , rj) the number of times the score k 

occurs as an entry among theM entries in column j, such that 

r. 
J I njk = M 

k=l 
and 

The total information content of these njk entries is 

- M P.(k) log PJ.(k) • 
J. 

Then the total information content of the M entries in column j of X 

is 
rj 

- M I P.(k) log P.(k) 
k=l J J 

where r1 (j) is the mean information content of each entry in column j. 

If the variables are independent the column informations are additive 

and the total information content of X is 

N 
= M I Il(j) . 

j=l 

It is known that for each j, r 1 (j) attains its maximum when 

each of the rJ. different scores are equally likely, i.e., P.(k) = 1/r. , 
J J 

(3.3) 
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k = 1, 2' ....... , r .• 
J 

Therefore, the maximum information content of 

column j of X is 

= 

= M log r. 
J 

Then the maximum information content of X is 

N 
= M I 

j=l 
log r. 

J 

If the sample of individuals being studied is a population 

(3.4) 

then the information content of column j of X is calculated from Brillouin's 

formula as 

= 
r· 
\J 

[ log M! - L log njk! 
k=l 

Assuming the variables are independent the total information content of 

X is 

N 

I r 
j=l 

log M! -
~j 
1.. log njk! ] 

k=l 
(3.5) 

The maximum information content of the matrix, X, by Brillouin's formula 

is 

1 2 Max (X) 

N 
I [ log M! - (rj-r) { log [ M/rj ] 

j=l 

- r { log ( [ H/r j + 1 ) } ] 

} 

(3.6) 
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where 
is the integer part of M/r. 

J 

and 
r = 

One may observe here that (3.3) and (3.5) permit one to rank 

the variables according to the amount of information received from each. 

The variable with the largest M I(j) conveys more information about the 

sample than any other. Conversely, variables with relatively small I(j) 

values convey little information about the individuals, and, therefore, 

may be regarded as poor differentiating characteristics of the sample. 

(3) Diversity and TypioaZity Indices; An index of the diversity, D, 

of the sample of individuals is provided by the ratio of the actual 

total information content of X over the theoretical maximum information 

content. When Shannon's formula is used to calculate the information 

content of X one may write the diversity as 

= Il(X)/Il Max (X) (3. 7) 

N N 
= l Il(j)/ I log r. 

j=l j=l J 

Similarly, when the sample is a population 

= Iz(X)/Iz Max (X) (3. 8) 

The diversity index varies between the limits 

0 < < 1 k = 1, 2. (3.9) 
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= 0 implies = 0, and in fact Ik(j) = 0, j=l, 2, ••• N, 

since Ik(j) ~ 0, all j, k = 1, 2. Therefore~= 0 implies that all 

the individuals have the same values on all the variables, i.e., the 

individuals are identical and there is not any diversity. Conversely, 

when Dk = 1, k = 1, 2, any individual is equally likely to choose any 

one of the values that are possible for each variable. 

Given the diversity measure for the sample it is necessary 

to first identify the most typical individual in the sample before 

cluster formation can be initiated. The most typical individual is the 

one that conveys more information about the sample than any other. 

If the ith individual is omitted from the sample of size M 

one may rewrite the total diversity of the remaining M-1 individuals 

i as Dk. Each individual i, i = 1, 2, .••• , M, is omitted in turn and 

the corresponding nt are calculated. The typicality of individual i is 

defined to be 

= 

Then 

T~ = 

-

' k = 1, 2. 

N rj -
[ l l P;(k) log P.(k)-
j=l k=l ~ J 

N 
L log rj 

j=l 

N ~ 
L L P.(k) log P.(k)] 

j=l k=l J J 

(3.10) 

(3.11) 

where Pj(k) is the probability of any individual assuming the value k on 

variable j, when the probabilities are calculated from the observed 

frequencies over M-1 individuals. 
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Similarly, 

i Iz(X) 

N r. 
J * I [log (M-1)!- I log (njk)!] 

j=l k=l 
T2 =---

I2 Max(X) N M-1 { M-1 } I [log (M-1)1-(rj-r') log([-~-]!) -r'log ([~]+1)! ] 
j=l rj J 

* where njk is the number of times the score k is observed on variable j 

* such that I njk = M-1 • 
k 

If individual i has a common value w:i.th a large number of 

other individuals on a number of variables its removal will have an 

* -equalizing effect on the frequencies njk and on the Pj's. In this case 

> and > 0 k = 1, 2. 

Conversely, if individual i has values on a number of variables which are 

not shared by many others, then its removal results in a more peaked 

frequency distribution. Then 

< 0 ' k = 1, 2. 

The last point is illustrated by the following simple example. 

The scores of ten individuals on a certain attribute are recorded below. 

Each individual can assume anyone of five possible scores. 

INDIVIDUAL 
SCORE 

1 2 
4 3 

3 4 
4 5 

5 
2 

6 
4 

7 8 9 
1 3 4 

10. 
2. 

(3.12) 
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Let nk denote the number of occurrences of score k, k = 1, 2, 3, 4, 5. 

Then n1 = 1; n2 = 2; n 3 = 2; n4 = 4; n5 = 1. 

The mean information content per score is given by 

11 = 0.6388 12 = o. 4577 • 

Omit the sixth individual who has the same score as three others. 

Then 1
1 

= 0.6592 12 = o. 4643 • 

Omit the seventh individual who is unlike the remainder, then 

11 = 0.5374 12 = 0.3976 • 

The corresponding typicalities, by (3.11) and (3.12) are 

6 6 
Tl = 0.0276 T2 = 0.0439 

7 7 
Tl = -0.1306 T = -0.0841 • 

2 

The individual, t, with the highest typicality is regarded as 

the most typical one. In the example above the sixth individual is 

said to be more typical than the seventh. This individual by his 

removal creates the maximum increase in the diversity of the reduced 

(H-1) x N data matrix. This individual t is designated to be the 

nucleus of the first group of individuals. 

(4) Similarity Measure and Group Fo~ation; For group formation a 

similarity measure between individuals is needed. One cannot use an 

Euclidean distance measure because of the nonmetric nature of the data. 

Instead a similarity measure is defined in terms of the number of 
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identical scores by a pair. The similarity between two individuals, 

a and b, is defined as 

I { rj when Xaj = xbj 

j=l 0 when (x~j).(xbj) = 0 

This similarity measure is modified from Hyvarinen (1970). The 

similarity, Sa b , is obtained by summing up r~ for all j that have 
' J 

the same value in the two rows a and b for each column j. Unequal 
N 

values do not contribute to the sum. Clearly, 0 ~ Sa,b ~ .L rj = R 
J=l 

and R ~ 2N, since rj ~ 2, all j. 

The similarity measure defined in (3.13) is justified by the 

following probabilistic consideration. Suppose the rj values for any 

variable j are randomly distributed then the conditional probability of 

individual b having the same value on variable j as individual a has, 

given that a's value is known, is 1/rj. The larger rj is, the less 

likely it is that a coincidence will occur. Weighting each coincidence 

by the appropriate rj gives an average of one per variable independent 

of the number of possible choices rj. Thus by definition the variables 

contribute equally to the similarity. 

If the variables are statistically independent then the 

expectation of the similarity of a and b, given the values that a 

assumes, is 

= 
N 
I rJ. P(rj) 

j=l 
= N ' 

where P(rj) is the conditional probability that a and b have the same 

(3.13) 
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values on variable j, given that the values of a are known. The degree 

of similarity between a pair, a and b, can be partitioned as follows. 

(i) S b = R a, a and b are identical. 

(ii) N < 5a,b < R there is varying similarity. 

(iii) N = 5a,b neutral point. 

(iv) 0 < Sa,b < N there is varying dissimilarity. 

(v) s b = 0 a, a and b are completely dissimilar. 

To form clusters first identify the most typical individual, 

t, in the sample. Then all other individuals i, (i=l, 2, ••• , M, i~t), 

satisfying the inequality 

st . ,l. > = a R = ALPHA (3.14) 

are allocated to the first cluster. The coefficeint a defines the class 

limiting factor ALPHA and lies between the limits N/R ~ a < 1 • 

If a cluster is formed when a = 1 then all the individuals in 

that cluster are identical to the most typical individual in the sample. 

As a approaches N/R the individuals in the cluster become more diverse. 

After the first cluster is formed those individuals are removed from the 

data set. Then the same procedure, from the beginning, is applied to 

the remaining set of individuals. That is, the most typical individual 

is identified in the remaining set and a new cluster is formed. The 

process continues until all the individuals have been assigned to a 

cluster. 



When the range of values, rj,·is the same for each variable 

the cut off point or class limiting factor, ALPHA, can be selected to 

represent the number of attributes an individual has in common with 

the most typical individual. For example, suppose the individuals 

are measured on twelve attributes and that for each attribute there 

are six possible values. Then R = 72, and for a= 0.25 it is required 

that St . > 18 = ALPHA, i.e. , any individual i must be similiar to the 
,J. -

most typical one on at least three attributes. Hence in this case any 

cluster of individuals satisfying the inequality st,i ~ 18 are each 

similar to the nucleus of the cluster on at least three attributes. 

A computer program, CLASSINF, has been written for the algorithm. 

It has been programmed for the CDC 6400 system at McMaster University. A 

listing of the program is given in Appendix C. 

Example : The following simple example is given to illustrate the steps 

involved in this classification procedure. It is emphasized that this 

example is for purely illustrative purposes and no attempt is made to 

interpret the groups that result from the classification. Data are 

available on six attributes of each of ten individuals. For simplicity 

it has been assumed that there are only five possible values for each 

attribute. 

The first four attributes relate to individual shopping 

behavioL The data are the coded responses of the individuals to the 

following statements, 

(1) I enjoy buying expensive clothes. 
(2) I regard shopping as a necessity rather than a pleasure. 
(3) I buy at stores which undersell their competitors. 
(4) I am willing to sacrifice quality for low prices. 
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The responses were coded as 1, 2, 3, 4, or 5 depending on whether an 

individual strongly disagreed, (1); disagreed, (2); was indifferent, 

(3); agreed, (4); or strongly agreed, (5), with the statements. 

The fifth attribute measured each individuals level of 

educational attainment, ranging from (1) for elementary school level 

to (5) for University degree. The sixth attribute indicates the age 

group an individual belongs to, ranging from (1) for 0-15 years to 

(5) for over sixty years old. The scores recorded for the ten 

individuals on the six attributes are contained in Table 1. 

VARIABLE 

1. 2. 3. 4. 5. 6. 

I 1. 2 1 5 4 4 2 
N 2. 2 1 5 2 2 4 
D 3. 1 2 4 2 5 4 
I 4. 2 2 5 2 5 3 
v 5. 2 2 5 3 3 2 
I 6. 2 1 3 3 3 3 
D 7. 2 1 5 5 4 4 
u 8. 2 2 4 1 4 5 
A 9 2 2 5 2 5 3 
L 10. 1 2 4 3 3 4 

TABLE I • 

From Table I a matrix of probabilities, Pj(k), is calculated 

for Shannon's information measure and a matrix of frequencies is calcu-

lated for Brillouin's measure. These matrices are 

v SCORE 

A 0.2 0.8 o.o 0.0 o.o 2 8 0 0 0 

R 0.4 0.6 o.o 0.0 o.o 4 6 0 0 0 

I o.o 0.0 0.1 0.3 0.6 0 0 1 3 6 

A 0.1 0.4 0.3 0.1 0.1 1 4 3 1 1 

B 0.0 0.1 0.3 0.3 0.3 0 1 3 3 3 

L o.o 0.2 0.3 0.4 0.1 0 2 3 4 1 

E 
(a) (b) 



100 

The entry (j,k) corresponds to Pj(k) in (a) and to njk in (b), j=l, 2, 

••• ,6, k = 1, 2, ...• , 5. 

The information content of column j of Table I is calculated 

from row j of the matrix (a) or ~) depending on which information 

measure is being used. Then by Shannon's formula the mean information 

content of each entry in column 1 of Table I is 

11 (1) = - [ 0.2 log 0.2 + 0.8 log 0.8 + 0 log 0 + 0 log+ 0 log 0] 

= 0.2173 decits, where 0 log 0 is taken as zero. 

By Brillouin's formula the measure is 

1 
= 10 [ log 10! -(log 2! +log 8! + log 0! + log 0! + log 0!)] 

• 0.1653 decits. 

The total information content of any column j of Table I is lO[Ik(j)] 

k = 1, 2. The results are, in summary 

j lO{Il (j)] j 10 [I2 (j)] 

1 -2.173 1 1.653 
2 2.922 2 2.322 
3 3.899 3 2.924 
4 6.160 4 4.401 
5 5.706 5 4.225 
6 5.558 6 4.100 

By (3.3) and (3.5), if the variables are independent, the total infor-

mation content of Table I is 

I = 26.420 
1 

I2 = 19.627 



The maximum information content of Table I by (3.4) is 

I 1 Max = 60 log 5 

== 41.938 . 

since r. = 5 , all j 
J 

Similarly, by (3.6), I 2 Max = 30.327 • 
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Then the diversity of the ten individuals is, by (3.7) and (3.8), 

Dl = 0.6299 n2 = o.6472 • 

Since 0 ~ n1 , n2 ~ 1 one may conclude that these ten individuals are 

reasonably diverse. 

The next step is to calculate the typicalities, T~ , k = 1, 2, 

i = 1, 2, •••• , 10. 

If the first individual is omitted from the sample then the 

new probability and frequency matrices are 

v SCORE 

A 0.222 o. 778 0.000 0.000 0.000 2 7 0 0 0 
R 0.333 0.667 0.000 0.000 0.000 3 6 0 0 0 
I 0.111 0.444 0.333 0.000 0.111 1 4 3 0 1 
A 0.000 0.000 0.111 0.333 0.556 0 1 1 3 5 
B 0.000 0.111 0.333 0.222 0.333 0 1 3 2 3 
L 0.000 0.111 0.333 0.444 0.111 0 1 3 4 1 
E (a) (b) 

The total information content , maximum information content 

and diversity measures of these matrices are 

1 1 1 .... 
I = 25.378 Il = 41.938 Dl = 0.6051 

1 Max 

1 Il 1 
I2 = 16.688 = 26.134 D2 = 0.6386 2 Max 
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The superscript 1 is used to indicate that these measures are obtained 

when the first individual is omitted. 

The typicality of the first individual is, by (3.10) 

= -0.0248 = = -0.0086 • 

In a similar way the typicalities of the remaining nine 

individuals are calculated. The results are 

Tj j 
j 

1 
j T2 

1 -0.0248 1 -0.0086 
2 -0.0110 2 0.0077 
3 -0.0116 3 -0.0018 
4 0.0122 4 0.0279 
5 0.0024 5 0.0164 
6 -0.0279 6 -0.0134 
7 -0.0149 7 0.0029 
8 -0.0447 8 -0.0249 
9 0.0122 9 0.0279 

10 -0.0156 10 -0.0066 

The most typical individual is by definition the one with 

the highest typicality. Here the highest typicality is shared, in 

both cases, by the fourth and ninth individuals. Since both of these 

individuals are identical the first one, i.e. the fourth, is chosen to 

be the nucleus of the first cluster. 

To determine which individuals go into the first cluster 

the similarity between each individual and the most typical one is 

calculated by (3.13). For example, the similarity between the first 

and fourth individuals is 

= 5 + 0 + 5 + 0 + 0 + 0 = 10 
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The si~e of the first cluster is determined by the magnitude 

of the cut-off point, ALPHA. For ALPHA s 10 all the individuals, 

except the tenth go into the first cluster. When ALPHA ~ 15 the first 

cluster contains the following individuals, 2, 3, 4, 5, 9. If ALPHA 

is increased to 20 there are only two members, 4 and 9, in the first 

cluster. After the first cluster is formed those individuals are 

removed from the sample. The algorithm is then reapplied to the 

remaining set of individuals, until everyone is classified. The 

following classifications have been constructed from different values 

of ALPHA. 

GROUP 
1 
2 
3 
4 
5 
6 

. ALPHA ;: 10 

1,2,3,4,5,6,7,8,9 
10 

ALPHA ;: 15 

GROUP MEMBERS 
2,3,4,5,9 
1,7 

10 
6 
8 

ALPHA= 20 

4,9 
5 
1,2,7 
3,10 
6 
8 

Clearly, the results of the first classification may be 

ignored, since it forces almost the whole sample into one group. 

The choice of which one of the remaining two to accept may depend on 

the purpose for which the classification is being constructed. If the 

second classification (ALPHA = 15) is accepted then the members of each 
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cluster are similar to the nucleus of the cluster on at least three 

attributes. In the second classification the tenth individual forms 

a group by himself. However, he is similar to the fifth individual 

on three attributes. The fifth individual is the second most typical 

one in the sample. Hence, perhaps, the tenth individual may be 

incorporated into the first group. The two remaining individuals, 

6 and 8, are virtually unclassifiable. 

Some Extensions Of The Algorithm 

I Suppose one is unable to obtain data on some attributes 

for one or more of the individuals. This situation may arise if an 

interviewee is unco-operative and does not supply all the pieces of 

information that the interviewer requires. Suppose, in general, one 

does not have data for the x~m entry of the data matrix. Then the 

most unbiased value that one can assign to x~m is that value which 

minimizes the increase in the total information content of the matrix. 

Since the column informations are additive, minimising the total 

information content of the data matrix with respect to x~m is 

equivalent to minimizing the information content of column m with 

respect to x~m· 

Let the entries in column m be xlm' x 2m, ••• ,x(~~l)m'x(~+l)~····· 

xMm and let the number of possible values for each individual be rm, 

2 ~ rm < 00 • Let llwk denote the number of times the value k occurs 

among the M-1 entries in column m. Before assigning a value to 

x~m the column information is 
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r n nmk 
- (M-1) Im ( mk ) log ( ) 

k=l M-1 M-1 

and after it is 

* * rm nmk ( nmk ) - M I (-) log 
k=l M M 

where * ~ + zk ntr.k = 

r. m 
and zk = 0 or 1, such that I zk = 1 • 

k=l 

The value assigned to xtm is the one that minimizes (3.16). 

This value is obtained by setting Zk = 1 for each k = 1, 2, ... , rm, 

in turn, and then by comparing the results to obtain the minimum one. 

If Brillouin's measure is being used then the information 

content of column m before a value is given to xtm is 

rm 
log (M-1)! - I log (nmk)l 

k=l 

and after xtm has been assigned a value it is 

rm * 
log M! - I log (nmk)! 

k=l 

where ~ is again defined by (3.17). 

As above, Xtm is assigned that value which minimizes (3.19). 

(3.15) 

(3 .16) 

(3.17) 

(3.18) 

(3.19) 
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II. When the variables are statistically independent the total 

information content of the data matrix is measured by 

k = 1, 2. 

If however, one is classifying individuals on the basis of data 

obtained from interviews it is highly unlikely that the attributes 

or variables, on which scores have been recorded, are statistically 

independent. In interviews it is more often the case that a number 

of questions are asked to measure the same underlying dimension of 

variability. Denoting each of the variables by Xi, i=l, 2, 3, ••• ,N 

expression (3.20) may be rewritten as 

N 
= M l Ik(j) • 

j=l 

When the variables are not mutually independent the total information 

measures then are 

where 

and 

Ik(Xl) + Ik(X2,Xl) + Ik(X3,Xl,X2) + •••••••• + 

ik(XN,Xl,Xz, •••• ,XN-1) ' k = 1, 2. 

rlr2 •••• rN 
L P(xlkl'x2k2, ••• ,xNkN) 

klk2 ••• kN 
= - M [ 

rlr2 •••• rN 
log M! - l 

klk2 •• • .kN 

N 
log ( () nik) ! 

i=l ]. 

(3.20) 

(3. 21) 

(3. 22) 

(3. 23) 
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scores k1 on variable x1 , k2 on variable x 2 and so on up to kN on 

N n n is the nwnber of joint occurrences of the scores k1 on x1 i=l- iki 

The denominator, Ik Max' (k = 1, 2), in the diversity measure 

remains unchanged since the maximum amount of information can be obtained 

from the data when the variables are independent • This follows from 

the inequality for the bivariate case, Ik(Xl)+Ik(Xz!Xl} ~ Ik(X1)+Ik(Xz), 

k = 1,2. (Ash 1965). The diversity measure in the case of noninde-

pendent variables then is 

N 
Dk = [Ik(Xl) + rk<xziXl) + ••• + Ik(xNixl,Xz, ••• ,xN-1)]/ L Ik Max(j) 

j=l 
(3. 24) 

Thus the classification algorithm outlined here can be modified to handle 

data on nonindependent variables, without having to transform the data. 

An Application Of The Algorithm 

The algorithm has been used to discover groups within a sample 

of 198 individuals. Each individual was presented with seventy five 

statements representing five sets of fifteen statements on five under-

lying scales. The scales were related to (1) convenience orientation, 

(2) price orientation, (3) fashion orientation, (4) quality orientation 

and (5) status orientation of the individuals. These were considered 

to be five fundamental psychological orientations underlying the evalu-

ation of shopping alternatives. 
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The objective of the study was to see if it was possible to 

discriminate between retail patronage groups in terms of their disposit-

ional characteristics and further whether the dispositional measures 

provided more accurate discrimination than variables related to 

locational and socio-demographic characteristics of the consumers. 

Factor scores were derived from a factor analysis of the responses to 

the 75 statements by 198 individuals. The sample was composed of 114 

psychology students and 84 shoppers. Of the 84 shoppers 51 were patrons 

of boutique stores, while the remaining 33 were patrons of department 

stores. From a varimax orthogonal rotation twelve significant factors 

(with eigenvalues > 1.0) emerged. They represent various combinations 

of the 75 statements and hence to varying degrees reproduce the original 

scales. The highest intercorrelation among the factors was 0.078, 

between factors 1 and 8. 

The majority of the factor scores lay in the interval [-2,2]. 

Since the scores vary continuously it was necessary to convert them to 

ordinal form to make them suitable for the algorithm. The distribution 

of scores on each factor were partitioned into eight intervals. The . 

intervals chosen and the ordinal score assigned to each are as follows. 

SCORE INTERVAL 

1 (- 00 

' -1.5] 5 [0.0, 0.5) 
2 (-1.5, -1.0] 6 [0.5, 1.0) 
3 (-1.0, -0.5] 7 [1.0, 1.5) 
4 (-0.5, 0.0) 8 [1.5, 00 ). 
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where 
[0.5, 1.0) = { x!0.5 ~ x < 1.0 } 

(-1.0, -0.5] = { xj-1.0 < x < -0.5 } 

Hen~e the factor scores were converted into 8-state ordinal attributes 

(variables). These data, listed in Appendix D, were used as input for 

the classification program. Classifications have been constructed for 

ALPHA at three levels, 16, 24 and 32, i.e. when the members of each 

group are similar to the nucleus of the group on at least 2, 3 or 4 

attributes respectively. The classifications were performed using 

both Shannon's and Brillouin's information measures. In all of the 

cases the results from both information measures were identical. 

Results 

When Shannon's information measure is used the average infor-

mation per individual on each of the twelve variables is as follows. 

VARIABLE VARIABLE 

* 1 0.829 9 0.822 
2 0.811 8 0.827 
3 0.801 9 0.810 
4 0.823 10 0.803 
5 0.790 11 0.822 
6 0.799 12 0.835 

* The units of measurement are decits. 

From these rueasures one may note the very limited variability 

among the variables. The maximum value that could occur in each case 

is 0.903 decits. One may conclude from these figures that each of the 



110 

12 variables are almost equally good as a differentiating characteristic 

(in the sense of Grigg 1965) of the sample. The diversity index for 

the sample is D = 0.902. Remembering that D ranges between zero and 

unity it is clear that this sample of individuals are very heterogeneous 

in the way they evaluate shopping alternatives. 

In the first classification ALPHA was set at 16, i.e. it was 

required that the members of each group be similar to the nucleus of 

the group on at least two attributes. Three groups and two unclassi-

fiable individuals emerge. The first group has 152 members. Its 

nucleus is individual number 29. The group members are 

1 3 4 5 7 8 9 10 12 13 14 
15 16 17 18 19 20 22 23 24 25 26 
27 29 30 31 32 33 35 36 38 39 41 
42 43 44 45 46 47 48 49 50 51 52 
53 54 55 56 58 59 60 61 62 63 64 
65 66 68 69 70 71 72 73 74 75 77 
78 79 80 81 82 83 87 88 89 90 91 
92 93 95 98 99 101 103 104 105 106 107 

108 110 111 112 113 114 115 116 117 121 122 
123 125 127 130 131 132 135 136 137 138 139 
140 142 143 144 148 149 150 151 152 153 155 
157 158 159 160 161 162 163 164 165 166 168 
169 170 171 173 174 175 178 179 182 187 189 
190 191 192 193 194 195 196 197 198. 

This group contains 94 students, 21 department store patrons and 37 

boutique store patrons. Hence the first group takes 88.33% of all 

the students, 63.63% of the department store patrons and 72.55% of 

the boutique store patrons. 

The second group has 33 members, of whom 16 are students, 8 

department store patrons and 9 boutique store patrons. The group 



members are as follows. 

2 
94 

146 

6 11 21 28 
96 97 100 102 

147 154 167 172 

34 37 40 
119 126 133 
180 181 183 

57 
134 
184 

84 
141 
185 

85 
145 
188. 

The nucleus of this group is individual number 40, a student. 

The third group has eleven members, the nucleus of the 

group being individual 124, a department store patron. The group 

members are 

67 76 86 109 118 120 124 128 129 176 177. 

111 

Two individuals remain unclassified, they are individuals 

156 and 186. Their pairwise similarity is less than 16, hence they 

remain as two single member groups. The main disadvantage of this 

classification is the fact that 76.77% of the individuals go into 

the first group. 

A second classification was performed with ALPHA set at 24. 

The result is 11 groups, varying according to number of members from 

90 to 1. However, the first six groups contain 191 of the individuals. 

The most typical individual in the sample is number 29, a student. 

The first group has 90 members, of whom 59 are students, 7 department 

store patrons and 24 boutique store patrons. Hence the first group 

contains 51.75% of the students, 21.21% of the department store 

patrons and 47.06% of the boutique store patrons. The members of the 

first group are as follows. 
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3 4 5 7 8 10 12 14 15 17 18 19 22 
24 26 29 30 31 32 33 35 38 41 43 44 45 
46 49 51 52 53 55 60 61 62 66 68 69 71 
72 75 77 78 79 82 83 87 88 92 98 99 103 

104 105 106 107 108 110 111 116 121 125 132 135 137 
144 149 150 152 153 157 158 160 161 162 163 165 166 
169 170 173 174 178 179 182 193 195 196 197 198. 

The second group has 61 members, of whom 31 are students, 

16 department store patrons and 14 boutique store patrons. The 

group members are 

2 11 13 25 34 37 39 40 42 47 48 54 56 
57 58 63 67 70 73 80 81 84 89 90 91 93 
94 96 101 109 113 115 118 119 123 124 126 127 128 

130 131 133 134 138 141 142 147 148 151 154 155 159 
171 172 175 183 185 187 189 190 194. 

The nucleus of this group is individual number 119, a department store 

patron. The group contains almost 50% of the department store patrons 

in the sample. 

The third group has 17 members. Eleven are students, one is 

a department store patron and the other five are boutique store patrons. 

The nucleus of the group is individual number 180, a boutique store 

patron. The group members are as follows. 

1 9 16 20 36 59 64 65 97 102 112 117 167 168 180 181 186. 

These first three groups account for 168 of the individuals. The next 

three groups take 23 of the remaining 30 individuals. The last seven 

individuals are unclassifiable. The members of the fourth, fifth and 

sixth groups are as follows. 



Group 4; 

Group 5; 

Group 6; 

21 

74 

23 

27 50 86 

76 136 143 

85 95 120 

114 122 

176 

184 192 

129 139 

113 

140 145 146 156 

The interesting property of thi3 classification is that the 

nuclei of the first three groups represent the three groups that are 

known a priori to be contained in the sample, i.e., the nucleus of the 

first group is a student, for the second group it is a department store 

patron and for the third group the nucleus is a boutique store patron. 

This classification results,in a manageable number of groups. Six 

groups take 191 of the individuals, and the remaining seven may be 

lumped into a seventh group of "nonconformists". 

A third classificaiton was performed with ALPHA set at 32, 

i.e. it required that the members of each group be similar to the 

nucleus of the group on at least four attributes. The results were 

rather unsatisfactory. Altogether 27 groups were required, 13 of them 

being single member groups. The first four groups contained respect

ively 48, 36, 30 and 22 members. However, the fact that 22 groups are 

required for the remaining 62 individuals renders this classification 

unacceptable. 

Therefore, of the three classifications the second one 

appears to be the most acceptable. This classification gives a 

manageable number of groups and furthermore the nuclei of the first 

three groups represent the three different groups of individuals that 

are known a priori to exist in the sample. Of course, different 

classifications would be obtained if the factor scores were partitioned 
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into different intervals. If instead of eight, only four intervals 

were used then it is very likely that an acceptable classification 

would be obtained at a much higher level of ALPHA. There is a trade

off involved here. By increasing the number of scores possible for 

each attribute one is increasing the amount of detail in the input 

data. However, the more detailed is the input data the less is the 

number of attributes on which one can expect a pair to be similar. 

Conversely, if the number of scores possible on each attribute is 

small then much of the detail has been dispensed with and it is 

reasonable to expect groups of individuals to emerge that are similar 

to the group nuclei on a relatively large number of attributes. 

Some Further Applications Of The Algorithm 

It was noted in the introduction that one of the main 

advantages of the algorithm outlined in this chapter is that it can 

treat ordinal data, without having to first transform it. Hence it 

is felt that the algorithm may be of special use when dealing with 

psychological data where it is safest to assume only ordinal properties. 

This algorithm may be used to classify individuals, given some data on 

their preferences (e.g. Residential preferences as in Gould and White, 

(1974) ) or on their perceptions and attitudes as in hazard studies, 

such as Saarinen (1966). The data may consist of a collection of 

statements of opinion with a numerical value assigned to each 

statement, (e.g. Likert scale data), as was the case in the example 

given, or the data may be obtained from semantic-differential scales 

presented to the individuals. The data may relate to biographical 
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characteristics such as an individual's education, religion, age, 

family status, socio-economic status, zone of work or residence etc. 

A further possible application of the algorithm would be in relation 

to profile analysis of individuals, as an alternative to the.techniques 

outlined by Nunnally (1967), which require data with a metric structure. 

Summary 

In this chapter a classification algorithm based on some 

concepts from information theory has been outlined. An advantage of 

the algorithm is that it does not require data with metric properties. 

The total information content of the data available on a sample of 

individuals is calculated and a diversity index for the sample is 

computed. The most typical individual in the sample is identified. 

This individual becomes the nucleus of the first group which contains 

all the individuals who have a similarity with the most typical one 

greater than some critical level. When the first group has been 

formed it is removed from the sample, and the algorithm is applied to 

the remaining individuals. The process continues until every indivi

dual is classified. A computer program has been written for the 

algorithm, a listing of it is given in Appendix C. The computational 

steps involved were illustrated via a simple example and then the 

algorithm was applied to a more realistic data set. Finally, a wide 

range of possible applications of interest to the behavioral geographer 

were indicated for the algorithm. 



CHAPTER 4 

SUMMARY AND CONCLUSIONS 

The purpose of this paper was to examine the potentialities 

of information theory for the construction of classifications in 

geography. With this purpose in mind the first chapter was devoted 

to a discussion of some pertinent concepts and measures that are 

prevalent in the literature of information theory. The concepts of 

information and uncertainty were shown to be equivalent. Three different 

information measures were discussed and the different situations where 

each measure is applicable were identified. In particular, it was argued 

that ·shannon's measure is defined for very large populations, while 

Brillouin's measure applies strictly to completely sampled populations. 

The argument was based on .a new derivation of Brillouin's measure. The 

Shannon and Brillouin measures were generalized to measure the amount of 

information needed to describe objects characterized by a number of 

nonindependent attributes • . 
In the second chapter the classifciation problem was posed. 

The information based classification procedures that are being used by 

ecologists fu~d biologists were reviewed and it was indicated how these 

procedures could . be used for spatial classification. A further infor-

mation based classification algorithm was given in chapter three. The 

algorithm classifies individuals characterized by scores on multistate 

ordinal attributes. It is felt that this algorithm could be of 

116 
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relevance to behavioral geographers, who oftentimes have to manipulate 

large quantities of data obtained from questionnaires, data which may 

lack metric properties. 

From this paper there can be little doubt that information 

theory provides us with a host of statistics applicable to classification 

problems in geography. It is also abundantly clear that as yet geogra

phers have failed to take advantage of these potentialities of infor

mation statistics. The basic concept underlying the measures given in 

this paper is that they measure the uncertainty present in a distribu

tion. In this context uncertainty refers to the probability of events 

in a series on the basis of already observed occurrences. Throughout 

the paper it has been emphasized that different information measures 

are appropriate in different situations. 

In comparison with analysis of variance techniques information 

statistics have a wider generality. In analysis of variance type appli

cations uncertainties are calculated from the variance, if the form of 

the distribution is known. However, there are some cases where even 

given the form of the distribution it may not be possible to calculate 

its variance, or the variance may be infinite as in the ca8e of the 

Cauchy distribution (Meyer 1975, p. 252). Information theory provides 

us with a method of measuring the uncertainty in such distributions, 

Novitskii (1966). Information statistics are more general in that they 

can be equally easily calculated for nominal and ordinal data as well 

as for interval or ratio scale data. While the analysis of variance 

technique may be less general it retains information about the metric 

properties of the data, if these properties exist. On the other hand, 
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information statistics do not provide any information about the metric 

properties of the data, even if they do exist. 

The information statistics presented throughout the paper are 

purely descriptive measures. While they may give some indication as 

to the nature of the process that is at work in a particular situation, 

they do not describe the process. Some indication as to the nature of 

the process at work may be obtained if the observed information measures 

for a distribution are related to the measures that would be obtained 

from a distribution predicted by some theory. If there is a close 

correspondence between the measures from the observed and the theoretical 

distributions, then one may infer that the process which the theory 

explains is also the process that is actually occurring. Statements to 

the effect that information measures, or entropy measure the randomness 

or disorder in a distribution should be made with caution. The import

ant question is what kind of randomness or disorder is being measured. 

This requires a clear specification of the system being studied. 

Further work along this line could deal with some of the follow

ing problems. Some of the statistics given in this paper, particularly 

those in chapter ~No, may need to be modified along the lines suggested 

by Curry (1972) and Sheppard (1975). Alternate information metrics, 

such as those by Renyi (1967) or Behara and Nath (1973) may warrant 

examination. Consideration should also be given to the application 

of information theory to other statistical problems in geography. 



APPENDIX A 

An example to illustrate the process that leads to Brillouin's information 

measure. 

Consider a message composed of the following sequence of symbols, 

A A B C E D B D A C E D B A C B E A • 

Denote the number of A's, B's, C's, D's and E's by nl, n2, n3, n4 and n5 

respectively. Then n1 = 5; n2 = 4; n3 = 3; n4 = 3; and n5 = 3 such that 
5 . 
L ni = N = 18. 

i=l 

Let K denote the number of symbols preceding any given symbol. 

Denote the information content of the symbol A by I(A). !(A) is a function 

of the positon of A in the sequence. To calculate the information content 

of the sequence of symbols above proceed as follows. 

When 

K= 0 I(A) =- log 5/18 = log (N-0) - log Cn1-0) 
K = 1 I(A) = - log 4/17 = log (N-1) - log (nrl) 
K= 2 I (B) log 4/16 = log (N-2) - log (nz-0) 
K = 3 I (C) = - log 3/15 = log (N-3) - log (n3-0) 
K= 4 I(E) = log 4/14 = log (N-4) - log (n5-o) 
K = 5 I(D) = log 3/13 = log (N-5) - log (n4-0) 
K = 6 I(B) = - log 3/12 = log (N-6) - log (n2-l) 
K= 7 I (D) log 2/11 log (N-7) - log (n4-l) 
K = 8 I(A) = log 3/10 = log (N-8) - log (nl-2) 
K = 9 I(C) = - log 2/9 log (N-9) - log (nrl) 
K = 10 I (E) = - log 2/8 = log (N-10)- log (n5-l) 
K = 11 I(D) = log 1/7 = log (N-11)- log (n4-2) 
K = 12 I (B) log 2/6 = log (N-12)- log (nz-2) 
K = 13 I(A) = - log 2/5 = log (N-13)- log (nl-3) 
K= 14 I (C) = log 1/4 = log (N-14)- log (nr2) 
K = 15 I (B) = - log 1/3 = log (N-15)- log (n2-3) 
K = 16 I (E) = --log 1/2 = log (N-16)- log (n5-2) 
K = 17 I(A) = - log 1/1 = log (N-17)- log {nr4) 
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Summing over the whole sequence, the total information content of the 18 

symbols is 

B = 
N-1 
I log (N-K) -

k=O 

= log N! - I log ni! 
i 

log (n.-k.) 
l. l. 

The mean information content per symbol is 

= = ~ [ log N! - I log 
N N 
B 

i 



APPENDIX B 

First a multivariate measure corresponding to Shannon's univariate 

measure, I 1 =- L Pi log Pi is given. 
i 

Definition (1) : (S, A, P) is a probability measure space when S 

is a set of sample points, A is an algebra of events and P is 

a probability measure. 

Definition (2) A { X = xik·li=l, 2, ••• , s ; ki=l, 2, ••• ri 
l. 

£ z+} 

Definition (3) : On the probability measure space (S, A, P) the information 

content of any event X= xiki is equal to- log P(xiki), where 

P(xik_) = Prob (X=xiki). 
l. 

Theorem (I,a) : Let I
1 

(Xv x2 , ••• , Xs) be a function defined for any 

integers and for all values P(Xiki), such that P(xiki) ~ 0 

(i = 1' 2' ... ' s 

rs 
L P(xlk 'x2k2 ' ••• , Xskg) = 1 

k =1 1 
s 

If for 

any s this function is continuous with respect to all of its 

arguments then for any collection of s-dimensional vectors the 

mean information content per vector is 

= 

121 
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where 

= -

When the s distributions represented by the s-dimensional 
s 

vectors are mutually independent r 1(Xl,x2 , ... ,Xs) = I I 1 (Xi). 
i=l 

Proof: The proof is by induction. 

Let s = 1, then 

= 

Let s = 2, 

= -

= -

= - L P(xlkl'x2k2) log P(xlk ) - I L P(xlk ,x2k2). 
kl k2 . 1 kl kz 1 

~og P (x2k21xlkl) 

= - l P(xlkl) log P(xlkl) - l P(xlkl) l P(x2k lxlk ). 
kl kl . kz 2 1 

log P(x2k21xlkl) 

= 11(X1) + 11(X2IX1) 
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Assume the theorem is true for s = n-1 

Let s = n, then 

= -

= -

rl~r2, •• ,rn 

I P(xlkl'~2k2, •. ,xnkn)log P(xlkl'x2k2' •. ,xnku) 
klk2, •• ,ku 

log P (xlk ,x2k '· • • ,x ( -l)k ) 
1 2 n (n-1) 

P(xnknlxlkl'x2k2' ••• ,x(n-l)k(n-1)) 

log P (xlkl'x2k ' .•. ,x( l)k ) 2 n- (n-1) 

I P(x k lxlk ,x2k , •.• ,x( -l)k ) ku n n 1 2 n (n-1) 

log P(xnknlxlkl' ... x(n-l)k(n-1)) 



Hence for any integer s 

where, for any 2, 2 < 2 < s 

log P(xtk lxlk , ••• ,x(2-l)k ) • 
t 1 (2-1) 

In the special case when the s distributions, represented by the 

s-dimensional vectors, are mutually independent 

s 
= l Il (Xi) • 

i=l 
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Theorem (l.a) may be interpreted as follows, the mean amount of infor-

mation needed to select the s entries in a particular vector is equal 

to the mean amount of information needed to select the first entry plus 

the mean amount needed to select the second entry given the first one, 

plus the mean amount needed to select the third entry given the first 

and second entries, and so on. When the distributions are mutually 

independent the mean amount of information needed to select the n 

entries will be equal to the sum of the mean amounts needed to select 

each entry. 
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Now a multivariate information measure corresponding to Brillouin's 

univariate measure is given. 

Definition (4) 

Some Notation. 

s 
(1) (l n.k = 

i=l ~ i 

• s r . 
(2) IT { 2~ 

i::ol k.=l 
~ 

s r. 
(3) IT { IT~ 

i=l ki=l 

Theorem (l,b) 

and 

. (Brillouin's Information Measure). For any collection . 
of N events such that n1 are of type 1, n2 are of type 

r· 
2 up to nr· of type r. such that 't n. = N, the mean 

~ ~ i=l 
~ 

1 ri 
information content per event is r 2 =-log (NI/ IT ni!). 

. N i=l 

nlklnn2k2 •••• fln k 
s s 

s rl r2 rs s 

<n n.k )} = I 2 ........ I <tl niki) . 
~ i i=l kl=l k2=1 k =1 s i=l 

s rl r2 rs 
<11 nik.)} = IT IT ........ II <('\ niki) . 
i=l ~ kl=l k2=1 k =1 i=l s 

In any collection of n s-dimensional vectors let nik· 
~ 

be the number of times the integer xiki' ki = 1, 2, •• ,ri, 

occurs as the ith entry in each of then vectors, 

nik·()nJ·k· be the number of joint occurrences of the 
~ J 

integer xiki in the ith place and the integer xjkj in 

the jt~ place of each vector, such that 

s 
IT 

i=l 
if:Q_ 

ri 
{ 2 
k.=l 
~ 

1, 2, ... ' s 

Then the mean information 



content per vector is 

........... ' 
where 

When the s distributions represented by the 

s-dimensional vectors are mutually independent, 

Proof: The proof is by induction. 

Let s = 1, then 

Let s = 2, 

n! 1 
r2 <x1 ,x2) =-log[.----------

n 
rl rz 
II II 

kl=l k2=1 

n! 1 
= - log[----

n 
II (nlk ) ! 
k - 1 

1 

126 



= .!. log [--n_! --] + ~ log 
n IT (nlkl)! n 

kl 

1 = - log n 

Assume the theorem is true for s = n-1, 

n! 1 r2 (x1 ,x2, .•. ,~_1) = - log [ ,.... ----------t 
n n-1. r 1 n-1 

Let s = n, then 

IT {IT . ( n n.k )!} 
i=l k.=l i=l 1 i 

1 

n! 1 r 2 (x1 ,x2 , ••• ,Xu) =-log [~--...---------] 
n ~·~· { ~i 

1 = _ log 
n 

n-l 
IT{ 

i=l 

n 

i=l k.=l 
1 

( iQ niki ) ! } 

nl 

n-1 r. n-1 
. IT { IT

1 
( () nik ) ! } 

i=l k.=l i=l i 

ri 
IT 

k =1 
i 

1 

n.:...l c n n.k ) ! 
i=l 1 i 

------}] 
rn n 
IT ( 0 n 'k ) ! 

ku=l i=l 1 i 

127 



Hence for any integer s 

where for any 2, 2 2 2 2 s 

1 
= 

n 

1 
[ n-1 log 

128 

n-1 ( n n.k)! 
i=l l. i 

When the s distributions are mutually independent the mean information 

content per vector is 

1 s ni! 
12 (Xl ,x2' .•. ,Xs) = - log [ II { }] 

n i=l ~i 
(niki)! k.=l 

l. 

s ri 
= I 12 {Xi) where n = n. = I n.k 

i:.l l. k.=l l. i 
l. 

] 



The result of theorem (1. b) is interpreted in exactly the same way 

as the result of theorem (l.a). 

Lemma 1: For large values of niki' I 2(x1 ,x2 , •••• ,Xs) is a good 

approximation of r 1 (x1 ,Xz,••••,Xs). 

s 

129 

Proof: II <n n.k )!] • 
ks i=l 1 i 

If, and only if, all the n.k are large Stirling's approximation, 
1 i 

log x! = x log x - x, can be applied. 

Then 

1 
= - { n log n - n -

n 

s <.n nik.) s 
{=l 1 log(() = log n -

=·-

s 
n ll•k i=l 1 i 

n 

n i=l 

s 

log 
() llik. 
i=l 1 

n 

= L P(xlk ,x2kz, •• ,xsk) 
klk2 ••• ks 1 s 

log P (xlkl ,x2kz' •.• ,xsk ) 
s 

are defined in a relative frequency manner. 

n.k ) 
1 i 
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PROGkAM CLASSINF WRITTEN ~y J A WALSH ANO M J NEBB~RtMGMA5T~~ 
UNlVE~SlfY,rlAMI~TON,ONTARIO. 

INFORMATION THEORETIC AGGLOMERATIVE CLAS~lFICATION ALGORITHM 

THIS ALGORlTHH FIRST lDENTIFIES T~E HOST TYPICAL INDIOIDUAL IN THE 
~ET TO j£ PAKTITlONED. ALL THE OTHER INDIVIDUALS A~E GOMPA~EO ~ITH 
THE MOST TYPICAL • THOSE HITH A ~IMILARiTY lNJEX G~EATEk THAN ALPHA 
FOkM TH~ FIKST CLUSTER. THE ALGORiTHM IS T~EN REAP~LIEU TO T~E 
~EMAINING SET OF INO!VIOUALS UNTI~ EVERYON~ 1~ ASSIGNED TO A G~ASS 
ALPHA IS AN ARBITRA~Y CUT-OFF POINT~ 

FOR EA~H INUIVIDUAL AN IDENTIFICATION NUMBER IS PUNCHED IN 
COLUH1'iS 1 TO !:; • 
NO IS THE NUMBER OF INDIVIDUAL~ TO SE CLASSIFIED. 
NV I~ THE ~UM8ER OF VARlAbLES. 
tlVV IS THE NUMBER OF VAR1A8LE:> PLUS THE Iu::NTIFICATION NUM3E~ 
FOR EACH lNJlVIDUAL. 

~J<I> IS THE NUMBER OF DlFFERENT VALUES THAT CAN OCCUR FOR 
VAkiABL~ I. THE VALUES MU~T BE PO~ITIVE lNfEGER5 G~EATER T~AN 
ZE~0 AND LESS THAN TEN. 
MAXK IS THE MAXIMUM OF TH~ RJ,S. 

I 'l 0 A T A l S T ~ E M A T R l X 0 F I N P U T D AT A. 
ENTkYCI,J> IS THE SCORE OF INUIVlOUAL I ON VARlABL~ J. 
~JUT IS A MATRIX OF Pf-,OuAdlLlTH.S BASED ON RELATIVE FREQUE'lCIES 
FOR. OPT1 AT 0 
SOUT IS A MATRIX OF FRE~U~NCIES FO~ OPT1 AT 1. 
S 0 U T H A S D 1 M EN S I 0 r iS ( N V , 1'1 A X K) 

SCI> IS THE MEAN lNFO~HATlON CONTENT OF EA:H VALUE RECORDED FOR 
VAkiAoLt. 1. 
TOTS IS THE TOTAL INFORMATION CONTENT OF INDATA • 
TOTSM 15 THE MAXIMUM INFO~MATION CONTENT OF INDATA. 
DlV IS THE JIVEk.SITY OF 1HE SET OF INDIVIDUALS. IT IS THE ~~TIO 
OF TOTS OVER TOTSM. 
X IS THE ulVER~lTY WHEN ONE lNDIVlDUAL iS )MlTTEO F~OM INDATA. 
TYP(l) IS THE TYPICALITY OF lNUIVIuUAL 1. 

OPTl IS SET AT 0 FOR SHANNONS MEASURE OF INFORMATION. 
OPT1 lS SET AT 1 FOK 8RlLLOUINS MEASURE OF ~NFORMATION 

GlNDEX DENOTES A GROUP 
INDEX QENOT~~ THE NUCLEU3 OF THE GROUP 
JINDEX 0ENOTES THE NUMBER OF INDIVIDUAL~ IN THE GROUP 

WrlEN THERE ARE ONLY TWO lNOIVI~UALS REMAINING TO B~ CLASSIFIED 
TtiE lNFORMATION ANO uliJERSlTY 1-!EASUF\ES ARE IWT GALCULATEO.THE 
~I11lLARJ. T Y ::JF TrlE ?AIK. l~ GALGULATEO. IF IT lS :3k.E~ TER. THA~ 1\L~HA 
TrlEY FO~M THE ~~ST GkOUP.OTHER~l~E THO SEPARATE GRJ~PS ARE FORMEO. 
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c 
c 
c c 
c 
c 
G c 
c 
c 
c 
c 
c 
c 

G 
c 
c 

1GD 

11{) 

111 
112 

11;; 

205 

117 
c c 
c 

c 

OUTPUT. 

1!'101-iTA 
THE VALUE OF ALPHA 
~our 
5<I>,I=1,NV 
TuT~,TOTSN,DIV 
THE MOST TYPICAl INOIVlOUAL 
~~OJP NJ~BER AND GROUP MEMBERS 

•f+~·+~·~···~~~·•••++~······~·••+•+•+++++++++++••··········~······ 

uHIENSlON TYP<200) ,NGROUP(200l 1 lNTEHPt200 1 ZO> ,LIST<200J 
DIMENSION LJGFAC<20),LGFACN<20JtLGFACMC20J,A(20),6(20) 
COMMON 1NDATA<2G0,20JtFREQ<20,1U),S(20J 
COMMOI~ k.J(20) ,SIM(2u0J 
lliTEGt:R. GINOEX,O,OPT1,0PT2 

READ THE DATA VALUES 

~EA0(~ 1 1)NV,NO,MAXK 
~, E A J c; , 2 > 0 P T 1, ALPHA 
00 10J 1=17~-lO 
lNDATA0.,11=I 
I·~ W =NV 
hVV=NV+1 
READ<~,3) (RJ<Il 1 I=2,NVV) 
C:J 110 I=1,~0 
fJ:.AObt4) UNOATA<I,J>,J=2,NVV) 
ki-<..ITE<b,5) NH,NO 
1::(0PT1.EQ,1) GO TO 111 
H RiTE ( 6, 6) 
GU TO 112 
WidT£<6 1 7) 
~~ F-. .i T £ < 6 , b > 
WrdTE<6t10) 
DO 11:::. .l=1,NO 
K=I . 
W~IT£(6,11) Kt(INOATA<I 1 J),J=2,NVV) 
WK.lTE<G,·:n ALPHA 
GINDEX=O 
CONT lNUt: 
00 117 I =1 NO 
hGR.OUP(l).:3 

CALCULATE F~EQUENCY AND KELATIVE FREQUENCY MATRICE~ 

GALL ~FREQ<0 1 N0 1 NVV,OPT1 1 MAXK> 
GINuEX=~INDEX+1 
IF<NO.EQ.2) GO TO 20Lt 

C COMPUTE DIVERSITY INDEX ,., 
v 
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c 
c c 

200 

CALL UlvERS<O,NO,NVV,OPT1,HAXK,TOTS,TOTSM,JlV) 
WF:..lTECo,12) 
Wi-,ITE(o,13) (S<l>,I=2,NIJV) 
HR-1TE<6,1<+) . 
H~IT£16,15) TOTS, TOTSM,U1V 

CALGU~ATE TiE TYPICALITIES 

DO 20J 1=1 NO 
CALL SFREOli,NO,NVV~OPTi,NAXK) 
~~LL UlVE~S(1,NO,NVv,OPT1,MAXK,TOTS,TOTSM,X> 
TYP (I) =X-OIV 
TMAX=-2 
OJ 201 1=1 '40 • 
~ F n Y P u. l • CE • r 11A x> Go r o 2 o 1 
H~A X=T YP <I> 

201 
204+ 

c 

li,GEX=l 
CONT HWE 
COt-1 Tit~ UE 

c 
c 

G 
c c 

202 

203' 

CA~GULATE SIMILARITIES 

CALL SIMIL<INOEX,NO,NVV,SlM) 
JINO£x=l 
NG~OUP(JINDEX>=INDEX 
DO 202 1=1 NO 
lFCI.ELl.INOEX) ;;o TO 202 
IFC::>IMCI> .LT.ALPHA> GO TO 202 
JINDEX=JINOEX+1 
t'-1GR.OUP (JINDEX>=I 
C 0 NT lt'WE 
L= l 
W~ITE<6 1 1G>GINDEX,INOEX,JINDEX 
GO 203 ~=1 JINJEX 
N=NGROUP ( rf 
L l :::> T 0 ) =IN 04 Til ( N 1.1> 
~iF:..lTE (o ,16) <LIST <IJ ,1=1, JINDEX} 

kEOEFlNE INOATA LEAVIN~ OUT ~ROUPED INOlVlJUALS AND REPEAT 

K=1 
LU 21G l=i,NO 
IMP=O 
DO 211 J=1,JINOEX 
lF<NGR.OJP(JJ.NE,l) Gu TO 211 
l. M P .:: l i1 P ... 1 

211 LJNTINU:. 
lF<lHP.EQ.1> GO TO 210 
lJO 21~ L=1 NVV 

215 l~TEMP<K,Ll=lNOATA<I 1 Ll K=K+1 
210 CONT INU~ 

hO=tW-J.i.NDEX 
uO 21o 1=1,NO 
DO 21o J=1,NVV 
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c 
G c 

c 
G 
c 
c 
(; 
c 
G , .. 
1.1 

21b 

20 7 

1 
2 
s 
-+ 
;) 

0 

7 

8 

--J 
10 
11 
12 

13 
1-+ 

1;;, 
16 

1( 
16 
19 

1 

lNOATAC1 1 J>=INTEHPCI 1 J) 
1FnlO.GT.2) GO TO 20!:) 
NO= tlO+ 1 
OJ 207 1=2,"40 
N = N GR. 0 UP <l > 
L1~T<l>=INOATA<N,1) 
WF,l TE (6

1
17) 

tHdTE<6, 9) (LIST<H,I=2,NO) 

WR.ITE FORMAT STATEMENTS 

F 0 R MAT < S X, 3 I 3 > 
F 0 R. t1 AT ( 6 X , H 1 F 3 • 1 l 
FCK.HA T (6 X, 30r 2. 0) 
F 0 K. t·l A T ( o X 13 0 I 2 ) 
FO~MATC1H ,jX,50HINFO~HATION THEORETIC AGGLOMERATI~E CLASSIFICATIO 
1~/1H0,5X,13HUSING DATA ON,I3,1X,9HVARIABLE5/1HI,5X,3HANU,I3,1K,11H 
21 i·i 0 ll/ IDU ALS) 
FOK.I"lATC1110,~X,!;IOHTHE PKOCEOURE USES SHANNO~S MEASUR:: OF INFORMATIO 

un 
FJRMAT<1HC,5X,52HTH£ PROC~DURc USES 8RI~LOJlNS MEASURE OF lNFO~HAT 

liON> 
FOiHlAT <1H0t5X, oBHTHE PR.OCEDURt: USES A MOOIFIEiJ 1/ERSION OF HYIIARINE 

l~S ~IMILAK1TY INDEX> 
FOKI-:AT (1H0,5X,2iHTHE VALUE OF ALPHA lS,F20.3) 
FO~HAT(1H0,5X,29HTHE INPUT DATA A~E AS FOLL0~5) 
Fuk.tlAT <1H0,2X, I3,::;Xt20I3) 
FORMAT C1H015X169HTH~ AVEKAGE INFORMATION P~R I~JIVIOUAL ON E4CH VA 

lklAdLE IS AS rOLLOWS) 
FORt1AT (1HO ,5X ,F20. 6> 
FOF<..MAT<1HO,~X,70HTHE TOTAL INFURHATION,MAXlHUI1 lNFOR.MATIO~ AND OIV 

1Ef\S lTY ARE AS FOLLOWS) 
FORMAT (1H0,3F20.6) 
fOkHAT(1HQ,5X,15HFOR GROUP NUMdER,I3,1X1.30HTHE ~OST TYPICAL INDIVI 

1DJAL .i:Srl3,1X,13HTHE GROUP rlAS l3,1X,8HMEMt3ERS,) 
FORMAT<1HO,~X,JJHTHE MEMBERS OF THE LAST G~OUP AREl 
FORMAT<1HJ,5X,17HGROUP MEM3ERS ARE 1<1H ,5X,2014)) 
Fu:;;.MAT (1H0,5X, 2014) 
STOP 
£Nu 

SU8ROUTINE SFREU(JO N1 N2 N3 MAXK) 
uo ~UtiKJUTINE ~FRE~'ro'cA[~u[ATE FREQUENCI~S A~O R~LATIVE FREQUE 
NCIES. FOK OPT1=0 THE OUTPUT ~ILL UE A ~AT~IX OF P~)8A8ILlTIE5. 
E~T~YlJ,K> ~S THE P~lO~ PkOUABILllY OF ANY 1N01VIOUAL HAVI~G TiE 
S~O~E K ON VAKlABLE J, FOR OPT1=1 THE OUTPJT Hl~L dE A MATRIX OF 
F~E~UENCIES. ENTkY(J,K) l~ THE NUMBER OF TIMES THE SCORE K OCCURS 
Ot~ VARIABLE J. 

COHt--ION IN<200z20} ,SOUTC20,10) 
IF ltl3, EQ. 0) GU TO 20 
CO 1 l =2, N 2 
LO 1 J=l,MA><K 
SOUTO J):Q, 
J.F (J,£Q,O> :;o TO LrO 

1 1 2 2 3 3 .,. i.t :) 5 0 0 7 7 8 
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't 
J 

7 

c 
20 

30 

31 
J2 

3'+ 
33 

3b 
4G 

c 
c 
c 

b 

c 
c 
c 
c 

() 

35 

37 

F=1.0 
DO J J=1,N1 
IF<J.EQ.JO) GO TO 3 
co tt I=2,r~2 
JSCOR.C:=lN<J I> 
SOUTCI,JSCORE>=SOUT<I,JSCOREJ+F 
CONTINUE 
lF<JO.NE.O) GO TO 40 
HRITE (6 1 6) 
00 7 I =2, N2 
K=I-1 
W i\1 T E ( 6 t 3 ) K , < SOU T ti , J l , J = 1, M A X K) 
GO TO 4U 

DO 30 I::2 ,N2 
C 0 3 0 J: 1, NA X K 
SOU T <I 1 J > = 0. 
Z=FLOAICNU 
IF< JO. EIJ• C> GO TO 31 
Z=Z-1 
lF<Z.LE.Ol ;o TO 32 
F..F=1./Z 
t:uNT rrw:: 
OJ 33 J:: 1, N1 
IF<J.EQ.JO) GO TO 33 
GO 34 1=2,N2 
JS C OR.E=I N < J, I> 
SuUT<I,JSGO~E>=SOUT<I,JSCORE>+RF 
GONTINUI: 
IF<JO.NE.'J) GO TO LtO 
WfdTE<o,35) 
00 36 l-=2,N2 
t<= I-1 
WrdTE<6 1 37) K, CSOUT U,J>,J=1,r1AXKl 
CONT IN U:. 

W~ITE FORMAT STATEMENTS 

FORMAT<1H1t5X,63HTHE MATRIX OF FREQUENCIES HAS VARIABLES ACRO~S AN 
1u SCOKES OUWN /lHO,dHVA~lABLE) 

FORMAT{1H0,2X,I3,2Xt<10F10.3>> 
FORMAT C1H1,5X 1 71HTHt MATRIX OF KE~ATlVE FR~QUENCIES HAS VARIABLES 

1ACR0SS AND SCuRES DOWN /1H0 1 8rlVARlABLE) 
FORMAT ( lHO ,2X, I3,2X, UOF10 .J)) 
END 

~UGkOJTiNE OI~ERS<JO N1,N2,N3,MAXKfTOT,TOTH 1 DIV) 
LO ~UJROUTIN~ DIVERS

7
TO C~LCULATE HE UiVE~~IlY OF THE SET OF 

ll~i.LiVIULJALS 

0 ll'l E N S I 0 N L 0 G F A C ( 2 tH , L G FA C ~~ ( 2 0 > , l G FA C M ( 2 0 > , A ( 2 0 ) , B ( 2 0) , L F A C ( 2 0 , 1 0 J 
C U ~1M Oi-. X ( -t 0 0 0) , SOU T { 2 G , 10) , S ( 2 0) , k.J ( 2 0) 
KEAL ~00FAG,LGFACN,LGFA~M,LFAC 
1F<N3.EU.0) GO TO 10 
S~iA X= 0 • 
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c 

2 
J 

'+ 

~ 

0 

0 
i 
1 

~ 

c 
10 

CO 1 I=2,N2 
$(!).:0. 
lOGFAG<I>=O. 
Z=FLOA T <N 1) 
h4:;; tl1 
1 F < JO • E tl. 0) G 0 T 0 2 
Z=Z-1 
h-r=NL;.-1 
IF CZ.L£.0) GO TO .3 · 
KF=1./Z 
CON T li·WE 
OJ 4 K=1 N4 
LUGFALCI1=LOGFAC(l)+ALOG10(FLOAT<K>> 
Xti=FLOAT <N'+) /RJ<I> 
N=X N 
K=(XN-FLOAT(N))+RJ(I) 
LGFACN<l>=O. 
OCJ :; l{=l,N 
XK=FLOAT <K> 
AXK=AL0.:110 O<K) 
LGFACN<l>=LGFAGN(I)+AXK 
A<I>=<RJ(l)-R)•LGFACN<I> 
M=N 
M=M+1 
LGFACrlLi.> =-0. 
OJ 6 L =1 ,t-1 
XL=FLOAT (L) 
AXL=AL0~10 CXU 
LGFACM(l)=LGFAGH<I>+AXL 
u{l)=K..,LGFACM<I) 
~MAX=SMAX+(LOGFACCI>-A<ll-B(l))/Z 
TJTSM=SMAX .. FLOAT (N4) 
TUl ~~=roT S!i 

~UM=O. 
GO 7 J=1, MAXK 
LFAC<I,Jl=O. 
K=~OUT<I,J) uO b L=l,K 
X~.o=FLOAT<U 
LFAC<l,J>=LFAC<I 7J>+ALOG10<XL) 
SuM=SUM+LFAG<I JJ 
S<I>=<S<I>+LOGlAC<I>-SUH>+Rf 
TJT=O. 
CO 9 l=2,N2 
TOT=TOT+S (l) 
TuT=TOT~FLOAT<N4) 
DIV=TUT/TOTSM 
G 0 T 0 2S 

DO 2 0 I= 2, N2 
S<U=O. 
DO 20 J:=:1,t1AXK 
l F <~OUT (I, J> , LE. 0.) G 0 TO 2 0 
~ < 1) =.S (1 > -SO lJ T U , J) +A L 0 ~ 1 0 <SOU T (J. t J) ) 

1 1 2 2 3 3 4 4 :, 5 & ~ 7 7 8 
•••• :;, •••• o •••• ::> •••• c •••• !? •••• o •••• s~···o •••• ~ •••• a •••• s •••• o •••• ; •••• oo ••• ~ ..... o 

• • 
• 
e 

280 
• 
• 
• 
• 

285 
• 
• 
• 
• 230 
• 
• 
• 
• 295 
• 
• 
• 
• 3uG 
• 
• 
• 
• 30!;; 
• 
• 
• 
• 

310 
• 
• 
• 
• 

31~ 

• 
• 
• 
• 

320 
• 
• 
• 
• 

J2:.i 
• 
• 
• 
• 330 

...... 
w 
\.11 



1 1 2 2 J 3 - 4 i 5 & & 7 7 8 •••• s •••• o •••• s.~ •• o •••• s.j •• o •••• s •••• o •••• s •••• o •••• s •••• o •••• s •••• o •••• s •••• o 

20 

21 

c 

22 

2~ 

c 
G c 
c 

1 

2 

CONTINUE 
SNAX=O. 
00 21 I=2,N2 
Sl-iAX=SHAX+ALOG10 CR.J<I>) 
TOT .:Jl1=~MAX•FLOAT CN1) 
TOTM=TOTSM 

TOT=O. 
D J 2 2 I=2, N2 
TDT=TOT+S (l) 
TOT=TuT~FLOAT<N1> 
UIV=TOT/TOTM 
CJ~TINUE 
END 

~05ROUTlNE SIMILCI,N1,N2,S) 
LU SUd~UUTINE SlMlL TO CALCULATE THE SlMILARlTY BETWEEN EACH 
iNDIVIDUAL AND THE MOST TYPICAL ONE 

COMMON lNC200,20) ,X<220J,R(20J,SIN(200). 
DO 1 J=l,N1 
SIM<J>=C, 
OJ 2 r<=1,N1 
OU 2 J=2,N2 
lA;;;lN< I, JJ 
IIJ;;;IN<K1J> 
IF<lA.IJt..IB>GO TO 2 
S Hi ( KJ =S HH tO + R ( J) 
(,ONTINUE 
END 

1 1 2 2 3 3 Lt '+ :) 5 6 6 7 7 8 
•••• 5 •••• o •••• ~ •••• o •••• s •••• o •••• , •••• o •••• s •••• a •••• s •••• o •••• s •••• o •••• s •••• o 

• 
• 
• 
• JJS 
• 
• • 
• 340 
• 
• 
• 
• 

31+~ 
• 
• 
• 
• JSO 
• 
• 
• 
• 

355 
• 
• 
• 

3&0 

1-' 
w 
0\ 



1 

z 
3· ... 

·5 
6 

7 

a 
.. g 

.tl 

u 
12 

13 

11t 

15 

16 

17 

18 

19 
zo 
21 

22 

23 
Zit 

25 

-26 

27 

28 

Z9 

30 

31 

32 

.33 

Appendix D. DATA .. on 198 INDIVIDUALS 

z·. 3 & 5 a ,. 1 a z 
7 7 1 z 5 . 7 It 1 5 

3 ~ It 2 & ~ 3 6 5 

3 5 5. 5 '& 5 3 s 4 

3 s s s ~ 6 2 7 4 

7 1 6 

6 5 3 

It 2 6 

3 It 5 

7 3 .. 

2 6 6 ~ 4 5 5 

z 3 5 5 4 5 5 

4t s .5 4t 6 It .. 

3 1 It 2 7 

3 6 5 3 6 

5 . 3 .. 3 6 

.. 3 e 
4 lt It 

7 5 3 

5 .. It 

a 6 6 

.. 7 5 

It It 5 

6.3 It 4 

4 5 It 3 

8 .. 3 s 
s .. 5 a 
5 5 J 5 

6 .. & 3 

It It 3 1 

4 

z 
2 

2 

6 

s 
It 

5 6 4 6 4 6 a 4 

.. It 2 3 6 s 6 6 

6 .. 56 3 3 6 3 

.. 3 6 7 4 5 5 2 

2 1 6 3 4 5 6 It 

1 5 3 .. 5 3 6 4 

5 5 5 5 7 1 3 7 

1 3 3 a s 3 3 3 

.. 4 5 5 .. .. 6 2 

3 5 3 .. .. .. 5 5 

... 5 2 6 3 .... It· 5 

3 6 s 1 3 3 6 5 

1 3 a 3 1 ~ ,. 1 

~ .. 5 5 s 5 3 5 

6 .. 3 5 5 4 .. 5 

5 3 5 5 It 1 1 5 

4 6 7 3 5 5 ~ & 

1 5 2 5 5 5 5 1 

5 5 6 0 

a s 6 6 

It .. It 5 

5 5 4 5 

4 6 5 7 

5 " " 0 
6 6 6 ,. 

3 3 2 6 

6 6 5 3 

6 7· 7 5 

5 3 5 6 

& 7 6 4 

It 6 6 5 

6 5 s 2. 

a 6 " 3 
4 5 4 z 
3 3 2 s 
5 5 4 0 

z· s· 5 5 

3 5 1 5 

6 3 ·- 3 & 

6 3 .. 6 

3 .. 8 8 

.. 6 4 ... 5 

1 4 1 5 
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3ft 

35 

36 

37 

38 

39 

ItO 

lt1 

o\Z 

lt3 
~,. 

ItS 

~0 

~7 

48 

it9 

51 

51 

52 

53 

Sit 

55 
56 

,... 

" sa 
59 

6fl 

61-

62 

63 

61t 

6~ 

66 

3 6 3 

6 .. .. 

2 3 5 

6 5 5 

.. 5 3 

z It It 

3 3 .. 

.. 0 .. 

6 6 2 1 6 

5 .. 3 3 6 

4 3 .. .,. 4 

,. 6 4 5 7 

"' 4 It 3 5 
5 J 6 5 It 

6 .. 3 .. 6 

5 5 z 3 5 

.. .. 5 5 

2 6 7 z 
6 6 6 5 

4 2 5 5 

5 5 6 6 

.. 6 5 7 

.. .. 5 5 

5 6 7 & 
.. 6 .. 6 3 .. .. 3 4 5 .. 6 

5 .. 5 3 5 .. 5 z 5 ..... 5 

2 .. 5 4 5 5 5 .. 5 4 3 5 

.. 3 .. 5 It 6 3 ~ . J 3. 1 8 

5 3 7 5 7 6 5 5 6 b 7 5 
z 5 5 .. 5 3 ... z 4 .. 7 ... 

5 5 5 .. 5 .. s 6 3 7 6 5 

5 6 5 5 .. s 6 1 6 .. 6 7 

3 8 3 5 3 3 ~ 5 5 1 7 2 

6 5 3 6 5 5 .. .. 5 5 4 6 

4 5 6 6 6 1 2 5 6 2 .. 1 

2 5 5 5 3 .. 3 3 6 5 .. 6 

5 ~ 2 5 .. .. 5 6 ~ 5 5 .. 

.. 3 2 6 3 5 6 4 5 5 7 6 

5 ~ .. b .. 3 5 3 6 6 6 4 

3 3 .. 6 .. ~ 3 6 i 6 5 3 

3 6 5 ..... 5 6 5 &·-J 5 

7 It It 

6 7 z 
6 2 5 

5 .. 1 

0 6 6 

5 3 6 

6 1 6 

.. 5 5 

8 6 s 6 

5 .. s 6 

3 8 1 3 

.. .. s 2 

6 3 5 s 
J a 5 & 
7 .. .. 4 

5 & 2 J 

6 5 5·· 6 5 

5 3 6 5 6 

.. .. 4 It 6 

7 6 5 .... 

3 5 ft 6 & .. 
5 

7 

8 J 1 1 

5 3 5 .. 

7 ~ If. 6 
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67 

68 

69 

70 

71 

72. 

73 

7,. 

75 

76 

77 

78 

79 

80 

61 

82 

63 

6t. 

85 

S6 

·87 

ea 
89 

~0 

91 

~2 

93 

9~ 

s s 8 

2 4 s 
5 ~ 5 

3 6 3 

3 6 6 

5 6 3 

0 8 4 

5 2. 5 

6 ~ 4 

2 6 7 

4 3 5 

6 ,. 3 

5 6 3 

5 ,. 8 

1 4 8 

,. 3 5 

6 4 '+ 

3 7 4 

6 s ~ 

7 2 6 

5 6 ,. 

6 ,. 5 

5 5 4 

3 5 7 

5 5 ~ 

'+ 5 ,. 

4 5 ... 

1 3 5 

2 5 3 

3 6 4 

3 6 & 

3 3 5 

3 5 3 

5 2 

4 5 

l 7 

c 5 

7 5 

'+ 5 

8 3 

4 4 

6 5 

4 7 

3 6 

s 3 

5 s 
2 8 

4 't 

3 6 

~ 3 

s e 
1 't 

8 5 

5 1 

s 3 

6 6 

5 4 

... 6 

5 5 

7 '+ 

7 2 

3 4 
s '+ 

~ 2 

5 6 

5 2 

8 1 

4 3 

4 b 

.. ~ 

2 3 

s 2 

4 3 

7 3 

'+ 3 

4 ~ 

4 3 

7 3 

b 5 

3 s 
'+ 5 

6 3 

4 3 

.. 5 

8 1 

2 5 

8 4 

6 5 

6 1 

3 7 

5 5 

6 4 

't 2 
4 . 4 

3 3 

2 4 

7 4 

4 3 

6 2 

4 1 4 4 

4 6 4 1 

5 3 6 '+ 

0 5 6 3 

2 s J '+ 

7 8 't J 

~ 5. 1 8 

8 3 b 2 

:; 3 & 3 

'+ 3 6 d 

2 8 & 1 

3 & 6 5 

4 1 6 3 

s 1 8 ~ 

2 6 5 s 
s 6 4 5 

5 1 b 8 

7 s 1 2 

t 8 2 l 

7 2 5 5 

~ 3 5 1 

6 b 4 b 

.. 5 3 3 

2 4 '+ 5 

3 5 4 7 

4 5 4 3 

'+ 5 5 1 

4 4 1 5 

8 8 3 5 

1 7 4 5 

4 5 5 4 
5 7 3 3 

5 6 6 3 

4 

5 

6 

8 

7 

8 

s 
5 

3 

6 

7 

s 
2 

3 

s . ... 

2. 

6 

8 

6 

b 

It 

3 

8 

4 

3 

4 

s 
1 
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100 

101 

102 

103 

1()4 

105 

106 

107 

108 

109 

110 

111 

112 

113 

11'+ 

115 

11& 

117 

118 

119 

120 

121 . 
122 

l23 

12ft 

125 

126 

127 

128 

129 

130 

131 

132 

7 

5 

0 

4 

It 

4t 

o 
2 

5 

5 

2 

b 

7 

o 
5 

7 

7 

o 
6 

5 

2 

& 

3 

8 

5 

7 

4 

It 

5 

6 

5 

7 

5 

3 

5 

J 

6 

4 

s 
1 

It 

z 
6 

5 

5 

1 

b 

6 

5 

It 

5 

5 

5 

2 

It 

6 

& 

o 
6 

3 

o 
6 

6 

6 

1 

6 

1 

3 

5 

5 

7 

2 

3 

3 

lt 

4 

3 

5 

6 

It 

6 

5 

5 

It 

4 

It 

5 

5 

.. 
1 

2 

1 

7 

4 

6 

7 

5 

5 

1 

5 1 2 '+ 6 

5 5 6 It o 
2 6 

2 1 

J 6 

3 5 

6 J 

2 5 

5 J 

At J 

It 8 

5 7 

5 5 

6 5 

4 5 

1 3 

4 5 

s 4 
3 3 

2 3 

J J 

It 8 

J 5 

4 2 

" 2 
8 J 

5 3 

3 3 
6 2 

a a 

4 ' 
8 6 

3 5 

b b 
5 5 

5 4 

3 0 

5 z 
4 5 

7 5 

1 

4 

4 

3 

4 

2 

4 

1 

5 

4 
2 

3 

5 

4 

5 

4 

1 

6 

J 

3 It 5 5 6 

3 6 7 6 5 

2 6 5 It 1 

1 3 2 5 J 

3 5 2 4· 1 

2 It 4 6 j 

2 '+ 4 '+ 2 

J 3 6 It J 

1 1 2 3 7 

2 5 7 5 2 

2 5 6 4 4 
3 3 . 5 J s 

5 '6 7 

5 6 5 

2 8 I) 

5 3 3 

3, 6 3 

5 '+ 3 

6 b 5 

6 4 3 

5 5 5 

2 6 6 

6 3 4 

3 3 7 

5 6 5 

3 4 6 

3 5 4 
7 4 & 

3 4 5 

b b 2 
1 7 .. 

4 4 5 

3 6 4 
3 2 7 

.. 3 4 

6 4 5 

3 2 4 

6 3 6 

5 4 7 

6 6 5 

5 5 4t 

5 5 5 

5 4 4 
3 4 5 

-4 1 2 

J 

:, 

8 

5 

7 

6 

b 

2 

6 

8 

4 

6 

7 

4 

5 

4 
1 

3 

4 

'+ 

5 

5 

6 

5 

5 

5 

3 

3 

4 

3 

5 
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133 

13'+ 

135 

136 

137 

138 

139 

140 

141 

142 

143 

14'+ 

1Lt5 

11t& 

147 

148 

149 

150 

151 

152 

tS·J 

15ct 

155 

156 

157 

158 

159 

1E:>O 

161 

162 

163 

16ft 

165 

3 5· 3 

6 5 It 

0 5 4 

6 8 5 

4 7 5 

6 4 4 

4 8 3 

6 2 1 

.It 5 .. 

5 6 It 

6 8 6 

.. 5 4 

6 6 0 

6 2 6 

5 & 6 

5 6 .. 

&t 3 5 

.. 5 5 

.. 5 6 

4 6 4 

5 3 5 

6 5 4 

5 5 4 

'+ z 6 

4 4 3 

5 3 2 

3 4 5 

4 '+ 5 

3 3 5 

2 4 0 

3 4 & 
z 8 & 
4 ·4 6 

2 4 
1 6 

3 5 

1 z 
7 6 

6 3 

4 4 

2 2 

3 6 

4 4 

1 1 

1 z 
1 4 

1 .. 

3 4 
3 3 

'+ .. 

5 3 

4 5 

4 J 

5 4 

5 7 

8 7 
3 7 

5 3 

5 .. 

6 .. 

6 5 

4 .. 

6 1 

5 4 

7 3 

5 6 

z !) 

J 5 

2 3 

4 3 

6 6 

6 6 

5 6 

3 7 

4 5 

3 3 

5 3 

5 7 

6 6 

3 8 

5 .. 

5 6 

5 5 

5 7 
4 5 

5 6 

5 ... 

6 It 

7 8 

3 1 

7 5 

5 4 

.. 6 

4 4 

5 ·4 

4 4 
5 5 

5 7 

5 6 

6 5 6 4 4 

3 6 6 4 2 

5 3 4 4 J 

7 J 1 6 3 

s It 4 .. 2 

6 b 5 It z 
3 z 5 5 .. 

5 2 3 1 5 

It 3 5 5 5 

4 4 5 3 5 

7 .. 1 6 3 

6 6 .. 5 6 

& 5 5 4 7 

7 . 8 b 5 6 

4 .. .. .. :s 
6 2 5 3 2 

6 2 3 5 4 

5 4 5 5 5 

6 .. b .. 4 

5 5 3 4 3 

6 1 5 .. 4 

6 '+ 5 5 1 

5 5 4 .. 6 

4 z 5 1 -1 

5 6 4 7 ·b 

6 & 5 s .. 
3 4 6 5 2 

5 0 5 6 2 

6 4 7 5 f. 

2 6 .. 3 1 

6 4 

6 3 

b .. 

3 6 

5 3 

1 6 

3 

2 

4 
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. ·--··· 16& 

167 

168 

169 

178 

171 

172 

173 

17ft 

175 

176 

117 

17& 

179 

180 

161 

182 

.83 

·.84 

165 

:!.86 

187 

188 

189 

190 

191 

192 

193 

191t 

195 

196 

197 

198 

It. 5 

J 7 

It 1 

7 5 

5 4 

3 5 

6 1 

5 2 

3 3 

5 '+ 

1 7 

1 1 

'+ ... 

6 6 

5 3 

3 3 

1 1 

5 3 

6 2 

3 .. 

8 5 

6 1 

1 1 

5 '+ 
2 7 

8 5 
7 5 

6 2 

.. 5 

J .. 

6 4 

4 4 

7 3 

6 

6 

7 

8 

3 

7 

'+ 
7 

5 

5 

1 

1 

2 .. 
6 

8 

2 

7 

2 .. 
2 .. 
'+ 

3 

3 

" 3 

4 

6 

4 

5 

4 

6 

6 

7 

6 

5- 3 7 

8 

8 

5 

6 

6 

6 

5 

It 

2 

6 

2 

.. 
& 

5 

4 

6 

.. 
7 

6 5 

4 5 

j 4 

3 1 

4 

3 

3 

'+ 8 
2 .7 

6 3 

7 5 

5 

l 4 

-4 5 

2 8 
8 1 

3 4 

2 6 

6 6 4 8 

6 5 8 6 

a 4 3 3 

5 3 

3 1 

b .It 

5 6 

2 2 

3 8 

Lt 8 

4 6 

6 5 

7 3 

4 5 

J 6 

5 4 

J '+ 

3 6 

.. 3 

5 6 

4 .. 

3 3 

4 1 

5 s 
5 5 

.. 5 

It .5 

1 2 

J z 
8 4 

.. 2 

.. 7 

5 5 4 7 0 8 

5 2 1 4 4 1 

'+ 3 .. 7 5 J 

7 5 6 5 6 4 

7 6 5 4 7 2 

6 4 4 7 5 2 

3 5 5 5 5 4 

4 3 a 5' 5 5 

7 5 6 6 5 5 

6 ,. 5 3 5 3 

4 '+ 1 6 .. .3 

5 6 5 4 5 .. 

J 0 5 

z j 7 

4 3 5 

3 8 4 

3 7 3 

3 2 " 
6 5 4 

3 3 3 

2 b J 

4 4 3 

1 7 3 

2 7 & 
6 4 3 
3 .. ,. 

2 6 '+ 

1 6 2 

3 3 3 

4 2 It 

a 2 3 

5 . '+ 3 

6 2 2 

1 6 3 

1 4 5 

6 4 .. 

3 7 l 

3 1 1 

1 3 7 

5 & 3 

z 5 3 

3 5 4 

3 ·& 5 

7 3 2 

3 & b 
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