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To my beloved family

“Don’t be afraid to dream big and take risks. If you succeed you’ll be happy, and if

you fail you’ll be smarter.”



Abstract

Finite mixture models have had a profound impact on the history of statistics, con-

tributing to modelling heterogeneous populations, generalizing distributional assump-

tions, and lately, presenting a convenient framework for classification and clustering.

A novel approach, via Gaussian mixture distribution, is introduced for modelling

receiver operating characteristic curves. The absence of a closed-form for a functional

form leads to employing the Monte Carlo method. This approach performs excellently

compared to the existing methods when applied to real data.

In practice, the data are often non-normal, atypical, or skewed. It is apparent

that non-Gaussian distributions be introduced in order to better fit these data. Two

non-Gaussian mixtures, i.e., t distribution and skew t distribution, are proposed and

applied to real data.

A novel mixture is presented to cluster spatial and temporal data. The proposed

model defines each mixture component as a mixture of autoregressive polynomial with

logistic links. The new model performs significantly better compared to the most well

known model-based clustering techniques when applied to real data.
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Chapter 1

Introduction

1.1 Why Modelling?

David Hilbert, a German mathematician, once said

“Mathematics knows no races or geographic boundaries; for mathematics,

the cultural world is one country.”

This universal language allows us to transcribe quantitative problems into reality,

namely modelling. A model serves as an abstraction or approximate representation

of reality to better understand and interpret what is happening. Modelling can be

accomplished through various techniques such as analytics, numerics, statistics and

many more.

Mixture models have had a profound impact on the history of statistics, contribut-

ing to modelling heterogeneous populations, generalizing distributional assumptions,

and lately, presenting a convenient framework for classification and clustering. This

thesis focuses on the versatility of the finite mixtures in modelling, specifically in two

1
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areas: the performance of a binary system and model-based clustering. Note that

though both topics evolved from finite mixture modelling, they have distinct goals:

one is typically associated with inference on the model and its parameters while the

other’s aim is to provide a partition of the data into groups of homogeneous observa-

tions. Thus, clustering requires an additional step after model fitting, i.e., assigning

each observation to a group according to some pre-specified rule.

Since its emergence in the signal detection theory, the receiver operating charac-

teristic (ROC) curve has remained a useful method of describing the intrinsic accuracy

of a diagnostic test. This method overcomes the limitations of single sensitivity and

specificity pairs by including all of the decision thresholds. The empirical curve is not

smooth and does not respect certain theoretical properties, which makes it unattrac-

tive. Modelling the diagnostic test can circumvent this issue. A novel approach to

modelling the ROC curve is proposed using finite mixture models. These models are

then applied to simulated and real data, and perform favourably when compared to

existing methods.

In practice, it is often useful to separate data into meaningful groups, where the

similarity within groups and the dissimilarity between groups are maximized. Such a

method is called clustering. The availability of cheap sensor devices and remarkable

development of computer power has created complex data such as spatio-temporal and

functional data which emerge as a challenge in clustering. Consequently, researchers

must turn their attention toward methods that can define homogeneous partitions and

facilitate their interpretation, such as model-based clustering. Likewise, we introduce

a novel model-based clustering for spatio-temporal data, employing finite mixture

models. In addition, the proposed model can be applied for functional data under

2
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some conditions. To illustrate the benefits of this new multi-functionality model, a

simulation study along with two challenging applications is conducted.

1.2 Thesis Structure

1.2.1 Chapter 2

Principal concepts surrounding finite mixture models are introduced along with a lit-

erature review. Some useful definitions about identifiability are presented, followed by

inference in finite mixtures, more precisely parameter estimation and model selection.

1.2.2 Chapter 3

An overview on the literature on the ROC curve is discussed in this chapter. Some

basic definitions and properties are given, along with two performance measures.

1.2.3 Chapter 4

In the literature on the ROC curve modelling, the most well-known model is the

binormal model. This chapter outlines the most popular model, called LABROC.

As an alternative, a novel method is proposed using Gaussian and non-Gaussian

mixtures, in conjunction with the Monte Carlo method. Details of its parameter

estimation via EM algorithm are discussed. Two applications on pancreatic cancer

are considered to demonstrate the flexibility and smoothness of the proposed method.

3
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1.2.4 Chapter 5

This chapter marks the change in emphasis from univariate data to functional or

spatio-temporal data and thus the switch from the receiver operating characteristic

curve to model-based clustering. Thus, an overview of the literature on the functional

and spatio-temporal data clustering is presented. Furthermore, the performance mea-

sures and the existing method are presented.

1.2.5 Chapter 6

A novel model for spatio-temporal clustering is introduced, employing a finite mix-

ture model, where each component is an autoregressive polynomial regression mixture

of which the logistic weights depend on the spatial and temporal dimensions. Un-

der the maximum likelihood framework, parameter estimation is carried out via an

expectation-maximization algorithm while the classical information criteria can be

used for model selection. Additionally, the proposed model can be used as a func-

tional data clustering. To illustrate the benefits of the new model, two challenging

applications are conducted.

1.2.6 Chapter 7

The ideas and methods demonstrated in this thesis are summarized in this last chap-

ter. Possible research prospects are presented, both based upon and arising from this

thesis.

4
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1.3 The Contribution of this Work

The impact of this work on the body of literature is summarized here. The principal

novel features of this work are:

(i) ROC curve has been widely used in medical work for its ability to measure the

accuracy of diagnostic tests. A new way to tackle the modelling of the ROC

curve is introduced. Instead of following the conventional path, i.e., adopting

a distribution where the closed-form for the functional form is guaranteed, the

proposed method utilizes Gaussian mixtures, in conjunction with the Monte

Carlo method. This method performs equivalently or outperforms the well-

established existing method LABROC.

(ii) Following the positive results using Gaussian mixtures, the idea of introducing,

for the first time, non-Gaussian mixture distributions in the literature of ROC

curve is very appealing. The mixture of t distributions and the mixture of skew

t distributions are the chosen candidates. Again, when applied to real data,

this proposed methods have not disappointed us.

(iii) Clustering spatio-temporal data requires to consider both spatial and temporal

aspects in order to extract useful knowledge. A new model for these com-

plex data, adding an autoregressive polynomial regression mixture to each com-

ponent, is introduced. Furthermore, this new model exhibits the feature of

modelling spatial dependencies for multivariate functional data. This model

performs significantly better compared to the popular model-based clustering

model, when applied to real data. In addition, this model is implemented in R

package, called SpaTimeClust1.

1The latest version can be downloaded at https://r-forge.r-project.org/R/?group_id=

2163.

5
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Chapter 2

Finite Mixture Models

2.1 Overview

Finite mixture models made their first appearance in the statistical literature in the

nineteenth century in a paper by Newcomb (1886) who used them in the context of

modelling outliers. A few years later, Pearson (1894) used a mixture of two Gaussian

densities, with unknown unequal variances, to analyze biological data that consisted

of the ratio of forehead to body length of 1000 crabs sampled from the Bay of Naples.

Because the maximum likelihood estimate for such a model does not have a tractable

analytical form, Pearson employed the method of moments to estimate the parameters

in the model.

A finite mixture is a convex linear combination of two or more probability density

functions. Mixture models are capable of approximating any arbitrary distribution by

combining the properties of each probability density function. This leads to its status

as a powerful and flexible tool for a statistical-based approach to the modelling of

various phenomena (see McLachlan and Basford, 1988). Consequently, finite mixture

6
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models have drawn attention in different areas of application ranging from biology

to physics, economics and more (Eisen et al., 1998; Vardi et al., 1985; Keane and

Wolpin, 1997).

Typically, finite mixture modelling is associated with inference on the model and

its parameters. In the literature, Gaussian mixture models are the most popular

choice (Titterington et al., 1985; McLachlan and Basford, 1988; Banfield and Raftery,

1993). Later, several different mixture models have been studied such as t distribution

(McLachlan and Peel, 1998; Andrews and McNicholas, 2012), skew t distribution

(Vrbik and McNicholas, 2012; Lee and McLachlan, 2013b), skew normal (Azzalini,

1985; Lin et al., 2007) and more (Franczak et al., 2014; Browne and McNicholas,

2015). All of this contributes to its extensive uses and flexibility to model unknown

distributional shapes. For instance, in clustering, these models can be applied to

data where observations originate from diverse groups, and the group memberships

are unknown.

An important problem in mixture modelling arises from the selection of the num-

ber of components. Thus, the trade-off in model selection problems is: (i) with

too many components, the mixture may over-fit the data, while (ii) a mixture with

too few components may not be flexible enough to approximate the true underlying

model. However this issue can be solved via the Bayesian information criterion which

is discussed later in this chapter.

2.2 Definition

In the finite mixture modelling framework, each group is characterized by a prob-

ability distribution. Let x = (x′1, . . . ,x
′
n)′ be the dataset describing n observations

7
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xi = (x1
i , . . . , x

p
i ) by p variables. The probability distribution function of xi can be

written as

f(xi | θ) =
G∑
g=1

πgfg(xi | ϑg), (2.1)

where πg > 0, such that
∑G

g=1 πg = 1, are called mixing proportions, fg(xi | ϑg) is

the gth component distribution of the mixture with ϑg the set of parameters, and

the set of all model parameters is θ = {πg,ϑg; g = 1, . . . , G}.

In the formulation of the mixture models, the number of components G is con-

sidered fixed. However, in practice, the value of G is often unknown and has to be

estimated.

Figure 2.1 displays the Faithful dataset, publicly available in the R package mass

(Venables and Ripley, 2002). This dataset contains the waiting time between 272

eruptions and the duration of the eruptions for the Old Faithful geyser in Yellowstone

National Park (p = 2 variables). This example demonstrates the usefulness of mixture

models to fit the data with two components, i.e., G = 2.

2.3 Identifiability

Given the expanding importance of models, it is crucial to verify the uniqueness of the

parameters which allows easier interpretation of the parameters and the partitions are

therefore unique. In other words, for one family of distributions, if two parameters

define the same distribution then they must be equal. This prerequisite step is referred

to as the identifiability of the model. The assumption of identifiability for statistical

models lies at the heart of most statistical theory and practice. The interpretation is

based on the parameters and the uniqueness of the partition.

8
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Figure 2.1: Histograms and marginal densities of the two-component mixture models
for Old Faithful dataset.

Teicher (1963) conduced a useful study of identifiability for finite mixtures and

since then numerous special cases have been proven. Thus, identifiability allows for

the recovery of the mixing distribution from the mixture and for the consistency of

estimation. Identifiability is a general concept that has to be carefully defined.

Definition 2.3.1. Let θ be the parameter value of the mode, xi be the observations,

and f(xi | θ) be the probability distribution of the data. A model is said to be identi-

fiable if ∀ (θ,θ′) ∈ Θ and ∀ xi ∈ X ,

f(xi | θ) = f(xi | θ′)⇔ θ = θ′, (2.2)

where Θ represents the set of all possible parameter values, and X denotes the set of

all possible values of the data. Note this definition is sometimes referred to as ‘strict’

9
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identifiability.

Unfortunately, in some cases, the above mapping is not strictly injective. Con-

sider models with discrete hidden variables, such as in finite mixture models: the

latent class memberships can be relabelled without modifying the distribution of

the observations, see Example 2.3.2. However, this does not disturb inference of the

parameters using expectation-maximization algorithm, described in the following sec-

tion. Note that, in the Bayesian framework, the relabelling problem can be rather

onerous (Stephens, 2000).

Example 2.3.2. Suppose a mixture model with two components parametrized by θ =

(π1, π2,ϑ1,ϑ2) and θ′ = (π2, π1,ϑ2,ϑ1). Hence, for all xi, we have

f(xi | θ) = π1f(xi | ϑ1) + π2f(xi | ϑ2)

= π′1f(xi | ϑ′1) + π′2f(xi | ϑ′2)

= f(xi | θ′),

where π′1 = π2, π
′
2 = π1,ϑ

′
1 = ϑ2 and ϑ′2 = ϑ1.

The notion of ‘weak’ identifiability is introduced by Teicher (1963) for mixture

models because the strict identifiability has too many constraints and to avoid the

problem of component relabeling.

Definition 2.3.3. The mixture model f(xi | θ) is said to be weakly identifiable if

∀ xi ∈ X

f(xi | θ) = f(xi | θ′)⇔ θ and θ′ are equivalent. (2.3)

10
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The introduction of this definition results in the weakly identifiable proof for Gaus-

sian mixtures, mixtures of Gamma distributions and mixtures of Poisson distributions

(Teicher, 1963, 1967; Yakowitz and Spragins, 1968). Using the conditions in Theorem

2.3.4, taken directly from Teicher (1963), one can demonstrate the weak identifiabil-

ity of some univariate mixture models, such as the univariate Gaussian mixture, see

Proposition 2.3.5.

Theorem 2.3.4. Let F = {F} be a family of one-dimensional cumulative distribution

functions with transforms φ(t) defined for t ∈ Sφ (the domain of definition of ϕ) such

that the mapping M : F → φ is linear and one-to-one. Suppose that there exists a

total ordering (�) of F such that F1 ≺ F2 implies

(i) Sφ1 ⊆ Sφ2,

(ii) the existence of some t1 ∈ S̄φ1 (t1 being independent of φ2) such that lim
t→t1

φ2(t)
φ1(t)

=

0.

Then the class of all finite mixtures of F is weakly identifiable.

Proposition 2.3.5. The class of all finite mixtures of univariate Gaussian distribu-

tions is weakly identifiable.

Proof. Let Φ = Φ(· | µ, σ2) denote the Gaussian cumulative distribution function

with mean µ and variance σ2 > 0. Its bilateral Laplace transform is given by φ(t) =

exp{σ2t2/2− µt}. Order the family lexicographically by f1 = Φ(xi | µ1, σ
2
1) ≺ Φ(xi |

µ2, σ
2
2) = f2 if σ1 > σ2 or if σ1 = σ2 but µ1 < µ2. Then, Theorem 2.3.4 applies with

Sφ = (−∞,+∞) and t1 = +∞.

11
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Sometimes mixtures are non-identifiable but are of interest because they provide

meaningful results and their parameters seem identifiable. Thus, the definition of

‘generic’ identifiability is derived using less stringent conditions.

Definition 2.3.6. A model is said to be generically identifiable when the parameter

space, for which identifiability does not hold, has measure zero.

Definition 2.3.6 implies, in other words, that any observed dataset has probability

one of being drawn from a distribution with identifiable parameters.

2.4 Inference in Finite Mixture Models

Finite mixture models provide great flexibility in fitting models with many modes,

skewness and non-standard distributional characteristics. However, this flexibility

comes with the price of an increase in the number of parameters and components.

Here, we address issues in estimation and model selection with regard to mixture

models. We assume, in what follows, that the functional form of fg is parametric and

the same for all components.

2.4.1 Expectation-Maximization Algorithm

Conditionally on the data, maximum likelihood estimation is a method of estimating

the parameters by solving the parameter values that maximize the likelihood L(θ | x).

For computational reasons, the natural logarithm of the likelihood is used. The log-

likelihood function can be written as follows:

logL(θ | x) =
n∑
i=1

log

(
G∑
g=1

πgf(xi | ϑg)

)
. (2.4)

12
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Under certain conditions, it has been shown that the maximum likelihood estimate

(MLE) is consistent (i.e., it converges in probability to the true parameters), asymp-

totic normality and efficiency. The MLE owes its popularity to these properties.

One practical problem related to maximum likelihood estimation in finite mixtures

is troublesome optimization caused by the complicated and severely multi-modal form

of the likelihood function. This issue requires laborious, and sometimes unachievable,

analytical or numerical solutions. The most popular and standard procedure for find-

ing the MLE for mixtures is the expectation-maximization (EM) algorithm (Dempster

et al., 1977).

The EM algorithm is an iterative method where there is dependency upon unob-

served data. Thus the data are incomplete or are treated as incomplete. Here, the

component memberships are taken to be missing data. Let z = (z1, . . . , zn) denote

the component memberships with zi = (zi1, . . . , ziG) and

zig =


1 if observation xi arises from component g,

0 otherwise.

(2.5)

Therefore, zi is the realization of the latent variable Zi, which follows a multinomial

distribution MG(π1, . . . , πG). Note that f is the conditional probability distribution

of Xi given Zi = zi, where Xi = (X1
i , . . . , X

p
i ) is the p-variate random variable defined

on the space X . Also, (2.1) can be interpreted as the marginal distribution of Xi.

Let θ[r] represent the value of the model parameters θ at iteration r of the EM

algorithm. Starting with an initial value of the parameters θ[0], the algorithm iterates

between two processes: the expectation (E-step) and the maximization (M-step), until

some convergence criterion is satisfied.

13
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In the E-step, the expected value of the log-likelihood is computed based on the

current estimates of the model parameters and the complete-data log-likelihood, i.e.,

data composed with observed (xi) and missing (zi) data:

Q(θ | θ[r]) := E [logL(θ | x, z)] , (2.6)

where

logL(θ | x, z) =
n∑
i=1

log f(xi, zi | θ) (2.7)

=
n∑
i=1

G∑
g=1

zig log [πgf(xi | ϑg)] . (2.8)

In the M-step, this expected value is maximized with respect to the model param-

eters θ and we have

θ[r+1] = arg max
θ∈Θ

Q(θ | θ[r]). (2.9)

There are a variety of ways to measure convergence. One common approach

is to stop the algorithm when the increase in the log-likelihood between successive

iterations is smaller than a given threshold ε, i.e.,

logL(θ[r+1] | x)− logL(θ[r] | x) < ε. (2.10)

2.4.2 Initialization

This algorithm is susceptible to converge to a local optimum, thus global maximiza-

tion depends severely on the initial starting values for the EM algorithm (Wu, 1983).

Therefore, good initialization is crucial for finding ML estimates. As a consequence,

14
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many different initialization procedures have been suggested in the literature (Bier-

nacki et al., 2003; Figueiredo and Jain, 2002). A standard way to obtain θ[0] consists of

initializing it from multiple random positions. Generally this random initial position

is obtained by drawing at random component means in the dataset. A random posi-

tion involves randomly assigning observations into groups and estimating θ[0] based

on this random partition. Then we can repeat the algorithm for a certain number

of iterations or until convergence is reached. For example, we execute an algorithm

from 50 starting points θ
[0]
1 , . . . ,θ

[0]
50 that create the estimates θ̂1, . . . , θ̂50. The se-

lected starting point, say θ̂[0], is the one that obtained the highest log-likelihood in

conformity with the trial. If a different initialization is required, depending on the

problem at hand, a detailed description will be given in their respective chapters.

2.4.3 Model Selection

The logical step following the resolution of parameter estimation is to select an ap-

propriate model from a set of competing candidate models M, i.e.,

m = {f(xi | θ) : θ ∈ Θ} ∈ M. (2.11)

Thus, the model m defines the number of components and the nature of the com-

ponent distributions (i.e., the family of distributions and the parsimony obtained by

constraining model parameters). The philosophy behind the choice of a model is

to obtain a balance between a good modelling (reducing the bias) and a reasonable

number of parameters (reducing the variance).

Despite the vast literature devoted to address the ubiquitous tradeoff between

goodness-of-fit and parsimony, the Bayesian information criterion, BIC (Schwarz,
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1978), remains an appealing way of choosing the best model (Dasgupta and Raftery,

1998; Madison and Vermunt, 2004). For this thesis, we employed the Bayesian infor-

mation criterion (BIC). The BIC is derived using a Laplace approximation and by

dropping all terms that do not depend on n, i.e., the number of observations. Its

principle is to select the model that minimizes the following quantity:

BIC(m) = −2 logL(m, θ̂m | x) + νm log n, (2.12)

where νm is the number of free parameters in the model m ∈ M, logL(·) is the

maximized observed log-likelihood and n is the sample size.

Note the value of BIC is a sum of two terms: the log-likelihood that that reflects

the goodness-of-fit of the model and the penalty that grows with the model complex-

ity. This criterion is consistent when the model used in the sampling scheme belongs

to the set of the competing candidate models. However, it tends to overestimate the

number of components, in practice, for which the true model is unknown (Biernacki

et al., 2000). The explanation is that real data do not emerge from the mixture

densities at hand, and thus, the penalty term is not strong enough to balance the

tendency of the likelihood to increase with G in order to improve the fit of the mixture

model. Thus, it can provide a poor partition. Hence, we can consider the integrated

completed likelihood (ICL) (Biernacki et al., 2000) as an alternative

ICL(m) = logL(m | x, ẑm), (2.13)

where ẑm = (ẑm1, . . . , ẑmn) is the partition given by the MAP rule evaluated at the

16



Ph.D. Thesis - Amay S.M. Cheam McMaster - Mathematics and Statistics

MLE θ̂m. Recall if g = arg max
`=1,...,G

mi`(θ̂m) then ẑmig = 1. When the mixture com-

ponents belong to the exponential family, the ICL has a closed-form but it requires

the prior distribution of the parameters to be specified. Otherwise, the BIC-like

approximation can be used

ICL(m) = BIC(m) + 2
n∑
i=1

G∑
g=1

ẑmig logmig(θ̂m). (2.14)

The ICL penalizes the BIC for uncertainty in estimating the number of components,

for this reason it is considered to be more appropriate for model-based clustering.

Another option is to consider the Akaike information criterion (AIC) (Akaike,

1974) which tends to select model that minimizes the Kullback-Leibler deviance be-

tween the candidate and the selected models:

AIC = −2 logL(m, θ̂m | x)− 2νm. (2.15)

When n > 8, the penalty of the AIC criterion is less than those of the BIC criterion.

Hence, it tends to select a more complex model which results to overestimate the

number of components (McLachlan and Peel, 2000).
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Chapter 3

Receiver Operating Characteristic

Curve

3.1 Overview

The receiver operating characteristic curve, commonly called ROC, made its initial

appearance in signal detection during World War II for the analysis of radar images.

Its arcane name is derived from the fact that it was developed to better understand

the performance of radar operators whose difficult assignment was to observe a noisy

screen on the radar receiver and to detect signals among the noise. Thus setting the

criterion is a crucial step. Consider the following situation: when setting the criterion

too leniently, the operator risks issuing a false alarm - announcing the intrusion of

the enemy aircraft when, in fact, it was just noise - whereas, by setting it too strictly,

the risk of missing actual targets is highly destructive.

The prompt expansion of ROC curve to other fields was widespread. For example,

Swets (1986) introduced it in psychology to study the perceptual detection of stimuli.
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Over the years, it has been widely applied in many disciplines, although the ROC

curve only gained popularity after the pivotal paper published by Lusted (1971).

Therein, Lusted described how ROC curve could be used to assess the accuracy of a

diagnostic test. This marked the birth of ROC analysis in medicine.

Depending on different aims, the ROC analysis is useful for: (i) evaluating the

ability of a continuous marker or diagnostic test to correctly assign observations into

a two states classification, i.e., ‘non-diseased’ or ‘diseased’; (ii) finding the optimal

cut-off point to reduce misclassification of the two states; and (iii) comparing the

efficacy of two or more markers or diagnostic tests. Two quantities are computed

at each threshold of the marker: the false positive (FP) and true positive (TP)

rates. The ROC curve is a graphical representation of the relationship between these

two quantities. Many ROC-based methods exist for estimating and comparing test

accuracy. The literature can be divided into two categories: direct and indirect.

The direct approach does not depend on any distributional assumptions as its

name may suggest. Thus, the ROC curve is constructed directly from the diagnos-

tic tests (Lloyd, 1998). Unfortunately, the empirical curve failed to respect certain

theoretical properties such as the monotonicity. The non-smoothness makes the em-

pirical curve aesthetically unappealing and suggests that it is not an efficient way

to utilize the data. To solve this issue, some works have suggested nonparametric

estimation of the density function of each state employing kernel smoothing methods

(Hall and Hyndman, 2003; López-de Ullibarri et al., 2008; Qiu and Le, 2001). The

problem is translated to selecting an optimal bandwidth (Peng and Zhou, 2004; Zhou

and Harezlak, 2002). The lack of a one-to-one correspondence between FP and TP

values makes inference unhandy. Moreover some smoothing methods, such as splines
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(Ren et al., 2004; Du and Tang, 2009), may not guarantee monotonicity and their

ROC curve estimates may fall beyond the range [0, 1]. These drawbacks led to the

development of alternative modelling option.

Within the indirect approach, two methods have been proposed for estimating

ROC curve, i.e., parametric and semi-parametric methods. First, pure parametric

approaches are based on the assumption of parametric distributions of the diagnostic

variables for the non-diseased and diseased populations. For instance, the classical

binormal model assumes that both populations follow a normal distribution. Gönen

(2013) assumed that the non-diseased population follows a normal distribution while

the diseased follows a Gaussian mixture. Second, semi-parametric methods are highly

considered. The addition of nonparametric components makes these approaches very

flexible. Under the binormal framework, various works suggested different techniques

to estimate its parameters (Hsieh and Turnbull, 1996; Cai and Moskowitz, 2004; Zhou

and Lin, 2008). The best known extension of the binormal model is propounded by

Metz et al. (1998) using the Dorfman and Alf (1968) maximum likelihood algorithm

for ordinal data. They developed an algorithm, called LABROC, that assumes the

underlying distributions to be normal under an unspecified monotone transformation.

However, in practice, the data may not always follow normal distributions as Goddard

and Hinberg (1990) pointed out.

In this thesis, the prime focus is on ROC curve fitting with continuous diagnostic

variables with gold standard, i.e., the true disease status of each patients is known.
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3.2 Definitions

In this section, medical terminology is used to discuss the ROC curve. The ROC

curve is defined as follows. Let X ∼ F and Y ∼ H represent the diagnostic variables

for non-diseased and diseased group, respectively. Note they are well defined because

the true disease status of each patient is known beforehand, i.e., the case with the gold

standard for the truth. By varying the threshold value ct and plotting the true positive

(TP) rate against the false positive (FP) rate, or sensitivity versus 1-specificity, the

ROC curve is obtained, see Figure 3.1.

Figure 3.1: Construction of the ROC curve from non-diseased and diseased popula-
tions at different threshold, ct ∈ R.

It is given by, for ct ∈ R,

{(t, R(t))} = {(FP(ct),TP(ct))}, (3.1)
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where

FP(ct) =

∫ +∞

−∞
fX(x)I (x− ct) dx = P (X > ct), (3.2)

TP(ct) =

∫ +∞

−∞
hY (y)I (y − ct) dy = P (Y > ct), (3.3)

and

I(u) =


1, if u > 0,

0, if u ≤ 0.

For a given t ∈ D ⊂ [0, 1], ct = F̄−1(t) = F−1(1− t), where F−1(ζ) = inf{x : F (x) ≥

ζ}. Mathematically, the functional form of ROC curve can be written as follows:

R(t) = TP (ct) = H̄(F̄−1(t)) = H̄(ct) = P (Y > ct) = P (Y > F̄−1(t)), (3.4)

where F̄ (u) = P (X > u) and H̄(u) = P (Y > u) are known as survival functions of

X and Y , respectively. Note, by convention, we will assume that larger values of the

test results are more indicative of the disease.

3.3 Properties

Two major mathematical properties of the ROC curve are presented in this section.

Property 3.3.1. The ROC curve is a monotonically increasing function in the pos-

itive unit quadrant.

Proof. Using (3.4) and noting that F−1(·) is strictly increasing and H(·) is monoton-

ically increasing (Casella and Berger, 2002). Let t1 and t2 be two false positive rates

such that t1 < t2. Then 1− t2 < 1− t1 and F−1(1− t2) < F−1(1− t1). Because H(·)
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is monotonically increasing, we have H(F−1(1− t2)) ≤ H(F−1(1− t1)). Thus,

R(t1) = H̄(F̄−1(t1)) = 1−H(F−1(1− t1)) (3.5)

= 1−H(F−1(1− t1))

≤ 1−H(F−1(1− t2)) (3.6)

= H̄(F̄−1(t2)) = R(t2). (3.7)

For a given t1 and t2 such that t1 < t2 implies R(t1) ≤ R(t2), and so the ROC curve

is monotonically increasing with the false positive rate t.

Property 3.3.2. The ROC curve is unaltered under strictly increasing transforma-

tions of the diagnostic variables.

Proof. To demonstrate this property, let ϕ(·) a strictly increasing transformation, i.e.,

b > a ⇐⇒ ϕ(b) > ϕ(a) ∀ a, b ∈ S,

where S denotes the set of diagnostic values, S ⊂ R. Therefore, for the random

variables X and Y from respectively the non-diseased and diseased group, P (X >

ct) = P (ϕ(X) > ϕ(ct)) and P (Y > ct) = P (ϕ(Y ) > ϕ(ct)). Points on the ROC curve

for the transformed diagnostic values satisfy

t∗ = P (ϕ(X) > ϕ(ct)) = P (X > ct) = t,

and

R(t∗) = P (ϕ(Y ) > ϕ(ct)) = P (Y > ct) = R(t).

Thus, the ROC curve for the transformed values is identical to the original ROC
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curve.

3.4 Performance Measures

The ROC curve is a summary of the information about the accuracy of a continuous

predictor. Nevertheless, it is often useful to summarize the accuracy of a test by a

single number. Moreover, they can be employed as the basis of inferential statistics

for comparing ROC curves.

3.4.1 Area Under the Curve

The most commonly used summary statistic for an ROC curve is the area under

the ROC curve (AUC). The ROC curve alone is beneficial, but with the addition of

AUC becomes substantial in the analysis of a diagnostic test. The AUC is defined as

follows:

AUC =

∫ 1

0

R(t)dt, (3.8)

where 0 ≤ AUC ≤ 1. However, because random guessing produces the diagonal line

between (0, 0) and (1, 1), which has an AUC = 0.5, no diagnostic test should have an

AUC ≤ 0.5. The closer AUC is to 1, the better the overall accuracy of a diagnostic

test.

Corollary 3.4.1. The AUC can be interpreted as AUC = P (Y > X) for continuous

tests.
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Proof. By the definition of AUC, we have

AUC =

∫ 1

0

R(t)dt =

∫ 1

0

H̄(F̄−1(t))dt (3.9)

=

∫ −∞
∞

H̄(y)dF (y) =

∫ ∞
−∞

P (Y > y)f(y)dy = P (Y > X). (3.10)

Remark 3.4.2. If two diagnostic tests are ordered such that test B is uniformly better

than test A, i.e.,

RA(t) ≤ RB(t) =⇒ AUCA ≤ AUCB ∀ t ∈ R.

However, the reverse implication is not necessarily true, because of the possibility

that two curves intersect, see Figure 3.2.

Figure 3.2: Two distinct curves with the same AUC value.
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3.4.2 Mean Squared Error

While AUC is by far the most popular one used in practice, it has a limitation.

For instance, two tests may have equal AUC, but the tests may differ in clinically

important regions of the curve. Assessing the quality of a predictor is essential when

modelling because it allows to measure the difference between the observed values

and the estimated values, and therefore, to compare models. The mean squared error

(MSE) can be estimated by:

MSE =
1

D

D∑
d=1

(Rd(t)− R̃d(t))
2, (3.11)

where R(t) designates the true TP, R̃(t) the estimated TP and d the number of cuts

on the x-axis representing FP or t.
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Chapter 4

Mixture Model Approaches for

ROC Curve

4.1 Binormal

The binormal is unequivocally the most explored and used parametric ROC model,

and it is described in this section. Similar to how the normal distribution has long

been a cornerstone of distribution functions, the binormal model has formed the

foundation of ROC curve. The binormal model assumes that both populations follow

a normal distribution, i.e., X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ), for the non-diseased

and diseased group, respectively. By convention that larger test results are more

indicative of disease, we assume that µX < µY , thus

t = P (X > ct) = P

(
Z >

ct − µX
σX

)
= P

(
Z ≤ µX − ct

σX

)
= Φ

(
µX − ct
σX

)
, (4.1)

27



Ph.D. Thesis - Amay S.M. Cheam McMaster - Mathematics and Statistics

where Z and Φ(·) denote the standardized normal variable and the standard normal

distribution, respectively. Let zt be the value of Z, then

zt = Φ−1(t) =
µX − ct
σX

=⇒ ct = µX − ztσX .

Therefore, the ROC curve at this point t is

R(t) = P (Y > ct) = P

(
Z >

ct − µY
σY

)
= Φ

(
µY − ct
σY

)
, (4.2)

and by substituting the value of ct obtained previously, we have

R(t) = Φ

(
µY − µX + ztσX

σY

)
. (4.3)

Thus, the functional form of the binormal curve can be summarized in the following

way:

R(t) = Φ(a+ bΦ−1(t)) for 0 ≤ t ≤ 1, (4.4)

where

a =
µY − µX
σY

, b =
σX
σY

. (4.5)

Note that a represents the separation (or intercept) while b represents the symmetry

coefficients (or slope). Furthermore, X and Y are independent which implies that

Y −X ∼ N (µY − µX , σ2
X + σ2

Y ). Using the Corollary (3.4.1), we have

AUC = P

(
Z >

0− (µY − µX)√
σ2
X + σ2

Y

)
= Φ

(
µY − µX√
σ2
X + σ2

Y

)
. (4.6)
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Then, the corresponding AUC has a closed form given by

AUC = Φ

(
a√

1 + b2

)
. (4.7)

The above expression is derived under the assumption that the diagnostic tests fol-

low normal distributions in each of the two groups. However, the ROC curve remains

invariant if a monotone increasing transformation is applied to the data. Although

some monotone transformations preserve normality of the groups, others may not.

Furthermore, Goddard and Hinberg (1990) pointed out that if the distribution of the

observed data is non-normal, the AUC derived from a directly fitted binormal can be

seriously distorted.

4.1.1 Software: LABROC

The choice of the binormal is usually justified by theoretical considerations, math-

ematical tractability and familiarity with the normal model. Stating that the ROC

curve is binormal simply means that there exists some strictly increasing transfor-

mation that would simultaneously transform the raw data into normally distributed

random variables. Thus, the problem is reduced to estimating the intercept and the

slope parameters from (4.5).

Algorithms have been described (Dorfman and Alf, 1968) and computer programs

have been written to implement these techniques. Perhaps the most well known is

the software introduced by Metz et al. (1998), entitled LABROC1.

1The software is available in the Department of Radiology, University of Chicago: http://

metz-roc.uchicago.edu/MetzROC/software.
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Metz et al. (1998) suggested a semi-parametric algorithm, LABROC4, that cat-

egorized or binned the ordered continuous test results into runs of non-diseased and

diseased patients. Consider the sequence {n, n, d, n, n, d, d, d}, where n and d repre-

sent the non-diseased and diseased, respectively. Thus, that sequence is equivalent to

the dataset {2n, 1d, 2n, 2d}, where rn and sd indicate a run of r non-diseased cases

and s diseased cases, respectively. Thus, the ordinal category is r = {2, 0, 2, 0} and

s = {0, 1, 0, 2}. Borrowing the authors’ notations, the likelihood is defined as:

L(r, s | a, b, t∗) =
I∏
i=1

(Pi|D̄)ri
I∏
j=1

(Pi|D)sj , (4.8)

where ri is the number of observations from the non-diseased group in ith category,

sj is the number of observations from the diseased group in jth category, and Pi|D̄

and Pi|D are the probability of one observation from the non-diseased group in the

ith category and the diseased group in the jth category, respectively. Here t∗ is the

latent fixed boundary value generated by truth state runs, where [ti−1, ti) is the range

of the ith category.

The binormal parameters can then be estimated with the Dorfman and Alf (1968)

maximum likelihood algorithm for ordinal test results. The LABROC4 procedure

assumes that the underlying distributions of the grouped non-diseased and diseased

test results can be transformed simultaneously to normal distributions by a single

monotone transformation. This assumption is less strict than the assumption of

explicit distributional form for the continuous data in the pure parametric approach.
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4.2 Modelling Using Finite Mixture Models

Predominantly, ROC curve modelling assumes that each group follows a distribution,

mostly the normal distribution. Unfortunately, the binormal model can yield fitted

curves with inappropriate shapes when observations are non-normal (Metz, 1989).

Mixture models have a rich history in statistics as a compelling apparatus in mod-

elling since they were employed for clustering by Wolfe (1963). One of the major foci

of this thesis is to adopt mixture models in modelling the ROC curve. In this sec-

tion, we introduce Gaussian mixtures and non-Gaussian mixtures, more specifically

mixtures of t distributions and mixtures of skew t distributions, as an alternative

to the binormal model. Recall that X and Y represent the diagnostic variables for

non-diseased and diseased groups, respectively. Thus, the corresponding diagnostic

test results for the non-diseased and diseased patients are xi, for i = 1, . . . , nX , and

yj, for j = 1, . . . , nY , respectively.

4.2.1 Gaussian Mixtures

Mixtures of Gaussian densities are by far the most commonly used representation

in statistical modelling for both theoretical and computational reasons. Gaussian

mixtures allow us to model heterogeneity in data which is often observed in diseased

group.
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Model

Suppose X and Y follow Gaussian mixtures, therefore (2.1) can be written as

f(xi | θ) =
G∑
g=1

πgφ(xi | µg, σg), (4.9)

where

φ(xi | µg, σg) =
1

σg
√

2π
exp

{
− 1

2σ2
g

(xi − µg)2

}
(4.10)

is the gth Gaussian component density with mean µg and standard deviation σg, and

the collection of all model parameters is θ = (π1, . . . , πG, µ1, . . . , µG, σ1, . . . , σG). This

model is named the MG model. The density h(yj | ψ) is defined similarly, where ψ

is the collection of all model parameters.

Maximum Likelihood Inference of the Parameters

For simplicity, we only compute parameter estimation for the non-diseased group, X,

but the process is similar for diseased group, Y . Using the mixture defined in (4.9)

and the log-likelihood function in (2.4), the complete-data log-likelihood is

logL(θ | x, z) =

nX∑
i=1

G∑
g=1

zig
(
log πg + log φ

(
xi | µg, σ2

g

))
. (4.11)

The iteration [r] of the EM algorithm is written as follows:

1. The E-step: Computation of the conditional probability based on the current

value of θ[r];

ηig(θ
[r]) := E

[
Zig = 1 | xi,θ[r]

g

]
=

π
[r]
g fg(xi | θ[r]

g )∑G
`=1 π

[r]
` f`(xi | θ

[r]
` )

.
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Recall that Zi ∼ MG(π1, . . . , πG) from Section 2.2. Here ηig is the conditional

probability that an observation xi is drawn from component g.

2. The M-step: Maximization of the expectation of the complete-data log-likelihood;

(i) Update the mixing weights, π
[r]
g , by maximizing (2.6) with respect to πg,

which leads to

π[r+1]
g =

n
[r]
g

nX
;

(ii) Update the mean, µ
[r]
g , by maximizing (2.6) with respect to µg, which leads

to

µ[r+1]
g =

1

n
[r]
g

nX∑
i=1

ηig(θ
[r])xi;

(iii) Update the variance, σ
2[r]
g , by maximizing (2.6) with respect to σ2

g , which

leads to

σ2[r+1]
g =

1

n
[r]
g

nX∑
i=1

ηig(θ
[r])(xi − µ[r+1]

g )2,

where n
[r]
g =

∑nX
i=1 ηig(θ

[r]).

4.2.2 Non-Gaussian Mixtures

As mentioned earlier, most of the work in finite mixture modelling involves Gaussian

mixtures due to their computational tractability. Recently, however, there has been

growing of interest in mixtures of non-Gaussian distributions. For instance, Kotz

and Nadarajah (2004) pointed out that the multivariate t distribution gives a more

realistic model in applied problems. Meanwhile, Lin et al. (2007) stated that Gaussian

mixture models have a tendency to overfit skewed observations.
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An alternative to Gaussian mixtures is to use mixtures of t distributions and mix-

tures of skew t distributions. McLachlan and Peel (1998) had proved that mixtures

of t distributions are effective for dealing with components containing outliers. Al-

though the mixtures have proven robust, they lack the capacity to capture skewness

of the observations. This section focuses on mixtures of t distributions and mixtures

of skew t distributions that allow us to tackle scenarios that the normality assumption

cannot properly handle.

Recall (2.1) for the finite mixture. Depending on the distributional assumption,

fg(xi | ϑg) will change. To lighten the reading, we will omit the density h(yj | ψ)

that is defined similarly.

Mixtures of t Distributions

Model

Suppose X follows a mixture of t distributions, then its density is defined as

fg(xi | ϑg) = fT (xi | µg, σ2
g , νg) =

Γ(νg+1

2
)

√
νgπσgΓ(νg

2
)

(
1 +

(xi − µg)2

νgσ2
g

)− νg+1

2

, (4.12)

where µg is the mean, σg is the standard deviation, νg is the number of degrees

of freedom and Γ is the gamma function. The addition of the degrees of freedom

parameter allows for heavy tails which give less weight to outlying points during

parameter estimation. This model is called the MT model.
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Maximum Likelihood Inference of the Parameters

Parameter estimation for the mixture of t distribution is performed using the R

package, teigen, presented by Andrews and McNicholas (2015). The authors used a

variant of the EM algorithm, i.e., the expectation-conditional maximization (ECM)

algorithm. In the ECM algorithm, the M-step is adjusted with a set of conditional

maximization steps in which each parameter is maximized individually, conditionally

on the other parameters remaining fixed. More precisely, they used the multi-cycle

ECM algorithm, where a cycle is defined to be one E-step followed by one CM-step.

For further details, the reader is referred to Andrews and McNicholas (2012) for the

package and Meng and Rubin (1993) for the multi-cycle ECM algorithm. Note for the

purpose of our method, we chose the model with unconstrained variance and degree

of freedom, i.e., ‘univUU’.

Mixtures of Skew t Distributions

Model

SupposeX follows a mixture of skew t distributions. Some recent works have proposed

different ways to represent the mixture of skew t as listed by Lee and McLachlan

(2013b). For convenience, we use the representation described by Pyne et al. (2009).

The density is then written as

fg(xi | ϑg) = fST (xi | µg, σg, δg, νg) =
2

σg
tνg(d(xi))Tνg+1

(
δgd(xi)

√
νg + 1

νg + d(xi)2

)
,

(4.13)

and

d(xi) =
xi − µg
σg

,
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where tν and Tν , denote, respectively, the pdf and the cdf of standard t distribution

with ν degrees of freedom. This model is referred to as MST model.

Maximum Likelihood Inference of the Parameters

Parameter estimation for mixture of skew t distribution is performed using the R

package, EMMIXskew, introduced by Wang et al. (2009). The authors used a stan-

dard EM algorithm where a detailed description can be found in Lee and McLachlan

(2013a).

4.2.3 Methodology

We propose to model ROC curves using finite mixture models. The Monte Carlo

method is used to circumvent the problem of the absence of a closed-form for the

functional form of the ROC curve defined in (3.4). Thanks to its properties, com-

putation of confidence bands is feasible. Because each pair (X, Y ) constructs one

ROC curve, the idea of the proposed approach is to generate an ensemble of replica

ROC curves by simulating many pairs (X̃, Ỹ ). The following details, step-by-step,

the proposed method. Let Xs = (xs1, . . . , x
s
nX

) and Y s = (ys1, . . . , y
s
nY

) be the vector

of non-diseased and diseased sample groups, respectively.

Step 1: Distributional Assumption

The choice of distributional assumption for the non-diseased and diseased group, i.e.,

X and Y , respectively, is the first step of the proposed method. Let X ∼ f ∗(xi | θ)

and Y ∼ h∗(yi | ψ), where ∗ represents either MG, MT or MST model described in

Section 4.2.
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Step 2: Parameter Estimation

Parameter estimation is carried out directly from the sample groups, i.e., Xs and

Y s, via an EM algorithm described in Sections 2.4.1 and 4.2. Thus, the parameter

estimates are obtained, i.e., θ̂∗X and θ̂∗Y . The number of components, G, is determined

by the BIC described in Section 2.4.3.

Step 3: Replica Generations

This step is the core of the proposed method. With the parameter estimates, obtained

previously, (X̃∗, Ỹ ∗) are generated from X̃∗ ∼ F (θ̂∗X) and Ỹ ∗ ∼ H(θ̂∗Y ), respectively.

From the simulated ensemble, the ROC curve is computed via (3.1) in Section 3.2.

Note that it gives only one ROC curve. Then, using the Monte Carlo method, this

step is repeated S times. This produces S ROC curves, i.e.,

{(t, R̃∗1(t))}, . . . , {(t, R̃∗S(t))}.

As consequence, S AUC values are obtained, i.e., Ã1, . . . , ÃS. By the properties

of Monte Carlo method, based on the strong law of large numbers and the central

limit theorem, the distribution of these S points T̃P
∗

converges asymptotically to a

Gaussian distribution (Graham and Talay, 2013). To ensure the properties of Monte

Carlo method, we choose a large S, i.e., S = 1000. The beauty of this finding is that

it simplifies hugely the computation of summary measures because of the absence of

a closed-form.
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Step 4: Averaging Curves

The model estimate, denoted as R̂∗(t), is derived by averaging the random realizations

of the ROC curves such that

R̂∗(t) = mean(R̃∗(t)),

where t ∈ D ⊂ [0, 1]. In the same way, the AUC estimate is obtained Â∗ = mean(Ã∗).

Note that by averaging over the ensemble of random realizations R̃∗(t), the estimate

R̂∗(t) gives a much smoother curve than the empirical estimate.

Step 5: Performance Measures

For a fixed point t (or F̃P
∗
), we obtained S points R̃∗(t) (or T̃P

∗
). Recall that the

distribution of these S points R̃∗(t) converges asymptotically to a Gaussian distribu-

tion. Thus, the 100(1 − α)% confidence interval can be easily computed as follows,

for a given t,

100(1− α)% CI = R̂∗(t)± z1−α
sdt√
S
, (4.14)

where the standard deviation of R̂∗(t) is computed as

sdt =

√√√√ 1

S − 1

S∑
l=1

(
R̃∗l (t)− R̂∗(t)

)2

.

Because of the lack of a closed-form, the AUC is computed using the trapezoidal rule

defined as follows:

Ã∗s =
1

2

n∑
i=2

(
F̃P
∗
si
− F̃P

∗
si−1

)(
T̃P
∗
si

+ T̃P
∗
si−1

)
. (4.15)
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The MSE is computed as

M̃SE
∗
s =

1

D

D∑
d=1

(
TP∗sd − T̃P

∗
sd

)2

, (4.16)

where d represents the number of cuts on the x-axis, TPd indicates the true positive

rate from the true ROC curve, for s = 1, . . . , S, respectively.

4.3 Applications

To illustrate the flexibility of the newly proposed method, we applied it on publicly

available case-control cancer data published by Wieand et al. (1989). The study was

conducted at the Mayo Clinic and was concerned with the accuracy of two biomarkers

for pancreatic cancer: a cancer antigen, CA 125, and a monoclonal antibody with a

carbohydrate antigenic determinant, CA 19-9. The serum concentrations of the two

biomarkers were collected from 51 patients without cancer but with pancreatitis and

90 patients with pancreatic cancer, both of which are measured on the continuous

positive scale with higher values being more indicative of cancer.

4.3.1 Pancreas Cancer: CA-125

Recall our goal is to model the true unknown curve, i.e., the empirical curve, but

with more smoothness and flexibility. First, we notice from the histogram, in Fig-

ure 4.1, that the normality assumption is not valid for both populations. The MG

method detects GX = 3 and GY = 4, the MT method finds GX = 2 and GY = 3,

and the MST method detects GX = GY = 3 for non-diseased and diseased group,

respectively. Unsurprisingly, the ROC curve of the standard binormal curve performs
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poorly compared to other methods, see Figure 4.2. Note the standard binormal is

computed directly via (4.4) without any transformation. The MG and MST methods

outperform the well-known LABROC. Figure 4.3 also confirms this statement. Table

4.1 presents the performance measures, i.e., the AUC and the MSE. When comparing

the AUC value, LABROC obtained the closest value to the empirical. However, as

mentioned in Remark 3.4.2, two distinct curves can have the same AUC. Therefore,

the MSE provides an additional information. The MSE confirms that GM and MST

methods surpass other methods with a MSE of 0.0016.

Table 4.1: Area under the curve (AUC) and mean square error (MSE) of ROC esti-
mates for biomarker CA 125.

Biomarker Measure BIN LABROC MG MT MST

Pancreas AUC (0.6966) 0.5923 0.6946 0.7082 0.7153 0.7187
CA 125 MSE 0.0529 0.0021 0.0016 0.0052 0.0016

Figure 4.1: Histograms for the pancreatic cancer data using biomarker CA 125 for
the non-diseased (blue) and the disease (red) group.
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Figure 4.2: ROC curves for the pancreatic cancer data using biomarker CA 125 with
different approaches.

Figure 4.3: Difference between the estimated ROC curves versus the empirical curve
for pancreatic cancer data using biomarker CA 125.
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4.3.2 Pancreas Cancer: CA 19-9

Again, the standard binormal give irrelevant information, see Figures 4.4 and 4.5,

caused by the unsuitable assumption of normality. The MG method detects GX = 3

and GY = 6, while the MT method and the MST method find GX = GY = 3 for

non-diseased and diseased group, respectively. These data seem less skewed, but

with heavier tails, which may explained the outstanding performance of MT method.

Compared to the LABROC method, the MT method performs relatively well in

terms of replication and closeness to the empirical curve. Quantitatively, the MT

method obtains an AUC close to the empirical AUC, as reflected in a small AUC

difference, i.e., |0.8521− 0.8570| = 0.0049, see Table 4.2. In term of MSE, LABROC

has the smallest MSE (0.0017) followed by MT (0.0028). Without any monotonic

transformation, the proposed methods surpass significantly the standard binormal

and perform as well as LABROC.

Table 4.2: Area under the curve (AUC) and mean square error (MSE) of ROC esti-
mates for biomarker CA 19-9.

Biomarker Measure BIN LABROC MG MT MST
Pancreas AUC (0.8521) 0.6773 0.8625 0.8585 0.8570 0.9269
CA 19-9 MSE 0.0442 0.0017 0.0031 0.0028 0.0083

4.4 Discussion

Direct approaches are easy to compute and are based on minimal assumptions. How-

ever, empirical ROC curves may suffer from large variability, notably with small

sample sizes (Gönen, 2013). In contrast, indirect approaches give smoother curves.
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Figure 4.4: Histograms for the pancreatic cancer data using biomarker CA 19-9 for
the non-diseased (blue) and the disease (red) group.

Figure 4.5: ROC curves for the pancreatic cancer data using biomarker CA 19-9 with
different approaches.
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Figure 4.6: Difference between the estimated ROC curves versus the empirical curve
for pancreatic cancer data using biomarker CA 19-9.

The binormal model has been widely used because it gives convenient maximum like-

lihood estimates of the ROC curve parameters. The underlying assumption for the

binormal is that there exists some unknown monotone increasing function, which

would simultaneously transform the observations into normally distributed random

variables. Unfortunately, real data may not necessarily follow normal distributions,

even after transformation.

This chapter provides a brief summary of the existing method, LABROC, and

details of the proposed method for modelling the ROC curve. The proposed method

utilizes Gaussian and non-Gaussian mixture distributions for both populations, in

conjunction with the Monte Carlo method. The novel method is applied to two

pancreatic cancer datasets illustrating its flexibility and smoothness. Depending on

the dataset, the proposed methods (MG, MT, MST) either relatively outperform or
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equivalently perform, when compared to LABROC. Note that the LABROC method

still assume that a single monotone transformation exists that would make both

groups normal simultaneously. Unlike the LABROC, the proposed method does not

require any monotonic transformation.
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Chapter 5

Model-Based Clustering

5.1 Overview

In cluster analysis, the goal is to partition observations into meaningful homogeneous

subgroups. Tyron and Bailey (1970) stated

“Understanding our world requires conceptualizing the similarities and dif-

ferences between the entities that compose it.”

Obviously the word ‘cluster’ has a significant meaning in this chapter. Therefore it

is entirely natural to ask the question ‘What is a cluster?’. Several authors have

reflected on the definition and meaning of a cluster (Everitt et al., 2011; Hennig,

2015). However the most popular definition remains the one based upon similarity

(cf. Wolfe, 1963, for discussion). Recently, McNicholas (2016a) proposed a definition

more specialized to finite mixture models:

“A cluster is a unimodal component within an appropriate finite mixture

model.”
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The author further defined his particular word choice for a better understanding. The

reader is referred to McNicholas (2016a) for additional information.

The term ‘clustering’ is adopted in several research fields to designate methods for

grouping unlabeled observations. Interest in clustering has increased astronomically

due to the emergence of new domains of application such as astronomy, biology and

more (Eisen et al., 1998; Jang and Hendry, 2007). Consequently, many clustering

approaches have been developed, which can be classified into two types: hierarchical

and non-hierarchical (or partitional). Note that some authors may prefer to organize

the literature differently such as ‘discriminative’ or distance-based versus ‘generative’

or model-based (Zhong and Gosh, 2003).

Hierarchical clustering finds successive clusters using previously established clus-

ters. It can be carried out using either an agglomerative or a divisive method with

the first being the most commonly utilized. In agglomerative (or bottom-up) clus-

tering, each observation represents a cluster of its own and then successively merges

clusters together until a stopping criterion is verified or all clusters are contained

within a single cluster. Conversely, divisive (or top-down) clustering begins with all

observations in a single cluster and then successively divide into sub-clusters until a

stopping criterion is reached. Hence, the problem reduces to selecting an appropriate

distance measures (Jain et al., 1999). These methods present one major advantage:

their construction is intuitive. Nevertheless their lack of statistical basis and their

inability to back-track appear to be a limitation for their use. In addition, the time

complexity is at least O(n2), where n is the total number of observations.

Unlike hierarchical methods that are based on distance measures, partitional

clustering is an iterative relocation algorithm. The clustering process starts with
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an initial partition. The quality of this partition is then improved by minimizing

the within-cluster variation. If the reallocation of the observation to another clus-

ter decreases the within-cluster variation, this observation remains in this assigned

cluster. Like its counterpart, partitional clustering can be divided into four cate-

gories: prototype-based (e.g., K-means or K-medoids see MacQueen, 1967 and Har-

tigan, 1975), density-based (e.g., DBSCAN see Ester et al., 1996), grid-based (e.g.,

CLIQUE see Agrawal et al., 2005) and model-based clustering (Fraley and Raftery,

2002; McNicholas, 2016b). For the purpose of this thesis, the prime focal point is

model-based clustering because it gives more flexibility. Compared to hierarchical

clustering, model-based clustering offers better interpretability because each cluster

has its own postulated model. In addition, the computational complexity is linear

with respect to the number of observations.

5.2 Spatio-Temporal Data

In the last few years, spatio-temporal data has become ubiquitous thanks to the

availability of cheap sensor devices and remarkable development of computer power.

As a consequence, it attracted tremendous attention from researchers in diverse fields

such as medicine (Gaudart et al., 2006), geography (Birant and Kut, 2007; Wu et al.,

2015) and others, where there is a drive to understand and interpret complex spatio-

temporal phenomena. A spatial framework consists of a collection of locations and

a neighbour relationship, while a time series consists of a sequence of observations

taken progressively in time. Combining these two notions, spatio-temporal data is a

collection of times series, each referencing a location in a common spatial framework.
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Due to its complex nature, it is pragmatic to partition these data into homoge-

neous subgroups by considering the temporal and spatial information. While most

of the prior work on clustering treated space and time separately, it is undeniable

that accounting for both could yield better results. For instance, in public health,

the aim is to detect clusters that are prominent in time which may be indicative of a

naturally occurring disease outbreak such as the influenza or an environmental hazard

like a radiation leak. Thus the clustering method depends heavily on the type of data

used. Kisilevich et al. (2010) provided a classification of different types of spatio-

temporal data: spatio-temporal (ST) events, geo-referenced variables, geo-referenced

time series, moving points and trajectories.

For a better understanding, Table 5.1, which is taken from Kisilevich et al. (2010),

summarizes each type of data by dividing it into fixed and dynamic location. Here

the word dynamic signifies that the spatial location is time-changing, for example,

the GPS in the cellphone provides location and time information. For a sterling

description of each type of data, the reader is referred to Kisilevich et al. (2010).

This thesis focuses on the geo-referenced time series, i.e., a collection of time series

each referencing a location. For example, each data item represents a weather station

with its corresponding temperature at different times. An example of representation

of collected data is presented in Table 5.2.

The clustering problem resumes to group the multivariate time series with spatial

dependencies. In other words, clustering a set of observations requires the curvatures

of the time series to be compared and associated with its corresponding location. In

practice, the time series are observed only at discrete times. However, many clustering

methods have been developed for continuous time series which require transformation
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Table 5.1: Nomenclature of different types of spatio-temporal data.
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Table 5.2: An illustration of data set for geo-referenced time series.

Time Longitude Latitude Temperature

t1 u1 v1 V11

t1 u2 v2 V12
...

...
...

...
t1 uJ vJ V1J

t2 u1 v1 V21
...

...
...

...
tT uJ vJ VTJ

of the observed data. Unfortunately, these transformations are not unique and the

choice of method is arbitrary. For example, Appice et al. (2013) suggested to use

trend clusters to interpolate missing data, and inverse distance weighting interpolation

to estimate values at any spatial location and at any time. Meanwhile Wu et al.

(2015) proposed employing the Bregman block average co-clustering algorithm with

I-divergence which allows simultaneous study of the spatial and temporal patterns.

Note that the number of clusters in these approaches is either pre-specified or distance-

based. However, selecting the number of classes remains a challenging problem.

An interesting avenue to address the aforesaid problem is to apply the concept

of model-based clustering. Thus, selecting the number of clusters is achievable by

probability theory, and interpreting the results is easier and convenient. Samé et al.

(2011) proposed a method in which the observed data do not require any transforma-

tion. They suggested a mixture model, where each component follows a polynomial

regression mixture in which the logistic weights depend on the time. More specifically,

each observation of a time series arises independently from one of the polynomial re-

gression model specific to the component to which belongs. Unfortunately, this model

considers only the univariate temporal framework.
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In the upcoming chapter, a novel model is introduced extending this concept to

a higher level with the addition of a spatial and an autoregressive component. The

proposed model, named STM, is a mixture model, where each component is an au-

toregressive polynomial regression mixture in which the logistic weights depend on

the spatial and temporal dimensions. Hence, the STM model is not restricted to uni-

variate temporal framework, but can also model spatial dependencies for multivariate

functional data.

5.3 Functional Data

As mentioned previously, this thesis focuses on geo-referenced time series which im-

plies the aim of clustering is to group the multivariate time series with spatial depen-

dencies. Subtracting the spatial dependencies, the problem is similar to functional

data. Ferraty and Vieu (2006) defined functional data as a set of curves belonging to

an infinite dimensional space.

The curse of dimensionality was and remains an active topic in statistics. The

challenge, when dealing with functional data, emerges from the fact that the observa-

tions are supposed to come from an infinite dimensional space. However, in practice,

curves are generally observed at discrete observation points. As a consequence, the

first step in functional data analysis is usually the reconstruction of the functional

form of the discrete observations, say Xij, of each sample path Xi(m) at a finite

set of time grids mij, for j = 1, . . . , ti. Thus, this can be executed by predefining

functional basis such as Fourier, wavelets, splines and more (Ramsay and Silverman,

2005). Consider a basis Ψ = {ψ1, . . . , ψL}, we assume that the basis expansion, for
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some L ∈ N, is given by

Xi(m) =
L∑
`=1

αi`ψ`(m), (5.1)

where αi` ∈ R is the basis coefficients. Although the choice of functional basis

is arbitrary, it highly influences its results because, when using the same model to

cluster, two different bases can obtain different partitions.

There has been a significant amount of research on functional data clustering.

Jacques and Preda (2014a) classified different approaches into four categories: raw

data methods, filtering methods, adaptive methods and distance-based methods. The

proposed method, named TM, falls into the adaptive methods category. By adaptive

methods, the authors imply any method whose functional representation of data

depends on clusters, and that the dimensionality reduction and the clustering proceed

simultaneously. For further details of each approach, the reader is referred to Jacques

and Preda (2014a).

Within the adaptive methods, the authors divided it into two subgroups based on

the choice of the probabilistic modelling: basis expansion coefficients and functional

principal component analysis (FPCA) scores. For instance, James and Sugar (2003)

considered Gaussian mixture distributions as the basis expansion coefficients of the

curves into a natural cubic spline, i.e., αi ∼ N (µg,Σ). Note that the mean µg is

specific to each component but the variance Σ is common for all. Thus, we observe

that the basis coefficients are considered as random variables rather than fixed vari-

ables, unlike the filtering approaches. Similarly, Jacques and Preda (2014b) applied

the idea of Gaussian mixture modelling to FPCA scores. For the TM model, the basis

expansion is the polynomial regression mixtures which give the possibility to change

from one regression model to a different one in time and also space.
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5.4 Performance Assessment

Given the knowledge of the ground truth class assignments, clustering performance

evaluation is achievable. For the purpose of demonstrating the efficacy of a proposed

method, a toy dataset is simulated or a dataset that has true group memberships

is considered. Frequently used performance assessment measures include the Rand

and adjusted Rand indices, abbreviated RI and ARI, respectively. Both indices are

a measure of agreement between two partitions.

5.4.1 The Rand Index

Rand (1971) introduced a similarity function that converted the problem of comparing

two partitions with possibly differing number of classes into a problem of comput-

ing pairwise label relationships. Thus, the RI is simply the proportion of pairwise

agreements between two partitions and is expressed as

RI =
number of pairwise agreements

number of pairwise agreements + number of pairwise disagreements
. (5.2)

Note, we refer the ‘number of pairwise agreements’ as the number of pairs of obser-

vations that were correctly clustered into the same group plus the number of pairs

of observations that were correctly clustered into the different groups. The ‘number

of pairwise disagreements’ corresponds to the number of pairs that were incorrectly

clustered.
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5.4.2 The Adjusted Rand Index

To assess clustering results in this thesis, we mostly use the ARI (Hubert and Arabie,

1985). An issue with the RI is that its expected value for random classification does

not take a constant value such as zero. Thus, the ARI corrects the RI for chance by

considering the fact that if a classification is performed randomly, some cases will be

correctly classified by chance. Therefore the expected value of an ARI under random

classification is 0.

5.5 Software: MCLUST

MCLUST is a contributed R package for Gaussian mixture modelling and model-

based clustering (Fraley and Raftery, 2002). Given observations x1, . . . ,xn, MCLUST

assumes a Gaussian mixture model

f(xi | θ) =
G∑
g=1

πgφ(xi | µg,Σg), (5.3)

where

φ(xi | µg,Σg) =
1√

(2π) | Σg |
exp

{
1

2
(x− µg)′Σ−1

g (x− µg)
}

(5.4)

is the density of a multivariate Gaussian with mean µg and covariance Σg, and πg is

the probability of membership of group g.

Banfield and Raftery (1993), Celeux and Govaert (1995) and Fraley and Raftery

(2002) exploited a model-based framework by parameterizing the following eigenvalue
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decomposition of the covariance matrix

Σg = λgDgAgD
′
g, (5.5)

where

(i) Dg is the orthogonal matrix of eigenvectors which determines the orientation of

the principal components of Σg;

(ii) Ag is the diagonal matrix whose elements are proportional to the eigenvalues

of Σg which determines the shape of the density contours, and det(Ag) = 1;

(iii) λg is a constant which specifies the volume of the corresponding ellipsoid.

Characteristics (i.e., orientation, shape and volume) of distributions are usually esti-

mated from the data and can either vary between clusters or be constrained across

clusters. Parameter estimation is carried out using the EM algorithm.
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Chapter 6

Modelling Spatio-Temporal Data

6.1 Model

6.1.1 General Mixture Model

We introduce a novel model using a mixture, where each component is an autore-

gressive polynomial regression mixture in which the logistic weights depend on the

spatial and temporal dimensions. In this chapter, some notations are redefined from

the previous Chapters 3 and 4. Let X = (X′1, . . . ,X
′
n)′ be independently and iden-

tically distributed random variables with realizations x = (x′1, . . . ,x
′
n)′. Recall the

density of a finite mixture model in Section 2.2,

f(xi | θ) =
G∑
g=1

πgfg(xi | ϑg), (6.1)
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where G is the number of components, πg are the mixing proportions such that

G∑
g=1

πg = 1 πg > 0,

and θ = (π1, . . . , πG,ϑ1, . . . ,ϑG) is the parameter vector. The fg(xi | ϑg) are called

component densities.

6.1.2 Autoregressive Mixture Model

Before presenting the novel model, it is interesting to break down each aspect by

recalling its definition. In the proposed model, we introduce an autoregressive aspect

to the univariate time series, i.e., an ordered sequence of measurements of the same

variable collected over time. Usually, the measurements are made at evenly spaced

times, e.g., hourly, monthly or yearly. Here, we omit the spatial dimension and only

consider the temporal dimension. Let xi = (xi1, . . . , xiT )′, for i = 1, . . . , n, be the

collection of observable variables at time t. For this thesis, we assume there exists

a strong relationship between the immediate past and current values. This suggests

using xi(t−1) to explain xit in a regression model. Using previous values of a series to

forecast current values of a series is termed an autoregression.

Definition 6.1.1. The autoregressive model of order 1, denoted by AR(1), is given

by

Xit = ω0 + ω1xi(t−1) + εit, t = 2, . . . , T (6.2)

where εit is a white noise process with zero mean and constant variance σ2
ε , and ω0,

and ω1 are unknown parameters.

In the AR(1) model, the parameter ω0 may be any fixed constant, while the
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parameter | ω1 |< 1. By restricting ω1, it can be established that the AR(1) model is

stationary. Note that (6.2) is

1. a white noise process if ω1 = 0,

2. a random walk if ω1 = 1.

Here, we focus on the stationary process, i.e., the mean and variance stay steady over

time. Thus, E[Xit] = E[Xi(t−1)] = 0 and V [Xit] = V [Xi(t−1)] = σ2
ε .

Definition 6.1.2. The mixture of autoregressive components can be defined by, for

xi0 = 0,

Xit | xi(t−1) ∼
G∑
g=1

ωg

T∏
t=1

φ(xit | cgt, σ2
g), (6.3)

where φ(· | µ, σ2) is the univariate Gaussian distribution with mean µ and variance

σ2, and the mixing weights ωg satisfy the constraints ωg > 0 and
∑G

g=1 ωg = 1, and

cgt = µg + ag1(xi(t−1) − µg). (6.4)

Note that (6.4) is the conditional mean of a stationary autoregressive model of

order 1 with stationary mean µg and autoregressive coefficient ag1.

6.1.3 Polynomial Regression Mixture Model

Another underlying aspect of this new model is polynomial regression. Polynomial

regression is among the most frequently used nonlinear models because it can ap-

proximate the shape of the empirical curvilinear, when the distribution is unknown

or has possibly complex nonlinear relationships. Suppose the spatio-temporal data

xi = (xi11, . . . , xiJT )′, for i = 1, . . . , n, where j denotes the spatial index and t the
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temporal index that corresponds to time locations mt. For example, the data can be

described in terms of T images each with J pixels. Thus, at each pixel location j, we

have the temporal sequence xij of length T .

Definition 6.1.3. The Q-order polynomial regression on the time grid m = (m1, . . . ,mT )

with additive noise term is given by, for i = 1, . . . , n and j = 1, . . . , J ,

xij = Mβ + εij, (6.5)

where M is the Vandermonde matrix, i.e.,

M =


1 m1 · · · mQ

1

...
...

. . .
...

1 mT · · · mQ
T


and β is the (Q+ 1)-vector of regression coefficients, and εij is the error term which

is assumed to be Gaussian and independent over time, i.e., εij ∼ N (0,Σ) with a

diagonal covariance matrix Σ = diag(σ2
1, . . . , σ

2
T ).

In this thesis, we consider the problem of curve clustering. In other words, we

want to group the set of curves xij into G components, where each component will

contain curves of the same polynomial regression model. Following this idea, the

polynomial regression mixture is a useful generative model that can be used to capture

curvilinearity. Hence, the polynomial regression mixture is described as

f(xij | θ) =
G∑
g=1

ωgfg(xij | ϑg), (6.6)
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where fg(xij | ϑg) = N (Mβg,Σg), ϑg = (βg,Σg) is the set of parameters of the gth

component, and ωg ∈ (0, 1], such that
∑G

g=1 ωg = 1, are called mixing proportions.

6.1.4 Autoregressive Polynomial Regression Mixtures to Model

the Components

Suppose each observation xi = (xi11, . . . , xiJT ) consists of J × T observations over

a pre-specified time grid m = (m1, . . . ,mT ) and spatial grid s = (s1, . . . , sJ). The

realization of Xijt corresponding to observation i at site j and time t is xijt ∈ R. The

spatial coordinates of site j are defined by the bivariate vector sj = (uj, vj).

The spatio-temporal model, named STM, supposes that each site j is conditionally

independent on the membership component zi, defined in (2.5), and the dependency

in time is Markov, i.e., autoregressive. Thus, we have

P(Xi | ϑg, Zig = 1) =
J∏
j=1

T∏
t=1

P(Xijt | ϑg, Zig = 1, xij(t−1)), (6.7)

where Xi = (Xi11, . . . , XiJT )′. The distribution of Xijt | ϑg, Zig = 1, xij(t−1) is a K-

component mixture of Q-order polynomial regression. From (6.1), the pdf of the gth

component of the STM model is given by

fg(xi | ϑg) =
J∏
j=1

T∏
t=1

K∑
k=1

ωgjtk(λg)φ(xijt | [Mt −Mt−1]′βgk + xij(t−1), σ
2
gk), (6.8)

where

- ϑg = (λg,βgk, σgk; k = 1, . . . , K) is the set parameters of the gth component;

- ωgjtk(λg) are the weights of the autoregressive polynomial regression mixtures
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that depend on both the spatial and the time dimensions using a logistic function

defined as follows

ωgjtk(λg) =
exp(λgk1uj + λgk2vj + λgk3mt + λgk4)∑K
`=1 exp(λg`1uj + λg`2vj + λg`3mt + λg`4)

∀ (g, j, t, k) (6.9)

and λg = (λg11, . . . , λgK4) is the parameter;

- φ(· | µ, σ2) is the pdf of the univariate Gaussian distribution with mean µ and

σ2;

- Mt = (1,mt, . . . ,m
Q
t ) represents the vector of the Q degree polynomial of Mt

and M0 is a null vector of size Q+ 1;

- βgk = (βgk0, . . . , βgkQ) is the coefficient vector of the kth regression model for

the gth component.

Note we define xij0 := 0. Because the gth component is itself a mixture, it requires

a second latent variable, denoted yijt = (yijt1, . . . , yijtK), conditional on zig = 1,

outlined as

yijtk =


1 if xijt ∈ kth polynomial regression of the gth component,

0 otherwise.

Therefore, Yijt can be viewed as a label assignment of the polynomial regression

mixture that adjusts the observation xijt conditionally on zig = 1. Thus, it follows a

multinomial distribution MK(ωjt1(λg), . . . , ωjtK(λg)). To ensure model identifiabil-

ity, we impose that λg1h = 0 for h = 1, . . . , 4. The proof of the model identifiability

is detailed in the following section. Note that the elements of the observation xi do
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not necessarily emerge from the same polynomial regression.

Remark 6.1.4. If we remove the spatial dependencies inside the weights ωgjtk in

(6.9), i.e., λgk1 = λgk2 = 0 ∀g, k, the STM model can be utilized for functional data

analysis which has only time dependencies. The basis expansion of (5.1) follows the

polynomial regression model. In other words, at each time grid mt, the observation

Xit is assumed to evolve from one of the polynomial regression models specific to the

component it belongs to.

6.1.5 Generative Model

Equations (6.1) and (6.8) entail the following three steps of the generative model:

1. Sampling of the component membership

Zi ∼MG(π1, . . . , πG);

2. Conditional sampling of the regression label assignment for all (j, t)

Yijt | Zig = 1 ∼MK(ωjt1(λg), . . . , ωjtK(λg));

3. Conditional sampling of the observation for all (j, t)

Xijt|Zig = 1, Yijtk = 1 ∼ N ([Mt −Mt−1]′βgk + xij(t−1), σ
2
gk).

For a better visualization, Figure 6.1 illustrates the three steps of the generative

model.
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Figure 6.1: Diagram describing the three steps of the generative model.

Remark 6.1.5. A summarization and visualization of each component can be achieved

by plotting an average curve of each component using the following results:

E [Xijt | Zi = g] =
K∑
k=1

ωgjtk(λg)M
′
tβgk, (6.10)

because

E [Xijt | Zi = g, Yijt = k] = M′
tβgk

and

E
[
Xijt | Zi = g, Yijt = k,Xij(t−1) = xij(t−1)

]
= [Mt −Mt−1]′βgk + xij(t−1).

Remark 6.1.6. For our purposes, Yijt is used to model spatial and temporal de-

pendencies although one may use it to interpret components. Conditionally on the

component, the a posteriori distribution of Yijt represents the probability that the ob-

servation xijt emerges from the kth regression. The segmentation is achievable because
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conditionally to the component, we can obtain the regression with the greatest proba-

bility at time mt for site sj.

6.2 Identifiability

The STM model is generically identifiable, see Definition 2.3.6, disregarding the label

switching problem, if

1. T > Q;

2. we can construct a matrix of size (Q + 1) × 2 consisting of spatial coordinates

of the observed sites, where the row rank equals to (Q+ 1).

Let Θ be the parameter space of the STM model and A ⊂ Θ a subspace of measure

zero such that θ, θ̃ ∈ Θ \ A. Hence we want to prove the following condition:

∀ x, f(x | θ) = f(x | θ̃) =⇒ θ = θ̃. (6.11)

Instead of proving the previous condition, we demonstrate an equivalent condition,

i.e.,

∀ x, ∀ (j, t) fjt(xjt | θ) = fjt(xjt | θ̃) =⇒ θ = θ̃, (6.12)

where fjt(xjt | θ) is the marginal probability of xjt obtained by marginalizing over

f(x | θ). Before starting the proof, recall the following important result from proba-

bility theory and statistics.

Lemma 6.2.1. Suppose U1 ∼ N (µ1, σ
2) and U2 | U1 ∼ N (µ2 − µ1 + u1, σ

2), then we

have U2 ∼ N (µ2, 2σ
2).
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Proof. See Appendix.

From Lemma 6.2.1, the marginal probability density function of xjt is defined as

fjt(xjt | θ) =
G∑
g=1

K∑
k=1

πgωgjtk(λg)φ(xjt |M′
tβgk; 2t−1σ2

gk). (6.13)

Notice that (6.13) is a univariate Gaussian mixture with G ×K components. From

Proposition 2.3.5, proven by Teicher (1963), the identifiability of Gaussian mixtures

entails that ∀ (g, k, j, t)

σ2
gk = σ̃2

gk, (6.14)

M′
tβgk = M′

tβ̃gk (6.15)

πgωgjtk(λg) = π̃gωgjtk(λ̃g) (6.16)

Identifiability of σ2
gk

The identifiability of the parameters σ2
gk is directly demonstrated thanks to (6.14).

Identifiability of βgk

In (6.15), M = (M1, . . . ,MT ) represents a T × (Q+ 1) Vandermonde matrix. Recall

that all numbers mt are distinct. Then if T ≥ (Q + 1), we can construct a square

sub-matrix of M of size (Q+1)× (Q+1). That sub-matrix is a Vandermonde matrix

as well and is positive definite. Hence, we prove βgk = β̃gk.
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Identifiability of πg

Recall ωgjtk(λg) is the weights of the polynomial regression mixtures, see Section 6.1.4,

and, therefore,
∑K

k=1 ωgjtk(λg) = 1. Equation (6.16) implies, ∀ (g, j, t, k), πg = π̃g

which demonstrates the identifiability of π.

Identifiability of λg

For all (g, j, t, k), we have ωgjtk(λg) = ωgjtk(λ̃g), where ωgjtk is a logistic function.

Using the identifiability conditions proposed by Silvapulle (1981), we prove λg = λ̃g.

6.3 Parameter Estimation

As mentioned previously, the STM model requires two latent variables: the com-

ponent membership zi and the label assignment of polynomial regression yijt. Ap-

plying the log-likelihood function, cf. (2.4), to (6.1) and (6.1), the complete-data

log-likelihood is obtained

logL(θ | x,y, z) = logL1(π) + logL2(λ) + logL3(β,σ), (6.17)

where

logL1(π) =
n∑
i=1

G∑
g=1

zig log πg,

logL2(λ) =
n∑
i=1

G∑
g=1

J∑
j=1

T∑
t=1

K∑
k=1

zigyijtk logωgjtk(λg),

logL3(β,σ) =
n∑
i=1

G∑
g=1

J∑
j=1

T∑
t=1

K∑
k=1

zigyijtk log
{
φ
(
xijt | [Mt −Mt−1]′βgk + xij(t−1), σ

2
gk

)}
.
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Given an initial arbitrary parameter θ[0], the iteration [r] of the EM algorithm consists

of repeating the following E and M steps:

1. The E-step: Computation of the conditional probability based on the current

values of θ[r], i.e., E
[
logL(θ | x,y, z) | X,θ[r]

]
;

ηig(θ
[r]) := E

[
Zig = 1 | xi,θ[r]

k

]
=

π
[r]
g fg(xi | θ[r]

g )∑G
`= π

[r]
` f`(xi | θ

[r]
` )

and

τigjtk(θ
[r]) := E

[
Yijtk = 1 | xi,θ[r], Zig = 1

]
=

ω
[r]
jtk φ(xijt | [Mt −Mt−1]′β

[r]
gk + xij(t−1), σ

2[r]
gk )∑K

`=1 ω
[r]
jt` φ(xijt | [Mt −Mt−1]′β

[r]
g` + xij(t−1), σ

2[r]
g` )

.

These expectations are obtained using the three steps generative model in Sec-

tion 6.1.5.

2. The M-step: Maximization of the expectation of the complete-data log-likelihood,

cf. (6.17);

(i) Update the mixing weights, π
[r]
g , by differentiating Q(θ | θ[r]) with respect

to πg, which leads to

π[r+1]
g =

n
[r]
g

n
,

where n
[r]
g =

∑n
i ηig(ϑ

[r]);

(ii) Update the parameter of regression weights, λ
[r]
g , by differentiating Q(θ |
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θ[r]) with respect to λg, which leads to

λ[r+1]
g = arg max

λg

n∑
i=1

J∑
j=1

T∑
t=1

K∑
k=1

ρigjtk(ϑ
[r]) logωgjtk(λg),

where ρigjtk(ϑ
[r]) = ηig(ϑ

[r])τigjtk(ϑ
[r]). Recall the condition λg1h = 0 for

h = 1, . . . , 4 and g = 1, . . . , G from (6.9). The computation of λ
[r+1]
g is

performed by Newton-Raphson algorithm (Nocedal and Wright, 2006);

(iii) Update the regression coefficients, β
[r]
gk , by differentiating Q(θ | θ[r]) with

respect to βgk, which leads to

β
[r+1]
gk =

[
A′D

[r]
gkA

]−1 [
A′C

[r]
gk

]
,

where At = [Mt −Mt−1] is the tth row of a T ×(Q+1) matrix A, D
[r]
gk is a

T × T diagonal matrix, where the element t is
∑n

i=1

∑J
j=1 ρigjtk(ϑ

[r]), and

C
[r]
gk is the T th vector for which the element t is

∑n
i=1

∑J
j=1 ρigjtk(ϑ

[r])(xijt−

xij(t−1));

(iv) Update the variance, σ
2[r]
gk , by differentiating Q(θ | θ[r]) with respect to

σ2
gk, which leads to

σ
2[r+1]
gk =

∑n
i=1

∑J
j=1

∑T
t=1 ρigjtk(ϑ

[r])
(
xijt − xij(t−1) −A′tβ

[r+1]
gk

)2

trace(D
[r]
gk)

,

where trace(D
[r]
gk) =

∑
g=k d

[r]
gg.
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6.4 Initialization

The convergence toward a local optimum of the EM algorithm can highly depend on

its starting point θ[0]. Here, we borrow the xem-EM strategy described by Biernacki

et al. (2003). The strategy consists of two phases:

- Several short runs of EM from random starting points with few iterations;

- A long run of EM from the solution maximizing the observed logL(θ | x).

A short run of EM, as defined by the authors, allows us to stop the algorithm after

a few iterations or as soon as logL(θ[r+1]) − logL(θ[r]) < ε instead of waiting for

convergence. Note, for the upcoming applications, we generate 500 starting points of

20 iterations. The convergence criteria for the long run of EM is ε = 10−3.

6.5 Competing Models

Let M be the set of competing candidate models. From (6.1) and (6.8), each model

M ∈ M is characterized by three factors: the number of components (G), the

number of regressions per component (K) and the degree of polynomial regressions

(Q). Hence, a model is defined by M = (G,K,Q) with G,K,Q ∈ N∗ and the number

of candidate models is card(M) = Gmax ×Kmax ×Qmax. Thus the model selection is

achieved using an information criterion whose value is calculated for each model in

M.
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6.6 Simulation Study

This section is devoted to an evaluation and investigation of the consistency of in-

ference of the proposed model and the importance of modelling the spatio-temporal

dependencies. Results yielded by the R package, SpaTimeClust, are compared to

those obtained by mclust software for model-based clustering (Fraley et al., 2012).

Note that the experiment can be reproduced with the default option.

6.6.1 Simulated Data

For this simulation, observations consisted of J = 25 sites at T = 10 moments. The

sample is generated with different sizes, i.e., n = 50, 100, 200 and 400, at various levels

of overlap, i.e., 5, 10, and 15%, between classes. For each scenario, the STM model

generated 100 replicates with the following settings:

G = 2 K = 2 Q = 1

π1 = 1/3 π2 = 2/3

β11 = β21 = (0, 0) β12 = (10,−20) β22 = (11,−20)

λ1 = λ2 and


abscissa ordinate time constant

λg11 0 0 0 0

λg12 2 −2 −1 4



σ2
gk =


14, for 5% misclassification error

25, for 10% misclassification error

37, for 15% misclassification error.
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6.6.2 Consistency of Estimates

First, we test the consistency of estimates of the STM model. The results show that

the estimates are consistent because, as n increases, the estimates rapidly converge

toward zero, see Table 6.1. We notice, for example, at a 15% misclassification rate,

the mean distance of | β̂−β | decreases quickly from 5.17 (n = 50) to 0.27 (n = 400).

6.6.3 Consistency of Model

The validation of the consistency of model selection is fundamental due to the un-

known nature of the dataset, in practice. The BIC is computed after fitting all pos-

sible models, for each replicate, where Gmax = Kmax = 3 and Qmax = 2. The model

that maximizes this criterion is nominated as the ‘best’ model. Table 6.2 shows the

statistics of the winning models. Unsurpringly, when the sample size is small and the

misclassification error rate is high, G is underestimated. However, as n increases, the

STM model can adequately identify the true grouping. Furthermore, the STM model

is able to determine the true number of regressions (K) and the degree of polynomial

regression (Q) in all scenarios.

6.6.4 Importance of Dependencies

Table 6.3 shows the misclassification error rate between the STM model and the

existing MCLUST model. For the purpose of comparison, we decide to use the classic

dependency for MCLUST that is not necessarily specific to spatio-temporal data. As

a consequence, the misclassification error rate for MCLUST is higher than STM,

which converges rapidly. These results demonstrate the importance of considering

the spatio-temporal dependencies in the model.
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Table 6.3: Mean (standard deviation) of misclassification errors for simulated data.

Size 5% 10% 15%
(n) MCLUST STM MCLUST STM MCLUST STM

50
0.42 0.06 0.43 0.16 0.42 0.26
(0.06) (0.03) (0.06) (0.03) (0.06) (0.11)

100
0.43 0.05 0.42 0.12 0.44 0.21
(0.05) (0.03) (0.05) (0.05) (0.05) (0.09)

200
0.44 0.05 0.45 0.11 0.46 0.17
(0.04) (0.01) (0.04) (0.02) (0.03) (0.04)

400
0.33 0.05 0.33 0.11 0.45 0.15
(0.02) (0.01) (0.02) (0.02) (0.02) (0.02)

6.7 Applications

This section presents the results of experiments which aim to demonstrate the ef-

ficiency and compare the STM model to existing methods. Both applications are

executed via the R package, SpaTimeClust, using the default options. We defined

Gmax = 6, Kmax = 6, and Qmax = 4. The geographical coordinates of the region’s

capital are used as the spatial coordinates of each site j. Note that the data presented

in this section are available in the package. By inhibiting λgk1 = λgk2 = 0 ∀ g, k, from

(6.9), we end up with only the time dependencies which is similar to functional data

problem. Thus, we introduce the TM model as the STM model without the spatial

dependencies.

6.7.1 Influenza Data

Data

We illustrate our newly proposed model on publicly available influenza data from the

website of the Réseau Sentinelles (2015). The data consist of twenty-nine incidence
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rates of influenza-like illness (number of cases per 100 000 inhabitants), from 1986 to

2015, from over twenty-one regions of France between the first day of Summer until

the last day of Spring (approximately 52 weeks). In summary, we have n = 29 pe-

riods described by the incidence rates of influenza for T = 52 weeks at J = 21 regions.

Model Comparison

According to Table 6.4, the selected STM drastically outperforms MCLUST model

(EII), in terms of BIC, but very closely to TM model (with BICTM−BICSTM = −3).

Hence, the proposed model is more parsimonious and fits the data better than the

classical Gaussian mixture. However, the spatial dependencies within classes are not

strong, which make the TM model a suitable candidate. This finding illustrates the

flexibility and efficiency of the proposed model as a multivariate functional data.

Table 6.5 shows that both models produce exactly the same partition because the

ARI computed between both resulting partitions is equal to one. This implies that

the spatial dependencies within classes are weak which confirms that the TM model

is as relevant as the STM model.

Table 6.4: Selected model and information criterion for the influenza dataset.

Models
Constraints number of

G K Q parameters BIC

MCLUST (EII) 7 – – 7651 -205655
TM 3 2 4 44 -163781
STM 3 2 4 50 -163778
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Table 6.5: Confusion table of ARIs computed between the three resulting partitions
that were applied to the influenza data.

MCLUST TM STM

MCLUST 1.00 0.35 0.35
TM – 1.00 1.00
STM – – 1.00

Best Model Interpretation

Table 6.6 presents variables that can possibly explain the choice of classes of the

best model according to STM. For instance, the third component groups the periods

characterized by the viruses of type A only and the incidence rate curves are distinctly

elongated, see Figure 6.2. Its highest peak of the observed incidence rate reaches

1530 cases per 100 000 inhabitants while the lowest one is at 533 cases per 100 000

inhabitants, in the first component. Thus, the curves of the latter are lower with all

periods affected by virus B. The second component represents periods affected by the

AH3N3 virus and the duration lasted about ten weeks. It is interesting to point out

that the third component occurred between 1986/1987 and 1995/1996 while all the

observations of the second component happened after 1996.

Table 6.6: Justification of classes using other explanatory variables for influenza (num-
ber of cases per 100 000 inhabitants).

Variables
Component (g)

1 2 3

Incidence rate at highest peak 533.0 847.2 1530.0
Total incidence rate 2989.1 4592.0 6663.5
Duration (week) 8.8 10.3 9.0
Number of AH1N1 7 1 2
Number of AH3N3 5 8 2
Number of B 8 1 0
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Figure 6.2: Weekly incidence rate (number of cases per 100 000 inhabitants) curves
at Picardie under different components.

6.7.2 Air Pollution Data

Data

Airparif-Design Clair et Net (2010) is a non-profit organization accredited by the

Ministry of Environment that promotes the air quality monitoring network in Paris

and Île-de-France region, essentially the capital city region. The quantities of nitro-

gen dioxide (NO2) is measured in µg/m3, every hour, at nine Airparif stations located

around the periphery of Paris for 101 days in 2014. From the previous information,

we extracted: J = 9 stations that calculate the amount of NO2, T = 24 hours per

day, and n = 101 days. The nine stations constitute: Ivry-sur-Seine, Neuilly-sur-

Seine, Pantin (RN2), Périphérice Est (abbreviated Periph-Est), place Basch (Paris
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XVIeme), Porte d’Auteuil, Rue Eastmen (Paris XIIIeme), rue Flacon (Paris XVII-

Ieme), and Stade Lenglen. Consider the percentage of weekend days, days between

April 1st and October 1st, holiday days in July and August, total rain, and average

and maximum wind speed, as further explanatory variables that are extracted to

reinforce the interpretation of our clustering results.

Model Comparison

From Table 6.7, we observe that the selected STM surpasses the TM and MCLUST

(VEI) models regarding the BIC (BICSTM > BICTM > BICMCLUST). The STM

model is less complex compared to other models because it requires fewer parameters,

facilitating the interpretation. Table 6.8 summarizes the ARI values between the

pertinent model of each approach. We notice the disparity in the partitioning of

classes between MCLUST and STM, i.e., ARI = 0.25, which suggests that modelling

spatial and temporal helps. When spatial dependencies are accounted for, we notice

the different partitioning of classes between TM and STM, i.e., ARI = 0.78.

Table 6.7: Selected model and information criterion for air pollution dataset.

Models
Constraints number of

G K Q parameters BIC

MCLUST (VEI) 6 – – 1522 -93241
TM 4 4 4 123 -79175
STM 3 4 4 110 -79006

Best Model Interpretation

Recall that the main goal is to group days presenting similarity in the curvature or

characteristic. As observed in Table 6.7, the STM model divides the 101 days into
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Table 6.8: Confusion table of ARIs computed between the three resulting partitions
that were applied to the air pollution data.

MCLUST TM STM

MCLUST 1.00 0.13 0.25
TM – 1.00 0.78
STM – – 1.00

three components with a size of 58, 23 and 20. Table 6.9 compiles other relevant

variables to rationalize the partitioning of classes suggested by the STM model while

Figure 6.3 shows the behaviour of each component for three sites (Neuilly-sur-Seine,

place Basch and Pantin). The first component highlights weekends (81.0%) and

vacation periods (20.7%), as well as days with the most rain (0.154 cm) and the

highest average wind speed (4.638 km/h). The low and constant quantity of NO2

at three stations, see Figure 6.3, is largely attributable to all these factors combined

together.

Table 6.9: Justification of classes using other explanatory variables for air pollution.

Variables
Component (g)

1 2 3

Weekend (%) 81.0 69.5 10.0
Total rain (cm) 0.154 0.147 0.111
Windavg (km/h) 4.638 2.652 3.400
Days between Apr 1 - Oct 1(%) 56.9 26.1 40.0
Spring holidays in July & Aug (%) 20.7 0.0 0.15
Windmax (km/h) 11.155 11.652 13.050

Inversely, the second component contains no vacation days. This suggests that

the roads are busier, which causes an elevation in the amount of NO2. Because of the

slow wind flow velocity (2.652 km/h), the quantity of NO2 is accumulated throughout

the day and reaches its maximum at 8 pm (arg max
t=1,...,24

Egjt), see also Table 6.10.
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Figure 6.3: Hourly quantity of NO2 (µg/m3) measured at three different stations in
the periphery of Paris, where each class member represents days with similar curvature
or characteristics for 101 days observed.

The last component includes weekdays with little rain (0.111 cm) but strong

wind (13.05 km/h). Although there was little rain, the wind carried NO2 which

explains the highest quantity of pollution is attained early in the day, i.e., 8 am.

Because the third component principally describes weekdays, we observe two peaks,

induced by rush hours, see Figure 6.3. This statement is witnessed in the averaged

curves of the model for each component, obtained with (6.10) for K = 4, see Figure

6.4 (cf. green bold line). Hence, the STM model is flexible because of its ability to
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Table 6.10: Class descriptions through parameters with respect to the time: Egjt =
E [xij1 | Z = g].

Site Egjt
Component

g = 1 g = 2 g = 3

Neuilly-sur-Seine

Egj1 23.32 63.65 32.14
Egj24 19.83 67.87 51.91

max
t=1,...,24

Egjt 27.27 96.93 76.05

arg max
t=1,...,24

Egjt 19 20 8

Ivry-sur-Seine

Egj1 24.16 59.93 32.99
Egj24 24.33 51.35 51.33

max
t=1,...,24

Egjt 30.76 80.26 74.71

arg max
t=1,...,24

Egjt 20 20 8

Pantin

Egj1 37.72 63.62 32.10
Egj24 38.17 69.11 54.56

max
t=1,...,24

Egjt 49.86 98.06 79.34

arg max
t=1,...,24

Egjt 20 20 8

replicate the curvature of the data. Figure 6.5 demonstrates the importance of spatial

dependencies. We notice, notably for the first component, that the averaged curves

of xijt − xij(t−1) per hour for nine sites are distinct. For example, we observe that

one particular station has a higher level of NO2 than the rest. Note that the spatial

information is modelled with respect to each component allowing us to obtain nine

curves in each component instead of only one.

6.8 Discussion

This chapter builds on the growing trend towards clustering for spatio-temporal data

by developing a flexible model. The proposed model can be regarded as an exten-

sion of ClustSeg, presented by Samé et al. (2011), with two additional features: an
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Figure 6.4: Hourly averaged curves (in bold) of the increasing quantity of NO2

(µg/m3), i.e., xijt − xij(t−1), at nine different stations in the periphery of Paris under
different components (in black for Component 1, red for Component 2 and green for
Component 3). The dashed line represents each label assignment of the polynomial
regression depending on the class membership. The grey curves represents the obser-
vations, i.e., 101 days. The station Périphérique Est is abbreviated as Periph-Est.
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Figure 6.5: Hourly averaged curves of the increasing quantity of NO2 (µg/m3), i.e.,
xijt − xij(t−1), for all nine stations in the periphery of Paris under their respective
class member.

autoregressive regression and the possibility to operate as multivariate functional

data. Hence, the TM model can also be outlined as a method to cluster multivariate

functional data with an independence assumption within classes between different

functions.

The STM model was illustrated through simulation study and applications. In

the simulation study, we demonstrated the consistency of estimates and model along

with the importance of dependencies. In the applications, we illustrated two cases:

with and without spatial dependencies. When applied to the influenza dataset, our
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model without spatial dependencies, i.e., the TM model (λgk1 = λgk2 = 0), outper-

formed MCLUST. When applied to air pollution dataset, our model with the spatial

dependencies, i.e., the STM model, was superior to MCLUST.
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Chapter 7

Conclusions

7.1 Summary

Finite mixture models have been extensively used in the statistical literature, both

as tools for modelling population heterogeneity and as a flexible method for relaxing

parametric distributional assumptions. This thesis has focused on the development

and implementation of two topics in modelling: receiver operating characteristics

curve and model-based clustering for spatio-temporal data, using finite mixture dis-

tributions.

7.1.1 ROC curve

Most of the existing methods, especially ones focusing on the assumption of normality,

require finding a single transformation that works for both the non-diseased and

diseased groups, which remains the Achilles heel of the LABROC. In this thesis, we

propose an alternative that explicitly recognizes the heterogeneity in both groups and
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at the same time allows the use of familiar parametric models. Thus, modelling the

heterogeneity by means of mixture models is highly reasonable and constitutes the

basic tool for cluster, latent class, and discriminant analysis, but few use it in ROC

analysis.

The proposed method employs Gaussian and non-Gaussian (t and skew t distribu-

tions) mixtures for both populations, in conjunction with the Monte Carlo method.

The ROC curve estimates produced by the proposed method is smooth, respects the

monotonicity property and does not require any transformation of the data. These

methods were then applied to data on pancreatic cancer of two biomarkers (CA 125

and CA 19-9). Each of these models performs favourably or equivalently, depending

whether the data are normal, skewed or heavier tails, when compared to the existing

well-establish LABROC.

7.1.2 Model-Based Clustering

Clustering is a very interesting and challenging research problem. Therefore, a wide

spectrum of methodologies has been used to address these questions. Probabilistic

mixture modelling is a well established model-based approach for clustering because

it offers many advantages such as flexibility and selecting the number of components.

The main feature of the novel model is the incorporation of a spatial dimension

and an autoregressive component. The proposed model, called STM, is a mixture

model, where each component is itself a mixture, more precisely an autoregressive

polynomial regression mixture in which the logistic weights depend on the spatial

and temporal dimensions. As mentioned in Remark 6.1.4, by removing the spatial
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dependencies inside the model specification, we end up with only the time dependen-

cies which is similar to the functional data problem. Moreover, the STM model does

not require any transformation of the data or the selection of functional basis before-

hand. This new model was tested using numerical experiments with both simulated

and real datasets, i.e., influenza and air pollution. These experiments demonstrated

the consistency of the model and estimates. Our model yields better results since

it considers both the temporal and spatial dimensions. Furthermore, our model has

proved to be multifunctional and versatile because it can be used as a functional

data model shown in the example of influenza, or as a spatio-temporal model like

in the air pollution example. In both cases, the interpretation of the results is very

straightforward.

7.2 Future Work

7.2.1 Modelling the ROC Curve with No-Gold Standard

In evaluation of diagnostic accuracy of binary tests, the knowledge of true case status

or a gold standard from a perfect test, i.e., zero error rates, is required. However,

in practice, such information is not always available because it may be difficult or

even impossible to determine the true status, and even the available reference test

against which new tests are compared is subject to errors. For example, the diagnosis

of Alzheimer’s disease is made based on certain symptoms, but the diagnosis is not

definitive until the brain tissue has been examined after death. Hence, the absence

of a gold standard adds more complexity to the evaluation of new tests. Thus, we

can incorporate Gaussian mixture models into the concept of no-gold standard. Let
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Si = (S1, . . . , Sn) be a vector of scores for each patient. The marginal distribution of

Si is defined as

P (Si) =
1∑
d=0

P (Si | Di = d)P (Di = d), (7.1)

where Di is the latent variable for the unknown disease status of the ith patient and

Di = 1, if patient i belongs to the disease group. Then, the joint distribution of Si,

P (Si | Di = d), follows a Gaussian or non-Gaussian mixture.

7.2.2 Model Selection

The problem of selecting a statistical model with the correct complexity is funda-

mental in statistical modelling. Often one has to tradeoff between accurately fitting

the data and the ability of the model to generalize. Sometimes BIC can cause an

underfitting problem. There is work to be done on the alternatives to the BIC such

as the Akaike information criterion, the integrated completed likelihood or the cross-

validation, for model selection.

7.2.3 Parsimonious Spatio-Temporal Mixture Models

A better tradeoff between the bias and the variance of the estimates can be obtained

by imposing constraints on the parameter space. Thus, parsimonious models are often

defined for mixture models by imposing equality constraints on the parameters among

components (Banfield and Raftery, 1993; Celeux and Govaert, 1991; McNicholas and

Murphy, 2008), as briefly outlined in Section 5.5 for MCLUST. We propose four types

of constraints:

(i) equality on the mixture weights among components;
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(ii) equality of the regression weights among components;

(iii) equality of the dispersion parameters within components;

(iv) equality of the dispersion parameters among components.

The full range of possible constraints also provides a class of twelve different par-

simonious spatio-temporal mixture models, described in Table 7.1. The set of the

parsimonious constraints are defined by H ∈ F , where F = {U,C}4 \ UUUC ∪

UCUC ∪CUUC ∪CCUC. The four elements of H respectively indicate the presence

(C) or the absence (U) of equality constraints for the mixture weights, the regression

weights, the dispersion within and among components.

Table 7.1: Twelve parsimonious versions of the spatio-temporal mixture models: U
indicates unconstrained parameters and C indicates an equality constraint.

πg λg σ2
gk Number of

Within component Among component parameters

U U U U GK(Q+ 6)− 3G− 1
U U C U GK(Q+ 5)− 2G− 1
U U C C GK(Q+ 5)− 3G
U C U U GK(Q+ 2) +G+ 4K − 5
U C C U GK(Q+ 1) + 2G+ 4K − 5
U C C C GK(Q+ 1) +G+ 4K − 4
C U U U GK(Q+ 6)− 4G
C U C U GK(Q+ 5)− 3G
C U C C GK(Q+ 5)− 4G+ 1
C C U U GK(Q+ 2) + 4(K − 1)
C C C U GK(Q+ 1) +G+ 4(K − 1)
C C C C GK(Q+ 1) + 4(K − 1) + 1

For each model, the number of parameters depends neither on the number of sites

nor the size of the time grid. Thus, the proposed modelling implies a reasonable
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number of parameters even if J and T are large. However, one should expect the

computation time to increase since we are dealing with more models.

7.2.4 Generalization of the STM Model

As shown and discussed in Chapter 6, the STM model is flexible and easy to handle,

i.e., putting a constraint on λg (see Remark 6.1.4). We can generalize the STM model

by replacing the polynomial regression with other functional models. For instance,

Fourier basis are excellent for describing data that are periodic (e.g., annual weather

data), the spline and wavelet bases are terrific at fitting highly curvy data. Thus,

the generalized STM model will automatically determine which functional basis is the

best candidate with respect to the data using model selection such as BIC. Therefore,

we are not restricted to a certain types of data.
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Appendix

Proof of Corollary 6.2.1

Before starting the proof, let us state a useful theorem borrowing from Casella and

Berger (2002).

Theorem A.1. If X and Y are any two random variables, then

E[X] = E[E[X | Y ]], (.1)

and

Var[X] = E[Var[X | Y ]] + Var[E[X | Y ]], (.2)

provided that the expectation exists.

The proof of this theorem can be found in Casella and Berger (2002). Recall Lemma

6.2.1.

Lemma 6.2.1. Suppose U1 ∼ N (µ1, σ
2) and U2 | U1 ∼ N (µ2 − µ1 + u1, σ

2), then we

have U2 ∼ N (µ2, 2σ
2).
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Proof. The joint probability function for two random variables U1 and U2 is denoted

by

fU1,U2(u1, u2) =
1

2πσ2
exp

{
− 1

2σ2
∆

}
, (.3)

where

∆ = (u1 − µ1)2 + (u2 − µ2 + µ1 − u1)2

=
(
u2

1 − 2u1µ1 + µ2
1

)
+
[
(u2 + µ1 − µ2)2 − 2u1(u2 + µ1 − µ2) + u2

1

]
= 2

(
u1 −

(u2 + 2µ1 − µ2)

2

)2

︸ ︷︷ ︸
h(u1 | u2)

+
(u2 + 2µ1 − µ2)2

2
+ µ2

1︸ ︷︷ ︸
g(u2)

. (.4)

Thus, the marginal probability function of U2 is

f(u2) =

∫
f(u2 | u1)f(u1)du1

=

∫
f(u1, u2)du1

=
1

2πσ2

∫
exp

{
−1

2σ2
(h(u1 | u2) + g(u2))

}
du1

=
exp

{ −1
2σ2 g(u2)

}
√

2πσ2

∫
1√

2πσ2
exp

{
−1

2σ2
h(u1 | u2)

}
du1︸ ︷︷ ︸

= 1 since it follows N
(

(u2+2µ1−µ2)
2

, σ2
)

=
exp

{ −1
2σ2 g(u2)

}
√

2πσ2
. (.5)
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By Theorem A.1, the mean is

E[U2] = E[E[U2 | U1]] (.6)

= µ2 − µ1 + E[u1] (.7)

= µ2

and the variance is

Var[U2] = E[Var[U2 | U1]] + Var[E[U2 | U1]] (.8)

= E[σ2] + Var[µ2 − µ1 + u1] (.9)

= 2σ2.
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