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The analysis vf stepping motors using linear models has been 

simplified through identifications of the constants. Though the 

existing nonlinear models assuming a smooth air-gap machine may1 in 

some csnes, ;rield a fairly close prediction cf the characteristics 

of a stepping motor, the models do not represent the act1.1al motors 

which are essentially salient-pole motors. A new salient-pole non

linear model is introduced. The analysis of permanent-magnet step

ping motors using the nonlinear models has been simplified by 

assuming constant. current sources. Dynamic behaviors of a permanent 

-magnet stepping motor are shown by phase-plane plots and step by 

step transient response plots. 

Computer control of stepping motors in both open-loop and 

closed-loop is discussed. The open-loop control has been derr:onst
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rated to be successful and a clos~d-loop control ~stem using light

sensors as feedback has been designed. 
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CHAPTER ONE 

THE STEPPING MOTOR 

1. Introduction 

A stepping motor may be defined as an electromagnetic device 

which, when actuated by pulses in the right sequence, rotates the 

motor shaft by a fixed angle called a step such that the number of steps 

is equal to the number of input pulses with a stepping rate equal to 

the input pulse rate provided that it is operated in the stable region. 

The actual beginning of stepping motors is unknown, however in the 

early 1930s the British Navy used them in remote position control. 

The U.s. Navy used them widely in the second world war[6]. Stepping 

motors have many apparent advantages in position control applications. 

For instance, the digital nature of their driving sequence permits 

them to interface with many types of digital transducers, networks, 

and computers with a minimum of interface hardware. 

Applications of stepping motors in fine positioning control 

have become more and more popular. Unlike servo-motors, stepping 

motors can be operated without loss of synchronism in open-loop 

control. In fact, the majority of the present applications of 

stepping motors are in open-loop control though in some sophisticated 

equipment closed-loop control techniques are used. The fast growth 

of stepping motor applications is attributed to the rapid 
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development in the digital control field as well as to improved modern 

technology. 

2. Types of stepping motors 

There are numerous types of stepping motors manufactured 

and being used. They may be classified either according to their 

step sizes ( i.e. angular displacement in degrees per step ) or 

according to their internal structures. In general they are 

classified into two major types - magnetic and mechanical stepping 

motors. The mechanical stepping motors are primarily rotnry 

solenoid-operated indexing devices. They require some type of 

mechanical linkage to translate the sequential d.c. pulses intc 

discrete, predetermined angles of shaft rotation. At the end of 

each step, the shaft is secured by a mecha.n.ical device. Both Procto:

[6} and Veinott [39, chapter 15] have given detailed descriptions of this 

type of stepping motor . and Hong[33] gives both a dynamic and static 

analysis of a solenoid actuated stepping motor. Magnetic 

stepping motors are mostly derived from the conventional alternate 

current motors. They may further be classified into variable 

reluctance and permanent-magnet motors. The variable reluctance 

stepping motors are mostly three-phase with a soft iron rotor. 

They resemble the conventional reluctance motors and are nor~ally 

analysed by using srr:ooth air-gap mactine principles [ 25J • The 

permanent-magnet stepping motors are essentially synchronous motors 

with perrr.anent-magnet rotors. 
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3. General characteristics of stepping motors 

The general characteristics of stepping motors are usually 

described by a plot of their torque vs stepping rates. Figure 1-1 

gives a general concept of this kind of plot. The magnitudes 

are not given because they vary over a very large range. Typical 

torque ranges vary from 1 oz-in to 2000 oz-in and the stepping rate 

for the stable region varies from as few as 10 steps per second to 

over 2000 steps per second. The torque - speed characteristics of a 

stepping motor may be divided into three regions [28] • They are the 

stable, slew,and unstable regions. In the stable region a stepping 

motor can start, stop and reverse on command with faithful response. 

The slew range is entered while the motor is running and within 

this region the motor cannot reverse or stop without losing steps, 

consequently the motor must be brought back to the stable region 

before it can be accurately stopped or reversed. A stepping motor 

may not be operated in the unstable region and when it enters this 

region, it oscillates. 

The field windings of stepping motors have relatively 

high resistance~therefore when the terminal voltage is switched 

from a positive voltage to a negative voltage and vice versa there 

is a transient phenomenon similar to that of a R-L circuit which 

may give a nearly hundred percent overshoot in terminal voltage. 

This effect may damage the motor and may cause erroneous operation, 

consequently a transient voltage suppression circuit has to be used. 

Another important feature of stepping motors is the 

deviation of rotor position under load from its no-load position. 

This angular deviation is directly proportional to the load torque. 
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A typical curve is shown in Figure 1 - 2. It has been verified 

by many authors [4,7,24,36] that this deviation remains constant for 

a fixed lead, therefore this deviation will not in general affect the 

accuracy of the rotor position very seriously provided that the load 

torque does not excede the pull-in torque given by the motor. How

ever for fine positioning and dynamic analysis, this deviation will 
' 

become important because of the damping effects. 

The synchronous speed of the magnetic type of stepping 

motors follows the same formula as the one used in large synchronous 

machines. The formula is simply: 

v = 120 f/p rpm ( 1 - 1) 

where v = synchronous spaed, f = field current frequency in hertz, 

and p = number of poles, but in stepping motors 9 this number 

refers to the number of teeth in the rotor. For a permanent-

magnet stepping motor with two rotors mounted on the same shaft 

equation (1-1) may be reduced to 

v = 6o f/p rpm (1 - 2) 
1 

where p = number of teeth in one rotor. Since the time constant
1 

(~R) of most stepping motors is very small, synchronism is 

achievable within milli-seconds. 

4. Principles of operation 

The principles of operation that are discussed in this 

section are mainly concerned with the two-phase permanent-magnet 

stepping motors. This type of motor is operated on a push-pull 

(or attract-repel) magnetic force [4]. Figure 1-3 gives a simplified 
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cross-section of this type of motor • The permanent-magnet flux path 

in the figure illustrates the state at which the field windings are 

unexcited. 

A two-phase stepping motor may be operated by connecting the 

terminals to a two-phase power supply as shown in Figure l-4. Under 

this operation the stepping motor resembles that of a self-started 

synchronous motor having the synchronous speed given by equation l-1. 

For a stepping motor having fifty teeth in its rotor operating at a 

power frequency of 6o Hz. the synchronous speed is 72 rpm. Since a 

two-phase power supply is not commonly available, a modification 

of this operation so that the motor may be operated with a single

phase power supply is shown in Figure l-5. This modification is 

simply achieved by adding a resistor and a capacitor in series with 

one of the phase windings. The main purpose of this external 

connection is to give a 90 degree phase shift to the corresponding 

phase-winding. The resistor in Figure l-5 may be sl:orted and with 

this operational technique the stepping motor has different speed 

vs torque characteristics and may be considered as a permanent-split 

-capacitor motor with its auxiliary winding identical to that of 

the main winding [40,page 532-536] o 

The direct current operation of a stepping motor is normally 

referred to as pulse actuated operation. The motor responds to 

each pulse in?ut by advancing its shaft to a new angular position. 

It is under this d .c. operation that the motor demonstrates its high

est capabilities. The fundamental stepping sequence is directly 

derived from the two-phase a.c. operation as shown in F'igure l-6. 
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The positive half cycle of the sine wave is represented by a constant 

positive voltage and the negative half cycle of the sine wave is 

represented by a constant negative voltage. It can be seen from this 

figure that there are four different combinations in one cycle of the 

rectangular waves as listed in Table 1. Each combination represents 

one step as indicated in Figure 1-6. The stepping operation is 

illustrated in Figure 1-7 for this sequence of 4 steps using a two

phase, 8 salient poles, permanent-magnet stepping motor [ 5] • Step 1 

is chosen as the reference position. The polarities of the stator 

poles are shown in the fi.gure and the cross-section of the rotor is 

the south-pole portion of the permanent magnet. If the polarities 

of the poles of phase B are unchanged, and the polarities of the poles 

of phase A are reversed, tbe rotor advances one step clockwise (equal 

to half rotor tooth width) and assumes a position as shown in Step 2. 

Taking step 2 as reference and keeping the polarity of phase A 

unchanged but with phase B switched to reverse its polarity , the 

rotor will advance another step to a new position Step 3, from Step 3 

to Step 4 is accomplished by reversing the polarities of the poles in 

phase A. The correct pulse train operation can be obtained from a d.c. 

supply by using switches such as shown in Figure 1-8, using the switch 

actions listed in Table 2. By means of simple digital logic this 

switching sequence may be implemented as sho'rtn in Figure 1-9, and 

the corresponding output wave-forms from the flip-flops are shown 

in Figure 1-10. For reverse direction of rotation of the motor, 

terminals a and b have to be interchanged. Single phase operation 

may easily be achieved by using the connections as shown in Figure 

1-11. Under this operation the motor combines two steps into one, 
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giving an angular displacement twice that shown in Figure 1-9. 

However, since only one phase is being energized for each step, the 

electromagnetic torque produced by the motor is accordingly reduced 

and the maximum stepping rate is lowered. The capacitor acts as a 

directional biasing medium which produces a transient current 

through the unexcited phase winding. Fractional step operation is 

also possible but this operation is seldom used because sme,ller step 

intervals may be made through gear ratios and the logic control 

circuits required for fractional operation is normally very complex. 

A stepping motor may be operated in the slew range with a 

much higher stepping rate. Under suitable operation an ordinary 

stepping motor having a maximum stepping rate of several hundred 

steps per second may be operated up to several thousand steps per 

second without loss of accuracy. The basic principle underlying 

this technique is the minimization of the rise time of the currents 

in the phase windings and the suitable acceleration of the stepping 

rate. The rise time of the currents in the phase windings may be 

shortened by adding external resistors to the windings, or by using 

constant current sources. The constant current source eliminates 

the effect of impedance at high frequency and enables the motor to 

produce a constant torque to overcome its load. The input pulses 

are adjusted so that the pulse rate is increased slowly, either 

manually or automatically. An alternate approach which leads to a 

better performance is to give a variable acceleration. For automatic 

control a small digital computer like the PDP8/L,which may be 

programmed to generate pulse trains at various frequencies, may be 
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found to be very effective. Theoretically a stepping motor may be 

driven in the slew range to a speed which gives the maximum tempera

ture increment which the motor can tolerate. 

Permanent-magnet stepping motors may be driven as generators 

though this operation has seldom been used. By coupling the shaft of 

a low speed d.c. shunt motor to the shaft of a stepping motor and with 

variation of the shunt field resistance the stepping motor acts as 

a variable frequency power supplier. Using this method, a sterping 

motor of higher ratings may be used to provide sufficient power for 

lower power rating stepping motors at various frequencies. 



CHAPTER TWO 

MATHEMATICAL HODELS FOR A Tv/0-PHASE PER11ANENT-MAGNET STEPPING MOTOR 

PART I : LINEAR NODELS 

1. General Derivation 

The induced voltage (v) due to a rotating magnetic medium 

on a conductor of surface s is given by Lenz's Law 

v = Lj B • N ds volts (2 - 1)dt s 

where B= magnetic flux density in webers/meter2 (vector quantity) 

and Nis the normal vector defined by the right-hand rule. If the 

flux linkage A. for the conductor is defined as 

A = f B • N ds webers (2 - 2) 
s 

then 

v = volts. 

In an angular rotational electromechanical system the flux linkage 

may be written as [4?] 

A = A (i, Q) (2 - 3) 

where i=the conductor current, and G= the angular position of the 

rotating conductor. Taking the partial derivative of A yields 

- 15 
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d'\ ~..J• ~" (2 - 4)II. :: aru~ + o9 '1:7 

therefore, 

dA. oA. di oA. d9 
v (2 - 5)=dt = oi dt + o9 dt 

The first term of equation 2-5 is the result of a time varying current 

when the system is mechanically stationary. This term is referred to as 

a transformer voltage. The second term of equation 2-5 is convent

ionally referred to as a speed voltage. For a system with N electrical 

terminal pairs and H mechanical variables that are functions of time, 

then ·there ~~11 be N current elements: 

i ' .•• i (2 - 6)i ' i ' 
1 2 3 N 

and Mmechanical displacements 

... (2 - ?)9 ' e ' 9 ' 
1 2 3 

The flux linkage for any terminal pair (e.g. the k th) is given by 

f 

............. 

B • N ds (2 - 8) 

sk 

Equation 2-8 may be eeneralized according to equation 2-3 as 

(2 - 9) 

where k = 1, 2, 3, ••• N. Therefore, 
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dAk 
( 2 - 10)vk = 

dt 

N M
aAk di. aAk dG. 
-- _J - _J ( 2 - 11)= L ai. dt + L ae. dt 

J Jj = 1 j = 1 

k = 1, 2, 3, ••• N. 

For an electrically linear system with N pairs of terminalsthe flux 

linkage is a linear function of current, therefore A may be expressed 

in terms of an inductance L as 

A = f (G) ,! ( 2 - 12) 

where A and i are column vectors of order N and 1(9) is an N x N 

matrix. The induced voltages may be expressed as 

di df(G) d9 
v = ~(9) dt + i~'dt (2 - 13) 

Most electromechanical devices that involve mP.chanical motion 

normally have air-gaps [40] where the material is electrically 

linear and the field in the air-gap predominates. Therefore in the 

analysis of these machines, it may be assumed that the system is 

electrically linear. In electrical machines there is usually a 

single rotational element, thus 14 = 1. Under these assumptions, 

the generalized equation may then be rewritten as 

N 

L (2 - 14) 

j = 1 
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For the electrically linear system, it will be seen from 2-13 that 

aA.k 
= Ljk(e) (2 - 15)3i. 

J 

N
aA.k aLjk(e) 


and = L: i. (2 - 16)
ae 
j = 1 J dQ 

Equation 2-14 may now be expressed as 

N { doL Lo (g) _:j + ( 2 17) 
0 Jk dt 
J = 1 

Accordingly it will be seen that Ljkjj/k is the mutual inductance 

between coil j and coil k, and that Ljkb=k is the self-inductance 

of coil k. Losses in electrical energy are normally accounted for by 

a series resistor. For a two terminal system of the type discussed 

here, the equivalent circuit is as shown in Figure 2-le For a two 

-phase salient-pole synchronous machine with one rotor winding, the 

magnetic circuit is as shown in Figure 2-2. There are three pairs of 

terminals, one is the rotor terminals, the other two pairs constitute 

the two stator fields. According to equation 2-12 with N = 3, the 

flux linkage is given by 

3 
f... = Lok(g)i 0 k = 1,2,3. ( 2 - 18)L: J J 


j = 1 


Therefore, 

i\. L (9) i + + L (G)i= aa loa(e)ib raas a r 

A.bs = Lb(9)i + ~b(e)ib + L b ceHa a r r (2 - 19) 

A. = L (e)i + + L (9)i~r(e)~r ar a rr r 
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All inductances in equations 2-19 are function of Q. The magnetic 

field energy is defined in Fitzgerald [4o] as 

N 

w = 2: i. A.. 
J J 

joule (2 -20) 

j = 1 

where the A.j 's are restricted to mechanically stationary terminals. 

Substituting 2-19 into 2-20 

2W = L (g)i + L (9)i i + aa a ra r a 

( 2 - 21) 

The electrome.gnetic torque produced by the motor is defined as 

dvl 
newton - meters

d9 

dL (9).2 dLaa(g) 
= l. + + i i ra 

+ r aa d9 d9 

+ 

(2 - 22) 

The indue ed voltages are derived from equation 2-17 as 
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di di 

v = L (9) a 

+ L. (9) d~ + L (G) r 
+ 
a a a raoa dtdt dt 

dL. (9)
i oa i dLra(e)} d9 

+ + 
b d9 r dQ. dt 

di diba + L (9)·  + 
ob dt 

fi dLab (9) 
+l a d9 

di di 

v = L (9) 

a 
 + L (g)-2: + r ar dt rr dt 

dL (9) d~r(9)ar i dLr/G)} 95!+ ib-~ + 
r dG dtd9 d9 (2 -23) 

The terminal volte.ges are: 

:..-: i R + vvat a a a 

vbt = ibRb + vb 

= i R + vvrt r r r (2 - 24) 

where R. represents coil resistance loss. In a permanent-magnet
J 

rotor stepping motor, the flux density is nearly constant [41] thus 

the· current i may be approximated by a constant current source I 
r r • 

With this modification the terminal voltages may be rewritten as: 
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di a
i R + L (9) + a a a a dt 

d~a(9) dL (9) }
+ 	ib _;;..;....._ + I _...;;r...;;..a_ d9 

d9 r d9 dt 

di a 
+ Lab (9) + 

dt 

dL b(9)
+ I _r__ 1j dG+ i a dtr d9 

di 

= I R + L (G) 

a 

r r ar dt 


( dL (G) 
 dL (G) I
) . ar I rr ~ dG ( 2 -25)l l.a d9 r. dG J dt 

The electromagnetic torque is given by equation 2-22 as 

dL (9) dloa(G) dL (g)
.2 a a 	 raTe l. + 	 I i += 	 iaib +a 	 r adG dG dG 

d~b(9) dLab(9) dLrb(G).2 
l.b + iaib + I rib 	 (2 - 26) 

dG 	 dG dG 

The balanced mechanical torque differential equation [4o] is 

+ B d 
d 9 

t + T
0 
r(dG/dt)/ldG/dtl (2 - Z?) 

+ 
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where =inertia torque,jncluding the inertia of motor and the 

inertia of any load imposed on the stepping motor shaft; B(d9/dt) = 

viscous damping torque, including the motor damping and any viscous 

damping on the motor shaft; T = external mechanical torque; and 
m 

T (d9/dt)/ld9/dtl = torque due to coulomb friction. The exact or 

solution of equations 2-25, 2-26 and 2~27 with 9 in terms of terminal 

voltages is not an easy one and as a consequence the exact solution 

has seldom been used. In the rest of this chapter some of the 

approximate solutions are disc~ssed. 

2. Second Order Linear Model 

The second order model discuss,~d in this section was proposed 

by Kieburtz [ 7 ] which is a modification of an earlier second order 

model [3] • This model neglects the effect of self-inductance of 

the field windings and the mutual inductance between the stators. 

The mutual inductances between the rotor and stator windings may be 

taken as the same since only the root-mean squared value is considered. 

This model of Kieburtz can be derived from the equations aoove as follows. 

According to equation 2-25, and assuming Laa"" Lab = ~b = 0, one of 

the terminal voltages may be expressed as 

dQ
V (t) = R i(t) + Kedt (2 - 28) 

where Ke is a voltage constant of the motor in volts/radian/sec. Taking 

the Laplace transform of equation 2-28 

V(s) = R I(s) + K 69(s) (2 - 29)e 
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therefore, 

I(s) = [ V(s) - Kes9(s) ]!R (2 -30) 

The differential equation for a motor including terms for acceleration 

and restoring force [7] expressed in Laplace transform format is 

Te(s) = Kti(s) 

= Js2G(s) + Bs9(s) + K Q(s) (2 - 31)
r 

where K Q(s) is the linearized restoring torque in newton-meter/radian
r 

and Kt is a torque constant of the motor in newton-meter per ampere. 

Substituting equation 2-30 into equation 2-31 and solving for the 

transfer function yields 

Kt -
K r 

Q( s) RK r J 
= 

V(s) 2 s + 
BR + K K t e 

5 
+ K r 

JR J 

Kw2 

= n 
(2 - 32) 

2 2 
5 + 2~w s + w n n 

where wn = (K~J)* is known as the natural frequency and 

2R(JK )77. 
r 
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is known as the damping ratio and K= Kt / RKr. The step response of 

this transfer function may easily be observed by the analog simulation 

as shown in Figure 2-4 or using the inverse Laplace transform with the 

assumption that V is a step voltage. The inverse Laplace transform 

for equation 2-32 is 

1 

-1 c2 Y2 cwhere ¢ = tan (1 - ~ ) /~ o The experimentally obtainable 

constants Kr' Kt and Ke introduced by Kieburtz [ 7] and 0 'Donohue [ 3J 
complicate this model. However, according to equation 2-25 with 

it will be seen that K = I dL /dQ There0 e r ra 

fore K is obtainable by driving the stepping motor as a generator in an 
e 

open circuit test to obtain a plot ofthe rms terminal voltage versus the 

speed of the generator in radians per second. Ke is the slope of this 

plot having the dimension volts-sec/radian as shown in Figure 2-3. 

Further, from equation 2-22 it may be seen that the electromagnetic 

torque produced by the motor is expressed as 

dL (9)
ra= i I +a r dQ 

Assume that L (9) = M cos(N 9), L b(9) = M sin(N Q) where 9 is in ra r r r 

mechanical radians and with a balanced two-phase d.c. supply such that 
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Te =II MN rcos(N Q) - sin(N Q)]r rl' r r 

= T~ + T~ 

seen that T~ is the torque that tends to restore the rotor to its 

original position and T~ is the torque that tends to move the rotor to 

a new position. For small angular displacement, sin(N Q) may be appro
r 

ximated by N Q and cos(N Q) approaches unity. Under this assu.rnption
r r 


Te = -/2IK N Q ,

1 e r 

( 2 - 34) 

and 

Te =;-2K (I - IN Q) (2 - 35)e r 

Therefore it may be seen that K is numerically equal to /2N I K 
r r e 

and Kt is numerically equal to 12Ke' and that Kr will be constant only 

if I is constant. For the simplicity of analysis, I may be considered 

to be equal to the rated current I of the motor if it is operated
0 

eat the rated voltages so that T may be linearized as
1 


Te = - K Q where K =/2I N K 

1 r r o r e 

and 

Te =/2K I - K Q (2 - 36)e r 

The derivations from equation 2-34 to equation 2-36 make the second 

order model much easier to handle than that suggested by [ 7) because 

R and K are the only parameters that are required to be determined e 

experimentally. 
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3. Third Order Linear Model 

This model was suggested by Delgado [24] for fine positioning 

operation of stepping motors. The basic assumptions are: 

1. The self-inductances are constant ( not a function of 

angular displacement) • 

2. The inertia torque includes applied load torque. 

3. There is no mutual inductance between the stator phase 

windings. 

4. The induced voltage is a linear function of angular 

speed. 

From equation 2-25 the equation for any one phase terminal 

voltage is given by 

dG( t)
V(t) = Ri(t) + Ld~~t) + K 

e dt ( 2 - 37) 

Equation 2-37 is expressed in Laplace transform as 

V( s) = RI( s) + Lsi(s) + K sQ(s) (2 - 38)e 

therefore, 

I(s) = [v(s)- KesG(s) ]1 (R + Ls) ( 2 - 39) 

According to Delgado [24] the electromagnetic torque is given by 

( 2 - 4o) 

where Kr and Ki are constants obtainable experimentally. The motor 
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motion equation is approximated to be 

T(s) Js2Q( s) 	 (2 - 41)= 

Substituting equation 2-39 into 2-4o and equating the result to 2-41 

yields 

2Js Q( s) = ( 2 - 42) 

Rearranging 2-42 to obtain 

Ki/R 

Q( s) 


(2 - 43)V( s) = JE J 	 K K.
2 e 1)53 + s + (e: + -s + 1 

K K R 
r r 

where e: = L(R, or 

Q( s) 
(2 - 44) 

= V( s) 
R K K.K K K R 

+ 	 _ 5 2 + ( _r + 1 e r)s + ..2:_ 

L J JL JL 

There is not much difference between this model and the second order 

one, except that the self inductances are considered. The constants 

and K. again create difficulties in applying this model, but with 
1 

a second look at this model, it will not be too difficult to appreciate 

that equation 2-40 is of the same form as equation 2-36. Thus it 

may be seen that K K. = Kt of the second order model and that K is 
r 1 	 r 
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the same for both models. An interesting proof of these relationships 

may be taken from the example given by Delgado [24] with consideration 

of the stepping motor SIO-SYN HS-50 which has 50 pairs of teeth, 

therefore N =50. Some of the experimentally determined values given
r 

by the author according to the methods suggested in the paper are 

K = 488o ounce-inches per radian 
r 

= 488() X .007061 newton-meter/radian 

= 34.456 newton-meter/radian 

K. = .00837 radians per ampere 
~ 

K = .21 volt per radian per second 
e 


£ = .000909 second = L/R second 


2
and J = .01326 ounce-inches second • 

However, from the experimental transfer function given by equation 10 

of [24] the following results are obtained: 

10-12£ + K K./R = 1285 X (2 - 45)e ~ 

J/K = 2512 X 10-9 (2 - 46)
r 

10-12J£/K = 2227 X ( 2 - 47)
r 

where £, J and R are constants experimentally obtainable without 

difficulties and are less subject to mistakes. K./R has been proved
l. 

by the author to be the same for both the theoretically derived and 

experimentally determined transfer functions. From equation 2-lt5 the 

constant Ke may be computed as 

8 -12 
~ = 12 5 X J.O - 8 


K./R 

~ 

= .2574 volt/rad/sec 

and from equation 2-46 
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K = .Ol326/2512xl0-9 = 5278 ounce-inches/rad.
r 

The method to find K suggested by Delgado is rather awkward and is likely
e 

to have experimental errors. According to Delgado the back EMF voltage 

is defined by the crossing point on the screen of an oscilloscope of 

the two sine waves obtained from the motor when it is operated as a 

generator. For a two-phase generator the outputs may be expressed as 

= V cos a ( 2 -48) 

V = V sin a ( 2 - 49)2 

The crossing-points are computed by equating 2-4e to 2-49 such that 

sin a = cos a 

a = n/4 + nrt where n =0, 1, 2, ••• n, 

therefore v = V = V//2 at the cro2sing -points which is essentially1 2 

the rms voltage of a single sine wave. Consequently it may be more 

accurately to record the voltage by using voltmeters rather than 

getting the crossing points of two sine waves. With K = .2574 volts/
e 

rad ./sec., the constants Kt and Kr may be computed according to the 

relationship shown on page 27 as 

2K = .36~ volt/sec. e 

and K = 2IK N = 5154 ounce-inches/rad.r e r 

The current I is taken as 2amperes according to [24]. A comparison of 
0 

the data is shown in Table 3. From this table it may be seen that only 

K need be accurately determined and all other constants may be e 

computed. From theory and experimental data it may be concluded that 

the measurement of Kr and Ki are redundant. One of the difficulties 
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that may be encountered while determining K and K. experimentally is 
r ~ 

the accuracy in the measurement of angular displacement. Another 

interesting result given by Delgado which proved the previous statement 

that K is constant only if the current applied is constant is given
r 

in figure 8 of his paper. 

With the substitution of Ke for Ki' Kr and Kt the transfer 

function 2-lt4 may be expressed as 

/2 K /JLG( s) e 

v( s) = 


(2 - 51) 

where I = V/R, this d .c. current has to be determined before substit 
o 

uting into the equation. The step response of this transfer function 

may be plotted by using the analog simulation as shown in J'igure 2-5. 

A block diagram representation of this third order model is shown in 

Figure 2-6. 
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CHAPTER THREE 

MATHE!1ATICAL MODELS F'OR A TWO-PHASE PERMANENT-MAGNt;T STEPPING MOTOR 

PART II: NONLINEAR MODELS 

1. Smooth air-gap synchronous machine model 

Magnetic stepping motors like most electromechanical devices 

are non-linear devices though approximation methods may lead to a fairly 

close analysis of their characteristics. In control systems, every 

method ai.ms at achieving a simpler mathematical model so that it may 

be easily applied. However, in the case of stepping motors the 

linear models may be too crude for fine positioning analysis. 

Venkataratam [27, 30] and Taft [35] treated stepping motors as non

linear devices by considering the motors as a kind of smooth air-gap 

synchronous machines. In fact, all linear models so far developed are 

based on the concept of smooth air-gap synchronous machines. 'v/ith 

this approach, the self-inductance of the stator 'iJindings is consid

ered to be independent of the rotor position, and there is no mutual 

inductance between the stator windings. Under these conditions and 

by assuming the F'ourier transform of the mutual inductance between 

the rotor and stator as to be of the form 

L = Mcos(N Q)ar r 
(3 - l) 

M sin(N Q)
r 

- 35 
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where N = number of pairs of teeth in rotor, the terminal voltages
r 

given by equation 2-25 may be e~~ressed as 

I MN sin(N e)ddetR i + r r ra a 

= 

de+ I HN cos(N e)-;-tr r r a (3 - 2) 

The electromagnetic torque developed is obtained from 2-26 as 

dL (e) dLrb (e) 
= I i 

ra 
+ I i r a r adt dt 

- i sin(N e) l (3 - 3)
a r J 

Equations 3-2 and 3-3 specify the smooth air-gap synchronous machine 

model. 

2. Analysis of the smooth air-gap synchronous 

machine model 

In general it is not possible to solve for Te explicitly in 

terms of the excitation voltages Vat, Vbt and the shaft velocity 

de/dt [27] o Fortunately, it is not necessary to anticipate the 

characteristics of a permanent-magnet stepping motor by expressing 

Te in terms of the excitation voltages. Three of the analytical 

techniques are 

1. Step by step analysis with assumption that the currents 

in the phase windings are constant. 
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2. Analysis using the assumption that the inductance L of 

the phase windings is very small compared to the resistance of the 

windings [27] • 

3. Analysis using constant current source. 

The step by step analysis given by Robinson and Taft [35] 

using phase-plane techniques lacks the capability to illustrate the 

actual step by step response of the motor. The step by step analysis 

used here is a modification of that derived by Robinson and Taft. 

Runge Kutta formulas are used in the analysis (appendix A). The initial 

conditions and the corresponding excitation currents are as follows: 

Step N G dQ/dt I Ibr o a 

1 45° = o, at t=O I I 

2 91 =Vl t at t=l:. -I I 

3 G2 at t=2l:. -I -I=v2' 

4 at t=3l:. I -I93 =V3' 

5 94 at t:4t:. I I=V4' 

Qi is the rotor position at the end of step i, vi is the rotor 

velocity at the end of step i and t:. is the step duration. For very 

low frequency analysis it may be assumed that the motor gives a 

perfect step each time. Thus 9.:9. 1 + 90° may be used and all v. 's 
~ ~- J. 

are set to zero. The stepping duration t:. is calculated by dividing 

the input pulse period by four. For instance, for 60 hertz pulse 

chain t:. is equal to (~240) second. · 

With no load applied to the shaft of the motor and 

neglecting the torque due to coulomb friction, the equation to be 

solved is obtained by equating 2-27 and 3-3 as: 



B d9 
J dt 

(3 - 4) 

where K = I ~1N • For step 1, equation 3-4 may be written as
1 r r 

B d9 KJli lsin(N 9)- cos(N 9)] =0J dt + ~ r r (3 - 5) 

Phase-plane plots and step response plots are obtainable by solving 

equation 3-5 with the Rur,ge Kutta method. The programming may be 

simplified by using the digital simulated analog computer language 

NIMIC [ 48, 49] which uses a higher order Runge Kutta method. 

The assumption that the inductance of the windings are neg

ligible compared with the resistance of the windings is acceptable 

for very low frequency analysis. The prominent feature of this 

assumption is that one may express 9 in terms of the excitation 

terminal voltages. From equation 3-2 with La = L b =0 , the currents 

ia and ib may be expressed as: 

(3 - 6) 

Substituting ia and ib into equation 3-3 the torque equation is 

= (3 - ?) 
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+ 

The electromechanical torque balance with no load applied is 

J d2g + (B + Vbtcos(NrQ)]= 0 
dt2 

(3 - 8) 

Equation 3-8 may be solved in the same way as the step by step method 

with vatand vbtequal to balanced two-phase power supply voltages. 

However the constant voltage source and constant current source are 

not the same. The term L(di/dt) may be much larger than the term iR 

in equation 3-2 especially at high frequencies. Consequently this 

approach is valid only at very low frequencies v;hen the term L(di/dt) 

is really very small compared to iR. 

The constant current source analysis is basically the same as 

the step by step method. The excitation currents are considered to be 

square waves with 90° phase difference. By means of Fourier series 

expansion the square waves may be expressed as: 

4I ( 1 1
I = cos wt - cos 3wt +- cos 5wt - ~ cos 7wt + ... )

a Jt 3 5 

4I ( 1 1 
= sin wt + sin 3wt +- sin 5tJ.)t +1: sin 7wt + ... )Ib Jt 3 5 7 

where I = rated current or magnitude of current to be u.sed :Ln the 

operation of PM stepping motors and w =2nf is the natural frequency of 

the square vJave which in turn is equal to four times thE"~ stepping 

rete of the stepping motor in steps/second. The step by step response 

plots and phase-plane plots may be done in the same way as shown in 

appendix A with an added consideration for the time variable t. The 



flow diagram shown in figure 3-1 may be used to analysis a PN stepping 

motor according to equation 3-4. 

3. Salient pole synchronous machine model 

Host PM stepping motors are synchronous machines with salient 

poles though they have mostly been analysed by using the smooth air-

gap models. The self-inductance of the stator windings is a function 

of the position of the rotor. The self-inductance may be considered as 

representing the superposition of a smooth air-gap inductance and a 

periodically varying air-gap inductance due to saliency. As a first 

approximation, the inductances may be expressed as: 

= L 1- 1 sin( 2N)~)lob 2 


L = Hcos(N 9)

ar r 


T = H sin(N G)

or r 


1 1 sin( 2.T'-Ir9) (3 - 10)
ab = ~a= 2 

The values of Ll and L2 are 1 efined such that 

Ll = (Lmax + L.mJ.n )/2 

L. )/2 (3 - 11)L2 = (Lmax mJ.n 

L and L . are obtainable from a locked-rotor test (appendix B). The max mJ.n 

mutual inductance is obtainable by driving the stepping motor as a gen

erator at different speeds (see figure 2-3). By substituting equation 

3-10 into 2-25 the terminal excication voltages may be expressed as 
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Read in: l. J, K1, Nr' I, w, B. 

2. 	Initial rotor position Q and initial rotor 
velocity V 	

0
(l) 

0 

3. 	Incremental time constant DT and time limit for 
iteration TH • 

•r t=O I 
+ 

Compute the currents: 


1 1 1
4I 	[I 	 = - cos(wt) - -yos(3wt) + ~os(5wt) - r:os(?wt) + ...J 
a 7t 

(2) 
Ib = ~ [ sin(wt) + ~sin(3wt) + ~sin(5wt) + ~sin(?wt) + •••l 

..J 

+ 
Compute the first constant of Runge Kutta formulas 

DT X vcl 	= 0
(3) 

r 
CL 	= -C,B/J + I1I' x KjJ LIbcos(NrQ) - I sin(N Q)J

l .... 	 a r 

I 
~ -,Tl 	= t+DT/2

•
Compute Ia and Ih as shown in ( 2) with Tl=t( 4) .. 
Compute the second constants of Runge Kutta formulas 

c = DT x ( V + CL/2)
(5) 2 0 

CL = -C1B/J + DT x Ky'J [ Ibcos(NrG0 + NrCJ!'2) - I asin(Nr G o2 

+ NrC/2)] 
t 

Compute the third constants of Runge Kutta formulas 

(6} c DT x ( V + CL/2)
3 

= 
0 

CL
3
= -c3B/J + DT x K/J [rbcos(NrG0 + NrC!2) - I asin(Nr G o 

+ NrC!2)] 

+
I T2 =t +DT I 	 ('1)

I 

Figure 3-1 	 Flow Diagram for the Analysis of 
PM Stepping l-lotors Usir~ the Smooth 
Air-Gap Model 
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(7) (2) with t = T2 

Compute the fourth constants of Runge Kutta formulas 

04 = DT x ( V + 0~)
0(8) 

014 =-o4B/J + DT x Ky'J [ Ib cos(NrQo + NrC )3

I sin(N 9 + N c >]a r r 3

vl = v + ( CL + 2CL + 2C~ + CL )/6
0 1 2 4(9) 

Q (Ql = 0 
+ ol + 2C

2 + 2C3 + 04 )/6 

Step by step plot: store or plot g vs t 
0(10) 

Phase-plane plot : store or plot Q vs V 

Figure 3-1 continued 

0 0 

,/
"'}.-------'.... Stop 

(2) 



( 3 - 12) 

The electromagnetic torque equation from 2-26 is 

Te = 2L2Nrsin(2.t"lrG) (i~ - i;) + 4 iaibL2Nrcos(2NrQ) + 

K1 [ibcos(NrQ) - ia sin(NrG)J (3 - 13) 

An equivalent circuit for this model is shown in Figure 3-2. 

4. Analysis of salient pole synchronous machine model 

Many numerical methods may be used to analyse the salient pole 

model. The main object of this analysis is to obtain a phase-plane 

plot _and a step by step response plot from the model. Three of the 

methods are discussed in this section. 

a. The Runge-Kutta formulas - this method is the same as 

discussed in section 2. The constant current source is again assumed 

as shown in equations 3-9. The first term in equation 3-13 may be set 

to be equal to zero because (i; - i~) is always equal to zero with 
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Equivalent Circuit For A Two-Phase Permanent Hagnet Stepping Motor 
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ia and ib of the same magnitude. The equation may be written as 

(3 - 14) 

Consequently the no-load torque balanced equation may be expressed as 

i sin(N ~)] = 0 a r 

(3- 15) 

Equation 3-15 may be analysed by using the flow diagram shown in 

Figure 3-1 with minor modification of the constants CL1 , CL
2

, CL
3 

c14, so that the equation may include the term 4iaibL_trcos(2NrQ) o 

b. !1H1IC - as discussed before HIMIC may be used to analyse 

equation 3-15. The computation time for using l1H1IC is more than 

that with Fortran IV and the Runge Kutta formulas, but the convenience 

and easy management of anne makes it a very attractive tool for this 

kind of continuous nonlinear analysis. A typical LIMIC program 

written in accordance with equation 3-15 is shown on the following 

page. 

c. Analog computer simulations - compared \"lith the precedi.ng 

methods, the analog computer siQulation technique is the most time 

consuming in the preparation and the scaling techniques depend largely 

on experiences. However, the continuous outputs, the fast parameter 

variations and adjustments which one may expect to obtain from an 

analog computer makes this method favorable to those designers and 

system analysts who want to have an immediate answer. An analog 

computer simulation scheme for equation 3 - 15 is shown in 

http:precedi.ng
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MIMIC LANGUAGt ~ROGkAM 

SOLUTION USING CONSTANT CUkk~NT SUURCC:S 

READ IN THE CONSTANTS. 
c 
1 DT=INCREMENTAL TIME Cu~ST~AT 

2 ICX=INITIAL RUTUR POSITIG~ 
3 ICY=INITIAL RUTUR VC:LuLITY 
4 TF=UPPER TIME LI~lT 

5 L2, Kl,NR,B,bJ=J ARE MOTuR CUNSTNATS 
6 W =FREQUENCY IN HERTZ, I =MAGNlTUU~ u~ CUkRC:NT I~ AMPLkcS 

CONIKl,NR'b'J,I,L21 
PAR<uT,Icx,rcv,r~,h 1 

I 1 I*4.013.l'+l~'i 

IAl COSIW*TJ-(C..uS(~.*w*Tii/5eU 

IA2 • 2 *L 0 S I ~ • -)\- .v * T J - ( C.. u .::.! 7 • * ,~ -)(- T I 1/ 7 • 
IA3 (CUS(<j•*w*T J J /'7.-(C..vS( f'i'~<-T*ll .. J 1/ .J.l. 

IA (1Al+IA2+IA31*ll 
IBl S I N ( W * T l + ( S I N ( 3 • *vi* T J I I 3 • 
Itl2 •2*SlN(5.*W*TJ+(SlNI7·*~*Tl l/7. 
lb3 ISIN(9.*w*TIJ/9.+(~1Nlll.*~*Tii/ll. 

Ib llbl+lo2+lo3i*11 
Cl 4e*L2*NR/J 
C2 Kl/J 
C3 b/J 
Rl Cl*IA*IB*COS(lOO.*XI 
R2 C2*IB*COS(5U.*XI 
R3 C2*IA*SINI?ue*XI 
X INTIYdCXI 
y INTIRl+R2-R3-C3*Y,ICYI 
TOf~Q Rl+R2-R3 

FIN< T'TF l 
PRINT THE RESULTS, Tliv\E, VELOCITY, DISPLACc.l"lcl'IT, CURKEi'HA 
CURRENT 8, AND TORQUE 

HDR<TIME, TOR~UE,VELUCITY,PUSITION, IA,Ibl 
OUT(T,TUR~,y,x,IA'ldJ 

DISPLACEMENT-TIME 	 PLUT 
LBLITIME,POSITION 1 

PLO(T,Xl 
PHASt:..-PLANE PLOT 

LtlLIPOSITION,VELUClTYJ 
PLO(X,Y) 

TORQUE-DISPLACEMENT PLOT 
LbL ( TUf~QUE ')-!US l T 1 Ui~ I 

PLOITURU,XI 
END 

http:COSIW*TJ-(C..uS


Figure 3-3. 

5. Application of the Salient-pole Model 

A permanent-magnet stepping motor (SS25). had been driven as 

a generator and a plot of the no-load terminal full wave voltage is 

shown in Figure 3-4. The slope of the linear portion of the curve v:as 

found to be .537 volt/rad/sec = K
1 

. The motor gave 200 steps per 

revolution, therefore for each step the rotor rotated 1.8°== .Oln 

radian. The salient-pole model was used to st\.1dy its characteristics 

at low and high frequencies. The positional accuracy is determined 

by comparing the number of steps which the rotor is supposed to have 

advanced to the actu8.lly cooputed displacerrent. For example, initially 

the rotor t.s at 9 =. 005n radian, and after ten steps the r:J;)tor is in 
0 

the position which is .105r; radian from the reference position. This 

means that the rotor has rotated .ln radian which is equal to 10 steps 

( 1 step = .Oln radian). The motor is then said to be positionally 

accurate. The stability of the motor is determined from the phase-

plane plot. The conditions for instability are: 

1. the phase-trajectory crosses the 9-axis before completing 

a step; 

2. the phase-trajectory never crosses the 9-axis; 

3. the phase-trajectory crosses the 9-aY.is after m~ny steps 

have gone by. In this case the motor oscillates. 

The motor will run stably if the phase-trajectory crosses the 9-axis 

each step at a cross-over point slightly larger than a step interval. 
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A program written to faciliate this study is shown 	in appendix 

C. 	 The following data arc used in the analysis: 

2
J = •000025 newton-meter-sec /rad • 

B o0125 newton-meter-sec /rad.= 

N = 50 
r 


I = .35 ampere 


.0011 henry12 = 

Kl = o537 volt-sec/rad. 

A number of initial conditions have been attempted. The phase-plane 

and step-by-step response plots are shovm in Figures 3-5, 3-6 and 3-7. 

Figure 3-5 illustrates the behavior of the PI'. stepping motor at low 

frequency (30 hertz = 13) steps per second). It may be seen that,irre

specti ve of the initial· conditions of the rotor positions and velocit 

ies, the motor can reach its synchronous speed in a cuuple of steps 

and is stable with accurate stepping response after the first step. 

However, as indicated by this figure, there is only one initial cond

ition ( initial rotor position = oOln) which will enable the motor 

to give the most accurate displacement with the given steppin2: sequence. 

This phenomenon can be explained by referring to Figure 1-7. If the 

unexcited motor has its initial condition as shovm in step 1, then, vthen 

the phase-windings are so excited that the polarities of the poles are 

also as shown by step 1 of the figure, there will be no displacement 

at all. Under this condition the motor will miss the initial step. 

Other initial conditions which lead to a discrepancy in the angular 

displacement of the first step may similarly be explained. This type 

of inaccuracy is not caused by the motor and is essentially the 
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responsibility of the stepping sequence. When very accurate positioni·ng 

is desired, it is important to know the initial rotor position. Figure 

3-6 illustrates the behavior of the permanent-magnet (PH) stepping motor 

at a medium frequency (150hz= 6oO steps per second). The phase-plane 

plots indicate that the motor is not stable, they also indicate that with 

zero velocity initial condition the motor oscillates. The step-by-step 

response ho'lrever in some cases( with initial rotor velocity greater than 

zero)indicates that the motor gives accurate stepping responses. The 

most accurate one is found to be with initial rotor velocity equal to 

12 rad/sec, and the initial rotor position equal to .Oln radian. 'rhe 

indication that the motor may not be started from rest means that the 

motor is operated in the slew rar~e. One or two steps may be missed 

during the acceleration period of the motor. Operating the motor in 

this region normally requires closed-loop control which may yield a 

suitable compensation for the missing steps. Figure 3-7 illustrates 

operation in the unstable region for this motor (at 200 hz = Bco steps/ 

sec). It is seen that regardless of the starting conditions the motor 

oscillates. Consequently,it may not be operated at this stepping rate. 

This does not mean that the optimal stepping rate of the motor is 

limited to a stepping rate lower than 200 hertz. It only illustrates 

that,with a repetitive stepping sequence, unaltered motor constants, 

and at this stepping rate, the ~otor oscilates and may not be operated. 

With some complicated circuj try and multistep operations the motor 

may be operated at a higher stepping rate. Fredriksen '[10] used 

closed-loop control to run this type of motor at a stepping rate over 

2000 steps per second. 
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The time required to decelerate the motor from a certain 

velocity to rest is often a very interesting problem. The 

decelerating behavior of this PM stepping motor can be computed from 

equation 3-15 by assuming that the currents in the phase-windir~s 

are direct currents. The initial position and velocity of the rotor 

will be set equal to the instantaneous position and velocity. A plot 

of velocity versus time will give a clear idea of the stopping be

havior. The time taken by the rotor to decelerate from the given 

velocity to rest may be estimated from the plot. Figure 3-8 illustra

tes two such plots. The top plot illustrates the stopping response of 

the motor from toO steps/sec. It is seen that it takes about CD milli

seconds in order to have the motor completely stopped. The displace

ment of the rotor during· this period may be found by summing the area 

under the curve. The bottom one illustrates the stopping response from 

120 steps/sec. It is seen that the deceleration time is shorter. 

The general shape of this type of response graphs has been verified 

by Fredriksen [ 10 J experimentally. 

Sometimes the power supply to the PH stepping motor may be 

completely shut off. The analysis of the stopping response under this 

condition is much simpler. Consider equation 3-15 with ia = ib =0, 

then the equation may be written as 

B dQ
+ = 0 (3 - 16)J dt 

By taking the Laplace transform, equation 3-16 may be expressed as 



Q ~ 
Q (s) 0 0 (3 - 17)= s + s(s + B/J) 

. 
where Q and 9 are the instantaneous position and velocity of the 

0 0 

rotor at the moment when the power is turned off. The inverse 

Laplace transform of equation 3-17 yields 

. -Bt/J 
Q (t) =Q + 9 ( 1 - e )/(B/J) (3 - 18)

0 0 

and 

• -Bt/JdG 
= 9 e (3 - 19)dt 0 

Equation 3-19 indicates thet under the sudden elimination of po•o~~er 

supply the velocity of the motor decays exponentially. 

The maximum stepping rate may be estimated by estimating 

the maximum instantaneous velocity from equation 3-15. The maximum 

or minimum velocity occurs at the condition that ~t(~~)=O. Und~r 

this condition the maximum or minimum velocity at a given rotor 

position is given by 

4i ibNdQ a r )= B cos(2NrQ +dt 

(3 - ::0) 

In order to eliminate the time variable from 3-20 and for the 

convenience of estimation it may be assumed that the stepping 

sequence is given as 
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Step 1 i 
8 

= I = i b 

Step 2 -i = I = ~ 8 

Step 3 -1
8 

= I =-ib 

Step 4 i 
8 

= I =-ib 

The maximum value of d9/dt may be estim·9.ted from 3-20 by plotting 

dQ/dt versus N Q v.rith N Q varies from zero to 3to degrees for each step.
r r 

Each of the folloHing equations may be used. 

Step 1 

(3 - 21) 

Step 2 

-4I~dQ r
-dt =-~..;;.. cos(2N Q) (3 - 22)B r 

Step 3 

4I'1i
dQ r ( )dt = ---:B=--- cos 2Nrg (3 - 23) 

Step 4 

-4I~ K1IdQ r 
dt = -~B~ cos (2N g) - --B ( cos(N g) + sin(N Q)) (3 - 24)

r r r 

The maximum velocity is estimated from the plot where d9/dt is 

maximum. However, since the velocity so obtained is in radians per 
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second it has to be divided by the step interval to be converted to 

steps per second. For instance, the maximum velocity is estimated 

as 22 radians. per second and the motor displaces .Oln radian per step, 

then the maximum stepping rate is about 700 steps per second. 

Equation 3-15 may also be expressed as 

J~; =~ [4iaibL2Nrcos(2NrQ) + K1(ibcos(N Q)- iasin(NrG))J- B 

(3 - 25) 

where v = dG/dt. It will be seen from 3-25 that with increasing v, 

Jdv/dt can never be zero which confirms that there is a maximum v 

provided that B is not equal to zero. However, the maximum v may 

be increased by increasing ia and ib • 

6. Comparison of the Non-linear Models 

From a comparison of equation 3-3 and equation 3-14 it will 

be seen that; with the assumption of constant current sources, the 

difference between the nonlinear models is given by the term 

4 i ibL N cos( 2N Q). The value of L according to the definition a 2 r r 2 

given by 3-11 is usually very small, and if Ia and Ib are less 

than unity, then the difference between these two models is not 

significant. However, for small angular displacement per step 

Nr has to be large and for higher torque, ia and ib have to be 

large as wellc A typical PH stepping motor (HS-.50) has a rated 

current of four amperes and N equals 50. The maximum torque
r 

predicted by the models will differ by a significant figure. Conse

quently the stepping responses predicted from these models are also 



different. 

As an illustration of the differences, a PN stepping motor 

described by the followiP~ parameters is analysed. 

Kl = o30 volt/rad/sec 

N = ~ r 

J = .OOC094 newton-meter sec 2/rad 


B = .06 ne\rton-meter sec /rad 


L = .00518 henry 


= .00025 henryL2 

R = 5o7 ohms 

I = 2 amperes 

The stepping rate is set at 6o steps per second. The phase-plane 

plots are shown in figure 3-9 wh..ile the torque-displacement and 

transient responses are shown in figure 3-10. The greatest difference 

between the models is shown on the torque displacement plots, the 

salient-pole model indicates that the motor can give a greater useful 

torque than that predicted by the smooth air-gap model. The phase

plane plots and transient response plots given by the salient-pole 

model indicates that the motor is far from being critically damped. 

In the estimation of maxir.mm stepping rate the difference 

between these two models may be approximated by the ratio of the 

terms 4I~~rL2 to 2 K I. In this case this ratio is approximately
1

equal to twenty-five per cent • 

http:maxir.mm
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b. Displ~cemer.~-Ti~e Plot 

Salient-Pole M0d~l 
Smooth /1i:r--Gc<l1 t<od/31 



?o Effects of the motor constants on the performance 

of a stepping motor 

From the constant current source analysis it is found that 

each constant has its effect on the performance of the motor. 

Increasing J will bring the same result as decreasing B, L and K2 1 

by the same factor, but as seen from 3-25, the maximum stepping rate 

will not be affected dj rectly. The settling time for the step response 

will be larger due to increasing J whi~h results in decreasing B. 

B/J resembles the damping ratio of a second order linear system and 

K1/J accounts for :nest of the natural frequency though L/J con

tributes some of the effects. The excitation currents have a 

direct effect on the maximum stepping rate. Increasing currents 

results in increasing the maxir:'!Um stepping rate, increasing maximum 

electromagnetic torque and increasing the natural frequency. The 

effect of an external load applied to the shaft of the motor may be 

accounted for by increasing J or B depending on the way it is 

attached to the shaft. A heavy load will result in over-damping 

which will slow down the speed of the motor and eventually the motion 

may be completely damped. The maximum load torque applied to the 

shaft of the motor should not excede .707 times the maximum torque 

prod~ced by the motor. With a constant voltage source suppiy, a 

stepping motor will not behave in the srune way as it does with 

constant current source. The resistance (R) and self-inductance (L) 

of the windings have a definite effect on the motor. The time constant 

which is the ratio of inductance and resistance (~R) limits the rise 

time of the current. For low stepping rates the currents have 



64 

sufficient time to rise up to the rated or desired values, however, as 

the stepping rate increases there will be insufficient time for the 

currents to rise up to the rated or desired values. As mentioned 

before, decreasing the current will decrease the output torque and 

the maximum stepping rate, and in such a case • if. a motor cannot 

produce enough torque to overcome the inertia torque of its rotor, then 

the motor simply does not step at all. Consequently, in many 

operations of stepping motors, external resistors are added in series 

with the windings to decrease the time constant. The current is 

then compensated for by using higher voltages. 

8. Conclusion 

In order to analyse a PH stepping motor either the linear 

or nonlinear models may be used depending on the accuracy and results 

desired. The second order linear model can be handled easily. 

There are fixed formulas for calculating the settling time, and 

plotting the step responses. The third order linear model is not so 

simple and factorization of the transfer function usually is tedious. 

Consequently, it is difficult to obtain a step response, however, 

the frequency response plots may be obtained easily. The non-linear 

models requires some numerical analysis while being able to describe 

the dynamic behavior of a PH stepping motor. They may be used to 

illustrate the stable, slew and unstable regions. The effect of 

unbalanced excitation currents may also be shown by substituting 

the corresponding values of the currents into the equations. The 

salient-pole nonlinear model includes a second harmonic to account 
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for the effect of saliency since most PM stepping motors are salient

pole synchronous motors. The smooth air-gap model may yield a 

relatively close approximation but does not really represent the 

motor. The assumption of constant current sourcesin the analysis of 

the nonlinear models is highly reasonable since constant current 

sources are not difficult to obtain and in practical applications 

of stepping motors constant current sources have popularly been used. 



CHAPTER FOUR 

COHPUTER CONTROL OF STEPPING HOTORS 

1. Introduction 

There are numerous ways of controlling stepping motors 

[8, 9, 10, 16, 21, 22, 23, 26, 29]. The most fundamental idea is 

to get, by some means, a pulse chain or single pulse, then apply 

these pulses to a digital logic circuit wl~ich in turn goes to the 

stepping motor driver circuit. The pulse generator may be as simple 

as an on-off switch which generates one pulse at a time or an as

table circuit which generates a pulse train at a fixed or variable 

frequency. The digital logic circuit may simply be a bistable 

circuit or a flip-flop, while the driver circuit may be constructed 

according to the type of motors used. Beling [29] had given a 

relatively useful presenta.tion of the driver circuits. Since step

ping motors are stable in open-loop applications, they do not require 

feedback though the latter may be added to improved the performance 

of 	the motor. 

The applications of a stepping notor can generally be class

ified into the folloviing categories: 

1. Single stepping: The motor is required to advance 

one step at a time, within a prescribed time interval. Occasionally 

oscillation and overshoots are allowed. 
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2. Multiple stepping : The rotor is to travel a prescribed 

number of steps in the shortest possible time. 

3. Constant speed drive (in the slew range): The motor is 

to reach a prescribed constant speed within a certain time interval. 

In computer control of stepping motors the digital computer 

serves as a pulse generator and controller which generates pulses on 

command. The main difference between a digital processor and a 

regular pulse generator in this sense is that the computer is proeram

me d to generate the desired number of pulses at a certain prescribed 

frequen:;y, whereas the regular pulse generator may not perform the 

operation automatically. Host digital computers may generate sj_n::;le 

pulses, or pulse trains upon progra:nr:Jing, ho111ever the program~dng 

languages used are quite different from the popular Fortran language. 

Hachine or assembler languages are normally required. 

2. Existing problems in comp1.tter control 

When a digital computer is used to control a slow motion 

device such as the stepping motor, the designer has to consider 

first of all the frequency of the pulse train generated by the 

computer. Host computers generate a continous pulse train with a 

frequency so high that none of the existing steppin0 motors can stay 

in the stable region while being operated. One me'lns of solving this 

problem is to pass the pulse train generated by the computer through 

a frequency divider circuit For instance, a BCD counter may be used 

to divide the frequency by ten. The second method to overcome 

this difficulty is to use a program delay technique. The programmer 
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writes a program so that the computer has to perform a group of func

tionless commands over and over again before generating a pulse, which 

in essence resembles the dummy DO loop in Fortran language. The third 

method is to use a peripheral system which receives digital signals 

from the computer and transforms them into pulses. In this sense the 

computer is not a pulse generator but a controller and translator. 

Comparative}y the program delay metLod uses the least external eler:ents, 

but somf~times the pulse duration may be so short tliat very fast switch

ing logic gates have to be 'J.sed. The frequency divider method requires 

more external elements and consumes the same anount of computer time 

as the program delay met.hod, therefore it is nc)t an econorrical method. 

The tLird method is relatively expensive but •.rill save much of the 

computer ti'Tle, particularly when the digital com~;uter is equip:·Ad •,Jith 

a pro~ram interrupt facility. By usine the proeram interrupt facility 

the computer wilJ. not be fully occupied by. the stepping motor, thus 

it may control more devices. The program interrupt facility is to 

b~ accomplished by a main program w:,ich contains :nany subroutines to 

control various devices. A signal from the device '•lhich requests 

action through the interrupter to thecomputer informs the computer 

that the corresponding device subroutine is to be performed. After 

finishing the subroutine the computer returns to its main program to 

\'l'ait for interruptions from other devices. In a typical interrupt 

operation, while the computer is executing one subroutine, it ·will 

not start performing another subroutine until it has finished its 

current subroutine. The peripheral system may contain a memory device 

which accepts a command word from the computer indicating the number 

of steps to be incrementedw a pulse generator to generate pulses at the 



69 

prescribed frequency, an up-counter which counts the number of pulses 

generated and a comparator which compares the data in the up-counter 

with that shown in the memory device. When the numbers are equal, the 

comparator will generate a signal to stop thepulse generator and to 

inform the interrupt facility. The block diagram in figure 4-1 

illustrates further how this program interrupt facility may be imple

mented. 

The second problem that one might encounter is the output 

voltages from the computers. Since most digital computers use IC 

gates, their output voltages may be expected to vary between three to 

five volts. This voltage range will energize most digital gates, 

however if tl'Je designer wants to obtain a higher voltage he may do 

so by passing the output from the computer· through an amplifier. 

The third p1~blem concerns the maximum distance between the 

peripheral dev:i.ce and the computer. It is understood that pulses 

take time to travel from the computer to the device. The delay time 

would be appreciable if the distance between the computer and the 

device is too great. Also the impedance of the transmis2ion lines 

thus used may attenuate the amplitudes of the pulses and modify their 

rise time, thus there is a limiting distance between the computer and 

the device under control. In the case that the delay time is non

critical, remote control may be achieved by using substations. 

The function of the sub-station is to amplify ~~e signals from the 

computer before transferring them to the device. 

In addition to those existing problems in the computer just 

mentioned, there are several other problems to be considered: 

http:dev:i.ce
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1. Means to start and stop the computer from transferring 

signals. 

2. Means for initializing the motor to a known position in 

case of incompleted command and power failures. 

3. Techniques to allow the motor to complete the execution 

of one command before the next is issued. 

4. The motor under control must bear no accumulative 

positional errors. 

Problem 1 may be solved easily by using programming techniques. 

The prograM controls the start signal and end signal completely. A 

solution for problem 2 is not so easily achieved. It is difficult to 

solve this problem by programming techniques alone. In this case 

there must be some positional feedback control to allow the comput ar to 

know where the position of the motor was when the system failed. 

Problem 3 may be solved using feedback signals. A signal is fed back 

to the computer when the device is ready for the next execution. 

According to the information given by many stepping motor 

manufacturers, many of their stepping motors have a characteristic of 

non-accumulative positional error. Thus a proper choice of stepping 

motor may solve problem 4. 

3. 	 Advantages of using the Digital Computer as a Stepping Motor 

controller 

It appears that using a digital computer which costs more 

than ten thousand dollars to control a stepping motor is extravagant 

since stepping :notors may be controlled easily by using other 

circuits which probably cost less than a hundred dollars. The 
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versatility of using the computer as a controller is that whenever the 

user wants to change the switching rate, number of steps to be 

rotated either clockwise or counterclock\olise, duration of complete 

working period etc., all he has to do is to modify his progra~ with

out changing his circuit, in addition, the control may be made fully 

automatic. Optimal or sub-optimal control of stepping motors with 

varying stepping rates may be achieved through suitable program delay 

methods. Simultaneous operation of many stepping motors will require 

only one computer operator whose "''ork is to turn the coa:puter on and 

load the program into the computer. 

4. 	 A practical application of a Digital Computer as 

a controller of a stepping motor 

The computer used in this application: is the PDP 8/L computer 

manufactured by the Digital Equipment Corporation, and the stepping 

motor under control is the SS25-10l4 manufactured by the American 

Superior Electric Company. Attempts were made to use the digital 

computer to control the synchronous stepping motor in an open-loop 

scheme. The following controls have been achieved: 

1. Number of steps per revolution -- limited to two 

choicez: 100 steps/rev. and 200 steps/rev. 

2. Stepping rate (steps/sec) -- from one step per second 

to 250 steps per second \•,ri th high accuracy. 

3· Directions -- namely clockwise or counterclockwise 

drive. 

4. Number of steps -- a demonstration program limits a 
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maximum of 999 steps for either direction. Test showed that there 

were no missing steps. 

The SLO-SYN SS25-1014 motor takes 200 steps to make one 

revolution of the rotor shaft. Thus for each step the rotor advances 

by 1.8°. The manufacturer claims that the stepping motor has an 

accuracy of ! 0.09° per step non-accumulative. The PDP-8/L is a 

twelve bit computer with an unextended memory of 4096 core locations. 

Assembler languages used are either PAL III or 11ACRO. Control of 

peripheral devices is through an input/output device selector code. 

One device code may control many devices provided that they are con

nected in parallel and are to be operated simulataneously. Other 

facilities such as program interrupt andprogram:ned data transfer are 

also available =42, 43, 44,45] • In the stepping motor control that 

follows, only assembler language programming and the device selectors 

are involved. The assembler language being used is essentially the 

PAL III language. 

The computer is used as a pulse generator as well as a 

controller in controlling the stepping motor. The speed control 

is achieved by using the program delay method. The output pulses 

are compatible with moat digital gates and transistors that 

may be used in the digit~l circuit a~d the driver circuit. A 

continuous pulse train is obtainable through programming by using a 

single IOl) pulse. Such a pulse train has a maximum frequency of 

approximately 171 KHz. The program shown below has been found to 

be very effective for testing the frequency of the pulse train 

generated. 



/PROGRAM 1 

CLA CLL 


6?71 


JMP .-1 

The starting address of this program is 200 (Octal). To perform the 

command 6??1 the computer takes 4.25 microseconds and to perform the 

statement JMP .-1 it takes 1.6 microseconds. Thus a total of 5.85 

microseconds is required for every cycle. The frequency may be 

evaluated by the simple formula 

f = 1/T where f = frequency in hertz and T = period 

in seconds 

= 1/(5.58 xlo-6) hertz 

= 171 KHz. 

The pulse width is fixed at about 500 nanoseconds. By using the 

program delay method the frequency may be lowered. ·Program 2 

illustrates how the program delay method has been applied. 

/PROGP.AM 2 

CLA CLL 


6??1 


TAD A 

DCA COUNT 


ISZ COUNT 


JMP .-1 


http:PROGP.AM
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JMP .-5 


NOP 


NOP 


A, -2300 . 


COUNT, 0 


s 
To perform each of the commands TAD, DCA, ISZ it takes the computer 3e2 

pseconds, and to perform each direct JMP, NOP commands it takes 1.6 

lJ.Seconds. The computer then will take 4.8 11seconds to perform the two 

commands ISZ COUNT and JMP .-1. Since A is set at -2300 (octal, 

equivalent to 1216 decimal) these two statements will be performed 

1216 times before another pulse is generated, resulting in a delay of 

5836.2 liSeconds. A simple arithmetic shows that the output pulse 

train will have a frequency of 171 Hz. The two NOP commands are 

placed in the program to obtain a more accurate result. This method 

may be used to generate any other frequency which is lower than the 

maximum frequency by adjusting the value of A. The accuracy of this 

evaluation may be slightly different from one PDP 8 computer to an

other, therefore some compensation may have to be done to the calcul

ated value. This may be achieved by trial and error. 

The instructions to the computer as to the number of steps 

and directions for the stepping motor to rotate is accepted from the tele

type. A decimal number typed on the teletype is converted by the 

program into its corresponding octal number and stored. On command the 

computer will generate the desired number of pulses. The driver 

circuit for the motor is designed according to the voltage and current 
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ratings of the motor using a constant voltage source supply. A block 

diagram representation of this open-loop control s,ystem is shown in 

Figure 4-2 and detailed driver cix~uit and digital logic circuits are 

shown in appendix D and appendix E respectively. 

5. Design of a closed-loop control system 

In the design of a stepping motor system, it is necessary to 

guarantee that the rotor actually advances one position before a signal 

for another step is initiated to avoid ambiguity between the actual 

and desired positions. This can be done as mentioned before in an 

open-loop system by setting the input rate low enough to assure that 

the motor can follow the input signal sequence. Smoother, faster 

operation can be obtained, however, by closing the loop and sensing 

the present position before supplying another input. The reaction of 

a motor to a particular input change depends on the position of the 

rotor at the time of the change. It is the tendency of the rotor to 

move to the nearest steady-state position corresponding to the input, 

thus to predict motor action it is only necessary to know where the 

rotor is. Also, if the rotor position is known, the adjacent steady

state positions are also known and any change in input calls for a 

unique motor action. 

This design of closed-loop stepping motor system aims at 

minimizing the positional error while maximizing the stepping rate. 

The loop is closed through light sensors and the positional accuracy 

is interpreted by the computer through the inputs from the accumulator. 
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The complete s,ystem is represented by the block diagram shown in 

Figure 4-3. The functions and constructions of each of the blocks 

are discussed in the following. 

1. The PDP 8/L computer - The computer accepts and stores 

input data from the teletype through a machine language program. 

The computer accepts digital signals from the feedback sensors through 

an accumulator inputting device. The computer controls the translator 

by sending its command through the device selectors using the lOP 

pulses. The necessary machine language program is written such that 

data may be stored and modified easily. The program will enable the 

computer to perform the following actions: 

a. To generate lOP pulses in an increasing or decreasing 

frequency. These pulses are used to actuate the motor. 

b. To generate IOP pulses to energize clockwise or counter

clockwise operation of the motor. 

c. To generate lOP pulses to control repetitive single or 

multistepping. 

d. To enable the accumulator input to accept data from thefeed

back sensors so that the position of the rotor may be checked from step 

to step, meanwhile recording the total number of steps gone by. This 

total number of steps is then compared to the number of steps required 

and the discrepancy is then compensated. Figure 4-4 shows the designed 

flowchart for this closed-loop system. 

2. The translator - it receives all the IOP pulses from the 

computer and translates them into a stepping sequence to the driver 

circuit. It contains the following components: 
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a. A directional controller which may be easily set up by 

using two J-K flip-flops. 

b. A 200 steps/rev. and a 100 steps/rev. logic circuits. The 

100 steps/rev. circuit is to enable the motor to advance two steps on 

one command. This is one form of the multistepping circuits. 

c. Double stepping or single stepping selector. This may 

also be done easily by using J-K flip-flops. A designed translator 

circuit is shown in appendix F. 

3. Motor driver circuit - the main function of this circuit 

is to provide the necessary power to operate the rotor by following 

the commands from the translator faithfully. In order to enable the 

stepping motor to be driven in the slew range without continuously 

changing the voltage sources, the circuit is to be energized by 

using constant current sources. The circuit shown in appertdix D 

with the switch connected to the constant current source supply has 

been designed for this purpose. 

4. The position sensors - these position sensors were first 

proposed and tested by Fredriksen [8, 10] • The position sensoring 

system uses four photo-transistors and four light sources located 

consecutively at 23.4° apart. A cardboard with fifty holes evenly 

distributed at 7.20 apart on the circumference is secured to the 

shaft of the motor. This cardboard is to be large enough to keep 

the holes far enough from each other avoid ambiguity. This special 

arrangement ensures that for each step the rotor rotates, only one 

photo-transistor may be energized. Figure 4-5 illustrates this 

light sensoring principle as well as the general layout of this feed
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back system. Assume that initially the first light source passes 

through the zero degree hole on the cardboard as shown in step one. 

When the rotor has rotated 1.8° forward, the second light source will 

pass through the 21.6° hole on the cardboard. The photo-transistors 

will be turned on when they are lighted. The signals from these 

photo-transistor are then amplified before going into the accumulator 

of the computer. The accumulator accepts these signals and decodes 

them into the step numbers. Basically there are only four different 

steps, thus the next position of the rotor may be pr~dicted when the 

present step number is known. Referring back to figure 1-7, if the 

position of the rotor is known as shown in step one, single stepping 

sequence in the clockwise direction will bring the second step to 

step 2. However, after the rotor has established the tendency of 

clockwise rotation double stepping may be initiated. With the 

rotor in step 2 (figure 1-7) and the phase windings energized so 

that the polarities of the poles are as shown in step 4, then the 

rotor will also assume a position as shown in step 4 and under this 

operation the rotor will have completed, on a single command, an 

angular displacement equal to two step intervals. 

This design of a closed-loop system will depend largely on the 

software programming. The external equipment suggested is probably 

the minioum. This design serves to demonstrate the efficiency 

and convenience of computer control of stepping motors. Practical 

applications may require more than one stepping motor but one 

computer will be enough and the same design may be extended to control 

all of them. 



6. Conclusion 

The control of stepping motors may be very simple as well 

as very sophisticated. Computer control of stepping motors as 

discussed in this chapter appears to be relatively easy. In fact, 

computer control may be considered to be the most sophisticated 

control. The whole system is made simple at the expense of the 

sophisticated design of the computer. The computer designers after 

many years of hard work have contributed all these conveniences. 

Economically,computer control in many cases is cheaper than numerical 

device control of stepping motors. The open-loop and closed-loop 

controls discussed in this chapter demonstrate the way that steppi~~ 

motors may be controlled. Further, the efficiency of the motors as 

stepping devices may be maximized by closing the loop. Optimal 

computer control has not yet been attempted but in the near future 

by following the closed-loop control technique it may become true. 



CHAPTER FIVE 

CONCLUSIONS 

A basic introduction to the definition, characteristics, 

types and general operation principles .,.,as given in chapter one. 

From the study of permanent-magnet stepping motors, a unique 

mathematical model has been derived from the existing salient-pole 

synchronous machine model. The difficulties involved in applying 

the linear models can be eliminated as illustrated in chapter 

two, and only simple teets are required. The nonlinear models are 

sir,lplified in chapter three by using square v:a.ve constant current 

sources. Though only the Runge Kutta iteration method of analysing 

the nonlinear models has been used, many other methods rnay be 

applied. It was shown that the sniooth air-gap model, irrespective of 

its possible accuracy, fails to realize the actual motor. 

Computer control of stepping motors in both open-loop 

and closed-loop schemes has been discussed. The open-loop control 

has been tested and satisfactory results were obtained. A closed

loop control system has been designed using a minimum number of 

peripheral devices. As is seen from chapter four, stepping 

motor control is simplified by using the facilities provided by 

a digital computer. 

The manufacture of stepping motors tends to be concentrated 

on the production of high torque and high stepping rate motors. 
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Optimal design of stepping motors through parameter optimization may 

up-grade the performance of stepping motors. The open-loop stability 

of stepping motors will enable the stepping motors to replace the 

servo w~tors in many applications. Future applications of stepping 

motors in remote control and com~unication will increase rapidly. 

Optimal computer control of stepping motors using Bang-Bang control 

may be developed. 
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APPENDIX A 

Runge Kutta Formulas for Solving Simultaneous First Order 

Differential Equations 

1. The Formulas 

Let the first order equations be 


~ = fl(t,y,p)
dt 

and 

with initial conditions y(t ) =y , and p(t ) =p • The Runge Kutta 
0 0 0 0 

formulas are: 

kl =hf1(tn • Yn t Pn ) 

.el == hf2(tn t Yn t Pn } 


k2 = hf1(tn + ~h, y + ~k, Pn + 1h£1)
n 


t2 = hf (t + ~h, y + Yzk t p + ~ll) 


k3 = hf1(tn + Yzh, yn+ ~21 Pn + 1h£2) 


£3 = hf2(tn + }'zh, Yn+ Yzk2' Pn + "h£2) 


k4 = hf1(tn + h, y n + k3' Pn + £3 ) 


l4 =hf2(tn + h, y + k3' Pn + £3 ) 
n 


Yn+l =Yn + (kl + 2k2 + 2k3 + k4 )/G 


Pn+l = Pn + (ll + 2£2 + 2l3 + l4 )/G 
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where h =incremental constant. 

2. Example 

Consider equation 3-5 

2with p=d9/dt, therefore dp/dt =d G/dt2
, or 

2E ( )dt = r2 t, e, P 

K I
1=- ---J( sin(N 9) - cos(N 9)) - Bp/Jr r 

and d9/dt = f1(t,e, p) = p. 


For the first iteration, with initial condition P and 9 , the 

0 0 

constants may be calculated as follows: 

=hP 
0 

K I
1= - -Jh( sin(N G) - cos(N Q)) - BP /Jr r o 

B 
- hj'(P + ~l) 


~ =h(Po + ~£2) 
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K1I [
/,3 = - --- h sin N (9 + ~k2) - cos Nr(G + ~k2)J0J r o 

B 
- hJ(Po + 1h£2) 


k4 =h(Po + .e3) 


K I

1

.e4 = - - h [sin Nr(G + k ) - cos Nr (9 >]J 0 3 0 
+ k3 

B - h -(P + .e )
J 0 3 


pl = p + ( .el + 2£2 + 2£3 + .e4 )

0 

Gl =9 + ( kl + 2k2 + 2~ + k4 ) 
0 

The second iteration is calculated by substituting P by p1 and 9 
0 0 

by e into the equations.1 



APPENDIX B 


Locked-rotor Test of PM Stepping Motors 


The inductance of the stator windings of a permanent magnet 

stepping motor is recommended to be measured using the following 

procedure. 

The shaft of the motor is to be coupled to a gear-box which 

may give a step-up ratio of about fifty (Figure B~l). The shaft is 

further locked in position by using a clamp. The self-inductances of 

the windings are measured using an inductance meter. The shaft is 

then rotated through a very small angle through the disc which is 

attached to the gear-box. The inductances of the windings \·Jith the 

rotor locked in this new position are again measured. Similar proce

dures are repeated. A curved may be plotted, and the maximum and 

minimum values of the inductances are then recorded. 

~'igure B-1: Schematic Representation for the Inductance 

Measurements of a PM Stepping Motor 

gear boxStepping Motor 

inductance 
meter/ 

~ 
t 

be left open circuited) 

terminals 

disc with 200 
marked intervals 



A permanent-magnet stepping motor had been tested using this 

method and the experimental values are shown in Figure B-2. The 

inductance meter used is able to give four figure readings with an 

accuracy up to one-tenth of a milli-henry. The dotted line in the 

figure is the interpreted curve • The estimated values for L and max 

L . are 98.6 and 96.5 milli-henries respectively. Therefore L1 = mJ.n 

(98.6+96.5)/2 =97.6 milli-henries and 12 =(98.6 - 96.5)/2 =1.05 

milli-henries. 
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Relative Angular Displacement• 


Figure B-2 : Inductance Measurements 


• The 	Actual angles were not measured during the experiment but 
the rotor was rotated through fixed intervals until maximum and 
minimum values had occurred. 
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APPENDIX C 

A Program for the Analysis of PM Stepping Motors 

The numerical method used in this program is mainly the Runge 

Kutta method. Constant square wave current sources are assumed. The 

program will provide three plots namely 1. Phase-plane plot, 2. 

Step-by-step plot, and 3. Torque displacement plot. The definitions 

of the variables in addition to those given in the program are: TL2 

= 1 in henry, HAGI =I = magnitude of current source in ampere, W = 
2 

frequency of square wave current source, BJ =J, in newton-meter 

sec 2/rad, DAHP =B, in newton-meter sec/rad, and EHF =K1 in volt-

sec/rad. Some of the definitions of the plotter section of the pro

gram are given in the following diagram. 

T _L 
YICRE 

XICRE 

_l_ XUEND 

XL" ~I 
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. ·C*****USE RUNGEKUTTA METHOD TO PLOT PHASt TRAJECTORY 

C*****SOUARE WAVE, CONSTANT CUKRtNT SOURCER lS ASSUMED 
REAL MAGI 
DIMENSION Alv0(2)t Bl00(2J 
DIMENSION Y(l00UJt P<lUuO~;TT(lvUOI,TOR(lOOOI 

C*****RtAD IN THt INITIAL LUNUlTION~ PNU•YNU ~HICH tOkKt~PONU TO 
C THE INITIAL ROTOR POSITION Ai'liJ ITS ANl:lULAR VtLOClTYt ANI) 
C THE INCREMENTAL TIME, UPPER LIMIT TlMt 

READ (5,1) PNQ,YNOtDTtTLtTL2tMAGI 
1 FORI-1AT(6Fl2•7> 

READ (5,2) WtBJtDAMPtEMFtNR 
2 FORMAT (4Fl5.9,l3) 

Al=DAMP/BJ 
A2 = 4.U*NR*TL2/bJ 
A3 =EMF/BJ 
W=W*6e28318 
r=o.o 
L=l 

(*****CALCULATE THE 1ST CONSTANT OF k·K• FORMULA 
3 	 CKl=PNO*DT 

CALL WONG2(W,T,MAGI,A1J 
CALL WO~G3(W,T,MAGI,Bll 

C*****CALCULATt THE 2r-lU CONSTANT 
CL1=(-Al*PNO+A2*bl*Al*CO~<NR*2•*YNOJ)*UT 

1 +A3*1BI*COS( NR*YNOl-AI*SlN( NR*YNO))*DT 
(*****CALCULATE KTHE 3RD CONSTANT 

G=T+DT/2. 
CK2=1PNO+CL112.)*DT
CALL WONG2(W,G,MAGI,AL) 
CALL WONG31WtGtMAGlttiL) 

C******FOURTH CONSTANT 
CL2=1-Al*<PNU+CLl/2.)+A2*tiL*AL*COSINR*2•*<YNU+CLl/2•JJJ*UT 

1 +A3*(BL*COS( NR*(YNO+CKl/2.~)-AL*SlN( Nk*(YNO+CKl/2•JJJ*UT 
TOR1=4.*NR*TL2*Al*Bl*CO~<~•*Nk*YNOJ 
TOR2=EMF*<Bl*COS(NR*YNUJ-Al*SIN(NR*YNO)J 
TOR(L)=TORl+TOR2 

C*****FIFTH CONSTANT 
CK3=(PNO+CL2/2e)*DT 

(*****SIXTH CONSTNAT 
CL3=(-Al*(PNO+CL212.>+A2*BL*AL*COS(2e*Nk*(YNU+CK2/2•JJ)*OT 

1 +A3*(8L*COS( NR*(YNO+CK2/2.Jl-AL*SlN( NR*<YNO+lK2/2eJJl*OT 
(*****SEVENTH CONSTANT 

J<K4=DT*<PNO+CL3) 

G1=T+DT 

CALL WONG2(W,GltMAGltAK) 

CALL WONG3(W,Gl,MAGltBK) 


C*****EIGHTH CONSTANT 
CL4=(-Al*(PNO+CL3)+A2*BK*AK*COS(NK*2•*(YNO+CK3lll*OT 

1 +A3*(8K*COS( NR*(YNO+CK3lJ-AK*SIN< NR*(YNO+CK3JJ)~OT 

YCL)=YNO 
P(L)=PNO 
TTCL>=T 
YNl=YNO+(CK1+2e*CK2+2•*lK3+CK41/o• 
PNl=PNO+tCLl+CL2*2•+CL3*2•+CL41/6• 
PNO=PNl 



YNO=YNl 98 
L=L+l 

T=T+DT 

IF (T-TL) 3t3t4 


4 NEND = 1 

KK=L-1 


lU RtAD C5tlll XMlNtXMAXtYMlNtYMAXtVtRtXLtYL 

11 	 FORMAT C8F8e4) 


XSCALE =CXMAX-XMIN)/XL 

YSCALE = CYMAX-YMINl/YL 

CALL PLTIN CXSCALEtYSCALEtVtRtXMINtXMAXtYMlNtYMAX) 

READ (5,121 XUENDtXLENDtYUtNDtYL~ND,XlCRttYlCK£ 


12 	 FORMAT C6F10.5) 
c DRAW THE X-AXIS 

A100Cll=XLEND 
Al00(2)=XUEND 
BlOOCU=OeO 
8100(2)=0.0 
CALL PLTMPL CA100tB100t2) 

c DRAW THE Y - AXIS 
A100(l)=O.O 
A10U(2)=0e0 
BlOOCll=YLEND 
BlOOC2>=YUEND 
CALL PLT~PLCA100,d100t2) 

c DRAW THE SCALES OF X-AXIS 
XLABEL = -·1*YSCALE 
DOl = XLEND 
R~AD (5,131 ICRttllNtX,~LR~tLINtY 

13 	 FORMAT (4I3) 

DO 14 I=ltiCRE 

AlOOCll=DDl 

Al00(2)=0Dl 

B100Cll=Oe0 

6100(2) =.12*YSCALE 

CALL PLTMPL CA100tB100t2) 

001 = DOl + XICRE/5. 


14 	CONTINUE 

DO 15 I=ltLINEX 

READ (5tl61 MVA 


16 	 FORMAT CA6)

CALL PLTLET C6te06tOeOtXLENDtXLABELtMVA) 

AlOOCl) = XLEND 

A100(2) = XLEND 

tHOU(l)=UeU 
 J 

elOOC2) =.25*YSCALE 

CALL PLTMPL CAlUOtblOUtl) 

XLEND = XLEND + XICRE 


15 CONTINUE 
c DRAW THE SCALES OF Y-AXIS 

17 	 YLABEL = -·4*XSCALE 

GDl = YLEND 

DO 19 I=ltJCRE 

AlOO(l) =OeO 

Al00(2) = el2*XSCALE 




8100(1)
olUU(2) 

=GDl 
=GOl 99 

CALL PLTMPL <AlOOtBlOOt2) 
GDl = GDl + YICRE/5. 

19 CONTINUE 
DO 20 I=1tLINEY 
READ C5t2U KVA 

21 FORMAT CA6) 
CALL PLTLET (6teU6tOeUtYLAb~LtYLENutKVA) 
AlUU(l) = U.O 
AlUU(2) = ·25*XSCALE 
B10U(l)= YLEND 
81UU(2)= YLEND 
CALL PLTMPL (AlUUt BlOOt 2) 
YLEND = YLEND + YICRE 

20 CONTINUE 
22 IF tNEND - 2> 23t24t25 
23 CALL PLTMPL (y,P,KK) 

CALL PLOT (15.,u.o,-3J 
NEND = NENO + l 
GO TO 10 

24 CALL PLTMPL tTTtYtKK) 
CALL PLOT (15.,o.o,-31 
NEND = NEND + 1 
GO TO 10 

25 CALL PLTMPL (Y,TORtKK) 
CALL PLOT ClS.,o.o,-3) 
CALL PLOT (U.Ot0e0t999) 
STOP 
END 

c 
suaROUTINE WONG2(0tCttitCUR 
THIS ~UtikOUTINE CALCULATES 

I 
THE S~uAKE wAVE (SINcJ CUKKENT 

c AT A GIVEN TIM~ UF A SPcClFi~u FKt~UcN~Y USlN~ FuuKitk ~~klES 
c O=FREQUtNCY IN RAD./SEC 
c C=TIME IN SECOND 
c B =ABSOLUTE MAX.VALUE OF THE CURKENT 
c CUR=VALUE OF CuRRENT AT THAT SP~CIFIEO TIME 

All=SINCD*C)+SIN<3·*D*Cl/3• 
Al2=SIN<D*C*5•>/5•+ SlN(D*C*7•'17• 
AI3=SlN(9e*D*C)/9•+SINCD*C*ll•J/1l• 
Al4=SIN<l3.*D*Cl/13.+SlNCl5e*D*C)/l5e 
AI5=SlN<l7•*D*C)/17.+SlN(l9.*D*CJ/l9e 
DUM=4.0/3.1415926 
CUR= B*DUM*<Ail+AI2+Al3+Al4+Al5J 
RETURN 
END 
SUBROUTINE WONG3(WltTl,BI, CURRI 

c THIS SUtiROUTlNt CALCULAT~S THE S~UARt wAVE (C0SJ CURRENT 
c Wl=FREQUENCY IN RAD/SEC 
c Tl=TIME IN SEC 
c tll =MAXABSOLUTE CURRENT MAGNITUDE 

Bll=COS(Wl*Tll-C05(3.*Wl*Tl)/3e 
tll2=COS(5e*Wl*Tl)/5.-CU5(7•*wl*Tll/7e 
Bl3=COSl9•*Wl*Tl)/9.-COS(ll.*Wl*TlJ/ll• 



~I4=COS(l3=*Wl*Tl)/13·-CUS(l~·*wl*T~l/l5e 
BI5=C0S(l7.*wl*Tl)/17.-CUS(l9e*Wl*TlJ/l9e 
DUMM=4.0/3.1415926 
CURR=di*DUMM*(till+til2+bl3+~14+dl5) 

RETURN 
END 

roo 
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APPENDIX D 




Ql: 2N2697 
Q2: SDT3576 
Q3: 2N5027 
Q4: ~"1173 
Rl: 56K 
R2: 2.2K 
R3: 18K 
R4: 2.2K12v 

Dl:. PH204 

+16 volts 

+6o 

.35a 

+16 volts 

.35a 

B 

Figure D-1: DRIVER CIRCUIT 

b 
1\) 
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APPENDIX E 




HI 


J QhHJ Q
I I I.-- ;:=) ~ A 

Actuating ~T I LHTpulse chain 

K- ohHK _ Q
....J 

A.Directional Control l II I 

Q I I 4J 
B)

Directio~T 
Control 2 

K Q 

B 

Reset pulse 

Q J 

T 

Figure E-1: 200 Steps Per Revolution Digital Logic Circuit 
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~ 

b 
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APPENDIX F 




Figure F-1 : TRANSLATOR CIRCUIT 
1: Directj_onal Control 1; 2: Directional Control 2; 3: 100 Steps/rev Enabler; 
4: 200 Steps/rev Enabler; 5: Complete Circuit Reset; 6: aJO Steps/rev Disabler; 
7: Actuating pulse chain 
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