N.M.R. INVESTIGATION OF NUCLEAR
SPIN ISOMERISM IN THE AMMONIUM

IONS



N.M.R. INVESTIGATION OF NUCLEAR
SPIN ISOMERISM IN THE AMMONION

IONS

By

ARTHUR WATTON, B. Sc.

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctor of Philosophy

McMaster University

May 1971



DOCTOR OF PHILOSOPHY (1970) McMASTER UNIVERSITY

(Physics) _ Hamilton, Ontario.
TITLE: N.M.R. Investigation of Nuclear Spin
Isomerism in the Ammonium Ions
AUTHOR: Arthur Watton, B.Sc. (Imperial College,
London)
SUPERVISOR: Professor H. E. Petch

NUMBER OF PAGES:  ix, 135
SCOPE AND CONTENTS:

The possibility of isomeric nuclear spin states exis-
ting among the ammonium ions at low temperatures has been
investigated for some twenty ammonium salts. Measurements have
been made of the proton absorption signals at 4.2°K, and the
temperature dependences, where previously unavailable, of the
spin-lattice relaxation time.

Some of the salts exhibit the normal rigid lattice
spectra and second monents characteristic of distinguishable
protong, but most exhibit some degree of line narrowing at
4,2°K. The data shows that thermally activated reorientations
are effectively frozen out at this temperature and cannot be
responsible for such narrowing.

It is concluded that the narrow spectra, although in-
dicative of indistinguishability among the protons, are not
attributable solely to spin isomerism, but are being modified

by a further mechanism, probably tunneling of the ammonium

ion through the crystal field barrier.
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CHAPTER I

INTRODUCTION

Bersohn and Gutowsky (1954) performed proton mag-
netic resonance absorption measurements om a single crystal
of ammonium chloride (NH4Cl) at 77°K and deduced that the
spectra obtained were those of a system of four interacting,
but distinguishable protons, located on the corners of a
rigidly oriented tetrahedron (the ammonimm group). Such
a system will be referred to as a "4-spim 1/2" syétem, the
second moment* for which will be referred to as the "rigid
lattice" value, This is the value one would expect for avlattice
of stationary, distinguishable nuclei arranged in groups of
four (v 50 G2 in the ammonium salts). Proton absorption
measﬁremenﬁs from 20°K to room temperature for a number of
ammonium salts have since been reported by Richards and
Schaefer (1961). Apart from the lineshapes they also pre-
sented the temperature dependence of the kinewidth, defined as
theiseparation in gauss of the absorption derivative maxima,
and of the second moment. Among these salts a number (e.g.
ammonium tellurate, -sulphate, -metavanadate, -persulphate,

and -dichromate) had second moments at 20%K which were

*Defined as the mean square dev1atlon of the absorptlon line-
" shape from the Larmor field. :



considerably less than the usual "rigid lattice" wvalue.

There are a number of possible mechanisms which could
narrow the absorption line and reduce the second moment:
a) Thermally Activated Motional Narrowing

To first order, the second moment of the complete
absorption sPectrum is independent of thermal motions. How-
ever, the frequency components associated with the random
correlations of these processes can shift parts of the
spectrum into the wings producing satellites of weaker inten-
éity. If the thermal motion is fast enough, i.e. when its
correlation frequency v, (defined as l/2ﬂTc, where T, is its
correlation time), is much higher than a characteristic
frequency of the linewidth, then these satellites are pushed
so far out and, hence, become so weak that they are los£ in
the noise. The second moment of the remaining spectrum, which
is what is observed, is thus reduced. As the temperature is
lowered, thermal activations become less frequent, T, increases
and Ve decreases until eventually Vo is much less tﬁan the
linewidth. All components are then observed and the second

moment normally attains its "rigid lattice" value.

b) Quantum Mechanical Tunneling

Quantum mechanical tunnéling of the ammonium ion from
one orientation to another, through the hindering barrier of
the crystal field, may shift some parts of the spectrum by

an amount comparable to the associated tunneling frequency.



Again, if this frequency is high enough, these components
would become lost in the wings and not observed, thus reducing
the second moment of the remaining part of the spectrum.
It should be emphasized that, unlike the random processes in-
volved in thermal motion, tunneling is a coherentrprocess
which, not being thermally activated, can be effective at
the lowest temperatures.

This interpretation of line narrowing has been applied

to the tunneling of a methyl group by Allen (1968).

.c) Spin Isomerism

The requirement that the total wave function of the
ammonium group be anti-symmetric under exchange of any two
protons necessitates the existence of nuclear spin states
of certain permutation symmetries (spin isomers) only with
certain spatial syﬁmetry stétes. If the spatial states of
different symmetries are well separated in energy by the
crystal field then transitions between different spig isomer
states, involving,as they would,simultaneous changes in
spatial states (and energies), would not be observed in first
order, again narrowing the observed line shape. Because this
mechanism is not thermally activated it can also be effective

at low temperatures, the spectrum of methane below 2°K being

interpreted on this basis by Tomita (1953).



For the ammonium salts with low second moments mentioned
previously, Richards and Schaefer concluded that séme degree
of motional disorder still exists at 20°K, implying the
thermal motion interpretation of line narrowing, mechanism
a). Similar conclusions had been arrived at for the sulphate
and tetrafiuordberyllate salts by Blinc and Levstek (1960).

The difficulties of this interpretation can be exem-
plified for the case of ammonium sulphate: In order to obtain
quantitétive aéreéments with ﬁherexperimentally observed lbw

2, Richards and

temperature’ second moment of 33,3 + 1,1 G
Schaefer had to assume that 2/3 of the ammonium ions were
"rigid", while 1/3 were rapidly reorienting (a "semi rigid
lattice") at this temperature. This assumption is inconsistent
Qith the knpwn crysﬁal structure, in which there are equal
numbefs of each of two inequivalent ammonium ions. If:the
interpretation of a "seﬁi rigid laftice" were correct, 1/2
of the ammonium ions would have to be "rigid" and 1/2 re-
orienting, which would not give qﬁantitative agreement with
the observation.

These results on the sulphate indicated that,in at least
some ammonium salts, the low temperature line narrowing
observed was unlikely to be the result of thermally activated
molecular reorientation. At the same time, the evidence
fpund by Tomita for the existence of isomeric spin states

in methane at low temperatures suggésted that this mechanism

may also be effective among the ammonium ions, which



are structurally similar to the methane molecules. The
present work was therefore undertaken in order to investi-
gate fully this possibility of spin isomerism among the
ammonium group protons at low temperatures. With this ob-
jective, line shape studies have been made of some tweniy
ammonium salts at 4.2°K, together with measurements, where
possible, of the temperature dependence of thé spin-lattice

relaxation time, T The activation energies and correlation

l.
times obtained from the latter have been used to test the
assertion that reorientation cannot be responsible for

line narrowing at very low temperatures.



CHAPTER II

THEORY

II.1 INTRODUCTION

The fundamental theory of Nuclear Magnetic Resonance
is well established and can be found in many standard text
books (see, for example, Abragam (1961), Slichter (1963)).
For this reason no basic theory will be given in this work.
Attention will be focussed instead on the problem of spin

isomerism and its manifestation in N.M.R.

~
II.2 SPIN ISOMERISM -~ PRELIMINARIES

The N.M.R. absorption line shape of a tetrahedrally
co-ordinated four proton system exhibiting spin isomerism
has been derived theoreticaily and applied to the case of
so0lid methane (CH4) by Tomita (1953). Tomita's treatment
is tractable because the carbon-prcton contribution to the
dipolar interaction is negligibly small compared to the
proton-proton contribution. This is because the only carbon
isotope with & non-negligible magnetic dipole moment is C13
~-which occurs with a natural abundance of only 1%. In the
case of the ammonium salts however, the nitrogen isotope
Nl4, whose natural abﬁndance is greater than 99%, possesses

a dipole moment which, though small, is not negligible.

This, in conjunction with the small nitrogen-proton separa-

6



tion in the ammonium group (less than the proton-proton
separation) leads to a significant contribution from the
nitrogen nucleus to the dipolar interaction energy. This
-complication renders a general analytical solution for the
absorption line shape intractable. We therefore'adopt

the procedure of first developing Tomita's theory without
the nitrogen contribution and then estimating qualitatively
and quantitatively how the inclusiop of this effect will

incorporate itself into the result.

IT.3 HAMILTONIAN
The Hamiltonian for a number of interacting nuclear

spiﬁs in a strbng external magnetic field HO is;

H = Hz + Hd

where Hz is the Zeeman part expressing the interaction of
the spins with Ho' while Hd is the dipolar part expressing
the dipolar interactions of the spins with each other. Con-

sidering contributions only from the protons we have;
¥ = = z .
qz Y Hy ; tiz

and the inter-proton dipolar interaction Hdp is

H. = £ A,.[I. 1

S -+
dp i>5 ij*Tiz" iz 4

(IiIj + Iin)]

where i, j label the protons, Ei represents the spin operator
of proton i, and Eo defines the z direction of the co-ordinate

system. The quantities Aij are defined by;



ZﬁZ 5
A, = L2 (1L - 3 cos™68..)
ij 3 ij

1]
where eij is the angle the inter-proton vector Eij makes
with H .

~0

As is usual, in the expression for Hdp only the adia-

batic part of the dipolar Hamiltonian has been taken since this
is the only part which contributes to the splitting of the
degenerate spin levels in first orxrder (e.g. Abragam ch. IV).
To calculate this dipolar splitting in first order, Hdp
is treated as a perturbation on HZ (which is perfectly justi-
fied since the local dipolar field is typically 10 G or less

4

while the applied field, Ho' is of the order of 10 G).

Furthermore, Hdp can be regarded as being composed of contri-
butions from protons in the same ammonium group (intra-ionic)
and on different groups {inter-ionic). Of these two, since

the ammonium groups themselves are well separated from one
another compared with the dimensions of a group itself, the
inter-ionic contribution can be regarded as a perturbation

on the intra-ionic one. Thus, in first order, we need consider
only the splitting céused by the dipolar interaction among the

four tetrahedrally co-ordinated protons in a single ammonium

group.

II.4 SYMMETRY ADAPTED STATES

The eigenstates of HZ form a basis for the perturbation

calculation of the dipolar splitting. For the four proton



system we are considering, these eigenstates are labelled

by |m;m,m,m,>, where m; is the eigenvalue of I, . Since
protons have spin I, = 1/2, the mi's can assume the two values
* 1/2. Thus there are 16 of these basis states. However,

it is more convenient to use as a basis a set of spin functions
which is ieduced with respect to the substitution group of
four identical nuclei (isomorphous to the tetrahedral group

of real rotations). The 16 spin states reduce to the ir-
reducible members 5A + E + 3T*, to each of which there corres-
ponds a definite eigenvalue of the total nuclear spin operator,
I(= I+ I, + I3+ 54), of the proton group. This reduction

is shown in matrix form in Table I, in which represents

m¥i
the basis state belonging to the i'th row of the R'th irre-
ducible representation, and M is the eigenvalue of Iz.

The harmonic oscillator spatial ground state of an
ammonium ion sitting in an infinite potential well is twelve
fold degenerate (there being twelve equivalent orientaEions
corresponding to even permutations of protons). These
reduce, with respect to the tetrahedral symmetry group of the
ion, to the irreducible members A+E+3T; In a finite crystal

‘field the degeneracy of the different members is, in general,

removed, but if the crystal field has itself tetrahedral symme-

*
A, E, and T label the bases of the irreducible represen-
tations of the tetrahedral group of dimensionality one,
two and three respectively.



TABLE I

Symmetry adapted spin states. In right hand column (+)
represents spin up and (-) represents spin down.

(A ) | g | )

241 EI SRS ENS U [ F -
| 1

21®? i 1 1 1 1} —t+
: i

2v/3 1¢'§ P11 1-3] =t
| l

V6 ldag 11 1-2 o0l =
| ]
1 1

vZ ooy | |odi-1 0 0 4=
' I l

VE A} _ B 1 L

6 o0 | 1101 1 1 1 ++
| 1
E i ':

2v3 0¢l ! i 2 -1 -1 -1 -1 2 +-—t
{ {

2 095 i E 0 1-1 1-1 0 et
| !

/6 9] : P11 1-1 -1 1) fee
i |

2/3 05 ; bo2-1 -1 1 1 -2  |4-4-
I [}
T i 3
] 1
1 1
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try the three different T members remain degenerate. A schematic

representation of the spatial level scheme is as follows:

T
(3)
3T
(3) (9)
(3)
E E
(2) (2)
A A
(12) (1) (1)
Infinite ' Finite Finite
Potential Crystal Tetrahedral
Well Field Crystal
Field

e vt = eimee emm e e W mean  wmm mem mee  mae S A wrm emm eem A wen e e sema e v e e e e e s e

The numbers in parantheses with each level show the degeneracy
of that level.

The matrix elements of Hdp between the members of the
reduced basis spin states can now be calculated (see Ap-
pendix A), and are shown in Tables II and IITI. In the
absence of any symmetry considerations, diagonalization of
this representation of Hdp would give the perturﬁed eigen-

values. However, the total wave function ¥, in the absence



"TABLE II

B (a)

Matrix elements of Hd

b o]
L9 ___0_

%o

o o o e o e o

o ] =
o~ o~ ]
H { !

4 = ]
o~ o~ o~
i | 1

o H o)
o~ o~ oL
i ] !

o o O
] O ]
@ o o

1
=]
d"g S =
i
—i
C"f = M
|
i
L1 0 H o
|
o e o e e e
~i] — ~ 4
a__b (9] 3
N
[
Q- g4 Hd BN B £~ A~ AN B~ BN B ™
< < ©- < © ©- ©- ©- - ©- ©
o ~ — i ~ O o O [ o e ]



[-4a,

~8ay
-8b,/V3
—16c1//§
-l6d/v2
-24e
-48£/V2
-48g/Y6
-12h
-12k/V3
-49,
—4ao

-8b_/V2

\—8 co//g

TABLE IXIIL

“Matrix élements of Hd e (D)

P
Elements of Table II in terms of Aij

1 1 1 1 1 1)
1 1 1 1 1 1
1 1 1 -1 -1 -1
2 -1 -1 1 1 -2
0 -3 3 3 -3 0
-3 -3 -3 1 1 1 L
=1|6 -3 -3 -1 -1 2
0 -3 3 -1 1 0
0 0 0 -2 -2 1
0 0 0 1 -1 0
0 0 0 0 0 -1
1 1 1 1 1 1
-2 1 1 1 1 -2
0 -1 1 -1 1 0

13
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of any spin-rotational interaction, can be written as a pro-

duct of space and spin co-ordinate dependent parts i.e.;

¥ = ¢space ) wspin
if all other co-ordinate states, such as vibrational and
electronic, are in their symmetric ground state. Now, protons
are fermions and so ¥ must be antisymmetric under exchange
of any pair, or, equivalently, symmetric under any real ro-
tation, since this is equivalent to the interchange of two
pairs. Thus, for ¥ to belong to the totally symmetric
fepresentation, physically real states occur only in the
combinations ¢ (A)V(A), ¢ (E)Y (E), ¢(T)¢(T), corresponding to
meta-, para-, and ortho-groups respectively. If the
spatial states are well separated»in energy (v 15°K for
a free rotor, although less for an oscillator) only spin
trénsitions are obsérved which conserve the symmetry type
(A, E, or T). Only the matrices of these irreducible
representations need to be diagonalized.

We will define a cartesian co-ordinate system fixed
with respect to the ammonium group as shown in Figure 1, with
origin at the nitrogen nucleus. In this reference frame

-Eo has spherical angular co-ordinates (6,¢) as shown, in

terms of which (see Appendix B) the Aij's are given by;



FIGURE 1

NH, co-ordinate system. Eo has

4

spherical angular co-ordinates

(6,9).
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Al2 = All
A23 = Al
A13 = A[l
A, = All
A24 = A[1l
A34 = Al
where A = Y2§2
r

DWW NW VW NW oW W

sin®6 (cosé + sine)?]

. . 2
(sinbsin¢g + cos6) ]

. 2
(sinBcos¢ - cosb) ]

. . 2
(sin6sin¢ - cosH) ]

. 2
(sinbcosd + cosd) ]

sinze(sin¢ - cos¢)2]

r being the proton-proton separation.

II.5 META TRANSITIONS (A STATES)

3

16

r (2.1)

The matrix elements of these states are symmetric

combinations of the Aij's and so:

“This can be seen directly by summing the elements given by

equation (2.1). This means that diagonalization of the one

dimensional A type representation gives zero for the first

order change in energy of these states. The spectrum of

h transitions'among these states thus consists of a delta-

"7 function at Ho'

The transition probability can be calculated for

the transition M » M' by;

p, Mot') = [< 031 47>

(2.2)
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since the r.f. field which induces transitions does so
through its interaction with the x~component of the nuclear
spin (see Abragam etc). Using this expression and the
states given in Table I, the transition probabilities are

calculated to be (Appendix C);

P (x1 7T 0) for two transitions.

1l
MW

P (2 > #1) = 1 for two transitions.

The total transition probability for all A type transitions
is then;

PA(total) = 5 (2.3)

IT.6 PARA TRANSITIONS (E STATES)
Proton groups of this symmetry type are associated
only with I = 0 (no resultant magnetic moment) so no transi-

tions are observed and we need not consider them further.

II.7 ORTHO TRANSITIONS (T STATES)

We need to diagonalize the 3x3 sub-matrices in Table

The trace of the M = 1

II defined among the states M¢$

sub-matrix is given by;
Tr = e + h + 2

‘which, by substitution' from Table III, is a symmetric com-
bination of the Aij's and therefore zero. By manipulation

of the matrices, the secular equations may be written in
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standard forms. For the case M = 1, the normalized eigen-

value equation becomes,

3 3 1 _
x” - 3g X + 33 cos v(6,4) = 0 (2.4)
where the eigenvalue = 1—§— p 4
r
and
cos¥Y(6,¢9) = 1 - %Z-sin22¢coszesin4e (2.5)

Equation (2.4) can be solved by the standard tech-

nique for a cubic eguation (see Appendix D), to give three

real solutions;

R ¥ )

Xl—- '2'-0083
1 T =¥y |

X, = 5 cos (—~§~— (2.6)
_ 1 ™+ V¥

x3 =3 cos ( 3 )

The matrix for M = 0 is twice the negative of the
matrix for M = 1. The eigenfunctions are therefore the same
while the eigenvalues xi are twice the negative of those for
M=1, i.e.;

]
X. = = 2X. .
i i

The transition probabilities between the twoc sets of
states is given by the equivalent T state expressions to

equation (2.2). However, we can now make use of the fact that
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It being a symmetric combination of the L.« is invariant
under all permutations of spins, and thus belongs to an A
type representation. Therefore, the function Ix]M¢$> still
belongs to the i'th row of the T'th irreducible representation.
From group theory it is known that the scalar product of

two functions is zero unless they belong to the same row of
the same irreducible representation (e.g. Hamermesh {1962),
ch. 6). Therefore, the matrix element <M'¢§lIXIM¢§> is
zero unless i = j, and then is independent of i. This can

also be seen directly by evaluating the matrix elements

using the states given in Table I (Appendix C). This means

that of the nine possible T type transitions from M 1l to

M = 0, only three are allowed here - those from Xy to xi.
Hence, three lines occur, shifted from Ho by 3xi, i= l,2,§f
The results for M = -1 are identical except for a change

in sign, so that finally there are six ortho lines at

i3xi, i =1,2,3. Using the equivalent expression to equation

(2.2) the ortho transition probabilities are calculated to

be (Appendix C);

PT(tl Z0) = % for six transitions,
so that the total transition probability for all orth-

transitions is;

pT (total) = 3 . (2.7)
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II.8 POWDER SPECTRA

The foregoing has been concerned with the absorption
spectrum from a single crystal. In a powder sample consisting
of many small, randomly oriented crystallites, all orientations
are present, The observed spectrum is then the result of
taking a polycrystalline average over all orientations of Eo;

A single crystal line occurs at;

_ 3 =3
3xl = 5 CO0s x = 51 (2.8)

where n is defined so that -1 < n < 1. Then the probability
of finding an absorption line between n and n + An in a powder
sample is;
w(n)an = ¥ sin6dede
4
R
the integration being performed over the region R where

n <n6,4) < n+ An. Inverting the solution for n(6,¢) to

give ¢ = ¢(6,n), This integration reduces to;

win) = = | 3¢ (8,m)d(cose) (2.9)
R

Expanding cos Y gives;

3 - 3 cos k4

4 cos 3

[

cos VY

wi e

= 4n° - 3

From equation (2.5) we define a function f£(n) such that;
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£(n) = %7 (1 + 3n - 4n°) = 0(8)sin’2¢ (2.10)

where 5 4
©(6) = cos"6sin’H

from which it can be seen that £ must lie in the region

4/27 > £ > 0.

96 of /3f
Now §ﬁ'" 53)//8¢

and from equation (2.10);

of _ L
§$ = 4[f (0 £)]
and
of _ 2 _ 2 — e
5 g(l 4n°) £'. (2.11)

Clearly then, R is the region for which ¢ > £ > 0.
Defining a new variable &, as;

£ = cos26

we can write;

o=t ~1z)?

Then if the roots of the equation;

© = £
are @;, Oy, Oj (al 2 0, 2 d3), we can Write;
0 -f=(£-a)(E -0, - ay)
and so; o,
w(n) = lﬁll; | 48 - (2.12)
24m£° € (E-0,) (E-a,) (E-a )] "
a v

3
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the region of integration being G to o, because outside
this region the integrand is complex. A schematic represen-
tation of the function ©(£) and the solution of 0 = f is

shown in Figure 2.

As can be seen, since 0 < & < 1, the only real region

where © > f is where a, > £ > a

2 3°

From the standard forms of elliptic integrals, equation

(2.12) can be reduced (e.g. Bowman, 1961) to the form;

, 2
win) = 2= ]fl/l Rk ) (2.13)
£ o, (a,-a,)]™
2\%317%3
where ‘
a. (o, -a,)
k? = sy (2.14)
2'%17%3

and K(kz) is a complete elliptic integral of the 1lst kind.
For another absorption line at;

T - Y
3 )I

if we substitute ¥Y' = 1 - V¥ we have;

n = cos(

and cosY = - cosV'

so that;

2 3
fz(n) = 57 (1L - 3n + 4n7)

which is the same as equation (2.10) if n is replaced by -n.
So exactly the same spectrum results except for it being

inverted through nn = 0 (Ho). The transitions. for negative



FIGURE 2
Schematic representation of 0(g).
Ops Oy, Qg are the roots of the

equation 0(f) = £
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M values will, in the same sense, be the inverse of those
for poéitive M. The total spectrum will thus be given by
solving equation (2,13) for w(n) and symmetrizing about
n = 0.
I1.9 NEIGHBOURING IONS
The effect of the neighbouring ions on the lineshape
may be considered to be a broadening of each skeletal component

line into a gaussian function of the form;

. - ) (2.15)
- expy{ ——ag—— 2.15
(<AH2>) 2<AH2>

where <AH2> is the inter-ionic contribution to the second
moment. The net lineshape is then obtained by convoluting

both the meta and ortho lineshapes calculated previously with
a gauésian'function'of the above form, and summing their
~contributions weighted appropriately. Because of the statis-
tical correlations (Bright Wilson, Jr., 1935), the mixing ratio
of the different stmétry'types of ion is proportional to the
spin weight only. The appropriate weighting ratio of meta:

ortho 'is thus given by equations (2.3) and (2.7) as 5:3.
II.10 THE FORM OF w(n)

‘The roots of the equation
N o=t -872=¢

are found,'by the standard technique for solving cubic

equations (Appendix D), to be;



FIGURE 3
Unbroadened ortho component W(n) for
n > 0. For negative n, W(-n) = W(n).

Scale unit for n is % E%.
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£ = %-(l - cos ¥)
where
sin 3y = /27f(g~27f) s (2.16)
and
cos 3y = 2-27F
2 J

The solutions £, in descending order of magnitude, give

(o O o

1 T2 U3t

According to eqguation (2.13) w(n) becomes infinite

when either;

£ =0, or kK2 = 1, S (2.17)
the latter because K(1l) = o,
From equation (2.14), k2 = 1 when Oy = Ay, which,

by solving equations (2.16), or, more obviously, by inspection
of Figure 2, occurs when £ = 0. i.e. the conditions in
equations (2.17) are identical.

From equation (2.10), £ = 0 when;

n =1 ox - %

W(n), the symmetrized form of w(n) defined as;

Win) = win) + w(-n) (2.18)
-—and derived by the use of equations (2.10), (2.16), (2.14)
and (2.13) is shown in Figure 3. The convolution of this
function with a gaussian will require special treatment in
the region of the anomalous infinities, i.e. where n = ilj
and * 1,
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Near n = 1 we define the small variable §. such that;

1

n=1>1- 61

which, by substitution into (2.10), (2.16) and (2.14), gives

(Appendix E);

k2 =1 - 476 4 3/2 (2.19)
9 1
Near n = - 1/2 we define the small variable 62 in
the same way;
1l
n“‘"'~2—i62.

The same series of substitutions leads (Appendix E)
to;

2 le s 3

k" = 1 - 55 05 (2.20)

Letting k2 =1 - 82, where € is a small guantity,

it can be shown (Appendix F) that;
y 2
K(1 - %) =2 4n 2 - 4n ¢ (2.21)

if ¢ is of the second order of smallness. i.e. € must be
small compared with a qguantity B (defined in Appendix F)
which is of the first>order of smallness, so that;

e << g2 << 1. (2.22)

From equation (2.19),near n = 1;

2 46 . 3/2
€1 =5 &

and from equation (2.20), near n = -1/2;
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so that substituting these values in equation (2.21) and

using equations (2.10), (2.11) and (2.13) we find;

N2 V6 ~1/2
w(l - Gl) = I vy 61 (&n 6 -~ 4&n 61)

(2.23)

=2 x 2 (n-3 - &n 62)

]
I+
o

IT.11 INTER-IONIC BROADENING
The spectral broadening effect of the neighbouring
molecules can now be incorporated by convoluting W(n) with

.the gaussian function g{n) defined by;

g = 2= exp{- 0}
aym a

where a2 is the <AH2> defined in equation (2.15), but
normalized toAthe units of n. The broadened lineshape

for the ortho-transitions IT(x) is then;

IT(X)

it

J W(n)g(x-n)dn

o1 (F -
= Wn)exp[- ———1dn
avm J

-1

since W(n) = 0 for |n| > 1.
Integrating analytically over the anomalous regions,

IT(X) can be written (Appendix G) as;

1T (x) = I (k) + I,0x) + I (x) + I,(x) 12.24)
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where;
L= A 2
I () + I k) = - L W) lexp- B0
: avm | a
5
1-A ,
: ‘ 2 2 Lt 2
+ exp{——(-?{—i%)—-——}]dn + W(n) [exp{- —(5-2—3—)——}
a a
i
2 2
+ exp{—iziﬂl~}]dn + 3 A, lexp{- i§~ll~}
2 4 72 2
a a
(x+1) 2
+ exp{- ~—5—1] (2.24a)
a
which can be evaluated numerically, and;
2
1
Iz(x) = i {% Al(l + 4n 3 - 4n Al)[exp{~ iiifL«
avn 1 a
2
-1
+ exp{-——--—~(X 5)——}] {2.24b)
. a 7
and;
' 2
1 - YE % _ _ {x-1)
14(x) = —— gz b, (2+2n6-2nh,) [exp{~ ==~
aym a
(x+l)2
exp{- - } (2.24c)
a
A; and A, being small enough to satisfy the condition (2.22).

The broadéned lineshape, IA(x), for the meta-transi-
tions is obtained by convoluting the spectrum for an isolated
group (a delta function at HO) with the same gaussian function

used for the ortho-broadening;
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2
A , o _
I (x) = L §(n)expi- i§~gl~}
avTm a
2
= L exp(- X} .
a/m a

The total lineshape can now be obtained by summing
IA(x) and IT(X) weighted by their transition probabilities

invthe ratio 5:3. Results of this calculation for <AH2>

of 1G2, 2G2, 4G2 and 662, and a proton-—proton separation of

(]
1.68 A, (typical values for the ammonium salts) are shown

in Figure 4,

IT.12 SECOND MOMENT
The second moment (M2) could be evaluated directly

from the above broadened lineshapes, but we can note that;

M M' + <AHZ>
2 - 72

]
where M2 is the intra-ionic contribution to M2 and is in-

dependent of the broadening factor <AH2>. Thus M; need

only be evaluated once and M, *then found by adding <AH2>.

2

t
The contribution to M2 from the meta spectrum
(a delta function) is zero, and from the ortho spectrum

(Appendix H) 1is;
S, * A4+ S5 + A

4
Al + A2 + A3 + A4

Mé(orthq) = (2.25)



FIGURE 4
Theoretical spin isomer absorption spectra
with broadening factors, <AH2>, of 1, 2, 4

and 6 G2, and an inter-proton distance of
(<]

1.68 A.
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where;
A
Sl = I 1 nZW(n)dn (2.25a)
o
(A 2 -
Sy.= J n“w(n)dn (2.25b)
B+hy ‘
Ay
Ay = J W{n)dn (2.25c¢)
o
1-A
Aj = J %0 (n)dn (2.253)
%+Al
2Al
A, = —= (1 + n 3 - 2sn Ay) (2.25e)
3A o
T2 V6 s -
By =g+ g- by (24206 - an A) (2.25f)
A, and A, again satisfying condition (2.22).
Using equations (2.25) with a proton-proton separation
o
of 1.68 A gives Mé (ortho) = 39.8 G2, and since (Appendix H);
o3 0 :
M2 = §-M2 (ortho)
we find -that M; = 14.9 ¢%. We therefore expect M, to be

in the range from 16 G2 to 21 G2 for <AH2> from 1 G2 to 6 G2.

T1.13 NITROGEN CONTRIBUTION

In order to include the nitrogen contribution in

the spectrum we must go back to the original expression for
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the dipolar Hamiltonian H_, and write

d

Hd = Hdp + Hdn

where Hdp

and Hdn the nitrogen contribution. Since, as was explained

is the proton contribution treated previously,

before, only the adiabatic part of Hd (i.e. that part which
commutes with the total Hamiltonian) contributes to the
level splitting in first order, we can write Hdn as the

truncated part;

Hdn = ? Aio Iiz Inz

where Iiz' Inz are the z-component spin operators for proton
i and the nitrogen nucleus respectively, and;

2

Y v, B 5

AiO = -§—--(l - 3 cos eio)
r .

pn :

Yy being the gyromagnetic ratios for the proton and nitrogen
nuclei respectively, £pn the proton-nitrogen vector and eio
the angle which £pn makes with Eo' It should be noted that
the truncated Hdn does not contain the "flip-flop" terms
III; analogous to those in Hdp because a simultaneous in-
version of a proton and a nitrogen spin, having different

- magnetic moments, does not conserve energy. i.e. the term
is non-adiabatic. Also, by the same argument used for the

protons, only the intra-ionic contribution to Hdn need be

considered in first order.
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The basic spin states for the isolated ionic group
must now be defined by the z-component spin quantum numbers
of the protons and the nitrogen nucleus. For simplicity,
and also to maintain as close an analogy as possible with
the foregoing proton treatment, this latter gquantum number
(n) will be written as a subscript on the proton states
defined previously and given in Table I. .i.e. the spin
states are now written as lmlm2m3m4>n where m. is ¢+ 1/2 and,
since the abundant isotope of nitrogen (Nl4) has a spin

-In = 1, n can assume any one of the three values 0, =*1.

The presence cf the nitrogen nucleus at the centre
of the tetrahedral ammonium group makes no difference to
the symmetry considerations, so that for each of the three
values of n Table I defines the same symmetry adapted set of
states. With these as basis states the matrix representa-
tion of Hdn can be calculated (Appendi# a). The‘relevanﬁ
diagonal part (between states of the same symmetry) for n =
is shown in Tables IV and V. The matrix for n = -1 is the
negative of that for n = 1, while the matrix for n = 0
is zero.

In the same reference frame defined by Figure 1

we have (Appendix B);

1
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TABLE IV

Matrix elements of Hdn ————emem (&) .

States labelling rows and columns are
ordered as in Table II.

1
t L] ]
e £ g
1 L] L]
f h k
1 1 1
g k '3
0
0 0
0 0
0 0 0
0 .0 0




TABLE V

(b)
Elements of Table IV in terms of

Matrix elements of Hdn

2a, (1 1 1 1
ta, 101 1 1
12¢ 5 5 5 -3
evie | = |[-1 -1 2 o
2VEg -1 1 0 0
6h 2 2 -1 3
2V3k' -1 1 0 o
21 L 0 0 1 1

A

10

20

30

40
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Alo = AO[—sinzesin2¢ + sin26 (sin¢ + cos¢)]W
L2 o e o -
B,y = AO[ sin“0sin2¢ sin26 (sin¢ + cos¢)]] (2.26)

A30 = Ao[ sinzesin2¢ ~ 5in260(sin¢ - cos¢)]

A = A [ sinzesin2¢ + sin26 (sin¢ - cOs¢)j

40 o 2 /

YY B :
where AO = e 3
. rpn

By directly summing these, the symmetric combinations

'
2

type states are unshifted in first order by the nitrogen

a, and ai are found to be identically zero. Therefore the A
contribution and so the meta-spectrum is unaltered, remaining
a delta function at Ho' In general however the T type states
are shifted by the nitrogen contribution, the matrix elements
for M = 0 no longer being simply twice the negative of

those for M = 1. This complication makes the analytical so-
Jution of the spectrum for an arbitrary crystal orientation
intractable. Since the angular dependence of the absorption
lines needs to be known in order to take a polycrystalline
average, the line shape calculation for a powder sample has
not been attempted. However, the absorption spectrum can be
readily calculated for any given crystal orientation. In
particular, it can be seen from equation (2.26) that for a
[1,0,0] field direction where 6 = /2 and ¢ = 0 we have;

A, =0 for all i,
10

The same is true for ‘the equivalent [0,1,0] and [0,0,1]
directions. This means that all the matrix elements in Tables

IV and V are zero, the nitrogen nucleus making no contribution
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to the spectrum for these field directions. i.e. the previous
proton derivation applies.
Inserting the appropriate values of 6 and ¢ into

equation (2.5) gives;

cosY = 1
from which ¥ = 0,271 etc, which, by substitution in equations

(2.6) and (2.8) yields absorption lines at;

plus the equivalent lines on the other side of Ho'arising
from negative M transitions. With the same dimensions of
the ammonium group used before, this means absorption for
the [1,0,0) field direction should occur at HO (for fhe
meta-states) and Ho + 4,5 G and Hé + 8,89 G (for the ortho-
states), with relative intensities 10:2:1 (to be consis-
tent with total intensities in ratio 5:3). A resulting
spectrum broadened by a typical <AH2> of 2.G2 is sﬁown

in Figure s,



FIGURE 5
Theoretical spin isomer absorption spectrum
for a single crystal with Hy along the [1,0,0]
direction. The broadening factor, <AH2>, used

(<]
is 2 G2 and the inter-proton distance 1.68 A,



39

(AH%) =262

[1,0,0]

12 4 16
GAUSS
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CHAPTER III

APPARATUS AND EXPERIMENTAL PROCEDURE

ITI.1 ABSORPTION
Magnetic fields of up to 10,000 G in a 3" pole face
gap were provided by a 12" Varian electromagnet monitored
by a Varian V-FR 2503 Fieldial. The broadening of the
signal due to the field inhomogeneity (as checked by the -
broadening of the proton signal of a paramagnetically con-
taminated water sample) was of the order of 1 G with the
sample sizes used (up to 1.4 cm in diameter by 1 c¢cm in length),.
The sample coil, which is attached to the end of a
probe and located inside a dewar fixed between the pole faces of
the magnet, is part of the resonating circuit of a Pound-Knight-
Watkins marginal oscillator operating at a frequency of ap-
proximately 40 MHz. An audio frequency generator modulates the
applied field, at an amplitude much smaller than the line-
width; through a pair of Helmhclz coils mounted on the
pole faces. The signal is first r.f. amplified and detected,
then fed to a wide band audio frequency amplifier followed
by a lock-in amplifier, where it is mixed with the audio
frequency signal from the a.f. generator and phase detected.

The d.c. output, approximately proportional to the derivative

40
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of the line shape curve, is plotted by a pen recorder as

the field is scanned linearly through the resonance by the
Fieldial, A block diagram for the system is given in

Figure 6a with a circuit diagram of the marginal oscillator
in Figure 6b.

‘The marginal oscillatér was operated at éuffiéientiy
low r.f. power levels to ensure that distortion effects
caused by nuclear spin saturation were negligible. This was
checked for in two ways. Firstly, after holding the applied
field (Ho) off resonance for some time (v 10 min.)rto allow
the spins to achieve thermal equilibrium with the lattice, Ho
would be switched suddenly into resonance {in fact to the
maximum of the derivative spectrum). Starting with an arbi-
trary r.f. power level the signal was observed to decay with
time as the nuclear Zeeman levels became saturated. This
procedure was repeated with the r.f. power level lowered
‘progressiVely until a value was reached at which no saturation
- decay of the signal could be observed after switching H into
resonance, Care was taken during the collection of data to
ensufe that the r.f. power level always remained below
this value.

Secondly, a direct measurement was made of the exciting
r.f. field (Hl). The r.f. voltage induced across a secon-
é;ry pick-up coil fixed in thervicinity of the sample coil

was measured on an oscilloscope., The capacitor of the tank



42

circuit of the marginal oscillator was then shorted out and
an r.f, voltage from a signal generator applied to the sample
coil. The amplitude of the signal from the generator was
adjusted so that the voltage across the pick-up coil, as
measured on the oscilloscope, was the same as that previously
induced by the marginal oscillator. The output from the signal
generator was simultaneously applied to the oscilloscope and
the r,.f. voltage applied to the sample coil read directly.
This was taken as being equal to the r.f, voltage originally
produced across the sample coil by the oscillator. In this
way it was determined that voltage levels of less than 10 mV were
used across the ly Henry coil during the collection of data.

The magnetic induction (B) at the centre of a long
cylindrical coil (Reitz and Milford,1960), is:

B =4r(d) Ip = H

where I (amps) is the current through the L(cm) coil of N turns,
A voltage of 10 mV across the coil produced a current of 0,04

mA giving, according to the above formula, an H, of 0,25 mG.

1

1 of 100 sec, and a T2 of 10 usec

(typical values for these salts at this temperature) the satura-

12T1T2) is 0,05. Since yzH 2T1T2<<l, the satura-

1
tion was negligible for all measurements,

For this field value, a T

tion factor (Yzﬂ

The above tests demcnstrated conclusively that the mar-
ginal oscillator was operating in the linear regime and that
the experimental signal was proporticnal to the derivative

of the line shape.



FIGURE 6a

Block diagram of the absorption spectrometer.
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-Figure 6b

Circuit diagram of marginal oscillator
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IIT.2 SPIN LATTICE RELAXATION

Under steady state conditions the total nuclear magnetic
moment of the sample is difected along the applied field Eo' which
we can designate as the z direction. It is well known that an

oscillating magnetic field 2chosw t applied at the Larmor fre-

L

quency w; of the nuclei being studied changes the orientation of

this nuclear moment, and that if applied for a time t=ﬁ/ZYHl, ro-

tates it through 90° into the x-y plane, If the oscillating field

is then removed, the spins, initially coherent in the x-y plane,

lose coherence in a time T2 so reducing the magnetic moment in

this plane to zero, and relax back along Ho in a time Tl' If

an identical 90° pulse is appliéd after a time 1, much longer than

T2' the nuclear moment recovered along HO is again rotated into

the x-y plane. Detecting this x-y component of the’nuclear moment

by the voltage it induces in the coil of a tuned tank circuit gives

a signal proportioral to the magnetization recovered alongsHo in

time t. Observing this for various T's allows T, to be calculated.
The experimental arrangement employed is shown

schematically in.Figure 7. Variable width pulses at repe-

4 to lO2 seconds provided from

tition times in the range from 10
Tektronix series 160 waveform and pulse generator units were
amplified and used to gate an r.f. oscillator which then
supplied 30G r.f. pulses to a tuned coil surrounding the
teflon sample holder. The signal detected in the coil was then
amplified and rectified before being displayed on a high
frequency oscilloscope ecquipped with a polaroid camera

for recording the free induction decay amplitude. The

spectrometers used operated at 5.4, 19, 20.7 and 42 MHz, the



FIGURE 7

Block diagram of the T, spectrometer.
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r.f. amplifier having the fast recovery (6 usec dead time)

necessary to observe the signal before it éecays (in time

TZ) after the 90° pulse.

III.3 TEMPERATURE CONTROL

To obtain temperatures down to that of liquid nitrogen
the sample,binsidé its teflon holder Ahd pickup coil, Was
contained inside a dewar held between £he pole faces of the
magnet. A controlled heater immersed in a source of liquid-
nitrogen provided a stéady boil off of nitrogen gas which
was either passed directly over the sample or preheated
by a hot nichroﬁe coil, Adjusting the variacs powering both
heaters, temperaturés in the approximate range from 80°K to
400°K were obtained, and meaéured by a copper-constantan
thermocouple located close to the sample.

' For temperatures below 77°K a helium cooled Andonian
cryogenic system was used. A needle valve controlled the flow
of helium gas from the pressurized liquid helium storage
chamber into the sample chamber. The samplewas mounﬁed on a
copper block on whichwas wound a héating coil,'and in which
wasembedaed a géfmahihm and a>p1a£ihum resistance thermometet.
By balancing the helium flow with a low heater power, a
stable temperature could be maintained over many hours. With
this arrangement temperatures down to that of liquid helium

(4.2°K) could be attained.
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IIT.4 SINGLE CRYSTAL STUDY

4)28nC16 both

exhibited well defined growth faces, the orientations of which

The single crystals of NH,Cl and {(NH

were indicated by the external crystal symmetry and confirmed
by x-ray diffraction. Using these growth faces the crystals
were optically oriented in the sample holder to an accuracy

of a few degrees, their four-fold axes ([{0,0,1]) being aligned
along the axisbof the sample probe. The {1,0,0] and [1,1,0]
crystal directions were brought approximately along the
applied field by rotation of the probe inside the dewar,

the orientations then being sought at which the absorption
lineshape showed minimum sensitivity to small anguiar devia-
tions (the [1,0,0] and [1,1,0] are symmetry directiocns for a

cubic crystal and so represent extrema in the lineshape).

IIT.> SAMFLE MATERIALS

The chemicals used in this investigation, and their
sources, are listed below, In the cases where some structural
data is known, this is also given.

Ammonium chloride [NH4C1] can be prepared by double
decomposition between an alkaline‘chloridé and an ammonium -
salt (Adler, 1899). The material used was of "reagent ACS"
grade and was supplied by Matheson Coleman and Bell Company.

The room temperature crystal structure,as determined by x-ray
studies, is simple cubic with a = 3,859 i (Wyckoff, 1923).

Ammonium bromide [NH4BrJ can be obtained by the direct



46¢

reaction of an excess of ammonia gas with bromine (Bosetti,
1889). The material used in this study was of "reagent" grade,
again supplied by Matheson Coleman and Bell Company. X-ray
studies show the room temperature crystal structure to be

-]
4.047 A (Havighurst, Mack Jr., and Blake, 1925).

]

cubic with a
Levy and Peterson (1953) performed a neutron diffraction study

of four phases of ND4Br. In the ioom temperature phase their
results favoured a structure with orientational disorder among
the ammonium ions and a space group Pm3m.

Ammoniom fluoride [NH4F] can be prepared by crystalli-
zation from NH4C1 and NaF solutions (Berzélius, 1828). The
material used was of "Baker analyzed reagent" grade, supplied
by J. T. Baker Chemical Company. At room temperature the
crystal exhibits the zincite structure with two molecules per
unit cell, where a = 4.39 g and ¢ = 7.02 2 (Zachariasen, 1927).

Ammonium selenate [(NH4)ZSeO4] can be obtained by the
neutralization éf selenic acid with a weak ammonium solution.
Crystals form into monoclinic prisms with a:b:c = 1.758:1:1.206,
B = 77°41"' (Tutton, 1906). The material used was of "reagent"
grade, supplied by Alfa Inorganics, Inc.

Ammonium diuranate [(NH4)2U207] can. be obtained by the
reaction of liquid ammonia at ~33.5°C on uranium nitrate hexa- or
di-hydrate (Watt, Jenkins and McCuiston, 1950). It.is usually
prepared industrially by the precipitation resulting from thé

addition of gaseous ammonia to a solution of uranyl nitrate.
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The material used in this study was of "reagent" grade,
supplied by Alfa Inorganics Inc.

Ammonium dichromate [(NH4)2Cr2O7] can be prepared by
evaporation of a solution of one mole of ammonia and two moles
of chromic anhydride (Abel, 1850). The material used in this
study was a fisher SEientific certified reagent. The
crystals are monoclinic with a = 7.74 R, b = 7.54 i, c = 13.26 i
B = 93°42' with four molecules per unit cell (Gossner and
Mussgnug, 1930) and a space groué C2/¢c (Wilhelmi, 1951). ‘Spé-
cific heat measurements indicate two phase transitions at -2 °C
and -120°C (Jaffray, 1952).

Ammonium persulphate [(NH4)28208] results from anodic
oxydation of a saturated solution of ammonium sulphite in dilute
sulphuric acid (Berthelot, 1892). The material used in this
study was "certified ACS" reagent supplied by Fisher Scientific
Company. At room temperature the crystals are monoclinic
(Fock, 1893), the bimolecular unit cell having dimensions
a=7.842, b=28.06A, c=6.14A, B = 95°9' and the space
~group P2,/n (Wyckoff 195la).

Ammonium trichlorostannite [NH SnClB] can be obtained

4
by treating a solution of ammonium chloride with excess stannous
chloride (Rimbach and Fleck, 19215). The material used in this
study was of "reagent" grade, supplied by Alfa Inorganics Inc.

Ammonium hexachlorostannate [(NH4)anC16] can be ob-

tained by the evaporation of a mixture of ammonium chloride
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and stannic chloride sclutions (Druce, 1918). The material
used in this study was of "reagent" grade and was éupplied
by Alfa Inorganics Inc. The room temperature structure is
face centred cubic with space group Fm3m (Engel, 1935).

Ammonium iodoplatinate [ (NH Pt16] can be obtained by

4)2
treating tetravalent platinum iodide with ammonion iodide
(Datta, 1913).

Ammonium hexanitratocerate [(NH4)2Ce(N03)6] was of
"reagent" grade, supplied by Alfa Inorganics Inc.

Ammonium gallium tetrachloride {(NH4)GaCl4] can be
obtained by the action of HCl gas bn trimethylmonocaminegallium
[(cH,)

in this study was of "reagent" grade, and was supplied by

GaNH3] (Kraus and Toonder, 1933). The material used

Alfa Inorganics Inc.

Ammonium sulphate [(NH4)ZSO4] can be prepared by the
reduction of calcium sulphate in the presence of gaseous ammonia,
carbon dioxide and water (Neumann, 1921). X-ray studies by
Ogg and Hopwood (1919) show the room temperature structure
to be orthorhombic with a = 5.951 i, b = 10.560 i, c = 7.729 i,
with a second order phase transition occurring at -50.7°C
(Crenshaw and Ritter, 1932). The material used in this study
was graded "primary standard" as supplied by Fisher SCientific
Company. |

Ammonium selenite [(NH4) Se03]'can be obtained by

2

evaporation of an agueous solution of selenic acid saturated

with ammonia gas (Muspratt, 1849). The material used in this
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study was supplied by Alfa Inorganics Inc. as "reagent" grade.

Ammonium tetrafluoroberyllate [ (NH BeF4] was supplied

4>2
in "reagent" grade for this study by Alfa Inorganics Inc.
Mukherjee (1944) found the room temperature structure to be
orthorhombic with a = 7.49 g, b = 10.39 ﬁ, ¢ = 5.89 g. However,
Okaya, Vedam“and Pepinsky (1958) discovered a superstructuring
which doubled the b and ¢ dimensions and changed the space

group from the basic Pnam to Acam.

Ammonium thiosulphate [(NH4)2S ] can be prepared

293
by dissolving sulphur in a solution of the sulphite. The anhydrous
crystals are monoclinic at room temperature with a:b:c =‘1.57l7:l:1;
3500, and a = 85°25' (Fock and Kluss, 1889), with a space group
C2/m (Brunt, 1946). The material used for this study was of
"purified" grade, supplied by Fisher Scientific Companyf

Ammonium nitrate INH4NO3] can be obtained by the mutual
neutralization and evaporation of acid and base. It forms
flexible rhombohedral crystals ét room temperature with
a:b:c ? 0.9092:1:1.0553 (Gossner, 1904). The room temperature
phase is reported in Structure Reports (1960a)‘as brthorhombic
with a = 5.75 A, b = 5.45 A and ¢ = 4.96 A and space group
Pmmm . The material used in this study was of "analytical
reagent" grade, supplied by British Drug Houses Limited.

Ammonium metavanadate [NH,VO_,] can be prepared, for

4" 73

example, by neutralizing an acidic solution of vanadium anhydride
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with excesé ammonia, and adding an ammonium salt (Berzelius,
1831). The colourless crystals (Von Humbold:t, 1804) are

isomorphic to KVO., (Norblad, 1875). Structure Reports (1960b)

3
gives the room temperature structure as orthorhombic with
a = 4.92 i, b = 11.82 R, c = 5.85 i and a space group Pmab.
The material used in this study was of "reagent" grade, sup-
plied by Alfa Inorganics Inc.
Impurities, in normal concentrations, will have virtually
no effect on the nuclear absorption spectrum since the energy .
levels of only that small fraction of nuclei in the vicinity
of the impurity wiil be affected. However, paramagnetic im-
purities can have a marked effect on the relaxation. The
large magnetic moments of the unpaired electron spins in para-
magnetic ions can couple quite strongly to the nuclear magnetic
moﬁents. Relaxation of the electron spin modulates this
electron-nuclear coupling so éllowing the nuclear Zeeman energy
to relax to the electron system and hence to the lattice.
The rapid establishment of a spin temperature among the nuclei
by the nuclear spin-spin interaction means that the whole
nuclear Zeeman system can be relaxed by relatively few impurities.
The electron spin-lattice relaxation is only slightly
temperature dependent since the phonon spectrum inducing it is
very broad. Hence, the nuclear relaxation through such

paramagnetic centres is almost independent of temperature .
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Therefore, at very high and very low temperatures where the
thermal nuclear relaxation rate becomes slower than the para-

magnetic relaxation rate; the latter dominates the relaxation,

so limiting the value of Tl.



CHAPTER IV

CRYSTAL DATA

IV.l1 INTRODUCTION

Most of the ammonium salts under cons;deration in
this work‘have been studied only as powder samples, the
relevant crystal classes to which they belong being given

in Table VI (Chapter V). Since only NH,Cl and (NH4)ZSnCl

4

have been studied as single crystals, the crystal data

6

for these salts alone will be presented in this chapter.,

IvVv.2 AMMONIUM CHLORIDE [NH4C1]

The high and low temperature structures of this
salt have been investigated by, for example, x-ray (Nagakura,
1957), neutron (Levy and Peterson, 1952) and electron
(Kuwabara, 1959) diffraction. The crystal belong; to the
cubic class with the nitrogen and chlorine atoms occupying
a CsCl type lattice, the dimensions of whose unit cell is
.3.866 g.at room temperature (Wyckoff, 1951b). The room tem~
perature phase; existing between -30.5°C and 180.3°C, beldngs
to the space group Pm3m, while the low temperature phase,
below -30.5°C, belongs to the space group P43m. The two
possible orientations of the tetrahedral ammonium ion, in

which the N-H bonds are directed towards the nearest neighbour

47
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chlorine atoms, are occupied randomly in the room temperature
phase, and regularly in the low temperature phase, The N-H

' . o
distance in both cases 1s 1.03+0.,02 A, The possible con-

figurations within a cell are shown in Figure 8(a).

IV.3 AMMONIUM HEXACHLOROSTANNATE [ (NH SnClG]

42

An x-ray diffraction study of this salt by Engel (1935),
shows that at room temperature the crystal lattice is face
centred cubic with a unit céll dimension of 10.038 R. The
crystal structure belohgs to the space group Fm3m. The

ammonium ion, surrounded tetrahedrally by four SnCl_ ions,

6
has twelve equidistant chlorine atoms as its nearest néighbours.
The configuration of one octant of the unit cell is shown
in Figure 8(b), where the ammonium ion orientation is only

representational, there having been no precise determina-

tion of the hydrogen atom positions.

We are much indebted to Mr. H. C. Teh for supplying
the crystal of NH4C1 and to Dr. K. R, Jeffrey for the
crystal of (NH4)ZSnC16.


http:1.03�0.02

(a)

FIGURE 8

Environment of the ammonion ion in

NH4C1. The small closed, and small

open circles show the itwo possible

orientations of the NHZ ion.

Environment of the ammonium ion in

(WH SnClg, showing one octant of

42
the unit cell. The hydrogen positions

are only schematic.






CHAPTER V

EXPERIMENTAL RESULTS

V.l PROTCN ABSORPTION MEASUREMENTS
The derivative of the proton absorption signals at
4.2°K for powdered samples of twenty ammonium salts were
recorded. Those ob*tained for ammcnium selenite f(NH4)ZSeO3], and
ammonium tetrafluoroberyllate [(NH4)2BeF4] are shown in
Figures 9 and 10. These two have been chosen for explicit
display because they are representative of the range of
spectra obtained; from the very simple [(NH4)2BeF4], to

the more complicated [(NH,),Se0,].

4)2

The absorption spectra were obtained from these
derivatives by computer integration and are shown in Figures
11 to 29 along with, in some cases, the theoretical spin
isomer spectra (dashed curve) of closest fit (see Chapter VI),.
No correction for modulation distortion has been made, but
the modulation amplitude is indicated in each figure. Only
one half of each spectrum is given since all spectfa were
observed to be symmetrical about the origin, Hye

Some gross features of each spectrum, such as line-
width (8H), defined as the peak to peak field for the absorp-

tion derivative curve, and second moment (M2) are listed

in Table VI, as well as values for the activation energy (Ea)

50
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TABLE VI

- Powder parameters from absorption and relaxation data.
Sources for the activation energies are given in the text.
Second moments are measured at 4.2°K, except those referenced
differently.

Material Crystal Ey T, at Mz:-Low SH at

Class (K cal/mole) 4.2°K Temp. 4.2°K
(sec) (G?) (G)
NH,C1  cubic 4.7 220  49.5:0.57 23.120.4
NH Br cubic 4.00%0.16 48.0%0.57 23.2:0.8
NH,F hex. 53 +2 22 *1

(NH,) ,Se0, monoc. 4.7 0.2 50.6:1.2" 22.7%0.8

+
(NH,) ,Cr,0, monoc. 2.0 0.2 600  7.59%0.35% 2.9%0,2
(NH,) ,8,0g monoc. 1.7 0.2 380  19.0%0.5 2.9%0.1
NH,SnCl, - 1.7 0.5 10 9.6%0.5 2.1%0.1
(NH,) ,SnC1, cubic 1.2 0.2 40 5.4%0.5 1.80%0.05
(NH4)2PtI6 cubic 10 =*1 1.9£0.1
(NH4)2Ce(NO3)6 monoc. 1.6 0.2 160 3.0%0.2 1.5+0.1
NH,GaCl, 28 *1 3.040.4

3.2 1000 *

(NH4)2804 rhomb. 1 2_7} > 33.3*1.1 4.6+0.2
(NH,) ,Se0, 38 £l 22.240.8
(NH,) ,TeO,, 4.7 +0.2 13 26 =*1 5.1+0.4

4.3 0.7 o
(NH4)2BeF4 rhomb. }2.4 i0.2} 25 £l 6.8%0.4
(NH,) ,S..0 monoc 3.7 #0.24 520 26 1 3.3%0.2

4’ 2°2%3 . 2.8 0.2 - .

NH,NO, rhomb. 2.4 0.2 660  50.0x1.3* 7,7%0.2
NH,VO, 1.9 %02 140  21.6%0.8% 11.2%0.2

- :
Richards and Schaefer (1961). (NH4)2TeO
others at 20°K.

Gutowsky, Pake and Berschn (1954), at 77°K.

4 measured at 90°K, the

+



FIGURE 9
Derivative of the proton absorption spectrum,

Se0..

o 2
at 4.2°K,of powdered (NH4)2 3
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£09S3(VHN)



FIGURE 10
Derivative of the proton absorption spectrum,

at 4.2°K, of powdered (NH4)2BeF4.
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FIGURE 11
Proton absorption spectrum,at 4.2°K,of

powdered NH4C1.
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FIGURE 12
Proton absorption spectrum, at 4.2°K, of

powdered NH, Br,

4
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FIGURE 13
Proton absorption spectrum, at 4.2°K, of

powdered NH4F.



56




FIGURE 14
Proton absorption spectrum, at 4.2°K, of

powdered (NH4)2SeO4.
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FIGURE 15
Proton absorption spectrum, at 4.2°K, of
powdered (NH4)2U207 {(full curve), and
theoretical spin isomer spectrum for a

<AH2> of 4 G2 (dashed curve).
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FIGURE 16
Proton absorption spectrum, at 4.2°K, of
powdered (NH4)2Cr267 (full curve), and
theoretical spin isomer spectrum for a

<AH2> of 2 G2 (dashed curve).
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FIGURE 17
Proton absorption spectrum, at 4.2°K, of
powdered (NH4)28208 (full curve), and
theoretical spin isomer spectrum for a

<AH2> of 2G2 (dashed curve) .
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FIGURE 18
Proton absorption spectrum, at 4.2°K, of

powdered NH SnCl3 (full curve), and thecre-

4

. D 2
tical spin isomer spectrum for a <AH > of

2 G2 (dashed curve).
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FIGURE 19
Proton absorption spectrum, at 4.2°K, of
powdered (NH4)2SnC16 (fvll curve), and
theoretical spin isomer spectrum with a

<AH2> of 1 G2 {(dashed curve).
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FIGURE 20
Proton absorption spectrum, at 4.2°K, of
powdered (NH4)2Pt16 (full curve), and

thecretical spin isomer spectrum with a

<AH2> of 1 G2 (dashed curve) .,
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FIGURE 21
Proton absorption spectrum, at 4.2°K, of
powdered (NH4)2Ce(NO3)6 (full curve), and
theoretical spin isomer spectrum with a

<AH2> of 1 G2 (dashed curve).
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FIGURE 22
Proton absorption spectrum, at 4.2°K, of
powdered NH,GaCl, (full curve), and
theoretical spin isomer spectrum with a

<AH2> cf 1 G2 (dashed curve).
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FIGURE 23
Proton absorption spectrum, at 4.2°K, of
powdered (NH4)2SO4 (full curve)}, and
theoretical spin isomer spectrum with a

<AH?> of 8 G2 (dashed curve).
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FIGURE 24
Proton absorption spectrum, at 4.2°K, of

powdered (NH4)2SeO3.
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FIGURE 25

Proton absorption spectrum, at 4,2°K, of

powdered (NH TeO, (full curve), and

4>2 4
theoretical spin isomer spectrum with a

<AH2> of lO,G2 (dashed curve).
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FIGURE 26
Proton absorption spectrum, at 4.2°K, of
powdered (NH4)2BeF4 (full curve), and
theoretical spin isomer spectrum with a

2 2

<AH®> of 10 ¢° (dashed curve) -
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FIGURE 27
Proton absorption spectrum, at 4.2°K, of
G -
powdered (NH4)2.>203 (full curve), and

theoretical spin isomer spectrum with a

<AH2> of 6 G2 (dashed curve).



70

{NH4)2S203
ks

—
MOD.




FIGURE 28
Proton absorption spectrum, at 4.2°K, of

powdered NH4NO3 (full curve), and theore-

tical spin isomer spectrum with a

<AH2> of 16 G2 (dashed curve).
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FIGURE 29
Proton absorption spectrum, at 4.2°K, of
powdered NH4VO3 (full curve), and

theoretical spin isomer spectrum with a

<AH2> of 16 G2 (dashed curve).
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and estimates, where avéilable, of T. at 4.2°K obtained from

1
the relaxation measurements. It should be noted that most
of these salts have second moment values considerably less
than the 'rigid lattice"value of 50 G2.

For each salt, the line shape itself constitutes a
detailed characteristic, although it is not easily quantified,
as are the gross features given in Table VI. Most spectra
are characterized by a fairly narrow central gaussian com-
ponent peak (1 to 2 G wide) and the semblance of some
structure further out in the wings of the spectrum [e.g.

(NH4)ZSnCl NH4SnC13].

6’
The line shapes stay fairly constant with increasing
temperature up to about 30°K or 40°K when the wing structure
disappears.
Some of the spectra however, such as NH4C1, NH4Br,
(NH

SeO4, NH,F are quite different in character from the

4)2 4
above mentioned, having a very wide central peak (n 10G), and
no structure in the wings.

The spectra of a number of the salts showed no change
over a period of days after initially reaching 4.2°K, the first
observation being made about half an hour after the initial
immersion in liquid helium. The mechanism responsible for the
line shape must therefore establish equilibrium among the
spins in a matter of minutes.

The abscrption derivative spectra obtained at 4.2°K

along the [1,0,0] and [1,1,0] directions are shown for a
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single crystal of NH4C1 in Figures 30 and 31, and for a single
4)28nC16 in Figures 32 and 33. The corresponding

absorption spectfa are shown in Figures 34 to 37. The spec-

crystal of (NH

trum of NH4C1 appears to consist of two angular dependent
components symmetrically distributed about the Larmor field.
For the [1,0,0] orientation, these components lie approximately
4G from the centre of the resonance, whereas for the [1,1,0]
orientation they lie approximately 7G from the centre. The
difference in character between the NH,Cl and the (NH4yZSnC16-
spectra is quite apparent. 1In the latter there appears to be
a component centred at the Larmor field (HO) in both orien-
tations and two angular dependent components symmetrically
distributed about HO and lying at about 3.3 G for the [1,0,0]
orientation, and 2.6G for the [1,1,0] orientation. There
appears also to be two other symmetric components, more pro-
nounced for the [1,1,0] orientation, at 4.8G from the centre.
In both cases the repetition of the same line shape
on rotating the probe (and sample) through 90° confirmed that

the [0,0,1] crystal direction was parallel to the probe axis,

V.2 RELAXATION TIME MEASUREMENTS

Spin-lattice relaxation time (Tl) measurements have
been made for most of these salts., Those which have been
published previously will not be shown explicitly but references
will be given; Within the scope of the present work only

such quantities as molecular correlation times and activation



FIGURE 30
Proton absorption derivative spectrum, at

4.2°K, for a single crystal of NH,Cl. Eo

4
is along the [1,0,0] direction.



75

‘GO

oi-

0¢-



FIGURE 31
Proton absorption derivative spectrum, at 4.2°K,

for a single crystal NH,C1l. Eo is along the

4
[1,1,0] direction.






FIGURE 32
Proton absorption derivative spectrum, at
4,2°K, for a single crystal of (NH4)ZSnC16.
Eo is along the [1,0,0] direction.
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FIGURE 33
Proton absorption derivative spectrum, at
4.2°K, for a single crystal of (NH4)2SnC16.
Eo is along the [1,1,0] direction.
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FIGURE 34
Proton absorption spectrum, at 4.2°K, for
the [1,0,0] field direction in a single

crystal of NH4Cl.
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FIGURE 35
Proton absorption spectrum, at 4.2°K, for
the [1,1,0] field direction in a single

crystal of NH, Cl.

4
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FIGURE 36
Proton absorption spectrum, at 4.2°K, for
the [1,0,0] field direction in a single

crystal of (NH4)ZSnCl6.



SsSnNvd

Ol

(4

14

ol

8l

o<

"o

L]
W)

I

1]
@)

[as ]

Em

)

exy

Z
)
i~

20

A7LSA




FIGURE 37
Proton absorption spectrum, at 4.2°K, for
the [1,1,0] field direction in a single

crystal of (NH4)2SnCl6.
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energies are of interest. Cocnsequently, for the new-data

shown, only those features relevant to this objective will

be emphasized. Aspects arising outside the scope of this

work may be commented on, but any detailed discussion willl

be left for later publication by the various workers involved.
In the interest of bfeVity, the activation energies

(Ea), calculated from the slopes of the linear portions of the

An (T vs. inverse temperature graphs, and the values of

1)
T, at 4,2°K, where available,are listed in Table VI.
TeO

Ammonium Tellurate [ (NH 4] - T1 for this salt shows

4)2

very little variation with temperature between 77°K and 300°K.

This is probably a result of the presence of paramagnetic
impurities dominating the relaxation. For this reason no

activation energy was calculated, or data shown.

Ammonium Nitrate [NH4N03] - Tl measurements have been

reported by Riggin (1970).

Ammonium Metavanadate [NH4VO3J - T.'s were measured at

1

a frequency of 42 MHz in the temperature range from 77°K

to 333°K, as shown in Figure 38, Of the two minima, one
occurring at 123°K and the other at 192°K, the low tempera-

ture one can be attributed to reorientation of the ammonium



FIGURE 38

in NH,VO., at 42 MHz.

Temperature dependence of T1 4VO,
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ion.

Ammonium Dichromate [(NH4)2Cr207} - Tl's were measured at

a frequency of 42 MHz in the temperature range from 77°K to

300°X, as shown in Figure 39. Rn(Tl) decreases linearly with
increasing B (=1000/T) over much of the temperature range and
- approaches its minimum around 77°K, although the temperature
range did not extend low enough to completely include the

minimum.

Ammonium Persulphate [(NH4)25208] - Tl's were measured
at a frequehcy of 19 MHz in the temperature range from 77°K
to 300°K, as shown in Figure 40. The temperature dependence
is very similar to the dichromate with a minumum occurring
around 80°K, which is again at the lower limit of the measured
temperature range, and hence is ill-defined.

Ammonium Thiosulphate [(NH4)28203] - T.'s were measured at

1

a frequency of 20.7 MHz in the temperature range from 77°K

to 300°K. Over this range the signal decay was non-exponential
and was analyzed to give two unique Tl's as shown in Figure

41, This behaviour can be attributed to the existence of two
inequivalent types of ammonium ion in this salt, each posses-
sing its own spin temperature and relaxing independently to

the lattice. The T, minimum for one ion type occurs around
116°K, but is only just beginning to appear for the other at

the lower temperature limit of 77°K.



FIGURE 39

Temperature dependence of T. in (NH4)2Cr 0. at

1 277

42 MHz.



86

(1-Ye) 17000
Pl m_ N__ ___ O__ m_v w .ﬂu m_w

1 __J ©

(ops w) Iy

| | | | _ L o
GZ 00l (o) L e ogl 002 0S¢ 002



FIGURE 40

Temperature dependence of Tl 1n_(NH4)28208 at

19 MHz,
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FIGURE 41

Temperature dependence of (NH4)2S at 20.7

203
MHz. The signal decay was non-exponential over

this range and was analysed to give the two Tl

dependences shown.
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, Ammonium-Hexanitratoceratel[(NH4)2Ce(N03)6] - Tl's were

- measured at a frequency of 5.4 MHz in the temperature range

from 20°K to 300°K, as shown in Figure 42, On both sides of the
minimum Ln(Tl) shows a linear dependence on inverse temperature. At
very low temperatures, below 30°K, Tl levels off as the

paramagnetic -impurities begin to dominate the relaxation.

Ammonium Selenate [(NH4)2SeO4] - Tl's were measured at a
frequency of 20.7 MHz in the temperature range from 150°K to
350°K as shown in Figure 43. The T, minimum due to molecular

reorientation occurs around 198°K.

Ammonium Hexachlorostannate [(NH4)25nC16] - Tl's were
measured at a frequency ef 5.4 MHz in the temperature range
from 20°K to 125°K. Below about 70°K the signal decay was
non-exponential and was analyzed to give two Tl's as shown
in Figure 44. The data may be interpreted on the basis of
two relaxation mechanisms: a reorientation of the ammonium
group leading to a minimum in Tl around 57°K and a tunneling
assisted mechanism leading to a T, minimum at 29°K, which is
toec low a temperature for molecular reorientation to be

evident.

's were measured

Ammonium Trichlorostannite [NH4SnC13] - Tl
at a frequency of 20.7 MHz in the temperature range from
77°K to 300°K. Over practically the whole of this range the

signal decay was non-exponential, and was analyzed to give two



FIGURE 42

Temperature dependence in (NH ?Ce (NO3)6 at

4)
5.4 MHz.
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FIGURE 43
Temperature dependence of T, in (NH,),Se0,

at 20.7 MHz.
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FIGURE 44

4)ZSnCl6

at 5.4 MHz. The signal decay in the region below

Temperature dependence of Ty in (NH

70°K is non-exponential, and was analysed to

give the two Tl dependences shown,
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Tl'SAas shown in Figure 45, 1In all cases the Tl values found
‘at each temperature were of the same order of magnitude,
resulting in some inaccuracy of the extracted values. The
inference is again of two inequivalent grouwps of ions relaxing
independently to the latt;ce. ‘The activation(energy extracted
from the small region around 150°K is, of course, inexact

and can be taken only as a gualitative guide,

- Ammonium Bromide [NH4Br] - Tl measurements have been re-

ported by Woessner and Snowden (1967a).

Ammonium Chloride [NH4Cl] - Tl measurements havg beén
reported by Woessner and Snowden (1967b).

Ammonium Sulphate [(NH4)2SO4] - T, measurements have
been reported by O'Reilly and Tsang (1967} for protons and by

Kydon, Pintar and Petch (1967) for deuteross.

__Ammonium Tetrafluoroberyllate [(NHdizBéF4] - Tl measure-
ments have been reported by Kydon et al (1%69) for deuterons,
and by O'Reilly, Peterson and Tsang (1967) for protons.

Ammonium Selenite INH4SeO3] - No T1 data is available for

this salt.

Ammonium Diuranate [(NH,),U,0,] - No T, data is given for

this salt because the relaxation was dominated by paramagnetic

impurities.

Ammonium Iodoplatinate [(NH4)2Pt163 - No Tl data is

ayailable for this salt.



FIGURE 45

Temperature dependenée of Tl in NH4SnCl3at

20.7 MHz. The two T, dependences represent

1
an analysis of the non-exponential signal decay

over the entire temperature range.
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Ammonium Chlorogallate [ (NH GaCl4] - No T, data is

42 1

available for this salt.

Ammonium Fluoride [NH4F] - No Tl data 1s available for

this salt.

The effects of relaxation caused by paramagnetic im-
purities mentioned at the end of Chapter III can be seen in

a number of these cases. At low temperatures the T, values

1

of (NH4)2Ce(NO3)6 (Figure 42) and (NH SnCl6 (Figure 44)

a2

approach a limiting value of about 104 sec. as the paramagnetic
relaxation begins to dominate, Similar limitation effects

‘at high temperatures can be seen in NH,VO., (Figure 38),

4°73
(NH4)2Cr207_(Figure 39), (NH4)2S208 (Figure 40) and NH4SnCl3
(Figure 45). In the middle temperaturé rahges where Tl is
strongly temperature dependent the paramagnetic impurities
play only a minor role in the relaxation which is dominated
here by the thermally activated dipolar mechanisms,

For the particular case of (NH4)2U207 the constituent uran-

ium ions themselves are paramagnetic and dominate the relaxation

over the whole temperature range.



CHAPTER VI

DISCUSSION

VI.l MOTIONAL EFFECTS
The calculation of the correlation frequency (defined
as l/ZﬂTc) is illustrated for a few of the materials studied:-
The dipolar relaxation time for reorientation is

~given {(Abragam, chapter VIII) by;
T 47
+
2
T 1+4w

1
1r .

H o0

1+w T

o0
QN

where Cd depends only upon the nuclei concerned and their con-

figuration, T is the correlation time for the reorientational
process, and Wy is the Larmor frequency.

From expression (6.1), a minimum in T, occurs when

1
W T, = 0.62. For ammonium selenate this minimum isg cbserved
to cccur around 198°K at 20.7 MHz {(Figure 43). Considering
the reorientation as a thermally activated process, the
Arrhenius expresgion

14

T = 3.2 x 10
C

exp{2.48) (6.2)
is obtained for the recrientational correlation time in this
salt. Using expression (6.2), the temperature at which the
correlation freguency becomes less than the linewidth (which

for these salts is ~10G,or 40 KHz) can be calcualited. Hence

we find that, for ammonium selenate, the lattice is effectively

%6


http:exp{2.4S
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rigid below 116°K.

For ammonium hexanitratocerrate the temperature at which
Tl reaches a minimum {(around 50°K at 5.4 MHz - Figure 42) was
one of the lowest among the salts measured. This fact, coupled
with its very low activation energy (1.6 K cal/mole), would indi-
cate that the "rigid lattice" temperature for this salt should
be one of the lowest for the solids studied. A calculation
analogous to the one for the selenate shows that the lattice
of (NH

Ce(NO3) is effectively rigid below 35°K. Indeed,

4)2 6
taking an extreme, hypothetical case, where the Tl minimum

at 20 MHz occurs at 50°K, with an activation energy of 1 K cal/
mole (both quantities lower than those for any salt measured),
the same calculation reveals that the lattice would be effec-
tively rigid below 27°K. We may thus safely conclude that
‘molecular reorientation, as a mechanism for line narrowing, can

effectively be ruled out, for the ammonium salts studied here,

at temperatures as low as 4.2°K. ;

VI.2 LINE SHAPES

From the theory of Chapter II, the proton absorption
line shape for an ammonium group exhibiting spin isomerism is
expected to display certain salient characteristics; a second
moment considerably less than the "rigid lattice" value, a
dominant central gaussian component, and either structure or

broadening in the wings depending upon the inter-ionic second
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moment. With one or two exceptions the ammonium salts studied
fall naturally into three classes determined by the characteris-
tics of their absorption spectra. Each salt will be discussed

within the category to which its spectrum most closely conforms:

a) Wide Spectra

This category consists of the halogen salts NH4C1, NH,Br
and NH#F plus the selenate (NH4)2SeO4. Their spectra have no
dominant central component and all are broad (Figures 11 to 14)
with large second moments (comparable to the "rigid lattice"
. value). On the basis of théir line shapes and second moment
values we conclude that spin isomerism is not exhibited by any
of the salts in thisg category.

The single crystal derivative spectra at 4.2°K of
NH4C1 for the [1,0,0] and [1,1,0] field directions (Figures
30 and 31) are identical with those obtained at 77;K by Bersohn
and Gutowsky (1954) for the same orientations in this;salt.
They found good experimental agreement between their line shapes
and a theoretical "4~spin 1/2" calculation, in which the entire
matrix in Table IT is diagonalized (protons are distinguishable -
no symmetry restrictions on the wave function). They found
better agreement for the [1,0,0] direction than the [1,1,0],
and suggest that this may be the result of using the same
inter-ionic broadening factor for each skeletal line of the

isolated proton group spectrum, a criticism, however, which
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applies equally to both orientations. A more probable expla-
nation for the poorer agreement along [1,1,0] is that the con-
tribution of the nitrogen nucleus, which they neglect, though
zero for the [1,0,0] is non-zero for the [1,1,0] direction
(see section II.13).

In view of this agreement for a single crystal we méy
conclude that the powder spectra at 4.2°K of all the salts
in the present category, being gqualitatively similar to that
of NH4C1, are indicative of a "4-gspin 1/2" system. This
distinguishability shown by the protons is consistent with the
high activation energies (i 4 X cal/mole) in these solids, which
imply strong crystal fields and consequently small overlap of

the spatial wave functions.

b) Narrow Spectra
The line shapes of all salts in this category are

- Characterized by a very dominant, narrow (~l G2) central

component, some exhibiting wing structure at about 4 or 5 G
from the centre. They are shown in Figures 15 to 22,along

With the theoretical spin isomer line shape (dashed curve)

most closely fitting the central component. The values of

the broadening factor, <AH2> : hecessary to achieve this

2 .
A o £ o

2 .
4)28208(2 G~ - Figure 17), NH,SnCl,

o]
(2 ¢° - Figure 18), (NH4)2SnCl6(l 62 - Figure 19), (NH,).PtI
4°2

2 .
(L G° - Figure 20), (NH4)2Ce(NO

fit for each salt are: (NH
(2G2 - Figure 16), (NH

6

3l (1 c? - Figure 21),
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. 2
NH4GaCJ_4

less than the "rigid lattice" value, and , with the exceptions

(L G - Figure 22). All have second moments much

of (NH (NH4)28208, and NH4GaCl4, much less than the

a1 29207+
theoretical spin isomer value fér a ratio (R) of meta:ortho

~of 5/3. Since all the salts in this group have very low
activation energies (< 2 K cal/mole) an attempt to explain these
low second moments could be made by assuming that the spatial
level splittings in such low crystal fields are so high that

the Boltzman factor becomes important at 4.2°K. The effect

- of this would be to increase the population of the lower, meta,
states, so decreasing the second moment (M2 for the meta-
transitions is just <AH2>). However, the only effect this

would have on the theoretical line shape would be to decrease
the intensity of the ortho component - its associated wing
structure would still occur in the same part of the spectrum,

@9 G from the centre. This is in disagreement with the observed
spectra of all the salts in this group, whose wing structure is
observed to occur around 4 or 5 G from the centre.

(NH SnC16 is a typical salt of this category. 1Its

4)2
absorption spectrum for the [1,0,0])] field direction (which is
particularly easy to interpret because of the absence of the
nitrogen contribution) can be approximated very closely in the
central region by a spin isomer spectrum with a <AH2> of 2 G2
- Figure 36. However, the theoretical structure‘occuring at

-3 G is completely absent, while only a semblance of that at

VD G remains. The lack of agreement for the single crystal

McMASTER HNREDRITY | IBRARNE
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between the experimental and theoretical lihe shapes is, as
for the powders, in the location as well as the amount of
wing structure.

We can conclude that the spin isomeric spectrum is exhi-
bited by none of the salts in this category, although the
protons can clearly not be regarded as distinguishable. The
presence of a central meta component is apparent, but the ortho
component, which is responsible for the wing structure, is
much narrower than the theoretical ortho-isomer component. It
is probable that "tunneling" of the ammonium ion in the low
crystal fields of these solids, which would not affect the meta
transitions, is responsible for the observed narrowing of

the ortho component.

¢) Broad-Gaussian

The salts in this category are all characterized by a
broad (z 6 G2) central component with either broadening or
structure in the wings. ‘

The central component of the (NH4)2504 spectrum is best
reproduced by a theoretical spin isomeric line shape with a
<AH?> of 8 G° - Figure 23. A calculation of the inter-ionic
proton contribution to the second moment for proton-proton

(=]
separations of up to 20 A was made using the proton positions

~given by Schlemper and Hamilton (1966). A value of 5.2 Gz
was obtained, and considering the remaining protons, and the

. . . 2 . .
nitrogen contributions, 8 G~ 1is not an unreasonable estimate
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for <AH2>. However, the experimentally observed wing structure
is too pronounced to be consistent with the theoretical spin
isomer line shape obtained with this broadening factor. There
are, however, two inequivalent ammonium ions in this salt
(Schlemper and Hamilton); one tightly bound (E, = 3.9 K cal/mole),
- the other more loosely bound (Ea = 2,7 K cal/mole - Table VI).
It is poséible that each ion is exhibiting a different type of
absorption spectrum, the experimentally observed one being their
superposition. To account for the larger second moment of

this salt (33.3 G2), one of these component spectra would

have to be the "4-spin 1/2" type of category a), having a second

moment ~50 G2. If the other component were spin isomeric with

a second moment of 23 G2 (15 ¢% for the isolated group plus
8 G2 broadening), the observed second moment, being the average
for the two types, would be 37 G2, which though higher than
the observed value, is of the right order. However, had the
second component not been spin isomeric, but of the type
observed in category b), with a second moment ~10 G2, the
observed second moment would have been ~30 G2, which is also
of the right order, though smaller than observed. On the
basis of these results, no definite conclusion can be drawn
as to the nature of this narrower component in the spectrum
of (NH4)2SO4. Any winé detail that may confirm or refute

it.as spin isomeric in character is masked by the broad comn-

ponent.
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The spectrum of (NH4)2SeO3 is gualitatively similar
to that of (NH4)2804 (Figure 24) and a similar proposition
can be forwarded of two spectral types being present in the
observed line shape. Although there is more of the broad
component present in this case, the consequently higher second
moment (38 = 1 G2) agrees well with that predicted above (37 G2)
for a 1:1 mixing of "4-spin 1/2" with spin isomeric sites.
No structural data is presently available on this material, so
this proposition cannot be substantiated.

'(NH4)2TeO4 and (NH4)2BeF4 spectra are both approximated
very closely by a spin isomeric spectrum with a broadening
factor, <AH2>, of 10 G2 - Figures 25 and 26. Both these

salts have second moments, 26 #* 1 G2 and 25 = 1 G2 respec-

tively, consistent with that predicted for spin isomerism (15 G2
for the intra—protonic group plus the 10 Gz broadening) with a
ratio of meta:ortho of 5:3 (spatial splitting << kT at 4.2°K).
However, not only is an inter-ionic second moment of 10 G2
questionably high, but in the tetrafluoroberyllate at least,
the situation is again complicated by the presence of two in-
equivalent ammonium groups with different activation energies
(Table VI). It is possible that in these salts too the
observed spectra are the composites of two components, the
narrower one being broadened sufficiently by the inter-ionic

second moment to give an apparent agreement with the theoretical

spin isomeric spectrumnm.
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The closest fit of a theoretical spin isomeric line
shape to the spectrum of (NH4)2 2 3 is achieved with a <AH2>
of 6 G2 - Figure 27. The agreement is very poor,both in the
central region (which is apparently non-gaussian) and in the
wings, which are experimentally observed to be much wider
and less structured than those of the spin isomer spectrum
To approximate the spectra of NH4NO3 and NH4VO3

by a spin isdmeric line shape a <AH2> of at least 16 G

2
must be used (Figures 28 and 29), which is an unrealistically
high value. With this amount of broadening, no wing struc-
ture would be observed, whereas the NH4N 3 Spectrum in
particular, still exhibits gquite pronounced wing structure.
Although the low seccnd moments at 4.2°K indicate some
indistinguishability among the protons in all the salts 6f
‘this category, it is unlikely that any of them exhibit solely
isomeric spin states. All their spectra may, in fact, be

composites of the spectra from two inequivalent proton groups -

one distinguishable, the other not.

VI.3 CONCLUDING REMARKS

A mechanism for line narrowing at 4.2°K is not
characteristic of all ammonium salts. Those of category a)
exhibit the "4-spin 1/2" line shape characteiistic of dis-
Einguishable ammonium group protons, their high hindering po-

. tentials being consistent with such an interpretation.
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The spectra of the sélts in category b) show their
ammonium group protons to be indistinguishable, although spin
isomerism is not the sole mechanism responsible for the line
shape. The extreme narrowness of the spectrum of some of these
salts indicates some other mechanism, probably "tunneling" of
the ammonium.groups through the low hindering potentials, is
modifying the spin isomeric line shape.

Similarly, for the salts in category c¢), with the
possible exception of (NH4)2TeO4 and (NH4)2BeF4, spin ;somerism
is not the sole mechanism responsible for the line narrowing
at 4.2°K. However, the sbectra of (NH TeO

and (NH BeF

4?20 4) 2BeFy
are indicative of spin isomerism in these salts, although the
large broadening factof involved would tend to obscure the wing
structure (ortho component) in which tunneling effects would
manifest themselves.

The splitting of the A, E and 3T spatial levels, which
is responsible for the separation.of the different spin symmetry
states, is a result of the overlap of the spatial wave func-
tions from one equilibrium orientation of the ion to another -
the conventional tunneling of the ion between equilibrium sites.
If this sélitting is much greater than the natural absorption |
linewidth, transitions between different spin symmetry states
then give. rise to very weak components in the absorption

spectrum far removed from the Larmor frequency which become

lost in the noise of the wings, thus narrowing the resonance


http:separation.of
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line and the second moment . In a crystal field of tetra-
hedral or highervsymmetry the 3T levels remain degenerate so
that none of the allowed transitions between the different

T states are lost in the wings. This situation is implicit

in .our description of spin isomerism. Howevér; in a crystal
field of symmetry lower than tetrahedral the degeneracy of the
3T levels is a£ least partially removed (see page 1ll). If

the splitting of these levels is much greater than the natural
linewidth certain transitions among them will again give rise
to unobserved components far removed from the Larmor fregquency,
resulting in a further narrowing of the observed spectrum. This
is the situation we have previously referred to as "tunneling",
but it must be emphasized that it is in fact only a removal,

by the crystal field symmetry, of the residual degeneracy

of the 3T levels. The conventional tunneling of the ammonium
ion is already responsible fbr the separation of these levels
from the A and E  types.

The extreme narrowness of the ortho components in
category b) suggest that this "tunneling" situation may be
present in these salts and that the initial decoupling of the
spin and space eigenfunctions employed by Tomita with the
subsequent diagonalisation of the spin state representation
of the dipolar Hamilténian is not justified. A future attempt

to describe this mechanism should involve an initial coupling
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of spin and space eigenfunctions to form‘physically real states,
followed by diagonalisation of the matrix representative of

the dipolar Hamiltonian in this spin-space basis.
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APPENDIX A

MATRIX ELEMENTS

A.I NOTATION
To condense the expressions involved in this
appendix to a convenient length the following abbreviated

notation will be defined:

R will be represented by

a) The symmetry adapted states mbs

a vector of the form {a],a ; «+.} where the ai's are the

coefficients of the states Imlm2m3m4> in the reduction to
R

M¢i defined in Table I. e.g. the state;

l¢§ = % [ =444> + | +=44> + | +4=4> + | +44->]

will be represented by;

A1 .
197 = 7 {1,1,2,13

b) The matrix elements will be linear combinations of the

Aij‘s and will be represented by a vector (bl, ..

the b's are the coefficients of the Aij's in these linear

combinations. e.g. from Table ITI;

a, = ~7l O
2 o4 MT12 23773 714 724 734

will be represented by:

1
a, =~ 7 (1,1,1,1,1,1)

b6), where
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A.,II MATRIX ELEMENTS OF Hdp

From section II1.3;

4
H = 3 ol 4 - -+
ap 553 Aij[Iiszz 4(Iin + Iilj)] (A1)
=1
The relevant operator properties are (for m, = %);
IiszZ[mlm2m3m4> = mimjlmlm2m3m4>
(A.2)
+ - N _ _ .
1112]m1m2m3m4> = | My = My, > }
for m, = - & and m, = + = and is ro otherwise
1 5 and m, = 5 is ze o wise.
Consider, for example, |l¢$:>where, from Table I;
T -
|l¢l>: “if {111111”5} (A.3)
2/3
Operating with (A.1l) and using (A.2) we find;
T 1
Hooly01> = —= {(-2,1,-2,2,1,1),(-2,-2,1,1,2,1),
PPos a3

(l,—2,“2,1,l,2),("3,‘3,—3,2,2,2)}

Also;
T -
ll¢2> = "; {l,l,—Z,O}
e

Hence;
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T 7
£ = <39plHgp 11072

= X [(-2,1,-2,2,1,1)+(-2,-2,1,1,2,1)-2(1,-2,-2,1,1,2)]
24Y72
1 .
= ("613131-111:—2)
24V2

The other matrix elements of Hdp are obtained in an

identical manner.

A-III MATRIX ELEMENTS OF Han

From section II1.13;

4
Hdn = .E Biotiztng (&.4)
i=1
The relevant operator properties are;
IizInzlmlm2m3m4>n = nmilmlm2m3m4>n (A.5)

where the modified states Imlm2m3m3>n are defined in section

II.]13. The same notation defined in section A.I and extended
to this case gives, for example;
T 1
ll¢3>= — {1,-1,0,0}
V2
Then operating with (A.4) and using (A.5) we get,

for n = 1,

T = L f(-1,1,2,1),-(1,-1,1,1),0,0)

Hap |

Hence;
'

._n :\T | T
b= <qoglig ey
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' %: [(-1,1,1,1) + (1,-1,1,1)]

2/' = (0101111)

The other matrix elements of Hdn are obtained in an

identical manner.
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APPENDIX B

Aij AND AiO IN SPHERICAL CO-ORDINATES

B.I A,.
1]

In the reference frame defined by Figure 1l a

unit vector h along the applied field Eo has co-ordinates;
(x,y,2) = (sinbcos¢,sinbsin¢g, coso) (B.1)

0 and ¢ being the spherical angular co-ordinates of h.

Unit vectors gij along the proton-proton vectors £ij are
given by
A 1 )
i, = —= (i + 3J)
12 3
£13 - -2 (L - k)
V2
A 1 ,.
r., = ~—= (j - k)
Moz - - (B.2)
£23 = - L (1 + k)
V2
§24 = -1 (i + k)
V2
A 1l . .
gy T oo L+ D)
34 /7 » J

i, J, k, being the unit vectors along x,y,z.

Now, if 6,. is the angle r,. makes with H , then
. 1j =17 o

coseij = gij‘ﬁ and therefore, from (B.2) .and (B.1l);
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fl

cosel L sind (cos¢+sing) )

2T 5
1 .
cose13 = ;:j(s1necos¢—cose)
2
coshy, = 1 (sind®sin¢~-cosb)
V2 - (B.3)
cose23 = - ~1~(sinﬁsin¢+cos6)
J7
005624 = - L (sinbcos¢+cosh)
V2
1 . .
cose34 = ~~ sinb (sin¢-cos¢)
V2. )
12h2 2
But Aij = s (1-3 cos eij), which on substituting
re.
equations (B.3) givég;
3 .2 .2
Ay, = AflL - 5 sin 8 (cos¢+sind) ™)
A = A[l - 3 (sinecos¢—cose)2]
13 ’ 2
A, = A[l - > (sinfsing-cose) 2]
14 . 2 o
A = A[l - 3 (sinesin¢+cose)2]
23 2
A = Afl - 2 (sinecos¢+cose)2]
24 ) 2
- - _3 C‘. 2 1 — o 2
A34 = All 5 sin 6 (sin¢-cosop) ™)
:ﬁz |
where A = X 3= ¢ T being the proton-~-proton distance wEij"
r
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i0
In the same reference frame, Figure 1, the unit

”~
vectors r.

i0 along the nitrogeneproton,vectors r;o are:
glo = L (- i:— J+ k) )
Y3
r _ 1
20 (i + 3 + k)
V3 + (B.4)
~ l .
x = —= (1 -3 - k)
=30 /3
~ 1 .
r,. =-— (-i + j ~ k)
La0 = S
Y3 )
Since cose:.LO = £i0'ﬁ’ substituting from (B.l) and
(B.4) gives;
cosby, = nl-{n sin (cos¢+sing) + cos6}
V3
cosb,, = —= {sin6 (cos¢+sing) + cosb}
V3 b (B.5)
cosb . = L {sine(cos¢~sin¢) - cosh}
V3
cose40 = L {sin® (-cos¢+sin¢)-coso}
3 )
Yynﬁz 2
Now A'O = ~§“mm.(l~3cos eio), so substituting for
. en
the 610 from (B.S) gives
Ay = Ao[—sinzesin2¢+siﬁ26(sin¢+cos¢)]
Aoy = AO[—sinzesin2¢”sin28(sin¢+cos¢)]

] L2, o
A3O = AO[51n @sin2¢-sin26 (sin¢g-cos¢) ]

A4O = Ao[sinZOsin2¢+sin29(sin¢~cos¢)]
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where



114

APPENDIX C

TRANSITION PROBABILITIES

C.I PERTURBING OPERATOR
The relevant operator inducing transitions among

the states M¢§ is the x-component of the total spin operator;

Ix = le * I2x * I3x * I4x
1, + = 4, = = -
= §(Il+ll+12+12+I3+I3+I4+I4) (C.1)

where IF = I, +iI, is the spin raising operator for proton

i ix iy
i, and I, = I, - iI, is the spin lowering operator for

i ix iy
proton i.

C.II META-TRANSITIONS
' | L A A
As an example, take the meta-transition 2¢l - l¢l ;
with transition probability (from equation (2.2)) of;
A A 2
PA(2+1) = ]<2¢l|IX|1¢l>| (C.2)
Applying (C.1l) to the state l¢? defined in Table I

gives;

IX]1¢§> = |f+++> + %{|_~++> + |+——+> + |-t—t>

S e A R R S RS T

V6 | A

= I2¢l§> + "-'2— O¢l>, 4 | (C.3)
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Therefore, applying (C.3) to (C.2) gives;

PA(2+1) = 1
. s A A
In a similar way the transition l¢l > O¢l occurs

with a probability;
A A 2
Pl » 0) = [<go7|1, ]107>]
which, by (C.3) gives;

PA(l + 0) =

N W

The negative M transitions are treated identically.

C.III ORTHO-TRANSITIONS

Applying (C.1l) to the state 0¢$ defined in Table

I gives;
T 1
Ilg¢1> = — {|=t4+> + [+tt> + |tt=+> =3]|+++~>
2/6
I B e T e B SRS
1 T T
= = (|,07> = | J07>) (C.4)
/3 171 171 \

Substituting this in the expression for the transition proba-

bility;
. -k B T T 12
Pplt 1« 0) = | <, 10715100721
gives;
Sy = L
PT(i 1 20) = 5 .

It igs also clear from (C.4) that
T T .
<il¢illxlo¢l> = 0 unless i=1
The same treatment applies, with the same results,

for the other ortho-transitions.



APPENDIX D

ROOTS OF A CUBIC EQUATION
D,I EIGENVALUE EQUATION

To find the roots of the equation (2.4);

3_3 ., .1 =
X" =S¢ X + 55 cos ¥(6,¢) = 0

we make use of the identity;
x3—3pqx+p3+q3=(x+p+q)(x+ep+e2q)(x+52p+gq)
where 1,¢, c2 are the cube roots of unity, and;

1l 4+ e + 52 = 0

(i.e. ¢ = exp{2mi/3}). .

Comparing (D.1l) with (D.2) we set;

3, 3 _ ,
p +q = 35 cost J

Eliminating g from (D.3) and substituting t = p

we obtain:

16%t% - 128 cos¥et + 1 = 0

whence:

N l s J '
t = EE;(COSW t isin¥) = p

3

1le

(D,1)

(D.2)

(D.3)

3

(D.4)
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Writing p in the form;
p = Pexp{iy} (D.5)

substituting into (D.4) and equating real and imaginary parts
we get;

Y

i

co

n

P3COS3X E%

P3sin3x

Il
(o)
KN

from which;

1 _ Y
P——Z-and)(mié*.
Therefore, from (D.5) and (D.3);
_ 1 vy o1 s ¥y iein ¥
P =7 exp (+ i §) =7 (cos 5 + isin 3)
——l _‘y—‘.l.'./cgj_.—"\y
g = Z-exp( +i ) = 7 (cos 3+ isin 3)

Inserting these values into (D.2) we therefore find

the only real solutions to (D.1l) are;

X, = =p-q = - % cos 3

\_[1
3

1+

X = —(€p+82q) = - % cos(%ﬂ

But since cos(x-m) = -cosy:;

NI T
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D.IT ROOTS OF 0 = £
We need to find the roots of the cubic equation;
2
0 =¢(1-8)" = £ (D.6)

To eliminate the term in £2 and so transform (D.6)

to the form (D.2) we make the substitution;

E =z + 5 (D.7)
Then D.6 becomes;
3 1 2 _
4 —'—3-'Z.f‘§'.—7-"f——0. (D.8)

From which, by comparison with (D.2), we set;

pq = =
° (D.10)

[N

3, 3_2
p +g - 7' £

Eliminating g from (D.10) and substituting t = p°
we obtain;

03¢2 4+ 27(27£-2)t + 1 = 0

from which;

£ = %Z [2-27f * V2T7F(27f-4)] = p3 (D.11)

But f lies in the region

g»b

5> £ 20

3%

from which it can be seen that solution (D.11) for t is complex.
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Substituting p =Pexp{iyx) into (D.1ll) and equating real and

imaginary parts gives;

P3cos3x =>§% (2-27£)
‘P3sin3x = %7; Y27% (4-27%)
from which;
P = %—- 3
sin3y = % V2TE(4-27%) T (D.12)
cos 3X = % (2--27f)
J
where
p = %-exp(ix)
and (D13)
1 .
q = 3 exp(-iy)

from (D.10).

From (D.2), the only real solution for z is therefore;
- epeg = - 2
z = -p-q = 3 cosx
and so, by (D.7);

g = % (l-cosy)

where x is given by (D.12).
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APPENDIX E
BEHAVIOUR OF k? AROUND DISCONTINUITIES
E.I NEAR n = 1

From eguation (2.11), when n = 1;

N

[£'] = (E.1)

3

Let n =1 - 61, where §, is small, then from

1
equation (2.10);

2

£(1-8,) = 5=

A 2 i
6, (9-126, + 487).  (E.2)

Hence;

£2 = /rg 8

It
o~

=
(98]
S

Substituting for £ from equation (E.2) into (2.16)

and expanding gives;

L
2
1
and (E.4)

3/2 &

I

. 35 2
sin3y (1 - 35 6, + 0(51))

cos3y = 1 - 94, + 1265-+0(6§)

Since 61 is small, x is small, and so using the
expansion; A
3 5
sin"tx = x + X+ %'%'%— + 0(X7) (E.5)

on (E.4), we obtain the angles;
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- % 1 2 L 2nm

n=20,1,2
Substituting these into the first of equations (2.16)

we obtain for the roots oy (which are the solutions £ in

descending order) ;

_ Ve % 1 _ V6 3/2 5/2,)
ap =14 3 8 =38 - 35 677 + 0(6777)
P UV | VB .3/2 5/2, | _
o, = 1 507 - 36, v 67+ 067/ (E.T)
.~ 2 3
ag = 3 61 + 0(61)

Substituting equationg (E.7) into (2.14) and expan-
ding, gives, for k2 near n = 1;

2 _ . _ 48 .3/2 5/2
kS =1 - s 8]0 4 0(6l )

E.IT NEAR n = - %
Letting n = - % + 5?, where 62 is small we find,
from (2.11);
8 2 .
LI I n
[£'] = 5 6, + 0(53) (£.8)
and from (2.10);
L. 442 (5 o
£( 5 + 62) 27-62 (3 262) (E.9)
Hence;
L
£7 = 26 | (E.10)
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Substituting for £ fromv(E.9) in (2.16) and
expanding givés;

iy TS VINE e
siny = 2/3 6, (1 - 3§, 5 65 + 0(53))

(E.11)
3

cos3x = 1 - 662 + 48

We again use the expansion (E.5) to obtain the

_2/3 1 4
x =37 6l =368, +g50

2
2

+ 0(62) + 2nm (E.12)

Substituting these expressions into the first of

eguations (2.16) we obtain for the roots o

_ 2 4 2 8 3 4. )
ay = 14 38, =58y g7 8, + 065,
— .-2“ 4 ]
a, = 1 3 65 + 0(62) b (E.13)
4 .2 2 8 .2 3
a3-—9-62. (1 362+962+0(62) J

Substituting eguations (E.13) into (2.14) and ex~

1.
2!

t

panding gives, for k2 near n = -

2 _ ., _ 16 .3, 4 ‘
k=1 - 57 65 + 0(s,) (E.14)

2

interchanging 0 and Oy Carrying through the same substi-

For n =—% - &8, the sign of 62 in (E.13) changes,

tusions in (2.14) with the new a's gives the same result

as before. Thus (E.14) applies forn = ~ % + 62.
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APPENDIX F

APPROXIMATION FOR K(kz)

By definition & complete elliptic integral of the

2

1st kind K(k®) is

~e

T/2
K(kz) _ d¢

Y1 - k%sin¢

o)
2 .2 2 .
Near k© = 1, let k™ = 1 - ¢” where ¢ is a small

guantity. Then;

, m/2 a4
K(l-e”) = P Y.
cos ¢+e sin’ ¢
© (F.1)
= A+ B
where;
o
A = dé (F.la)
/icos2¢+ezsin2¢
O ¥
and (W/Z
B = di (F.1b)
v cosz¢+azsin2¢
4 .
if we choose o such that;
82 << cot2a (F.2)

then over the entire range of integration in equation (F.la)
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ezsin2¢ << cosz¢ so that the denominator in the integrand can

be expanded in a Taylor series to give;

o
A = 2 Cgs¢d3 -
2cos¢te " sin"¢
o
(sin o
- dx
l-—azx2
o , 2
by the substitution x = sin¢, and where a” = 1 - %— .

This integral is of a standard form giving;

A :I ,.]2,_- Q/n(l + as}j}.q_) .

2a 1 - asina (F.3)

We nowdefine an angle B by;

We can make B small and still satisfy the cbndition
(F.2) if we make ¢ small enough. i.e. we can make 82 of the
first order of smallness if we make 52 of the second: and then
condition (F.2) becomes;
32 <<,52 << 1 | (F.2a)

Making these substitutions in equation (F.3) and

using condition (F.2a) we find;
A = 4n2 -~ 4nB (F.4)

Letting ¢ = 5 — 0 the expression (F.1lb) for B

becomes;



125

B = a . (FP.5)

y

sin26+czcosze
o)

wherxe 6200526 is not small compared with sin26 over this en-
tire range of integration. However, since we have made B
small, 6 is alsQ small over the whole range, allowing us to
expand sin26 and cosze, equation (F.5) becoming;

B
B = I das
Y el (1-e2)p2
@]

which is again in a standard form, giving;

B = 4n28 - &Lne. (F.6)

Combining eguations (F.4) and (F.6) in (F.l) gives, finally;

K(l—sz) = 24n2 - &ne
if 82 is of the second order of smallness as defined by con-

dition (F.2a).
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APPENDIX G

ORTHO LINESHAPE BROADENING

We have to perform the convolution;

1 ‘ 2
1T (x) = - W(n)exp‘é{iz:%l~}dn (G.1)
ayr a
-1
where;
Win) = w(n) + w(-n) ' (G.2)
w(n) having discontinuities at n=~%, 1.
Substituting (G.2) into (G.l) leads to;
1
17 (x) = w(n)E (x,n)dn (G.3)
-1
where;
E(x,n) = —— lexp{- “=—"—} + exp{- -~—~—2—-}] (G.4)
avm a a

Note that E(x,-n) = E(x,n).

We split the range of integration in (G.3) into
four parts in order to treat the discontinuities analytically,
and write;

1T (x) = T (X)) 4 T, (%) 4+ Ty (x) + I,(x) (G.5)

where;

I, (x) = w(n)E(x,n)dn


http:J-~�-.61
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2 .
= w{-n)E(x,n)dn + Azw(—l)E(x,l) (G.6)
%+Al
—
2+Al
I,(x) = w(n)E(x,n)dn
J
—%"Al .
R 1
= E(X:“§) w (- 5+ n)an (G.7)
_Al
1-4,
I,(x) = w(n)E(x,n)dn
—%+Al
2l 1-1,
= i w(-n)E(x,n)dn + w{n)E(x,n)dn (G.8)
o o
,’].
1, (x) = J w(n)E (x,n)dn
l—A2
A2
= E(x,1) w({l-n)dn (G.9)
o
Al and A2 being small (<< 1).
Combining ({G.6) with (G.8) and using (G.2} we
obtain; %_Al ‘ l*Az
I, (x)+35(x)= W(n)E (x,n)dn+ W(n)E(X,n)dn+2Alw(%)E(x,%)
o} ’/2+A1

tA,w (~1)E (x,1) ' (G.10)
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Now, from equation (2.10);

1y oofiory = .
£(3) = £(-1) = 55 (G.11)
which means, by equation (2.16);
. '.' 5
X = % , T, Or gﬂ
so that;
a = —4-.
1 3

(G.12)

This can also be seen by inspection of Figure 2. Hence, from
2

(2.14), k® = 0, and from standard tables (also from definition
of K(k2) in Appendix F);
K(0) = % . (G.13)

Also, from equation (2.11);

1
[£' )| =0
g (G.14)

no

£1 (-1 ] = 5

[#8]

¥

Substituting equations (G.1l1l), (G.12), (G.13) and (G.1l4) into
equation (2.13) gives;
1y _
w(§)~0

(G.15)
w({-l) =

FNTR

“stituting the approximations (2.23) into (G.7)
and (G. 4 integrating, leads to;

_ 2 1 . -
Iz(x) = = E(x, 2)Al(lvzn3 QnAl). (G.16)
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and

‘ 1
(x) = KE E(x,l)A§(2+£n6 -~ 4nA

T 4

) (G.17)

4 2

(G.16) and (G.17) in combination with (G.10) and (G.15) con-

stitute the broadened ortho-lineshape, IT(X), in (G.5)
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APPENDIX H

CALCULATION OF SECOND MOMENT

H.I ORTHO~-CONTRIBUTION.

The intra-ionic second moment of the ortho-spectrum,

M., {(ortho), is given by;

2
v IO
Mz(ortho) = (H.1)
o)
A
where; 1
1° = | n®wman (B.2)
0
and, ]
o)
A~ = W{n)dn (H.3)
0.

use being made of the symmetry of W(n) aboul the origin and
the fact that W(n) = 0 for n > 1.

As in Appendix G, we divide up the range of inte-
gration in order to treat the discontinuities of W{n) analy-
tically, and write;

A=A, + A, + A, + A (H.4)
where LA

A = W{n)dn (H.5)
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- W(5 + n)dn (H.6)

A, = W(n)dn (H.7)

= W(l-n)dn (H.8)

O\__

where A, and A. are small (<< 1)

1 2

A, and A, can be computed numerically, their ranges

1 3
of integration containing no discontinuities.
Now;
W(n) = win) + wi-n). (H.9)

Substituting this and the approximation (2.23) into

(H.6) yields;

3 1,2 ron3 -
A2 = 2A1W(2) + . Al {(1+2n3 znAl)
= 2 A, (L + 2n3 -2nA.) | (H.10)
m 1 1 )

by equation (G.15).
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where

Similarly,

stitution of (H.4)

132

the same substitutions in (H.8) yield:

/e %
A4 = A2w(—l) e A2 (2+2n6—2nA2)
3 V6 %
= "'4’ A2 + '4*'1}- A2 (2*‘21’16"21’1[&2) (H.ll)
15).,
Similarly;
o — -
I™ = Il ] I2 + 13 + I4 (H.12)
1
Al 5
I, = [ n“wW(n)dn (H 13
o)
[atey
I, = j 02w (n)dn (H.14)
L.
by
1
=75
rl"‘Az 2
I, = n“w(n)dn (s.15)
Jarhg ‘
rl
I4 = nzw(n)dn (H.16)
Jl A
2
Il and I3 can again be computed nﬁmerically. Sub-

and (H.12) from the above into (H.1l) thus



gives Mé (oxrtho) for the ortho-contribution;

I 4R, /4+I 4R,

A1+A2 +A3+A4

M; (ortho) =

H,II COMBINED ORTHO~-META SECOND MOMENT

The second moment of the combined ortho-meta spec-

trum, Mé, is;

M, .o
1
M, = S (H.17)
A +A
where I° and A® are the ortho integrals defined by (H.2) and
(H.3) and IM and aM are the corresponding meta integrals.
Dividing top and bottom of (H.17) by A® we obtain;

. RMé(meta)+Mé(ortho)
M, = (H.18)

2 R+ 1

where

and M

Mé(meta) = Eﬁ
A

Mé(ortho) is defined by (H.1).

Since the meta spectrum is a delta function,
Mé(meta) = 0. Also, since the weighting of meta:ortho is 5:3,
R = 5/3. Hence (H.18) becomes;

l__i‘ '
M2 = 5 Mz(ortho).
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