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ting among the ammonium ions at low temperatures has been 

investigated fm~ sorne twenty ammonium salts. Measurements have 

been made of the proton absorption signals at 4.2°K, and the 

temperature dependences, where previously unavailable, of the 

spin-lattice relaxation time. 

Some of the salts exhibit the normal rigid lattice 

spectra and second ·moments characteristic of distinguishable 

protons, but most exhibit some degree of line narrowing at 

The data shows that thermally activated reorientations 

are effectively frozen out at this temperature and cannot be 

responsible for such narrowing. 

It is concluded that the narrow spectra, although in­

dicative of indistinguishability among the protons, are not 

attributable solely to spin isomerism, but are being modified 

by a further mechanism, probably tunneling of the ammonium 

ion through the crystal field barrier. 
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CHAPTER I 


INTRODUCTION 

Bersohn and Gutowsky (1954) perforBed proton mag­

netic resonance absorption measurements on a single crystal 

•
of aromonium chloride (NH4Cl) at 77°K and deduced that the 

spectra obtained were those of a system of four interactin~, 

but distinguishable protons, located on the corners of a 

rigidly oriented tetrahedron (the ammonium group) . Such 

a system will be referred to as a "4-spin l/2" system, the 

second moment* for which will be referred to as the "rigid 

lattice" value. This is the value one would expect for a lattice 

of stationary, distinguishable nuclei arranged in groups of 

2four {tV 50 G in the ammonium salts). Proton absorption 

measurements from 20°K to room temperature for a numb'er of 

ammonium salts have since been rep.orted by Richards and 

Schaefer ( 1961). Apart from the lineshapes they also pre­

sented the temperature dependence of the linewidth, de.fined as 

the separation in gauss of the absorption derivative maxima, 

and of the second moment. &~ong these salts a number (e.g. 

ammonium tellurate, -sulphate, -metavanadate, -persulphate, 

and -dichromate) had second moments at 20"'K which were 

*Defined as the mean square deviation of the absorption line­
·• shape from the Larmor field. 

1 
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considerably less than the usual "rigid lattice" value. 

There are a number of possible mechanisms which could 

narrow the absorption line and reduce the second moment: 

a) Thermally Activated Motional Narrowing 

To first order, the second moment of the complete 

absorption spectrum is independent of thermal motions. How­

ever, the frequency components associated with the random 

correlations of these processes can shift parts of the 

spectrum into the wings producing satellites of weaker inten­

sity. If the thermal motion is fast enough, i.e. when its 

correlation frequency vc (defined as l/2nTc' where Tc is its 

correlation time), is much higher than a characteristic 

frequency of the linewidth, then these satellites are pushed 

so far out and, hence, become so weak that they are lost in 

the noise. The second moment of the remaining spectrum, which 

is what is observed, is thus reduced. As the temperature is 

lowered, thermal activations become less frequent, Tc increases 

and v decreases until eventually v is much less than the c c 

linewidth. All components are then observed and the second 

moment nor:mally attains its "rigid lattice" value. 

b) Quantum Mechanical Tunneling 

Quantum mechanical tunneling of the ammonium ion from 

one orientation to another, through the hindexing barrier of 

the crystal field, may shift some parts of the spectrum by 

an amount comparable to the associated tunneling frequency. 
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Again, if this frequency is high enough, these components 

would become lost in the wings and not observed, thus reducing 

the second moment of the remaining part of the spectrum. 

It should be emphasized that, unlike the random processes in­

volved in thermal motion, tunneling is a coherent process 

which, not being thermally activated, can be effective at 

the lowest temperatures. 

This interpretation of line narrowing has been applied 

to the tunneling of a methyl group by Allen (1968). 

c) Spin Isomerism 

The requirement that the total wave function of the 

ammonium group be anti-symmetric under exchange of any two 

protons necessitates the existence of nuclear spin states 

of certain permutation syn~etries (spin isomers) only with 

certain spatial symmetry states. If the spatial states of 

different sywmetries are well separated in energy by the 

crystal field then transitions between different spin isomer 

states, involving,as they would,simultaneous changes in 

spatial states (and energies), would not be observed in first 

order, again narrowing the observed line shape. Because this. 

mechanism is not thermally activated it can also be effective 

at low temperatures, _the spectrum of methane below 2°K being 

interpreted on this basis by Tomita (1953). 
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For the ammonium salts with low second moments mentioned 

previously, Richards and Schaefer concluded that some degree 

of motional disorder still exists at 20°K, implying the 

thermal motion interpretation of line narrowing, mechanism 

a). Similar conclusions had been arrived at for the sulphate 
• 

and tetrafluoroberyllate salts by Blinc and Levstek (1960), 

The difficulties of this interpretation can be exem­

plified for the case of ammonium sulphate: In order to obtain 

quantitative agreements with the experimentally observed low 

temperature second moment of 33.3 ± 1.1 G2, Richards and 

Schaefer had to assume that 2/3 of the ammonium ions were 

"rigid", while 1/3 were rapidly reorienting (a usemi rigid 

lattice") at this temperature. This assumption is inconsistent 

with the known crystal structure, in which there are equal 

numbers of each of two inequivalent ammonium ions. If.the 

interpretation of a "semi rigid lattice" were correct, 1/2 

of the ammonium ions would have to be 11 rigid" and 1/2 re­

orienting, which would not give quantitative agreement with 

the observation. 

These results on the sulphate indicated that,in at least 

some ammonium salts, the low temperature line narrowing 

observed was unlikely to be the result of thermally activated 

molecular reorientation. At the same time, the evidence 

fpund by Tomita for the existence of isomeric spin_ states 

in methane at low temperatures suggested that this mechanism 

may also be effective among the ammonium ions, which 
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are structurally similar to the methane molecules. The 

present work was therefore undertaken in order to investi ­

gate fully this possibility of spin isomerism among the 

ammonium group protons at low temperatures. With this ob­

jective, line shape studies have been made of some twenty 

ammonium salts at 4.2°K, together with measurements, ·where 

possible, of the temperature dependence of the spin-lattice 

relaxation time, T1 . The activation energies and correlation 

times obtained from the latter have been used to test the 

assertion that reorientation cannot be responsible for 

line narrowing at very low temperatures • 

• 


.. 




CHAPTER II 

THEORY 

II.l INTRODUCTION 

The fundamental theory of Nuclear Magnetic Resonance 

is well established and can be found in many standard text 

books (see, for example, Abragam (1961), Slichter (1963)). 

For this reason no basic theory will be given in this work. 

Attention will be focussed instead on the problem of spin 

isomerism and its manifestation in N.M.R. 

II.2 SPIN ISOMERISM - PRELIMINARIES 

The N.M.R. absorption line shape of a tetrahedrally 

co-ordinated four proton system exhibiting spin isomerism 

has been derived theoretically and applied to the case of 

solid methane (CH ) by Tomita (1953). Tomita's treatment4

is tractable because the carbon-proton contribution to the 

dipolar interaction is negligibly small compared to the 

proton-proton contribution. This is because the only carbon 

13
isotope with a non-negligible magnetic dipole moment is c

which occurs with a natural abundance of only 1%. In the 

case of the ammonium salts however, the nitrogen isotope 

N14 , whose natural abundance is greater than 99%, possesses 

a dipole moment which, though small, is not negligible. 

This, in conjunction with the small nitrogen-proton separa­

6 
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tion in the ammonium group (less than the proton-p~oton 

separation) leads to a significant contribution from the 

nitrogen nucleus to the dipolar interaction energy. This 

complication renders a general analytical solution for the 

absorption line shape intractable. We therefore adopt • 

the procedure of first developing Tomita's theory without 

the nitrogen contribution and then estimating qualitatively 

and quantitatively how the inclusion of this effect will 

incorporate itself into the result. 

II.3 HAMILTONIAN 

The Hamiltonian for a number of interacting nuclear 

spins in a strong external magnetic field H is;
0 

where H is the Zeeman part expressing the interaction of z 
the spins with H , while Hd is the dipolar part expressing

0 

the dipolar interactions of the spins with each other. Con­

sidering contributions only from the protons we have; 

H = -yfi H L: I. z 0 i ~z 

and the inter-proton dipolar interaction H isdp 
1 + - - +Hd = L: A .. [I. I. - 4"(I.I. + I. I.)] 

p i>j 1J 1Z JZ 1 J ~ J 

where i, j label the protons, I. represents the spin operator
-1 

of proton i, and H defines the z direction of the co-ordinate -o 

system. The quantities A .. are defined by;
1J 
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A ..
lJ 

= y21'i2 
3 r ..
lJ 

(1 - 3 2 cos 0 .. )
lJ 

where e .. 
lJ 

is the angle the inter-proton vector r .. 
-l) 

makes 

with !!o· 
As is usual, in the expression for Hdp only the adia­

batic part of the dipolar Hamiltonian has been taken since this 

is the only part which contributes to the splitting of the 

degenerate spin levels in first order (e.g. Abragam ch. IV). 

To calculate this dipolar splitting in first order, Hdp 

is treated as a perturbation on H (which is perfectly justi­z 

fied since the local dipolar field is typically 10 G or less 

4
while the applied field, H , is of the order ·of 10 G).

0 

Furthermore, Hdp can be regarded as being composed of contri­

butions f~om protons in the same ammonium group (intra-ionic) 

and on different groups {inter-ionic). Of these two, since 

the ammonium groups themselves are well separated from one 

another compared with the dimensions of a group itself, the 

inter-ionic contribution can be regarded as a perturbation 

on the intra-ionic one. Thus, in first order, we need consider 

only the splitting caused by the dipolar interaction among the 

fourtetrahedrally co-ordinated protons in a single ammonium 

group. 

II.4 SYMMETRY ADAPTED STATES 

The eigenstates of Hz form a basis for the perturbation 

calculation of the dipolar splitting. For the four proton 
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system we are considering, these eigenstates are labelled 

by !m1m2m3m4>, where mi is the eigenvalue of Iiz Since 

protons have spin Ii = 1/2, the mi's can assume the two values 

± 1/2. Thus there are 16 of these basis states. However, 

it is more convenient to use as a basis a set of spin functions 

which is reduced with respect to the substitution group of 

four identical nuclei (isomorphous to the tetrahedral group 

of real rotations). The 16 spin states reduce to their-

reducible members SA + E + 3T* , to each of which there corres­

ponds a definite eigenvalue of the total nuclear spin operator, 

!{= ! 1 + + + ! 4 >, of the proton group. This reduction! 2 ! 3 
Ris shown in matrix form in Table I, in v1hich M¢ i represents 

the basis state belonging to the i'th row of the R 1 th irre­

ducible representation, and M is the eigenvalue of I • 
z 

The harmonic oscillator spatial ground state of an 

ammonium ion sitting in an infinite potential well is twelve 

fold degenerate (there being twelve equivalent orientations 

corresponding to even permutations of protons). These 

reduce, with respect to the tetrahedral symmetry group of the 

ion, to the irreducible members A+E+3T. In a finite crystal 

field the degeneracy of the different members is, in general, 

removed, but if the crystal field has itself tetrahedral symme­

*A, E, and T label the bases of the irreducible represen­
tations of the tetrahedral group of dimensionality one, 

two and three respectively. 
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TABLE I 

Symmetry adapted spin states. In right hand column (+) 
represents spin up and (-) represents spin down. 

2 1<P1 
A 

213' 1¢~ 

16 1¢; 

T12 1¢3 

116 o<P~ 
I 
I E
1213 0 ¢ 1 

E
2 o¢2 

T16 0¢1 

l I I 
-~4-----------J 

1 1 1 1 

1 1 1 -3 

1 1 -2 0 

1 -1 0 0 
~-~-----------~-------------------1 

I 
I 
I 1 1 1 1 1 1 
I 
I 
I 
I 2 ·-1 -1 -1 ··1 2 

0 1 -1 1 -1 0 

1 1 1 -1 -1 -1 

2 -1 -1 1 1 -2 

0 -1 1 1 -1 0 

++++) 

-+++ 

+-++ 

++-+ 

+++­

--++ 

+--+ 

-+-+ 

-++­

+-+­

++-­
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try the three different T meniliers remain degenerate. A schematic 

representation of the spatial level scheme is as follows: 

T 
(3) 

T 3T 
{3) ------(9) 

T 
{3) 

E E 
(2} (2) 

A A 
(12) (1) (1) 

Infinite Finite Finite 
Potential Crystal Tetrahedral 
Well Field Crystal 

Field 

The numbers in parantheses with each level show the degeneracy 

of that level. 

The matrix elements of Hdp between the members of t~he 

reduced basis spin states can now be calculated (see Ap­

pendix A), and are shown in Tables II and III. In the 

absence of any symmetry considerations, diagonalization of 

this representation of Hdp would give the perturbed eigen­

values. However, the total wave function~, in the absence 



A 
2¢1 

A 
1¢1 

T 
1¢1 

T 
1¢2 

T 
1¢3 

A 
o<~>1 

E 
o<~>1 

E 
o<~>2 

T 
0¢1 

l 

12 

TABLE II 

Matrix elements of Hdp (a) 

I 

all bl cl dl ---r-----------­
1 

b 1 l e f g 
I 
I 

c 1: f h k 
I 
I 

dl'
I 

g k 9, 

~------------+---- 1 

a I , b c o o o
0 0 0-----L---------­1 I 

bQ 
I 
I 
I 

0 0 
I 
I 
I 

0 0 0 
I I 
I I 

CQ I 
I 

0 0 I 
I 

0 0 0 
---------~----------------

0 0 0 -2e -2f -·2g 

0 0 0 -2f -2h -2k 

0 0 0 -2g -2k -29, 
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TABLE III 


Matrix ·elements of (b)
Hdp 
Elements of Table II in terms of A..

lJ 

-4a2 

-8a1 

-8b1/13 

-16c1;v6 

-16d/12 

-24e 

-48f/12 = 

-48g/l6 

-12h 

-12k/13 

-4Q, 

-4a 
0 

-8b /12
0 

-8 c /16
0 ) 

1 1 1 1 1 1 

1 1 1 1 1 1 

1 1 1 -1 -1 -1 

2 -1 -1 l 1 -2 

0 -3 3 3 -3 0 

-3 -3 -3 l 1 1 

6 -3 -3 -1 -1 2 

0 -3 3 -1 l 0 

0 0 0 -2 -2 1 

0 0 0 1 -1 0 

0 0 0 0 0 -1 

1 1 l 1 1 1 

-2 1 1 1 1 -2 

0 -1 1 -1 1 0 
) 

Al2 

A23 

A13 

Al4 

A24 

A34Jt 
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of any spin-rotational interaction, can be written as a pro­

duct of space and spin co-ordinate dependent parts i.e.; 

' = ¢space • ~spin 

if all other co-ordinate states, such as vibrational and 

electronic, are in their symmetric ground state. Now, protons 

are fermions and so ' must be antisymmetric under exchange 

of any pair, or, equivalently, symmetric under any real ro­

tation, since this is equivalent to the interchange of two 

pairs. Thus, for ' to belong to the totally symmetric 

representation, physically real states occur only in the 

combinations ¢(A)~(A), ¢{E)w{E), ¢(T)~(T), corresponding to 

meta-, para-, and ortho-groups respectively. If the 

spatial states are well separated in energy (~ l5°K for 

a free rotor, although less for an oscillator) only spin 

transitions are observed which conserve the symmetry type 

(A, E, or T). Only the matrices of these irreducible 

representations need to be diagonalized. 

We will define a cartesian co-ordinate system fixed 

with respect to the ammonium group as shown in Figure 1, with 

origin at the nitrogen nucleus. In this reference frame 

H has spherical angular co-ordinates (8,¢) as shown, in -o 


terms of which {see Appendix B) the A.. 's are given by;

lJ 



FIGURE 1 

NH co-ordinate system. H has4 -o 

spherical angular co-ordinates 

(8,¢). 



X 

' ' ' ' i--1---..·~~-· , ., .... 
I _,' ' 

X..""'"'-..' , , ­ ' 
~r, _, ' 

I I ,' ,.-' ~-
1 I I , , 

" •,',., "' - -- - -- -1- -j.­ "Y"'\ 
---- ­ ..._·-----~7~V74 

15 


z 


::.>y 

3 


Q --- PROTONS 

® NITROGEN 



16 

3 . 2 ( <PA[l - 2 s1n 8 cos + sin¢) 
2 

]Al2 -· 


A23 = A [1 - ~(sinesin¢ + cose) 2 ] 


Al3 = A [1 - ~(sin8cos¢ - cose) 2 ] 

(2 .1) 

2 
Al4 = A [1 - ~(sinesin¢ - cose) ] 

2 
A24 = A[l - ~(sinecos¢ + cose) ] 

23 . . <P 
A34 = A[l - 2 s1n2 8 cs1n - cos¢) ] 

2.f2Y ·nwhere A = -3­
r 


r being the proton-proton separation. 

II.S META TRANSITIONS (A STATES) 

The matrix elements of these states are symmetric 

combinations of the A .. 1 s and so;
lJ 

·This can be seen directly by summing the elements given by 

equation (2.1). This means that diagonalization of the one 

dimensional A type representation gives zero for the first 

order change in energy of these states. The spectrum of 

transitions among these states thus consists of a delta-

function at H . 
0 

The transition probability can be calculated for 

M1the transition M + by; 

PA (M+tvl I) = I<M¢~ IIX IM I ¢~>1 2 
(2. 2) 
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since the r.f. field which induces transitions does so 

through its interaction with the x-component of the nuclear 

spin (see Abragam etc) • Using this expression and the 

states given in Table I, the transition probabilities are 

calculated to be (Appendix C); 

PA (±l ~ 0) = ; for two transitions. 

PA(±2 t ±1) = 1 for two transitions. 

The total transition probability for all A type transitions 

is then; 

PA(total) = 5 	 (2. 3) 

II.6 PARA TRANSITIONS {E STATES) 

Proton groups of this symmetry type are associated 

only with I = 0 (no resultant magnetic moment) so no transi­

tions are observed and we need not consider them further. 

ORTHO 'l'RANSITIONS (T STAT};'~S)II.7 

We 	 need to diagonalize the 3x3 sub-matrices in Table 

T
II defined among the states M¢i . The trace of the M = 1 

sub-matrix is given by; 

Tr = e + h + 9., 

which, by substitution· from Table III, is a symmetric com­

bination of the A.. 's 	and therefore zero. By manipulation
lJ . 

of the matrices, the secular equations may be written in 
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standard forms. For the case M - 1, the normalized eigen­

value equation becomes, 

3 3 1 
X - lG X+ J2 COS ~(8 1 ¢) = 0 (2. 4) 

where the eigenvalue 

and 

27 . 22,!-. 2 . 4
COS~ ( 8,¢ ) = 1 - ~ Sln ~COS 8s1n 8 (2. 5) 

Equation (2.4) can be solved by the standard tech­

nique for a cubic equation (see Appendix D), to give three 

real solutions; 

1 ~ - cosxl = ­ 2 3 


1 (1T -_!) 
 ( 2. 6)cosx2 = 2 3 

1 +(1T ~)x3 = cos
2 3 

The matrix for M = 0 is twice the negative of the 

matrix forM = 1. The eigenfunctions are therefore the same 

while the eigenvalues x~ are twice the negative of those for 
l 

M = l. i.e.; 

I 
x. = - 2x. . 

l l 

The transition probabilities between the two sets of 

states is given by the equivalent T state expressions to 

equation (2.2). However, we can now make use of the fact that 
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I , being a symmetric combination of the I. is invariant
X lX 

under all permutations of spins, and thus belongs to an A 

type representation. Therefore, the function I JM¢~> still
X l 

belongs to theVth row of the T'th irreducible representation. 

From group theory it is known that the scalar product of 

two functions is zero unless they belong to the same row of 

the same irreducible representation (e.g. Hamermesh (1962), 

ch. 6) • Therefore, the matrix element <M,¢~II IM¢~> is
J X l 

zero unless i = j, and then is independent of i. This can 

also be seen directly by evaluating the matrix elements 

using the states given in Table I (Appendix C). This means 

that of the nine possible T type transitions from M = 1 to 

M = 0, only three are allowed here those from x. to x 
I
.• 

J. J. 

Hence, three lines occur, shifted from H by 3x., i = 1,2,3~ i 
0 J. 

The results for M = -1 are identical except for a change 

in sign, so that finally there are six ortho lines at 

±3x., i = 1,2,3. Using the equivalent expression to equation
J. 

(2.2) the ortho transition probabilities are calculated to 

be (Appendix C); 

PT(±l t 0) = ~ for six transitions, 

so that the total transition probability for all orth­

transitions is; 

PT(total) = 3 • (2. 7) 



20 


II.8 POWDER SPECTRA 

The foregoing has been concerned with the absorption 

spectrum from a single crystal. In a powder sample consisting 

of many small, randomly oriented crystallites, all orientations 

are present. The observed spectrum is then the result of 

taking a polycrystalline average over all orientations of H . -o 

A single crystal 	line occurs at; 


3 '¥ 3 
= 2 cos 	 (2. 8)3x1 3 = 2 n 

where n is defined so that -1 ~ n ~ 1. Then the probability 

of finding an absorption line between n and n + lln in a powder 

sample is; 

1w(n)lln = Jt sineded¢4TI 

the integration being performed over the region R where 

n ~ n(B,¢) ~ n + lln. Inverting the solution for n(B,¢) to 

give¢= ¢(8,n), This integration reduces to; 

1 
w <n) == 4TI" JR ~~ (e,n)d(cose) 	 {2. 9) 

Expanding cos '¥ gives; 

3 cos '¥ = 4 cos ~ 	 - 3 cos ~ 
3 . 

= 4n - 3n 

From equation (2.5) we define a function f{n) such that; 
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{2 .10) 

where 

from which it can be seen 'that f must lie in the region 

4/27 > f > o. 

Now 

and from equation (2.10); 

1· at
a¢= 4If(G -f)]~ 

·and 
· at 2 2 -- = -(1- 4n) = f'. (2.11)an 9 

Clearly then, R is the region for which G > f > 0. 

Defining a new variable s;, as; 

we can write; 

2G = ~ (1 - t_; } • 

Then if the roots of the equation; 

G = f 

e - t = <s - a 1 ) Cs - a2} (S: - a 3 ) 

and so; 

Jf I I · · ds· 
w {n) == 1~ . 1 (2 .12) 

2 4TI f~2 Is {s-a ) {s-a ) Ct.: -a ) ] ~ 
1 2 3ra3 
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the region of integration being a to a because outside3 2 

this region the integrand is complex. A schematic represen­

tation of the function 0(~) and the solution of 0 = f is 

shown in Figure 2. 

As can be seen, since 0 < ~ < 1, the only real region 

where 0 > f is where a > ~ ~ a •
2 3 

From the standard forms of elliptic integrals, equation 

(2.12) can be reduced (e.g. Bowman, 1961) to the form; 

w(n) ( 2 .13) 

where 
al (a2-a3) 

(2 .14)
a2(al-a3) 


2
and K(k ) is a complete elliptic integral of the 1st kind. 

For another absorption line at; 

n = cos (1T ; '¥) , 

if we substitute '¥' = 1T - '¥we have; 
I 

'¥ n = cos ,3 

and cos'¥ = - cos'¥' 

so that; 

which is the same as equation (2.10) if n is replaced by -n. 

So exactly the same spectrum results except for it being 

inverted through n = 0 (H ) • The transitions for negative
0 



FIGURE 2 


Schematic representation of 8(~). 


a 1 , a 2 , are the roots of the
a 3 

equation 8(~) = f 
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M values will, in the same sense, be the inverse of those 

for positive M. The total spectrum will thus be given by 

solving equation (2.13) for w(n) and symmetrizing about 

n = a. 
• 

II.9 NEIGHBOURING IONS 

The effect of the neighbouring ions on the lineshape 

may be considered to be a broadening of each skeletal component 

line into a gaussian function of the form; 

1 (2.15) 

2where <llH > is the inter-ionic contribution to the second 

moment. The net lineshape is then obtained by convoluting 

both the meta and ortho lineshapes calculated previously with 

a gaussian function of the above form, and summing their 

contributions weighted appropriately. Because of the statis­

tical correlations {Bright Wilson, Jr., 1935), the mixing ratio 

of the different symmetry types of ion is proportional to the 

spin weight only. The appropriate weighting ratio of meta: 

ortho ·is thus given by equations (2.3) and (2.7) as 5:3. 

II.lO 	 THE FORM OF w(n} 

The roots of the equation 

-· 
are found, by the standard technique for solving cubic 

equations (Appendix D), to be~ 



FIGURE 3 


Unbroadened ortho component W(n) for 


n ~ 0. For negative n, W(-n) = W(n). 


. f . 3 Y-hSea1e unlt or n lS 2 	3· 
r 
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~ 
2 (1 - cos x>= 3 

where 

l27f(4-27f)sin 3X = (2.16)
2 

and 
2-27f 

cos 3x = 2 

The solutions ~' in descending order of magnitude, give 

al, a2, a3. 


According to equation (2.13) w(n) becomes infinite 


when either; 


2

f = O, or k = 1, (2.17) 

the latter because K(l) = oo 


From equation (2.14), k 2 = 1 when a = a 2 , which,
1 

by solving equations {2.16), or, more obviously, by inspection 

of Figure 2, occurs when f = 0. i.e. the conditions in 

equations (2.17) are ~dentical. 

From equation (2.10), f = 0 when; 

. 1 
n = 1 or ­ 2 


W(n), the symmetrized form of w(n) defined as; 


W(n} = w(nl + w(-n) (2.18} 

--and derived by the use of equations (2.10), {2.16) 1 (2.14} 

and (2.13) is shown in Figure 3. The convolution of this 

function with a gaussian will require special treatment in 

1. -f th 1 . f . . . . hthe reg1on O~ e anoma ous 1n 1n1t1es, 1.e. w ere n = ± 2 

and ± 1. 
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Near n = 1 we define the small variable o such that;
1 

n = 1 - o1 

which 1 by substitution into (2 .10) 1 (2 .16) and (2 .14) , gives 

(Appendix E) ; 

k2 = 1 - 416 0 3/2
9 1 {2. 19} 

Near n = - 1/2 we define the small variable o in
2 

the same way; 

The same series of substitutions leads (Appendix E) 

to; 

2 16 3 
k = 1 - 27 02 • (2. 20) 

Letting k2 = l - E: 
2 

I where E: is a small quantity, 

it can be shown (Appendix F) that; 

K(l - e:2) = 2 9.-n 2 - 9.,n E: (2.21) 

if £ is of the second order of smallness. i.e. e: must be 

small compared with a quantity S (defined in Appendix F) 

which is of the first order of smallness, so that; 

(2.22) 

From equation (2.19),near n = l; 

and from equation (2.20), near n - -l/2; 

E:22 = 16 0 3 
27 2 
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so that substituting these values in equation (2.21) and 

using equations (2.10), (2.11) and (2.13) we find; 

2 
=-X 

16 0-l/2 (~n 6 - ~n ol)
41T 4 1 

(2. 2 3) 

II.ll INTER-IONIC BROADENING 

The spectral broadening effect of the neighbouring 

molecules can now be incorporated by convoluting W(n) with 

the gaussian function g(n) defined by; 

2
1

g(n) =- exp{- n2} 
aliT a 

2 ' th A 2where a lS e <uH > defined in equation (2.15), but 

normalized to the units of n. The broadened lineshape 

for the ortho-tran~itions IT(x) is then; 

(1 2 
= 1 W(n)expi- j_x-T}]_Jdn

2aliT a
J-1 

since \'iT (n) = 0 for lnl > 1. 

Integrating analytically over the anomalous regions, 

IT(x) can be written (Appendix G) as; 

{2. 2 4) 
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where; 

2
1 W(n) Iexp{- (x-i) } 

aliT a 

1-b, . 
2 2 . (x ) 2 

+ exp{ (x+i) }Jdn + W(n) Iexp{- a;n } 
a J:k:+A

2 Lll 

2 2 
+ exp{- <x;n> }Jdn + ~ 6 Iexp{- (x-l) }

4 2 2 
a a 

+ exp{- (x:~)2}]} (2.24a) 

which can be evaluated numerically, and; 

1 (1 ) { Jx+~)~}r 2 (x) = 11 + ~n 3 - ~n 11 [exp ­1 1 2aiTI a 

(2.24b) 

and; 

1 ib :k: ( 1) 2 
4TI 112 (2+~n6-~n6 2 ) [exp{- x; --} 

aiTI a 

2 
exp {- (x+ 1) } ] (2.24c)

2 a 

11 and 11 being small enough to satisfy the condition (2.22) ~ 1 2 

The broadened lineshape, IA(x), for the meta-transi­

tions is obtained by convoluting the spectrum for an isolated 

group (a delta function at H ) with the same gaussian function 
0 

used for the ortho-broadening; 
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2
1 o(n)exp{- (x-jl-} 

a/TI L a 

2 
= - 1- exp{- ~}

2aiTI a 

The total lineshape can now be obtained by summing 

IA(x) and IT(x) weighted by their transition probabilities 

in the ratio 5:3. Results of this calculation for <~H2 > 
2 2 2 2of 1G , 2G , 4G and 6G , and a proton--proton separation of 
0 

1. 68 A, {typical values for the ammonium salts) are shovm 

in Figure 4. 

II.l2 SECOND MOMENT 

The second moment (M 2 ) could be evaluated directly 

from the above broadened lineshapes, but we can note that; 

I 
where M2 is the intra-ionic contribution to M2 and is in-

I
dependent of the broadening factor <LH2

>. Thus M need2 

only be evaluated once and M2 then found by adding <~H2 >. 
I 

The contribution to M2 from the meta spectrum 

(a delta function) is zero, and from the ortho spectrum 

(Appendix H) is; 

+ A2/4 + sI s1 3 + A4M2 (ortho_) = (2.25)
Al + A2 + A3 + A4 



FIGURE 4 

Theoretical spin isomer absorption spectra 

2
with broadening factors, <6H >, of 1, 2, 4 

2
and 6 G , and an inter-proton distance of 

0 

1.68 A. 
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where; 

s1 = J:-bl n 
2

W(n)dn 	 (2.25a) 

2 
= 	 n w(n)dn (2. 25p)rb53 

l:<+b: 

2 1 W(n)dn 	 (2.25c)Al = r-b 
0 

= 2w(n)dn 	 (2. 25d)A3 r6 
~+li2 1 


2li1 

A2 = -- (1 + .R,n 3 - .R,n n1 ) 	 {2.25e)

1T 


3li2 

= --+ 	41T 

li2
2A4 

16 ~ 
(2 + .R,n 6 - .R,n ll2 l {2.25f)

4 

and L again satisfying condition {2.22}.ll1 	 2 

Using equations (2.25) with a proton-;proton seva_ration 
o I 	 2

of 1.68 	A gives M2 (ortho) = 39.8 G and since (Ap;pendix H);1 

. 3 ' 
M2 ' =8M2 (ortho} 

we find ·that M2 
I 

= 14.9 G2. We therefore ex;pect M2 to be 

in the range from 16 G2 to 21 G2 for <liH2> from 1 G2 to 6 G2. 

II.l3 NITROGEN CONTRIBUTION 

In order to include the nitrogen contribution in 

the spectrum we must go back to the original expression for 
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the dipolar Hamiltonian Hd and write 

where Hdp is the proton contribution treated previously, 

and Hdn the nitrogen contribution. Since, as was explained 

before, only the adiabatic part of Hd (i.e. that part which 

commutes with the total Hamiltonian) contributes to the 

level splitting in first order, we can write Hdn as the 

truncated part; 

Hd = ~ A. I. I 
n i 10 1z nz 

where I. , I are the z-component spin operators for proton
1z nz 

i and the nitrogen nucleus respectively, and; 

y y 112 
A. = n 

10 3 

rpn 


y,y being the gyromagnetic ratios for the proton and nitrogen
n 

nuclei respectively, r the proton-nitrogen vector and e. 
~n 1 0 

the angle which r makes with H . It should be noted that 
~n -o 

the truncated Hdn does not contain the "flip-flop" terms 

+ -Iiin analogous to those in Hdp because a simultaneous in­

version of a proton and a nitrogen spin, having different 

magnetic moments, does not conserve energy. i.e. t.he term 

is non-adiabatic. Also, by the same argument used for the 

protons, only the intra-ionic contribution to Hd need be 
n 

considered in first order. 
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The basic spin states for the isolated ionic group 

must now be defined by the z-component spin quantum numbers 

of the protons and the nitrogen nucleus. For simplicity, 

and also to maintain as close an analogy as possible with 

the foregoing proton treatment, this latter quantum number 

(n) will be written as a subscript on the proton states 

defined previously and given in Table I. i.e. the spin 

states are now written as jm1m2m3m4>n where mi is ± 1/2 and, 

14since the abundant isotope of nitrogen (N ) has a spin 

·I = 1, n can assume any one of the three values 0, ±1. n 

The presence of the nitrogen nucleus at the centre 

of the tetrahedral ammonium group makes no difference to 

the symmetry considerations, so that for each of the three 

values of n Table I defines the same symmetry adapted set of 

states. With the&e as basis states the matrix representa­

tion of Hdn can be calculated (Appendix A) . The relevant 

diagonal part (between states of the same symmetry) for n = 1 

is shown in Tables IV and v. The matrix for n = -1 is the 

negative of that for n = 1, while the matrix for n = 0 

is zero. 

In the same reference frame defined by Figure 1 


we have (Appendix B); 
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TABLE IV 

Matrix elements of Hdn (a). 

States labelling rows and columns are 
ordered as in Table II. 

a2 

I 


al 

I I I 


e f g 

I I
I 


f h k 

I I I' 


g k 9­

0 

0 0 

0 0 

0 0 

0 .0 

0 0 

0 

0 

0 
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TABLE v 

Matrix elements of Hdn 
Elements of Table IV in 

AiO 

(b) 

terms of 

I 
2a 2 1 1 1 1 A10 

I 

4a1 1 1 1 1 A20 
I 

12e 5 5 5 -3 A30 

I 

612f = -1 -1 2 0 A40 

I 

216g -1 1 0 0 

I 

6h 2 2 -1 3 

21"1k I -1 1 0 0 

I. 
29, 0 0 1 1 
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2
== A [-sin 8sin2¢ + sin28 (sin¢ + cos¢J)AlO 0 

A [-sin 0sin2cjl - sin28(sin¢ cos¢)]A20 = 
0 

2 + 
(2.26)

2
= sin esin2cjl - sin28(sincjl - cos¢) ]A30 Ao[ 

sin2esin2cjl + sin28(sincjl- cos¢)] 
yy 112 

where A ·-·-'-n-'-=""_ 
. ·O = ipn3 

By directly summing these, the symmetric combinations 

a I and I are found to be identically zero. Therefore the A2 a 1 

type states are unshifted in first order by the nitrogen 

contribution and so the meta-spectrum is unaltered, remaining 

a delta function at H • In general however the T type states 
0 

are shifted by the nitrogen contribution, the matrix elements 

for M = 0 no longer being simply twice the negative of 

those for M = l. This complication makes the analytical so­

lution of the spectrum for an arbitrary crystal orientation 

intractable. Since the angular dependence of the absorption 

lines needs to be known in order to take a polycrystalline 

average, the line shape calculation for a powder sample has 

not been attempted. However, the absorption spectrum can be 

readily calculated for any given crystal orientation. In 

particular, it can be seen from equation (2.26) that for a 

Il,O,O] field direction where 8 = TI/2 and cp = 0 we have; 

A. = 0 for all i.
10 

The same is true for ·the equivalent [0,1,0] and [0,0,1] 

directions. This means that all the matrix elements in Tables 

IV and V are zero, the nitrogen nucleus making no contribution 



38 


to the spectrwn for these field directions. i.e. the previous 

proton derivation applies. 

Inserting the appropriate values of e and ~ into 

equation (2.5) gives; 

cos~ = 1 

from which ~ = 0,2TI etc, which, by substitution in equations 

(2.6) and (2.8) yields absorption lines at; 

n = -11 

n2,3 
-
- 21 

plus the equivalent lines on the other side of H arising
0 

from negative M transitions. With the same dimensions of 

the ammonium group used before, this means absorption for 

the [1,0,0] field direction should occur at H (for the 
0 

meta-states) and H ± 4.5 G and H ± 8.89 G (for the ortho­
o 0 

states), with relative intensities 10:2:1 (to be consis­

tent with total intensities in ratio 5:3). A resulting 

spectrum broadened by a typical <~H2 > of 2.G 2 is shown 

in Figure s. 



FIGURE 5 

Theoretical spin isomer absorption spectrum 

for a single crystal with H along the [1,0,0]-o 
2direction. The broadening factor, <6H >, used 

2is 2 G and the inter-proton distance 1.68 A. 
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APPJI.Ri'l.TUS AND EXPERIHENTAL PROCEDURE 

III.l ABSORPTION 

Magnetic fields of up to 10,000 G in a 3" pole face 

gap were provided by a 12" Varian electromagnet monitored 

by a Varian V-FR 2503 Fieldial. The broadening of the 

signal due to the field inhomogeneity (as checked by the· 

broadening of the·proton signal of a paramagnetically con­

taminated water sample) was of the order of 1 G with the 

sample sizes used (up to 1.4 em in diameter by 1 em in length). 

The sample coil, which is attached to the end of a 

probe and located inside a de~ar fixed between the pole faces of 

the magnet, is part of the resonating circuit of a Pound-Knight­

Watkins marginal oscillator operating at a frequency of ap­

proximately 40 MHz. An audio frequency generator modulates the 

applied field, at an amplitude much smaller than the line­

width, through a pair of Helmholz coils mounted on the 

pole faces. The signal is first r. f. amplified and detected, 

then fed to a wide band audio frequency amplifier followed 

by a lock-in amplifier, where it is mixed with the audio 

frequency signal from the a.f. generator and phase detected. 

The d.c. output, approximately proportional to the derivative 

40 
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of the line shape curve, is plotted by a pen recorder as 

the field is scanned linearly through the resonance by the 

Fieldial. A block diagram for the system is given in 

Figure 6a with a circuit diagram of the marginal oscillator 

•in Figure 6b. 

The marginal oscillator was operated at sufficiently 

low r.f. power levels to ensure that distortion effects 

caused by nuclear spin saturation were negligible. This was 

checked for in two ways. Firstly, after holding the applied 

field (H ) off resonance for some time <~ 10 min.) to allow 
0 

the spins to achieve thermal equilibrium with the lattice, H 
0 

would be switched suddenly into resonance (in fact to the 

maximum of the derivative spectrum). Starting vli th an arbi­

trary r. f. po'\'rer level the signal was observed to decay with 

time as the nuclear Zeeman levels became saturated. This 

procedure was repeated with the r.f. power level lowered 

progressively until a value was reached at which no saturation 

decay of the signal could be observed after switching H into 
0 

resonance. Care was taken during the collection of data to 

ensure that the r.f. power level always remained below 

this value. 

Secondly, a direct measurement was made of the exciting 

r.f. field {H ). The r.f. voltage induced across a secon­1.. 
dary pick-up coil fixed in the vicinity of the sample coil 

was measured on an oscilloscope. The capacitor of the tank 
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circuit of the marginal oscillator was then shorted out and 

an r.f. voltage from a signal. ~enerator applied to the sample 

coil. The amplitude of the signal from the generator v1as 

adjusted so that the voltage across the pick-up coil, as 

measured on the oscilloscope, was the same as that previously 

induced by the marginal oscillator. The output from the signal 

generator was simultaneously applied to the oscilloscope and 

the r.f. voltage applied to the sample coil read directly. 

This was taken as being equal to the r.f. voltage originally 

produced across the sample coil by the tiscillator. In this 

way it ~,;as determined that voltage levels of less than 10 mV were 

used across the 1~ Henry coil during the collection of data. 

The magnetic induction (B) at the centre of a long 

cylindrical coil (Reitz and Milford,l960), is: 

N 'I 
B = 4TI(L) TO= Hl 

where I (amps) is the current through the L(cm) coil of N turns. 

A voltage of 10 mV across the coil produced a current of 0,04 

mA giving, according to the above formula, an H of 0,25 mG.
1 

For this field value, a T of 100 sec. and a T of 10 ~sec1 2 

(typical values for these salts at this tempera.ture) the satura­

2 2tion factor (y H T T ) is 0,05. Since y 2H 2T T <<1, the satura­
1 1 2 1 1 2 

tion was negligible for all measurements. 

The above tests demonstrated conclusively that the mar­

ginal oscillator was operating in the linear regime and that 

the experimental signal was proportional to the derivative 

of the line shape. 



FIGURE 6a 

Block diagram of the absorption spectrometer • 

.. 
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Circuit diagram of marginal oscillator 
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III.2 SPIN LATTICE RELAXATION 


Under steady state conditions the total nuclear magnetic 

moment of the sample is directed along the applied field H , which -o 

we can designate as the z direction. It is well known that an 

oscillating magnetic field 2H1coswLt applied at the Larmor fre­

quency wL of the nuclei being studied changes the orientation of 

this nuclear moment, and that if applied for a time t=TI/2yH1 , ro­

tates it through goo into the x-y plane. If the oscillating field 

is then removed, the spins, initially coherent in the x-y plane, 

lose coherence in a time T so reducing the magnetic moment in2 

this plane to zero, and relax back along H in a time T1 • If 
0 

an identical goo pulse is applied after a timeT, much longer than 

T
2 

, the nuclear moment recovered along H is again rotated into 
0 

the x-y plane. Detecting this x-y component of the nuclear moment 

by the voltage it induces in the coil of a tuned tank circuit gives 

a signal proportional to the magnetization recovered along H in 
0 

timeT. Observing this for various T 1 s allows T1 to be calculated. 

The experimental arrangement employed is shown 

schematically in Figure 7. Variable width pulses at repe­

-4 2
titian times in the range from 10 to 10 seconds provided from 

Tektronix series 160 waveform and pulse generator units were 

amplified and used to gate an r.f. oscillator which then 

supplied 30G r.f. pulses to a tuned coil surrounding the 

teflon sample holder. The signal detected in the coil was then 

amplified and rectified before being displayed on a high 

frequency oscilloscope equipped with a polaroid camera 

for recording the free induction decay amplitude. The 

spectrometers used operated ~t 5.4, 19, 20.7 and 42 MHz, the 



FIGURE 7 


Block diagram of the T1 spectrometer. 
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r.f. amplifier having the fast recovery (6 }.!Sec dead time) 

necessary to observe the signal before it decays (in time 

T2 ) after the 90° pulse. 

III.3 TEMPERATURE CONTROL 

To obtain temperatures down to that of liquid nitrogen 

the sample, inside its teflon holder and pickup coil, was 

contained inside a dewar held between the pole faces of the 

magnet. A controlled heater immersed in a sourceof liquid 

nitrogen provided a steady boil off of nitrogen gas which 

was either passed directly over the sample or preheated 

by a hot nichrome coil. Adjusting the variacs powering both 

heaters, temperatures in the approximate range from 80°K to 

400°K were obtained, and measured by a copper-constantan 

thermocouple located close to the sample. 

·For temperatures below 77°K a helium cooled Andonian 

cryogenic system was used. A needle valve controlled the flow 

of helium gas from the pressurized liquid helium storage 

chamber into the sample chamber. The samplewas mounted on a 

copper block on whichwas wound a heating coil, and in which 

\'Tas embedded a germanium and a platinum resistance thermometer. 

By balancing the helium flow with a low heater power, a 

stable temperature could be maintained over many hours. With 

this arrangement temperatures down to that of liquid helium .. 
(4.2°K) could be attained. 
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III.4 SINGLE CRYSTAL $TUDY 

The single crystals of NH 4Cl and (NH ) SnC16 both4 2

exhibited well defined growth faces, the orientations of which 

were indicated by the external crystal syrrumetry and confirmed 

by x-ray diffraction. Using these growth faces the crystals 

were opticall-y oriented in the sample holder to an accuracy 

of a few degrees, their four-fold axes ((0,0,1]) being aligned 

along the axis of the sample probe. The [1,0,0] and [1,1,0] 

crystal directions were brought approximately along the 

applied field by rotation of the probe inside the dewar, 

the orientations then being sought at which the absorption 

lineshape showed minimum sensitivity to small angular devia­

tions (the [1,0,0] and [1,1,0] are symmetry directions for a 

cubic crystal and so represent extrema in the lineshape). 

III. 5 S.AJIPLE MATERIALS 

The chemicals used in this investigation, and their 

sources, are listed below. In the cases where some structural 

data is known, t~is is also given. 

Ammonium chloride fNH cl] can be prepared by double4

decomposition between an alkaline chloride and an ammonium 

salt (Adler, 1899). The material used was of "reagent ACS" 

grade and was supplied by Matheson Coleman and Bell Company. 

The room temperature crystal structure,as determined by x-ray 
0 

studies, is simple cubic with a= 3.859 A (Wyckoff, 1923). 

Ammonium bromide [NH4Br] can be obtained by the direct 
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reaction of an excess of ammonia gas with bromine (Bosetti, 

la89). The material used in this study was of "re~gent" grade, 

again supplied by Matheson Coleman and Bell Company. X-ray 

studies show the room temperature crystal structure to be 
0 

cubic with a= 4.047 A (Havighurst, Mack Jr., and Blake, 1925). 

Levy and Peterson (1953) performed a neutron diffraction study 

of four phases of ND 4Br. In the room temperature phase their 

results favoured a structure with orientational disorder among 

the ammonium ions and a space group Pm3m. 

Ammoniom fluoride [NH F] can be prepared by crystalli­4

zation from NH Cl and NaF solutions (Berz~lius, 1828). The
4

material used was of "Baker analyzed reagent" grade, supplied 

by J. T. Baker Chemical Company. At room temperature the 

crystal exhibits the zincite structure with two molecules per 
0 0 

unit cell, where a= 4.39 A and c = 7.02 A (Zachariasen, 1927). 

Ammonium selenate [(NH 4 ) 2seo4 J can be obtained by the 

neutralization of selenic acid with a weak ammonilli~ solution. 

Crystals form into monoclinic prisms with a:b:c = 1.758:1:1.206, 

S = 77°41' (Tutton, 1906). The material used ~as of "reagent" 

grade, supplied by Alfa Inorganics, Inc. 

Ammonium diuranate [(NH ) u2o J can be obtained by the4 2 7

reaction of liquid ammonia at -33.5°C on uranium nitrate hexa- or 

di-hydrate (Watt, Jenkins and McCuiston, 1950). It is usually 

prepared industrially by the precipitation resulting from the 

addition of gaseous ammonia to a solution of uranyl nitrate. 
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The material used in this study was of "reagent" grade, 

supplied by Alfa Inorganics Inc. 

evaporation of a solution of one mole of ammonia and two moles 

of chromic anhydride (Abel, 1850). The material used in this 

study was a Fisher Scientific certified reagent. The 
0 0 0 

crystals are monoclinic with a= 7.74 A, b = 7.54 A, c = 13.26 A , 

S = 93°42' with four molecules per unit cell (Gessner and 

Mussgnug, 1930) and a space group C2/c (Wilhelmi, 1951). · Spe­

cific heat measurements indicate two phase transitions at -2 °C 

and -120°C (Jaffray, 1952). 

Arr@onium persulphate [(NH ) 2s 2o ] results from anodic4 8

oxydation of a saturated solution of ammonium sulphite in dilute 

sulphuric acid (Berthelot, 1892). The material used in this 

study was ~certified ACS" reagent supplied by Fisher Scientific 

Company. At room temperature the crystals are monoclinic 

(Fock, 1893), the bimolecular unit cell having dimensions 
0 0 0 

a= 7.84 A, b = 8.06 A, c = 6.14 A, S = 95°9 1 and the space 

group P2 1/n (Wyckoff 195la) • 

Ammonium trichlorostannite [NH sncl ] can be obtained4 3 

by treating a solution of ammonium chloride with excess stannous 

chloride (Rimbach and Fleck, 1915). The material used in this 

study was of "reagent" grade, supplied by Alfa Inorganics Inc. 

Ammonium hexachlorostannate [(NH ) SnC1 ] can be ob­4 2 6

tained by the evaporation of a mixture of ammonium chloride 
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and stannic chloride solutions (Druce, 1918). The material 

used in this study was of "reagent" grade and was supplied 

by Alfa Inorganics Inc. The room temperature structure is 

face centred cubic with space group Fm3m (Engel, 1935). 

Ammonium iodoplatinate [(NH 4 ) Pti ] can be obtained by2 6

treating tetravalent platinum iodide with ammonion iodide 

(Datta, 1913). 

Ammonium hexanitratocerate [(NH ) Ce(N0 ) ] was of
4 2 3 6

"reagent" grade, supplied by Alfa Inorganics Inc. 

Ammonium gallium tetrachloride [(NH )Gacl ] can be4 4

obtained by the action of HCl gas on trimethylmonoaminegallium 

[(CH ) GaNH ) (Kraus and Toonder, 1933). The material used3 3 3

in this study was of "reagent" grade, and was supplied by 

Alfa Inorganics Inc. 

Ammonium sulphate [(NH ) 2so ] can be prepared by the4 4

reduction of calciurn sulphate in the presence of gaseous ammonia, 

carbon dioxide and water (Neumann, 1921). X-ray studies by 

Ogg and Hopwood (1919) show the room temperature structure 
0 0 0 

to be orthorhombic with a= 5.951 A, b = 10.560 A, c = 7.729 A, 

with a second order phase transition occurring at -50.7°C 

(Crenshaw and Ritter, 1932). The material used in this study 

was graded "primary standard" as supplied by Fisher SCientific 

Company. 

Ammonium selenite [(NH ) 2seo ]· can be obtained by4 3

evaporation of an aqueous solution of selenic acid saturated 

with ammonia gas (Muspratt, 1849). The material used in this 
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study was supplied by Alfa Inorganics Inc. as "reagent" grade. 

Ammonium tetrafluoroberyllate [(NH ) BeF 4 J was supplied4 2

in "reagent" grade fer this study by Alfa Inorganics Inc. 

Mukherjee (1944) found the room temperature structure to be 
0 0 0 

orthorhombic with a = 7.49 A, b = 10.39 A, c = 5.89 A. However, 

Okaya, Vedam and Pepinsky (1958) discovered a superstructuring 

which doubled the b and c dimensions and changed the space 

group from the basic Pnam to Acam. 

Ammonium thiosulphate [(NH 4 } 2s 2o ] can be prepared3

by dissolving sulphur in a solution of the sulphite. The anhydrous 

crystals are monoclinic at room temperature with a:b:c = 1.5717:1:1. 

3500, and a= 85°25' (Fock and Kluss, 1889), with a space group 

C2/m (Brunt, 1946}. The material used for this study was of 

"purified" grade, supplied by Fisher Scientific Company. 

Ammonium nitrate [NH No ] can be obtained by the mutual4 3

neutralization and evaporation of acid and base. It forms 

flexible rhombohedral crystals at room temperature with 

a:b:c = 0.9092:1:1.0553 (Gessner, 1904). The room temperature 

phase is reported in Structure Reports (1960a) as orthorhombic 
0 0 0 

with a= 5.75 A, b = 5.45 A and c = 4.96 A and space group 

J?mmm • The material used in this study was of "analytical 

reagent" grade, supplied by British Drug Houses Limited. 

Ammonium metavanadate [NH Vo ] can be prepared, for4 3 

example, by neutralizing an acidic solution of vanadium anhydride 
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with excess ammonia, and adding an ammonium salt (Berzelius, 

1831). The colourless crystals (Von Humboldt, 1804) are 

isomorphic to KV0
3 

(Norblad, 1875). Structure Reports (1960b) 

gives the room temperature structure as orthorhombic with 
0 0 0 

a = 4.92 A, b = 11.82 A, c = 5.85 A and a space group Pmab. 

The material_ used in this study was of "reagent" grade, sup­

plied by Alfa Inorganics Inc. 

Impurities, in normal concentrations·, will have virtually 

no effect on the nuclear absorption spectrum since the energy . 

levels of only that small fraction of nuclei in the vicinity 

of the impurity will be affected. However, paramagnetic im­

purities can have a marked effect on the relaxation. The 

large magnetic moments of the unpaired electron spins in para­

magnetic ions can couple quite strongly to the nuclear magnetic 

moments. Relaxation of the electron spin modulates this 

electron-nuclear coupling so allowing the nuclear Zeeman energy 

to relax to the electron system and hence to the lattice. 

The rapid establishment of a spin temperature among the nuclei 

by the nuclear spin-spin interaction means that the whole 

nuclear Zeeman system can be relaxed by relatively few impurities. 

The electron spin-lattice relaxation is only slightly 

temperature dependent since the phonon spectrum inducing it is 

very broad. Hence, the nuclear relaxation through such 

paramagnetic centres is almost independent of temperature • 
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Therefore, at very high and very low temperatures ~here the 

thermal nuclear relaxation rate becomes slower than the para­

magnetic relaxation rate 1 the latter dominates the relaxation, 

so limiting the value of T •
1 



CHAPTER IV 

CRYSTAL DATA 

IV.l INTRODUCTION 

Most of the ammonium salts under consideration in 

this 'l..vork have been studied only as powder samples, the 

relevant crystal classes to which they belong being given 

in Table VI (Chapter V). Since only NH Cl and (NH ) sncl
4 4 2 6 

have been studied as single crystals, the crystal data 

for these salts alone will be presented in this chapter. 

IV. 2 Al<tJv10NIUM CHLORIDE [NH Cl]
4

The high and low temperature structures of this 

salt have been investigated by, for example, x-ray (Nagakura, 

1957), neutron (Levy and Peterson, 1952) and electron 

(Kuvvabara, 19 59) diffraction. The crystal belongs to the 

cubic class with the nitrogen and chlorine atoms occupying 

a CsCl type lattice, the dimensions of whose unit cell is 
0 

3.866 A at room temperature (Wyckoff, 195lb). The room tem­

perature phase, existing bet'l..veen -30.5°C and 180.3°C, belongs 

to the space group Pm3m, while the low temperature phase, 

below -30.5°C, belongs to the space group P43m. The two 

possible orientations of the tetrahedral ammonium ion, in 

which the N-H bonds are directed towards the nearest neighbour 

47 
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chlorine atoms, are occupied randomly in the roo~ temperature 

phase, and regularly in the low· temperature phase. The N-H 
0 

distance in both cases is 1.03±0.02 A. The possible con­

~igurations within a cell are shown in Figure 8(a). 

• 
IV.3 AMMONIUM HEXACHLOROSTANNATE [(NH4 ) SnC1 ]2 6 

An x-ray diffraction study of this salt by Engel (1935), 

shows that at room temperature the crystal lattice is face 
0 

centred cubic with a unit cell dimension of 10.038 A. The 

crystal structure belongs to the space group Fm3m. The 

ammonium ion, surrounded tetrahedrally by four SnC1 ions,
6 

has twelve equidistant chlorine atoms as its nearest neighbours. 

The configuration of one octant of the unit cell is shown 

in Figure 8(b), where the ammonium ion orientation is only 

representational, there having been no precise determina­

tion of the hydrogen atom positions. 

We are much indebted to Mr. H. c. Teh for supplying 

the crystal of NH cl and to Dr. K. R. Jeffrey for the4

crystal of (NH ) sncl •4 2 6 

.. 
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FIGURE 8 

(a) 	 Environment of the an~onion ion in 

NH Cl. The small closed, and small4

open circles show the two possible 

orientations of the NH! ion. 
~ 

(b) 	 Environment of the a~~onium ion in 

(NH 4 ) 2sncl 6 , showing one octant of 

the unit cell. The hydrogen positions 

are only schematic. 
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CHAPTER V 

EXPERIMENTAL RESULTS 

V.l PROTON ABSORPTION MEASUREMENTS 

The derivative of the proton absorption signals at 

4.2°K for powdered samples of twenty ammonium salts were 

recorded. Those obtained for ammonium selenite [(NH ) 
2
seo ], and

4 3

ammonium tetrafluoroberyllate [(NH ) BeF ] are shown in4 2 4

Figures 9 and 10. These two have been chosen for explicit 

display because they are representative of the range of 

spectra obtained; from the very simpl~ [(NH ) BeF 4], to4 2

the more complicated I(NH 4 ) 2seo3 ]. 

The absorption spectra were obtained from these 

derivatives by computer integration and are shown in Figures 

11 to 29 along with, in some cases, the theoretical spin 

isomer spectra (dashed curve) of closest fit (see Chapter VI). 

No correction for modulation distortion has been made, but 

the modulation amplitude is indicated in each figure. Only 

one half of each spectrum is given since all spectra were 

observed to be symmetrical about the origin, H • 
0 

Some gross features of each spectrum, such as line-

width (oH), defined as the peak to peak field for the absorp­

tion derivative curve, and second moment (M ) are listed2 

in Table VI, as well as values for the activation energy (E )a 

50 
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TABLE VI 

Powder parameters from absorption and relaxation data. 
Sources for the activation energies are given in the text. 
Second moments are measured at 4.2°K, except those referenced 
differently. 

Material Crystal Ea T 1 at M:t.-LOW 
Class (K cal/mole) 4.2°K Temp. 

(sec) (G2) 

NH4C1 cubic 4.7 220 49.5±0.5t 23.1±0.4 

NH 4Br cubic 4.00±0.16 4a.o±o.st 23.2±0.8 

NH F4 hex. 53 ±2 22 ±1 

(NH
4 

) 
2
seo

4 monoc. 4.7 ±0.2 +50.6-1.2* 22.7±0.8 

(NH4)2U207 25 ±1 2.9±0.1 

(NH
4 

) 
2
cr

2
o

7 
monoc. 2.0 ±0.2 600 7.59±0.35* 2.9±0.2 

(NH4) 2S208 monoc. 1.7 ±0.2 380 19.0±0.5 2.9±0.1 

NH 4SnC1 3 1.7 ±0.5 10 9.6±0.5 2.1±0.1 

(NH4 ) 2sncl
6 cubic 1.2 ±0.2 40 5.4±0.5 1.80±0.05 

(NH 4 ) 2Pti 6 
cubic 10 ±1 1.9±0.1 

(NH 4 ) 2Ce(N03 ) 
6 

monoc. 1.6 ±0.2 160 3.0±0.2 1.5±0.1 

NH4GaC1 4 28 ±1 3.0±0.4 

(NH4 ) 2so4 rhomb. } 3. 9} 
2.7 

>1000 33.3±1.1* 4.6±0.2 

(NH 4 ) 2seo
3 

38 ±1 22.2±0.8 

(NH4 ) 2Teo4 4.7 ±0.2 13 26 ±1 5.1±0.4 

(NH
4

) 2BeF
4 

rhomb. . }4.3 ±0.7} 
2.4 ±0.2 

25 ±1 6 .8±0. 4 

(NH4)2S203 monoc. }1.7 ±0.2} 
2.8 ±0.2 

520 26 ±1 3.3±0.2 

NH4No3 rhomb. 2.4 ±0.2 660 50.0±1.3* 7 .7±0. 2 

NH4vo3 1.9 ±0.2 140 21.6±0.8* 11.2±0.2 

*Richards and Schaefer (1961). (NH 4 }2Teo4 measured at 90°K, the 
others at 20°K. 

tGutowsky, Pake and Bersohn (1954), at 77°K. 



FIGURE 9 

Derivative of the proton absorption spectrum, 

at 4.2°K,of powdered (NH ) 2seo
3 

.4 
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FIGURE 10 

Derivative of the proton absorption spectrum, 

at 4.2°K, of powdered (NH4 ) 2BeF 4 . 
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FIGURE ll 

Proton absorption spectrum,at 4.2°K,of 

powdered NH Cl.4
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FIGURE 12 

Proton absorption spectrum, at 4.2°K, of 

powdered NH Br.
4
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FIGURE 13 

Proton absorption spectrum, at 4.2°K, of 

powdered NH F.4
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FIGURE 1<1 

Proton absorption spectrum, at 4.2cK, of 

powdered (NH ) 2seo 4 .4 
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FIGURE 15 

Proton absorption spectrum, at 4.2°K, of 

powdered (NH ) u (full curve), and4 2 2o7 

theoretical spin isomer spectrum for a 

<~H2 > of 4 G2 (dashed curve). 
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FIGURE 16 

Proton absorption spectrum, at 4.2°K, of 

theoretical 	spin isomer spectrum for a 

2<6H 2> of 2 G (dashed curve). 
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FIGURE 17 

Proton absorption sp6ctrum, at 4.2°K, of 

powdered (NH ) s2o (full curve), and
4 2 8 

theoretical spin isomer spectrum for a 

<~H2 > of 2G 2 (dashed curve) . 
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FIGURE 18 

Proton absorption spectrum, at 4.2°K, of 

powdered NH sncl (full curve), and thecre~4 3 
2tical spin isomer spectrum for a <~H > of 

2 G2 (dashed curve). 
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FIGURE 19 

Proton absorption spectrum, at 4.2°K 1 of 

powdered (NH ) sncl (full curve), and
4 2 6 

theoretical spin isomer spectrum with a 

2
<6H2> of l G (dashed curve). 
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FIGURE 20 

Proton absorption spectrum, at 4.2°K, of 

powdered (NH ) Pti (full curve), and4 2 6 

theoretical spin isomer spectrum with a 

<~H2 > of 1 G
2 

(dashed curve). 
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FIGURE 21 

Proton absorption spectrum, at 4.2°K, of 

theoretical spin isomer spectrum with a 

<~H2 > of l G2 (dashed curve). 
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FIGURE 22 

Proton absorption spectrum, at 4.2°K, of 

powdered NH Gacl (full curve), and4 4 

theoretical spin isomer spectrum with a 

<~H2 > of l G2 {dashed curve). 
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FIGURE 23 

Proton absorption spectrum, at 4.2°K, of 

powdered (NH ) 2so (full curve), and4 4 

theoretical spin isomer spectrum with a 

<~H2 > of 8 G
2 

(dashed curve). 
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FIGURE 24 

Proton absorption spectrum, at 4.2°K, of 

powdered (NH 4 ) 2seo3 . 
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FIGURE 25 

Proton absorption spectrum, at 4.2°K, of 

powdered (NH ) Te04 (full curve), and4 2

theoretical spin isomer spectrum with a 

2 2 
<~H >of 10 G (dashed curve). 
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FIGURE 26 

Proton absorption spectrum, at 4.2°K, of 

powdered (NH ) BeF (full curve), and4 2 4 

theoretical spin isomer spectrum with a 

<~H2 > of 10 G2 (dashed curve). 
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FIGURE 27 

Proton absorption spectrum, at 4.2°K, of 

powdered (NH ) 2s2o (full curve) 1 and
4 3 

theoretical spin isomer spectrum with a 

2 2 
<~H ~of 6 G (dashed curve). 



70 




FIGURE 28 

Proton absorption spectrum, at 4.2°K, of 

powdered NH No 3 (full curve), and theore­4

tical spin isomer spectrum with a 

2<6H 2> of 16 G (dashed curve). 
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FIGURE 29 

Proton absorption spectrum, at 4.2°K, of 

powdered NH vo (full curve), and
4 3 

theoretical spin isomer spectrum with a 

<~H2 > of 16 G2 (dashed curve). 
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and estimates, where available, of T at 4.2°K obtained frorn1 

the relaxation measurements. It should be noted that most 

of these salts have second moment values considerably less 

than the ~igid iattice"value of"SO G2 • 

For each salt, the line shape itself constitutes a 

detailed characteristic, although it is not easily quantified, 

as are the gross features given in Table VI. Most spectra 

are characterized by a fairly narrow central gaussian com­

ponent peak (1 to 2 G wide) and the semblance of some 

~tructure further out in the wings of the spectrum [e.g. 

(NH 4 ) 2SnC1 6 ,NH4SnC1 ).
3 

The line shapes stay fairly constant with increasing 

temperature up to about 30°K or 40°K when the wing structure 

disappears. 

Some of the.spectra however, such as NH cl, NH Br,4 4

(NH ) 2seo4 , NH F are quite different in character from the4 4

above mentioned, having a very wide central peak c~ lOG), and 

no structure in the wings. 

The spectra of a number of the salts showed no change 

over a period of days after initially reaching 4.2°K, the first 

observation being made about half an hour after the initial 

immersion in liquid helium. The mechanism responsible for the 

line shape must therefore establish equilibrium among the 

spins in a matter of minutes. 

The absorption derivative spectra obtained at 4.2°K 

along the [1,0,0) and [1,1,0] directions are shown for a 
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single crystal of NH Cl in Figures 30 and 31, and for a single4

crystal of (NH 4 ) 2sncl 6 in Figures 32 and 33. The corresponding 

absorption spectra are shown in Figures 34 to 37. The spec­

truro of NH Cl appears to consist of two angular dependent4

components symmetrically distributed about the Larmer field. 

For the [1,0,-0] orientation, these components lie approximately 

4G from the centre of the resonance, whereas for the [1,1,0] 

orientation they lie approximately 7G from the centre. The 

difference in character between the NH4Cl and the (NH 4 ) 2sncl9 

spectra is quite apparent. In the latter there appears to be 

a component centred at the Larmer field (H ) in both orien­o 
tations and two angular dependent components symmetrically 

distributed about H and lying at about 3.3 G for the [1,0,0]
0 

orientation, and 2.6G for the [1,1,0] orientation. There 

appears also to be two other symmetric components, more pro­

nounced for the [1,1,0] orientation, at 4.8G from the centre. 

In both cases the repetition of the same line shape 

on rotating the probe (and sample) through 90° confirmed that 

the [O,Orll crystal direction was parallel to the probe axis. 

V.2 	 RELAXATION TIME MEASUREMENTS 

Spin-lattice relaxation time (T ) measurements have1 

been made for most of these salts. Those which have been 

published previously will not be shown explicitly but references 

will be given. Within the scope of the present work only 

such quantities as molecular correlation times and activation 



FIGURE 30 

Proton absorption derivative spectrum, at 

4.2°K, for a single crystal of NH Cl. H
4 -o 

is along the [1,0,0] direction. 
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FIGURE 31 

Proton absorption derivative spectrum, at 4.2°K, 

for a single crystal NH Cl. H is along the4 ·-o 

[1,1,0) direction. 
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FIGURE 32 

Proton absorption derivative spectrum, at 

4.2°K, for a single crystal of {NH ) sncl6 .4 2

H is along the [1,0,0] direction. -o 
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FIGURE 33 

Proton absorption derivative spectrum, at 

4.2°K, for a single crystal of (NH ) sncl 6 .4 2

H is along the [1,1,0] direction. -o 
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FIGURE 34 

Proton absorption spectrum, at 4.2°K, for 

the [1,0,0] field direction in a single 

crystal of NH Cl.
4
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FIGURE 35 

Proton absorption spectrum, at 4,2°K, for 

the [1,1,0] field direction in a single 

crystal of NH Cl.4
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FIGURE 36 

Proton absorption spectrum, at 4.2°K, for 

the 11,0,0] field direction in a single 

crystal of (NH ) sncl6 .4 2
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FIGURE 37 

Proton absorption spectrum, at 4.2°K, for 

the [1,1,0] field direction in a single 

crystal of (NH ) sncl
6 

.
4 2
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energies are of interest. Consequently, for the new·data 

shown, only those features relevant to this objective will 

be emphasized. Aspects arising outside the scope of this 

work may be commented on, but any detailed discussion will 

be left for later publication by the various workers involved. 

In the interest of brevity, the activation energies 

{E ) , calculated from the slopes of the linear portions of the a 

vs. inverse temperature graphs, and the values of 

at 4.2°K, where available,are listed in Table VI.T1 

Ammonium Tellurate [(NH ) Teo ] - T for this salt shows4 2 4 1 

very little variation with temperature between 77°K and 300°K. 

This is probably a result of the presence of paramagnetic 

impurities dominating the relaxation. For this reason no 

activation energy was calculated, or data shown. 

Ammonium Nitrate [NH No 3 ] - T measurements have been4 1 

reported by Riggin (1970). 

Ammonium Metavanadate 1NH4vo J - T 1 s were measured at3 1 

a frequency of 42 MHz in the temperature range from 77°K 

to 333°K, as shown in Figure 38. Of the two minima, one 

occurring at 123°K and the other at 192°K 1 the low tempera­

ture one can be attributed to reorientation of the a~~onium 



FIGURE 38 

Temperature dependence of T in NH 4vo at 42 MHz.1 3 
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ion. 


Ammonium Dichromate [ (NH4 ) 2cr2o J - T_ 's were measured at
7 1 

a frequency of 42 MHz in the temperature range from 77°K to 

300°K, as shown in Figure 39. ~n(T1 ) decreases linearly with 

increasing S(=lOOO/T) over much of the temperature range and 

. approaches its minimum around 77°K, although the temperature 

range did not extend low enough to completely include the 

minimum. 

Ammonium Persulphate [(NH ) s o ] - T 's were measured4 2 2 8 1 

at a frequency of 19 MHz in the temperature range from 77°K 

to 300°K, as shown in Figure 40. The temperature dependence 

is very similar to the dichromate with a minumum occurring 

around 80°K, which is again at the lower limit of the measured 

temperature range, and hence is ill-defined. 

Ammonium Thiosulphate [(NH4 ) 2s2o3 ] - T 's were measured at1 

a frequency of 20.7 MHz in the temperature range from 77°K 

to 300°K. Over this range the signal decay was non-exponential 

and was analyzed to give two unique T 's as shown in Figure1 

41. This behaviour can be attributed to the existence of two 

inequivalent types of ammonium ion in this salt, each posses­

sing its own spin temperature and relaxing independently to 

the lattice. The T minimum for one ion type occurs around1 


ll6°K; but is only just beginning to appear for the other at 


the lower temperature limit of 77°K. 



FIGURE 39 

Temperature dependence of T in (NH )
2
cr o at

1 4 2 7 

42 MHz. 
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FIGURE 40 

Temperature dependence of T in (NH ) s o at1 4 2 2 8 

19 MHZ. 
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FIGURE 41 

Temperature dependence of (NH 4 ) 2s at 20.72o3 

MHz. The signal decay was non-exponential over 

this range and was analysed to give the two T1 

dependences shown. 
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Anwonium Hexanitratocerate [ (NH4 ) 2Ce(N0 ) ] - T 's were3 6 1 

measured at a frequency of 5.4 MHZ in the temperature range 

from 20°K to 300°K, as shown in Figure 42. On both sides of the 

minimum ~n(T1 ) shows a linear dependence on inverse temperature. At 

very lmv- temperatures, below 30°K, levels off as theT1 

paramagnetic -impurities begin to dominate the relaxation. 

Ammonium Selenate [ (NH4 ) 2seo ] - T1 's were measured at a4


frequency of 20.7 MHz in the temperature range from 150°K to 


350°K as shown in Figure 43. The minimum due to molecularT1 

reorientation occurs around 198°K. 

Ammonium Hexachlorostannate [(NH ) sncl ] - T 's were4 2 6 1 

measured at a frequency of 5.4 MHz in the temperature range 

from 20°K to 125°K. Below about 70°K the signal decay was 

non-exponential and was analyzed to give two T 's as shown1 

in Figure 44. The data may be interpreted on the basis of 

two relaxation mechanisms: a reorientation of the ammonium 

group leading to a minimum in T around 57°K and a tunneling1 


assisted mechanism leading to a T minimum at 29°K, which is
1 

too low a temperature for molecular reorientation to be 

evident. 

Ammonium Trichlorostannite [NH 4SnC1 ] - T 's were measured3 1 

at a frequency of 20.7 MHz in the temperature range from 

77°K to 300°K. Over practically the whole of this range the 

signal decay was non-exponential, and was analyzed to give two 



FIGURE 42 


Temperature dependence in (NH ) Ce(N0 ) at
4 2 3 6 

5.4 MHz. 
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FIGURE 43 

Temperature dependence of T in (NH ) 2seo1 4 4 

at 20.7 MHZ. 
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FIGURE 44 

Temperature dependence of T in (NH ) 2sncl1 4 6 

at 5.4 MHz. The signal decay in the region below 

70°K is non-exponential, and was analysed to 

give the two T dependences shown.1 
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T •s as shown in Figure 45. In all cases the T values found1 1 

.at each temperature were of the same order of magrii tude, 

resulting in some inaccuracy of the extracted values. The 

inference is again of two inequivalent groups of ions relaxing 

independently to the lattice. The activation energy extracted 

•
from the small region around 150°K is, of course, inexact 

and can be taken only as a qualitative guide. 

Ammonium Bromide [NH Br] - measurements have been re­4 T1 

ported by Woessner and Snowden (1967a). 

Ammonium Chloride INH4Cl] - T measurements have been1 


reported by Woessner and Snowden (1967b). 


Ammonium Sulphate [(NH ) 2so ] - T1 measurements have4 4 

been reported by O'Reilly and Tsang (1967) for protons and by 

Kydon, Pintar and Fetch (1967) for deuterons. 

Ammonium Tetrafluoroberyllate, [ (NH4t BeF 1 - T measure­2 4 1 

ments have been reported by Kydon et al (1969) for deuterons, 

and by O'Reilly, Peterson and Tsang (1967) for protons. 

Ammonium Selenite INH4seo ] - No T data is available for3 1 

this salt. 

Amm~~ium_Diu£_r:_a·!_e [ (NH4 ) 2u2o J - No .T1 data is given for7

this salt because the relaxation was dominated by paramagnetic 

impurities. 

Ammonium Iodoplatinate [(NH ) Pti ]- No T data is4 2 6 1 

available for this salt. 



FIGURE 45 


Temperature dependence of T in NH SnCl3at

1 4

20. 7 MHz. The two '1' 1 dependences represent 

an analysis of the non-exponential signal decay 

over the entire temperature range. 
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Ammonium Chlorogallate [(NH ) GaC1 J -No T data is4 2 4 1 

available for this salt. 

Ammonium Fluoride {NH FJ - No T data is available for4 1 

this salt. 

The effects of relaxation caused by paramagnetic im­

purities mentioned at the end of Chapter III can be seen in 

a number of these cases. At low temperatures the T values1 

of (NH4 ) ce(N0 ) (Figure 42) and (NH 4 ) sncl (Figure 44)2 3 6 2 6 

approach a limiting value of about 104 sec. as the paramagnetic 

relaxation begins to dominate. Similar limitation effects 

at high temperatures can be seen in NH4vo (Figure 38),3 

(NH ) 2cr (Figure 39), (NH (Figure 40) and NH4SnC14 2o7 4 ) 2s 2o8 3 

(Figure 45). In the middle temperature ranges where T is1 

strongly temperature dependent the paramagnetic impurities 

play only a minor role in the relaxation which is dominated 

here by the thermally activated dipolar mechanisms. 

For the particular case of (NH4 ) the constituent uran­2u2o7 

ium ions themselves are paramagnetic and dominate the relaxation 

over the whole temperature range. 



CHAPTER VI 

DISCUSSION 

VI.l MOTIONAL EFFECTS 

The calculation of the correlation frequency (defined 

as l/2TIT ) is illustrated for a few of the materials studied:­
c 

The dipolar relaxation time for reorientation is 

. given (Abragam, chapter VIII) by; 

T 4T _____c_]<¥ -) -- c [ c + {6. 1)
d 1+ 2 21 r WLTC 1+4wL 

2
T 

2 
c 

where Cd depends only upon the nuclei concerned and their con­

figuration, T is the correlation time for the reorientational c 

process, and wL is the Larmer frequency. 

From expression (6.1), a minimum in T occurs when1 

wLTc = 0. 62. For ammonium selenate this minimum if; observed 

to occur around 198°K at 20.7 MHz (Figure 43). Considering 

the reorientation as a thermally activated process, the 

Arrhenius expression 

. -14T = 3.2 x 10 exp{2.4S} ( 6. 2)
c 

is obtained for the reorientational correlation time in this 

salt. Using expression (6.2), the temperature at which the 

correlation frequency becomes less than the linewidth (which 

for these salts is ~lOG,or 40 KHz) can be calcualted. Hence 

we find that, for ammonium selenate, the lattice is effectively 

96 
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rigid below ll6°K. 

For ammonium hexani tratocerrate the temperat.ure at which 

Tl reaches a minimum (around 50°K at 5.4 MHz - Figure 42) was 

one of the lowest among the salts measured. This fact, coupled 

with its very low activation energy (l. 6 K cal/mole) 1 would indi­

cate that the "rigid lattice" temperature for this salt should 

be one of the lowest for the solids studied. A calculation 

analogous to the one for the selenate shows that the lattice 

of (NH4 ) 2Ce(N0 ) is effectively rigid below 35°K. Indeed,3 6 

taking an extreme, hypothetical case, where the T minimum
1 

at 20 MHz occurs at 50°K, with an activation energy of 1 K cal/ 

mole (both quantities lower than those for any salt measured), 

the same calculation reveals that the lattice would be effec­

tively rigid below 27°K. We may thus safely conclude that 

molecular reorientation, as a mechanism for line narrowing, can 

e;Efectively be ruled out, for the ammonium salts studied here, 

at temperatures as low as 4.2°K. 

VI.2 LINE SHAPES 

From the theory of Chapter II, the proton absorption 

line shape for an ammonh1m g:coup exhibiting spin isomerism is 

expected to display certain sali~nt characteristics; a second 

moment co11siderably less than the "rigid lat.tice" value, a 

dominant central gaussian component, and either structure or 

broadening in the wi.ngs depending upon the inter-ionic second 
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moment. With one or two exceptions the ammonium salts studied 

fall naturally into three classes determined by the characteris­

tics of their absorption spectra. Each salt will be discussed 

within the category to which its spectrum most closely conforms: 

a) Wide Spectra 

This category consists of the halogen salts NH 4Cl, NH 4Br 

And NH4F plus the selenate (NH 4 ) 2seo4 . Their spectra have no 

dominant central component and all are broad (Figures 11 to 14) 

with large second moments (comparable to the "rigid lattice" 

value). On the basis of their line shapes and second moment 

values we conclude that spin isomerism is not exhibited by any 

o~ the salts in this category. 

The single crystal derivative spectra at 4,2°K of 

NH 4Cl for the [l,O,ql and [1,1,0] field directions (Figures 

30 and 31) are identical with those obtained at 77°K by Bersohn 

~nd Gutowsky {1954) for the same orientations in this salt. 

They found good experimental agreement betv.Jeen their line shapes 

and a theoretical "4-spin 1/2" calculation, in which the entire 

matrix in Table II is diagonalized (protons are distinguishable ­

no symmetry restrictions on the wave function) . They found 

better agreement for the [1,0,0] direction than the [1,1,0], 

~nd suggest that this may be the result of using the same 

inter-ionic broadening factor for each skeletal line of the 

isolated proton group spectrum, a criticism, however, wltich 
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applies equally to both orientations. A more probable expla­

nation for the poorer agreement along [1,1,0) is that the con­

tribution of the nitrogen nucleus, which they neglect, though 

zero for the [1,0,0] is non-zero for the [1,1,0] direction 

(see section II .13) . 

In view of this agreement for a single crystal we may 

conclude that the powder spectra at 4.2°K of all the salts 

in the present category, being qualitatively similar to that 

of NH4Cl, are indicative of a "4-spin 1/2" system. This 

distinguishability shown by the protons is consistent with the 

high activation energies (> 4 K caljmole) in these solids, which 

imply strong crystal fields and consequently small overlap of 

the spatial wave functions. 

b) Narrow Spectra 

The line shapes of all salts in this category are 

2characterized by a very dominant, narrow (~1. G ) central 

component, some exhibiting wing structure at about 4 or 5 G 

from the centre. They are shown in Figures 15 to 22,along 

with the theoretical spin isomer line shape (dashed curve) 

n1ost closely fitting the central component. The values of 

2the broadening factor, <6H > , necessary to achieve this 

fit for each salt are: {NH ) 2u2o (4 G2-Figure 15) (NH ) cr o4 7 4 2 2 7 

(2G 
2 

- Figure 16), (NH ) 2s 2o (2 G2 - Figure 17), NH sncl4 8 4 3 
2 

G2(2 G - Figure 18), (NH 4 ) 2snc1 (1 - Figure 19), (NH ) Pti
6 4 2 6 

2 
(l G ~- Figure 20), (NH 4 ) 2ce (N0 ) (l G2 - Figure 21),3 6 
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2NH GaC1 (1 G - Figure 22). All have second moments much4 4 

less than the "rigid lattice" value, and , with the exceptions 

of (NH4 ) 2u2o7 , (NH4 ) 2s 2o8 , and NH Gacl 4 , much less than the4

theoretical spin isomer value for a ratio (R) of meta:ortho 

of 5/3. Since all the salts in this group have very low 

activation energies (~ 2 K cal/mole) an attempt to explain these 

low second moments could be made by assuming that the spatial 

level splittings in such low crystal fields are so high that 

the Boltzman factor becomes impo~tant at 4.2°K. The effect 

of this would be to increase the population of the lower, n~ta, 

states, so decreasing the second moment (M for the meta­
2 

transitions is just <~H 2 >). However, the only effect this 

would have on the theoretical line shape would be to decrease 

the intensity of the ortho component - its associated wing 

structure would still occur in the same part of the spectrum, 

~9 G from the centre. This is in disagreement with the observed 

spectra of all the salts in this group, whose wing structure is 

observed to occur around 4 or 5 G from the centre. 

(NH 4 ) sncl is a typical salt of this category. Its2 6 

absorption spectrum for the [1,0,0] field direction (which is 

particularly easy to interpret because of the absence of the 

nitrogen contribution) can be approximated very closely in the 

central region by a spin isomer spectrum with a <~H2 > of 2 G
2 

- Figure 36. However, the theoretical structure occuring at 

~9 G is completely absent, while only a semblance of that at 

~s G remains. The lack of agreement for the single crystal 
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between the experimental and theoretical line shapes is, as 

for the powders, in the location as well as the amount of 

wing structure. 

We can conclude that the spin isomeric spectrum is exhi­

bited by none of the salts in this category, although the 

~rotons can clearly not be regarded as distinguishable. The 

~resence of a central meta component is apparent, but the ortho 

component, which is responsible for the wing structure, is 

much narrower than the theoretical ortho-isomer component. It 

is probable that "tunneling" of the ammonium ion in the low 

crystal fields of these solids, which would not affect the meta 

transitions, is responsible for the observed narrmving of 

the ortho component. 

c) Broad-Gaussian 

The salts in this category are all characterized by a 

broad {> 6 G2 ) central component. with either broadening or 

structure in the wings. 

The central component of the (NH 4 ) 2so spectrum is best4 


reproduced by a theoretical spin isomeric line shape with a 


~~H2 > of 8 G2 - Figure 23. A calculation of the inter-ionic 


proton contribution to the second moment for proton-proton 

0 

separatJ.ons of up to 20 A was made using the proton positions 


2 

. given by Schlemper and Hamilton (1966). A value of 5.2 G

was obtained, and considering the remaining protonsr and the 


2
. t 'b . 8n~ rogen contr1 ut1ons, G is not an unreasonable estimate 
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2for <6H >. However, the experimentally observed wing structure 

is 	too pronounced to be consistent with the theoretical spin 

isomer line shape obtained with this broadening factor. There 

are, however, two inequivalent ammonium ions in this salt 

(Schlemper and Hamilton); one tightly bound (E = 3.9 K cal/mole),a 

th~ othe~ more loosely bound (E = 2.7 K cal/mole- Table VI).a 

It is possible that each ion is exhibiting a different type of 

absorption spectrum, the experimentally observed one being their 

superposition. To account for the larger second moment of 

2this salt (33.3 G), one of these component spectra would 

have to be the "4-spin 1/2" type of category a) having a second' 

moment rvSO G2. If the other component were spin isomeric with 

G2 G2a. 	 second moment of 23 (15 for the isolated group pl1:;s 

28 G broadening), the observed second moment, being the average 

2for the two types, -vwuld be rv37 G , which though higher than 

the observed value, is of the right order. However, had the 

second component not been spin isomeric, but of the type 

2observed in cat~gory b) , with a second moment rvlO G , the 

observed second moment would have been rv30 G2 , which is also 

of the right order, though smaller than observed. On the 

basis of these results, no definite conclusion can be drawn 

as to the nature of this narrower component in the spectrum 

of (NH4 ) 2so4 . Any wing detail that may confirm or refute 

it.as spin isomeric in character is masked by the broad com­

ponent. 
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The spectrum of (NH 4 ) 2seo is qualitatively similar3 

to that of (NH ) 
2
so (Figure 24) and a similar proposition

4 4 

can be forwarded of two spectral types being present in the 

observed line shape. Although there is more of the broad 

component present in this case, the consequently higher second 

2 2
moment (38 ± 1 G ) agrees well with that predicted above (37 G ) 

for a 1:1 mixing of "4-spin 1/2" with spin isomeric sites. 

No structural data is presently available on this material, so 

this proposition cannot be substantiated. 

(NH ) Teo and (NH ) BeF spectra are both approximated
4 2 4 4 2 4 

very closely by a spin isomeric spectrum with a broadening 

2 2
factor, <6H >, of 10 G - Figures 25 and 26. Both these 

2 2salts have second moments, 26 ± 1 G and 25 ± 1 G respec­

2
tively, consistent with that predicted for spin isomerism (15 G

G2for the intra-protonic group plus the 10 broadening) with a 

ratio of meta:ortho of 5:3 (spatial splitting << kT at 4.2°K). 

2
However, not only is an inter-ionic second moment of ,10 G

questionably high, but in the tetrafluoroberyllate at least, 

the situation is again complicated by the presence of two in­

equivalent ammonium groups with different activation energies 

(Table VI). It is possible that in these salts too the 

observed spectra are the composites of two components, the 

narrower one being broadened sufficiently by the inter-ionic 

second moment to give an apparent agreement with tl1e theoretical 

spin isomeric spectrum. 
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The closest fit of a theoretical spin isomeric line 


shape to the spectrum of {NH ) 2s2o is achieved with a <~H 
2 

>
4 3 


of 6 G2 -Figure 27. The agreement is very poor,both in the 


central region (which is apparently non-gaussian) and in the 


wings, which are experimentally observed to be much wider 

• 

and less structured than those of the spin isomer spectrum. 


To approximate the spectra of NH No and NH
4
vo
4 3 3 

. 2 2
by a spin isomeric line shape a <~H > of at least 16 G 


must be used {Figures 28 and 29), which is an unrealistically 


high value. With this amount of broadening, no wing struc­

ture would be observed, whereas the NH 4No3 spectrum in 


particular, still exhibits quite pronounced wing structure. 


Although the low second moments at 4.2°K indicate some 


indistinguishability among the protons in all the salts of 


- thiscategory, it is unlikely that any of them exhibit solely 

isomeric spin states. All their spectra may, in fact, be 

composites of the spectra from two inequivalent proton groups ­

one distinguishable, the other not. 

VI.3 CONCLUDING REMARKS 

A mechanism for line narrowing at 4.2°K is not 


characteristic of all ammonium salts. Those of category a) 


exhibit the "4-spin 1/2" line shape characteristic of dis­

tinguishable ammonium group protons, their high hindering po­-· 
tentials being consistent with such an interpretation. 
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The spectra of the salts in category b) show their 

ammonium group protons to be indistinguishable, although spin 

isomerism is not the sole mechanism responsible for the line 

shape. The extreme narrowness of the spectrum of some of these 

salts indicates some other mechanism, probably "tunneling" of 

the ammonium-groups through the low hindering potentials, is 

modifying the spin isomeric line shape. 

Similarly, for the salts in category c), with the 

possible exception of (NH ) Teo and (NH ) BeF
4 

, spin isomerism4 2 4 4 2

is not the sole mechanism responsible for the line narrowing
' 

at 4.2°K. However, the spectra of (NH ) Te0 and (NH ) BeF4 2 4 4 2 4 

are indicative of spin isomerism in these salts, although the 

large broadening factor involved would tend to obscure the wing 

structure (ortho component) in which tunneling effects would 

manifest themselves. 

The splitting of the A, E and 3T spatial levels, which 

is responsible for the separation.of the different spin symmetry 

states, is a result of the overlap of the spatial wave func­

tions from one equilibrium orientation of the ion to another 

the conventional tunneling of the ion between equilibrium sites. 

If this splitting is much greater than the natural absorption 

linewidth, transitions between different spin symmetry states 

then give. rise to very weak components in the absorption 

spectrum far removed from the Larmor frequency which become 

lost in the noise of the wings, thus narrowing the resonance 

http:separation.of


lOS a 

line and the second moment In a crystal field of tetra­

hedral or higher symmetry the 3T levels remain degenerate so 

that none of the allowed transitions between the different 

T states are lost in the wings. This situation is implicit 

in our description of spin isomerism. However, in a crystal 

field of symmetry lower than tetrahedral the degeneracy of the 

3T levels is at least partially removed (see page 11) • If 

the splitting of these levels is much greater than the natural 

linewidth certain transitions among them will again give rise 

to unobserved components far removed from.the LarmoJ: frequency, 

resulting in a further narrowing of the observed spectrum. This 

is the situation we have previously referred to as "tunneling", 

but it must be emphasized that it is in fact only a removal, 

by the crystal field symmetry, of the residual degeneracy 

of the 3T levels. The conventional tunneling of the ammonium 

ion is already responsible for the separation of these levels 

from the A and E ,types. 

The extreme narrowness of the ortho components in 

category b) suggest that this "tunneling" situation may be. 

present in these salts and that the initial decoupling of the 

spin and space eigenfunctions employed by Tomita with the 

subsequent diagonalisation of the spin state representation 

of the dipolar Hamiltonian is not justified. A future attempt 

to describe this mechanism should involve an initial coupling 



lOSb 

of spin and space eigenfunctions to form physically real states, 

followed by diagonalisation of the matrix representative of 

the dipolar Hamiltonian in this spin-space basis. 
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APPENDIX A 

MATRIX ELEMENTS 

A. I NOTATION 

To condense the expressions involved in this 

appendix to a convenient length the following abbreviated 

notation will be defined: 

a) The symmetry adapted states l\1¢~ will be represented by 

a vect.or of the form {a1 ,a2 , ... }where the a. 's are the 
l 

coefficients of the states lm1m2m3m4> in the reduction to 

R
M¢i defined in Table I. e.g. the state; 

1¢1
A = 2l rf -+++> + I +-++> + I ++-+> + I +++-> J 

will be represented by; 

1¢~ =! {1,l,J,l} 

b) The matrix elements will be linear combinations of t.he 

Aij's and will be represented by a vector (b1 , •.. b ) 1 where6

the b's are the coefficients of the A .. 's in these linea~
lJ 

combinations. e.g. frorc Table II; 

will be represented by: 

~- (1, 1,1,1,1, 1) 
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A. II 	 MA'I'RIX ELEMENTS OF Hdp 

From section II. 3; 


4 

2: l (I+ 	- I-. 1.. +.) ]A ....[I I --4 .I.+ 	 (A .l)

i>j 1] 1Z JZ 1 J 1 J 
=l 

The relevant operator properties are (for m. 
l 

Iizijz!mlm2m3m4> = mimj!mlm2m3m4> l 
(A. 2) 

r1r;Jmlm2m3m4> ~ J-ml-m2,m3,m4> r 
) 

! and 	m = + ! and is zero otherwise.2 

Consider I for example, 11¢r> where I from 'I'able I i 

(A. 3) 

Operating with (A.1) and using (A.~) we find; 

T 1Hd I1¢]> = -- { (-2,1,-2,2,1,1) I (-2,-2,1,1,2,1), 
p 	 . 8/3 


(1,-2,-2,1,1,2); (-3,-3,-3,2,2,2)} 


Also; 


1 
 {1,1,-2,0}
16" 

Hence; 
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1 [(-2,1,-2,2,1,1)+(-2,-2,1,1,2,1)-2(1,-2,-2,1,1,2)] 
24/2 

1= (-6,3,3,1,1,-2) 
2412 

The other matrix elements of Hdp are obtained in an 

identical manner. 

A-III MATRIX ELEMENTS OF H~ an 

From section II.13; 

4 
Hd = L. A. 0 I. I (A. 4)n . 1 1z nz 

1=1 


The relevant operator properties are; 


(A. 5) 

where th~ modified states jm
1

m
2
m3m3 >n are defined in section 

II.l3. The same notation defined in section A.I and eYtended 

to this case gives, for example; 

T 1I1 ¢3>= -- {1,-1,0,0} 
/2 

Then operating with (A.4) and using (A.S) we get, 

for n --· 1, 

1 { (-1,1,1,1) ,- (1 1 -1,1,1) ,O,O}
.212' 

Hence; 
0 I ' 'l' Ifl I ,./, T 
N = <19 3 dn1J'+'3> 
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= 41 [ ( ·-1 1 1, 1, 1 ) + (1, -1 1 1 I l ) ] 

R- 1 = (0,0,1,1) 

The other matrix elements of Hdn are obtained in an 

identical manner. 
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APPENDIX B 


Aij AND AiD IN SPHERICAL CO-ORDINATES 


B.I A .. 
l.J 

unit 

In the reference 

vector h along the-

frame 

applied 

defined by Figure 1 a 

field H has co-ordinates; 
-~ 

(x,y,z) = (sin8cos¢,sin8sin¢, cose) (B .1) 

8 and ¢ being the spherical angular co-ordinates of h. 

Unit vectors rij along the proton-proton vectors E_ij are 

given by 

1A 

= --- (i + j_)E.l2 
12 

1A 

= - (i - k)E.l3 12 
A = - k)rl4 

12 

1 <i 
(B. 2) 

1A 

= - -- (j_ + k)E.23 12 
A 

= - -- (i + ~) 
1 

r24 
12 

1A 

= - (-i + j_)r34 
12 

i:_, ir ~I being the unit vectors along x,y,z. 

Now, if 8 . . is the angle r .. makes with H , then 
- l.J -l.J . --o 

cosO .. - r 
A 

.. •h and therefore, fron1. (B.2) and (B.l);
l.J -lJ ­
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.. cose 12 = ~ 	sine(cos¢+sin¢)
12" 

cose = ___!,_ 	 (sin8cos¢-cose)
13 12 

1 
cose14 == --	 (sinBsin¢-cosG) 

12 (B. 3) 

1 
cose == - - (sin8sin¢+cos8)23 v'2 


cose 24 == - -1 (sin8cos¢+cos8) 

12 

cose _! 	sin8(sin¢-cos¢)==34 /2. ­

2
But A .. (1-3 cos e .. ) 1 which on substituting

l.Jl.J 

equations (B.3) 

3 2	 2 = A[l - sin e(cos¢+sin¢) )A12 	 2 

3 2 -- A [1 - (sin8cos¢-cose) ]A13 	 2 

3 2 = A[l - (sin8sin¢-cose) ]A14 	 2 

3 2 = A [1 - (sin8sin¢+cose) )A23 	 2 

3 2 = A [1 - (sin8cos¢+cose) )A24 	 2 

2	 2
A == A[l- ~ sin e(sin¢-cos¢) ]34 

2 2 
where A - Y ~ r being the proton-proton distance ·I r .. I . 

r 
1 	

-l.J 
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In the same reference frame, Figure 1, the unit 

"' vectors riO along the nitrogen~proton vectors riO are: 

"' = - 1 (- i - .i + k)rlO 
13 

"' r 1 = ­-20 (~ + j_+ ~)13 (B. 4) 

"' 1 
::::r30 -- (~ - i - ~)

13 
"' 1 = -· (-i + - k)E.4o i

13 
Since coseiO = E.io ·~, substituting from (B.1) and 

(B. 4) gives; 

cose 10 - - 1 { -- sin (cos¢+sin¢) + cos8} 
13 

cose 20 = 1 {sin8(cos¢+sin¢) + cos8} 
13 (B. 5) 

1 cose = - {sin8(cos¢-sin¢) - cos8}30 13 
1 cose - {sin8(-cos¢+sin¢)-cos8}40 3 

YY ni12 2
Now AiO = _3_____ (1·-3cos eiO) I so substituting for 

rpn
the 8iO from (B~S) gives 

2= A [-sin esin2¢+sin28(sin¢+cos¢))
0 

2=A [-sin esin2¢-sin28(sin¢+cos¢)]
0 

2
-A [sin esin2¢-sin28(sin¢-cos¢)]

0 

2
-A [sin 0sin2¢+sin28(sin¢-cos¢))

0 
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where 
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APPENDIX C 

TRANSI'.I'ION PROBABILI'riES 

C.I PERTURBING OPERATOR 

The relevant operator inducing transitions among 

Rthe states M¢i is the x-component of the total spin operator; 

(C .1) 

where I:= I. +ii. is the spin raising operator for proton
l lX lY 

i, and I~ = I. - ii. is the spin lowering operator for 
1 lX lY 

proton l. 

C.II META-TRANSITIONS 

A AAs an example, take the meta-transition -+ ,2 ¢ 1 1 ¢ 1 

with transition probability (from equation (2.2)) of; 
' 

2
A A 

(C. 2)PA(2+1) = 1<2¢liixll¢1>1 

Applying (C.l) to the state 
A 

defined in Table I
1

¢ 1 

gives; 

I I ¢A>= I++++>+ -2~{1--++> + 1+--+> + 1-+-+>
X l 1 

+ 1-++-> + 1+-+-> + l++-->} 

(C. 3) 
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Therefore, applying (C.3) to (C.2) gives; 

p (2->-1) == 1
A 

1¢A 
1 0

A 
1In a similar way the transition ~ ¢ occurs 

with a probability; 

PA (1 ~ 0) 

which, by (C.3) gives; 

PA (1 ~ 0) = 23 . 

The negative M transitions are treated identically. 

C.III 	ORTHO-TRANSITIONS 

0¢T 
1Applying (C.l) to the state defined in Table 

gives; 

Ixlo¢I> = 
1 £!-+++> + 1+-~·+> + 1++-+> -31+++-> 

2/6 

- 1+--·-> - 1-+--·> - 1--·+-> + 3.1---+>} 

(C. 4) 

Substituting this in the expression for the transition proba­

bility; 

gives; 

P'l,(± 1-::_ 0) == 
1 
2" 

It is also clear from (C.4) that 

<± 1¢~lrxlo¢I> = 0 unless i=l 

The same treatment applies, with the same results, 

for the other ortho-transitions. 
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ROOTS 

1\.PPENDIX D 

OF A CUBIC EQUATION 

D.X EIGENVALUE EQUATION 

'J'o find the roots of the equation (2. 4); 

3 3 + l o/(6,¢) 0x· ,..,. 
I6 X 32 cos = 

we make use of the identity; 

3 3 3 2 2 
x -3pqx+p +q =(x+p+q) (x+cp+c q} (x+c p+cq) 

2where l 1 c 1 c are the cube roots of unity, and; 

(D .1) 

(D. 2) 

1 + E 
2+ E = 0 

(i.e. c = exp{2nij3}). 

Comparing (D.1) with (D.2) 

1 
pq = I6 

3+ 3 1 
cos'!'p q = 32 

we set; 

l (D. 3) 

v1e 

Eliminating 

obtain; 

q from (D.3) and substituting t -­
3 

p 

whence: 

t = 164· (co~w,:-> T + l.·~,l·nu')- - . I 
3 

- p {D. 4) 
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Writing p in the form; 

p = Pexp{ix} 	 (D. 5) 

substituting into (D.4) and equating real and imaginary parts 

we get; 

3 1
P cos3x -- cos\f

64 

3 . 3 1
P sln x = ± '64 sin\f 

from which; 

1 \f
P = 4 and x = ± 3 . 

Therefore, from (D. 5) and (D. 3) ; 

1 \f 1 '¥ p = exp(± i ·-) = (cos -+ is in !)
4 3 4 3 3 

1 - 1 \f - \f 
q = exp ( +i !) = 4- (cos -+ is in 3).4 3 3 

Inserting these values into (D.2) we therefore find 

the onJ.y real solution~ to (D.l) are; 

X = 	·-p-q = ­1 

1 	 (2n= - 2 cos 3·- ± 

But since cos(x-n) = -cosx; 

1 \Jf 
-- - 2 cos 3 

1 TI-\jl
x2 = 	 2 cos (-:r=--) 

1 TI+\f 
x3 = 	 2 cos (-·3~) 
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D.II 	ROOTS OF 8 = f 

We need to find the roots of the cubic equation; 

(D. 6) 

To eliminate the term in ~ 2 and so transform (D.6) 

to the form (D.2) we make the substitution; 

2 
~ = z + 	- (D. 7)

3 

Then D.6 	becomes; 

z
3 

- ~ z + ~?- f = 0. (D. 8) 

From which, by comparison with (D.2), we set; 

pq = 9
1 

(D .10) 

3 3 2 
p +q = 	--- f27 

3
Eliminating q from (D.lO) and substituting t -- p 

we obtain; 

from which; 

;4 	 3 
- p (D .11)t - [2-27f ± 

But f lies in the region 

4 
f > 027 > 

from which it can be seen that solution (D.ll) for t is complex. 



119 

Substituting p ::::Pexp(ix) into (D.11) and equating real and 

imaginary parts gives; 

13 3P cos X = 54- (2-27£) 

3 . 3 1 
p SlTl X = 54 /27f(4-27f) 

from which; 

1 

lp = 3 

(D. 12)
sin3x -· ~- /2 7 f ( 4-- 2 7 f ) 

2 


cos 3X = 21 
(2-··27f) 


where 

p - ~- exp (ix)
3and (Dl3) 

q = ~ exp(-ix) J 
from (D.lO). 

From (D.2), the only real solution for z is therefore; 

z = -p-q = - I2 
cosx 

and so, by (D.7); 

t,; = I2 
(1-cosx) 

where x is given by (D.l2). 
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APPENDIX E 

BEHAVIOUR OF k 2 AROUND DISCONTINUITIES 

E.I 	 NEAR n = 1 

From equation (2.11), when n = 1; 

(E .1)If' I = ~ 

Let n = 1 - o1 , where is small, then fromo1 

equation 	 (2.10); 

(E. 2) 

Hence; 

0k 
2 
1 

(E. 3) 

and 

Substituting for 

expanding gives; 

f from equation (E.2) into (2.16) 

sin3x = 3/2 o{ (1 - i ~- o1 + 0 (o~ ) ) 
and (E, 4) 

cos3x 

Since o	 is small, x is small, and so using the1 

expansion; 

(E. 5) 

on (E.4), we obtain the angles; 
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2nn+ --- (E. 6)
3 

n == 0,1,2 

Substituting these into the first of equations (2.16) 

we obtain for the roots ai (which are the solutions ~ in 

descending order); 

16 0k: 
2 

1 16 03/2 + 0(65/2)al = 1 + 3 1 3 01 - 12 1 1 

116 0 "2 - 1 16 03/2 + 0(65/2) ( E. 7)= 1 0 +a2 3 1 3 1 12 1 1 

2 
3 + 0 (0i)a3 - 01 

Substituting equations (E.7) into (2.14) and expan­

ding, gives, for k 
2 

near n = 1; 

1E.II NEAR n = ­ 2 

Letting n = 1 + o2 , where o is small we find,
2 2 

from (2.11); 

8
If. I = 9 + 0 (0~) (E. 8)02 

and from (2.10); 

1 4
f(- 2 + 62) - 02 (3 - 262) (E. 9)2i 2 

Hence; 

f 
!,: 
2 :: 

2 
(E. 10)3" 0

2 
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Substituting for f from (E.9) 1n (2.16) and 

expanding gives; 

sinx == 213 
(E .11) 

cos3x = 1 -

We again use the expansion (E.S) to obtain the 

angles; 

n == 1,2,3. 

Substituting these expressions into the first of 

equations (2.16) we obtain for the roots (j, • i 
l 

X == 
2vJ 

3 
(E .12) 

2 8 3 
0:,1 = l + 3 02 - ! 02 + 2T 02 + 0 (0~)9 2 

0:,2 = 1 - 2 
02 + O(o~) (E. 13)3 


4 2 2 8 

0:,3 = 02' (1 - 02 + 9- 02 + O(o~)9 3 2 

Substituting equations (E.13) into (2.14) and ex­

panding gives, for k 
2 

near n = - }: 

k 2 = 1 - 16 .~,,3 + 0(-"4) (E. 14)2'i u2 u2 

1
For n =-~- o the sign of in (E.l3) changes,2 o2 

interchanging a and a 
2 

. Carrying through the same substi ­1 

tusions in (2.14) with the new a's gives the same result 

as before. Thus (E.l4) applies for n = - } ± o
2 

. 
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APPENDIX F 

2APPROXIMATION FOR K(k ) 

By definition a complete elliptic integral of the 

1st kind K(k 2 ) is; 

TI/2 
2	 d¢K(k ) = 

r.:-1-k2-.2"' ­J - s1n 't' 

0 

2 	 2 2
Near k - 1, let k = 1 - E where E is a small 

quantity. Then; 

d¢,___
2 JTI/2

K(l-E) -· .; 2 2-.~ 
COS cp+E Sln cp 

0 	
(F .1) 

= A + B 

where; 

a 
d¢ 

A = 	 (F .la) 
.; 2--2 . 2J COS ¢+E Sln ¢ 

0 

and 

(F .lb) 

If we choose a 	 such that; 


2 2 

E << coi.: a (F. 2) 

then over the ent~ire range of integration in equation (F .la) 
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2 . 2 ,!.. 2 ,!.. h t th d . . h . d£ s1n ~ << cos ~ so t a . · e enom1nator 1n t e 1ntegran can 

be expanded in a Taylor series to give; 

coscjld¢
-2 2,!.. --2-.·-y­

eas -~+E s1n ¢ 

0 

dx 
2 21-a x 

2
2 £by the substitution x = sin¢, and where a -- 1- 2 

This integral is of a standard form giving; 

We now define an angle t3 by; 

11' 
a = - - t3 •

2 

We can make t3 small and still satisfy the condition 

(F. 2) if we make £ small enough. i.e. we can make B2 of the 

2first order of smallness if we make E of the second, and then 

condition (F.2) becoroes; 

£2 << 82 << 1 (F. 2a) 

Making these substitutions in equation (F.3) and 

using condition (F.2a) we find; 

.A ·- 9-n2 - 9-nB (F. 4) 

Letting ¢ - ~ - 8 the expression (F.lb) for B 

becomes; 
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r de
B - (F. 5) 

~. 2 2 2sln e+c cos e 
0 


2 2 2
where E cos e is not small compared with sin e over this en­

tire range of integration. However, since we have made S 

small, 8 is also small over the whole range, allowing us to 

2 2expand sin e and cos e, equation (F.S) becoming; 

r de 
B ·­

0 

which is again in a standard form, giving; 

B = 9-n2S - 9-ns. (F. 6) 

Combining equations (F.4) and (F.6) in (F.l) gives, finally; 

2K(l-l ) = 21n2 - 1nE 


2
if c is of the second order of smallness as defined by con­

dition (F.2a). 
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APPENDIX G 

ORTHO LINESHAPE BROADENING 

We have to perform the convolution; 

I'l, (x) = 1 W(n)exp -{ (x-n) }dn (G .1)
2a!TI ar 2 

-1 

where; 

W(n) = w(n) + w(-n) (G. 2) 

1wCn) having discontinuities at n=-~, 1. 

Substituting (G.2) into (G.l) leads to; 
l 

IT(x) = w(n)E(x,n)dn (G. 3)

J 
-1 

where; 
2 2 

E (x, n) = 1 [exp{- (x-n)_} + exp{- (x+n) }] (G. 4)2 2a!TI a a 

Note that E(x,-n) = E(x,n). 

We split the range of integration in (G.3) into 

four parts in order to treat the discontinuities analytically, 

and write; 

(G. 5) 

where; - J-~·-.61 
I 1 (x) - w(n)E(x,n)dn 

-1 


http:J-~�-.61
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(G. 6) 

w(n)E(x,n)dn 

w(-! + n)dn (G. 7)
2 

-- Jl--[12
I 3 (x) w(n)E(x,n)dn 

-~+lll 

(G. 8) 

0 0 

vl ( n ) E ( x , n ) d n 

w(l-n)dn (G. 9) 

0 

6 and 6 being small (<< 1) .1 2 


Combining (G.G) with (G.8) and using (G.2} we 


obtain; J~-Al J 1_62 

I 1 (x)+I 3 (x)= W(n)E(x,n)dn·~ W(n)E(X,n)dn+26 1w(})E(x,~) 


0 ~+[11 

+6 2w{-l)E(x,l) (G.lO) 
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Now, from equation (2.10); 

f(!) ~-;: f(-1) = 4 
(G .11)2 27 

which means, by equation (2.16); 

Tf 57T
X= 3, rr, or 3-­

so that; 
4 = 3 (G. 12) 


a = a == 
2 3 


This can 	also be seen by inspection of Figure 2. Hence, fron 

2(2.14), k == 0, and from standard tables (also from definition 

2
of K(k ) 	 in Appendix F); 

K ( 0) = Tf 	
(G. 13)2• 

Also, from equation (2.11); 

(G.14) 
2If' <-1) I 	= -­3 

Substituting equations (G .11) 1 (G .12) , (G .13) and (G .14) into 

equation (2.13) gives; 

(G. 15) 

~stituting the approximations (2.23) into (G.7) 

and (G, .d integrating, leads to; 

(G.16) 
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and 

(G .17) 

(G.16) and (G.17) in combination with (G.10) and (G.15) con­

stitute the broadened ortho-1ineshape, IT(x), in (G.S) 
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APPENDIX H 

CALCULATION OF SECOND MOMENT 

H.I 	 ORTHO-CONTRIBUTION. 

The intra-ionic second moment of the ortho-spectrum, 

M~ (ortho), is given by; 

M2 
I 

(ortho) = (H .1) 

where; 

Io = n w(n)dn 	 (H. 2)r 2 

0 

and, 

Ao -- w<n) d.n 	 (H, 3)r 
0 

use being made of the syn@etry of W(n) about the origin and 

the fact that W(n) = 0 for n > 1. 

As in Appendix G, we divide up the range of inte­

gration in order to treat the discontinuities of W{n) analy­

tically, and write; 

Ao 1\= A + 	 (H. 4)
1 '"2 + A3 + A4 

where (2-IJ 1 

·-	 w(n)dn (H. 5)Al j 
0 
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r6 

A2 :::: 
1 w(n)dn 

~-11 . 1 

r . 1 
= w (--

2 + n)dn (H. 6) 

-b.
1 

1-Ll
2 

w(n)dn (H. 7)A3 = 

:.l-2+111 

r w(n) dnA4 == 

1-L\2 

[62 
= W(l-n)dfl (H. 8) 

J 
0 

where 6 and 6 are small (<< 1) .1 2 

A and A can be computed numerically, thei1~ rawj(·;:=;
1 3 

of integration containing no discontinuities. 

Now; 

w ( n ) == w ( n ) + vl( -· n ) . (H. 9) 

Substi·tuting this aHd the approximation (2. 23) into 

(H.6) 	 yields; 

A - 26 1w(~) + ~ (1+1n3 -1n61 )2 	 61 

== ~ 6 (1 + 	 1n3 -1n6 ) (H.lO)
7f 1 	 1 

by equation (G.l5). 
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Similarly, the same substitutions in (H.B) yield: 

3 16 ;k 
:::: 4 !:.2 + 4TI 

t:. 2 (2+.Q.n6-.Q.nt:. 
2 

)
2 

by (G.lS). 

Similarly; 

1o = 11 + 12 + 13 + 14 

where 
(-~l 

11 = n 
2
w(n)dn 

0 

(H.ll) 

(H.l2) 

(H .13 

r~+t:.l 
2' 

12 -- n w(n)dn (H.l4) 

J,
-u,-f:. 
~ 1 

1 = -- A4 2 

rl-~2 2
::::13 n w(n)dn (H. 1.5) 

! 
J~+fll 

I :::: n w(n)dn (H.l6)
4 r 2 

1-t:.
2 

== A4 

and I can again be compui:ed numerically. Sub­11 3 

stitution of (H.4) and (H.l2) from the above into (H.l) thus 



133 

gives M2 
I 

(ortho) for the ortho-contribution; 

I +A /4+I +A
I 

r-1 2 (ortho) = 1 2 3 4 
Al+A2 +A.3+A4 

H.II 	COMBINED ORTHO-META SECOND MOMENT 

The second moment of the combined ortho-meta spec-

I 

trum, r-1: 2 , is; 

(H. 17) 

where I 0 and A0 are the ortho integrals defined by (H.2) and 

(H,3) and IM and AM are the corresponding meta integrals. 

Dividing top and bottom of (H.l7) by A0 we obtain; 

RM
I 

(meta)+M
I 

(ortho)
2	 2

M
1 = 	 (H.l8)
2 R + f 

where 

R = 

and 
I 

H (meta) 	 = 2 

M;(ortho) is defined by (H.l). 

Since the meta spectrum is a delta function, 

M;(meta) = 0. Also, since the weighting of meta:ortho is 5:3, 

R = 5/3. Hence (H.lB) becomes; 
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