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"0 TRLustrious One, in one thing above all have

1 admined youn teachings. Everything is comple-
tely clean and proved. VYou show the world as a
complete, unbroken chain, an eternal chain, Linked
together by cause and effect. Never has it been
presented 50 clearly, never has Lt been 40 Lnne-
futably demonstrated. Surely every Brahmin's heant
must beat more quickly, when through yourn teachings
he Looks at the wornld, completely cohernent, without
a Loophole, clear as crystal, not dependent on
chance, not dependent on the gods. Whether it

48 good on evil, whether Life An itself Lis padin

orn pleasure, whethen (£t L8 uncentain--that Lt may
perhaps be this 4is not important--but the unity

04 the wornlfd, the cohenence 0§ all events, Zhe
embracing of the big and the small {from the same
stream, from the same Law of cause, 04 becoming and
dying: this shines cleanly from your exalted.
teachings, 0.Pernfect One. Buf according to younr
teachings, this unity and Logical consequence of
all things 4is broken in one place. Through a small
gap Zthene sinreams into the wornld of unity something
strhange, something new, something that was not
thene befonre and that cannot be demonstrated and
proved: that 4is your doctrdine of rising above the
world, of salvation. With this small gap, through
this small break, however, the eternal and single
wornld Law breaks down again. Forgive me Lf§ I raise
this objection.”

Henman Hesse: Siddharta
(Thanslated by Hilda Rosnenr)
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SCOPE AND CONTENTS: Although usually only two kinds of
statistics, namely Bose-Einstein and Fermi-Dirac statistics,
are considered in Quantum Mechanics and in Quantum Field
Theory, other kinds of statistics, called collectively
parastatistics, are conceivable. We critically review
theoretical studies of parastatistics to date, point out
and clarify several confusions.

We first study the "proofs" so far proposed for
.the symmetrization postulate which excludes parastatistics;
emphasizing their ad hoc nature. Then, after exploring
in detail the structure of the guantum mechanical theory of
paraparticles, we clarify some confusions concerning the
compatibility of parastatistics with the so-called cluster
property, which has been an issue of controversy for several
years. We show, following a suggestion of Greenberg, that
the quantum mechanical theory of paraparticles can be formulated
in terms of density matrix compatibly with the cluster property.
We also discuss such topics as selection rules for systems

with variable numbers of paraparticles, the connection between
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statistics and permutation characters, and the classification
of paraparticles.

For the quantum field theory of paraparticles, we
study discrete representations of the para-commutation
relations and illustrate in detail Greenberg and Messiah's
theorem concerning Green's ansat;es . Also, fundamental
topics such as the spin-statistic theorem, the TCP theorem
and the observability of parafields are discussed on the
basis of Green's ansatzes . Finally, we point out that
the so~-called particle permutation operators do not always
define multi-dimensional representations of the permutation
group both in first and second quantization theories. This
questions the validity of the correspondence between the two

theories which has recently been proposed.
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CHAPTER I

INTRODUCTION

Among the most interesting applications of Quantum
Mechanics is the connection.between Bose-Einstein (B.E.)
and Fermi-Dirac (¥.D.) statistics and the two choices
(symmetric or anti-symmetric) of the permutation symmetry
characters for the wavefunctions (an) of the many-body
problem. However,-the Schrodinger eqﬁation of the many-
body problem also allows a host of solutions which are
neither symmetric nor anti-symmetric in character, some of

them would correspond to the statistics (called intermediate

statistics) in which the maximal occupation numbers are

neither 1 nor . It becomes customary now to employ the

term parastatistics to refer to all these solutions (in

this sense, intermediate statistics are special parastatistics).
The possibility of parastatistics is perhaps the
reason why the statement that the wfns of N-identical particles

are either symmetric or anti-symmetric in particle variables

is usually referred'to as a postulate-—ﬁhe symmetrization
postulate (S.P.). BAs a matter of fact, the S.P. has been
experimentally verified only for phqtons (e.g. in black-body
radiation), electrons (e.g. in atoms), neutrbns and protons
(e.g. in nuclei). For other elementary particles, about

200 in number, S.P. has been merely taken for granted and

supplemented by Pauli's theorem. This theorem, proved in
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Relativistic Quantum Field Theory, states that, if para-
statistics are excluded a priori, integer-spin particles
obey B.E. statistics whereas half-integer spin particles
obey F.D. statistics.

Since it is certainly not prudent to exclude
sométhing that could exist in principle, the quantum theory

of particles obeying parastatistics, called paraparticles,

has frequently attracted interests of physicists in the
realm of Elementary Particle Physics. guch a theory would
be helpful in answering the question 6f whether any elementary
particles obey parastatistics,rand if none ever does, why
- Nature prefers only B.E. and F.D. statistics. Furthermore,
~even if some simple arguments may be found against parastatistics,
the theofy of paraparticles would still‘be useful in some
physical contexts. For example, when electromagnetic interaction
is absent or negligible, the neutron and the proton could
possibly be treated as paraparticles.

The history of parastatistics goes back probably to
1940 when Gentile (1940, 1942) proposed the intermediate
statistics in which the maximal number of'particles in a
non-degenerate state is neither 1(F.D.) nor «(B.E.), but
instead a finite number p. The statistical‘properties of
a classical "intermediate gas" have been discussed by
Sommerfeld (1942), schubert (1946), ter Haar:(l952) and Guénault

and McDonald (1962). Although of no direct applications
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to physical systems, the results obtained by these authors
have helped in understanding the physical properties of B.E.
and_F.D. statistics. Unfortunately, these results, although
interesting, would not help much in determining the statistics
of elementary particles for, with only a few exceptions,
experiments involving a large number of elementary particles
are not feasiblelwith the preéent technique. For this reason,
we shall not attempt any discussion of the classical aspects
of parastatistics in this thesis.

| As in the case of B.E. and F.D. statistics, the
question of parastatistics can be attacked in Quantum
Mechanics or in Quantum Field»Theory (see Dresden, 1963;
Greenberg, 1966 for reviews). We shall discusé first the
quantum mechanical theory, or the first quantization theory
as it is often called.

The first quantization theory of paraparticles was first

explored in detail by Messiah and Greenberg (1964) but
some indications toward such a theory had already been
outlined earlier by Dirac (1930). In this theory, it is
required that dynamical states of a system of N-identical
particles which are represented'by wfns differing only by
a permutation of the particles cannot be distinguished by
any observation. Such a permutétion is realized by an

N

operator U(c) in the Hilbert space H of the many-body wfns,

which. when acting on an N-body wfn, effectuates the per-

1

mutation ¢ — of the particle variables, i.e.



YU(o) <x1|kl><x2[k2>...<xN[kN> =

L%

<x -a.ko><x o |ko>.l.<x o
B R N P o1yt

The starting point of the theory is then the assumption that
physical observables must commute with all the U(c) (this is

usually referred to as the indistinguishability postulate).

The permutations ¢ form what is called the group
SN (the composition law of the permutationssatisfies certain
properties called group prOperties) and the U(g) have
the same composition law as the o¢; it is said that the U(og)
define a representation of SN in HN. This representation
is highly reducible in thé sense that one can decompose HN
intO'irreﬁuéible SubspﬁbeS“Qith respect to the U(o) and
each subspace is said to support an irreducible representatiocn
v(I.R.) of SN.' Two I.R.'s are said to be equivalent if the
bases of their two supporting irreducible subspaces can be
chosen so that the matrix representing each U(¢) in one sub-
space is the same as in the other,otherwise they are said
inequivalent (the irreducible subspaces themselves are
correspondingly said equivalent or inequivalent). In this
connection, there is an important lemma, called Schur's
lemma, which can be stated in two parts: (i) an operator
in an irreducible subspace which commutes with all the U(o) is a
multiple of the identity operator, (ii) there is no non-zero
transformation from an irreducible subspace to an in-

‘equivalent irreducible subspace which commutes with all the U(o).



Consider the subspace H[K] spanned by the

.U(O)K(xl, Xor ooe xN) where K( Xys Xyp oo xN) =
<xl|ki> <x2|k2>... <lekN>. H[K] can be decomposed into
irreducible subspaces by a standard method (which makes
use of the Young diagrams). There are only two one-

. dimensional ineqguivalent ifreducible subspaces--one consists
of only the symmetric wfn and the other of only the anti-
symmetric one--which‘correspond-to B.E. and F.D. stafistics
respectively. There are, however, many linearly independent
and i'gqﬁivalent multi-dimensibnal irreducible subspaces
(the wfns in one of them have thé same permutation symmetry
character as the wfns in the others). Messiah and Greenberg
proposed that the wfns representing the (pure) states of
N-identical éaraparticles belong to an irreducible subspace.
However, there is no criterion for choosing a wfn among the
others to represent the state of the system. They upheld
that, since the'observables commute with all the U(o)
(indistinguishability postulate), according to the first part
of Schur's iemma, measurable résults do not depend on which
an of the irreducible subspace is chosen to represent the

state. They called an irreducible subspace a generalized

ray and asserted that the state of N-identical paraparticles
corresponds to a generalized ray. Using the second part of

Schur's lemma, they also derived a super-selection rule which

asserts that states represented by (coherent) mixtures of wfns

belonging to different inequivalent irreducible subspaces

- are not physically realizable (observable).



We interruptour review of historical developments
in order to give some comments on Messiah and Greenberg's
theory. It appears to us that Schur's lemma does not imply
Messiah and Greenberg's result if the physical observables
-have domains of definition extended to many equivalent
irreducible subspaces, i.e., if physical observables are
operators that can transform Véctors in one irreducible
subspace to vectors in others (or linear combinations of
them) . Furthermo:é, in Messiah and Greenberg's theory, the
fact that the state can be determined up to an irreducible
subspace presupposes that the equivalent irreducible subspaces
are physically distinguishable. This is quite questionable
for, if only the permutation symmetry charactef is physically
important, it may not be possible to distinguish the
equivalent irreducible subspaces; the state may then be
determined only up to a permutation invariant subspace; which
is the direct sum of all the equivalent irreducible subspéces.
We propose to explore the theory beyond the assumptions
implicit in Messiah and Greenberg's theory.

The use of multi-dimensional representations of SN
allows the possibility of parastatistics but does not answer
the question of whether paraparticles exist in Nature. Some
efforts have been made to exclude parastatistics. Some
proofs of the S.P. (Jauch, 1960; Jauch and Misra, 1961;
Galindo, Morales and Nuﬁez-Lagos, 1962, Pandrés, 1962)

have been rightly criticized by Messiah and Greenberg (1964);

they involve either faulty formulation of the indistinguishability
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of identical particles in terms of properties of wfns, or they
make assumptions of a rather technical nature about the alge-
bra of observables, which are difficult to justify on physical
grounds (into this category also fall a paper by Borcher , 1965,
.which treated the problem in the framework of the Cialgebra
approach to gquantum theory and a paper by Girardeau, 19269,
which involves some topological assumption related to the
connectivity properties of the configuration space). The
derivation of S.P. from the cluster property, as proposed by
Casher, Frieder, Gluck and Peres (1965) and Steinmann (1966)
has been)however, subjected to controversy.

Literally, the cluster property requires that the
theory of an N-particle system yield the same results wheth-
er or not other far—-away particles of the same species are
taken into account, so long as their interactions with the
system remains negligible. Steinmann (1966) argued that
the cluster property allows a measurement to distinguish
the wfns belonging to a generalized ray, in contradiction
with Messiah and Greenberg's assertion that measurable re-
sults do not depend on which wfn of a generalized ray is
chosen to represent the state. Hartle andnTeylor (1968)
and Arons (1969), on the contrary, claimed that the cluster
property, in Steinmann's argument, actualiy allows the dis-
tinction between wfns belonging to different generalized rays.

Leaving aside the question of whether these authors
are technically right, we wish to remark that they argued

in the spirit of Messiah and Greenberg's theory which involves
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some implicit assumptions that we have pointed out. Further-
more, their cénclusions depended on their assignments of the
encountered wfhs to the generalized rays; an incorrect conclusion
could have been drawn from an incorrect assignment. Because
the indistinguishability postulate is a condition imposed on
the physical observables, we believe that the question of
whether parastatistics is compatible with the cluster
property could be answered,more unambiguouslyi,by examining
whether the physical observables allowed by the cluster
assumption satisfy the indistinguishability postulate, for
parastatistics. Even if an answer could be arrived at in
this way, we should still make sure, before excluding para-
statistics, that the indistinguishability postulate is the
only expression of the indistinguishability of identical
particles. We call to mind that the indistinguishability
postulate has been derived from the assumption that the state
of paraparticles can be represented by a wfn. But, due to
the natﬁre of paraparticles, one might have to represent the
state by a density matrix. Would the indistinguishability
postulate be still the only solution to the indistinguishability
condition in the density matrix formalism?

Now, what is the connection between the I.R. of Sy
and the statistics of paraparticles? The work of Okayama (1952)
suggests that all I.R. associated with Young diagréms of at
most p coluﬁns yvield the intermediate statistics. Other I.R.
associated with Young diagrams of unlimited numbers of

columns, although providing no new statistics other than B.E.
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and F.D. statistics, possess physical properties different
from the completely symmetric wfns Stolt and Taylor (1970)

have classified the paraparticles into I.R. of S the

N:
particles are called parafermions (parabosons) of order p

if their N-body states are associated with Young diagrams of

at most p columns (p rows), paraparticles of infinite order
if.they are neither parabosons nor parafermions. This scheme
of classification, we conjecture, is acceptable if it satisfies

the self-consistent condition that many systems of paraparticles

of one type form again a system of paraparticles of the same

type.
5

So far, we supposed that the number of particles in
the system is fixed in time. Messiah ana Greenberg (1964)
have also formulated the theory for the case in which the
particles can be created or destroyed. It consists in
taking the Hilbert space of dynamical states of the system
as the Fock space ¥ (H), which is the direct sum of the HN,
N=0, 1, 2... . However, it is more difficult to formulate
the indistinguishability of identical particles in F (H)
because the permutation operations are not defined in the
whole’?(H) but in each component HN of F(H). 1It is required
that the observables in each subspaces HN satisfy the
indistinguishability postulate. As in the case of a fixed

number of particles, we should explore the theory beyond

Messiah and Greenberg's scheme which led them to the notion



10
of generalized rays. In addition, the derivation of selection

rule involving operators of the whole F#(H) should be subjected
to critical considerations.

We stop now our development of the quantum mechanical
theory in order to diséuss the quantum field theory of
paraparticles, or the second quantization theory as it is often
called (it is also called parafield theory).

In the second quantization theory, the system -of
identical particles is described by the field operators VP (x)
and w*(x), and no particle variables need to be introduced.

One does not have to use the permutation operators to impose
the indistinguishability of particles for the particles have

no identity in the second quantization theory. The statistics
of the particles reflects in the method of quantization one
adopts. For example quantization with the‘commutation relation
yields B.E. statistics Whereas quantization with the anti-
commutation relation yields F.D. statistics. One would then
tend to start from the first quantization theory of paraparticles
and follow the familiar Fock method to obtain, for para-
statistics, the commutation relations from the permutation
symmetry character of the wfns. However, this method of

field guantization is quite formidable for it requires the

knowledge of the matrix representations of S corresponding

N
to the paraparticles under consideration. Furthermore, Galindo
and ¥Yndurain (1963) have shown that such a method would give

no commutation relations of finite order which allow us to
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write, in an "almost normal" form, the state vectors,

obtained by applying a certain number of creation and

annihilation operators to the vacuum (i.e. to arrange them

so that only a fixed finite number of successive creation

operators stand to the right of one destruction operator)

or to express the particle permutation operator as a polynomial

in certain suitable operators. We recall, in this connection,

that Okayama (1952) obtained from the representations of Sy

some commutation relations, which have been shown by Kamefuchi

and Takahashi (1962) to be. unacceptable for field theory.
Green (1953) was the first to obtain some commutation

relations ffom the Lagrange equation of motion for free

fields by a simple modification of the free Hamiltonian.

The Green method could be considered as an inspiration from

Wigner's observation (1950) that the Heisenberg equation

of motion of a harmonic oscillator does not determine the

commutation relations for the operators p and g uniquely,

(Wigner's analysis has been extended by O'raifeartaigh

and Ryan (1963) and by Boulware and Deser (1963). These

authors showed that the essential non-uniqueness of the

commutation relations arises from the possibility of employing

Fermi or para-Fermi statistics). Green's commutation relations,

in terms of creation and annihilation operators, are as

follows

*
[la,, agl,, a ]l = - 28, a
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These commutation relations (also called paracommutation
relations) turn out to be general enough to accept as solutions
the commutation relations obtained later by Volkov (1959)
and by Kamefuchi and Takahashi (1962). The (+) sign
referred to parabose aﬁd the (-) to parafermi commutation
relations. There exists a generalized Pauli theorem which
states that tensor fields must be quantized with the parabose
commutation relation and spinor fields with the parafermi
commutation relation(Dell'Antonio, Greenberg and Sudarshan,
1964) . |

The quantum field theory constructed on the para-
commutation relations is now known as Parafield Theory (for
reviews, see Dresde; (1963) and Greenberg, 1966). In this
theory one coculd construct the S—matrixlby the usual procedure
(Volkov, 1959; McCarthy, 1955). Some applications of
Parafield Theory to elementary particles have been made by
Feshback (1963) and by Kamefuchi and Strahdee (1963) with the
desire to relate the strangeness quantum number to para-
statistics or to find out whether any of the known elementary
particles can be described by parafields. However, the results
obtained by various authors did not agree with one another.
The reason for this was perhaps the lack of an acceptable
method of constructing an I.R. of the paracémmutation relations
in a Hilbert space. Although Green (1953) had early provided

with some ansatzes for computing the expectation values of

functions of fields, it was not until 1965 that Messiah and
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Greenberg published a proof that Green's ansatzes actually
exhaust all possible I.R. of the paracommutation relations
of physical interest. With the aid of Green's ansatzes -
they also derived the selection rules which imply that no
known elementary particles, except perhaps the hypothetical
guarks (Greenberg, 1964; Mitra, 1966), are paraparticles
associated with the parafields. This result has been
strengthened by a theorem due to Araki, Greenberg and Toll
(1966) . In view of the importance of Green's ansatzes ,
their significance should be confirmed and clarified. Also,
as in the case of the commutation relation and the anti-
commutation relation, the non-Fock representations of the
para-commutation relations, if existing, should be exhibited.

Green's ansatzes state that, within the framework of
Lagrangian Field Theory, any parabose (parafermi) field can be
expressed as a sum of a finite number p of ordinary bose
(fermi) fields which obey the anomalous commutation relations
(some different bose fields may anti-commute and some different
fermi fields may commute). It has been proved (Kinoshita,
1958; Araki, 1961) that a set of ordinary fields obeying anomalous
commutation relations can be transformed to a set of fields
obeying normal commutation relations by a set of Klein
transformations. Although these Klein transformations are
essentially non-unitary, a question may arise as to whether

a parafermi (parabose) field is physically distinct from a
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corresponding fermi field (a fermi field of the same mass and
spih as the parafield) as far as measurable quantities are
concerned. It might be of some help in understanding the
properties of ordinary fields to see whether the results
of Wightman's axiomatic field theory, transfered to parafields,
are useful for the proofs of the T.C.P. and spin-statistic
theorems for parafields.

We have seen that Parafield Theory has been developed
independently of the quantum mechanical theory of paraparticles
and owes no result to that theory. 1Is there by any chance
some correspondence between the two theories? Previously,
we formulated the first quantization theory in the
configuration space but it would be more appropriate for our
present discussion to formulate it in the abstract Hilbert
space H' spanned by tensors of the form Iki>|k2>... {kN>.

The effect of a U(c) in HN is to shift the single particle

th th

state Iki> at the j place of the tensor product to the o3
place whatever that single particle state is. It has been
proved by Yamada (1968) that the U(c) do not define multi-
dimensional I.R. of S_ in the second quantized Hilbert space HN

N
* * *
spanned by the tensors Ay A ... 3 l0> . This means that

1 2 N ~
one cannot establish a correspondence between the first
and the second quantization theories of paraparticles in

the same way as for ordinary bosons and fermions. For this

reason, several authors (Landshoff and Stapp, 1967; Ohnuki



15
and Kamefuchi, 1969; Hartle and Taylor, 1968; Stolt and Taylor,
1970; Ohnuki and Kamefuchi, 1971) have resorted to the use
of the so-called particle permutation operators V(o) defined
as follows: acting on a tensor product of the first or the
second quantization thebry, V(o) replaces a ki by Koi whatever
the places of k, and kai are.Assuming that the V(g) are
well-defined in both first and second quantization theories,
a correspondence between the two theories has been proposed
by giving the same physical significance to the V(o) in both
theories. However, the physical interpretation of the V(o)
has not always been agreed on by different authors. For example
Landshoff and Stapp (1967) argued on physical grounds that
the V(o) have observable effects and proposed a theory of
idenﬁical particles, known as the unified theory, in which
every physical observable js a function of the V(g). On the
other hand, Ohnuki and Kamefuchi (1971) asserted that the V(o)
are not physical observables for systems of interacting
particles. The trouble with the particle permutations is,
we think, besides their physical interprefation, they are
queer objects when acting on an N-particle state, in which
some of the ki are equal: the statement "replace ki by kci"
cannot be cafried out uniquely whén some of the ki are equal.
We would also wonder whether, in this case, the V(o) can
define multi-dimensional representations of §y. $Since the
works connected with the.V(c) made use heavily of‘the_group—
theoretical properties of the V(0), it would be serious if the
V(o) do not always define representations of S,  either in

N

the first or in the second guantized Hilbert space.
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The organization of this thesis is as follows:

In Chapter II, after stating what are known as
the basic assumptions in quantum mechanics of identical
particles, we discuss the nature of the symmetrization
postulate following the works of Dirac (1930), of Jauch
and Misra, of Galindo, Marales and Nunéz—Lagos and of
Messiah and Greenberg.

In Chapter III, we give a precise mathematical
formulation of the theory of N-identical particles in

the language of group algebra of S Special attention is

N°
given to the calculation of matrix elements of a physical
observable and the preparation of paraparticle states. We

_ try to exploit the theory with as few assumptions as we think
they are reasonably allowed.

In Chapter IV, we discuss the connection between
the I.R.'s of SN and the statistics. In particular, we
generalize the proof of a theorem due to Okayama and
we check the self-coﬁsistency condition of Stolt and Taylor's
classification of paraparticles.

In Chapter V, we study the cluster property as applied
to the quantum mechanical theory of paraparticles. This
chapter is self-contained and could be considered as an illus-
tration of the theory developediin Chapter III ;+¢h special
consideration given to a 3-particle system.

In Chapter VI, we generalize the theory to a

system with a variable number of particles. We give a critical
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comment on Messiah and Greenberg's selection rule and derive
a selection rule which, we think, may explain the observed
fact that electrons (photons), for example, are always
fermions (bosons) .
| In Chapter VII) we review various schemes of second
quantization leading to parastatistics. We first illustrate
the problem by the example of an harmonic oscillator and
then concentrate our attention on Green's and Kamefuchi
and Takahashi's methods.
In Chapter‘VIII, we study the representations of the
paracommutation relations. We exhibit the discrete (Fock
or non-Fock) representations following the method of Wightman
and Schweber (1955), we give a mathematical picture of‘ |
Green's ansatzes and eléborate a proof of Messiah and Greenberg
theorem concerning these ansatzes . Finally, as a verification
of this theorem, we show the /existanéeof parastatistics
in any Fock representations.
In Chapter IX, we discuss some topiés of parafields.
in the framework of Lagrangian theory and axiomatic theory.
In particular, we disquss, with the aid of Klein's trans-
formations, the T.C.f. theorem and spin-statistics theorem
and the question of whether parafields are physically distinct
from the ordinary fields. |
In Chapter X, we study the correspondence between
the first and the second quantization theories. We give
a proof (which is similar to but somewhat simpler than

Yamada's) that the U(og) do not define multi-dimensional I.R. of



SN in the seéond quantization theory and we study, in
some detail, the mathematical nature of the particle
permutation operators;

In Chapter XI, we summarize our results and their

significance.
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CHAPTER ITI
SYMMETRIZATION POSTULATE : ‘

1. Basic Assumptions

Consider a system of N identical particles of a certain
species. Particles of other species may be present and can be
viewed as some external interactions acting on this system. We
shall suppose that the number N of particles is fixed in time.

The fact that the particles of our system are identical
implies that no observation can distinguish them from one
another, both in classical and in quantum theory. Yet there
-is a great difference in the classical and quantum description
of such a system. 1In classical mechanicé, one describes motion
by specifying the orbits of the individual particles, and
although they are indistinguishable frbm one another, if the
initial conditions have been set, it makes perfect sense to say,
at a given time, the particle 1 is moving along orbit A, particle
2 along orbit B, and so on.. In quantum theory, however, instead
of specifying orbits, one only can attribute wavefunctions to
individual particles. The wavefupctions generally overlap in
épace so that one can no longer identify the particles by
identifying the wavefunctions which they océupy. A guantum
theory of identical particles must be such that the identity
of the particles is completely irrelevant.

The starting point of the quantum theory of N identical
particles is that of N distinguishable particles. Each particle

in the system may be considered as a dynamical system by itself.

19
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To treat all the particles on the same footing, one assumes that
the Hilbert spaces of dynamical states of the particles, each
conéidered as a dynamical system by itself, are all identical
to a Hilbert space H spanned by a certain orthogonal basis {lki>};
i runs over discrete and continuous indices. This is of course
a bold assumption since nothing guarantees that each particle
is subjected to the same physical condition. ‘

Consider now the Hilbert space HN spanned by all the
tensor products of the form

K> = Iki >lky >eeni]ky > (1)
1 2 N-

(The letter K stands for the‘set'{Ikil>,lki£5...lkiN>} of N
sihgle particle states.) For many statistical descriptions of
an N-particle system, one assumes that H' is an appropriate
approximate Hilbert space of dynamical states of N-interacting
particles. In other words, the basis given by (1) can be used
as a complete set for dynamical description of N interacting
particles.

Let x., be the set of dynamical variables characterizing

1
the particle 1, X, characterizing the particle 2, etc. The
configuration space for N particles is the tensor product space
of tensors of the form
|%y, %500 = |x1>|x2>-‘- 3>

The configuration space wavefunction corresponding to the state
|k> given by (1) is

K(X1, XpreeeXy) = <X, x2,...xN|K>

= <x,|k; ><x, |k, > ... o<x |k, > (2)
1771, 21, *N v
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This interprets the fact that |K> is the state in which
particle 1 occupies lkil>' particle 2 occupies |k12> and
so on. Thus, in the tensor product |K>, the single particle
state which appears at the jth position can be understood as
occupied by the particle j. With this convention, the position
of a single particle state in the tensor product is important.

Following Yamada (1968) we write |K> of egn. (1) as
k> = (3)

where the figures 1,2,...N in the first line of the bracket

simply indicate the places in which the Iki >, IKi >...|ki > are
1 2 N

situated, and only the combinations of place 1 and the state

|k; >, of 2 and lki >, etc. are significant on the right hand

2
side of (3), so that the absolute positions of the pairs (l,ki ),
1
(2,ki ) ... and (N,ki ) do not matter at all. A state like
2 N

|K> will be called an N-particle state specified by giving N

pairs (j,ki), j=1, 2,...N; and i takes N values.

2. Place Permutation Operators

To take into account of the indistinguishability
of the particles, it is convenient to introduce the operators
representing the permutations of the particles.over the single
particle sﬁates.

For each permutation ¢ of the numbers 1, 2,...N, we define

a place permutation operator U(c) as
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1 2... N ol 1 o"i 2 ... o
U (o) =
k. k. .-k, k. k ce. k
11 2 N 1 12 N
(4)
For example
1 2 3
U(23)|k3>|k2>|kl> = U(23) . . .
3 2 1
1 3 2
k3 Ky Xy
1 2 3 | | |
= = k.>1k.>|k.>
k, ky ky 3717171 %2

Thus, a place permutation operator shifts the single particle
state at the jth position to the o1 jth position whatever the
single particle state is.

All the permutations o form a group, called the symmetric

group S The operators U(oc) obviously obey the same composition

N
law as the permutations o¢; they are said to define a representation
of the group SN. This representation is reducible in the sense
that we can decompose HN into a direct sum of subspaces which

are irreducible with respect to the U(c). The rule for decomposing
gy into irreducible subspaces with respect to the U(c) is

presented in Appendix A and is applied for classification of

states of identical particles in Chapter III.

Other kinds of permutation operators can be introduced

and will be discussed in Chapter X.
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3. Indistinguishability Postulate

Suppose that |w> is a state of N-identical particles.
The state U(o) [v> differs from |y> by a permutation of the
particles over the single particle states. Since the particles
are indistinguishable from one another, none of the dynamical
properties of the system is modified by such a permutation.
This is the indistinguishability postulate which can be
expressed as follows:

"Dynamical states represented by vectors which differ
only by a permutation cannot be distinguished by any observation
at any time." |

If A represents a physical observable of the system
of N identical particles, one requires

<plalv> = <p|u"t(o)a U(o) [v>

for any 0 € S From this it follows that all observables

N.
must commute with the U(c).

(2, U(@)] =0 (5)

Egn. (5) is sometimes referred to as the indistinguishability

postulate.

4, . Symmetrization Postulate

The indistinguishability postulate imposes invariance
of all observables under the U(c). From this invariance
property, important deductions can be made concerning the law

of motions and the dynamical states of the system. Here we
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shall‘discuss the connection between the indistinguishability
postulate and the symmetrization postulate (S.P.), which states
that the wavefunctions describing identical particles must
be either symmetric or anti-symmetric im all particle variables.

a) Finite dimensional case

As a first application of the indistinguishability
postulate, the Hamiltonian H of the system must be permutation
invariant

[U(c), H] = 0, oeS, - (6)

N
From this equation and the equation of motion

i 4 G(t,t ) = HG(t,t )

dt
Glt,  ty) =1
where G(t,qo) is the evolution operator, one can show easily
that G(t,to) is also permutation invariant,
[U(o), G(t,Q))] =0 (7)
Now, all states U(0)|w>'s,are degenerate with respect

to all observables (exchange degeneracy), the state of the system

is in general a linear combination of the U(0) [¢>'s,

R u(o) > o (5)

[¥H> = = ol

a

where u indicates the special linear combination. We are

interested in linear combinations such that

<wulA|wu> = <w“]U+(0)AU(c)lwu>

for any observable and for any 0eS The apparatus of group

N.
theory enables us to find exhaustively these linear combinations.

In section III.1l, we shall write them out explicitly. Here,



we are content to reﬁafk'that the sfates of identical particles
_can be classified into irréducible representations of SN.

To go furthef; éne assumes there exists a maximal
observation for the.system. In a geﬁeral way, a maximal
observation would be such that other observation would either
yield no new information or £he new information would void
some of the information previously obtained. If the Hilbert
space of dynamical states is finite dimensional, the work of
Dirac (1932) suggests that a maximal observation would be
appropriately described by a complete set of commuting operators.
There exists a non-degenerate ray which is the simultaneous
eigenstate of all members of the complete set.

For identicél particles, the condition of non-degeneracy
is expressed by

ulo) [¥M(K)> = ¢ [ (R)>
where |

2

ol =1

'IC
It is clear that states satisfying this must belong to one-

dimensional representations of S There are two such states:

N'
the completely symmetric state le(K)> belonging to the
identity representation and the completely anti-symmetric state

lwA(K)> belonging to the alternating representation. Explicitly,

S. 1

[v°> = £ Ulo) |y> | - (8)
"Nt ©

[¥P> = =— = 6(0) Ulo)|w> (8
: g

i
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where § (o) is the signature of ¢ which equals to 1 for an
“even permutation and -1 for an odd permutation;

Because the evolution'operator is permutation invariant
(equation (7)); the permutation symmetry property is conserved
in'time; no tfansition from a symmetric state to an aﬁti—
symmetric state is éllowed and vice versa.

This selection rule applies for any observables; no
obéerﬁable has non-vanishing matrix elements between an anti-
symmetric states and a symmetrié state. This is the situation

in which one expects that the selection rule becomes a super-

selection rule; the states represented by coherent superposition

of symmetric state vectors and anti-symmetric state vectors

are not physically realizable. Thus, we state, "The states

of a system containing identical particles are necessarily
either all symmetric or anti-symmetric with respect to any
permutation of the particles."

It is a consequence of (8) and (8') that particles
whose N-body states are of the type (8) obey Bose?Einstein
statistics and partiﬁles whose N-body states are of the type
(8') obey Fermi-birac statistics. The symmetrization postulate
is thus the postulate that only Bose-Einstein and Fermi-Dirac
statistics are obeyed by identical particles..

b) General Case

In the previous section, we have seen how the symmetri-
zation postulate is connected with the indistinguishability

postulate and the assumption that there exists a maximal
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observation, in the finite dimensional case. 1In more important
‘infinite dimensional case, Dirac's definition of states corres-
ponding to maximal 6bsérvation as simultaneous eigenfunctions
of a complete set of commuting obser&ables is not suitable
because operaﬁors may possess continuous spectrum then
eigenvectors do not exist in a Hilbert space. In this section,
we shall discuss the generalization to infinite dimensional
case using the results‘obtained by Jauch (1960)* and Sauch
and Misra (1961).

(i) Superselection rules

In the general case, one considers the set A é{Aj}
of all bounded observables in a Hilbert space H. Observables
are in general non-bounded, yet the restriction to bounded
operators involves no loss of generality. This is so because
observables are represented by self-adjoint operators for
which there exist unique spectrél resolutions and we can always
use the spectral projectors, which are of course bounded, to
replace operators.

It is usually assumed that A is irreduable in H. Yet
as Wick, Wightman and Wigner (1952) point out, there are
important physical systems in which this is not the case; H
may be dedomposed into certain orthogonal subspaces such that
(i) the relative phase of the components of a state vector
along these subspaces are intrinsically irrelevant and (ii)
the matrix elements of all observables between these subspaces

vanish. In such a case A is reducible in H and there exists

* A more rigourous discussion has been given by Galindo, Morales

and Nunez-Lagos (1962).
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superselectionvrule; states represented by linear super-
“position of vectors belonging to different subépaces are
not physically realizable. The subspaces are then called
superseléction sectors. 'For example, a state which is a
superposition.of states With different charge Q has never-
been observed. It also seems that every physically realizable
state mﬁst'be an eigenstate of B, the baryon number and
(-1)F) where F is an e&en integer for states of integer spin
and an odd integer for states of half odd'integer spin.

In a natural attempt to provide the simplest substitution
for irreducibility, Wightman (1959) makes the hypothesis
that the commutant-r A' of A is commutative (that is sometimes
called the hypothesis of commutative superselection rules).'
Then H breaks up into a directvsum (actually. direct integral)
of subspaces in which the relative phase of vectors in the
different subspaces cannot be measured.
Jauch (1960), on the other hand, proposes to'study
the Von Neumann algébra O generated by A,defined as the
double commut;nt of A,
| .0 =A" = (A")' (12)
It is the smallest Von Newman algebra containing A,
ACO o (13)
An important property of a Von Neﬁmann algebra is that it
is identical with its double commutant.

o" =0 (14)

T By definition, the commutant A' is the set of all bounded

operators which commute with all members of A.
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Much of the structure of the physical system is
already contained in the structure of the algebra O. For
instance it is an eSsential feature of quantﬁm theory that
.0 is not a commutative algebra. In the finite dimensional
case, as it is easily checked, the Von Newman algebra P
‘generated by the observables {Ai} coincides with the algebra
of polynomials of a suitably chosen operator A. If {Ai}
is a complete set of commuting obéervabies then it can be
shown that (Jauch, 1960)

(i) P is maximal abelian, i;e.

P' =P

(ii) There exists a generating element g such that
e&ery element £ in H can be represehted by £ ='P(A)g<with
some polynomial P(A). 1In this.case the operatér A is said
to have simple spectrum. Jauch (1960) transcripts this
definition to the infinite dimensional caée; a self-adjoint

operator A is said to have simple spectrum if the linear

manifold {Ng} is dense in H, where N is the Von Neumann algebré
gencrated by A. )

Now the set of commuting observables generates a
commutative agebra M¢O. Jauch (1960) shows that M is maximal
abelian, i.e. M' = M, if and only if the operators in M are
generated by a single observablé with simple spectrum. Then
it is said that M.is'generated by a complete set of commuting

observable in analogy with the finite dimensional case. Thus,

the notion of a maximal observation finds its mathematical
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expression,in terms of maximal abelién algebra.
After these preliminaries about Von Neumann algebra
out of the way, one can proceed to find what kind of |
- structure of O would yield the superselection rules. The
center Z of O will play an important role. It is defined
as the set of elements in O which commute with éll elements
 of o, | ’
z=0fN o (14)
Consistent with the assumption that there exists
a'maximal observation, we assume there exists at least a
maximal abelian algebra M containéd in O,
Mco ' ’ (I_LE';)

From (15) it follows that

o' ¢ M'
and since
M' =M
we have
o'Cc McoO (16)

This says thét 0' is commutative ana that the cenfer Z
coincides with 03,'

2 =0 (17
Since it can bexéﬁown that O' is a Von Newman algebra, 72 is

" also a Von Neumann algebra. From the theory of the direct

integral of Hilbert spaces*, Z determines a decomposition of

* The theory of direct integral is due to Von Neumann (1949).
It is a generalization of the concept of direct sum. The theorem

which is used here is "every weakly closed commutative *-algebra
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Hinto a direct integral and O is decomposed into invariant
subalgebras, each acting irreducibly in the subspaces of‘IL'
if and only if the center Z is maximal.abeiian in'O'. This
is indeed the case because Z = Of.: One concludes:

"The Hilbert space H can be decomposed into super-
-selectors if there existé at least a complete'set of commuting
observables}"’ | |

We remark that Wightman;s hypothesis of commutative
superselection ruleé can be proved if there exists a complete set
of commuting observables. Loosely speéking, in this case all
operators in A' are functions of operators of this complete

T Thus, Wightman's

set, hencé they commute with one ahother.
hypothesis has a direct physical interpretation.
(ii) sSupersymmetries and Essential Observables
We now discuss, following Jauch and Misra (1961),
the concept of supersymmetry . A unitary operator U is a
supersymmetry if it is a non»trivial operator which commutes

with all members of the set A of all observables. That is

U e A!

* of bounded operators in H determine uniquely a de-
composition of H into a direct integral."
T The equivalence between Wightman's hypothesis and Jauch's

assumption that O has a maximal abelian subalgebra is rigourously

proved by Galindo, Morales and Nunez-Lagos (1962).
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ﬁecalling that A‘ is a Von Neumann algebfa, we have

o' =A"' = (A")" = A"
therefore

UeO' =2 ‘ (18)
| One can show the converse of (18) ; if O' is non trivial,
there must exist at least one unitary‘operatoi Ue 0'.
This follows from the propefty that every Von Neumann algebfa'
can be generated by its unitary operatofs (VonNeumann, 1949).

"Thus, a quantum mechanical sfstem haé supérsymmetfy if
and only if the algebra O is reducible, that is, there exist
" superselection rules.

The supersymmetries are connected with essential
observables. They are defined as the intersection of all
complete sets of commuting observables. The essential
observables generate a VonNeuﬁann, algebra which ig called
the core C of O, ‘

c =Ny, | (19)
j 1
where {Mi} is the set of all maximal abelian algebras
contained in O. .Jauch‘and Misra show that the core C is
actually identical with the center Z of O,
C=2=0" (20)
This says that obsérvables in the center are essential observables.

One concludes: Superselection rules are connected with
supersymmetries and essential observables.

(iii) Symmetrization Postulate

We are now in a position to relate the assumption that

there exists a maximal observation'with the symmetrization
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A}

postulate. :
For identical particle systems, the indistinguishability
postulate requires that H carries a representation U(c) of

‘the symmetric group S The U(o)'s commute with all observables.

N
They are therefore supersymmetry of the system. According
to (18), the U(o)'s are cbntained in the centér Z, hence they
commute with one another, | |

U(o) U(o')'= U(o') U(o) y '(21)'
for any 0,,6' € SN; Since only the‘identity and the alternating
representations havé this property, the vectors in H must belong
 to these répresentations.

Now, some self-adjoint oberator in Z may not be
observables because O is larger than the set of all observables.
It may happen that the U(o)'s are self adjoint operators in H
(it turns out that this is the case), but they are ngt necessarily
observables. However, some self-adjoint functions of the‘U(d)'s

may be observables. 1If we assume that the projectors onto

symmetric states and anti-symmetric states,

1 3 ue) (22)
. VN! o

‘ A=-1_ 5'68(0) Ulo) (23)
N1 O

are observables, then they are essential observables because
they are elements of Z. They commute with all other observables
so that'one may call them superselection operators. States

which are different eigenvectors of the superselection operators
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belong to different superselection sectors. Thus,‘states
which are superpositions of symmetric and anti-symmetric
states are not physically realizable.

In conclusion: Theekistaooe of superselection
rules is consistent with theexiStence of at least one
complete set of commuting observables for the'system, the

latter implies the summetrization postulate.

5. The Nature of the Symmetrization Postunlate
a) Theoretical Foundation of the Symmetrization
Postulate (S.P.)

Previously, we derived S.P. without much question
about the assumptions invclved. Here, we shall offer some
critical comments. |

(i) In the derivation of S.P., the notion of a
complete set of commuting observables plays an important role.
For oneeparticle system, such a set ean be determined as
consisting of position, spin ahd internal quantum numbers.

For simple but more complicated systems, it is very difficult
in’geﬁeral to specify what set of operators can serve as a
complete set. For many particle systems, no set of operators
is known to setisfy' Dirac's requirement.

(ii) Strictly speaking, all e#periments in elementary
particle physics are bollision experiments consisting of a set
of one-body measurements. By a one—body measurement, it is

meant a measurement performed on individual, widely separated,
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non-interacting particles. Quantities expressing the

correlaﬁion effects between the particles cannot be measured

directly. Informations about these quantities can be obtained

only through the study of correlation between several sets

of one-body measurements (e.g. angular correlation experiment),

and the determination through such studies always requires

some assumptions about the dynamical properties of the observed

systems. Thus, in general, a set»of one-body measurements,

no matter how completé, does nbt yield a maximal observation.

This has been discussed in details by Messiah and Greenberg (1964).
(iii) The physical meaning of the algebra generated

by the observable has not been clarified. For example, one

has to answer the question posed by Wigner as to what experiment

corresponds to the operator p+g (p: momentum, g: coordinate)

Accepting that the mathematical technique employed previously

is appropriate and that the assumption about maximal observation

is reasonable, we still have to justify the following additional

point. Previously, an operator A is said to have simple spectrum

if the linear manifold {Ng} is dense in H, where N is the

VODNeuﬁann algebra, generated by A. Now, the linear manifold

H' = {0f}, where £ = {f;} is the set of all physically realizable

state vectors, is a subspace of H. Physically, one would

require {Ng} to be dense in H' instead of H. Then one cannot

show that M is maximal abelian. In this éase.it does not follow

that O' is commutative nor does the symmetrizétion postulate

follow.
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b) Experimental Foundation of the Symmetrization Postulate
It is clear that the theoretical foundation of the
symmetrization postulate (S.P.) is of an ad hoc nature. The
validity of S.P. should be tested by experiment. Historically,
S.P. was intrdduced as a consistent way to account for the
exclusion principle postulated by Pauli in 1925 as an éxplanation
of the periodic table of chemical elements. Thus, electrons
obey Fermi-Dirac statistics. From the study of black body
radiations and the success of guantum elect;odynamics, one
concludes that photons are bosons. For nucleons, although the
interaction between them have not been fully understood, their
statistics reflect: in the forbidden lines in the rotational
spectra of homonuclear diatomic molecules since the lines do
not depend on the details of nuclear forces. It can be
shown* that, for such a molecule with spin I, the intensities

of a line of odd angular momentum to that of the next line of

even angular momentum is _T%T— if the nuclei are fermions
( I;l if bosons). It turns out that the nucleons are fermions.

Since S.P. is well established for electrons, photon
and nucleons, one tends to apply it to other particles without
too much question. 1In fact; with present experimental techniques,
one cannot determine the statistics of elementary particles
unambiguously because,with a few exceptions, one cannot obtain

large numbers of particles. In assigning the spin and pafity

* See for example Elton (1965), section 2.5.
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to elementary particles, one usually takes for granted the
usual spin statistics theorem. This theorem is again of an ad
hoc nature because, to prove itf, one excludes a priori
other statistics different from Bose-Einstein and Fermi-Dirac
statistics.

Tests of S.P. are proposed by Messiah and Greerberg.
Since in practice, except fof pions, it is very hard to produce
systems containing more than two identical particles, they
propose to test S.P. by looking for the S.P. violating terms
in the state of two identical particles. The S.P. violating
terms would contain incoherently both symmetric and anti-
symmefric states. They found no direct evidence for the
statistics of the particles K, A, I, > and u.

In conclusion, we say that so far we find no compelling

reason to suppose all particles obey S.P.

¥ See for example Streater and Wightman (1964) section 4.4.



CHAPTER III

QUANTUM MECHANICS OF PARAPARTICLES

1. Classification of States of Identical Particles

We have stated at the beginning of Chapter II that
one of our basic assumptions is that states of an N-identical
particle system are defined in HN. In this section we study
a classification of these states.

It has already been remarked that an N-identical
particle state is a linear combination of vectors of the form
(eqgn. II-g);

|¥IK1> = £ a(o) U(o) |K>
where |K> is a tensor product

|k> = |ki1>|ki2> = IkiN>
Suppose that the base {|ki>} of the single particle Hilbert
space H can be ordered in some way, then it is easy to see that
B can be spanned by the base {U(o)|K>s: |K>s e HY, o ¢ Sy

where IK>s is given by the ordering

| k.

> > |k,
l —

i 9> > to0 > |k, > > |k >
N N-1 - - i, - i,

It will be convenient to consider the group algebra
-~
Ix‘which accept the U(c) as a base, i.e., the elements of ];L

are of the form

X =X alo) U(o)
o

-
The structure of the group algebra,LL and its relation with

38
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the representations of S are summarized in Appendix A. The

N

main features are:

71 is reducible and can be decomposed as
.. ’J ~
U
where the Ilu are the simple two-sided ideals. LT ¥ contains

n, independent left ideals

n
u

' U u
T = X u -
X Ly ud

While the g%

can be chosen uniquely, the choice of the ug
is not unique: the decomposition of a two-sided ideal into n,

independent left ideals is not unique. A possible choice of
u

the left ideals is given by the idempotent ej defined as
1 o
n =
H UY2 U A
€. ==+ P. .
J (N!) JQJ

where Pg is a symmetrizer and Qg is the anti-symmetrizer of a
standard Young tableau j of a Young daigram p. The unit

element U(e) of 17 is decomposed into series of idempotents as

U(e) = eH
u
n
u
eV =2 sH
=1

11“ is obtained by left or right multiplications of every

element of LU with €V, 11? is obtained by left multiplication

with eg]. I.e. left multiplication with s? is a projection

into ut,
J
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A state of the system can be written as

|y> = sak £[K] XIK] lK>s

where dK = dkl dk2 . es de is an integration (measuré), f [K]
is a scalar function of the set K ='{|kil>, Iki2>, cos [ki >}
and X[K] is an element of EI, also a function of K. If every
X[K] of |y> belongs to a two-sided ideal I}u, the state
| v> (then written as |w“>) will be said to be of u-symmetry
type. It can be shown that states of different symmetry types
are orthogonal:
Let us define

vt (o) = U(o—1

)
so that X" = I a (o) U+(0), where a (o) is the complex conjugate
of a(o), then |

+ + ~
x4 = (eu X)+ = X+ el ¢ LI

+ +
Furthermore, it can be verified that e~ = eu, hence X" ¢ 17

u
w4 u

- because X" = X© e! and 177" is a two-sided ideal. As a result,

we have

+
¥ xV=xY x* =0, u#tv (1)

Thus, we have

<p¥[pV>

' +
JaR ax' FIR] £1K'] _<k|x" (K] X"[K']|R>_

0, u#v

upon using eqn. (1).

HN is thus decomposable into direct sum of orthogonal
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subspaces of definite symmetry types as¥*

N _ o~ .N
H =@H (2)

Each Hﬂ is invariant with respect to the U(o) but contains

a finite number of irreducible subspaces. The projection

operators onto the subspaces Hﬁ are the idempotentgeu

generating the two-sided ideals of L1 . Note, however, that

the idempotents eg generating the left ideals are not projection

operators onto irreducible subspaces of Hg.

An important point is that, with respect to the scalar
product of the Hilbert space HN, states belonging to different
irreducible sﬁbspaces of a Hﬁ are not necessarily orthogonal.
To see this, let us consider the scala; product of a state

X§|w> and XE|¢>, where XE e ut, x¥ ¢ w! and o>, |v> € uy,

j’ “h h
If <¢|xz XE]¢> vanishes for all |y> and |¢> and for all XE,

Xg, we must have

T+
H = 4
Xi Xh 0, i #h
for all Xg, Xﬁ. In particular, we must have
11+11 M 11
Xi e = 0, for all Xi e u (3)
T, ot

T ~
Since Xg = eg X, X e Ll and since ¢ is also an idempotent,

i
+

the set r of all XE forms a right ideal. However, because eﬁ

is the idempotent generating the left ideal ug, eqn. (3)

* In this thesis, ) denotes a direct sum of orthogonal

subspaces, + denotes a direct sum of non-orthogonal subspaces.
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*
implies that r is a left ideal different from ul. Therefore,r

is a two-sided ideal so that u; is a two-sided ideal in
contradiction with the hypothesis that it is a primitive left
ideal.

In the sequel, we shall often concentrate our attention
on a subspace H[K] spanned by the U(G)IK>S. H[K] can be

decomposed as

HIK] = ® H"[K] 21)
u
H" [K] can be decomposed further into direct sum of irreducible

subspaces with respect to the U(o),
Mrer = pH U H 2.
H[K] = H)[K] + ... + Hj[K] + ..o+ HOIR]. (29

u
The above analysis implies that we cannot choose the left

ideals guch that the H?[K] are all mutually‘orthogonal

for all K. We note that,when some of the single particle

states in |K> are equal, some of the subspaces H?[K] may vanish.
Although the H?[K] are not in general orthogonal, it

is always possible to choose an orthogonal basis'{ﬁ§[K]}, for

each H‘J1 [K], i.e., it is possible that

i IK] ) [KD> = 6y, e

Since the representations of U(o) in different H?[K] are
equivalent, we can choose the base lu;[K]> such that it satisfies

(4) and such that the H?[K], for each yu, support'identically

* Remember that left multiplication with sﬁ is a projection

LH
onto hh‘
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the same irreducible representation of S i.e., such that

NI
n
i ! k
U(o) |3 IK1> = I D (o) |usIK]> (5)
J k=1 ik J
The scalar product of two vectors, |u> = & u%lu;[K]>

i,j

and |v> = 2 v;[u;[K]>, is given by

_ e« =1 ik k
<ulv> =z Wy Py g vy
i,3
where
ik _ i k

and the matrix p =‘{p; t} is not completely diagonal. The
result obtained previously implies that it is impossible to
find o' matrix T such that TpT“l is completely. diagonal and

TU (0) 'I‘_l is represented by a direct sum of equivalent matrices,
for all o ¢ SN’

In H[K], there exist a natural scalar product defined as

(UI\)) =.Z. ﬁ; \);
l,J

This scalar product is related to the scalar product of

the Hilbert space g by the relation

<plo> = (u,pv)

It is the scalar product <u|o> but not (u,v), which determines
dynamical properties of the syétem. This point seems to
escape from being emphasized in the literature.

From (2), it is convenient to classify identical

particle states according to their symmetry types. Each
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symmetry type is associated with a representation of SN
which contains, in maximum, a number of equivalent irreducible
representations equal to the dimension of the irreducible
representations,

States of symmetry types associated with the one-
dimensional representations describes the bosons or the
fermions. We shall call para-particles those whose N-particle
states are associated with multi-dimensional irreducible
representations of S

No

2. Matrix elements of Observables. A Superselection Rule

a) A Remark
Consdier the matrix element, between a state lwu[K]> eHu[K]
and a state lwv[K]> eHv[K], of an observable A satisfying

the indistinguishability of postulate

<M k] Al vV IR]> = <pMIRI Ut (o) A U(o) [vVIK]> (6)

If, for some reason* we omit all but one eguivalent
irreducible subspaces of H'[K] and HY[K] in our aynamical
description of the system, lwu[K] belongs definitely to
‘an irreducible subspace and so does le[K], eqn. (6) can be

transformed into a matrix equation.

p(s) A = a D’ (0)

* One reason is the hypothesis that the equivalent irreducible

subspaces are physically indistinguishable.
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where D“(c) = {ng(c)} is the irreducible matrix representation
of 0. Then Schur's lemma implies that A = 0 for u # v and A
is .a multiple of the identity matrix for pu=v;: no transition
between states of different symmetry types and every state
of a irreducible subspace .is degenerate with respect to
all observables. For this reason, an irreducible subspace
has been called a generalized ray.

However, there is no reason to omit the equivalent
irreducible subspaces in our theory. |y"[K] and |¢YIK]
may have non-zero components in each irreduéiblé subspaces,
the operator A may have consequently domain of definition

as the whole HU[K]. Eqﬁ. (6), in matrix form, would then be

~ ~y .

p"(c) A =AD" (0) (7)

gt U SV v

where D" (o) = @nuD (0) D' (o) = &® n D (o) and n,. n, are
the dimensions of the irreducible representations. Because
D" (s) and DY(o) are not irreducible. Schur's lemma cannot
be applied as done previously. This point escaped from
attention in the literature of paraparticle theory.

b) A Superselection Rule

Consider now the matrix element <wu|A|¢v> where

[pH> e Hﬁ, [oV> ¢ H§ and A is an observable. Making use
, ¥
of the definition of the eM H H

and remembering that " = ¢,
we have

<WM]aleYs = <oM|cac®|ev>

u

because €" is a function of the U(c), the indistinguishability

U

postulate implies that €" commutes with A, hence
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<Wlale’> = - <fla et eV

]

-;"Oifu+v (8)

because €' €¥ = 0 if u # V. EQn. (8) implies that the

observables act irreducibly in each Hg. This is the situation

which leads to the following superselection rule:

"Each Hg is a supérselection Sector

This superselection rule is well-known but its derivation,
és’found in the literature, based on Schur's lemma, is quite
unsatisfactory as pointed out in the above remark.

c) Matrix Elemeﬁts

We study here in détail.the matrix elements of a
physical observable in a subspace H[K]. Since the observables
are irreducible in HU[K], it is sufficient to consider operators
defined in a subspace HU[K]. With the chbice of the base {]u%[K]>}

satisfying (5), an observable A must satisfy

[a, D*(0)] = 0 71
where
~ ’ '
(o) = D
D" (0) =@®n, D (o)
where DM (o) = {ng} . In HY[K], A can be represented by a matrix
A =_{§k2}’ k,2=1,2, ... nu
where ékz is a nn X nu matrlx,
i, i
P it N —
ékz = {Akz }’lk’ i, = 1,2, ... nu

Egn. (71) requires
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[A . D' (o)1 =0

for all o ¢ S Since the DM (o) are irreducible, Schur's

N*

lemma implies

i, i, ,
By =R 8y ®)
k 72
‘where Ay, are constants and Gik i, is the Kronecker ~symbol.
From this,
i _ i o
Aluj[K]> = i Ajkluk[K] (9)

We see that the physical observable A is not a
mﬁltiple of the identity operator on each irreducible subspace
Hg[K]. On the contrafy, A can mix vectors of a‘subspace H?[K]
to vectors of other subspaces. This confirms our remark at
the beginning of this section. |

It is'impoftant to note that, due to the non-orthogonality
of the Iui[K] , thé operator
z i kI><ul K]
i,j |
is not the projection operator onto H" [K]. Therefore, we
have the inequality |

alulikl> # z lui[K]s<u§[K1|Alu%[K1> . (10)
J hk J

. ‘ h i : .
I.e. (9) does not imply that <uklA|uj> = Ay Spi in

contradiction with what is usually believed. It only implies

that

‘h i _
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From egn. (9) we obtain

hi

h i _ -
f“k[K”Al“j[Kb = I A5 Oy (11)

k
which shows that the expectation value of an observable
depends on the vectors of an irreducible subspace H?[K].

It turns out that the states in an irreducible subspace
are nqt degenerate with respect to all observables contrarily
to what we expect. This result is due to the inclusion
of the equivalent irreducible representations of the symmetry
group*;

| Among the operators (8), we consider those operators
for which |

Ajk = Ajij (12)

These operators act as a milti?le of the identity operator

on each irreducibie subspace, every state.. in each irreducible
subspace 13 degenerate with respect to these operators. It
can be seen that 6perators satisfying (12) are linear com- |

binations of the projection operators P?[K] onto the subspaces

* In the usual applicatiéhs of group theory to physical
problems, each irreducible representation occurs only
once in thé Hilbert space of dynamical states so that
the states belonging to an irreducible representation
are degenerate with respect to all obserwvables which

are invariant under the symmetry group.
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L .
H?[K] (Pj[K] is the operator for which Aj =1, A =0 if

h
h # 5).

3, Preparation of the State

So far, we have studied the structure of the'theory,
based on the permutation invariance;-which is a supersymmetry
'in_the sense that if holds for every physical observables
inclﬁding the evolutién operator G(t). We have seen that
this supersymmetry implies that the physical observables are
not irreducible in HY, This is the situation which leads to
the sﬁperselectidn rule stéted earlier. For paraparticles,
the quantum mechanics is more complicatgd than for bosons and
fermiéns because the‘supersymmetry operators are not abelian.

A point to be discussed 'is thé eétent to which the
state can be prepared by experiment. Usually, quantum mechanics
deals with phénomena in which a maximum of information is

available about the system under consideration. States of

maximal information are often called pure states:* a pure

state is characterized by the existance of a complete

experimenf that yields a result predictable with certainty

when performed on the system, For example, linear polari-
zation of light beam in a given plan is characterized by 100%
transmission of each photon through a suitably oriented

Nicol prism; no other state of polarization is fully transmitted

by the same prism. Filtration through a Nicol prism defines a

* See, in this connection, Fano (1957) for an excellent exposition.
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"state of polarization completely because beams thus filtered

behave identically with respect to all other polarization

analysers. An experiment that yields a unique pre-determined

result for a system in a given state can be designed to act

as a filter which leaves the system undisturbed. The experiment

may then be repeated again and again on the same system,

at least in principle, always with certainty as to its outcome.

A pure state can, in fact, be prepared by subjecting systems

to a filter-type experiment; Mathematically, a pure state is

defined as an eigenstate of a variety of commuting hermitian

operators. Given such a set of operators it proves possible

in most cases to design, at least in principle, an experiment

that constitutes a measurement of the corresponding observables.
For paraparticles, it may not belpossible to prepare

a pure state in the above sense. For example, no experiment

could distinguish puré states differently only by a per-

mutation of the particle variables. Nevertheless, the

preparation of the paraparticle state would also consist in

performing a set of compatible measurement$ with the result

that the state vector belongs to a common'eigensubSpace of

the corresponding commuting observables. Since these observables

are permutation invariant, the eigensubspaqe is also permutation

invariant. With Messiah and Greenberg, we agree that the most

complete preparation is achieved if the subspacé‘is irreducible

with respect to physical observables, that is, no other commuting

observable could separate vectors of this subspace. However,

we do not anticipate that the subspace is irreducible with
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respect to the permutation operators, the U(c). Furthermore,
we assume that the projection operator onto the symmetry type
belongs to a set of commuting observable otherwise the
introduction of paraparticles would be completely fortuitous.
Then, the least cbmplete preparation would yield the result
that the state belongs to a superselection sector " [K]
assuming, of course, that the set K is physically observable.
We note that the subspace HU[K] is not irreducible with respect
to the U(o). We cannot assert whether there exist other
physical observables that can split the subspace Hu[K], neither
can we be sure that some of these observables, if existing,
commute with the projection operator et

Thus, we are faced with the larger indeterminacy of
the state of the system. It is usually believed that this
indeterminacy causes no difficulty if we assume that the
preparation could yield an irreducible subspace, that is,
that the projection operator onto a H?[K] is a commuting
observable, because, measurable results do not depend on which
state vector of H?[K]we choose to represent the system. This
belief is based on mistaken application of Schur's lemma
to the calculation of the .expectation value of an cbservable.
According to egn. (11) measurable results; do depend on the state
vectors in H?[K].

In the following, we shall not assume that the pro-
jection operator onto an irreducible subspace of HUIK] is a

physical observable. Such an assumption may not be correct
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because the choice of the irreducible subspace is not unique,
therefore, the projection operators onto the irreducible
subspaces can be chosen in many different ways; an operator
which cannot be defined uniquely possesses unlikely any

physical significance.

4. Density Matrix Description

So far, we have established only that the state belongs
to a HU[K] but have not been able to specify to what extent
it can be determined. If this situation is also the nature
of the theory, that is, if no complete experiment can give a
unique results predictable with certainty, we have to describe
the system by a density matrix. Adopting the base defined

previously, we can write the density matrix as

oM = rutikl>wi<ut[K] ] (13)
ij J J ]

where w; represent the probability in the incoherent super-

position

|y k1> =2 w;lujl.[xb (14)
The indistinguishability postulate finds itself in the relation

Tr (p"A) = Tr(upMuta) (15)
where A is a physical observable and, for an operator O, the
trace is defined as

Tro = I <piIkl|olulIk]> (16)
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Note that, in our theory, the trace of an operator is not
the usually defined trace of its representing matrix. Egn. (15)

is always satisfied if

A = uau”

for any U(c). We remark that Egn. (15) is a condition imposed
on A but not on pu. In fact, as pointed out by Greenberg (1972)
if we choose p“ such that pu = U puU+, for all U(c), then (15)
is always satisfied.

The above remark permits us to build up a theory of
identical particle in another direction.

The theory discussed so far is based on the condition
(7), the indistinguishability postulate, imposed on the physical

observables. However, it could be argued that,to formulate

a theory, one should know a priori the physical observable

quantities, then determine the state such that the symmetry

property of the theory is satisfied. Thus, we may regard the

indistinguishability of particles as a condition imposed on the statej
According to our discussion in the last section,

it appears appropriate to describe the state of N-paraparticles

by a density matrix which, in the chosen base, could be

written as egn. (13). Equation (15) is then considered as

a condition imposed on a "physical" density matrix. This

condition is satisfied if we choose the density matrix such
that
[o", U(@)]1 =0, o es (17)
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This équation does not determine p" uniquely in " [K]; the
matrix’represenfing p” can be obtained from egqn. (9) by
replacement of A by pu. Also, it is not the only solution
of eqn. (15).

A trivial solution of egn. (17) is

ot = phjmpad] -
ij

Note that P is not the projection operator onto " [K]
although the latter is also a trivial solution of (17).

We note the similarity with the case of bosons
and fermions: for bosons and fermions, the state of the system
is described by a unique ray |VU> so that U(c) |¢> should be
the same ray as |w> because the physics is unaltered by the
action of U(c); for paraparticles,the state is described by
a density matrix p that would be required to satisfy U(o)pU+(o)=p.
This condition would determine p uniquely if we require p

to be defined in an irreducible representation of S because,

‘ N
for such a representation, there exists only one invariant
form due to Schur's lemma. However, this requirement does

not seem compelling on physical gréund&



CHAPTER IV
CLUSTER ASSUMPTION

We cannot take the whole universe into account whenever
we consider a particular system. That is why we considered
so far a system of N identical particles of certain species
although these are not the only particles of that species in the
Universe. In treating this system as a distinct entity from
the rest, we assume that the presence of other particles do
not affect dynamical properties of the systém because they are
so far away from the system that their interaction with the
system is negligible. A gquestion arises whether such an assump-
tion, called the cluster assumption, is consistent with the
theory of identical particles discussed in Chapter III when
certain correlation between N particles in the systems and
others are estab}ished.

In practice, the particles of a system are all inside a
ceftain spatial domain D. It is well known* that, if these
particles are bosons or fermions, all other bosons or fermions
outside D may simply be ignored so long as their interaction
with the particles in the system remains negligible. We shall
examine in this Chapter whether this result is also valid

for paraparticles.

1. General Discussion

We consider first the example of a 3-particle system C

* GSee for example Messiah (1965), Chapter XIV, 8.

55
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consisting of a cluster Cl of two particles and a particle C,

sﬁfficiently far away from C., so that the cluster assumption

1
is applicable, i.e., it is possible to treat Cl as a distinct
system without taking C2 into account at all. This means
that it makes no difference whether we treat Cl as an isolated
system‘or a subsystem of C. We assume especially that all
conservation laws, superselection rules, and the observable
quantities found for C are applicable to Cl, -

Let us consider first Cl asva subsystem of C. We
shall deal with the non-relativistic SchrBdihger situation in
which the state of the 3 particles, at time t, is represented

by a wavefunction ¢(x1, Xy x3). Then the wavefunction of the

3 identical particle system is of the form

W (xg, %y, %) = 2 ok UGO) 6 (x), %y, X5)

where U(og), o € S is the permutation operator defined as

3[
UG) ¢ Xy, Xy, X3) = ¢ (X,1s X pr X3) (1)

u

and o are scalar quantities. We suppose that C is in the
parastatistic state belonging to the representation of S3
associated with the triangular Young diagram. As is well
known, this representation of 83 is faithful so that the U(o)

are not commutative. The wavefunction of C is an eigenfunction

of the projection operator
1
P = —= XX (0) Ulo) (2)

where X (0) is the character of o in the representation
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associated with the triangular Young diagram.

Consider the operator Q defined as

Q = 2 [14U(12)] | (3)

which is the projection operator onto symmetry type of Cl'
Since Q commutes with P, a measurement of Q, if possible, would
not destroy the symmetry type of C. However, in the representation

associated with the triangular Young diagram, Q does not

commute with all U(oc) and conseguently cannot be measurable

(or physical observable) according to the indistinguishability
postulate)(egn. Chapter III-1),

[A, U()] = 0 | (4)
if A is an observable.

Let us consider now C, as a distinct system from C

1 2°
In this cace, C2 has two symmetry types associated with the
symmetric wavefunction and the anti-symmetric wavefunction.

Q is just the projecticn operator onto the symmetric wavefunctiqn,

therefore, by assumption, it is a physical observable of C..

This is in contradiction with the property of Q when considered
as an operator of system C.

In order to escape from this contradiction, we have
to restrict ourselves to states satisfying the symmetrization
postulate for which Q satisfies (4) and thus can be accepted as
a physical observable of C.

Thus, the indistinguishability postulate éxpressed as
in egn. 4 is incompatible with the cluster property. The

gquestion is whether this incompatibility constitutes a proof



58
of the symmetrization postulate.

The answer depends on how seriously one relates eqn. 4
to the indistinguishability condition of identical particles.

If we regard eqn. 4 as an obvious relation for identical
particles, then the cluster property provides a proof of the
symmetrization postulate. However, if we consider eqn. 4 as é
necessary condition, as derived by Messiah and Greenberg (1964)
from the indistinguishability postulate, then we must know
to what extent this derivation is valid.

Recalling that eqn. 4 was derived from the condition
<plaly> = <p|uT (o) A U(o) |v> (5)

for every state |y> of N-identical particles. Clearly, |y>

was taken to be a pure state (or coherent mixture of pure state)
otherwise the expectation value of an observable cannot be written
as in (5). However, as already discussed in Chapter III, due

to the nature of paraparticles, it may hot be possible to

describe paraparticles by a pure state (or coherent mixture

of pure state). We might have to describe paraparticles

by an incoherent mixed state represented by a density matrix

p. The indistinguishability of identical particles then finds

itself in the expression

+
Tr[pA]l = Tr[U (o) pU(o) A] (6)
Egn. (4) is just a solution of this equation but not the
only one. We may regard (6) as a condition imposed on p

and choose an appropriate p to describe identical particles.
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An obvious choice would be p such that

U (0)p U(o) = p (7)

We have shown in Chapter III that there exists at
least one density matrix satisfying (7); the projection operator
onto the invariant subspaces of paraparticle states. The
theory of paraparticle formulated'in terms of density matrix,
therefore, possesses solutions.

Now, in the density matrix description of paraparticles,
no condition is imposed on the physical observables; the in-
compatibility with the cluster property, as discussed previously,
does not exist, neither does it constitufe a proof of the
symmetrization postulate.

This line of reasoning can be applied to an N—particle.
system C consisting of a cluster Cl of M particles whose variable

are Xy, Xgp..eXy and a cluster C2 of N-M particles. Suppose

that the system C is in the eigenstates of the projection

u

operator € onto the symmetry type associated with the p-rep-

resentation of SN'

— |
=y 2 xM(o) v (6)
, ‘ oa%q

where nu is the dimension of the representation and Xu(c) is the

character. The state of the cluster Cl cén be determined when

02 is far away from Cl by a measurement of the projector operators

0" =\ 5= I x (o) Ule) (7)
) OESy
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where the v are the representations of Sy obtained by the

restriction qf SN to SM.

2, An Illustration

. We have shown that the cluster property is incompatible
with the indistinguishability postuléte, eqn. (4), for para-
particles. It is so because the projection operator onto the
symmetry type of a clﬁster, allowed to be physical observable
by the cluster property, does not satisfy (4). In thié
section, we shall illustrate the three-particle situation in
more details by constructing explicitly the three-particle
states and, when conveniently, we shall point out some con-
fusions in the literature concerning Steinman's argument.

| Suppose that our 3-particle system C is found in the
state belonging to the subspace spanned bywb(xol, X x03).
We assume that the state of the system belong to representation

 of S, associated with the triangular Young diagram. A base

3

of this representation can be constructed as

i_ 1 o
€] = = D) V() $lxys Xy, ) (9)

which obviously satisfy the relation

k

i
U(c) e. = £ e. D, . (o 10)
() & = I ej Dy; (@) (
if D(o) = {Dij(c)} is the matrix representation of S3 associated

with the triangular Young diagram. The orthogonal D(c) are
well known and is listed in Appendix B from which we obtain

1 1 .
= 2 +2 -~
el 7 [ ¢(xl, %2, x3) ¢(x2, xl, x3) ¢(xl, x3, xz)
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= ¢(X3l X21 xl) - ¢(X2, X3I Xl) - ¢(x3r Xl’ XZ)]
2 1 S
ez = 7 [¢’ (xll X3l xz) ¢(X3I le Xl)
+ ¢(X21 X3l Xl) - ¢(x3l xll Xz))
1_1 :
e2 ) [d)(xlr X3I Xz) - ¢(X3, le xl) (ll)
- ¢(X27 X3r Xl) -+'¢(X3r xll X2) ')
e2 = —l—[2¢(x X X,) - 2¢(x X x,) + ¢(§ X Xa)
2 2/3 1’7 72" 73 2’ 717 73 1’7 737 72

+ ¢(X3, xzr‘ Xl) - ¢(X21 X3I Xl) - ¢(x3r Xl' XZ)J

Assuming the usual normalization of the wavefunction

¢(X1, Xo 0 x3) as

fdxl dx2 dx3 ) (xl, Xy x3) ¢(xl, Xy x3)

D§j<o'1)vng.i.(o"l> <U(0) 6, U(c") >

U =1y u -1 '
Dij(o )Dj.i.(c )f(c,c )

l = <¢(Xl’ X2I X3), ¢(Xll X2I X3)> =
We have, from (9):
i i's 1o W, -1
<ejl e j/ - 3 é:' Dji(U) Difjl(c )
+ % 3
o # of
= g, . S, ., + 1 z
iit 33 6 o # G

where

£lo,0t) = fdxy dxy dxy @ (x50 Xgp0 Xg3) Sy iX50p0%s,

3)

We see that, due to the second term in the above equation

the e; cannot be mutually orthogonal.

assume that

f(o,0") 0, o # o

In the sequel, we shall
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so that

i oiv. .
ey, e5> = ij. aii'

(12)
We remark that the arguments in the following would not hold
without this assumption.

A point to remark is‘that_e§, j fixed, i = 1, 2, span

an irreducible representation space Hj which contains both

the symmetric state and the anti-symmetric state with respect

to U(12),
U(12) et = !
J J (13)
U(12) e? = -e?
j 3

and, contfarily to what was claimed by Landshoff and Stapp (1967)
by Hartle and Taylor (1968) and by Arons (1969), it is not possible
to choose the base such that the symmetrical states belong to

one irreducible representation space and the anti-symmetrical
states belong to its equivalent irreducible space because (i)

U(12) would be represented by the identity matrix in one re-
presentation (the cne containing oniy symmetric states) in
contradiction with the faithfulness of the representation
associated to the triangular Young diagram, (ii) the base of Hj
can be chosen such that Hl and H2 support identically the same
irreducible representation; vectors in Hy have the same trans-
formation property with respect.to U(12) as vectors in H, and (iii)

the restriction of the representation of S3 associated with the

triangular representation is reducible and contains both the
symmetric and anti-symmetric representations, as already stated

by Steinmann (1966).
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We calculate now the expectation value of a physical

observable A satisfying the condition (4). The matrix

representing A in H = Hl + H2 is

By By

A ' ———embee o

i

By i Bgp

where Aij is a 2 x 2 matrix. With the base given by (11),

the U(o) is represented by

U(o)

Egn. (4) requires
[Al:]’ D(o)] = OI o € S3
Schur's lemma implies

Aij =‘Aij I, Aij are scalars
where I is 2 x 2 unit matrix,i.e.*
i i
Ae, = L A., €
i oy 3k 7k
From this and from (12) we have
<er, A el> =na.. ‘ (14)
J J JJ

for a physical observable A. This means that the expectation

value of an observable is the same for all rays in a Hj' We

call an Hj a generalized ray as defined by Messiéh and Greenberg.
It was recognized by Steinmann that the projection

operator onto the symmetric state of Hj is not physical

observable by observing that (14) implies thét no physical

observable could distinguish the symmetric state of Hj from the

* This result is independent of the assumption leading to eqn. (12).
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anti-symmetric state. He then argued that the cluster property
allows a measurement of the symmétry type of the cluster Cl’
therefore, allows a distinction of the symmetric state from the
anit-symmetric state in contradiction with the property of a
generalized ray. Landshoff and Stapp, Hartle and Taylor and
Arons, however, objected Steinmann's argument claiming that
the symmetric states belong to representation different from
the anti-symmetric states. We have remarked previously that
this claim is in fact incorreét, theiefore, it validates their
objection to Steinmann's argument.

In Steinmanh's argument, it must be assumed that
the projection operators onto the Hj are not physical observables
otherwise the cluster property, as Steinmann put it, would
allow the distinction between the symmetric state of Hl’ say,

from the anti-symmetric state of H, (and there is no reason that

2
it could not be so if the projection operators onto the Hj are
physical observables). We shall confirm, in the following,
Steinmann's argument relaxing this assumption.

Consider the space H+ spanned by ei and e% and H_ spanned
by ei and eg. Egqn. (12) and egn. (14) show that for each state

_ 1 1
a(xl, X514 x3) = o ej + B e,

where o, B are scalars, there exists a state

X = Q e2 + B eg

b(xl, X 1

2 3)

such that the expectation value of an observable is the same

for a(xl, X x3) as for b(xl, Xy x3). Thus, it is impossible

2'

to specify experimentally which one of the spaces H+ and H_ the
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state of the system bélongs to. We.can‘express this by the
statement that the projectién'operators onto H; and H_ are
‘not physical observable\quantities. This is precisely what we
have shown in the last section because the projection operator
onto H_ is Q and that onto H_ is (1-Q).

| We show now that the cluster property allows Q to

be a physical observable. Suppose that our system C of 3-
partiéles consists of a cluster C1 and C2 as before. -Then the
3-particle state has the cluster form

¢(xl, Xy x3) = w<x1, X,) X (x3)

where w(xl, x2) describes C

1 and XFx3) describes C,. By

hypothesis, ¥ does not overlap X, i.e.

ll)(x3l xl) = U’(Xip X3) = 0

X (x;) =0
for i = 1,2. Then (ll) becomes
ey = v (x, %) xixg) (15)
eg = ¥ (x, x,) X(Q;) (16)
e% = ei =0
-~ where
Wy, 1) = —i [W(xy, x,) * (x,, xp)]
1 2 2/3~ 1 2 2 1

The cluster property allows a measurement on Cl without

disturbing the symmetry type of C. This measurement is re-
presented by an operator A(xl, xz)depending only on the variables

of the particles in C From (15) and (16) we have

ls
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1 1 Ty
<ey.s Ae1> = fdx1 dx2 Y (xl, x2) A(xl, x2) wf(xl, xz)
<e2 Ae2> = [fdx, dx ;-(x X,) A(x x,) ¥ (x X, )
27 2 1 2 1’7 72 1’ <2 1’ 72

Because of the superselection rule operating on C C1 must

1’
be either in w+(x1, x2) or in w—(xl, x2), the measurement

of A should determine which of the wi(xl, x2) C1 is in. Therefore,
it should specify which of the H, and H_ the state of C belongs

to. This is in contradiction with the physical indistinguishability

~of H_and H_ if C, is considered as a subsystem of C.

1
The derivation of S.P., based on the indistinguishability
postulate, egqn. (4), and the cluster property, as presented
in this section is valid only for the particular case for
which eqn.(lZ) holds. Furthermore, it is base—aependent; an
incorrect conclusion can be drawn from an incorrect construction
of the base. This haé been done actually in the literature.
The derivation presented in section 1 holds in general case
and base-independent.
So far, we have derived S.P. from the indistinguishability
postulate expressed by egn. (4) assuming that the state correspond
to a ray in H = H .+ H,. However, it appears no less physically

1 2
reasonable to describe the state by a density matrix p satisfying

eqn. (6). We could choose p as
p =1 |el><et]
ij
where ]e{ > is the state corresponding to e%(xl, Xy x3) of
J

egn. (11). To calculate the symmetry type of Cl’ we calculate

the expectation value of the operator U(12):
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<U(12)> = Tr[U(12)p]

1 1 2 2
<ellU(12)|el> + <el]u(12)]el>

L

1l 1l 2 2
<e2|U(12)|e2> + <e2|U(12)Ie2>
= 0

upon using (12) and (13). Thus, p correspondsto the state
of minimal information in similarity with the state of random
spin. If we repeat Steinmann's experiment discussed earlier,

we would find that the cluster C., has 50% of being in the

1
symmetric state and 50% in the anti-symmetric state. No
contradiction would arise from the measurement of the symmetry

type of the cluster Cl'

3. Conclusion

We have seen that the cluster prgperty is incompatible
with condition (4) for an observable. Thus, the theory of
paraparticles formulated from eqn. (4) is not acceptable.
Instead, we should relax eqn. (4) and describe the state of the
system by a density matrix satisfying eqgn. (6) for any physical

observable A.



CHAPTER V

CONNECTION BETWEEN SYMMETRY TYPES AND
STATISTICS AND CLASSIFICATION OF PARAPARTICLES

l. Statistics of order P

States of identical particles can be classified

according to irreducible representations of S It is

N°
well known that the identity and alternating one-dimensional
irreducible representations are connected with the Bose-
Einstein and FerﬁifDirac statistics. - Are higher dimensional
representations connected with other statistics? 1In this
section, we wish to establish the connection between the

irreducible representations of S and a special statistics

N
which we call statistics of order p. It is the statistics in
which the maximal occupation number is an integer P. We

will prove a theorem, first proved by Okayama (1952) for p=2,

using the place permutation operators*.

Theorem:

"particles whose N-body states belong to irreducible
representations associated with Young diagrams of p columns
obey statistics of order p".

Proof:

The proof is quite lengthly and follows the same line

of reasoning of Okayama (1952).

*
Okayama (1952) made use of the particle permutation operators

which will be discussed in chapter X.

68



69
According to egn. IV-9, a state of ﬁ symmetry type

is a linear combination of elements of the following matrix

N!

For our purpose, we record the one particle states and their

n .
o (®)> = X 2 pM(6™Y) u(o) |v(r) > (1)
: o

positions in |Y(K)>. If the particles obey parastatistics
of order p, |¢“(K)> should‘satisfy two conditions:

(i) |wu(K)> vanishes identically when we equate more
than p one-particle-states,

(ii) lwu(K)> does not vanish identically when we equate
p or less than p one particle states.

First, we show that it is sufficient to consider only
the case in which we equate first g one-particle-states-at
position 1,2,...q in |y (K)>(g>p or g<p). 1In fact, g states at
arbitrary positions in |w(K)> can always be shifted to the first
g positions by a permutation y. It is possible to write every

o € SN as a product 1Y, T € SN' so that (1) becomes:

.n
> = Aot ot e™h um vrw> (@)
. ' T .

where
91 (R)> = () |9 (K>
Since D(Y’l)is not a‘zero matrix, lw(K)> vanishes if and only
if the sum on the right hand sidé of (2) vanishes when we
equate the first q states in |y' (K)>.
Now, we find among‘the representations of SN those
which satisfy condition (i) when we equate more £han the

first gq one particle states. Consider the subgroup S of

pt+l
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4

SN of all permutations of 1, 2, ..., ptl. Lagrange's theorem

- permits us to decompose the group SN into a series of left cosets

+ S + ...+

p+l 5

% 9% "p+l

where o, is an element of Sn not contained in 91 Sp+l'

can be written as a product 0,0 with

Any element of S h

N

oy € Sp+l so that equation (1) becomes

| WM (K) > = B izh Du(ogloi_l).U(oi)(U(ohf7
where

|u(o,)> = Uloy) |w(K)>

Since the first more than p states are the same

lu(ch)> = |¥(K)>
then

n
H - M B, -1 u, ~1
W5 (R)> = & (I D7 (op™) (I 0y ) [U(0,)>)

The requirement that lwu(K)> vanishes identically is equivalent
to

% D“(ogl) = 3 pM(o
h h

We seek for representation of S

=0 | (3)
p+l satisfying equation (3).

Firstly, equation (3) requires

$ x"(o,) =0 (4)
h h |

where xu(oh) is a character. Since the sum of all characters
divided by the total number of elements of a group is the number
of times the identity representation is found in a representation,

equation (4) requires that we must exclude the identity re-
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presentation. Secondly, since the matrix I Du(ch) commutes
h
with all D“(oh)'s, in view of Schur's lemma it is a multiple

of the identity if D 1is irreducible,

% pM(o,) = ar*

h

The exclusion of the identity representation implies AZ0 in

!

order that (3) is satisfied. Hence, condition (i) is satisfied
for any irreducible representation associated with Young
diagrams ofbat most p columns.
It remains to satisfy condition (ii) when we equate
the first less than p states. Again, we write |Y"(K)> as
B "y p, -1 u |
VT )> = g (2 Do) (2 DR o) [¥iay)>)

]
where ck € Sq, a<p. Consider first the case g=p, then

O) € Sp. Condition (ii) is equivalent to

» DM(o,) # O . (5)
k k o

Since IU(Gj)>'s are independent and Du(cj)'s are not

identically equal to zero, the only representation which
satisfied (5), as a result of our previous reasoning concerning
equation (3), is the identity representation which is associéted
with the horizontal Young diagram of p blocks. Since we can

add to the identity representation any other representation,

" =1@Dp’, (6)
condition (5) is still satisfied, we require that the

representation of S must contain the identity representation
fod

at least once. Obviously, this condition satisfied condition (ii).
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also for the case g<p.
The representation of Sp are known, the representation
of Sp+l for elements which are contained in Sp can be obtained
from them by applying the branching law*: the representation

of S associated with a Young diagram Tu, for elements

p+1l
contained in Sp, is a direct sum of all representations
associated with the Young diagrams obtained from T" by
regular removal of one block. Because we require that the
representations of Sp contain the identity representation,
the representation Sp+l must contain a representation associated

with a Young diagram which yields a single row of p columns

after removal of one block. Thus, the representation of Sp+1

must contain the irreducible representation associated with

the Young diagram of p blocks in the first row, and only one

block in the second row.

The representation of Sy for elements contained in
Sp+l can be built up by successive application of the branching
law. We require that the representationé of SN are those
associated with Young diagrams which, after successive removal

of (N-p-1) blocks, yield at least one diagram of the type

mentioned above. The necessary and sufficient condition for

such a diagram is that it has p columns.

We make the following remark:

(i) The connection between statistics and the symmetry

* See for example Hamermesh (1962), page 215.



73

types is not unique (all symmetry types associated with
Young diagrams of p columns are connected with the statistics
of order p). The symmetry type plays a role more important
than that played by the statistics in the sense that the
formef, but not the latter , determine the physical property
of the system.

(ii) Condition (ii) on page 69 seems to be too
restrictive because it implies that particles obeying
statistics of order p do not have N-body state with N<p
because in this case we cannot obtain Young diagrams of p columns.
To overcome this difficulty we can

(a) drop the dondition (ii) and accept all Young diagrams
of at most p columns.

(b) impose no restriction on the symmetry types of
the systems of less than p particles. 1i.e., for N>p, we take
states satisfying the theorem and for N<p, we take states of any
symmetry type.

Whether (a) or (b) has to be adopted depends on the

nature of the system.

2. Classification of Paraparticles

Can we assign to each species of identical particles
symmetry type of N-body stateskunambiguously? The super-
selection rule discussed in section III-1 implies that for
each system of identical particles of a species, there exists
a unique symmetry type of the N particle states, but does not

assert that the symmetry type is the same for all systems of
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N particles-of fheléamé species. A different question arises
whether there is any relation between the symmetry type

of the N particle states and that of the M particle states.
Suppose‘for example a 3-particle system has the symmetry

type associated with the triangular Young diagram E}] .

What is the symmetry type of the 2-particle systems: symmetric
type assqciated with Young diagram [Ij or anti-symmetric

type associated with E} ? The superselection rule forbids
coherent linear combination of staﬁes of two different symmetry
types. There isAno known feason for Préfering one particular
symmetry type to the other. The question should be answered

by experiment.

Thus, we cannot answer on the theoreticéi ground alone
the posed queétions. We may expect, however, certain class of
symmetry types is to describe certain kind of paraparticles
so that we can classify the paraparticles according to the
associated class of symmetry type. In general, in order
to define these classes of symmetry types, one has to impose
certain physical conditions. Stolt and Taylor {(1970) classify
the paraparticles by requiring them to satisfy the cluster
assumption. We shall take Stolt and Taylor's classification as
definition of special types oflparaparticles:

(i) The paraparticles are called parabosons (or para-

fermions) of order p if their N-particle states have symmetry

types associated with Young diagrams of at most p rows (or

columns) .
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(ii) paraparticles of infinite order if they are
not parabosons or parafermions.
Parafermions satisfy condition (i) on page 69
but not condition (ii). Bosons (or fermions) are parabosons

\

(or parafermions) of order 1.

3. Consistency of the Classification

For the sake of consistency, we demand that many
systems of parabosons for parafermibns of the same species
in interaction form‘a system of parafermions (or bosons) (we
assume they conserve the numbers of identical particles).

Let us see whether this condition can be met.

.Consider, witﬁout loss of generality, an N-parafermion
system in interaction with an M-parafermion system. Suppose
when isolated oﬁe'system has (N-uy) symmetry type and the other
has (M-v) symmetry type. We demand that the system of N+M
parafermions is in the states of symmetry type associated with
Young diagrams of at most p columns where p is the order of
parafermions under consideration.

The states of N+M particles must have the symmetry
types associated with the representations found in the de-
composition of the outer product (N-pu) é§ (M-v) of representations
(N,u) of SN with representation (M-v) into irreducible re-

: '
presentations (N+M,y)'s of S .

(N-1) @ (M-v) = I (N+M-Y) (1)
Y
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We must show that, amoné the (N+M,y);s, there is at least
one associated with Young diagram which has no more than p
columns. |

The rule.for findihg all (N+M,y)'s are well known?
(i) draw the Young diagram for (N-u) representation, (ii)
in the (M-v) Young diagram assign the same symbol a to all
boxes in the first row, the same symbol b to all boxes in
the second row, etc. (iii) apply symbols a to the (N-u) Young
diagram and enlarge it in all posgible ways subjected to
the rule that no two a's appear in the same column and that
the resultant graphvbe regular (iv) repeat with the b's,
etc. (v) after all symbols have been added to (N-u) Young
diagram, select those tableaux in which the symbols, read from
right to left in the first row, then the second row, etc. form
a lattice permutatioh of a's, b's, etc.

Now, we wish to show that, among the Young tableaux
obtained by applying rule (iii), there exists at least one
in which the symbol a does not appear in the first row. 1In
fact, let us suppose that the (N-u) Young diagram is square.

Then the symbol a can be assigned by enlarge the (N-u) Young

diagram as ‘ T

|
1
]
f
!
!

(2)

[
'
!
!
|
!
|
|

B

Ml SRR N |

;
I
<La !a [a ‘a !

* See Hamermesh (1962)
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In general, the ith row of (N-u) Young diagram is

shorter than .the (i+i)th row so that we can assign a as

th 177" S
i row ,

(i+1)th row - a, a

It is easy to convince oneself that the a's can be put into
the boxes in this way without putting any a on the first row.
Applying rule (iv) and (v) to this Young tableau whose number
of columns is equal to that of (N-u) Young diagram. The
representation given by the obtained Young tableau is thus
acceptable for the state of (N+M) parafermions.
For parabosons, the number of columns is not limited,

it is very easy to check the consistency of the classification.

‘ Consider the example of two -particle systems whose
symmetry type is associated with the Young diagram E}j .
We can consider these paraparticles as parabosons or para-
fermions of order 2. The symmetry types of the 6-particle

system are given by the decomposition

If the particles are parabosons, then the symmetry

type E};Flj or | R must be chosen, if they are
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parafermions then the symmetry types or ui%
must be chosen.

Thus, in'general, the choice of the symmetry types
for a system of many systems of paraparticles is not unique.
However, it can be easily shown that the choice is unique

for systems of bosons or fermions by applying the rules

on page 76.



CHAPTER VI

SYSTEMS WITH VARIABLE NUMBER OF PARAPARTICLES

1. Indistinguishability Postulate

So far, we discussed only quantum mechanics of systems

with a fixed number of identical particles. When the number

of particles is not conserved, the state vectors of the

system are assumed to be in the Fock space $KH) which is the

direct sum of all space gl constructed from H with the convention

that H° denotes the space of constant functions,

T =@ | (1)
N=0 '
Any vector in ¥¥is of the form - ’

oo = Juos + Jols + 0w Ny L

where |y°> e H°, |w1> e H!, etc. We can define in ¥(H)

projection operators ZNonto HN as follows

My = >

Nyt = 0 if N # M (2)
We have

N - @ zﬁ (3)

where Eﬁ is the projection operator onto the subspace of HN

of W-symmetry type. A state is specified by (N-¥) and will be

called the state of (N-u) symmetry type. Furthermore.

N N N N

DA A PR SEEE , 4
u pel el wing (4)

where Zﬁ 3 is the projection operator onto an irreducible
[4

79
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subspace of the decompositién (111-22),

The indistinguishability postulate can be formulated
in $(H). Some care must be exercised because the permutation
operators U(c) are not defined in the whole F(H) but instead
in each subspace HN. The equations of operators, however,
must be applied to vectors in ?(H). Following Messiah and
Greenberg (1964) we make use of the projection operators ZN
to impose the indistinguishability postulate on an observable
AN in each subspace HN. Note that

al¥ = N AN N (5)
The indistinguishability postulate would find itself

£

in the expression in each subspace HY

[al

. , :
, U (0)] =0 (6)
where UN(O) are the permutation operators previously defined
in HN.
. M . M .
Consider an observable A" in H and let G(t) be the

evolution operator.' Since N is certainly a physical observable,

+
the operator N G(t) alt G(t) ZN, being product of physical

observables, is also a physical observable. Furthermore,
N G+(t) AM G(t) N is a physical observable in HN, eqn. (6)
requires

N ety A ey 2N, N1 =0 (7)

for all o ¢ SM’ where we have made use of the fact that AM = ZMAMZ

2. Messiah Greenberg's Selection Rule

It is usually believed that eqn. (7) implies the

following selection rule derived by Messiah and Greenberg (1964):
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"Transitions from a symmetry type to a symmetry type of smaller

dimension* are absolutely forbidden". We wish to give a

critical comment on the derivation of this selection rule.
Messiah Greenberg's selection rule has been derived
in the following fashion:

"Consider a transition from a state in an irreducible

subspace HY j[K], say, to a state in an irreducible subspace
urs -
H%}k[K'] (the definition of Hﬁij[K] and Hg'k[K'] were given

in Chapter III); K is an N-particle state and K' is an M-particle
state. The transition under consideration is obviously
described by the operator.

N .
u,j[K] (8)

where ZN . [K] and £ [K'] are the projectors onto m . [K] and
W, J v,k u,J

14

Mo e
0 =z, ([K'] G(t) I

u '
H K'].
kK]

From egn. (7) taken with Zg k[K'] for the observable
14

AM, it fellows that Q+Q is invariant under all UN(G). Since

in HY . [K], due to Schur's lemma, there exists only one in-

Hy]

variance, the operator ZE j[K], we must have
I

N
v,]
where ¢ is a constant.

ofo = ¢ ¥ . x] (9)

Let nu be the dimension of HE j[K] and m_ be that

’ Vv

* By definition, the dimension of a symmetry types is the
" dimension of the irreducible representation of the symmetric

group to which it is associated.
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of H% ]JK']; Then Q can be represented by an n x m matrix
14

and Q+ can be represented by an m x n matrix. Egn. (9) writes

as

.
= - (10)
Qmw an c%ﬂn ’

z
m
where Q = {Q },l<n<np, l<m<m_, and §_, _ is the Kroneckor
nm AV n n

4
symbol.
The ranks of the matrix Q and Q+ are at most equal to

m,. ' ‘This implies that the rank of Q+Q is also

at most equal to mn

v; However, the rank of Zg j[K] is equal to
4

n,. Hence, if mv<nu, egn. (9) or (10) implies that ¢ =0

or equivalently Q = 0. From this follows Messiah Greenberg
selection rule.

A weak point of this derivation is that the

N
H,

observables, an assumption which is not necessarily valid

operators Z% k[K'] and I j[K] must be assumed to be physical
r
as shown in sectionIII,.3.However, this weak point can be remedied
easily. 1In fact, we should consider a transition from a state
in an invariant subspace Hﬁ[K] to a state in an invariant

subspace H%[K'],~which is determined by the operator
T = INIK'] G(t) £} (K] (11)

where Zﬁ[K] and Z%[K'] are projectors onto Hle] and H%[K']
respectively. Then T must be permutation invariant so that

it could be represented by the matrix

11T M2T Mn I

- I
G 22 20y (12)
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where Aij are constants and I is the nu X nu identity

matrix. The above argument about the rank of T+T could

be applied here to obtain Messiah and Greenberg's selection
rule. Now we can show that Messiah and Greenberg's selection
rule implies the conservation of the dimension of the symmetry
type. In fact, if T # 0, then Tt $ 0. But, an argument
similar to the above leads us to the result that T + 0 only
if nu > m,. This, coupled with the condition nu < m,» yields
nu =m,. From this follows the conservation law which we
shall call Messiah and Greenberg's conservation law : The

dimension of the symmetry type is conserved in any transition.

3. Carpenter's Selection Rule

In this section, we present a derivation of a selection
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rule similar to that obtained by Carpenter (1970) for S+~matrix
within the framework of Landshoff and Stapp's (1967) unified
theory of identical particles. Our selection rule will be

applicable to the evolution operator G(t)and derivable from

eqn. (6).

Consider two transitions described by T defined

by egn. (11) and R defined by
= vMigo N
R = I [K"] G(t) ZY[K] (13)

where Z?[K] is the projector onto the symmetry type (N,Y).
The operator R'T is a physical observable in HN[K] so

it must satisfy eqn. (6). i.e.
[RYT, vN(o)] = 0 (14)

for all UN(G). But R+T is a mapping from Hﬁ[K] to H$[K],
eqn. (14) implies that it must be a zero mapping as a con-
sequence of the superselection rule operating between the
symmetry types in HN[K]. That is
rRfr = 0 | (15)
Now Messiah and Greenberg's conservation law implies
that T is a mapping of H' [K] onto H'[K']. Putting K' = K",

we see that if
N
Tly [K]> £ 0 (16)
for any le[K]> € HN[K], then eqn. (15) requires that
RV W™K 1> = 0

for any le[K']> € HM[K'], or equivalently

R = 0 ' (17)
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Egns. (16) and (17) imply the following selection
rule: If an N-particle system of symmetry type u undergoes
a transition to an M-particle system of symmetry type v,
then it cannot make’transitionswto other.M-particle systems
of. a different:symmetry type.-.#We shall .call .this Carpenter's

selection rule.

4., Discussion

Carpenter's selection rule has been derived for
systems of identical particles of one species. However, as
already stated in the beginning of this thesis, the presence
of particles of other species can be viewed as external inter-
actions acting on our considered system. Thus, Carpenter's
selection rule may be applied to each species 9? particle in a
complicated system.

Consider an N-boson (fermion) system. Carpenter's
selection rule states that if the system can make a transition
to an M-boson (fermion) system, then it cannot make a
transition to an M-fermion (boson) system. We wish to show

that if the particles can be created or destroyed freely then

it is always possible for an N-boson (fermion) system to make
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a transition to an M-boson (fermion) system; M is arbitrary.
This would mean that a.system of bosons élways remains to be
a system of bosons; a fact that has been observed.

To prove the stated proposition, we perform the
following experiment:
Suppose that we have an N-boson system in our

laboratory. Since the bosons can be created freely, we create
M'bosons of the same species in a regioh very far from the
laboratory. This creation, according to the cluster assumption,
would not disturb the symmetry type of-the N-bosons in the
laboratory. The system N + M' bosons is again a system of
bosons. Here, an objection can be raised: The system of N + M'
particles may not be a bosQn system. We take the condition
that two system of bosons form a system of bosons as a de-
finition of bosons. By an apprdpriate preparation of the
wave packet of the initially created M'bosons, we could make
these M'bosons enter, at some time, into the laboratory
through a windcw. Since the symmetry type of the system of
N + M'bosons is conserved, we would have at the time the M'bosons
enter the laboratory, a system of N + M' bosons in the laboratory.
To an observer inside the laboratéry, the N-boson system have
made a transition to a system of N + M' = M bosons. Since M'
can be arbitrary, M is arbitrary and greater than N. To shcw
that the N-boson system can make a transition to M-boson
system with M<N, we suppose that the wave packet of the N-bosons

system has been prepared such that M' bosons could escape from
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the laboratory through the window and travel to a region

very far away frbm the laboratory, where they can be destroyed.
This destruction, again according to the cluster assumption,
cannot disturb the symmetry type of the system of N - M" =M
remaining particle in the laboratory. To the observer inside
the laboratory, the whole process appears as if the N-boson

system has made a transition to an M-boson system, M<N.



CHAPTER VII

SECOND QUANTIZATION THEORY OF PARAPARTICLES

In this chapter, we shall discuss the second quanti-
zation theory of paraparticles. This theory, however, has
been developed independently of the first quantization theory
discussed so far and owes no result to that theory.

In second quantization theory, the system of }dentical
particles of a species is described by the field operators
P(x) and P*(x) and no particle variable need to be introduced.
One does not have to use the permutation operators to impose
the indistinguishability of the particles since the particles
have no identity in the second guantization theory. The statistics
of the particles are reflected in the method of quantization
one adopts: quantization with the commutation relation yieids
Bose-Einstein statistics, quantization with the anti-commutation
relation yields Fermi-Dirac statistics. The theory of second
quantization of paraparticles consists in adopting algebraic
rules, different from the usual commutation or anti-commutation
relations, for the field Y(x), ¥*(x), while still reserving
the equation of motion. This may imply that the equation of
motion in fact does not determine uniquely the algebraic rules
for the operators representing observables.

The possibility that the equation of motion does not

determine uniquely the commutation rules for the operators p

L
~

and q was first discussed by Wigner (1950) in the example of a

88
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harmonic oséillator. Wigner's analysis has been extended
by o'raifeartaigh and Ryan (1963) and by Boulware and
Deser (1963). Befofe going into the second quantization
theory of paraparticles, we shall illustrate the content
of this theory in the method of guantization of a harmonic

oscillator.

1. Quantization of a Harmonic Oscillator

Consider a linear harmonic oscillator of unit mass
and frequency 1/2m. The classical Hamiltonian of this

system is

and the Lagrange equation of motion is

q‘=prp='_q
Let a and a* be defined as
a=g—+—::l:E
V2
a* = 3 = ip
V2
Then the Hamiltonian can be»written as H = a*a

equation of motion (2) become

The passage to quantum theory consists of
(i) replacing the c-number variables a, a* by

operators defined in a Hilbert space

(1)

(2)

(3)

(4)
(5)

(6)

(7)
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a
op
(8)

a » a¥*
op

In making this change in H, however, some care must be
exercised. In the classical theory, the ordering of a and a*

in H is uhimportant so that we could write the classical H as
H = paa* + (l-u)a*a

= a*a + ula,a*] | , : (9)
with
0 <uc<1l | (10)
to guarantee the positive definiteness of H.
The ordering of a and a*, however, is important in
quantum theory. Hence, to obtain the most general gquantum
mechanical Hamiltonian we should make the replacement (8) in

the H of (9) rather than the H of (5),

= * *
Hop aop aop + U [aop' aop] (11)

(ii) usually postulating the commutation relation

gy a,] =1 - (12)

The results of this method of quantization is well

known. We mention here two points. Firstly, there exists

a unique infinite dimensional Dirac representation of aOp and

agp; secondly, if we use the Heisenberg rule

o = i[Hop’ OOP] (13)

op
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then
aOp = =1 aop (14)
a*_ =i a* ' (15)
op op ‘

which coincides with the classical Lagrange equations of
motions (6) and (7). -
The point of importance is that one can alternatively
carry out the step (ii) by a different method. One does not
adopt any commutation rule for aoﬁ and agp but rather demand
that the Heisenberg rule (13) together with the Hamiltonian
H of (11) yield the equation of motion for aOp and a;p identical

op

to the classical Lagrange equations, that is, one demands that

[H ,a ]1=-a ’ (16)

op’ “op op
* = A% ‘
[Hop' aop] aop (17)

with Hop given by (11),

H =

1
* *
op = 2op %op + u[ao ' aop], (117)

p
io <u< 1

From nqw on we drop the subscript "op" on the abp and a;p.
A recurring problem in quantum theory is that of finding the
representations of the a and a* obeying (16) and (17) in a
Hilbert space. 1In geﬁeral, the commutators [a*, a] are
different in each representation. The results due to O'Raifeartaigh

and Ryan (1963) can be classified into three cases depending

on u and Eo, the lowest eigenvalue of Ho (zero point energy) :
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The representations of a are of finite dimension
D=1,2 ... with
'2

|ar+l o= (1<r<D)
4

and all other matrix elements are zero so that

aHP s 2o

o

(

(@H)? ¢, =0
where ¢o is eigenvector of HO corresponding’ to eigenvalue Eo'
The representation D = 2 is just the Fermi oscillator
and the representation D = « is the normal Bose oscillator.
All other cases give para-Fermi statistics in which the

occupation number is (D-1)

N

(l:.l.l_s] +1
m

The representations are of even dimension N corresponding

1
Case 2: §>u>0, EO = qu =

to (+) sign or odd dimension N corresponding to (-) sign.

Boulware and Deser (1963) show that, in this case, there exist
' admits

a transformation U such that A = Ua gﬂtﬁs the representation

of Case 1, and that the Hamiltonian becomes

H

ata + E_ (11,N)

so that its zero point energy is shifted by Eo(u,N).

Case 3: u # 0, EO # 0

This includes the case u = % treated by Wigner (1950).

The representations of a are infinite dimensional and, as showed
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by Boulware and Deser, can be transformed to the normal

Bose oscillator by a transformation whose effect on
the Hamiltonian is to shift its zero point energy.

The commutation relation [a,a*] are different in
all three cases. We have seen that the essential non-uniqueness
of the commutation relation arises from the possibility of
employing Fermi or para-Fermi statistics. All other apparently
- possible commutation relations merely shift the zero—boint

energy.

2. Second Quantization of Paraparticles

In this section we shall discuss various known methods
of field quantization allowing parastatistics. We shall consider
in some detail the two well-known methods due to Green (1953)
and to Kamefuchi and Takahashi (1962)and shall briefly touch
upon the others. To avoid complicétions arising from anti-
particles, we shall restrict ourself to quantization of a non-
relativistic field.

a) Green's Method

Green studies paraparticles by requiring that the free

Hamiltonian be properly symmetrized as

H = 5 @ 0 (x,0), Tix,0)], (18)

For a reason which will become clear later, HO is symmetrized
(+ sign) for parabosons and anti-symmetrized (- sign) for
parafermions.

Green's method consistsvin requiring that the field

P(x,t) satisfied the Heisenberg equation:
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WO g, oy 19)

Let {lk>} be a complete set of one particle states and

consider the Fourier expansions

Pix,t) = I <x,tlk> a (20)
k

k

+
k

In terms of the creation and annihilation operators, a; and s

v (x,t)

L o<x,t|k> a (21)
k

the free Hamiltonian take the form

! + '
where
1 3.
w = 5 S XV (<x,t|k>) (23)

and the Heisenberg equation (19) becomes

[HO, ak] = W a (24)
Green finds that the necessary and sufficient
condition for which (24) is satisfied is
[ [a+, aQ]i' am] = - Zka a, (25)
and that this relation supplemented by the relation
[ [ap, ay] , a1 =0 (26)

may be used as the condition of quantization for paraparticles.
From (25), (26) and the relations obtained from them
by taking the hermitean conjugate, it can be verified that there

exists an operator defined to a constant by
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1 +
Nk =35 [ak, ak]i + constant (27)

which has the property of a number operator,

+ +
[Nk, aQ] —’sz ay (28)
N, , az] = - sz ay (29)
[N, N1 =0 | (30)

A different way to obtain Green's commutation
relations, (25) and (26), is proposed by Bialynicki-Birula
(1963) who demands that equations (28), (29) and (30) be
invariant under any unitary transformation of the one particle
states,

|'k> = I (8
- L

where the unitary condition in terms of the infinitesimal

kg~ %g) 1%

parameters ) has the form

Og g + O g = 0 .
Under this transformation, a and a; transform as
1 —
% =2 (8pp + opglay
N _ +
A =2 {0y mogglay

An explicit construction of ap and a; satisfying

Green's commutation relations is provided by Green's ansatzes
(1953) :

For parabosons, consider a set of operator aéa)

, 0= 1,2...

P

r
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obeying the relations

() (o) + -
[ak r az ]— - (Sk«qa
+
2, a1 = ray, M1 =0 (34
6, 81, - s, 8, 0, 0 s s

Then ay s a+ defined as

k
P (a)
a, = 2 a :
kT o %k (32)
P
+ (a) +
ak = 2 ak
a=1

satisfy Green's commutation relations. For para-fermions,
the (+) and (-) signs in (34) are interchanged. (32) will
be called Green's ansatz of order p.

With the usual definition of the vacuum state |O>

(@) ()

for the Green components a - , 1.e.

aéa) [o> =0

Green's ansatzes give

. : _
a, a, |o> = p5k2,0> (33)

This equation together with (25), (26) and their hermitian
conjugate are sufficient for calculating the expectation value
of any function of a and a;.

Given the irreducible representation of aéa) (a) +

raz
satisfving (31), the representation of Green's para-commutation

relation rules via Green's ansatzes , are not in general
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irreducible. However, in the next chapter we shall show

that Green's ansatzes yield all irreducible representations
with a unique vacuum state. Therefore, (33) is the general
rule for calculating the expectation values. In the following,
we shall frequently use Green's ansatzes and shall discuss

the meaning of these ansatzes for field theory in Chapter VIII.

b. Kamefuchi and Takahashi's Method
Kamefuchi and Takahashi (1962) determine the commutation
relation by considering the unitary infinitesimal, linear

transformation which leaves the following guantities invariant

] ' | O (34)

+
A, =2 [a,, a
g1 KK
namely, the transformation
1 +
a = G ay G (35)
where
G=1-i I N, §, -3 %L, n,
gm M m
1l
-zt 2 Mom *am
m
with the conditions
* *

oI | ' (36)
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and

lag, Nod =8y, a

[ak, L2 ] =6, a + § a

m° k& m km “2 (37)

[akl Mlm] = 0

The upper and lower signs are referred to S-type
and R-types transformations respectively.

Kamefuchi and Takahashi demand that these transformations
are representations of a group so that G satisfies the closure
relations which establish a Lie algebra of the generators N

Lm

5 .
x and 2, are subjected

to unitary transformation corresponding to the group 0(2f) or

and Lmn‘ It turns out that the operators a

S_(2f), the generators of these transformations N, , L, , M
P 2m m mm
satisfying (36), (37) and the following relations

N o Nond = Som Mkn ™ Sxn me

[Lkl’ Lmn] =0

[Mkz’ an] =0

[Lkﬁ' Nmn] =T dkn Lmk * 62n Lmk (38)

[Mkk' Nmn] = ékm an 62m Mnk

[Lkz’ an] =T 6km NZm * 6kn NRm - 62n Nkm

in Nkm
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Here, the upper and lower signs correspond to the
cases O(2f) and Sp (2f) respectively.
It can be shown that the simplest form of the generators

. + .
as functions of ai's and ai's are given by

N

+
= Kla, , a,l]
kg k 2 T
- + o+
Ly = Klay, az]; (39)
Mo = Kla., apl_ (40)
+

where K is a real constant, The operator

Nk = Nkk + const.

satisfies (28), (29), (30) and thus can be identified as the
"number operator. Furthermore, with a conventional normalization

+ . .
of ak and ak one can take K = i%. We consider various cases:

Case 1l: K = %, R type

Ohnuki, Yamada and Kamefuchi (1971) point out that the set
: +
of operators Nkz’ Lkl’ Mkz’ when supplemented by ay and Ay r form
the Lie algebra for O0(2f+l). This coincides with a result
obtained by Ryan and Sudarshan (1963), namely, that the algebra of a

+
set of operators a, and a

X X! k=1, 2 ... f, is isomorphic to
the Lie algebra of 0(2f+l1). This suggests that case 1 corresponds
to Green's para-Fermi quantization. In fact, Bialynicki-Birula
(1963) points out that Green's ansatzes . satisfy all the

commutation relations found by K.T. Since we shall show in
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Chapter VII that Green's ansatzes actually exhaust all possible

irreducible representation with unique vacuum state of Green's
commutation relations, Green's quantization is included in

Kamefuchi and Takahashi's method.

Case 2: K = %, S type

ST

This corresponds to Green's parabose quantization due
the fa ct that
to,the last remark for case 1, about Green's ansatzes , is
applicable to this case.
In both cases 1 and 2, one can prove that, for the

representation characterized by the parameter s,the number

operator defined as

1

R
ki- " 2

1, +
Nk = E[a s a S( s-1)

has zero as its lowest eigenvalue. Defining the wvacuum

state |0> as

a, |[0> = 0 and Nk|0> =0

k
one obtains

+ —_ -
a, a, |o> = (s-1) 6k2'0>

This relation together with (37) enables one to
evaluate the vacuum expectation values of prcduct of field
operators. Comparing this result with the results given by
Green's ansatzes , equations (33), one arrives at the equivalence

of Case 1 and Case 2 to Green's quantization method.

Case 3: K = - %, R type or S type

This case corresponds to the method proposed by
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Kamemova and Kraev. (1971) Ohnuki, Yamada and Kamefuchi show
that this case is not applicable to field theory because it
yields negative norms for the completely anti-symmetric N -
particle states orbnegative eigenvalues for the number
operators.

Further generalization of ﬁhe method of quantization
may be obtained by adopting, instead of (39) and (40), a

different ansatz for the generators N RK.T. (1966)

k2’ Txer Moo

also considering the following ansatz for the generators

(a) _+ (oc) oefa)
N = X (A 3, «s.a £
kgl a=l,2.-. k Q/ e & v m...
m,m',m"
(o) (@) _+ o(a)
Am...a£ Bm' ax m" )
= (o) (cx) (a)
Ike= 2, Pm % Bl 3 Cpo
m,m"',m"
(o) + L (a) (o)
Am... a9 Bm'...ak m"...) (41)
- (o) (o) (oc)
My _aEl 5 (Am... ag Bpr,..3 Gy
= 14
m,m',m"
(oc) (a) (oc)
m...ak m'...% m"
. [}
Here A(a) ’ (a) and c(ﬁ) are functions of a.s and a;'s
such that (i) the expression I Aéa) Bé?) Cég) as a

m,m 1 ,mu
whole remains invariant under the orthogonal transformations .

1 +| .2 . . . .
of a's and a,'s, (ii) the resulting Nkz’ Lkl’ and Mk£ satisfy
the conditions (36) and (iii) the operators Nk = Nkk become

traceless.
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K.T. find that this ansaltz yields the commutations
relations for a, and a; which take the forms different from
those of Green. The same result is also obtained by Ohnuki
who finds that the bound states of particles associated to
Green's method do not obey Green's conditions of guantization.
It is not known whether these bound states obey the quantization
conditions by the ansatz (41) or others within the K.T.
framework of quantization.

Note that Green's and T.K.'s para-Fermi quantization,
in the one dimensional limit, does not correspond to the quanti-
zation of the harmonic oscillator considered by O'raifeartaigh
and Ryan (Case i discussed in section 1) in contrast to the
claim of Boulware and Deser that the non-uniqueness of the
commutation relations for a harmonic oscillator arises from
the possibility of para-Fermi statistics in Green's sense. In
fact, Green's para-Fermi ansaltz does not satisfy equation (17)
(with p = 0 for case 1 on page 92). To see this, let us write

the first hand side of equation (17) using Green ansatz .

[a*a, a1 =a-2z5al@* (@ (a)*
a .
+ 5 a(OL)*a(B) a('y)* _ 5 a(Y)*a(a) *a(B)
a#B a#B
Y:'B al'=R

This equation does not agree with (17) because of
the presence of the last 3 terms which do not cancel one
another when acting on any state vector, a fact easily verified

by letting them act on the wvacuum.
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c) Other Methods:- of Quantization

Different sets of commutation rules are given by
Volkov (1959), by Okayama (1952). Volkov studies the

properties of a fields associated to the commutation rules:

ay ap a, + a, ap a, = 26k2 am + 2<Sm2 ak

+ + a, al = F 26

8 32 %m T 8y % % T k2 %m

a ap, a. + a a, a = 0 ; (42)

These commutation relations are satisfied by Green's
ansaltzes of order 2 so that they are just a representation
of Green's commutation relations.

Okayama (1952) proposes a set of commutation relations

which permit statistics of occupation number Noox = 2 as

follows
+ + _
ay ag ay —ag ap a =8, ay
! a,_a, a_ =20
(perm) k74 m
a + + 2 a, = 2a
x % % 3 9% %% T “%

+ot a+ + a a+ a+ + +oatF a, a, = 2
ax 4 9 k % %k 7% % %% % T

T.K. (1962) proves that this algebra allows only a trivial
solution so that it cannot be applied to field theory.
We note that there exists a different method of

gquantization due to Roman and Aghassi. Kamefuchi (1966)
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point out that this method can be obtained by modifying

Okayama's method in an appropriate way. Roman and Aghasshi's
method has not been applied to relativistic field theory.

In the following chapters,we shall study field theory resulted
from Green's quantization and the terminology para-commutation

relations will be referred to Green's commutation relations.



CHAPTER VIII

REPRESENTATIONS OF GREEN'S COMMUTATION RELATIONS

We propose to study in this chapter éll representations
of Green's commutation relations. We shall exhabit for the
para-Fermi commutation.relations,va maze of infinite number
of inequivalent irreducible representations among them figures
the Fock representation used in second quantization theory..
We shall obtain the representations given by Green's ansatzes
from the well-known representations of the cémmutation and anti-
commutation relations. We shall prove that Green's ansatzes
exhaust all possible irreducible representations of Green's
commutation relations with a unique vacuum state. Finally,
as a verification of this result, we shall prove the existance
of para-Fermi statistics in any representations ﬁith a uniqgue

vacuum state.

1. Discrete Representations of the Para-Fermi Commutation

Relations
We propose to study, in this section, the represen-

tations of the para-Fermi commutation relations,

1 * = -
[‘2— (aj 7 ak) ’ az] - 6j2,ak [4 (1)
1 (a a, ) a (=0 ' (2)
2 %5 7 % % ’
in a Hilbert space. Unlike the anti-commutation relations,
*

(1) and (2) do not imply that the aj and aj are necessarily

105
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bounded. Unbounded operators, as is well known, cannot be
. *
defined everywhere. We tacitly assume that aj and aj are
defined at least in certain domain satisfying the condition
*

which permit unique closed linear extension of aj and a.

in the whole space H.

Let
=1 *
ny =3 [aj ' aj] (3)
then (1) and (2) imply:
[ "1 = an | (4)
nj ’ aj = aj |
[nj , aj] = -ay (5)
[nj ’ nk] =0 (6)

Note that (3) (4) and (5) form the Lie algebra of 0(3) (Jordan,

Mukunda and Pepper 1963). In fact, if one puts

* »
a. =J; + 1J
J

1 20 aj =J, - iJ, , n. =J

1 2 Jj 3
then one has

g, J ] = isk,Qm Jm » k, £, m=1,2,3
k2 ,

which is the algebra of the angular momentum. It is well-
known from the theory of angular momentum that the operator nj

is self-adjoint admitting the spectral resolution:

= (J) = 1 3 7
ng § Py » I=0, 5,1, 5 ... (7)
J
j me—g 3
z Pj(J,m) =1 (9)
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Furthermore
-1 -
p.(J,m) = [J(J+l) - m(m+lﬂ 2 a, p.(J’m l)a. (10)
J J 73] J
or
1 1
p.(J,m) = [J(J+l) - m(m+lJ 2 a. p(J’m+l)af (107)
J J J
Let us consider the self-adjoint operator
N. = .+ Jl ' 11
j IR ()
and its spectral resolution
- (J) - 1
Nj = § Pj , J =0, 3 v (12)
2J
p ) = % np, (90 (13)
J n=0 J
with 1
. 5 % -
Pj(J'n) = [J(J+l)-(n—J)(n—J+lﬂ 2 aj P(J'n l)aj
n ‘ -1 .
=T J(I+1) - (x-J) (r—J+l)§ 2 (%P p(3:0) 5 yn (14
=1 3 j
or 1
(J,n) 2 (J,n+l) _*
= J+1)-(n-J ~J+1 . P .
P [90+1) - -0) (z-341)? a; p, al
= J(J+1) - (r=J) (r-J+1) (a.) 3 23
r=n ]
(14
We note that Pj(J,n)Pk(J,m) = Pk(J'm)Pj(J’n) as a'consequence
(J,n)

of (6) and that‘none of Pj

of projection operators,

ever vanishes.

Following Wightman and Schweber (1955), we define a set

E(g), where o stands for the infinite
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sequence of integer ays Qg With aj =0,1,2, ...2J. o can
. be regarded as the real number whose binary fraction expansion
o .
is a,, Oy ee., i.e. & 2 oo . E(J)is defined as
1 2 N n o
n=1
(J) (3,M) o (7,0,)
Ea = lim E* ' = lim I P, 5 (15)

Moo M+® =1

(J3)
(o)

operator whose occupation number distribution is o

The physical significance of E is that it is the

17 az... As 1n

the case of the anti-commutation relations, some of the EéJ)

*
vanish for a representation of aj and aj in a separable Hilbert

may

space H. A representation in which all E, vanish is called

continuous and a representation in which no triwvial subspace on
J)

which all E(

a vanish is called discrete. In the following we

shall concentrate only on discrete representations. It is quite
easy to show that all properties found*by WS for the anti-
commutation relations hold also for the para-Fermi commutation
relations. They are:

Lemma 1

) 29 20 = g0 g0 g g xoar.
a a o o

z EéJ) is a projection operator. (I EéJ)) H and (1~ X EéJ))H are
o o * o
manifolds of H invariant under the aj and aj. In (Z EéJ))H

o
the representation is discrete, in (1l- ZgEéJ))H it is continuous.

A necessary condition that two representations be unitary

equivalent is that EéJ) be equivalent for all ». Representations
'
corresponding to different J are inequivalent and EéJ) Eéq .

ﬁ(J') J — 2 v
E Ea =0 if J # J'.
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Proof:

The proof of every statement except the last one of
*
this lemma may be proceeded in the same way as given by WS .

For later use, we sketch here the main argument of the proof.

(J)

The manifold belonging to E is characterized by the

o
fact that if

g =0 " _(16)

o
then
(J,a.)

Py 3 = | (17)

for all 3 = 1,2, ... Consequently, if o # ad, EéJ) Eég) = Eég)EéJ)zo

The sum X E&is a projection operator since it is the sum
a

of orthogonal projection operators. From the relations

(J,a,) _*, _ _* '
[P] J ’ aj] - aj (18)
[P(J’aj) ' aj] S aj (19)

it follows that if ¢ satisfy (16) and hence (17) then aj 0

*
and aj ¢ satisfy (17) with aj changed by one and therefore (16)
(J)

for some Ea'

. The net result is that ¢ satisfying (16) for
*
some o are carried by application of aj or a, into ¢ satisfying

(16) for some other a. Consequently, (I Eg)H is invariant under
* o

a. and a..

J J

. *
The representation of the aj and a. is continuous in

(1- Z EéJ)) follows from the definition of (1- I EéJ)) and is
o a
discrete in (I EéJ))H follows from the fact that the vanishing
a

* Hereafter we shall use the abbreviation W.S. for Wightman and

Schweber (1955).
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of Ea ¢ for all o implies the vanishing of ¢.
If two representations are unitarily equivalent there

exists an operator U such that

(J)

E 1(J) -1
a

= U E 18] (21)

From the theory of angular momentum, it is obvious that
representations corresponding to different J are inequivalent and
that E(J) E(J') = E(J')EJ =0 if J # J'. The representation
of aj and a; is thus the direct sum of representations each

of which is characterized by a positive integer p=2J and is in

term direct sum of a discrete and a continuous representations.

(J)

Although many of Ea

may vanish, if one is non-
vanishing so are an infinity of others. In order to deal
with this situation, WS define equivalence class, [a]l, of

the sequence a: o and o' lie in the same equivalent class if

they differ in at most a finite number of digits.

Lemma 2

(J)
a

All E whose a's belong to the same equivalence

class have the same dimension. Furthermore

(a.)n E(J)

3 a a o (a“‘)n = E
r LI ) L I -
1 2 j oy a2...aj_n (22)
*n _(J) n
(a.)" E 7 (a.)” = E con
J al az L 3 .aj * s o J al GIZ aj+n‘
With the definition that E . .. =0 for a. negative.
%1 %2 J
Proof
Let ¢ be a non~-null proper function of E,- If aj = 0
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*
consider aj¢, if aj # 0 consider aj¢ and aj¢. As we have
seen in Lemma 1, these are non null proper function of E vr
where o' is different from o by only in the jth place, i.e.,

*
a! = a, + 1. Furthermore, if o = 0, aj¢ # 0 since if aj¢ =

j
) (7,0)

(14%) implies P 6 = 0, a contradiction. If a, # 0, a ¢ £ 0,

(J,04
and aj¢ # 0 since if a§¢ = 0, aj¢ = 0, (14) and (14 ) 1mp1y P. ¢ =

3)
0
-a contradiction. Consequently, a; is a non singular mapping

of the manifold of Ea into the manifold of Ea" and aj is a

non singular mapping of the manifold of Ea' into the manifold

of Ea’ Thus, the manifolds of Ea and Eu' héve the same

dimension. In fact, the mappings are one to one for every

solution of PgJ)w = Y is of the form ¢ = *¢ where P( )¢ =0
)w 0 is of the

J
(set ¢ = a.y) while every solution of P(

(J)

vform a. ¢ where PJ

= ¢ (set ¢ = a;w>.

Lemma 3:

Let [a] and [o0'] be distinct equivalence class of

dual fractions. Then X EB and Z B are orthogonal
B elal B ela']
projectors whose manifolds, (I B)H = m(a) and (X S)H,
B ela] B ela']

are invariant under the a's and a*'s. The representations
induced in m(a) and m{a') are equivalent if one of them is non
trivial.

The representation induced in m(a) is a direct sum of

irreducible equivalent representation.

The proof of the first two statements can be given in



112
the same way as WS. The last statement can be checked as
follows.

*

Consider the representation of the a's and a 's in

m(a). If the manifolds belonging to the E B € [o0] are one

g’
dimensional, then the representation is irreducible because
it is cyclic and contains a projection operator onto the
cyclic vector (Haag and Schroer; 1962). In fact, every vector
of m(a) is a cyclic vector of the representation. If the
manifolds belonging to EB are greater in dimension than one,
we pick up an orthogonal basis in one of thém, ¢a.' i=1, 2,...
Then the argument of WS shows that m(a) is a direét sum of
orthogonal closed linear manifolds, Ri's spanned by vectors
of the form Ha¢a' (i fixed), and that the representation of
a's and a*'s in the Ri's are all unitarily equivalent.

Lemma 1, 2, and 3 can be summarized in

Theorem 1

Every discrete representation of the para-Fermi
commutation relations is a direct sum of irréducible re-
presentations.

The number of inequivalent irreducible representation
is infinite, each corresponds to one class [a] of binary
fraction. Among these representations only for the one whose
equivalence class contains zero does a no particle state

[e2]

(vacuum state) and the number operator, I N., exist. This is
j=1
the Fock representation. used in the thecry of second quantization.
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2. Representations given by Green's ansaltzes

*
Consider a set of operators bj' bj’ i=1,2,...

in a Hilbert space H satisfying the anti-commutation relations

* : *
bj bk + bk bj = djk (22)
bjbk + bkbj = 0 (23)
*
Let a set of operator b.(a), b.(a) , =1, 2, ..., p

J ]
in the subspace ® = H@ HE..@H (p times) of the tensor power

p
space @ H defined as follows:

(a) -
bj (¢1®¢2®...®¢a®...®¢p)—

¢l®¢2®---®bj ¢a®¢p (24)
(a)* ‘ oy
bj (¢l@¢2®...®¢a®...®q>p)—
4, ® 6, & ... ®b; b, ® -..@ 6

*
i.e. b.(u) and bj(a) effect only the ath factor in the tensor

(o)

P
products. Since the space HP is dense in @, the bj and
*
bj(a) have unigque closed linear extension in the whole space
5 ()* , (a) (@) , (a)*
@H. Clearly, bj bk + bk bj = 6jk (25)
(o) o (a) (@), (o) _
bj bk + bk ) bj =0 (26)
(a) (B)* - (a) (B) -
bj , bk = bj ' bk = 0, a #8 (27)
* .
Let aj and a., j=1, 2, ..., a set of operators in
b .
@4 defined as ‘
p
a. = % b.(a)
J a=1 ' (28)
p *
ar =5 b, (29)
J oa=1 J
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*
Then relations (25), (26), (27) imply aj, aj satisfy the para-

Fermi commutation relations. In this way, we obtain a represen-
tation, induced by the representations of the anti-commutation
relations, which coincides with the representations given by
the Green's ansatz (Green 1953).

It is natural to ask the questions as to whether (i)
the representations as given by (28), (29) are irreducible and
(ii) exhaust all possible representations. As to (i), one
can be contented to subrepresentations obtained by the res-
triction of aj, a; to closed invariant subséace oftgH. Instead
of trying to answer (ii) for every representations induced by
every representations of bj’ and b;, we shall consider the
representations which admit a unique vacuum state ¢O.

By letting equation (1) act on the vacuum state ¢O,
Greenberg and Messiah (1965) finds that any irreducible repre-
sentation cf the para-Fermi (Bose) commutation relations with

a unique vacuumsatisfies the relations
a. ¢ = 0 (30)

%
aj a ¢o = p 6jk ¢o (31)

where p is a positive integer. They observe that (30) and (31)

imply the representations given by Green's ansatz actually

exhaust all possible representatiéns with a unique vacuum state.

We shall give a proof for this statement with the aid of 2 lemma:
Lemma 4:

Equations (1), (30) and (31) are sufficient to eliminate
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*
aj from any function of both aj and aj.

Proof:
It is sufficient to justify the lemma for functions

of the form
* * *

f(n) = ay @y ay ... ay (32)

Taking the self-adjoint of eguation (1) we have

% %
£(2) = - a, ap ay
8 * * % * * % %*
= 20y @ taga, a - ayaa) - agaay
(33)
Let (33) act on the vacuum and using (31) we have
26 * * 6 * 1
£(2)¢, = (28, ap - pypay - pS ape, ()
(34)

The annihiliation operator ay has been eliminated on the left

*
hand side of (34). For f(3), we right-miltiply (33) by a

k
(S * * * *
£(3) = 2 km 20 @ t 3, ap 3, 3y
* * *
- am ah % %
using (31) we have
%* *
f(3)¢o = (- 26km a, ap + pékh - £(2)) ¢o

where f(2)¢)o contains only creation operator acting on the vacuum
state (equation 34). To obtain f(n)¢o, we right-multiply f(2)

by a product of (n-2) creation operators. Using the same

method we have applied to eliminate aj's in f(2)q5o and f(3)¢o

we can eliminate all aj's in f(n)¢o.
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Lemma 5:

Two representations with vacuum state are unitarily
equivalent if the vacuum expectation values of any polynomial
in the creation and annihilation operators are equal in two
representations.

Proof:

This lemma is a consequence of a theorem in the theory
of symmetric ring (Naimark, 1960) which states that a cyclic
representation x - A with cyclic vector ¢O is uniquely determined
to within unitarily equivalence by the posifive functional f(x)=
(Ax¢o,¢o). It is useful to illustrate this theoreﬁ for re-
presentation of polynomial algebra of creation and annihilation
operators.

Let the vacuum state vector in the two representatioﬁ
H and H' be ¢o and ¢'O respecfively. The vector in H and H'
are the closures of vectors of the form p(a*)¢o and p(a*)¢'o.

We define a mapping from H to H' by assigning to each vector

P

_ * v * . .
;= pi(a )¢o of H the vector wi = pi(a )9 o of H'. We have

*
(lpl'wj) = (¢OI Pi(a) pj (a )¢O)
(60 pp(aa )4 (35)
and
(W'505) = (@, pp(aa)e’ ) (36)

where Py is a polynomial. If the vacuum expectation value

*
of any polynomial of aa in H is equal to that in H', then (35)
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and (36) imply (wi,wj) = (w'i,w'j). The mapping is thus an

unitary mapping. Furthermore, this mapping maps a dense set

* *
pla )¢o of H into a dense set p(a )¢'o of H', it can be
linearly extended to unitary mapping of H into H'. We conclude

that the two representations are equivalent.

Theorem 2:

Every irreducible representation with a unique vacuum
is unitarily equivalent to a representation given by the Green's
ansaltz.

Proof:

Let ¢'O be the unique vacuum which is the p‘time tensor
product of the vacuum of H. It is easy to verify that the Green's
ansatzes give
a. ayp ¢'o =p ij ¢'o ' (37)
which coincides with (31). By lemma 1, all the anihilation
operators in p(aa*)¢o and p(aa*)d)'O can be eliminated in a unique
" way. Now, for free fields, all state§ p(a*)¢o(p(a*)¢'o) are
orthogonal to the wvacuum ¢O(¢'o) so that lémma 1l leads to the
result that the expecﬁation values of all p(aa*) in any represen-
tation (with unique vacuum) are equal to those in éﬁ. By lemma
2, all irreducible representationé with a unique vacuum are
unitarily equiValent to the representation (with vacuum) in @PH.

So far, we only deal with the para-Fermi commutation

relations in this section. For para-Bose commutation relation,

we take H for the representation space of the commutation relations
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bj bk - bk bj = 6jk (38)

i 1 ]
bj bk - bk bj =0 (39)

' 1 ) ' 1
and define bj(a) ' bj(a) as (3), (4). Clearly bj(a) and bj(a) *

satisfy
* (o) '* (o)’ (a) ! (o) '* '
(a) ' (a)' (a)’ (a) ' _ :
‘bj bk - bk bj =0 (41)
L (a)! B)Y*'] [ (o) (8)' _
[bj ) byt J_ _ibj , by j. =0 (42)

Using a set of klein transformations (H. Araki, 1961),
we can change bj(OL)| to bj(a) and b.(a)'* to b.(u)* satisfying
(25), (26) and (27) with all (-) sign changed ta (+) sign. The
aj and a; defined as (28) and (29) satisfy the para Bose commu-
tation relations. Lemma 1, Lemma 2, and theorem 2 hold also

for para Bose case.

-1

3. Existénce of para-Fermi Statistics

In the representation given by Green's ansatzes ,

it is easy to verify, for para-Fermi case, that

()™ ¢ =0 if n>p+l
aj ¢o = if n>p
which exhibits the existance 0f para-Fermi statistics in which
the maximal occupation number is p. As a verification of theorem 2,
let us prove the existance of para-Fermi statistics in any
representation with unique vacuum ¢o.

First, we verify the relation

a(a*)n¢O = n (p-—n+l)(a’k)n_l o) (43)

(o]
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for para-Fermi case. In fact this relation is verified for
n=1, n=2, Suppose it is verified for n=3, 4... m-1. We
prove that it is verified for n=m.

Let us right-multiply the eguation

* 2 * * * * 2
a(a ) - 2a +2a aa -(a)” a

* -
by (a)™? to get

1

* e * * M-
- 2(a)™l 4 2% 4 (2l

*
afa )™
* * -
- (a)? a (252
Let this equation act on the vacuum state, using (43) for
n=m-1, m-2, we have
* m .
a(a ) ¢, =[- 2 + 2 (m-1) (p-m+2)

- (m-2) (p-m+3)1 (@)™ ¢

which is nothing but equation (43).

Equation (43) shows that

a(a)® 4, = 0

for n>p+l. Since ¢O is unique this implies

*'n
(a)™ ¢ = C_ ¢, n>p+l

where ¢_ is a constant,
n

H]
jsi}
o]
-

1€,

(6,0 @M (@™ ¢)

(44)
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Using again (43), we obtain

lc 1 = T 3 (p-3+1) (45)

0 for n>p+l. Consequently, (44) implies

il

which shows that Cn

*'n
(a ) ¢o = 0, n>p+l.

Thus, for para-Fermi case, p is the maximum occupation number

of the corresponding para-Fermi statistics.



CHAPTER IX

PARAFIELD THEORY

This chapter is devoted to parafield theory based
on Green's quantization and on the results of representation
theory of Green's commutation relations in chapter VIII.
We shall study parafields within the framework of Lagrangian

theory and of axiomatic theory.

1. Lagrangian Parafield Theory

a) Relativistic Parafields
The method of quantization presented in chapter VII
can easily be applied to a relativistic field theory. The
Fourrier decompositions (VII-20) and (VII—Zl) should be
extended to take account of the creation and annihilation
and b*. Then for the commutation

k k

* *
relation between a, and a, and for those between b, and b,

.operators of anti-particles b

one adopts the same commutation relations as in the non-

relativistic case. To obtain the commutation relations
) i * * ) *
involving apr Ay bk and bk’ one can consider bk( or bk) as

*
one of the ay {or az) with a suffix different from any of

those of the ay and then apply to commutation relations for
*

K and ak.

Contrary to the non-relativistic case where both para-

a

Fermi and parabose commutation relations can be applied to
one and the same Schrodinger field, there exists a generalized

Pauli theorem concerning spin and statistics. (Kamefuchi

121
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and Takahashi, 1962; Kamefuchi and Strahdee, 1963; Dell’

Antonio, Greenberg and Sudarshan, 1964). This theorem*,
which we shall prove in section 2, states that tensor
fields must be quantized according to the pafabose scheme
and spinor fields according to the parafermi scheme.
Hence, for a scalar field ¢(x), the following commutation

relation hold

(167 (x), o(y)1,, ¢(2)] = -28(x-2)¢(y)

[[6(x), ¢(y)],, (2] = 0 | (1)
and for a Dirac field -w(x) =y, (x)},

[0, 00, Vg (¥)1_, ¥ (2)] = -2sw<x~z5wB

[T () 41y vy @) =0 (2)

where A(x-z) and SaY(x—z) are the familiar Green's functions
(distribution) encountered in the ordinary Bose and Fermi
field theory. Further commutation relations can be obtained
from (1) and (2) by taking the hermitian conjugate or using
the Jacobi identity.

Scharfstein (1963) realized that the commutation

relations (1) and (2), at egual time, can be derived from

* The ordinary Pauli theorem (see, for example, Streat and
Wightman, 1964, page 148) states that, if the parastatistics
are excluded, tensor fields must be quantized by the commuta-
tion relation and spinor fields by the anti-commutation

relation.,
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Schwinger action principle. Recalling that, in the context

of Schwinger action principle, the generators G(y) (G(¢))
and G(¥) (G(¢*)) which generate the infinitesimal transformation
of the spinor field Y(x) (tensor field ¢(x)) satisfy the

following equations.

[y(x), G(¥)1 = i6y(x), (3)

[T(x), ()] = -isy(z) | (4)

and similar equations for ¢(x), ¢*(x), G(¢) and é(¢*)

Scharfstein showed that, if one defines

G(¥) = if[F0x), vgo¥(x)] &% (6)
G(P) = iflyg ¥(x), 6F(x)]_ax (7)
. o, ; |

G(o) = SIo (1), So(x)],a%x (8)
. \ ;

Glo)=  [4(x), 8¢ (x)],d°x | (9)

then egns. (l)lgnd (2), taking at equal time, are the
solutions of egns. (3), (4) and (5). He élso proved the
generalized Pauli theorem by showing that some inconsistency
arises if in eqns. (6), (7), (8) and (9) the commutations
(anti-commutators) are replaced by the anti-commutators
(commutators) . |

The results of the representation theory of the

para—-commutation relations suggest that Green's ansatzes can
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be applied to represent a relativistic parafield. Let
¢(a)(x), a=l,2, ..., p be a set of tensor fields obeying

the commutation rules
*

6 ), o™ 1 = ax-y)
16 ), ¢ 1 =0 (10)
, |

G, 6= 6!, sy, =008

Then a parabose field can be represented as

¢ (x)

I 1T

o (%) (x) (11)
1

Q1

' The ¢(a)(x) are called Green components of the parabose
field of order p.

The same presentation (11) holds“also for a parafermi
field of order p with all (-) signs changed to‘(+) signs and

A(x-y) changed to S(x-y).

b) Case of Several Different Interactiné Fields

So faf, we héve considered only the case of a single
free parafield. It is necessary to generalize the formalism
to the more realistic case of several different interacting
fields. .

In the conventional field theory, it is usually
assumed that different spinor fields anti-commute while tensor
fields commute with different tensor fields and spinor fields.

Such an arrangement is usually referred to as nomal case.

Even within the framework of ordinary field theory, there are
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also other possibilities. Some of the spinor fields may

be allowed to commute with other spinor fields and some tensor
fields may be allowed to anti-commute with other tensor
fields or spinor fields. Such an arrangement is referred

to as an anomalous case. A main difference of the anomalous

case from the normal case is that, in general, additional
restrictions have to be set on the interaction Hamiltonian
in order to preserve locality, the practical conseguence
of which is the occurence of some additional conservation
rules, module two. (Araki, 1964)

For parafields, there also exists the reciprocity
relations between the form of the Hamiltonian énd the commu-
tation relations between different fields. For example,
as pointed out by Kamefuchi and Strathdée, the choice of
the normal case as mentioned above for parafieldsvwould'
be inconsistent with -the following equation deduced from

relativistic invariance,

o, ¥ = il¥3(x), B ]
where PU is the 4-momentum operator, if one considers a
Fermi-type interaction between the spinor fields wa,‘wb..‘
It is thus neceSsary to generaliée the commutation relation
between parafields. The simplest generalization is probably

the one made by Greenberg and Messiah who demand the following

i) The left-hand side must have the form

[[a,B],,Cl,
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with €, n = £ 1, and the right hand side must be linear

(to preserve covariance).

(ii) When the internal pair [A'B]e refers to the
same field, its € must have the form related to’the number
operator (e = + 1 for para-Bose, € = -1 for para-Fermi)
and it must commute with C(n=-1) if C refers to another field.

(1ii) These relations must be satisfied by ordinary
Bose or Fermi fields.

Applying these conditions, Greenberg and Messiah find

the following set of commutation relations

[[a;, agl,a, b 1 =0 (12a)
[[ak, azlea, bm] =0 (12b)
(1), a]car byl =0 (12c)
(b, a:]n, a2]_n€a =0 (124)
[lag, byl al a =208, b (12e)
 where €2, eP = 11 depending whether the field ¢a(¢b) is of

para-Bose type or para-Fermi type. The important point is
that, owing to condition (iii), the same value n must be
taken everywhere. The set of commutation relations corresponding

ton = +1 is called relative para-Bose, that corresponding to

n = -1 is called relative vara-Fermi. All other commutation

relations can be obtained from the set (12) by hermitian
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conjugate and by the generalized Jacobi identity

[[a,B]_,Cl_ + [[C,A]n,B] + ﬂ€[[B,C]n,A]_ =0

-ne ne

The problem of finding Fock representations
satisfying the commutation relations (1), (2) and (12)
is solved by the following theorem due to Greenberg and
Messiah (1964).

Theorem 1:

All Fock representations are given by Green's ansatzes

P () P (o)
a = E ay s bk = § bk (13)
o=1 o=1

where for each pair of components belonging to the same
field, one assumes the commutation ruleg of Green's ansaltz
(Section VIII-2), i.e., the para-Bose rule if € = +1 and the
para-Fermi rule if € = -1 and for each pair aéa), bés).

We assume the para-Bose rule if n = +1 and the para-Fermi

rule if n = -1, that is

_ (o) (a) *, _
= 0, [ak , bm ] =0

(a) (a)
a, ™", b ]_n

- (14)
(a) (8) _ (o) (BY*, _ ;
Proof:
The proof follows the same line of érgument as given
in Section VIII-2. It consisting in proving that any re-

presentation with unique vacuum state satisfied the conditions
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*
3, ay 6, = Py, &, (15a)
b 5
b n ¢o = P%mn ¢o (15b)
ay b ¢O =0 (15c)
* _ 0 5
b a ¢, = : (15a)

which are satisfied by Green's ansaltzes and in applying
lemma 4 and lemma 5 of section VIII-2.
Conditions (15) can be proved by letting (124),

with a and b interchanged, act on the wvacuum state,

*

bz(ak a, ¢o) =0 for all k, &, m

From the uniqueness of the vacuum state, one has

ay b ¢o = Skm ¢o
*®
Using (1) and (2) in terms of ay and bk’ one gets
[ * b*] = -2¢2 a_ b 16)
a azlea, a, b 1_ = -2¢ a b (

and using

- (a)
=P sz ¢o

_ _(h)
bm by ¢, =P 6mn ¢o

obtained by letting (1) and (2) act on the vacuum, the

two members of () applied to ¢, give

o = =-2¢ ay bm ¢O
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which proves (#).(#l) is proved in the same way.
Eguation

*
[b r Q@ b = Zea[a

* * *
m k]n . “m x % ~ Pp Pn!

a b * *
+ £ € ap bm [bm, ak]n

applied to ¢o’ taking account of (15c), (15d) gives
O * *
- (ak q - bm bm)¢o

@ - p®hys

hence

p(a) _ p(b) = p

and (15a) and (15b) are proved. (QED)

An important point of theorem 1 is that all the
parafields must have the same order p. Therefore, the
commutation relations (12) should be applied only to para-
fields of the same order.

Different commutation relations must be adopted
for parafields of different orders. It is assumed they
commute or anti-commute.

The fields are divided into families, each containing

all parafields of the same order p. The normal commutation

relations are determined uniquely by the conditions:
(i) Inside a family the relative commutation rules

are all para (trilinear type).
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(ii) The relative rules are of Fermi-type if
and only if both fields are Fermi or para-Fermi.
Each fields can be expanded into Green's components
as
Pj
6. x) = £ ${%(x) (17)
o=1
The normal commutation rules can then be expressed in a
general form as
T
+ Cia
g)t i3

s (1+aa
3 (B) (a)
657 () 6% ()

PP
o i oy =

for (x—y)2 <0, where, ¢ 5. ahd GaB are Kronecker symbols
and i&j is a function wﬂzét takes>0 when both wé“) and wge)
are Bose fields or when one of them is a Bose field and
takes 1 when both of them are Fermi fields.

The Hilbert space G in which Green's component fields
act is larger than the physical Hilbert space H in which the
parafields act. It is believed that G has no physical inter-
pretation but is only a convenient mathematical space for
physical description.

c) Observability of Parafields

We have seen that, within the framework of Lagrangian
theory, a parafield can be expanded in terms of a set
of Bose of Fermi fieldé obeying anomalous commutation
relations. On the other hand, it has been éhown (Kinoshita,

1958; Araki, 1961) that a set of Bose and Fermi fields
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obeying anomalous commutation relations can be transformed
into a set of Bose and Fermi fields obeying the normal |
commutation relations by a set of Klein transformations (Klein,
1938). These Klein transformations wia)(x)—» wia)%x),

contrary to the symmetries, cannot be represented by unitary

(o)

i (x) are

(o)

i

or anti-unitary operators so that the fields V¥

in general physically distinct from the fields V¥ . A

question arises whether the field

1 (o)
b0 =1 v ()
1 a=1

and the field

' _ i () : :
v =1 9 | (18)

1 o

I~ 'O

1

aré physically distinct.In other words, we want to ask

the following question. If, in the parafield theory, a
certain function, say F(y) is observable and corresponds

to certain well-defined measurement in the laboratory, then
the Klein transformations can be regarded as leading to a
new theory in which F[y'] corresponds to the very set of
measurement. D¢ the two theories predict the same result
for all experiments? To answer this guestion, a detailed
knowledge of the observables in the theory is required. In
general, there is not much chahge that the two theories are
physically equivalent (Streater and Wightman, 1964).

We shall study the case of a single interacting para-Fermi

field.
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Since all relevant informations can be derived from

the S-matrix, we study the transformation property of the
S-matrix under the Klein transformations. In the inter-

action picture, the S-matrix is written formally as
. 24
S = Pexp{"lfd X HI(X) (19)

where Hj(x) is the interaction Hamiltonian written in
terms of the free field. We require that HI(x) sat{sfieg

the locality (or integrability condition),
B (x), H_(y)]_ =0 for (x-y)2<0 (20)

in the space H. 1In order that the theory be a local
Lagrangian field theory, we must require further that locality

should hold also between ¢(x) and HI(x) in the space H, i.e.
[6(x), H_(y)1_ = 0 for (x-y)°<o (21)

(It is known (Takahashi and Umezawa, 1953) a theory which
satisfied (20) but not (21) leads t§ essentially non-local
results). |

Because Araki, Greenberg and Toll (1966) have
already shown that locality in H is equivalent to locality

in G, we can express equations (19) and (20) in terms of Green's

components via Green's ansaltz, Hence, egn. (19) and (20) yield
r m™e® o1, 1B @ =0 (20%)
n,m'
2z e, 8™ W N1 =0 (211)

oa=1 m



133
where (m) labels those terms of HI(x) which are generated
by Green's ansaltz. Ohnuki and Kamefuchi (1968) show that
(20%) and (21') imply .

Theorem 2:

HI(X) consists only of terms of the type [Y(x),¥(x)]_¥
[V(x),v(x)]_...[¥(x),P(x)]_ where §(x) stands for either
V(x) or P(x).

Now, the Klein transformation defineé, for some set
of w(a)’ w(a)'(x) = —w(a)(x).if the domain of definition of
that very set belong to some part of G. Under such a trans-
formation, [w(x),W(X)] in general is changéd, so HI is
changed, hence the S-matrix is changed. I.e., the theory in
which Y(x) is replaced by y'(x) predicts different result
fot S-matrix. ut P'(x) is just an ordinary Fermi field,
the parafield Y(x) is physically distinct from a Fermi fielq.
In other words, the paraphermia is physically observable;

experiment can in principle tell us whether a particle is

just boson or fermion or a paraparticles,

2. Axiomatic Parafield Theory

Consider a field ¢(x) satisfying the Wightman Axioms
about the domain D and continuity, the Lorentz transformation

law and the local commuﬁﬁﬂﬁfy
[\P(f), w(g)]i, Ip(h)] =0

if the support of f and the support of g are space-likely

separated from the support of h (i.e. f(x)h(y) = 0 and
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g(x)h(y) = 0 if (x-y)2<0) when the left hand side is applied

to any vector in D, where Yy may stand for its self-adjoint
* .
Yy . In terms of unsmeared field, the local commu;a?\v‘f?_

axioms is simply
[[v(x), ¥(¥)1,, ¥(2)] =0
(x-2) %<0, (y-z)2<0 (22)

We have seen that a free parafield admits the Green
expansion (17) as a result of Chapter VIII. For interacting
parafields, it is not known whether the local commutativity
postulate does imply an expansion as (l17). The expansion,
however, satisfies (22) so that it can be used: to define a
speéial class of interacting parafields which we shall
call special parafields. |

- We remark that the special parafield theory involves
a set of Bose and Fermi fields obeying anomalous commutation
rules. As already stated, such a theory can be transformed
to a theory with normal commutation rules by means of a
set of Klein transformations without changing the physical
content (all vacuum expectation values are changed by a factor
+1) so that the connection between spin statistics and
T.C.P. theorem also hold in the anomalous case; Because the
special parafield theory is a sub-theory of ordinary Bose
and Fermi fields obeying anomalous commutativity, we obtain

Theorem 3:

"The usual connection between spin and statistics
and fhe T.C.P. theorem holds for special para-Bose and para-

Fermi fields."



135
This theorem has also been proved by Dell'Antonio,

Greenberg and Sudarshan (1964) without relying on the Klein
transformations.

For non-special parafields, the theorem is not
obvious although all properties of the Wightman functions
which do not depend on the local commutivity still hold.
Let us consider the case of Volkov's parafield satisfying

the local commutativity as follows
$(x)6(¥)0(2) $(2)6(¥)d(x) = 0 (23)
(x-2) %<0, (y'Z)2<0

which is the generalization of a Lagrangian parafield of
order 2 (see equation VII-42).

Consider, in particular, the relation
* *
p(x)d (Y)o(z) + ¢(2)¢ (y)o(x) =0
(x-y)2<0, (y-z)%<0 (24)

*
Using the cluster decomposition property , we find that

(24) implies

(W, 8 7 (y) ¥) & (i, ¢ (y) 000 y,1 (4, 8(2) y) =0

(o]

(25)

* See Streater and Wightman (1964), page 111



136

where wo is the vacuum state vector. It is known that if wo

is invariant under the proper Lorentz group then (wo,¢(x)wo)
*

vanishes for all field other than a proper scalar field .

Thus, for a proper scalar field, (25) requires
* N *
(lpol ¢(X) d> (Y) IPO) = (lPO, Cb (Y)¢(X) wo) = 0 (26)

The argument used in the proof of the spin statistics
theorem for ordinary fields can be repeated here to show
that (26) implies

Theorem 4:

"The (-) sign in (23) must be chosen for a proper
scalar field, i.e., the spin statistic theorem holds for
proper scalar fields".

Now, let us see whether (24) implies weak locality

condition, i.e.

(U rd(x) 6(x,) ...¢(xn>wo) =t (P, 0(x) e 0(x,) ¢>(xl)wo)

(27)
for all (x., - x )2<0
i j )

Because equation (18) implies that the vacuum
expectation value of any product. of fields is changed by a
factor *1 under any interchange of 2 fields at odd or even
positions, (27) is satisfied if n is odd (one check this by
reversing the orders of all fields at odd positions then at

even positions). However, this is not true for even n as seen

* See Roman (1970), page 284, problem 5.1.
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from the simple example

(IPO, ¢(xl) ¢>(x2) ¢(x3) ¢(x4)‘4')o) =
* (IPOIV¢(X1) ¢(X4)¢(X3) ¢(X2)‘JJO)

where it is not possible to pull W(xl) to the extreme right

of the product of fields. Thus, because we do not know the
rule for interchanging a field at even position with a field
at odd position, we cannot obtain (27) for even n. Thus,

we cannot assert whether the weak local condition is satisfied

by parafields of order 2.



CHAPTER X

CORRESPONDENCE BETWEEN THE FIRST AND SECOND
QUANTIZATION THEORIES

1. States of N Paraparticles in Parafield Theory

* *

a ‘. ® ®
S

%*
a, |0> form a complete set in the space'yy, the Hilbert
N

In the ordinary field theory, the states a

space of dynamical states of N quanta of the field. . That
is,

*

* *
a
k

1 .
1 = — de a L) a ,0><O|a cee A (l)
M 1 *2 Ky Ky k1

so that a normalized N particle state is given by

N
l *

ly> = —— fARY(k,, k,, ... k) (1 a, |0>) (2)
VI 1t N i Ry

where M is the normalization constant and dK stands for

dk, dk

1 9 e de, and

1
Vikyr kyy oon k) = == <o|ak cewoay | v>

VM N 1

Furthermore, in ordinary field theory, the normalized function
w(kl, k2, .o kN) has the same permutation property as the
wavefunction of N identical particles so that the former can
be identified with the latter. The ordinary field theory is
completely equivalent to the gquantum mechanical theory of
identical bosons or fermions.

In parafield theory, we expect that (1) also holds,

138
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and hence (2), because it is a result of the irreducibility

*
of the operators Ay Ay and the self adjointness of the

number operator. For N=3 and for para-Fermi fields of
order 1 and 2, eqn. (1) can be verified as follows. Using

the relation

K 2 lo> = Py o | 0>
and the commutation relations, we obtain

<0 ***0>
laiajakazamanl =

(p-2) [p(p-2)¢8, &. 8

km®3n8i1 T POxmd49in!

+(p-2)6kn [p(p—2)6.m6i2'+ pd ]

. O,
J Jg 1m

+pdy, [p(p-2)8, 6., + pé ]

jn im jmﬁin

=268, [p(p—2)6j£6im + pajmaihl

from which it follows that

* * *

daidjdka’ata’ 0 0>
fdidjdka, a.a, |0>< |aiajaka2aman|

1
-IVT kjl

1 {' 2 * Kk * * *
= ¥ (p-2) [p(p-2) aaa, +p amazam]

* % % * % %
+ (p-2) [p(p-2) ajaa, +paajal

= *
5 %
g5 %

* *x *

+ plp(p-2) aja a + p aja al

* % %

*
+
m p anamagl

(3)

*
a
g’a

o JE

- 2[p(p-2) a


http:p(p-2)o.no
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For a para-Fermi field of order 1,

[aml a,Q,] = 0

and
p=1
) ] I '
the right hand side of egn. 3 is agaman|0> if we take M = 2.

For a para-Fermi field of order 2,

* % *
The right hand side of (3) is again azaman|0> if we take

M = 8.
Thus, the state |Y> given by (2) can be taken as

the definition of an N-paraparticle state in parafield theory.

2. Permutation Symmetry in Parafield Theory

As in the first quantization theory, we shall write

an N-particle state as

x> =a, & ...a ]0>
ll 12 lN
= |k, k. ...k, >
) N
l 2 *” o ® o N ‘>
= kil ki2 kiN (4)

where the numbers 1,2, ... N of the first line in the bracket

*

* *
indicate the position of a, , a, , ..., @,  in the state [x>.

13 ) N
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then we can define a place permutation operator as follows

U(o) k> =
i k, I 3 (5)

Contrary to the ordinary field theory, the application
of the U(c) in general yields independent states, i.e.,
the U (o) |K> ére, in general, linearly independent. We shall
show in this section that, unlike in the first quantization

theory, the U(c) do not define multi-dimensional representations

of S,. in the second quantization theory.

L)

|2

‘We consider first a para-Fermi field of order 2

satisfying the commutation relation:

* % %

+ a a,a =0 (5)

*
a
m m 4k

* %
Ay

Suppose that a representation of S,, can be built up from

N
vectors of the form [¢>=I a(o) U(o) |K>. Relation (5)
implies that a permutation of two creation operators at

even positions or at odd positions in the states U(o) |K>

changes them by a factor -1. i.e.
U(i, i+2) |¢> = ~-|¢> , i=1,2...N-2

Clearly, all the permutations (i, i+2) must be represented
by the operator -1, where 1 is the unit operator. In other
words, the representation must be unfaithful. As is well-

known, a representation of a group is a homomorphism of the
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group to a set of operators. The kernel of the homomorphism
must always be an invariant subgroup. If the kernel consists
of the unit element only, this is a faithful representation,
and if otherwise the representation is not faithful. On

the other hand, the invariant subgroups are completely known
as listed in Appendix C. The irreducible representations

of Sy whose kernel is Sy or AN is, of course, the identity
or the alternating representation. For N # 4, it can be
concluded on account of Appendix C that an unfaithful
representation must be either the identity represéntation

or the alternating representation, i.e., a one-dimensional
fepresentation. This result is well—knownf Thus, the

representations of S, defined by the U(o), if existing in the

N
Hilbert space of para-Fermi field of order 2, cannot be
multi~dimensional.

The proof can be proceeded in the same way for a
paraBose field of order 2 by observing that the commutation
relation,in this case, implies that a permutation of two
creation operators at even or odd positions do not change
the U(o) [K>.

The proof can be easily generalized for parafields
of any order following an observation made by Green (1953)

that, for parafields of crder p, the creation operators in

the U(o) |K> are divided into p groups such that the exchange

* gee for example Boerner (1963)
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of twocreation operators in the same group changesthe

U(o) |K> only by a factor of t1l. (+1 for paraBose fields

and -1 for para-Fermi fields (two creation operators in

the same group are always separated by p creation operators).
Green's observation also allows us to conclude

that the Hilbert space of paraBose fields supports only

the identity representation of S, and that of para-Fermi

N
fields only the alternating representation.

Thus, the second quantization theory of para-
particles is not equivalent to the first guantization theory.
The gquantum mechanical theory Hilbert space always supports

a multi-dimensional representation of S, defined by the U(o)

N
whereas the quantum field Hilbert space does not.

The fact that the U(c) may not be unitarily represented
in the second quantized Hilbert space was first observed by
Galindo and ¥Yndurain (1963). Yamada (1968) provided a proof
of the non-equivalence between the first and the second

quantization theory of para-particles. Our proof is similar

to but simpler than Yamada's.

3. Particle Permutation Operators in First and Second

Quantization Theories of Paraparticles

It is possible to define, both in first and second
guantization theories, a different kind of permutation

operators, called the particle permutation operators (Landshoff

and Stapp, 1967; Yamada, 1968), as follows
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2 ... N

1
V(o) =l x, k, x, (6)

The following discussion is applied for both first and
second quantization theories, except when otherwise stated.
A particle permutation operator V(o) replaces

ki by ki whatever the position of ki is. Clearly, the
m om m

particle permutation operators depend on the way in which

we label the ki by the symbols il' i2, .o iN' Consider
for example the three particle state ]kl ky ky>.  If we
label kl by ki ' k2 by ki and k3 by ki , then
1 2 3
V(23) |kl ky ko> = lkl ky ky> A7)

However, if we label k1 by kiz, k2 by ki and k3 by ki then

3 1

V(23) |k1 ky k3>

v(23) |k, k. k., >
12

| k, k; k, >

which is different from eqn. (7). It has been suggested by
Stolt and Taylor (1970) that one can define the particle
permutation operators with the aid of the labelling satisfying

the condition
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assuming that a certain ordering of the ki has been adopted.
However, as noted by Steinmann (1971).this still does not
determine the particle permutation operators uniquely
because the equal ki can be labelled by the ij in many different

ways. For example, consider the state Ikl k, k,>and suppose

2 72
k, > k,. One can write this state as |k, k., k. > or equally
2 1 i, "1, i,
well as lki k; k; > (with k. =k;, k; =k, =k,)
R 11 12 13
and obtain different results for the V(o). For this reason,

Steinmann (1971) rejected any physical interpretation of
the V(o) although they may be useful sometimes in some
calculations.

Despite this difficulty with the V(c), one finds a good

deal of works on the connection between the first,quantization

theor@a}which made use of the V(o) (Landshoff and Stapp, 1967;
Ohnuki and Kamefuchi, 1969; Hartle and Taylor, 1969; Carpenter,
1970; Ohnuki and Kamefuchi, 1971). The idea was to classify
the second quantized N-paraparticle states into irreducible

representations of S, defined by the V(oc), assuming that these

N
representations exist, exactly in the same fashion as the
classification of the first quantized N-paraparticle states
into irreducible representations of SN defined by the U(o)

(See Chapter III). The correspondence between the first

quantized states and the second quantized states was proposed

* For example, Dirac (1930) found that the V(o) are convenient
variables in the determination of the energy level of

N electrons to first order in perturbation method.
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by adopting the same classification with the aid of particle
permutation operators for both first and second quantization
theories. A second quantized state belonging to an irreducible
representation (defined by the V(o)) corresponds to a first
quantized state belonging to the same irreducible representation,
also defined by the V(o).

Leaving aside the question of physical interpretation
of the V(o), we wish to raise an objection to the correspondence
between the first and the second qﬁantization theories, as
proposed in the literature, by showing that the particle per-
mutation operators do not, in general, define multi-dimensional

representations of S

N’ both in first and second guantization

theories.
It sufficies to consider an N-particle state |K> in
which some of the ki are equal. We suppose, for definite,
: ' 3
that k., =%k, = ... =k, . Let S, be the group of permutations
1, i, : 1y M
of 1,2, ... M. 1If the subspace yF[K] spanned by the V(o) |K>

supports a representation of S, defined by the V(c), then all

N
the 0 ¢ SM must be represented by the unit operator because
the permutations over the equal ki. do not change the vectors
at all, Therefore, the representagion is unfaithful. Sgch

a representation, as proved in section 1, is not multi-
dimensional.

Thus, the spacei%? of second quantized states (or

first states) contains subspaces which do not support multi-
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dimensional representations of S, defined by the V(o). This

N
observation, of course, questions the valadity of numerous
published results concerning the correspondence between the

first and second quantization theories of paraparticles.

4. Right Regular Representations

The particle permutation operators are frequently
identified with the permutation operators U'(X) defined as

follows

u'(2) =

(8)

This identification, however, should be understood properly:
Consider the action of a particle permutation operator

on a vector of the form

|X[K]1> = I a(o) U(o) |&K>,

o}

i.e., consider

v(m) |X[K]> = I a(o) Vv(m) U(o) |k> (9)

o : :

Previously, we have pointed out that there is an " embarras

du choix" for the V(w) if some of the ki in |K> are equal.
j
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To avoid this difficulty, we consider only the case for
which all the ki in |K> are distinct.

J
It is usually believed that

[U(o), V(m)] =0 (9)

for all ¢ and m, both in first and second quantization theories

of paraparticles, so that one can write (9) as

v(m) |X[K]> = I alo) U(o) V(m |K> (10)
g

It can be seen easily that, for each V(W)IK>J there exists

a 01T € such that

v(m) |R> = u(o) | k> : (11)

Hence, (10) writes as

v(m) |X[K]> = I al(o) U(o) U(o,) |K>
o
= U'(Oﬂ)[K> (12{

This shows that a particle permutation operator is just an
operator U'(}A).

The operators U'()A) coincide with the operators V(m)
for those |K> in which all the ki. are distinct but the U'(})
are determined unambigously also %or those |K> with some equal
ki.‘ This suggests that we should consider the operators
U'%A) instead of the V{(w). However, in doing this, we face
two difficulties:

(i) Looking at egn. (12), we see that the commutation
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relations do impose some relations between the U'()), as they
do between the U(c) (in egn. (12), all the U(oﬂ)|K> are not
linearly independent because of the commutation relations);
Like the U(g), these relations imply ﬁhat multi-dimensional
representations* definea by the U'()) do not exist in the
Hilbert space of second quantized states of paraparticles.

(ii) Following the same line of reasoning as in the
last two paragraphs of section 3, we can show that, when
some of the ki. in |K> are equal, there exists no multi-
dimensional representation defined by the U'()X) (egn. (12)
implies that U(oﬂ)|K> = |K> if O is a permutation of the
places occupied by equal ki.)'

Result (i) questiong the validify of egn. (9) in
the sccond guantization theory. To seeythis, we shall
show that if eqn. (9) holds any representation defined by

the V(m) must coincide with a representation defined by the

U'(A). 1In fact, consider a representation defined by the
V(m) and given by the base {|e’[K]>}, i=1,2, ... h,
let k1> = £ et (m) v(m)|&> | (13)
’ T

where el(ﬂ) are scalars(We suppose again that all the

ki in K are distinct). According to eqn. (10), egn. (13)

* These representations, if existing, coincide with the

right regular representation of S a mathematical terminology

NI

in the algebraic representation theory of SN'
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¢an be written as
letx1> =z el(m v(o) x> (14)
T
Now if egn. (9) holds, we have from (9.)
vinletkl> =z el(m ue) v x>
T

Again, eqn. (11) yields

il

vy letkl> =z el(m uto) ulo,) x>

™

u' (0,) |et [K]>

This means that the base'{lei[K]>} constitutes also a
representation defined by the U'(o). I.e. if no multi-
dimensional representation defined by the U'(c) exists then
neither does a multi-dimensional representation defined by the
v(w). However, it is quite easy to construct a multi-
dimensional representation defined by the V(m). For example,
consider a three particle state of a para-Fermi field of

order 2

* ’ * *

k. k., k, > = a a a |0>, k., # k., # k.
1, 1 i5 kil k12 ki3 i 7 iy 7 i,
and consider
1. % * * % * *
le™> = a, A, a 0> = a, A A lo>
1 2 13 13 1 1
_ * * * * * *
le“> = aki akl akl o> = - aki aki akl |0>
2 3 1 1 3 2
* * * * * *
le?> = a, a3 | > = - a,  a a |o>
i . ) )
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Let
S A
|ei> = 75: [Iel>+|e2>+[e3>]
leé> = _:l"._.. [,e2>—Ie3>]
e = 5 lep>- 3 (lep>+le,)

It is easy to check that |ei> constitutes a one dimensional
representation defined by the V{(w) leé> and |e'>
constitute a two-dimensional representation defined by the
V(7T). This example suggests that eqn. (9) is violated in
the second quantization theory. In fact, for a para-Fermi field
of order e, we have

V(13)|ki k, ky > =- Iki ky k; >

1 2 73 1 2

so that

]
l
-
o
W
v

U(12) v(13) |k, k., k., > (15)
1 1

1 iz 13 i, iy ij

On the other hand

v(13) uU(1l2) |k, k., k., >
: 1 12 13- 2 11

il
<
[
w
3
[

~
~
\

i
=
~
~
A\

Comparing this with (15) we have

U{12) Vv(13) # V(13) U(12)

which violates egn. (9).
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Thus, if the commutation relations are applied

at each stage of the calculation, the particle permutation
operators do not commute with the place permutation

operators in the second quantization. theory.



CHAPTER XI
CONCLUSIONS

We have seen in chapter II that the Symmetrization
Postulate (S.P.) is related to the assumption that there ex-
ists a complete set of commuting observables characterizing
a maximal observation. More precisely, the maximal obser-
vation is compatible with the existance of the superselect-
ion rule connected with the commuting supersymmetries which,
when applied to the U(o), lead to the S.P. Besides the guestion
of whether the .mathematical techniques employed to arrive at
this result were physically appropriates we &agreed with Messiah
and Greenberg that the assumption about maximal observation
was too strong to be verified in the present status of Quantum
Mechanics and experimental technique.

We then formulated, in chapter III, a theory of identi-
cal particles not obeying S.P. in the language of the alge-
braic representation theory of finite groups. We begin by
classifying the states of identical particles into the two-
sided ideals of the group algebra which accepts the U(o)
as a base (a two-sided ideal contains a whole class of I.R.'s
of~qN): each two-sided ideal corresponds to a symmetry type
of identical particle states. We distinguished the "physical”
scalar product of the many-body problem Hilbert space HN
from the cartesian scalar product and emphasized that it

is the former, but not the latter, which determines the

153



154

physical properties of the particles. We found that, with re-
spect to the physical scalar product, states of different sy-
mmetry types, and only these, are always orthogonal and that
there exists a superselection rule operating between tne symm-—
etry types. This superselection rule is, however, connected
with the non-commuting supersymmetries, which shows that the
assumption about maximal observation, though compatible with
the superselection rules, is by no means responsible for the
existance of all superselection rules. It'is also well-known
butrits derivation as found in the literature based on Schur's
iémma,we criticized, is quite unsatisfactory due to the in-
clusion of the equivalent I.R's into our physical problem.

We remarked that this inclusion renders invalid the state—‘
ment, also usually found in the literature, that the expec-
tation value of a physical observable is the same for all
normalized states belonging to an irreducible representation
of Sﬁ (defined by the place permutation operators). This re-
mark had been subsequently confirmed by our calculation of

the matrix representing a physical observable. We pointed

- out that, with respect to the base chosen for the theory

of paraparticles, the elements of this matrix are not the
"physical" matrix elements of the observables (for example,
the diagonal elements are not the expectation values of the
6bservables). The reason for this 1is that the basis vectors
are not ‘always mutually orthogonal with respect to the phy-
sical scalar products. It seems to us that this simple but

important point has not been recognized. Consequently, the
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structure of the theory of paraparticles is quite different
from what is usually believed. In examining the extent to
which the state of a paraparticle system can be prepared by
experiment,we only assumed that the symmetry type is phy-
sically observable. We agreed with Messiah and Greenberg

that the most complete preparation is acheived if it yields
the result that the state belongs to a common eigensubspace

of a set of commuting observables. However, we did not find
any reason to anticipaﬁe that the eigensubspace is irreducible
with respect to the U(c). Moreover, even if we did,tne theory
does not possess the property of the generalized rays, namely,
measurable results do not depend on which rays of a general-
ized ray is chosen to represent the state. Our statement,
which concerns the least complete preparation rather than

the most complete one, has been that the eigensubspace is the
non-zero eigenvalued eigensubspace of the projection operator
onto a symmetry type. We think that, for paraparticles, it
might be necessary to represent the state by a density matrix
as shown in Chapter III rather than by a ray. . In the density
matrix description, however, the indistinguishability postulate
is only onelsolution of the indistinguishability of identical
particles, another solution could be the permutation invariance
of the density matrices. A theory of identical particles
could be built up from the permutation invariance of the
density matrices.

In chapter IV, we found that the idistinguishability
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postulate is incompatible with the cluster property for para-
statistics. Our result agrees with Steinmann's but not with
Arons' and Hartle and Taylor's. Our approach made more direct
use of the indistinguishability postulate than these authors',
therefore, our result should be more unambigous. Furthermore,
these authors relied on the property of the generalized rays
which, as we have repecatedly stated is not valid fox‘evér§
measurement. Upon reconsidering Steinmann's argument, we found
that it is valid and leads to our result only under special
assumption about the orthogonality property of the 3-particle
wavefunction. Our approach, furthermore, offers a very easy
~generalization to N-particle systems. While quite sure that
the indistinguishability postulate is incompatible in the
cluster property, we did not claim that this constitutes a
.proof of the symmetrization postulate. On the contrary, we
think that it is necessary, or perhaps more correct,to use

the theory in which the state is represented by a permutation
invariant density matrix. ©No incompatibility with the cluster
assumption arises in such a theory.

In chapter V, in establishing the connection between
the permutation symmetry types and the intermediate statistics
(which we called statistics of order p), we found that many
symmetry types correspond to the same intefmediate statis-
tics and that the conditions which define these statistics are

too restrictive for physical applications. Thus, it is more
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physically reasonable to classify paraparticles according
to the permutation symmetry types than the statistics. We
argued that Stolt and Taylor's classification of para-

particles into I.R's of S is self-consistent by showing

N
that the outer product of twovI;R.?scorresponding to one

kind of paraparticles always contains at least one I.R.
corresponding to the same kind of paraparticles.

In chapter VI, we studied the implication of the in-
distinguishability postulate in systems with variable numbers
of particles. We found that the well-known selection rule
first derived by Messiah and Greenberg, remains applicable in our
theory and then derived a selection rule which we called
Carpenter's selection due to its similarity with that obtained
by Carpenter for S-matrix in Landshoff and Stapp's theory.
This selection rule, which states that an N-particle system
of a certain symmetry type can make transition to an M-par-
ticle state of one and only one symmetry type, is capable of
explaining the observed fact that electrons for example are
always fermions. We do not take this selection rule for a
superselection rule for, due to the cluster property, we do
not wish to impose the indistinguishability postulate on all
physical observables, although it.can be imposed on the evo-
lution operator (of course, with the aid of the projection
operators onto subspaces of fixed number of particles).

We began our discussion of Parafield Theory in

chapter VII in which we reviewed various schemes of second
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quantization with the emphasis on Green's and Kamefuchi and
Takahashi's methods. Kamefuchi and Takahashi's method, while
capable of accounting for the paracommutation relations, also
yields different commutation relations (C.R.). In this con-
nection, we recall that it has been shown (Ohmuki, 1966) that
bound states of particles associated to the paracommutation
relations do not obey the para C.R.'s. It is interésting to
find out whether they obey other C.R.'s obtained by Kaﬁefuchi
and Takahashi's method.

In chapter VIII, we studied the discrete representa-
tions of the parafermi C.R.'s following the method of Wightman
and Schweber and focussed gur attention on the representation
given by Green's ansatzes. We have exhibited an infinite
number of inequivalent I.R.'s among them only the Fock I.R.
used in the second quantization theory possesses a unigue vacuum
state. We showed that the representation given by Green's
ansatzes are those induced by representations of the anti C.R.
or the C.R. in the tensor power space@PH of the representa-
tion space H of the (anti) C.R. | In particular, we illustrated
in details the proof of a theorem, due to Greenberg and Messiah,
which states that Green's ansatzes exhaust all I.R.'s of the para
C.R.'s with a unigue vacuum. Finally, as a verification of this
theorem, we proved the existance of parafermi statistics in
any Fock representations.

In chapter IX, we studied the class of parafields

generated by Green's ansatzes with the aid of the Klein
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transformations. We made it clear that, although a parafield
theory can be transformed to a theory of ordinary Bose and
Fermi fields, a parafield theory predicts different results
from the same theory in which every parafields are replaced by
ordinary fields. This means that it is possible to determine
experimentally whether a particle is associated with a para-
field ér an ordinary field. However, a physical significance
of Green's aﬂsatzes would be that parafields may not describe
the true paraparticles but instead particles with some hidden
variables reflected in the Green component fields. One of our
results asserts that these hidden variables yield observable
effects.

In chapter X ., perhaps our most significant "result"
was the awareness that many published results concerning the
correspondence betwen the first and the second quantization
theories cannot be trusted. The reason for this is that
these results have been obtained by heavy use of the group-
theoretical properties of the particle permutation operators,
but we have showed that these operators do not define multidimen-

sional representations of S Our analysis admittedly is scanty

N
but have clarified many aspects of the particle permutation
operators which we think, have been a source of confusions.
The particle permutation operators usually identified with
the right regular representations of the place permutation
operators, but strangely enough, it has not been recognized

that, in the second quantization theories, the para C.R.'s implyY

the same thing for both left and right regular representations:
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no multidimensional representations of SN exist. We have
adopted Yamada' definition of particle permutation operators
which we believe expresses precisely what the people mean by
particle permutation operators. It turns out that, in the

first quantization theory where the particle permutation opera-
tors coincide with the operators defining the right regular
representation, whenever the particle permutation operators

can be defined unambigously (in many cases, we are faced with an
"embarras du chcix" for the particle permutation operators).

The fact that multidimensional representations of SN do not
exist in the right regular representation in the second gquan-
tization theory has suggested to us, and we have verified, that
the particle permutation operators do not commute with the place
permutation operators in this theory. This is also a differ-
ence between the first quantization theory and the second
quantization theory.

In summary, we have gained an insight into the struc-
tures of the first and the second quantization theories of
paraparticles. Several confusions in the first quantization
theories, the significence and applications of Green's ansatzes,
and the nature of the permutation.operators in the two theories
have been clarified. While having not attempted‘an answer
to the question of whether any existing eleméntary particles

are para, we have made it quite clear that the attempts to

rule out parastatistics have not been successful.
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APPENDIX A

SOME RESULTS OF THE ALGEBRAIC REPRESENTATION THEORY
OF A FINITE GROUP

In this appendix, we summarize some results of the

theory of group algebra of a finite group which are relevant

for aur discussion in Chapter III. We shall not give proofs
to all our statements since they can all be found in the literature+

The vector space 1T constructed on the basis formed
by the elements of a finite group G is called the group
algebra of G. An element ofglz is of the form

X =171 a(o)o, 0 € G (A.1)

a(o)'s are constants?

There can exist, within the algebrallf, a linear set
Jywhich, with two elements, cbntains tﬁeir product,J’will be

called a subalgebra of Ll ., 7The most interesting subalgebras

are the left (or right) ideals: if x is an element of a left

(right) ideal, and y 5‘11, yx (or xy) will also be an element
of the left (or right) ideal. A subalgebra which is simul-

taneously a left and a right ideal is called a two-sided ideal

or an invariant subalgebra. The invariance property can be

il € J

expressed conveniently as I/Ij, < 'Jo
An algebra is said to be reducible if it is the sum
of two subalgebras J and G satisfying J{=Tf=¢, SNCT= ¢

(an empty intersection). 1T is called the direct sum of tf

and T ’ with the notation

TSee for example Boerner (1963), Chapter III & IV; Weyl (1966),

Chapter III.
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i =Jo bt
One can show that the condition J%f=‘€j>=¢ is
equivalent to requiring the invariance‘of f‘and‘C (or,f
and € are two sided ideals).

An element € e Ll such that €2 = ¢ is called an idempotent.

An idempotent € is said to be primitive if there exists no
idempotent § such that €6 = §e = ¢.

A left ideal is called primitive if it contains no
left ideal other than itself. A fwo—sided ideal is called-
simple if it contains no other two-sided ideal. A simple two-
sided ideal may contain a finite number of left ideal Sy
Sy...5, in which case one writes

f:sl+sz+...+sr
It can be shown that any left ideal is generated

by a primitive idempotent €, i.e. any element of the left ideal

can be written as Xe, Xe¢Il. € is called the generating unit

of the left ideal. A two-sided ideal can also be generated by
an idempotent (which is not primitive). The following important
theorem is well known in the theory of group algebra.

Theorem A-1

"The group algebra is reducible and decomposable into
a series of simple two sided ideals,
IT=1'eu’e...0 11, (a.2)
each of them contains a finitevnumber of equivalent primitive
left ideals (which can be mapped into one another).
H H

"
~ = u., + u + ... 1 (A'3)
j;L 1 2 ny,
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Let e" be the generating unit of Ilu and e? the
generating unit of ug. The following decompositions hold
e=¢el v e+ ot eh b L+ eT (A.4)
uo_ .U u u u
e” = e] + €, + ... ej + ... €nu (A.5)
with
eMeV = 0, u#wv
(A.6)
uo_u ; .
e ej =0, i # 3

where e is the unit element of’II.
The vector space‘II supports a representation of the

group G, called the regular representation. Each element 7eG

corresponds to a linear transformation m: x>y given by

y = Xm = % a(o)orm
o}

= 3 a(Oﬂ—l)G
o

l))

and effectuated by the matrix whose element are the a(on
which is thé representative of 7 in IT.

The matrix representing m, with the basis chosen, has
no non-zero element on its principal diagonal except when w=e
for Uﬂ_l = o implies 0 = e. Therefore the characters of a regular
representation are zero except the one corresponding to the
unit element which is equal to g, the number of elements of G.
Given a representation u of G, the number of time it is found
in the regular representation is given by (with X denoting the

character) :

“w=2 1), (9) X(0)

¢

Q- Qe
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nu being the dimension of the u-representation. Thus, any
irreducible representation of G is contained in the regular
representation, each representation occuring a number of times
equal to its dimension,

From this, there follows a method of finding all
irreducible representation of G. Since the irreducibility
covers the notion of invariant subspace, we can obtain all
irreducible representations by determining all primitive left
ideals. Equivalent left ideals yield equivalent irreducible
representations. With a special choice of the basis of 11, the
matrices representing an element of Zj, in particular an element
of G, are the same in every left ideals. In this connection,
it can be seen that each two-sided ideal yields an unequivalent
irreducible representation.

. The set of elements of 11 which commute with all

elements of Ii is called the EEBEEE.G: of Iﬁf. Since any
element X e LU can be written as

X=x"+3® + ... +x" + .0+ X
where x" e 7" and

M x¥ =xVxM =0, u#v
Schur's lemma implies that, if X edj, then x" = \M eu, AM
is constant. The center C consists of elements of the form

x = 2L el 4+ 22 ¢2

+ ... + AF T (a.7)
A different basis for the center € can bé‘obtained by
noting that an X € € is characterized by
ol xo=x

or
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Lryotxo=x
g 0 )
2 a

if X = (c)o, we have

s ot xo = 3 a(x)o~l Ao
o,A

= 2 a(r) (5 oL

(o}

A O)

Let us denote kp the sum of elements of the pth class

of G. Obviously,

’

ZTo - Ao = §ﬁ~ k
p
gp being the number of elements of the pth class, so that X

p

appears as a linear combination of the elements of the kp'
X = Al kl + Az k2 + ... + Ar kr ' (A. 8)
We summarize the results concerning the center in
the

Theorem A.2

"The center of the group algebra is a r dimensional
vector space, r being the number of classes of the group, with
a basis constructed on the idempotents generating the simple
two-sided ideals or on the sums of elements of the classes."

For the symmetric group S the problem of finding

NI
all left ideals has been solved completely long time ago.
The primitive idempotent is given by

n
uo_
€ = gr PO

where P is the Young symmetrizer of all the rows in a standard

Young tableau and Q is the Young anti-symmetrizer of all columns.



170

APPENDIX B

IRREDUCIBLE REPRESENTATIONS OF §, ASSOCIATED WITH
‘ THE TRIANGULAR YOUNG DIAGRAM j— 1

(e) (12) '(23) (13) (123) (132)
1 ol 1 0 [_1 +/§‘[' [ 1 _3] I _1 3 21 3
7 -5 3 — 7 3 ]
/3 1 /3 1 /3 1 /3 1
o 0 0 -1 2 > ) > — 3 = -3

See Hammermesh (1962), page 224.
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APPENDIX C

INVARIANT SUBGROUPS OF THE SYMMETRIC GROUP S

N
N » Invariant Subgroups
2 Sy {e}
3 S3, As, {el
4 Sy A, v, {e}
>5 Sy Ax {e}

{e} is the subgroup of Sy consisting only of the unit element.
AN is the alternating group of degree N. i.e. subgrcoup of SN
consisting only of even permutations. V4 is the set {e, (12)

(34), (13)(24), (14)(23)} usually called Klein's group.
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