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Three different dispiacement functions are used in
the theoretical analfsis of shells of general nature.

An obligue truncated pyramid like structure, made
of aluminum plates is used for illustration and experimental
verification.

Theoretical values of deflections obtained from three
~different displacement functions and stresses are compared

with the experimental results.
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----ABSTRACT

The finite element diéplacement method.with triangular
plate elements, is used in the present research program to
establish éh:analyticél appréach for the analysis of shells
and folded plate structures. -The Tocher,'Rawtani and Cowper
displacement functions'are used in this analysis and the
theoretical displections u, v and w are féund to compare
satisfactorily with the experimental results.

Owing to the limited storage capacity of the computer,
the method of tridiagonalization is used; rather than the
method of direct stiffness assembly.

Special considerations for stiffness assembly are
necessary; (a) all the elements meeting at a node lie in the
same plane and (b) the nodal points lie on the fixed boundary.

Experimental values obtained from experiments on an
oblique, truncated, pyramid made of aluminum compareé well

with the theoretical results based on the same structure.
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NOMENCLATURE

DEFINTTION

Global or system coordinates

Local. or member coordinates

Displaceﬁents along global axes

Displacements along local axes

Rotational displacements about global axes
Rotatiqnal displacements about local axes
Displacement vector of any point within the
element.

Nodal displacement vector due to in-plane forces
Nodal displacement vector due to bending.

Shape function of the element

Strain vectorA

Stress vector

Elasticity matrix

In-plane Stiffness matrix of element (626)
Bending Stiffness matrix of element (9x9)or (18x18)
Element Stiffness matrix with respect to local
coordinates (18x18) or (27x27)

Element stiffness matrix with respect to global
coordinates (18x18) or (27x27)

Transformation matrix.(18x18) or (27x27)

Rotational matrix (9x9)
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Definition

Direction cosines of local axes
Thickness of plate element

Poisson's ratio

Young's modulus of plate material
External force vector

Triangular element dimensions, Fiéure—zz

Coefficients of polynomial expression

‘ ‘ R )

Flexural rigidity of isotropic plate = —ngz—fj—

' 12 (1-u”)
Modified Euler's beta function

Exponents of x',y' in ith

term of polynomial
expression for w.

Angle between global x and local x' axes.
Function'of coordinates of finite element (18x20)
Function of coordinates of finite element (20220)
Matrix consists of the- first 18 columns of [Tz]l‘“l
Strain energy of plate bending

Second derivatives of w about global axes

V1% ., Second derivatives of w about local axes

Yy
Stiffness matrix of each partition on the

diagonal of tridiagonalized matrix

Stiffness matrix of ﬁhe coupling term on off
diagonal of tridiagonaiized matrix

Modified stiffness matrix

Modified load vector
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Symbol " Definition

{Fip} Force vector at node i due to in-plane

f forces

.kFib} ' Force vector at node i due to bending
forces
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1.0 INTRODUCTION

The finite element method has proved to be an extremely
powerful tool in the analysis of discrete and continuous
structures consisting of one, two and three dimensional continua.

The ba51c concept of the flnlte element method states that

every structure may be con31dered to be an assemblage of
individual structural components or elements. The structure
must consist of a finite number of joints or nodal points.
The finite element analysis may be classified into three phases,
namely structural idealization, evaluation of element pro-
perties, and analysis of element assemblage. Careful judge-
ment is necessary in making the structural idealization
because the analysis is actually performed on this substitute
structure and the results can be valid only when the behaviour
of the substitute structure simulates the actual structure.
The finite element method provides a unified approach
to the analysis of any type of structure, and any combination
of one, two and three dimensional elements of different char-
acteristics. Problems consisting of openings, anisotropy and
vatﬁation of thickness are no longer of consequence, once
general programs are written [1]? This method was developed
originally by the aircraft industry t2] in response to a
procedure which could provide a solution for extremely complex

air frame configurations.

* Number in square brackets indicates references -in Bibliography
p. 77a.



it was observed that analysis of mechanical engineering
structures has lagged to some éxtent, because they are mﬁch
more difficult to categorise, and the unified approach to
the analysis is not available. Only with the advent of the
finite eleﬁent.method and high speed digital computers, has it
become feasible to analyse such complex structures.

The present project has the generai dbjecti&é-of offeriné
a wide scope for the finite element method in its application
to shells and folded pléte structures. The solutions to these
structures may be obtained by using different displacement
fgnctions such as those given by Toche:, Rawtani, Cowper etc.

Previous work in this area on spatial frames (one
dimenstional beam like structure) was done by Tiwari [3] and
Raghava [4]; an optimization study was done by Garunathan [5];
and the static analysis ofvfolded plate structures was done
by Bhat [6].

| The present work is to study the deformation and the

stress distribution of a folded plate étructure by using
different displacement functions of Tocher, Rawtani and Cowper,
within the triangular element. Although many finité elements
for plate bending have been developed in recent years, only
rectangular elements have so far met the requirement with
high accuracy and good convergence. But rectangular elements
are, however, not suitable for a great variety of boundary
conditions, and there is a need for a general triangular ele-

ment having adequate accuracy and convergence properties [7].



If the force-displacement relations at the nodesﬁbf
the finite elements can be found and expressed in a matrix
form, the overall stiffness matrix can be obtained by super-
position of the element stiffness matrices. If the assumed
displécement fdhction (s) ensures certain criteria; namely,
cogtinuity of deflection along the common edges between
adjacent elements, continuity of transverse slopes and the
size of subdivision of element decreases, then the deforma-
tional behaviour of the idealised structure converges to
that of the continuous structure.

The idealization concept was first introduced by
Turner et al [8] in 1956.. This method is applicable to
non~-structural problems such as heat flow, fluid flow, and
distribution of electric and magnetic potential. A book
written by Zienkiewicz and Cheung [l] is comprehensive and
very useful in these respects.

For any arbitrary boundary condition, triangulgr
elements are the most suitable for structural idealization.
This concept was originaily suggested by Greene et al [9]
in 1961, but the approach was not completely successful
owing to the lack of good bending stiffness matrix for tri-
angular element. A discussion of the present method using
different displacement, functions is given in section 3.0.

A shell structure may be considered to be made up of
small flat elements interconnected at a finite number of nodal
points. The elements in a shell will be subjected to both in-

plane and bending forces. For a flat element these forces



cause independent deformations, provided that these defdr—
mations are small. Hence, the stiffness matrix of the element
. can be evaluated separately for in-plane and bending forces,
and combined together to establish the stiffness matrix for
the general case.

A good convergehce to the true solution depends on a
reasonably refined mesh size. Accordingly, the number of
equations to be solved and hence the stiffness matrix of the
entire structure, becomes very large. This fact is especially
true for shell problems when both in—plaﬁe and bending degrees
of freedom are assigned to each node, but then the limited
‘storage capacity of CDC 6400 computer does not permit the
use of as fine a mesh as can be used for such problems. Hence
special technigues using the sparse nature and symmetry of
the overall stiffness matrik must be introduced. The compu-
tation is based on a partitioning technique and the solution
of the equations is achieved by a method of recursion [1].

When all the elements joining at a particular node are
in one plane, as often happens in a folded plate structure,

a difficulty arises [1]. 1In this case, the equations corr-
esponding to the particular node become linearly dependent,
and the stiffness matrix becomes singularidue to thé oﬁission
of the rotation perpendicular to the plane. This difficulty
is overcome by assembling part of thé stiffness matrix corr-
esponding to such nodes in local coordinates.

It is noticed that no contribution to the stiffness

matrix is made for the nodal points on fixed boundaries by the



Tocher and Rawtani displacement functions; however, speéial
care must be taken for the Cowper displaceﬁent function be-
cause normal curvatures will not be always zero at such nodes.
In order to verify the validity of the finite element
[mefhod for shell problems, an oblique, four sided, truncated
pyramid was made of aluminum plate. Deflections at certain
nodal points were measured experimentally and these compared
well with the theoretical values obtained by the three given
displacement functions. Similarly the theoretical stresses
at the centroid of any arbi£rari1y chosen element compared

satisfactorily with the experimental stresses.



2.0 PHYSICAL MODEL

The results obtained thedretically need to be checked
for validity. For this purpose, an oblique four faced trun-
catéd pyramid, made of aluminum was built and tested as men-
tioned earlier. Figures 14, 15 and 16 show the overall
picture of the structure from two different angles and Figure
13 illustrates the details and dimensions in the orthographic
projections. The obliquity of thé structure ensures assymmetry
of static aﬁd dynamic responsé. The faces are 1/8 inch thick
and are welded théther at the edges. A top plane 4 1/2" x
4 1/2" x 1/2" thick plate was welded at the top of the
structure. |

The base of the structure was assumed to be rigidly
fixed to the foundation in the theoretical analysis. It is
extremely important to the accuracy of the results that the
deflections at the base are small compared to the relative
displacements between nodal ?oints or structure due to applied
lecad. Considerable rigidity was achiéved by bolting down the
base of the structure to 1" thick steel plate, and four heavy
cast iron blocks 6" x 6" in cross-section. 1" thick steel
cover straps with lock washers were used to hold £he base of
the structure on the heavy cast iron blocks. Before con-
ducting the experiment, the base rigidity was checked by a
dial gauge and found té be satisfactory. The structure was
~loaded on the top plate in each of the three orthogohal X,y

and z directions respectively.



3.0 THEORETICAL ANALYSIS ) e

" 3.1 INTRODUCTION

‘The basic concept of the finite element method is that
conventional engineering structures can be visualized as an
éssemblage of structural elements interconﬁected—at~a discreﬁe
number of nodal points.» If the force-displacement relation-
'ships for each individual element are known, it is possible
to analyse the behaviour of the assembled structure by avail-
able technigues in the structural analysis. It is important
to obtain element stiffness matrix and it was discussed in
detail in references [1] and [10].

The procedure for deriving the element stiffness matrix
is given by the following steps.

(a) The qontinuum is separated by imaginary lines or surfaces
into a number of 'finite elements'.

(b) the elements are assumed to be interconnected at a discrete
number of nodal points siéuéted on their boundaries. ' |
(c)»A function(s) is chosen to define uniquely the state of
displacement within each finite element in terms of its nodal
displacements. | S,

1

= --11s3
{a} = [NiNij ] fk

v (3-1.1)
{a} = INI{8}°
(d) The displacement function defines the state of strain in

terms of nodal displacements, which again define the state of

7



stress within the element and on its boundaries.
When displacement within the element are known, it is
easy to find strain at any point on the element by the
relation, ,
{e} = [B1{68}° : (3-1.2y

(e) The stresses can be calculated accordingly, using the linear
elastic relation between strésses and strains i.e.

{0} = [D1IBI{8}€ (3.1.3)
(£) The stiffness matrix'[Ke] of the’finite'element is ob-
tained by equating the internal work done and the external
work done.

K]

n

I (8] T [D] [Blav (3.1.4)

v
stiffness matrix of the element,

taking integration over the whole
volume. of the element.

The charactéristics of an individual element can be
conveniently established'iﬁ a coordinate system [1] which is
different from the system in which external forces a;d displace-
ments of the structure will-bé measured. Hence local or
member coordinates will be used for every element, and trans-
formation of the force and displacement components to global
or common coordinates is necessary before an assembly of the
stiffness matrix of the structure is made.

It can be shown that the element stiffness matrix in

global coordinates is related to the element stiffness matrix

in local coordinates as follows



T T r .
[K,1 = [T]"[K* }IT] (3.1.5)

Once all the element stiffness matrices are derived in
the global coordinates, the general procedure of the assembly
of the overall stiffness matrix of the gtructure, and the sol-
ution of the equations will follow a standard structural

routine.

3.2'DISPLACEMENT FUNCTIONS

The accuracy of the solution by the finite element
method depends mainly on the physical.approximation or ideal-
ization, and the type of dispiacement fuhction used within
the finite elements. It is rather difficult to assume the
displacement function which should be able to represent ﬁhe
true displacement’diStribution aé closely as possible. The
result will tend to the corréct one, provided the following
conditions as given by Bazeley et al [11] are satisfied.

(a) The displacement function should be such that it does

not permit straining of an element when the nodal displace-
ments are caused by 'rigid' body displacements. Otherwise,
‘constant strain conditions will not prevail as elementAgéts
smaller in size.

- (b) The assumed displacement function should ensure continuity
of deflection and transverse slope along common boundaries
between adjacent elements.

At present, various conforming and non-conforming

expressions for triangular elements have been in use. The
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non—confofming shape function ensures coﬁtinuityrof transverse
deflection along common edges between adjacent elements, but
not of transverse slope, whereas the conforming shape functions
satisfy the continuity of transverse slope and defiection
aloné common boundaries [12].

In general, the finer the mesh, the more realistic
will be the results, but the deformations will not necessarily
converge to the correct values even with an infinitesimal
mesh size, unless the deforﬁation patterhs within the element
are properly chosen [131. |

The most commonly used cubic polynomial expression for

transverse deflection in x and y is as follows

2 .2 3 2
wix,y) =0y + 0% + a3y + a,xX" + ogxy +oagy” + a X" + agx’y

3

+ O loy

2
9Xy + O

The expression in x and y involves ten arbitrary co-
efficients and since only nine degrees of freedom are assigned
to each element (three to each node), a certain assumption,
regarding one of the coefficients must be established.

Adini [14] assumed tﬁe coefficient of the twisting
term xy to be zero, hence the expression for transverse deflection

becomes,

w'(x',y') = o, + mzx' + a3y' + a4xf2 + dsy'z + dﬁx'3 + d7x'2y'

2 3 . .
+ aex'y' + ugy'
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Tocher [15] suggested that the twisting terms x2y
and xy2 be combined and assigned the same coefficient, so that .
niné coefficients which corresp&nd to nine degrees of freedom
in the displacement function becomes,
| w}(x',y‘)': dl + azx' + d3y' + d4x'2 + dsx'y' + a6y'2

) ’3 . |2 1 ' L] l2 ‘ '3
+ onX + as(x y' + x'y') + gy

Rawtani [12], after carefully selecting.the iocal co-
ordinates of the finite element which satisfies transverse
slope continuity along one edge of the element, suggested that
the coefficient of the twisting terms xy2 could be zero. Thus

. his expression for the displacement function is

w'(x'y') = a; +oax' +oagy' 4 d4x2 + oogx'y' + uﬁy'z

+ u7x'3 ; a8x'2y'b+ agy'B

Full slope and deflection compatibility can be achieved
by dividing the triangular elgment'into three subtraingles and
choosing the subelement local coordinates as suggested by
Tocher and Clough [13]. .MonotOnic convergence télthe true re-
sults is obtained by this procedure as the elements'are refined,
but for coarse subdivisions of structure the results obtained
-will be much inferior to that of non conforming shape functions
mentioned earlier.

Cowper et a2l [16] recently introduced a conforming shape
function based on a fifth degree polynomial expression for w'

which gives the best convergence.
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w'(x'y') = o + azg' + a3y' +koc4x'2 + asﬁ'y' + asy'z + ax'3
x'3y'
+ o, X'y
+4a x'%y +'a19x'y'4 + o

This was developed for a right angled triangular eiement and
it requires, six degrees of freedom (transverse deflection w',
two first derivatives, and three second derivatives of w'),

at each node.

Cowper et al[ 7] again introduéed the samé fifth degree
expréssion applicable to any general triéngular element énd
it satisfies the coqditions of the conforming shape function.
Monotonic convergence to the true result is ensured and it
gives best cbnvergence to the soiution. When a triangular
element is considered as part-of a shell, in-plane forces
also come into play, bringing three more degrees of freedom
at each node. Hence nine degrees of freedoﬁ are required for
this displacement function at each node and obviously only
coarse mesh can be.used which results in poor representation

of a shell. ) -

3.3 TRIANGULAR PLATE ELEMENT SUBJECTED TO IN-PLANE FORCES

In the triangular element, the displacements due to
in-plane forces at the nodal points i,j,k can be written in

matrix notation as follows
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O O

il
. e _ 31 :
{6}p 6k (3.3.1)
The in-plane forces produce two linear displacement
components at each node, one in the x-direction and the other
in the y~-direction. Hence the displacements at a particular
node i are L
u. !
{si}p -{V’-I (3.3.2)
i
Similarly the six components of element displacement

at three nodes in matrix form are as follows

u
v
{63 = {u.} 3.3.3
}p u ( )

v

u

V.. N

The corresponding in-plane force vector acting at the

nodal points in the x and y direction in matrix form is as
follows: »{Pxi-‘

. P .-
Y3

=1%y5 | (3.3.4)

vk
The linear dispalcements within the triangular element
can be expressed by two linear polynomials.
u =0 +oa,x 4 a3y
v =0, t 0¥ ooy

(3.3.5)

The strain vector .at any point within the element

which contributes to internal work can be written in matrix

notation.
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[ 3u )
X
Cxx v,
ey=4 Eyy | =1 % T (3.3.6)
[ R
LBy 0% )

As mentioned earlier in the general procedure, the
strain matrix can be written as
e} = [BI{8}] (3.3.7)
where [B] is independent of coordinates of a point within
the element, since the polynomials are of first degree. Hence
strains are constant throughotut the element which is.the re—
gquired criterion satisfied by the shape function [1].
Once the strains are known, the stresses can be found
by the following relation
{o}
H{o}

[D]{e} (3.3.8)

[D] [B] {637 (3.3.9)
From the principle of virtual work, thé stiffness

matrix due to in-plane forces can be worked out explicity in

terms of element properties and the nodal coordinates as follows.

[K_]

3 T
elp = [B]® [D] [Blav (3.3.10)

v
The size of this stiffness matrix is 6x6, as two degrees

of freedom are assigned at each node for the triangular element.
Since the displacement function is 1inear} the displace-

ment variation along the boundarieé will also be linear;

hence, the displacement of any point along the boundary will

therefore depend on the displacement variation of the two nodes

at the end of each edge, thereby ensuring displacement
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compatibility along the common boundary of two adjacent tri-
angular elements.

The two-dimensional elastic problems by the finite
element method were the first successful examples and the re-
sults were found to be quite satisfactofy even with coarse

subdivisions of the structure [1].

3.4 TRIANGULAR PLATE ELEMENT SUBJECTED TO BENDING FORCES

According to Kirchhoff's hypothesis, the displacements
u and v parallel to the x-y pléne of the plate, for plate

bending, are related to the normal displacement w by [17]

g = -z oW -
- } (3.4.1)
_ _, oW

v = Z ay

It is assumed;that the midplane of the plate is unde;
formed. Compatibility conditions between elements require
both continuity of displacement w and continuity of transverse
slope. The required continuity between elements can be ob-
tained if second derivatives of w are considered as degrees of
freedom [18].

Determination of the shape function for bending is much
more complex. It is rather difficult t; maintain both continuity
of w and continuity of the transverse slope between elements,
because computational difficulties often arise disproportionately
fast [1]. Convergence to the results may still be found, if

the shape function satisfies the constant strain criterion [1].
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For bending, each nodal poiﬁt is usually assigned

three degrees of freedom; namely w, W and wy. When cur-

vatures or second derivatives are considered as degrees of
freedom, the number of degrees of freedom at each node be-

comes six; namely w, w

i

y W, W, W, and w___.
X v XX Xy vy

Thus the deflections and generalized forces due to

bending at a particular node i of a triangular element in

matrix notation are respectively

-

Wy i
8.}, = Oxit = 1%xi (3.4.2)
6 .. W
yi] yi
or . . .
rw. (w
i i
16 . w__ .
xi xi
6y, = 4%i o= My} (3.4.3)
' exx:L Wexi
3] . w
Xyi xyi
16 . W
\ Yy, { YY)
(P
zi
’{Fi}b = qM (3.4.4)
M .
yi
or .
-
zi
M .
®i
)y = {Myi (3.4.5)
Mxxi
Mxyi
\M y
yyi

if a right handed system of axes is assumed. Similarly element
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displacements at three nodal points in matrix notation are
S,

{61¢€ = 51 - [Al{a} (3.4.6
b 6]1 = o .4.6)

where [A] is function of coordinates of.nodal points. The

strain vector can be expressed as

(32w )
[ 3u ) ax2
9% "2
| “xx v | iy
{e} =1 = oy = -Z 3 9y" ¢ (3.4.7)
Yy du . . 2,
€ 5—»+ QXJ 23 w
¥y Y 3% 33y’
e} = [ul{a} | | (3.4.8)
{e} = [H] [A]*l{é}ﬁ.-.: [B]{5}§ (3.4.9)
Similarly the stress vector becomes
{0} = [pl{e} = [D[IBI{8}] ‘ (3.4.10)

Using the pfinciple of virtual work and equating the internal
and external work done, the bending stiffness matrix of the
triangular element can be worked out as follows

—1]T

[K 1, = [A (117 [D] (H)av [a™1) (3.4.11)

The inverse of [A] ﬁust be obtained numerically for
éach element. The matrix product inside the volume integral
can be explicitly carried out. It contains second degree terms
in x and y and can be easily integrated over the area of the

triangle. Appendices I to IV give the expressions necessary

for the Tocher, Rawtani and Cowper displacement functions.
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3.5 GROUPING OF IN-PLANE AND BENDING STIFFNESS MATRICES

An element in shell structure is subjected both to in-
plane and bending forces. If the element is assumed flat,
deformations caused by these forces are independent of one
another. Hence the stiffness matrices of the element due to
. in-plane and bending can be evaluated sepafately, and the com-
bined stiffness matrix of the element due to the combined in-
plane and bending forces can be grouped when proper order
is maintained. |

The forces and deflections of an element in in-plane

deformation are related in matrix notation as follows.

{F}® = [k 1_{6}C ‘ 3.5.1
p [ e]p{>}p ( )
At a particular node i
qF.) { d
F. = (3.5-2)
i'p . Pyi’ ’
_ u, (3.5.3)
{5, = *. -
1P V.
i .

Similarly the forces and deflections of an element in bending

are related in matrix notation as follows.

APl = IR (8] (3.5.4)
At a particular node i A '
?ziw
(r ), ={xit (3.5.5)
b, ; |
fr, )
i
e, ={Pxit (3.5.6)
0

yi-
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When the curvatures are considered as degrees of freedom, the

deflection and force vector are respectively,

w,

i
i

¢

s Y, ={"vi

'{Fi}

0

[Pzi

X1

b =1 Yi

M

xi

xXxX1
0.,
xyi

..
yyi

Mxxi
xXyi

(M,
Yy’

PN

! (3.5.7)

The rotation GZ is not present in either mode. However

it is necessary to consider GZ and the fictitious cocuple M,

~ before transformation of the stiffness matrix to the global

system. Since they do not enter the minimization procedure,

appropriate zeros are inserted into the rows and columns of

the combined stiffness matrix of the element corresponding to

.eZD

Hence at a particular node i

{85} =

u
v
| w
6

( 3

i
i
i

xi

eyi

' - (3.5.9

L 021
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When the curvatures are considered as degrees of freedom,

the deflection vector becomes

'{6;} =40 . } (3.5.10)
1

xXi

Xyi

0. . s
\ Yyl/

or

A8, =48, t ‘ A (3.5.11)

sziJ

The corresponding generalized forces are
o \
xi
yi
zi

xi

= R W-Wo9

{F) = T MYi - | © (3.5.12)
zi

~Mxxi

{Mxyi
M,

YYlJ
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or

P, } = -t ' (3.5.13)
1 .

; . ZiJ
I

| : .
%Hence the combined stiffness matrix of a particular member m
‘at a particular node n, will be made up of the following

submatrices. ’ : r~

[K_1 10 0 0 0 0 o0l o]
o X R 1
(k. _ 110 o ol o 0 0 0 0 0 0'0
. mn p! A I *___._-%,_._“._._,_.____.__,_’.___
0 0 0'o0 0 0 0
—— =t - = — - { l
o 0, [ 0 0 o0, | 0
oo MK, 1y, 10 0 0 | (K, 1y | 0
[RK 1= or
mn” ) o g | o o o | | 0
:5"'317f"5'7ﬁ_@ c 0 : | 0
0 0 ()
[6x6] - — et b
0 0 T'o 0 0 0 © oT‘o
[9x9] (3.5.14)

3.6 TRANSFORMATION TO GLOBAL COORDINATE SYSTEM

The in-plane and bending stiffness matrices are derived
in local coordinates with the x-y plane coinciding with the
plane of the element. This coordinate system, in general,

is different from the global coordinate system of structure.

The forces and displacements in the two systems are

related in matrix notation as follows.

it

"{Fi}

RCH

[T]{Fi} (3.6.1)

i}

[T1{s,} o (3.6.2)
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Hence the combined stiffness matrix of the element in

the global system is .
(k.1 = [T17 K] [T] (3.6.3)

Similarly all the stiffness matrices of the individual
elements must each be transformed to the global system. When
all the elements joining at a particular'node are in the same
plane, transformation to global system will make six or nine
equations singular because only five or eight equations are
linearly independent since the rotations GZ is omitted. Such
nodes must be assigned five or eight degrees of freedom,
depénding on the displacement function'used, and forces and
' displacements should be considered in 1oc§l coordinates. -

Consider a triangﬁlaf element 1-2<3 in which 2 is such
a node. 6 is notucbnsidered and the submatrix at node 2 is

[5%5] or [8x8], depending on the displacement function used.

22°p | P o o o0 0 0 0
—_——— _LQ_ .L0_ 0 o T - — —— — —
0 0 i . o o | '
L4 — 1 1
[K5,] = 0 0 | [K22]b or o o0 | [K22]b
l o o |
0 0 g o o |
(5%5) 0o 0 |
(8x8) (3.6.4)
Again

' ‘L T
[Kyp) = [K3,)

(6x5) or (9x8) = (5x6)% or (8x9)~T

il
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1 ' N
o 10 0 o o [Klzlp, 0 0 0 0 0 O
12°p L _# 0 0 0 0 O
S 0 0.‘ 0 O'
[Ki,l = 1o o | [xr.3 or [0 0 [K!.]
| 12°b | 12'b
| 0 0 1 0 0 '
| 0 o, 0 0 0] o o,
i (6x5) 0 0
T 0T a0 00

. X L ; . . . .
[K22] is retained in local coordinates while [K12] and [k21]

are transformed as follows

_ Tt 4
= (6x6)7T (6x5) or (9x9)T (9x8)
- T _ T T by
Kyl = (K07 = (1117 [k, 107 = 1k, 1% 7)
== [Kz'l][T] (3.6.7)

(5x%6) (6x6) or (8x9)(9x9)

3.7 ASSEMBLY OF OVERALL STIFFNESS MATRIX

Once the transformation of the combined stiffness matrix

of individual element to the global system has been made, the
overall stiffness matrix of the entire assembly can:be found
using equilibrium conditions at the nodé of the structure. If
ﬂ{Ri} are the extérnal forées'acting at node i and maintaining
equilibrium conditiéns, then each component of‘{Ri} is equai
to the sum of the component forces'{Fi} contributed by the

elements meeting at that node. Hence

'{Ri} = Z{Fi} (3.7.1) .

summation being taken over all the

elements.
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. n N M ‘
(R} = 3 B IR V) (3.7.2)

ignoring distributed.loads and initial strains.

number of elements

ti

N
n = number of nodes
If a particular element does not infact include the node in
question, it will not contain submatriCes with an i suffix
and therefore, its contribution will simply be zero.
Hence the submatfices of an'assembled stiffness

matrices are

(K0 = I 24 (3.7.3)

. 3.8 SOLUTION OF EQUATIONS .

If the overall stiffness matrix of the entire structure
can be stored in the computer memory, nodal deflections can
easily be evaluated ﬁy inverting the overall stiffness matrix
and then multiplying by the load-vector. Since stresses are
a function of nodal displacements, the stresses at any point
within the element can be calculated accordingly. In analysing
shell structure, convergence to the true results can be
achieved only when the mesh size is refined, resulting in an
increase in the number of nodal points. If six or nine degrees
of freedom are assigned to each node, the total number of
degrees of freedom will be six or nine times the total number
of nodes. Obviously as the number of nodes increases, the

size of the overall stiffness matrix increases rapidly. Hence

a direct stiffness assembly and inversion of the stiffness matrix
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is limited by the available computer centfal memory. By this
method, variation of results are quite high and obviously

more refined mesh are required [6] for this particular problem.
Refinement can not be accomplished with the present CDC 6400

computer central memory.

3.9 FORMATION OF THE OVERALL STIFFNESS MATRIX IN TRIDIAGONALIZED

PARTITIONS

The method of tridagonalization which makes use of
symmetry and sparseness of the stiffness matrix, is most
applicable to solve the large number of equations that fre-
quently occur in analyzing multistorey buildings [19]. The
structure is divided into a number of partitions and by
properly numbering the nodal points and elements, the‘stiffv
ness matrix of these elements in that particular partition
-can be arranged in the form of a tridiagonal set of submatrices
which can be evaluated and stored on magnetic tape. The solu-—
tion is obtained by a method of recursion. A computer program
to analyse in-plane problem by this method is given in refer-
ence [1].

After dividing the structure into a number of partitions,
the nodal points as well as the elements are numbered in
consecutive order. The partitioning technigque is explained in

detail in reference [1]. The assembled stiffness matrix of the

structure is arranged in tridiagonalized form as follows.
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; _ _ _ _ _ o ¢ v o 3
E{l c; 0o 0 81 Py
T )
C1 %31 G1 - - - - - 00 31 | P12
T
- - - - - - 4 - P
€11 %1161 111] [F112
T
T Siaafiv v -0 - - — - -
| _ T o - _
T Civ ¥y
< =9 -
-t T T T Tt T R oGy Sy-2| [Pn-2
L,
S LSV A N Sn-1] |Pn-1
; T
o0 - - s s TGy 4 Yy ) By
‘ (3.9.1)
The first two matrix equations can be written as
[K,1{6;} + [c;1{8,,} = {p;} (3.9.2)
T . -
[c17 {8, + [K 1{6;7} + [Cy1{8,,0} = {Pqyq} (3.9.3)
From equation (3.9.2)
_ -1 . I
{8, = [x] {p,? ~ K] [cl]{all}
Substituting for {61} in equation(3.9.3),yields
T °"l 3 ) 5 - - T "l
([Ky1-1C 17 [Ky) T IC 18, 1+ 1Cy 11184 }={P 1= 1Cy] FKll {p}
(3.9.4)
Finally defining new symbols
' = _ _ T -1 ‘
{Pll} = {Py,} [C;17IK,] {Pl} (3.9.6)
Hence equation (3.9.4)becomes
Ky 118,71 + [C 318, = (P} ) (3.9.7)

From which'{ﬁll} can be obtained and substituted into the next
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row of equations to give a modified [K ] and'{ﬁil }. Such

111 1
processes of substitution and elimination can go on until

the second last row equation is reached.

[KN_ll{aN_l} + [Cy_q 118} =‘{§ﬁ_i} (3.9.8)
Final equation is |
T . :
[Cqoq] {8y_q} [KN]{aN} = {P} (3.9.9)
From equation(3.9.8)
: . — -1, - - -1 .
{81} = [Ky_4] {PN“l} = IRy ) TIC 118} (3.9.10)
Substituting for‘{dN_l} in equation(3.9.9)
T -1 - T .
(IRy1- Ty (17 (R 17He D8 I={rd-1ey 1T IRy ;17 (Fy )}
or
K1 {8} = (P} (3.9.11)

when a direct inversion will yield'{dN}, the other deflections

can be obtained by back substitution in the equations concerned.
| The significant points in the computeriprogram are as

follows. '

(1) The zero elements outside the tridiagonal band are not

stored.

(2) Due to symmetry, it is necessary to store only [Ci] and

[Ki], but not [Ci]T.

(3) Very little additional computer time is reguired for

solution of more than one load conditions.

(4) The [Ri]'1

and {fi} are stored on magnetic tapes as soon
as they are generated in the forward elimination process,

and they are used subsequently in the backward substitution.
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(5) Only two submatrices [Ki] and [Ci] are required at a
time in the memory of the computer.

A computer program, using the above method to analyse
shells and folded plate structures was obtained [6] and modi-
fied and new subprograms were written wherevérm necessary for
difkerent displacement functions (Appendices_v and VI).

The partitioning technique is shown in Figure 20 and
computation are carried out from five to ten partitions. It
is possible to divide the structure into more than ten parti-
tions, but the height of each partition becomes decreased,
méking the triangular element long and narrow [1].

There is no limit to the number of partitions into
which the structure can be divided as the matrices [Ki] and
[Ci} are eliminated in blocks. A considerable étorage is
required for [Ki] and [Ci] for intermediate computations.
Hence the tridiagonél band or the number of nodes in each
partition is limited by the available storage capacit¥ of the
computer. It is also noticed that a matrix with a narrower
band requires less solution time, hence the band width de-~
pends on the way the nodal points are numbered and is numeri-
cally equal to the product of the number of degrees of
freedom per node and the maximum difference in numbering of

adjoining nodes.
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4 ,0EXPERIMENTAL ANALYSIS

4,1 INTRODUCTION

Thebobject of the experimental analysis was to confirm
the validity of the theoretical results obtained. Some
necdal points and triangular elements were chosen arbitrarily
to verify deflections and stresses developed under a particular
external load. The structure was loaded by means of a combin-
ation of load cell and turnbuckle connected by wire cord

to one of the nodes at the top of the structure.

4.2 LOADING DEVICE

The load cell was calibrated against a Tinius Olsen
Machine up to 1500 pounds. The load could be applied di—,
rectly to the structure by turning the turnbuckle which was
‘conﬁeéted to the load cell axially through a wire cord and the
ambunf éf load could be read directly from the'sfrain.indi—r

cator unit.

4.3 DISPLACEMENT TRANSDUCER

A capacitance type proximity transducer coupled through
an oscillator and reactance converter to a cathode ray oscillo-
scope was adopted as the linear measuring device. The trans-
ducer consisted of a fixed electrode. Any flat conducting
surface parallel to the fixed electréde can act as the moving
electrode. Normally the moving electrode is fastened to the

component whose displacement is to be measured. In the present
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application the structure had both linear and angular
displacements whereas the proximity transducer is designed
to work when electrodes remain parallel while moving towards
or away from each other,.
{ To eliminate angular displacement, the moving electrode
was mounted on the transducer itself. The spindle of the
moving electrode was supported jointly by two 2 /2% x 1/2"
x 5/1000" thick stainless steel strips, parallel to each other,
which forced the electrode surfaces to remain parallel during
relative motion. This is illustrated in Figure 24.

The transducer system is based on frequency modulation
" of a carrier wave. The capacitaﬁce of the electrode is in
parallel with another fixed capacitance, The'COmbination,forms
a series resonant circuit with an inductance: The change in
distance between the electrodes, due to the loading of the
structure caused a change in reactance in the resonant circuit
which is used to change the frequenc& of the signal delivered
by the oscillator. The signal is amplified and detected to
provide a proportional D.C. voltage which is metered on the
oscilloscope. Unloading the structure restores initial gap
between the electrodes. The transducer can then be calibrated
by the integral micrometer producing a deflection on the
oscilloscope of the same order as that obtained due to the
load. The calibrétion enables the displacement to be evaluated.
One subdivision on the micrometer thimble is 0.01 mm which

could be further divided by the oscilloscope. 2An initial gap

of 0.5 to 1.5 cm between the electrodes is used.
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4.4 STRESS CALCULATION

The stresses obtained theoretically need to be com-
pared with those from the experiment. Electrical resistance
strain gauges were used to measure strains at a point on the
surface of the shell. Delta rosette type strain gauges were
fixed at arbitrary poiﬁts on the outer surface of the structure
and strains in the directions of gauges were measured to calcu-
late five components of~stresses (normal stress in the x-direc-
tion, normal stress ip the y-direction, shear stress‘in the
x-y plane, maximum and minimum principal stresses) at a point.
Four sets of delta rosette strain gauges were fixed on four
arbitrarily chosen elements near the base of the structure
where maximum effect of extefnal-load occurred. These strain
gauges were connected to the strain indicator through switch
and balance unit, so that readings can Ee taken one at a time.
A dummy strain gauge fixed on aniunloaded plate, the.material
of which is the same as that of the structure, was used for
temperature compensation. Having obtained strain gauge read-
ings, stresses can be calculated. The techniques of using
strain gauges and theory can be found in references [20] and

[21] in detail.



5.0RESULTS AND CONCLUSTIONS

Tables la to 3@ show the computed values of deflections
u, v and w obtained from the three displacement functions used
Fn the anlysis for a different number of partitions, ranging
' %rom five to ten. As the partitions increase in numbers, it
can be assumed that each deflection in the x,y,z directions
converges to a constant valué for each direction. This
assumption is valid since there is negligible change in values
of deflections between partitions nine and ten. Thus ten
partitions are assumed enough for accuracy and the value of
. deflections for ten partitions are accepted as true values for
experimental verification. |

The graphs, in Figures 1 to 8, are curves oftdefleétions
u, v and w obtained frém different functions versus the number
of partitions, illustrating the convergence of the results.
It is also seen from Tables 4a to 4f- that the computed results
obtained by three displacement functions agree with one another
within 5 percent. ~Much higher fineness is achieved and improve-
ment in results is observed by the method of tridiagonalization.
Although it is possible to divide the structure into more than
ten partitions, ﬁhe results may not be expected to be better,
since, as the partition height decfeases, the triangular elements
become narrow and long; |

The graphs in Figures 9 to 12 show the‘def;ections v o
and w against the nodal nﬁmbers along the centre-line of the

32
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plates CC and DD respectively. The nétu:e of deflections is
again found to be consistent with three displacement functions.
Tébles Ta and 7c show the rotations ex, ey and ez at nodal |
points A, B, C and D by three different displacement functions.
As these functions are non-conforminé, pértial conforming and
full conforming, the above rotations are not consistent with
one another. | B

In Tableé 5a and 5b, a comparative study is presented of
analytically calculated and experimentélly'measured deflections,
for different directions of load system (Figures 21 to 23). |
It can be seen that the theoretical deflection u, v and w are
in agreement within 20.0 to 26.8 percent of the measured
deflections for a particular loading.

A ¢omparison of theoretical and experimental values of

stresses is given in Table 6. Although the available laboratory

set up made it possible to load the structure to develop
sufficiently high stresses, the measured stresses are found to
differ from the the theoretical stresses. '

It can be seen that the relatively higher calculated and
experimental stress values are in féirly_good agreement with
each other, whereas the low stress values have very poor agree-
ment. This maybe attributed to the following factors |
(a) Measurements of very small stréss, using strain gauges are
not reliable.

(b)a slight alterationmade at the base for rigidity after fixing

the strain gauges to the structure
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(c) disblacement method giveé good agreement in deflections but
nbt in stress distribution | |

(d) elastic properties of the material used were not actually
determined before and after the structure was built, but simply
accepted at the value which was suggested by ﬁhe manufacturer

It is interesting to note thét the line and the central
memory storage taken by the CDC 6400 computer for each of three
~different cases for the same idealization is very much different

(Table 8). The solutioh to the Tocher displacement function
takes 1.67 minutes whereas thé solution to the Rawtani and
Cowper displacement functions takes 2.962 and 14.8 minutes
respectively for ten partitions of the structure for the same
~idealization.

It can be seen that the time required is minimum for the
Tocher displacement function because of the simplicity of the
computation involved. The difference in the deflections u, v
and w obtained from the Tocher and RawtanivdisplaCement functions
are'negligibly small (0.00679 to 0.8045%) while the d?flections
~u, v and w obtained by the Cowper displacement function differ
by 2.073 to 4.35% (Tableé 4a to 4f).

It has been shown by Cowper et al [7] that their conform-
ing shape function gives the best convergence to the results.
It is important that the computer time, the central memory storage
and the accuracy required should be considered in choosing the

displacement function for the solution of a particular problem:
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At present the finite element>disp1acement method using
general triangular flat elémen£s for analysis of shells and
folded platé structﬁres is powerful and the most suitable for
any arbitrary shape. Out of the three displacement functions,
it is found that the Tocher displacement functions requires the
least computér %imé and the least centrai memory for this"
problem which is very important for praétical applications that

require a large number of solutions.
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FIGURES
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Fig. 14
(Not Drawn to Scale)

AA, BB, CC, DD - 4 Faces of the Structure
ISOMETRIC VIEW OF THE FOLDED PILATE STRUCTURE
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XYZ - The Global Coordinate System

j -

Fig. 15 )
{(Not Drawn to Scale)
DIVISION OF TRIANGULAR ELEMENTS AS SEEN FROM THE
DIRECTION A(Fig. 14)
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X¥Z - The Global Coordinate
System

b

Fig. 16
(Not Drawn to Scale)

DIVISION OF TRIANGULAR ELEMENTS AS SEEN FROM
THE DIRECTION B (Fig. 14)




Fig. 17

THE COORDINATE SYSTEMS USED FOR THE
RAWTANI DISPLACEMENT FUNCTION
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THE COORDINATE SYSTEMS USED FOR THE COWPER DISPLACEMENT FUNCTION
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Fig. 19

DEVELOPMENT OF THE STRUCTURE AT ANY ONE OF THE

PARTITIONS, SHOWING THE ARRANGEMENT OF THE ELEMENTS IN EACH PARTITION.
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Fig. 24
INSTALLATION OF DEVICE TO ELIMINATE ROTATION ERROR IN LINEAR DISPLACEMENT MEASUREMENT
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TABLES




TABLE la

NUMBER DISPLACEMENT FUNCTION
OF '
PARTITIONS TOCHER x 10 RAWTANI x 107> IN. COWPER x 10~

5 5.74571 5.74554 5.41974

6 5.92644 5.92607 5.81869

7 6.07618 6.07583 5.96346

8 6.11979 6.11942 6.00359

9 6.16224 6.16179 6.03970

10 6.18404 6.18350 6.05586

PARTITIONS UNDER LOAD P

DEFLECTION u AT NODAL POINT A FOR DIFFERENT

450 POUNDS AT NODE B IN X-DIRECTION




TABLE lb

NUMBER DISPLACEMENT FUNCTION
OF
PARTITIONS TOCHER x 10 ~ IN. RAWTANT x 107> IN. COWPER x 10 ~IN.
5 5.89198 5.89165 5.55223
6 6.07963 6.07929 5.96193
7 6.22992 6.22959 6.10637
8 6.27479 6.27445 6.14820
9 6.31953 6.31915 - 6.1875
10 6.34341 6.34298 6.20729

PARTITIONS UNDER LOAD P

DEFLECTION u AT NODAL POINT B FOR DIFFERENT

450 POUNDS AT NODE B IN X~DIRECTION

7S



TABLE lc

NUMBER . DISPLACEMENT FUNCTION
OF

PARTITIONS TOCHER x 107> IN. RAWTANT x 10 ° IN. COWPER x 10™° IN.
5 5.84844 5.84782 .5.50665
6 6.02496 6.03741 5.91337
7 6.19015 6.18938 6.05876
8 6.23502 6.23420 6.10094
9 6.27943 6.27850 6.14067

10 6.30241 6.30135 6.16069

DEFLECTION u AT NODAL POINT C FOR DIFFERENT

PARTITIONS UNDER LOAD P = 450 POUNDS AT NODE B IN X-DIRECTION

Qg



TABLE 1d

NUMBER DISPLACEMENT FUNCTION
OF 3 Y
PARTITIONS TOCHER x 10 ~ IN. RAWTANTI x 10-3 IN. COWPER x 10—3 IN.

5 5.80340 5.80306 5.49637
6 5.98983 5.98952 5.87603
7 6.13996 6.13965 '6.02024
8 6.18496 6.18465 6.06238
) 6.23011 6.22974 6.10234

10 6.25475 - 6.25431 6.12292

UNDER LOAD P = 450 POUNDS AT NODE B IN X-DIRECTIONS.

DEFLECTION u AT NODAL POINT D FOR DIFFERENT PARTITIONS
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TABLE 2a

NUMBER DISPLACEMENT FUNCTION
OF
PARTITIONS TOCHER x 107° IN. RAWTANT x 10™° IN. COWPER x 10 IN.
5 6.00298 5.74554 6.04780
6 6.20924 5.92607 6.21040
7 6.50159 6.07583 6.40282
8 6.62038 6.11942 6.48533
9 6.71247 6.16179 6.53519
10 6.73920 6.18350 6.55384

PARTITIONS UNDER LOAD P =

'DEFLECTION v AT NODAL POINT A FOR DIFFERENT

450 POUNDS AT NODE B IN Y-DIRECTION.
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TABLE 2b

NUMBER DISPLACEMENT FUNCTION
OF
PARTITIONS TOCHER x 107> IN. RAWTANI x 107> IN. COWPER x 107° 1N.
5 6.02917 5.89165 6.08143
6 6.23676 6.07929 6.24788
7 6.53764 6.22959 6.43974
8 6.65782 6.274456 6.52282
9 6.75296 '6.31915 6.57350
10 6.77916 6.34298 6.56637

DEFLECTION v AT NODAL POINT B FOR DIFFERENT

PARTITIONS UNDER LOAD P = 450 POUNDS AT NODE B IN Y-DIRECTION

84



TABLE 2c

NUMBER DISPLACEMENT FUNCTION
OF
PARTITIONS TOCHER x 107> IN. RAWTANI x 107° IN. COWPER x 107> IN.
5 6.01911 5.84782 6.06288
6 6.21985 6.03741 6.22434
7 6.51872 6.18938 6.41724
8 6.64926 6.23420 6.49940
9 6.73256 6.27850 6.54863
- 10 6.75260 6.30135 6.56637

DEFLECTION v AT NODAL POINT C FOR DIFFERENT

PARTITIONS UNDER LOAD P = 450 POUNDS AT NODE B IN Y-DIRECTION
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TABLE 24

NUMBER : DISPLACEMENT FUNCTION

OF
PARTITIONS TOCHER x 10'_3 IN. RAWTANT x 10”3 IN. COWPER x 10_3 IN.

5 5.04234 5.80306 5.09061
6 5.20582 5.98952 5.21156
7 5.46921 6.13965 A 5.39197
8 5.59522 6.18465 5.46681
9 5.66721 6.22974 5.50598

10 5.67335 6.25431 5.51721

DEFLECTION v AT NODAL POINT D FOR DIFFERENT

PARTITIONS UNDER LOAD P = 450 POUNDS AT NODE B IN Y-DIRECTION
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TABLE 3a

NUMBER DISPLACEMENT FUNCTION
OF
PARTITIONS TOCHER x 107> IN. RAWIANI x 107> IN. COWPER x 107> IN.
5 -2.62369 ~2.62367 -2.45768
6 -2.73686 -2.73678 -2.61391
7 -2.81224 -2.81219 -2.73643 -
8 -2.83594 -2.83586 -2.75810
9 ~2.86044 -2.86030 ~2.77899
10 -2.87217 -2.87193 -2.78779

DEFLECTION w AT NODE A FOR DIFFERENT PARTITEIONS

UNDER LOAD P = 450 POUNDS AT NODE B IN X~-DIRECTION
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TABLE 3b

NUMBER DISPLACEMENT FUNCTION

OF
PARTITIONS TOCHER x 107° IN. RAWTANT x 107° IN. COWPER x 10> IN.

5 -2.66484 -2.66470 -2.47168
6 -2.77632 -2.77629 -2.66806
7 -2.85243 : . =2.85239 -2.74130
8 ‘ -2.87601 -2.87600 : -2.76169
9 ~-2.90058 : -2.90061 -2.78107

10 -2.91285 ' -2.91290 - ~2.78959

DEFLECTION w AT NODE B FOR DIFFERENT PARTITIONS

UNDER LOAD P = 450 POUNDS AT NODE B IN X-DIRECTION

c9
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TABLE
NUMBER DISPIACEMENT FUNCTION
OF k

PARTITIONS TOCHER x 107> IN. RAWTANT x 107> IN. COWPER x 107> 1IN.

5 -2.69571 -2.69431 -2.51334

6 -2.81629 ~2.81413 -2.72641

7 -2.89281 ~2.89079 ~2.79910

8 -2.91735 -2.91518 -2.82164

9 ~2.94335 ~2.94092 -2.84435

10 -2.95588 -2.85497

-2.95324

DEFLECTION w AT NODE C FOR DIFFERENT PARTITIONS

UNDER LOAD P = 450 POUNDS AT NODE B IN X-DIRECTION
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TABLE 34

NUMBER DISPLACEMENT FUNCTION
OF
PARTITIONS TOCHER X 10_3 M. RAWTANI x 10—3 IN. . COWPER X 10—3 IN.

5 -1.72717 | -1.72695 -1.70237

6 ~1.78673 | -1.78678 ~1.78942

7 -1.83863 | _1.s3868 -1.83847

8 ~1.85510 ~1.85515 -1.85589

9 -1.87247 | -1.87244 ' -1,87446

10 ~1.88534 i -1.88519 ~1.88814

UNDER LOAD P =

DEFLECTION w AT NODE D FOR DIFFERENT PARTITTIONS

450 POUNDS AT NODE B IN X~-DIRECTION
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TABLE 4a

DISPLACEMENT DEFLECTION u AT | PERCENTAGE DEFLECTION u AT PERQENTAGE
FUNCTION NODAL POINT A DEVIATION NODAL POINT B DEVIATION
x 107° 1N. FROM TOCHER | x 107> 1IN. FROM TOCHER
TOCHER 6.18404 - 6.34341 -
RAWTANI | 6.1835 0.008732 6.34298 0.00679
COWPER 6.05586 2.073 | 6.20729 | 2.1460

Percentage Deviation of Deflection for 10 Partitions at Different Nodal Points

Under Load P = 450 pounds in X-Direction from the Tocher Displacement Function
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TABLE 4b

DISPLACEMENT | DEFLECTION u AT | PERCENTAGE DEFLECTION u AT | PERCENTAGE
FUNCTION NODAL POINT C DEVIATION NODAL POINT D DEVIATION
x 107° 1IN. FROM TOCHER | FROM TOCHER
TOCHER 6.30241 - 6.25475 ' -
RAWTANT 6.30135 0.0168 6.25431 0.00703
COWPER 6.16069 2.249 6.12293 - 2.108

Percentage Deviation of Deflection for 10 Partitions at Different Nodal Points

under Load P = 450 pounds in X-Direction from the Tocher Displacement Function
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TABLE 4c

DISPLACEMENT | DEFLECTION v AT | PERCENTAGE | DEFLECTION v AT | PERCENTAGE
FUNCTION NODAL POINT A | DEVIATION | NODAL POINT B | DEVIATION
x 1077 1Iv. FROM TOCHER x 1077 Iv. FROM TOCHER
TOCHER 6.73920 - . 6.77916 -
RAWTANT 6.73854 0.8045 6.77846 0.0103
COWPER 6.55381 2.751 6.59278 | 2,749

Percentage Deviation of. Deflection for 10 Partitions at Different Nodal Points

under Load P = 450 pounds in Y-Direction from the Tocher Displacement Function
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TABLE 4d

DISPLACEMENT | DEFLECTION v AT | PERCENTAGE DEFLECTION v AT | PERCENTAGE
FUNCTION NODAL POINT C DEVIATION NODAL POINT D DEVIATION
x 1073 1N, FROM TOCHER x 1072 1n. FROM TOCHER
TOCHER 6.75260 - 5.67335 -
 RAWTANT 6.75192 0.098 5.67265 0.0123
COWPER 6.56634 2.758 5.51718 2.750

Percentage Deviation of Deflection for 10 Partitions at Different Nodal Points

under Load P = 450 pounds in Y-Direction from the Tocher Displacement Function
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TABLE 4e

DISPLACEMENT | DEFLECTION w AT | PERCENTAGE | DEFLECTION w AT | PERCENTAGE -
FUNCTION NODAL POINT A | DEVIATION NODAL POINT B | DEVIATION
x 1073 1N. FROM TOCHER x 1073 1N. ' FROM TOCHER
TOCHER 1.97708 - 2.30833 -
RAWTANT 1.96885 0.416 2.32398 0.678
COWPER 1.89116 4.35 2.21765 3.93

Percentage Deviation of Deflection for 10 Partitions at Different Nodal Points

under Load P = 450 pounds in Z-Direction from the Tocher Displacement Function
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TABLE 4f

DISPLACEMENT | DEFLECTION w AT | PERCENTAGE DEFLECTION w AT | PERCENTAGE
FUNCTION NODAL POINT C DEVIATION NODAL POINT D DEVIATION
x 1073 1In. FROM TOCHER x 107° 1. FROM TOCHER
TOCHER 2.13902 - 1.27292 -
RAWTANT 2.13772 0.061 1.27072 0.251
COWPER 2.03268 4.97 1.25935 1.144

éercentage Deviation of Deflection for 10 Partitions at Different Nodal Points

under Load P .= 450 pounds in Z-Direction from the Tocher Displacement Function

oL



TABLE 5a

2.4550

DEFLECTIONS | THEORETICAL VALUES | EXPERIMENTAL PERCENTAGE
AT NODAL | BY TOCHER VALUES | DEVIATION FROM
POINT A x 107° v, x 1073 1IN, THEORETICAL VALUES

u 6.18404 7.62000 23.30
vy 6.73920 8.3000 23.20
w 1.97708 24.20

Comparison of Theoretical and Experimental Deflection at Nodal

Point A for Different Load Applications (Px, Py, P, = 450 pounds) at Nodal

Point B.

L
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TABLE 5b

f
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—

DEFLECTIONS THEORETICAL VALUES | EXPERIMENTAL PERCENTAGE
AT NODAL | BY &OCHER VALUES DEVIATION FROM
POINT C x 1073 IN. x 1073 1n. THEORETICAL VALUES
u, 6.30241 7.87000 25.00
vy - 6.75260 8.26000 22.40
w 12.13902 2.71000 26.80

Comparison of Theoretical and Experimental Deflection at Nodal

Point C for Different Loal Application (Px, Py, P,

Point B.
{

= 450 pounds) at Nodal

-
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TABLE 6

STRAIN GAGE THEORETICAL o} o o o] o
LOCATION ON OR xx Yy xy MAX MIN
ELEMENT EXPERIMENTAL
NUMBER STRESSES

3 THEORETICATL 5.5 243.13 {12.899 | 243.83 4.8
EXPERIMENTAL | ~-20.9 220.9 17.45 | 222.18 | -22.18
THEORETICAL 39.77 85.01 | 42.46 | 103.187| -14.197

6 -

EXPERIMENTAL | 87.92 123,19 | 65.46 | 173.34 | 37.76

THEORETICAL |-12.26 | -243.35 |23.99 -9.8 (~-245.8
10 :

EXPERIMENTAL |-22.997 | -254.78 }34.91 | -17.85 [-259.9

THEORETICAL {-45.80 | -246.17 | 9.32 -45.36 [-246.6
13

EXPERIMENTAL {-85.01 | =-226.09 |[17.45 | -82.89 [-228.23

Stresses (IN lbs/INz) due to Px = 450 1b.
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TABLE 7a

NODE DISPLACEMENT FUNCTIONS
NUMBERS | TOCHER RAWTANT COWPER
-6 -6 -5
A 5.18892 x 10 -3.10531 x 10°° | -3.22563 x 10
B 4.20190 x 10> 1.17961 x 1075 | 4.93179 x 10°%
¢ |-6.40242 x 1078 | 1.02841 x 107° | -2.75839 x 107°
D 2.51083 x 10°% | -2.95351 x 10°° -2.31822 x 10”4

ROTATION Gx AT NODAL POINTS A, B, C AND D FOR PARTITION 10

UNDER LOAD P = 450 POUNDS AT NODE B IN X~DIRECTION.
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TABLE 7b

NODEi - DiSPLACEMENT FUNCTIONS

NUMBER TOCHER RAWTANI COWPER
A 2.48585 x 10™% | 2.47152 x 107% | 1.60388 x 107°
B 2.64275 x 10 % | 2.39451 x 10”% |-g.84948 x 107
c 2.96880 x 10°% |2.78753 x 107% | -1.51542 x 107*
D 2.30831 x 1074 |2.13060 x 10°% |-9.80626 x 107°

ROTATION ey AT NODAL POINTS A, B, C AND D FOR PARTITION 10

UNDER LOAD P = 450 POUNDS AT NODE B IN X-DIRECTION

GL



TABLE 7c¢

NODE DISPLACEMENT FUNCTIONS

NUMBERS TOCHER RAWTANT | COWPER
A 7.65590 x 107° | 8.62546 x 107> | 6.796622 x 10>
B 1.01319 x 107> | 2.25062 x 107° | 1.57661 x 10>
c 7.47683 x 10°°% | -4.41706 x 107°| 9.02398 x 107°
D 1.83419 x 1072 | 1.58114 x 107°| 7.58379 x 107>

ROTATION OZ AT NODAL POINTS A,B, C AND D FOR PARTITION 10

UNDER LOAD P = 450 POUNDS AT NODE B IN X-DIRECTION.
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TABLE 8

DISPLACEMENT FUNCTIONS

TIME SECONDS

CENTRAL MEMORY

TOCHER

RAWTANI

COWPER

100.2
177.7

888.2

66300
71600
113700

TIME AND CENTRAL MEMORY TAKEN BY CDC 6400 COMPUTER FOR 10

PARTITICNS FOR DIFFERENT DISPLACEMENT FUNCTIONS.

LL
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STIFFNESS MATRIX OF A TRIANGULAR ELEMENT IN PLANE STRESS

Let a triangle be defined in the x-y plane by three

points (x;,y;), (xz,yz) and (x3,y5)

Let A = area of the triangle

= X, - X
ij i j
and
yij =Y, T Yy (i,3 f 1,2 or 3)
' 11 1
A=1/2 Xq 2 X4

The in-plane stiffness matrix is made up of two parts which

can be written as follows.

(Kl = [KI o+ K]
where |
[K]np = gtiffness due to normal stress
[K]Sp = stiffnes$ due to shear stress
_ygz SYMMETRIC
“HY32%32 f%z
“Y32Y¥31  MX32Y3; Ygl
(K1 p=C1 |MY32¥31  "¥32%31 My ¥y X3
Y32Y21 “HX33Y51 "Y31Y21 UX31¥21
“HY3p%21  ¥32%21 MY 33%5q “X31%21

Yo

“HY51%91




where

'~ where

32
"Y32%32
“X32%3q

X32¥31

X32%21

[ T¥32Y21

2
Y3,

Y35%37

"Y32Y31

“Y32%21

Y32Y21

Et
44 (1-12)

SYMMETRIC

2

%31

~X31¥33
“X31%01

*31¥9

Et
8A (1+1)

2
Y33

¥Y31%21

“Y31¥21
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STIFFNESS MATRIX

APPENDIX IT
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OF A TRIANGULAR PLATE ELEMENT IN BENDING

0

0

(K],
X1 Y
0 1
-1 0
%2 Y,
0 1

-1 0
X3 Y3
0 1

-1 0

11T 01 [H1avia™t)

-1,
= [A 7]
2 5 Vo2 3
1 Y1 Y3 1
0 % 2y; O
2
-2x1 ¥y 0 ~3x1
2 2 3
Xa XYy Yy, X5
0 xz 2y2 0]
2
—2x2 ~Y, 0 -3X2
2 2 3
X3 X3¥3 Y3 X3
0 X3 2y3 0
2
—233 ~Y3 0 —3x3

2%

'2+ x2
X1Y17Y1*y

2.
2xlyl+xl

2
~{yy*2xyv;)

2, .2
XY 7Y %)

2
2x2y2+x2

2
- (Y2+ZX2Y2 )

X 72+ x2
3¥Y37Y3%3

2

+X3

3Y3

2

2
3y3

0

The inverse of [A] must be obtained numerically for each

triangular element.

The matrix product inside the integral

can bemultiplied and written as

o o o o of

©c o © O

0
0 4u
0 12x

(en]

0 12uy

[H)7 [D] [H]dv

0

4 (uxty) 4(1-u) (xt+y)

SYMMETRIX

12ux

4 (x+uy)

36x2

12x(ux+y) (12v8u)(X+y)2

36uxy

~(1-1) 8xy .

12 (x+uy)y  36y°2




Et3

where - _ 7 = ——p—
12 (1-u"™)

SOME INTEGRATION FORMULAE FOR A TRIANGLE

Let a triangle be defined by three points (xl,yl),
(XZ'YZ)' and (x3,y2). Let A be the area and X,y be the

coordinates of the centroid of the triangle. Let §l = %

Yy = ¥y7Yi Xy T XpTXi Yy T YpU¥Vi X3TX3TXi Y3 = Y37V

Then the integrals

SIxdxdy = Ax
Jfydxdy = Ay

2 A2 =2 2. . A=2
IJX dxdy = IZ(XI f X, + x3) + ™x

2 A2 =2 2 _2
f[ y“axdy = If(yl'+ v, + y3) + Ay

jf xydxdy

il

A,— — - - ‘ —
Tf(xlyl + x2y2 + x333) + Axy‘
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APPENDIX III - DERIVATION OF ELASTIC PROPERTIES OF

TRIANGULAR ELEMENT IN BENDING USING

THE RAWTANI DISPLACEMENT FUNCTION.
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DERIVATION OF ELASTIC PROPERTIES OF TRIANGULAR ELEMENT IN

BENDING‘USINGVTHE RAWTANT DISPLACEMENT FUNCTION.

The method of approach, using the above displacement
function is given in reference [12] in detail.

The idealized structural element is the triangular
element, using the reétangular coordinate system,-is shown
in Figure 17.

The most commonly used cubic polynomial expresssion
for transverse deflection in i‘ and y' is

w'ix',y") = ul‘+ azx' + a3y' +4a4x'2+ usx‘y‘ +'d6Y'2
+ a7x‘3 + asx'zy' + a9X‘y'2 + “10Y'3
which involves tenvarbitrary coefficients and since only nine
degrees of freedom are assigned to triangular element in bend-
ing, a certain assumption must be made, regarding one of the
coefficients. 1In this.case, the extra coefficient is chosen
in such a way that transverse slope continuity exists along
one of thevside of the eiement, making the displacemé;t function
partially conforming [12]. This is achieved by selecting the
local coordinates for the element in such a way that the
equation to the line along which transverse slope continuity
is to be satisfied becomes x'=0 and making the coefficient of
twisting term x'y'2 to be zero. Thus the displacement function
within the triangular element becomes
w'(x‘,y').= dlA+ o x' + agy' + a4x'2 + asx‘y'-+ asy'z

3 2 3

L L} \ ]
+ X'T + agx'Cy' + agy'T.

O
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Once the displacement function is selected, the deriva-
tion of the element bending stiffness matrix follows the
standard procedure. The bending stiffness matrix for the

triangular element is as follows.

(K1, = —E?—i— a1 ) a7
,12(l~u )
where
1 o0 o0 o0 0 0 0 0 0 ]
o 0 1 0 0 0 0o 0 0
0 -1 0 0 0 0 0 0 0
1 0 y! 0 0 y‘J 0 0. y&3
[A] = | J . ' , 2
0 0 1 0 0 '2y; 0 0 3y& :
0 -1 0 0 -yl 0 ‘0 0 0
Loxp vk ok ok v R RCv v
0 0 1 0 xp 2yy O xkz 3y%?
0 -1 0 -2 vy q“,—axkz—zxky& 0
0 SYMMETRIC
0 0
0 0 0
B - 0 0 0 4Ccy,
o 0 00 2(1-u)cq,y
0 0 0 4uc;; O acy,
0 0 0 l2c,, 0 ;zuc21 36C5,
0 0 0 4cy, 4@p)c,, 4uc,, 12Cg, '4C13+8(l—u)C3l
0 0 0 12uc,, 0 l2c,  36uc,, 121Cy 4




and

C

C

Cc

C

C

11
21
31 T
12
13 = %5 xﬁyi(sz tyayg * g

[ ]
22 = 57 ¥ Y33
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o= N[

TRANSFORMATION MATRIX

Referring to Figure 21, the coordinates of vertices

i, 3, k are (0,

shown that

Where a'l,az,a3

0,0), (0,y3}01 and (xg,yg,0). It can be

= |- /_—-
(ay + a; = a,)/2/a;
= Va — '2
37 Yx

are the squares of the lengths of the sides ij,

jk, and ki respectively.

If (lx;mx,nx) ’ (ly’my'ny) and (lz,mz,nz) denote the

direction cosines of the x',y',z' axes respectively with the

global axes, the equations for calculating them for the parti-

cular system of local coordinate axes chosen are:-



it

Y3i%ki T YkiZ%yi

*ki%3i T ¥3i%ki

= X5i¥ki T *kiYii

2 2 2
x5, + vy, z
Ji Jji ji
-/A2+B2+c2
A/G m, = B/G
x,./F m =vy../F
31/ v yjl/

z zy
lzny - nzly
lymz - m lZ

5 - Vi etc

Fig. 21

Cc/G

ji

/T
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APPENDIX IV - DERIVATION OF ELASTIC PROPERTIES OF

TRIANGULAR ELEMENT IN BENDING USING

THE COWPER DISPLACEMENT FUNCTION
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DERIVATION OF ELASTIC PROPERTIES OF TRIANGULAR ELEMENT 1IN

BENDING, USING THE COWPER DISPLACEMENT FUNCTION.

The method of approach usin§'the above displacement

function is given in reference [ 7] in detail.

DISPLACEMENT FUNCTION

The transverse deflection w'(x',y') within a triangular
element is taken as a guintic polynomial.

wl (Xl’yl) —_ al + ale + a3yl + a4xl2 + asxlyl + cx6}7|2

'3 |2 L} L} |2 |3 14
+ a7x + aax y' + agx v + uloy + allx
l3 1 '2'12 ] |3 '4
o XYt aggX Ty ey Xy oy Y
+ alﬁx's + al7x'3Y'2 + algx'y[4 + azoy's (A.4.1)

COORDINATE SYSTEM

The rectangular coordinate system is exclusively used as
they are completely adequate and have the merit of great

simplicity. J
Y
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cosf = (x2 -'xl)/r
- . } (A.4.2)
sinf = (y2 - yl)/r : :
where r =/(x, -~ x)° + (y, - y;)? (A.4.3)
The dimension .
a = (x2 - x3)cos6 - (y3 - y2)sin6
= {(xy; = x3) (x5, - x9) + (v, - y3)ly, - y))i/r (A.4.4)
Similarly
b = {(x3 - Xl)(X2 - xq) + (y; - yl)(YZ - yl)}/r (A.4.5)
tC = { (X2 - Xl) (Y3 - Yl) - (X3 - Xl) (Y3_ yl)}/r (A'4°6)

NUMBER OF DEGREES OF FREEDOM

The eighteen‘éeneralized displacement for-the finite
element (six at each node) are the transverse deflection and
its first and second derivatives at each node. They may be
expressed in a column vector in local coordinates as {W€} and
whose transpose is

)T - [wi,wxww",w A AT AT T A (2 DI | (a.2.7)
ValiP > SRS SELRAL IR A 3 it
It can also be written as a function of nodal coordinates
in matrix form
W™} = [r;1{a} . (A.4.8)

When equation (A.4.8) is augmented by the condition of cubic

variation of nodal slope along the edge P1P3 and P2P3, it can
be written as We
0 1= [7,]{a} (A.4.9)

0
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e
{a} = [2,07" {0 | (A.4.10)
which is equivalent to
Ha} = [T31{W"} : (A.4.11)

BENDING STIFFNESS MATRIX

The stiffness matrix of the finite element may be de-
drived from strain energy which is given as
1

_ 2 2
U = —-D[J {WX,X, + W + 2uW_,

2
e 2 yfyl lwylyv +‘72(1‘U)Wx|yl}

X
ax'dy' ' (A.4.12)
for classical bending of uniform isotropic plate. When equation

(A.4.1) is substituted in eguation (A.4.12) and carried out the

necessary integrations, the strain-energy becomes

t u, = % D{al T[K]{a} (A.4.13)
Consider a typical term from equation (A.4.12), let
1 2 :
Ué =3 D J['Wx'x' ax'dy' (A.4.14)
Writing equation (A.4.1) in abbreviated form again
20 my ni
W= 2 a,x'"y' (A.4.15)
. i
i=1
Thus .
m-"z ni
- - v ] .
wx'x' = 1§1 dimi(m. 1)x y (A.4.16)
2 mitmj-4 nj+nj
W ,., = Z % o,a.m,m.{m,-1) {m,-1)x' y'
x'x i 173713 A ] (A.4.17)

Integrating equation (A.4.17) w.r.t. x' and y'
m.+m.-4 n. +n.

2 _ ) ] m+m=4 ngtng
JJ lexlﬂx'dy'. = 2 Zaocmlmj (ml 1) (mj 1)[[ x! yl dxldyl

i3t
(A.4.18)
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Using Euler's beta function [22], it can be shown that

m n
Ijxv y' dx'dy' = F(m,n) (A.4.19)
where
3 inl
F(m,n) = cm+l{am+l - (_b)m'{l} H(lr.nzr.l-l-z)l (A.4.20)

|

?Thus equation (A.4.18) becomes
2 ] | - o - — —
[[ W1, 16X dy' = i § aiaj{mimj(mi 1)(mj l)F(mi+mj 4,ni+nj)}
' (A.4.21)

Other terms in equation (A.4.12) can be evaluated similarly and

the element matrix [k] can be deduced as follows

kij = mimj(mi—l)(mj—l)F(mi+mj-4,ni+nj) + ninj(ni~l)(nj—l)
F(mi+mj,ni+nj~4)+{2(l—u)mimjninj+uminj(mi-l)(nj—l)

+umjni(mj-l)(Ni—l)}F(mi+mj—2,ni+nj—2) (A.4.22)

Substituting equation (A.4.11) in eguation (A.4.13), the strain

energy can be expressed in {W°}

[ SR C RN U -t
U, = 5D {W PRIRIIwT} (A.4.23)
T T .
where »[Ke] = [T3] [k][T3] (Ar.4.24)
let {W} be the genéralized displacements in global coordinates.
W} = [RI{W} (n.4.25)
'Hence )
u_ = = o{w3T[k_]{w) (A.4.26)
e 2 e T
where
= Trgt
[k, = [RITIK!]IR]

(R} 17, (k] (757 [R] (2.4.27)



‘'where

[R]

o

cosb

~sinf

sinb

cos?

0
0

c0326

~-sinfcosd cosze-sin 3]

sinze

0

0
2sinbcos?
2

-2sinbcosb
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0
0
sin®
sinfcos

cosb
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TRANSFORMATICON MATRIX [T2 ]

p* 0 0 0 o0 -b> o0 o 0. 0
v 0 0o o o spt o 0 0 0
0 -b> 0 0 o0 0 0 0 0 0
1262 0 0 0 0 =200 0 0 0 0
0 3% 0 0 o0 0o 0 0 0 0
0 0 2v° 0 o0 0 -2p° 0 0 0
a* 0 0 o o a> 0 0 0 0
222 0 0o o o s5a* o 0 0 0
o a> 0 o0 o 0 0 0 0 0
1222 0 0o o o 202 o 0 0 0
0 3° 0 0 o0 0 0 0 0 0
0 0 2a° 0 0 233 0 0 0
0o 0 0 o 0 0 0 3
o o0 o <& o 0 0 0 c? 0
o 0o o0 o0 4> 0o o0 0 0 50
0 0 22% 0 o0 0 0 2¢> 0 0
o 0o 0 3% 0o o0 0 0 | ac3 0
o 0.0 o0 122 0o o0 0 0 20¢3
0 0 0 0. 0 5a4c ' 3azc3—2a4c -2ac4+3a3c2 c5—4a2c3 Sac4

kS
23,4 4 4

o o 0o o0 o0 5b' 3pici-2pic 2pct-3p3c? O

—4b2c3 -5bhc
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COMPUTER PROGRAM ‘DOCUMENTATION

The following data are required for a general arbitrary

shel; structure.
1. The total number of elements represénting the strucfure
and the total number of nodal points interconnected between
élements.
2. Number of degrees of freedom for each node. For example,
_zero.if the node is fixed, dtherwise 5 or 6 for fhe Tocher
and Rawtani displacement functions; appropriate curvatures if
the node is fixed, otherwise 8 or 9 for the Cowper displace;
ment function.
3. Material properties of the structufe} Young's modulus
and Poisson's ratio.
- 4. Thickness of each finite element.
5. The coordinate of the nodal points of each finite element
in local coordinate system. |
6. Traﬁéformation matrix fér each finite element.
7.‘ External loads (load-vector).

It is important to.determine the material properties
_ before the actuai'computation. The above items 5 and 6 con-
stitute enormous amount of data to be supplied, thus it is
easy to make errors in‘punching the data cards. This kind of
error can he avoided for this pafticular structure under con-
sideration by writing a subroutine to generate the data
auvtomatically. Also it is possible to ﬁse the samefprogramme‘

repeatedly for any numbers of times when the structure is
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idealised into more and more refined subdivisions. If the
p%ate coordinate system is employed in this particular case
for the Tocher disélacement function, only four different
types of transformation matrices will be reguired. Simi-
larly a different local cpordinate syétem is used for each
finite element (as in the Rawtani and Cowper displacement
functions (Figs. 17 and 18) it is possible to generate the
necessary transformation matrices as the coordinates of the
nodal points are known.

As the solution by direct stiffness aséembly is
limited to about forty nodes for CDCi6400 computer [6],
convergence to the true results is not likely. Hence method
of IeéUISion; taking édvantage of sparse nature of stiffness
matrix, is adopted. The structure is divided into a number
of partitions. The section in éach face is again subdivided
into triangular elements inEO three different patterns, namely
two triangles, three triangles.and four triangles. As the
four triangular pattern (Fig. 19) gives better results than
the other two, the former pattern is used throughout the
analysis for all three displacement functions. In this case,
- the structure is completely defined by the inclinations of
the four faces, the height, the thickness and the base width;
Hence they are the necessary parameters for.the computation.

SUBROUTINE FORT

This subroutine generates coordinates of finite elements
(with respect to local plate coordinate swystem for the Tocher

and Cowper displacement functions and with respect to global
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coordinate system for the Rawtani displacement function) for
this particular problem.

SUBROUTINE PLAN

This subroutine calculates in-plane stiffness matrix
(6x6) for each triangular element in terms of nodal coordin-
ates and material properties. Expressions for the in-plane
stiffness matrix are obtained from reference [10].

SUBROUTINE BEND

matrix (9x9) for each triangular element for the Tocher and
Rawtani displacement functioné. For the Cowper displacement
function this subroutine'calculates the bending stiffness
matrix (18x18) for .each triangular element,‘using quintic
displacement function.

SUBROUTINE GROUP

For shell problems, both in-plane and bending forces
have to be considered. Hence in-plane stiffness and bending
stiffness matrices are grouped before solving the problem.
This subroutine combines in-plane stiffness matrix (6x6) and
~ bending stiffness matrix (9x9) to form the combined element
stiffness matrix (18x18) of the tfiangular element for the
Tocher and Rawtani displacement functions._ When the Cowper
displacement function is used, in-plane stiffness matrix
(6x6) and bending stiffness matrix .(18x18) are combined to
form the combined element stiffness matrix (27x27) of the

trianguiar element.
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SUBROUTINE ASSEBL

‘The combined stiffness matrix (18x18) or (27x27) is
aivided into nine submatrices corresponding to the three
vertices. Since a partitioning technique is.employed, only
the.elements involved in a particular partition are considered
at a time. The submatrices are taken up one by one and
transformed to global coordinates as described previously,
taking special care of the nodal points where SZ is missing.
The submatrices [K;] and [Ci] of the assembled stiffness
matrix are written on magnetic tape 2 as soon as they are
generated. Partitions are taken up one by one in DO 36.

SUBROUTINE PRDMAT

This subroutine finds the multiplication of two
matrices.

SUBROUTINE PRTMAT

This subroutine finds the multiplication of ‘transposed
and ordinary matrices.

SUBROUTINE ALMD

This subroutine calculates the transformation matrix
of each triangular element in its local coordinate system.

SUBROUTINE TRANF1

This subroutine brings back the stiffness matrix
calculated in local coordinates to plate coordinates before
assembly of overall stiffness matrix in each partition.

SUBROUTINE TRANF2

This subroutine transforms (9x9) submatrix of each

node from plate coordinate to global coordinate system.
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SUBROUTINE DEFL

This subroutine separates element nodal displacements
from system displacements, obtained in globai coordinates
and transforms them back to element or local coordinate
system.

i

SUBROUTINE STRESS

This subroutine calculates the stress ﬁatrices for
each element. .The element'nodal displacements obtained from
DEFL are used to caléulate-the stresses. There are two
stages in calculation corresponding to in-plane and bending
deformation. Stresses are calculated at the centroid of each
triangular element.

SUBROUTINE_INVMAT

This is a library subroutine used for the inversion

of any matrix.

B

FUNCTION FACT
This function calculates the product of the factorial
of an integer.

FUNCTION G

This function calculates the function value of the
double integral”jjxmyndxdy by Euler's beta function.

FUNCTION NSUM

This function calculates the total number of degrees
of freedom from the beginning of the node-system to a particular

node.
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MAIN PROGRAM

‘The main program utilises the above subprograms suitable
for different displacement functions namely Tocher, Rawtani and
-Cowper. The subroutines PLAN, BEND, GROUP and ASSEBL are
called in a do-loop for each element one by one. Since
a partitioning technigue is employed only the elements
in&olved in a particular partition are considered at a time.
The elements are taken up one by one in DO 36. The submatrices
[Ki] and [Ci] of the assembled stiffness matrix are written
on magnetic tape 2 as soon aé they are generaﬁea;v Partitions
are taken up one by one in DO 35.

SOLUTION OF EQUATIONS

The method of solution of tridiagonalization is out-
lined in section 3.9 and in reference [1] in detail. The
solution of equation is obtained from subroutine RECUR. The
submatrices [Ki] and [Ci] are read from tape 2 and forward
elimination is done in DO 40. The process is reversed for
backward substitution in DO 350.

The residuals are calculated in order to check the
errors introduced in the solutions due to rounding off and
truncation as follows.

{rR} = {P} - [K]{a}
The residuals {R} are compared with {P} which serves as a
check for the accuracy of the method of seclution.

CALCULATION OF STRESSES

Subroutine RECUR calculates the nodal displacements

of the triangular elements in global coordinates. These
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nodal displacements are written on magnetic tape 1, partition
by partition, the oxder of sequence reversed., They are

now read in the proper order and subroutine DEFL calculates
the element nodal displacements and transforms them back to
1ocai coordinates. Once all the nodal displacements in their
respective local coordinates are known, the stresses at the

centroid of the element are calculated in subroutine STRESS.
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APPENDIX VI - COMPUTER PROGRAMS
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AL463,L.CT7T000,T2000sCMT50000 WIN
RUMN{S)

SETINDF

LOADER(PPLOADR)

REDUCE e

LGO.

! 6400 END OF RECORD
PROGRAM TST (INPUTsOUfPUTsTAPcb INPUT s TAPE6=0UTPUT s TAPEL s TAPEZ
1TAPES)

C Fo% R R X ¥ X ¥ ¥ ¥ % K ¥ O ¥ % % % ¥ K X % ¥ ¥ X ¥ X X ¥ X ¥ ox ¥

C PROGRAM TO CALCULATE DEFLECTIONS AND STRESSES IN A SHELL BY

C THE METHOD TRIDIAGONALIZATION

C RAWTANI POLYHOMIAL IS USED AS THE ULISPLACEMENT FUNCTION

C MATN PROGRAM

C TR R R R I T N N I NN N N e SEE R NS R I

DIMENSION NSTART (15} sNEND (15 sNFIRST(L5) s NLAST(15) sNFREE(10C!
DIMENSION THICK(200)sNI1(200+37sX(200s3),Y(20053)

CIMENSICON PP({50052) s THF (200523} '

DIMENSION HH(15)

CDIMENSION Z(200s3)sALIMU(353)

DIMENSION A(55555)3C(55955) sXEL(1852)

DIMENSION PK(6s6) sBK{99) 45T(18518)

COMACN NODsNELEMsEMeVoaNSTART sNERNO s NFREE s TRF s PP s X oY s Z s ALMU
REAC(5414) NPROB

C T A T T T T SIS 2 T T R
- Y 1 g

C. READING DATA

C HOH O B S % ¥ X ¥ ¥ ¥ 3% X ¥ ¥ ¥ ¥ % % X ¥ ¥ ¥ ¥ ¥ ox ¥ ¥ ox % %

DO 1500 NTL=14¢NPROR
WRITE(6s9) NTL

9 FORMAT(1HY s JOX s ¥*PRCBLEM NC.“9153//)
C D e I T T R T
READ(5410) NPART s NOU s NELEMsNCOLIvsNE s NXL
C R e e R T T T S
106 FORMAT(2014)
C NR IS THE TOTAL MUMBER OF DEGREES OF FREEDCM FOR THE STRUCTURE
NR=ME*6+ (NOD-NE) #5
C BoR OB X O R R O OX X % ow X K % % ¥ % o X ¥ X % ¥ ¥ X ¥ % ¥ ¥ ¥ ¥

READ(5s13) EMsV
13 FORMAT(2E15.3) ’
READ(59107 ({NSTART(I/ sNERNV (L) onFIRSTILIsNLAST(I ) 9I=1sNPART!
READ(5414) (NFREE(I)sI=1sNOD) '
14 FORMAT (4012)
DO 12 I1=14MNP
DO 12 J=1,NCOLN
12 PP({IosJ)=0s
DO 8 II=1sNXL
READ(S5s11) (I1s(PP(IsJ)sJ=1sNCOLN}!
11 FORMAT(I4s5F1000)

n 3 AL e
8 CONT INUE
PR R R S R S I 2 S RS I

R IER]

INPUT SIMPLIFIED FOR TrHlS STRUCTURE
IN THE GENERAL CASE THE NOOE KUMBERS NI AND THE TRANSFORIMATION
MATRICES MUST DBE DIRECTLY READ IN




16

17

18

19

20
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v o o voan s A
¥ X ¥ % P G

I I TR T T T IR R I
NLN=NPART*16 )

NLN IS THE TOTAL NUKMBER OF ELEMENTS ON ThEt LATERAL SURFACE OF THE
PYRAMID,

NLNN=NLMN+1 .
READ THE NODE MUMBERS FOR THE ELEMENTS IN THE FIRST TWO PARTITIONS
FROM BOTTOMe :

READ(S5s16) ({INI{IsJ)sd=1e3)s1=1s32)

FoO% ¥ ¥ ¥ K ¥ X ¥ ¥ X ¥ ¥ ¥ % X K ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X X ox % ¥
RAWTANT POLYNUMIAL IS USED AS DEFLECTION FUNCTION.
EE R N R R R R NEE N N R IR I N R R R

FORMAT(4012)

CALCULATE THE NODE NUMEERS FOR THE REMAINING ELEMENTS ON THE
OUTER SURFACE: :

DO 17 NPT=3sNPART

DO 17 1I=1+3

DO 17 J=1s16

KK=Jd+(NPT=21%16

K=Jd+(NPT=-1)%16

MI(KsI)=NI(KKsI)+8

READ THE NODE NUMBERS FOR THE LAST SIX ELEMENTS.
READ(5516) ((NI{IsJ)sJ=153)I=HLNNsNELEMI]

DO 18 I=1sNLMN

THICK(I)1=06125

CONTINUE

THICKNESS OF THE LAST SIX ELEMENTS IS 065 INCHES
DO 19 I=NLNNsNELEM

THICK(I)=0e5
CONT INUE
READ ThE ANGLES OF INCLINATIOMNS OF THE FOUR FACESs THE BASE WIDTH
AND THE TOTAL HEIGHT -
READ(5320)AT oBT sCT sDT skl s AA

FORMAT(EF10.0)

CONVERT ANGLES INTO RADIANS
ATR=AT#3.1415926/180.
RTR=BT*3.1415926/180.
CTR=CT%#301415926/180.

DTR=DT%2e1415926/180¢

ATR=ATAN(48¢/31e5)

BTR=ATAN(48¢ /4 )

CTR=3¢1416-ATAN(480/126)

DTR=ATAN{48¢/1505)

READ THE HEIGHTS OF THE PARTITIUNS

READ(5:20) {HH(T)sI=1sNPART)

CALCULATION OF ELEMENT COORDINATES-

PB=AA

DO 21 NPT=1sNPART

NST IS THE FIRST ELEMENT IN EACH PARTITION
NST=1+(NPT=-1)%16

NN=NST+15

HI=0.0
HHH=HH (NPT}

IF(NPTeEQes1l) GO TO 22
HP=HH{NPT-1) -
AA=AA=HP*COS(DTRY/SIN(DTR)—HP*COSIBTR}/SIN(BTR)
BB=3B~HP*COS(ATR) /SIN(ATRI—HP#COSICTR)I/SIN(CTR)

CALL SUBROUTINE TO CALCULATE THE NODAL CO-ORDINATES FOR EACH TRIANGLE

CALL FORT(AAsBBIATRsBTRsCTRsUTR sHHHsNST)



IF(NPTeEQel) GO TO 21 .
HI=HI+HH{NPT~1) 108
DO 112 I=NSTsNN
PO 112 J=143 :
XN=X(IsJ}+HI*COS(ATR//SIN(ATR!
YN=Y (1o J)+HI#COS(LTRI/SIN(BTR)
IN=Z(1sJ)+HI
X{IsJ)=XN
Y(IsJ)=YN
Z(1sJ)=ZN
112  CONTINUE
21 CONT INUE
DO 118 I=NLNNsNELEM
DO 118 J=143
118 Z(1+sJ)=040 A
READ THE NOUAL CO-ORDINATES FOR THE LAST  SIX ELEMENTS
READ(5525) ((X(IsJ)sJ=1s3) 4 I=NLNNsNELEM)
READ(5s25)(({Y{1sJ)sJ=1s3) s I=NLNNsNELEM)
25 FORMAT(BF10.0)
DO 119 I=NLNNsNELEM
DO 119 JU=1,.3 | .
XN=X{(IsJ)+(HI+HH{NPART } 1 %*COS{ATRI/SIN(ATR!
YN=Y {1 sJ/+ (HI+HH (NPART? /%COSIBTRI/SINIBTR!
IN=Z {1 s I+ (HI+HH(NPART )
X(IsJ)=XN
Y(IsJ)=YHN
Z(TsJ)=2ZN
119 CONTINUE
‘ INITIALIZE THE ARRAY
DO 31 NM=1sNELEM
DO 31 I=14+3
DO 21 J=143
31 TNF(NMs I sJ)=0e
TRANSFORMATION MATRIX FOR FACE 1
DO 27 I=144 .
DO 27 NM=IsNLNs16
TNF(NMsls2)==10
TNF (N*s291)=COS(ATR)
TNF(NMs293)=SINIATR)
27 CONTINUE
TRANSFORMATION MATRIX FOR FACE 2
DO 28 1=5,8
DO 28 NM=I1sNLMNs16
TNF(NMslsll=1le
TNF (NMs2s2)=COSIBTR)
28 TNF(NMs293)=SINIBTR) ,
" TRANSFORMATION MATRIX FOR FACE 3
DO 29 1=9.12
DO 29 NM=1sNLN,16
TNF(NMs1s2)=10
TNF(NMs2s1)==COS(CTR)
29 TNF (NMs?293)=SINICTR)
TRANSFORMATION: - MATRIX FOR FACE 4
DO 30 I1=13.16 ‘ '
DO 30 NM=IsNLNs1l6
TNF{NMelell=—-1,
TNE (NMs292)1==COS(DTR)
30 TNF{NMs2s3)=SINIDTR)



aNaNa!

C
C
C

32

33

400

401

403

402

443
446
442

410

406
405

437
26

8888

DO 22 KNM=MLMNsMELEM
DO 32 I=1+3
DO 32 J=1,3
TNF(RKMs1sJ) =000 ,
IF(IoEGeJ) TNF(NMslsJ)=10e0
CONT INUE . ’
CALCULATE THE THIRD ROW OF EACH TRANSFORMATION MATRIX IN TERKS
OF THE ELEMENTS OF THE FIRST TWO RCWS
DO 33 NM=1sNELEM
TNF(NMsle’mfNF(thlsz’yTNF(NM9293’~TNF(N49592)nTHF(mhslsB’
TNF(NMs392) =TNF (M2 L)% TRF (M Le3 ) =TNF (NMelol ) ¥THF (Niig253)
TNF N33 =THNF(RMsL o L) RTNF (IMe 22 ) —THF (Nivis2s 1) *¥TNF (Nwmsls2)

S I A R TR S R SR - - G S 2 R R R S S S S

PRINTING DATA

Y Mo ox o s
EE - S I SR I <

WRITE(6s4CU) H »
FORMAT (10X s 2UHHEIGHT OF STRUCTURE=sF1063!

WRITE(69401) EMsV

FORMAT (/510X lvHiATtRIAL PROPERTIES s//s10Xe2HE=sE1264 35X 352HV=
1E12e4)

WRITE(6s4U3) NPART sNOUsMELEMsmCOLN s NXL
FORMAT(//9lCX925HNPART9NOD,NELEM,NCOLN,NXL9/95120)
WRITE(69402) (HH(I) s I=1sNPART)

FORMAT (/51UXs25HHEIGHTS OF PARTITIONS AREs/s(6F1503)1

DO 442 J=1sNCCOLN

DO 442 NL=1,NR

IF(PP(NLsJ)olEeleUE=8! GO TO 442

WRITE(69443) U '

FORMAT (/55X s *EXTERNAL LOAD VECTUR NOo%,161

WRITE(G6s446) PPINLsJ) sNL

FORMAT (5XsF15c4s%LBS AT¥s16)

CONT I NUE

IF(NTLoNEel) GO TO B888

WRITE(6s410) .

FORMAT (1H1 55X s 29HNODAL PATTERN AKND COURDINATESs//s5Xs LIHELEMENT NO
lo91LK52HNISJZX91HX943A91HY9//’

DO 406 I=1sNELEM

WRITE(6s405) Te(NI{Isd)ed= 193)9(XKI9J)Qa 1e3) s (Y {IsJ)od=1e3)
CONT INUF

FORMAT(16s1UXs31896F153)

WRITE(6s43u) (NFREE(I)sI=1sNOD!

FORMAT(//s2013)

WRITE (654310 ((MSTART(1) sNEND(TI) sHFIRST (L) sNLAST (1)) sI=1sNPART!
FORMAT(//7s4125) '

WRITE(65425) ATR«B8TRsCTRSsOTR

FORMAT(// 55X s LOHTHE ANGLESs//s4E20¢3) .

DO 436 N¥=1,NELEM

WRITE (65437 ((THF(NMsIsd) sJ=153) 1214531}

FORMAT(9F13035/) )

CONT INUE
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D T T VY VY | S T A VA T a3
E R R T S CHEE- S R - N R S GRS N R ORI S

D A B B T T T e S R A IR T TR S S %% % %
FORMATION AND ASSEMBELY OF MATRICES

B A N A T I T U T A A T N T I S TR T R
REwIND 1

REWIND 2

REWIND &

DO 35 NPT=1NFPART
NA=NSTART(NPT)



NE=NEND (NPT
MA=NSUMINFREE s NA-1)
MB=NSUM(NFREE sNB)

MI=MA+1

M1 =MR~MA

IF (NPT«GENPART) GO TO 39
NC=NEND({NPT+1}
MC=NSUM(NFREE s NC?

M2=MC-MB
GO TO 5
M2=M1

DO 37 I=1.M1
DO 38 J=1.M1
AllsJ)=0s

DO 37 J=1sM2
Cl{lsJ}=00

CONT INUE
LA=SNFIRST(NPT)
LB=NLAST(NPT)
DO 36 NM=LA.LB

110

P=SQRT((X(NMs2) =X (NMs LI )#3#24 (Y (NMs2) =Y (KMol ) I ¥¥2+(Z (N2 =Z (Ni¥s1))

%%D )

QESARTCIX (NN o3 ) =X (v s 2 15324+ (Y (i 2 ) =Y (N2 D332+ (Z (iNms 30 —Z (Niis2))

15%2)

RESQRTUIX (NMs 1) =X (NMs3) 153624 (Y (s LI =Y (o3 1% 2+ {2 (NMs 1 ~Z (NMs3)

1%%2)
XRPHRE#2=QH¥2) /(20 0%P)

XZ:OoO

Y}.:OoO

CALL LAMUDA (NM)

T=THICK{NM) :
CALL PLAN(XI oX23sX3sY1sY2sY¥2sEMsVsPKsT)
T=THICK (NM)
CALL BEMD(X1sX25X3sY1sY2sY3sEMsVsTsBK)
CALL GROUP(STsPKsBK)

CALL TRANF (R4sST) _
CALL ASSEBL{NMsAsCsSToNI shPTsNPART)
CONT INUE

WRITE(2) MY smM2s ((A(Tod? sI1=2sMIsd=1ei1 s ((C{IsJlsl=1ail)sd=1sM2)s

1((PP(IsU) e I=MIoMA)Y s J=1sNCOLN)
CONT I NUE

SR T R I SR N I
THE MATRICES ARE FORMED AND WRITTEN IN
PR 2 T T T N N I I RN

REWIND 1
REWIND 2
REWIND 4

CALL SUBROUTINE TO SOLVE THE TRIDITAGONAL EQUATIONS

CALL RECUR(AsCsNPART sNCOLMN!
CONTINUE

STOP

END



[aNaNaNa

141

140

385

46

47

48

111

SUBROUTINE RECUR(NPARTsNCOLN!
T I R I N I R R I RN SR S
SUBROUTINE FOR SOLUTION OF EGUATIONSe CALCULATION AND PRINTING
OF RESIDUALS
N T S S I I L S T T T TR I - - - N I
DIMENSION A(T72s72)sCUT2s72) sbBT2s72)sRSUT252) sF(T2s2)sTF(T7252)
DIMENSION X(16693)sY(1664+3)
DIMENSION PP(688,2)
DIMENSICON NT{72)sNI(166331sRTF(9259)
DIMENSION DIS(72s2) s NSTART(15) 4NEND(15) sNFREE(100) s TNF(16635333)
COMMON NODsNELEMsEMsVsNSTART sNENDs NFREE s TNF s PP
COMMON AsCsNIsRTFsXsY
EQUIVALENCE(F(Ls1)sPP{Llsl)) e (UIS(Lsl)sPP(1s2))
DO 140 I=1472
DO 141 J=1e¢NCOLN
TF(1+J)=0¢
RS(1sJ)=0.
DO 140 J=1472
BB(IsJ)=0.
DO 40 NPT=1sNPART
READ(Z2) MlsM s((/\(lsd}al-—laﬂ)sJ lst'l)S(KC(IsJ)aI—ls]l)sJ 1em21)s
l((F(IsJ’9I-1sM1)sJ lshCOLN’ .
DO 44 I=1sM1
DO 45 J=1sNCOLN
FUIeJd)=F({IsW)=TF(I4J)
CONT I NUE '
DO 44 J=14M]
A(TsJ)=A(1sJ)=B3(I1s+J)
CALL INVMATIAsT2siMlels0b— BalERRsf\T)
IF(IERReNEWSU) WRITE(65385) -IERRsNPT
FORMAT(SX s 5HIERR= 515 s5X s 4HNPT=s 1557/ /)
WRITE(4) ML1oM2o{(ACT s ) s 1=l ,yM1l) oJ=1sM1) o ((C(IsJ)sl=1siil)sd=1,M2)s
T((F (Il al=1sM1)sJ=1sNCOLN]
IF(NPTEQeNPART) GO TO 50
DO 46 I=1sM1
DO 46 J=1sNCOLN
DIS(IsJ)I=Co
DO 46 K=1sMJ
DIS(IsJ)=DIS(IsJI+ALT sK)IHF(KoJ!
DO 47 I=1sM2
DO 47 J=1sNCOLN
TF(I1sJ)=0.
DO 47 K=1,Ml1
TECIsJ)=TF(I o) +CUK I/ %DIS(KsII
DO 48 1=1s01
DO 48 J=1sM2
BB(IsJ)=0,
DO 48 K=1,M1 '
RB(I s J)=BEB(TsJI+A(TsKI#C(KsJ)
DO 49 I=1.M2
DO 49 J=1sM2
A(ISJ)z(}n
DO 49 K=1sM1



49 AlT o J)=A(T s +CLEs I HBRIK 9 J!
DO 51 I=1sM2
DO 51.J=1sM2 ' 112
51 BB(IsJ)=A(1sJ)
40 CONT INUE
50 REWIND 2
DO 55 I=1,M1
DO 55 J=1sNCOLN
DIS(IsJ)=U,
DO 55 K=1sM1
55 DIS(IoJ)=DIS{TIsJ)+A(1sKI%F (K o J)
WRITE(65325) NPART
325 FORMAT(10Xs13HPARTITION NO=s16s//35Xs 19HTHE DEFLECTIONS AREs/ /)
| MA=NSTART (NPART) :
I MB=NEND(NPART)
DO 320 J=1sNCOLN
WRITE(6s322) U
K=1
DO 320 I=MA,MR
KK=MFREE(I)
KK=KK+K~1
WRITE(6s321) Iy (DIS(II1sJ)sI11=KsKK!
462 K=KK+1 .
320 CONTINUE
321 FORMAT(I339E14.6)
322 FORMAT(/35Xs16HLOAD VECTOR NOe=s163/)
WRITE(1) ((DIS(IsJ)sI=1sM1),J=1sNCOLNI
NA=NPART-1
DO 350 LL=1sNA
BACKSPACE &4
BACKSPACE 4
READ(G) Mleti2e{(A{TIsJ)sl=2eMl)od=1erl)ol (C{ledlsI=leiildsd=1e2),
1((F(TsJ)sl=1sM1}sJ=1,NCOLN)
DO 110 I=1,sM1
DO 110 J=1sMNCOLN
TF(IsJ)=00
DO 11U K=1si2
110 TF(IsJ)=TF({IsJ)+C(IsK/*DIS(K !}
‘ DO 144 I=1sM1
DO 1644 J=1sNCOLM
144 F(IsJ)=F(lsd)=TF(IsJ)
DO 60 I=1sM1
DO 60 J=1sKNCOLN
DIS({IsJ)=00
DO 6U K=1sMl
60 DIS(IsJY=DIS(IsJ)+A(LSKIFF (K}
NPT=NPART-LL
WRITE(65325) NPT
IF(NPT.EQe1) GO TO 500
MA=NSTART(NPT)
MB=NENDI(NPT)
500 DO 326 J=1,NCOLN
WRITE(65322) J
IF(NPTeNE«1) GO TO 501
) WRITE(6:502) (DIS(ILsJ)sil=1s4i
GO TO 326
501 K=1
DO 326 I=MAsMB



IF(NPT.EQ.1) GO TO 326
KK=NFREE(T)
KK=KK+K~1
WRITE(65321) I5(0IS(II5J)s1T1=KsKK]
442 K=KK+1 ‘
502 FORMAT(5Xs6F15.5)
326 CONTINUE
350 WRITE(1) ((DIS({IsJ)sI=1sM1),J=1sNCOLN)
WRITE(65115) : :
115 FORMAT(1Hls17HTHE RESIDUALS AREs/s/!
BO 200 NPT=1sNPART
READ(Z2IMIomM2 s ((A(T o l s1=1sr1)sJ=1sil2) s ((C(Isd)sl=1sil)sd=1sM2!
1((F(lsJd)sI=1sM1)sJd=1sNCOLN)
PACKSPACE 1
READ(1) {((DIS{IsJ)sI=1sM1)sy= ],NCOLN)
RACKSPACE 1
BACKSPACE 1
READ{IM({TF(IoJ)sl=1sM2)sJ=1sNCOLN)
DO 250 I=1sM1
DO 250 J=1sNCOLN
FlIaJ)=F(I1sJ)=RS(IsJ)
DO 260 K=1,M1
260 F(IsJ)—F(IsJ)—ﬁ(IsK)wDIS(KsJ)
DO 250 L=1sM2
250 Flls)=F(lsJ)=C(IsL)®TF(L,J!
LO 265 1I=1s42
DO 265 J=1sNCOLN
RS(1sJ)=00
DO 265 K=1.M1
265 Rq(IaJ)—RS(laJ)+C(K,I'%DIS( s}
WRITE(Es200) ((F(IsJ)sl=1sMl)sJ=1sNCOLN)
30U FORMAT(B8E15.3)
200 CONTINUE
RETURN
END
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SUBROUTINE TRANF2(NMsTL)
TRANSFORMATION OF ELEMENT STIFFNESS MATRIX FROM PLATE. COORDINATE
TO GLOBAL COORDIMATE SYSTEMS.
DIMENSION TL(9s9)sRTF(959)
DIMENSION A(72:72)sC(T72s72) 4N1{16653)
. DIMENSION PP(688s2) s NSTART(15) sNEAD(15) sNFREE(100) s TNF(1669343)
O DIMENSION X(166932)sY(16643) :
COMMON NODsNELEMsEMsV s NSTART s NEND s NFREE s TNF 5 PP
COMMON AsCoNIsRTFaXsY
DO 11 I=1s9
DO 11 J=1+9
TL(IsJ)=0
11 CONTINUE
DO 12 I=1,3
DO 12 J=1s3
TL(T o J)=TNF{Ni4sTsJ)
IA=1+6
A=J+6



C

C

12

TL(IAsJA)=TNF (NMsTsJ)

CONTINUE

TL(4 &) =TNF(NMs1s1 ) #%2%TNF (NMs3s3) : 114
TL(495)—2.O%TNF(Nislsl)WTNF(NMslsz)vTNF(hMaB,B}
TL(4s6)=TNF(NMs3s3) % TNF (NMsls2)%
TL(594)"TNF(NH9191JnTNF(NHsZ»l)ATNF(HMast‘

TL(5s5)= (TNF(NMs1 o2 ) ¥TNF (NMs2 s 1) +THNF (lis252 V¥ TRF (NMol o1t ) ¥THE (NMs

I 3.3}

TL(S5 06 =TRF(NMe3s3) ¥TNF(Niial s 2)%¥TNF (Nis2 92
TL(O sl =TNF (Niies3s3) #TNF (MMg2s1)%%2

TL(6s5)=2 ed*TNF(NM9393)w1JF(NMaZsl)"TNF(NM,Z 2)
TL(6s6)=TNF(NMs3s3) #TNF{NMs2,2 )%

RETURN

END

SURBROUTINE TRANF1(ALPHA,ST)
TRANSFORMATION OF ELEMENT STIFFNESS MATRIX FROM ELEMENT COORDINATE
TO PLATE COORDINATE SYSTEMSe
DIMENSION TED(27927)93T(27927’aTST(279?7)9RTF(999)
DIMENSION X(166s3)sY(16653!
DIMENSION PP(68892) sNSTART(15) sNENU(15/ oNFREE(LICO) s TNF (1665353
DIMENSION A(72¢72)sC(72+72) sR1(16653)
cowwom NODsNELEMoEiis Vo NSTART s NEND s NFREE s TNF s PP
OMMON AsCsNIsRTFsXsY
DO 11=1+27
DO 1J=1s27
TED(I+J)=0,0 : .
CALL RUI«AF(ALPHA) .
DO 2 I1=1+9 '
DO 2 J=1.+9
PO 2 K=1+3
N=(K~-1)%9
TED(T+MN o JENI=RTF(1,J!
CONTINUE
CALL PRTMATH(TEDsSTsTSTs27927527)
CALL PRUNAT(TSTsTLQyoTsZ?aZ?sZ?J
RETURN
END

SUBROUTINE ROTMAT{(THITA!
THE ROTATORY MATRIX FOR ROTATION OF ELEMEMNT.
DIMENSTION RTF(9+9)
DIMENSION X(166+3 )9Y(166931
DIMENSICN PP{6889+2)
DIMENSION NSTART(15) sNEND(15) sNFREE(1UC) s TNF(1669353/
DIMENSION A{T72:72)sC{T2:72!sNI(16693) )
COMMON NCDsNELEMoENMs VsNSTART o NENDs NFREE s TRF s PP~
OMMON AsCsHNIsRTFsXeY
DO 1 I=1.9
DO 1 J=1+9



NN N

aNa

1 RTF(1sJ)=0e0
IF(ABS(THITA) eLTela0F=6) GO TO 11
RTF(151)=COS(THITA) : 115
RTF(1s2)=SIN(THITA) '
RTF(2s1)==SIN(THITA)
RTF(252)=COS(THITA)
RTF(353)=140
RTF(4s4)=COS(THITA)#%2
RTF(495)52eC%COS(THITAI*SIN(THITA)
RTF(456)=SIN(THITA) %%
RTF(554)==SIN(THITA)*COS(THITA)
RTF(555)=COS(THITA) #%2=SIN(ThITA) %%
 RTE(5:6)==RTF(554)
. RTF(654)=RTF(4s6)
| RTF(655)==RTF(455)
RTF(696)=RTF (4s4)
DO 2 1=1:3
DO 2 J=1s3
2 RVIF(I465J+6)=RTF (1,J)
RETURN
11 DO 10 I1=159
DO 10 J= 19
RTF(15J)=0s
IF(1eEQed) RTF(IsJ)wl 0
16 CONTINUE
RETURN
END

SUBRQUTIME GROUP(STIFFsPSTIFFsBSTIFF)

X% R ¥ K X ¥ X % % X X % X ¥ X % X F % ¥ X ¥ % % ¥ % ¥ %
SUBROUTINE TO COBINE ELEMENT STIFFNESS MATRICES IN PLANE FORCES
AND IN BENDING TC GET 27927 STIFFNESS MATRIX FOR THE

Y N A yoooan M a0 M N oM oM M oM A M M N M M A S VA
PR R U T T R - N <SS - S R S R S O S R S S S

DIMENSION STIFF(27927).9PSTI{-F(656~)9BSTIFF(18916)
ASSEMBLE THE ELEMENT STIFFNESS MATRIX
CLEAR ARRAY
DO 134 I=1s27
DO 134 J=1s27

134 STIFF(IsJ)}=0e0

DO 60U KI=1s3
DO 60 KJ=1s3
DO 60 I=1.2
DO 60 JU=1s2
IT=1+(KI~-1)%9
JJ=J+(KJI-1)*9
I111=14+(KI-1)%2
JII=J+{(KJ=-1)%2

60 STIFF(II»JJ’"PSTIFF(III;JJJ'
' DO 65 KI=1+3

LO 65 KJ=13
DO 65 I=1+6

DO 65 U=1s+6
J1=2+1+(KI~1)%9
JI=2+J+(KJ=-1) %9



65

299

360

288

19

30

INI=1+(KI-1)%6

JJJd=J+(KJ-

116 . 4 | : 116

STIFF(115JJ)=BSTIFF(il1,JJJ!

CONTINUE
RETURN
FND

n
l

SUBROUTINE BEND(AsBsCoMsNsVsEsTsB3G)

CALCULATION
IN TERMS OF
DIMENSION
DIMENSION
DIMENSION

OF BENDING STIFFNESS MATRIX OF EACH ELEM%QT;

SIDES sPOWER OF X AND Y VARIBLES.
816(30920),,(zo:,mtzu),TM(ZUszp)sN1(20>,TBIG(18920)
TN(20+18)sAB(2518)sBG(18518)

BA(18s2)

DO 299 I=1,20
DO 299 J=1-20
BIG(IsJ)=000
DO 300 I=1520
DO 300 J=1s20

1=M(1}
J1=M(J)
12=N(1)
Jz=N{J)

BIGIT o) =T1%J13%(I11~1?%(J1-11#G((11+J2=4)5(12+J2) sAsBsCI+I2%J2* (]2
1-1)%(J2=1)%G((I114+J1) e (1240261 sAsbsC)H(200%(1le~=VIHIL1I¥JLHI2¥J2+V*]1]

2%J2%(11-1)%

3,C)
CONTINUE

(J2=1)+VsdI*1 2% (J1=1)%(12=1))%G((11+J1=2)s(12+J2=2)sAsbS

M= (E#T%%3) /(126 CH (1o~ VH%2) ]

DO 288 1=1+20 ’

DO 288 J=1ls2u

BIG(IsJ)=FM*¥BIG(IsJ)

CALL THMAT(AsBosCsTM)

CALL INVMAT{TM:20e20s1lcuk— lZsIEPRsP

IF{IERRNE

E.0) GO TO 21

DO 1Y I=1s.2¢
DC 19 J=1,18

TN(I sJ)=
CONTINUE

TM(TIeJ)

CALL PRTMAT(TNsBIGsTEIGs18520520)
CALL PRUIAT (TBIG»TH»8G»18,20518)
YDO 306 K=1s3 :

L={K-1)}%6

DO 30 1=1,18

DO 30 J=1s2

BA{T s JY=RGLTsJ+L+1)
DO 31 I=1518

DO 31 J=446

BG(I s J+L=2)=BG(TIsJ+L"}
DO 32 I=1518

DO 32 J=1s2
BG(l9JTL44)*bA(19J)

CONTINUE

DO 305 K=1:3

L=(K=-11%6



AN OO

DO 28 I=1.2
DG 28 J=1518
28 AS(IsJ)=BG(I+L+19J) 117
DO 10 I=4s6
DO 10 U=1,18
10 BG(I+L—=2+J)=BG(I+LeJ!
DO 11 I=1s2
DO 11 J=1.18
11 BG(I+L+4+J)=AB(I1sJ)
305 CONTINUE
RETURN
21 WRITE(&s22) IERR
22 FORMAT (/s 2X s #IFRR=%s154/}
25 RETYRN
END

SUBROUTINE ASSEBL (NMsST sNPTsNPART)

A Y] kY Y3 32 A A v

R A T T 2 - R S S S T R S - - RS
SUBROUTINE FOR THE ASSEMBLY OF ELEMENT STIFFNESS MATRICES
PARTITION BY PARTITION
S R S EECHEE IR SN A 2 R N R R G R N S SR S
DIMENSION ST(27+27)
DIMENSTION qx(9,9),TL(9,9)95rr(9991,R F19:9!
DIMENSION X{(166353)sY(16643)
DIMENSTION NSTART(15) s NENDL15) s fFREE(LICO) s TNF (1665353
DIMENSICN A(T72+72)+C{72572)4N1(16653)
DIMENSION PP(68852)
‘COMMON NOD sNELEMsEMsVoMSTART sNEND s NFREE s TRF 9 PP
comwoN AsCsNIsRTFsXsY
NASNSTART (MPT)
NE= REND(NPT) ,
IF(NPTGENPART) GO TO 50
ND=NEND(NPT+1)
GC TO 60 ..
50 ND=NB 1

60 MINUS=NSUM(NFREEsNA-1shPT)
MIN=NSUM(NFREE s NB s MPT)
DO 10U I=1+3
LL=NT (NMs1)
IF(LLeEQ:0OJ GO TO 100
IF(LLLTeNA} GO TO 100
IF(LLeGT«NB} GO TO 100
DO 110 J=1.3
MM=NT (KMsJ)
IF(MMeEQe0O! GO TO 110
IF(MM»GT.ND) GO 70 110
IF(MMeLTeNA) GO TO 110
NF1=NFREE(LL)
NF2=NFREE (M)
DO 10 11=1sNF1
DO 10 JJ=1sNF2
IN=II+(I-1)%9
IN=JJ+(J=-1) %9
106 SX(ITsJJY=STLINsJIN)
CALL TRANFZ (NMsTL)

e



51 IL=NSUM(NFREE sLL=1sNPT!

20

21

27

28

22

29

30
24

26
25
11C
100

JL=NSUNM(NFREE ¢MM=1 NPT
IF(NF1oEQe9eANDeNF2oEQ9) NC=1
IF(NFloEQeB8oANDNF2.EQ9) NC=2
IF(NF1eEQo90ANDoNF2.EQe8) NC=3
IF(NF1oEGeBoANDeNF2oEGQe8) NC=4
GO TO (20s21¢22524) sNC
CALL PRTMAT(TLOSXsSXTs959+9!

CALL PRDMAT(SXTsTL3s5X9959:9)

GO TO 24
DO 27 1I=1.8
DO 27 JJ=1,9
SXT(I1sJJ}=00
D0 27 KK=1:9 . 4
SXT(IIsJJ)=SXTUIT sJJI+SX(IIsKKI¥TL{KKsJJ)
CONTINUE . :
DO 28 11=1,8
DO 28 JJ=1,49
SX(IIsJJ)=SXT(11sJJ)
CONT INUE :
GO TO 24
CO 29 [1=1,9
DO 29 JJ=1+8
SXT(II+JJ)=0.
DO 29 KK=149
SXT(ITsJJ)=SXTLITsJII+TLIKKITI*GX(KK,JJ!
CONT INUE :
DO 30 II=1,9
DO 30 JJ=1s8
SX(IIsJJ)=SXT(I1sJU)
CONT I NUE
DO 25 I1=14NF1
DO 25 JJ=1sNF2
ILL=IL+11
JLL=JL+JJ
ILM=TILL-MINUS
JLM=JLL~-MINUS
JLN=JLL~MIN -
IF(JLLoGToMIN) GO TO 26 ,
ACTLM e JLMI=A(ILM e JLMI+SX(IT 40!
GO TO 25
CUOILMsJLNI =CILM o JLNI+SX(I1 00!
COMTINUE '
CONT INUE
CONT INUE
RETURN

END

FUNCTION NSUM (NFREEsNNsNPARD)
DIMENSICON NFREE(100)

NSUM=0

IF(NPARDNEs1) GO TO 20
IF{NNoEGQeQ) RETURN

DO 10 I=1sNN

118



1o

20

30

NSUM=NSUM+NFREE(T)
CONTINUE

RETURN

DO 30 I=1sNN
NSUM=NSUM-+NFREE ()
CONTINUE

119

W

1644

NSUM=NSUM~64
RETURN
END

SUBROUTINE ELIM (M1sM2)
DIMENSION A(7297?)9C(72,72),Nl(lébaJ)sRTF(9,9)
DIMENSTION X(16653)sY(16643)
DIMENSION PP(668852) s NSTART(15) ¢ NEND (15} yNFREE(L00) s TNF (1665353
COMMON NODsNELEMsEMsVsNSTART sNEND s NFREE s TNF 9 PP
COMMON AsCsNIsRTFsXsY
THIS SUBROUTINE ELIMINATES ALL DEGREES OF FREELDOM EXCEPT
FOUR CURVATURES AT THE BASE.
DO 1 I=1s14 :
PO 2 J=1sM1
AlTsJ)=060
DO 1 J=1,M2
C{l:J)=0,60
CONTINUE
A(ls1)=A(15415)
A(1s2)=A(15420)
A(ls3)=A(15:49)
Alls4)=A(15:64)
DO 3 J=1sM2
Cl{led)=C(155J)
DO 4 I=15+29
DO 5 J=1sMl
A(1sJ)=060
DO 4 J=14M2
C({lsJ)=0,0
CONTINUE
A(?2s1)=A(30s15)
A(2+2)=A(30Us30)
A{253)1=A(30Us49)
A(2:4)=A(30:64)
DO 6 J=1sh2
C(2:J)=C(30sJ)
DO 7 1=30s48
PO 8 J=1sM1
AlI15J)=0.0
DO 7 J=1sK2
C(1sJ)=060
CONTINUE _

351 1=A(49515)
Al{3s2)=A149:30)
A(3s3)=A{49:4G)
Al354)=A49:64)

DO 9 J=1sM2
C(3:J)Y=C(495J)



a¥a¥a)

11

10

12

14

13

DO 10 1=49+63

DO 11 J=1sM1
A(IsJ)=OeO . ‘ 120
DO 10 U=14M2
C{IsJ)=00C
CONTINUE
AlbGs1)=A{64515)
AlLs2)=A{64530)
Al493)Y=A(64549) -
AlbLsb)=A(644,64)
DO 12 J=1sM2
ClasJ)=C(644:J)
DO 13 1=64.M1

DO 14 J=1sM1
AlToJ)=000

DO 13 J=1lsM2
C(IsJ)=0
CONTINUE

RETURN

END

SUBROUTINE PLANIX1sX2sX2sY15Y2sY3sEMsVsPKsTHICK)

P A I I T R A A S TN I I O RN
SUBROUTINE FCOR CALCULATING ELEMENT ST FFNESS MATRIX IN PLANE FORCES
DA T R R O B X% % ¥ ¥ % ¥ % ¥ X ¥ ¥ X %

DIMENSION PX(6+6)
AREA=U 5% (X2%¥Y3-Y2%X3=X1%¥Y3+Y1#X3+X1#Y2-Y1%X2)
AREA=ABS(AREA) A .
C=EM*THICK/ (4o ¥AREA® (1o G-y#3%2 1))
D=EM*THICK/ (86 OXAREA¥ (1o 0+V 1)
Y32=Y3-Y2

X32=X3-X2

¥Y31=Y3~-Y1

X31=X3-X1
YZ21=Y2-Y1

X21=X2-X1
PK{1s1)=CHY32%%2+D%X32%%2 ,
PK(Zs1)==CxVY%Y32%X32-D#*X32%Y32
PK({3s1)=—CHY32%Y31-D¥X32%X31
P41 )=C¥VXY32%X314+D¥X32%Y31]
PK{51)=CHY32%Y2Z14D%X32%X21
PK(6s1)=—CRVEY22%X21-D%X32%Y21
PK(Z2s2)=CHX32#%24D*YZ2%%2
PK(392):C*V"x32"Y11+D%Y32%x31
PK{4s2)==CH¥X32%X31=-D*Y32%Y31
PV()»?)Z—CKV X 32%Y21-D¥Y32%x21
PK(6+2)=C*X32%X21+D*Y32%Y21
PK(3s3)=Y231%%2%C+D%¥X31#%2
PK{493)==C#V%Y31%¥X31-D¥X31%Y31
PK(593)=~C#Y31%Y21-D¥X31%X21
PK(6s3)=C*¥V#Y31%X21+D*X31¥Y21
PRI4sG)=CHX3L%%24+D%Y31#%2

P54} =ChVHEX31H#Y21+D*Y31%X21
PK(6sk)=~CH¥X31%X21-DxY31%Y21



PK(5e5)=CHY 2L #%24DHX2]%%2
PK(6s5)==ChVHY21%X21-D*X21%Y21
PRK(6s6)SCHNZI¥¥ 24D %Y 21 %%2
DO 10 I=1s5 ' : 121
IP=1+1
DO 10 J=1Ps6
10 PK{IsJ)=PK({Jsl)
RETURN
END

| SUBROUTINE PROMAT(AstssCsisNsL !

C | SUBROUTINE TWO MULTIPLY TWO MATRICES C=A%B
DIMENSION A(MsN)sB(NsL)sC(MoL)
DO 10 I=1sM :
DO 10 J=1sL
C(IsJ)=0e
DO 10 K=1sN
C(IsJ)=ClIsdl +ACTsK)¥B(KsJ)
10 CONT INUE

RETURN

END

SUBROUTINE PRTMAT(AstisColisilol }

C SUBROUTINE TO MULTIPY TWO «ATRICES C-(TRANSPOSE INEE
DIMENSION A(MNso) sB(NsL)sCliMsL)
DO 10 I=1sM
DO 10 J=1sL
C(IsJ)=00
DO 10 K=1sN
ClIlsd)=ClIsJI+A(KsI)*B(KsJ)

10 CONTIMUE

- RETURN

END

FUNCTION G(MsNsAsBsC) o
C EVALUATING THE FUNCTION VALUE OF THE INTEGRALe
: G=FACT (M+N+2)
IF(GoEWs0el) RETURN
IF(ABS{B)el.Ta10F=61GO TO 1
IF(ABS(A)oLTeleUE~6)GO TO 2
G1=G
G=CR% [N+ 1% (AR (pik] )= (=5 ) %% (i 110 XF ACT (W) XEACT (N /G
RETURN
1  G61=G .
G=CH¥ (N+1)#a%8 (M+])#FACT (M) %FACT (N) /G
RETURN
2 G1=G



600

601

G=—Co (N+LI% (=B ) %% (11T XFACT (i) #EACT (N /61

RETURN
END

FUNCTION FACT (M)

EVALUATING Trit FACTORIAL OF AN INTtb Ra
IF(NoLTe1} GO TO 601

M=1

DO 600 I=14N

M=Mx]

CONRT INUE

FACT=M

RETURN
IF{(NeEQoaU} FACT=1s0
IF(NoLTo0) FACT=0.0
RETURN

END

SUBROUTINE TMAT(AsBsCoTi/
DIMENSION THM(20920) )
DO 1 I=1420
DC 1 J=1+20
TM{I 5J)=060
CONT INUE
Th(lsl)=160
TM(ls2)=-B
TMEL b )=Bxx2
TH(leT)=—~B%%3
TM(1s11)=B%%x4
TM(1s16)=~R%*%5
TM{22)=10U
TM(2s4)==2.0%R
TM(Z2s7)=30%B%%2
TM(2s11)=~boG%pH%3
TM(2916)=50,0%R%%¢g
TM(383)=1s0
TM({3:5)=-R
TM(3s8)=B3#2
TM(3612)=—B%%3
TM(494)=260
TM{GeT)I==6o0U%E
Thi{4s110=1200%E%R%,
TM{Lel6) =20 0% %%
TM(55)=160
TM(58)}==2c0%8
TM{5912)=2,0%8%%2
TM(6s6)=2c0
TM{6s9)==2,0%8
TM(6513)=2cU%Bk%2
TH{E 171 =2 U%B**3
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TM{T7s1)=1:0
TM{T792)=A
TM{T7 o4 )=A%%2
TMITsT)=A%%3
TM(T7s11)=A%%4
TM(T7s16)=A%%5
TM({Bs2)1=160
TIM{8 o8 )=260%A
TM(897)=3cURARXD
TM(Bs1ll)=boUAnxs
TM({8s16)=5c0%A%X4L
TM(9s3)=

TM(9+5)=A )
TM(9s8)=Ax%
TM(9s 121 =A%
TM(10s4)=20.0
TM(10e7)=60%A
TM{10611)=1260%A%%
TM(10516)=20e0%A%%
TM(11s5)=1,0
TM(11s8)=2c0%A
TM{11612)=360%AXK2
TiM{l2s61=2¢0
TM(1249)=2c¢0%A

123

2
2

o=

TM(12513)=2e0%A%%2
TM(12s17)=2ed%A%%3
TM(1391)=1
TM{13+3)=C

TM{l3s6)=Cx%2
TM(13:10)=C*%3
TM{13e15)=Cxs
TM(13:20)=C#%5
TM{1492)=160
TM(1495)=C
TM(144+9)=C%%2
TM(14 914 )=Cn
TM{14919)=CHx4
TM(1553)=10.0
TM(15s61=2a0%C
TM(15610)=360%C¥**2
TM(15s15)=4o0%C**3
TM(15s2u)=5ouxCix4
TM(1694)=20
TM(1698)=2.0%C
TM(16913)=200%(CH*
TM(16918) =20 U%CH
TM(17s5)=160
TM{1T799)=260%C
TM(17614)=300%CH%2
TM{1719)=b4oORCx*3

TM{1856)=2.0

TM(18510)=6.0%C
TM{18915)=12,0%Cx#*2
TM(18920)=200%C*%3
TM(19516) =5 URARFLEC
1[“(19917)—560%;\\’*2 C"',) 2o O"A"" C
TM({19e18)=—2c ORANRCHK AFBanA""3~an
TM(19919)=CHR5—4 o CRAE#F2HCHN



ANAOON

C

10

TM{19620)=0e ORARCH®AL
TM(20916)=,0J‘B*T4rC

TM(20517) =3 0RB¥XZ2HCHNI~2o0%BX¥4%C
TM(20518)=2 eU*DAC**@ 3o URPHFHEZIHRCHNLZ
TMI20s19)=CR¥5—4 o ¥ %% 2#CH¥ES
TM{20920)==500%BxC¥x4

RETURN

END

SUBROUTINE FORT(AAsBBsATRsETRsCTRoUTRsHsNST)

. VI v o o s s A v s st 3t s ot 3 A
PR I I T R N R R < S - S R R S R SR S T R N

2L
N

3*

AL
'

SUBROUTINE FOR CALCULATING THE ELEMENT NODE COORDINATES
OF EACH PARTITION IN TERMS OF THE PARTITION HEIGHT AND THE FACE

N 1
INCLINATIONS
B R O3¥ % ¥ X O % ¥ ¥ % ¥ ¥ X ¥ ¥ ¥ ¥ X ¥ X %
SR I N R I PR R T

- DIMENSION X(16653)sY(166531
DIMENSION ﬁ(??s?Z)sC(7ds72‘shI(lbbaJ)skTF(999)

DIMENSION NSTART(15) sNEND{15) sNFREE(L0QU) s TNF(16635353) 3PP (68852

COMMON NODsNELEMsEMoVoNSTART s NENDsNFREE s TNF PP - -
COMMOM AsCoNIsRTFsXsY

. s
¥R X ¥ X O ¥ ¥ ¥ X ¥ ¥ ¥ ¥

N=NST

NN=N+15

DO 10 I=NsNN

DO 10 J=1s3

X({IsJ)=0e
Y(ISJ):Oe
AB=AA=H*COS(DTR}/SIN(DTRI=H¥COS{3TR! /STNIBTR)
AC=BB-H*COS(ATR) /SIN{ATR I —ri%*COS(CTR} /SIN(CTR)

A PR Y R ¥ S P T4 YRR V]
P IS I G- S e

NEW COORDINATE SYSTEM SUlfADLt FOR LUAPEH POLYNOIMTIALS.

X{Ns1l)=AA/20
X({Ns2)=H¥COS{DTRI/SIN(DTRI
Y{NeZ)=H/SIN(ATR)
XIN+1o1)=X{(Ns2)
X(N+1:2)=X(Nsl)
XIN+Ie3)=X{(N+1s1)+AB/20
YIN+1e1)=Y(MNs2)
Y{N+1o3)=Y(Ns2)
YAN+262)Y=AA/2 o U~HH¥COSIBTRI/SIN(HBTRI
X{N+2s3)=X(Ns2)+AB/2.0—AA/2.0
Y{N+2s2)=Y{Ns2)}
Y{N+2s3)=Y(Ns2)
X{N+3s1)=X(N+252)
X{N+3+3)=AA/2.0
Y{N+31)=Y(Ns2)
X{N+4:1)=BB/2.0

XIN+4 52 ) =H¥COSIATRI/SINIATRI
Y(N+4e2)=H/SIN{BTR)
TXAIN+5s1) =X(N+442) '
X{N+5e2¥=X(MN+4s1)
X{N+5s3)=X(N+5s1)+AC/ 260
Y{N+5s1)=Y (N+4s2)

Y(N+563)=Y (N+452)
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X(N+691)-PH/2 0
X(N+6s2)=X(N+551)+AC/2:0-88/20
Y{N+652)=Y (N+4s2)
XIN+7s1l)=X{N+6+:2)
X(N+T7s2)=X{N+6s1)
XIN+7s3)=X(N+7s1}+AC/260
Y(N+7s1)Y=Y(N+452)
Y{N+7s3)=Y{(N+452)
X{N+8s1)=AA/260
X(N+8s2)=H*COS(BTR)/SIN(BTR]
Y(N+8s2)=H/SIN(CTR)
X(N+9s1)=X(N+8s2)
X(N+992)=X(N+8s1)
X{N+9s3)=X{N+Gs1)+AB/260C
Y(N+9s1)=Y(N+852)

Y(N+993)=Y (N+852) :
X(N+1092) =AA/200=~H%COS (DTRI/SIH{DTR)
X(N+1093)“A(N+991)+A7/20—AA/2°
Y(N+10s2)=Y(N+8s2)
Y{(N+10s3)=Y(N+8,2)
X{(iN+11s1)=X(N+1052)
X(N+11s3)=AA/260
Y(N+11s1)=Y(N+8s2)
X(IN+1292)=H*COS{CTRI/SINICTR/+AC/ 20
X{N+1293)=H*COS(CTR)/SIN(CTR!
Y(N+12s2)=H/SINIDTR)
Y(N+12s3)=Y(N+1252])
X{N+13s1li=X{N+12+2)
X{N+1343)=88/2c0U
Y{N+13s1)=Y(N+12s2)

X{N+14521=PB/26e 0=H*COS(ATR! /SIN(ATR)

X{IN+1453)=X{N+13+1)~B83/2-C
Y{N+14o2)=Y(N+1252)
Y{N+1453)=Y(N+1252)
XIN+151)=X(N+14s2)
X{N+153)1=BB/20
Y(N+1551)=Y{N+12s2)

RETURN

END

SUBROUTINE CNC (CCsX3sY2,Y3!
DIMENSION CC(959)

DIMENSICN XX(3)sYY({3)

SUBROUTINE FOR CALCULATING C MATRIX.
XX(1)=0oC

YY(1)=0s0

XX(2)=0ou

YY(2)=Y2

XX(3)=X3
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10

15

COiilv

THIS SUBROUTINE FINDS Tht CIRECT LON
XY sZ~-ARE THE GLOEAL CO\)QUI[\HTL-S.
D=MATRIX OF DIRECTION COSINES RETURNED
YIT=Y (NMs2) =Y (NMoe1)
XJIT=X(NMs2)=X{NMs1)
ZII=L (Nws2t =7 (sl )

ALM

YY(3)=Y23
DO 10 I=1,9

DO 10 J=1.9
CC(Isdl=Ceu

DO 15 T=1,2
J=l4+(1-1)%3
CC(J’I)'"—'leU
CC(Js2)=XX(1)
CC{Js3)=YY (])
CCUUs4I=XX (1) %2

TCCUJe S ) =XX (T RYY ()

CClIs6)=YY (I )#%2
CCUIsTI=XX(1)
CC(JsB8r=XX(1)
CClJs9)=YY (])
K=2+(I-1)%3
CC(Ks3)=1eU
CC{K 95 I=XX1{1)
CCC(K96)=2.0%YY (1)
CClKsB)=XX(T1)%x%2
CC(K99}~Ja0 YY(I)“”Z
3+(I-1)%

A
Ky
Az
k3

3
*ZXYY(I)
*3

CC(L,Z)—~1-U

CCUlL ol ) ==2 s G¥XX (1)
CCULs5)I==YY(I)

COUL s Th==3 o UkXX (I Ixx
CClLs8)==2.0%XX(T)%YY ()
CONTINUE- : '
RETURN

END

SUBROUTINE LAMDA (NM)

126

DIMENSION FND(lS),JSTART(IC}9PP(50092) :
DIMENSTION A{20083)aY (2 bUsJ)sL(cUUSJ)9NFKLt(lOU)9TNf(ZbU939j)

DIMENSTICGH ALMD(34+3)

YMI=Y (Niis 30 =Y (MNrisl)
XMI=X(NMe3) =X (NiMs1)

ZMI=Z(NM93)~7Z (NMs1)
A=YJT*Z2MI-Yiil %2 J1

B XJI*ZMI+XMI%7 J1

C=XJI*YiI-XiI*YJI
FESQRTIXJI*%24Y T %5242 ] %2}

G==-SURT (A%%24B%%2+Cx%2)
ALMD (25 1)=XJ1/F
ALMD(292)=YJI/F
ALFD(23)=7J1/F
ALND(291)=A/G

MON NODsMELEwF EN ,VsubTARTiNtHD;NFHtc-TNFaPP9X9Y929ALNQ

COSINES OF LOUCAL AXESe



aNeNaNe!

15

7

16

100

ALMD(32)=8/G

ALIMD (353)2C/6 o
ALNU(lsl)—ALMu(dszl“ALmU(j,%I—HLnu(jggiAALmu(Zao) 127
ALMD (152 )=ALMD (321 ) %ALMU(Z03)=ALAD (33 ) #ALHU (251 )

ALMD (193 ) =ALMD(Zs 1) ¥ALMO (352 ) =ALMAU( 251 ) ¥ALMD (252

RETURN
END

 SUBROUTINE BENUD(X3sY2sY3sEMsVs THICK sk )

DIMENSION 5I1G(959)sCC(9597)30D(9597sN1L(9) sbK(959!

SUBROUTINE FOR CALCULATING THE ELEMENT STIFFNESS MATRIX
IN BENGDING -OF PLATE.

Cll=1e0/26U%X3%#Y2
C21=1e/6o*XFH¥2HY2

C31=71le/ 12 ¥XB3HHUBIRYZ .
Cl2=1e/6o®A3RY2X(Y2+Y3]
C13=16/12 e ¥X3#Y 2% (Y2¥HX24+YZHYI+Y3%%2)
C22=1o/2be®XB3XNDHYD2H(Y2+2e%Y3)

DO1S I=1s9

DO15 J=1,9

BIG(IsJ)=0.0

BIG(4&sb)=4o% 1]

BIG(Eo4Y=b4e®yuCll

BIG(T7s4)=12e%C21

BIG(Bsl)=4a% 7172

BIG(T+4)=126%V*C12

BI\J(b 5)—10 (1-"\/)7" 1
BIG(8s5 ) =boe%(le—VI*C21
BIG(6s6)=4e%C11

BIG(7s6)=12e%Vv%C21
BIG(BeH Y=L e k%12

BIG(9s6)=1264C12

BIG(7s7)=26,%*C31

BIG(8s7)=12s%(22

BIG(9QsT)=36e#V®(22
BIG(8s8)=4e%#C13+8e%(1lo-VI*(C31
BIG({9s8)=12,*V*C13

BIG(9:91=36.%C13

FILLING THE VALUE THAT nLPLAT IN THE MATRIX.
DO 77 I=1,8 o
IP=I+1

DO 77 U=1Ps9

BIG(I«J)=RIGIJsI)

FrasEm* THICK*#3/ {12 % (Le~V®%24)

DO 16 [=1,9

DO 16 J=1.9

BIGITI o J)=FM*LIG(1 U]}

CALL CNC (CCuX3sY2sY3)

CALL INVMAT(CC39:+9410E~124IERRsNT)
ORMATI(9EL1Z2.3)

IF({IERR«NE-O) GO TO 20

CALL PRTMAT(CCsBlGsbUs9s999)



[aNANAEA]

20
30
25

31
32

10

CALL PRUMAT(DDsCC stk 959494
BK IS THE BENDING STIFFMESS MATRIXe

GO TO 25
WRITE(64+3
FORIMAT (/s
RETURN
END

0) IERR
2Xs5HIERR=s15s/)

SURROUTINE STRESS(NCOLNsXEL T sNMI

LY VR TN
¥ X F 3 *

SUBROUTINE FOR CALCULATING Trk STRLSSES AT Tk CeNTROID OF

EACH TRIAN
R B
DIMENSTORN
DIMENSION
DIMENSION
DIMAENSION
DIMENSICN
COMMON NOD
XL=X{Nvsl)
X2=X (kM9 2]
X2=X(NMs3)
Y1=Y(NMs1)
Y2=Y (NMs2)
Y3=Y (NMe3)

AREA=Ue 53 (X2¥Y3-Y2#X3-X1RY3+YL#X2+X1*YZ~Y1%X2)

DO 10 I=1,
DO 21 J=1s
DE(IsU)=Ue
DO.32 J=1s
BP(IsJ)=0s
CP(I+J)=0Cs
DO 10 J=1,
DB(TIsJ)}=00e
DC{TIsJ)=00
BP(ls1)=Y2
BP(ls>5)=Y3
BP(1+5)=Y1
BP(2+2)=X3
BP(2+44)=X1
BP(2+6)=X2
BRP(3-,1)=X3
BP(3,2)=Y2
BP(34+3)=X1

CBP(354)=Y3

41

BP{3+5)=X2
BP(3s61=Y1
CO 41 I=1s
DO 41 J=1s
BP{I,J)=BP
CCNT INUE

DE(lsl}=10
DE(Lls2)=V
DE(2+¢1)=V

i R M L L A1 A M 7‘/_
S

e
W ) iy ~ "~ " w "~
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o MM s 3 o a
FR R S S S A

SXX{2)sSYY(2) o SKY(2) s SMAXEZ2) s SIMIN(Z2Y

X(20093)sY (2003
XP(Qe2) s XEL(1842)

BP(Bsé)sCP(Bsé?sDE(393)sCC(999‘9Db(399)sDC(399’9N1(9)
MSTART (15) sNEND (1574 s NFREE(1U0Q) s TNF (20053537 sPP(50052)
sNELEMsEMs VaNSTART o NEMND s kFREE s TNF s PP s X5 Y
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35

11

12

13

14

43

15

DE(2s2)=1s

DE(3s3)=(1e~V)/2s

FMEEM/ (le=Vi%2)

DO 35 I1=143

DO 3% J=143

DE(T s JISFM¥UEL(T o J)

CALL PRUIMAT(DE sbPsCP 3,396
DO 11 KI=143

DO 11 I11=1s2

K=1I+(KI-1)%6

TII=114+(KI~-1)%2

DO 11 JJ=14NCOLN
XP{ITIsJJ)=XEL(KsJJ)

DO 12 J=1sNCOLN

SXX{(J)=0o

SYY(J)=0e

SXY({J1=0

DO 12 K=146
squJ)—sxx(J)+CP(1,K)%xpth,J)
SYY(J)=SYY(J)+CP(ZsK)*XP(KsJ!
SXY(JI=SXY(JV+CP {3 K H¥XP(KsJ)

129

STRESSES CORRESPONDING TC IM PLAKE UEFLECTIONS CALCULATEU
CALCULATE STRESSES COR QUT OF PLARE DISPLACEMEMNTS

DO 13 KI=1,3
DO 13 1=1,3

[I=1+(KI~-11%3

IL=2+1+(KI-1)%6

DO 13 JJ=14NCOLN
XP(ILeJJ)=XEL(ILsJJ)

CALCULATE THE COORUL OF CERNTRCGID
XX=(X1+X24X3) /3 .
YY=(Y14Y2+Y3) /3.

CR(1s4)=20

DE(1s7)=6e%XX

DB{1s8)=2e%YY

DB(2s6)=2

DE(2+8)=2e%XX

DB(2+9)=6a%YY

DB(3+5)1=2,

DB(398)=4 e % (XX+YY)

CALL CNC({CCsX1sX2sX3sY1sY2s YQ)
CALL INVMAT(CCs99931e0E-12sIERRSNL
CALL PRUMATI(DB+CCsDCe35G,9)

DO 14 1=143

DO 14 J=149

DC(IsJ)==DC{IsJ)%T/2a

CALL PRUMAT(DEsLCsUBs353991)

DO 43 I=1,3

DO 43 J=1s9 .

DC(IsJ)}=DB(1sJ)

DC IS THE STRESS MATRIX

DO 15 J=1sNCOLM

DO 1% K=1s9 :
SXX(JV=SXX (I +DC (L sKI#XP(Rsd)
SYY(J)=SYY(J)+DC (2 oK) *XP (K sJ)
SXY(JY=SHY (UV+DCI3 4K IFAP (K s

CALCULATE THE PRINCIPAL STRESSES

THE XsY NORMAL STRESSES AND THE SHEAR STRESS CALCULATED



A OO O

16

40

30
20

15

20

26

27

28

DO 16 J=1sNCOLN
PA= (SXX(JI+5YY(J) )1 /2e '
PE=SURT ({SXX{J)=SYY (J) ) 5%/ 4o+ SXY (J)%32)
SMAX (J)=PA+PB

SMIN(J)=PA~PB

WRITE (6540) NM

FORMAT(//95Xs 1 1HELEMENT NO=515)

DO 20 J=1sNCOLN

WRITE (65300 JsSXX{J) sSYY () s SXY (J) s SMAX (ST s SMIN(JI)
FORMAT(//35Xs1555E2265)

CONT IHUE

RETURN

END

130

SUBROUTIikE Ut FLINT s NCULN e XEL siet!

Y T VA ) R A P S VA VR A
I R S T R S % 3 K * XK K O* K KX

SUBROUTINE FOR CALCULATING Trk ELemENT NOLDE VEFLECTIONS  IN
COORDINATES FROM THE SYSTL“‘UEFLECTIOJS

Y Y N (RY: PR VR VR a3 o By N S A 1
E R S T I N - FI N T - S R R R S S

DIMERNSION NI1(200s3) sXEL(1892)sTLIOs6) sOX{6s21 suXT(652)

L N M
O

ELEMENT

N,
E

DIMENSION NSTART (15) s NENU (154 o FREE (L1001 s TNF (200352937 PP (50052}

DIMENSION X(200s3)sY(2GUs3)
CUMMON 'JOU‘}IH:_L.EI|9E1|(9\/SIJDTHI\TQI\EI\U‘NF‘KCL‘_9TNF9PP9X9Y
0C 5 I=1418
DO 5 J=1«NCCLN
XEL{IeJ)=Coe
DO 15 I=146
DO 15 J=1g¢MNCOLN
DX{1sJ}=0s
DO 20 1=146
DO 20 J=1s6
TL(1sJ)=00¢
DO 26 J1=1463
DO 26 JJ=193
TLLIT o JJY=TNF(NMsTTsJd)
TA=T11+3
JA=JI+3
TLITAsJA)=TNF(NMsITsJJ!
DO 25 1=1s3
LL=NI (NMms1)
IF({LLeEQeQ) GO TO 25 ' o
MFI=NFREE(LL)
MA=NSUM(MNFRFE,LL=1)
DO 27 11=1sNF1
IL=1I1+MA
DO 27 KK=1sNCOLN
DX(ITs&KI=PP{IL KK}
IF(NFleEQeS! GO TO 30
DO 28 II=1sNF1
DO 28 JJ=1+NCOLN
CXT(I1oJJ) =00
PO 28 KXK=1oNhF1
AT(II»JJ’«D(T(II9JJ)+TL(II-ﬁk"OA(ﬁheJJ’
DO 29 II 1sNF1



3

DO 29 JJ=1sNCOLN
DX(I1sJJ)=DATLIT s JJ)
DO 31 II1=1sWNF1
=114+(1-11%6 _ ‘ 131
DO 31 JJ=1sNCOLN
XEL(INgJJI)=DX(ITsJJ)
CONT INUE
RETURN
END

SURROUTINE TRANF (NMsST!
DIMENSION %T(lSslB)sTtD(ldslﬁiaTST(18918)9TP(393)9AL(593’9TA(J9j1

DIMENSTON NSTA%T(lB)9thU(l)’sAFRtt(lUU)9TNF(Zuu9 531 sPP{500s2)

DIMENSION X(2C0s3)aY(200s3192(2 3) s ALMD(343)
COMMCHN NOL»REL&~9LF9V940TAKT9htNu91 FRELsTNFePPsXsY ol o ALMD
TRANSFORMAT 10N OF ELEMENT STIFFMESS MMATRIX EROMN LOCAL
TO PLATE COGRDINATE SYSTEMS, .

DO 1 I=1,18

DO 1 J=1618

TED(IsJ)=Uou

DO 2 1=1,3

DO 2 J=1,.3

TH(IsJl=UeU

AL(IsJ)=000

CORTINUE

DO 3 1=143

DO 3 J=193

AL(T o J)=ALMD(Js 1)

T»(ng)MTIF(N.alaJ)

CONTINUE
CALL PRUMAT(TiNsALsTAS3s393}

UG 4 1=143 '

DO & J=1s3

DO 4 K=1s6

N=(K=1)%3

TED(I+Ns J+HNI=TA{I o« J)

CONTINUE

CALL PRDMATI(TEDSSTsTSTs18418518)

UO / I—islu

DO 7 J=1s18

ST(I1sJ)=Cel

DO 7 K=1518 }
ST(1eJ)=5T (Il +TST{IoKIXTED(J K
CCOMTINUE

RETURMN

EMD

Co TOT 0050
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A446351.C6000sT3009CMT750000 . _ WIN MeMe

RUN(S)

SETINDF e
LOADER(PPLOADR)
REDUCE

LGOo
t

6400 END RECORD
PROGRAM TST (INPUTsQUTPUTsTAPES=INPUT»TAPE6= OUTPUTsTAPEl9TAPE29

1TAPE4L)

N OOOON

aNaNaNe!

10

13

14

12

® =
—

aNaNaRaNa)

aNe!

aNal

***-X-*******%*******%%%%***%*****%{-
PROGRAM TO CALCULATE DEFLECTIONS AND STRESSES IN A SHELL BY
THE METHOD TRIDIAGONALIZATION
MAIN PROGRAM |
P A R IR B IR IR S R T R R S S
DIMENSION NSTART(15) sNEND(15) sNFIRST(15)sNLAST(15) sNFREE (100!}
DIMENSION PK(656)sBK(959)55T(18518)
DIMENSION XEL(1852)
DIMENSION A(553555)5C{55555)
DIMENSION THICK(200)sNI{20053)5X(20053)5Y(20053)
DIMENSION PP(50052) s TNF(2005353) :
DIMENSION HH(15)
COMMON NODsNELEMsEMsVsNSTART sNENDsNFREE s TNFsPP sX oY

READ(S5s14) MPROB :
¥R O ¥ K X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ O ¥ X X K K ¥ ¥ X ¥ X ¥ X ¥ X X ¥ X ¥

TOCHER POLYNOMIAL IS USED As THE DISPLACEMENT FUNCTIONe.
READING DATA ,
*%*x*%%*%****w***%***%%*—%*—V**—‘,&%-}é%*
DO 1500 NTL=1sNPROB

WRITE(659) NTL

FORMAT(1H1 510X s *PROBLEM NOc%*s15s5//)
READ(5510) NPARTaNODsNELEMsNCOLNsNé»hXL

FORMAT (2014)
NR 1S THE TOTAL NUMBER OF DEGRtES OF FREEDOM FOR THE STRUCTURE

NR=N&6%6+ (NOD-N6)*5
READ(5513) EMsV

FORMAT(2E1563)

READ(5510) ({NSTART(I)sNEND(I?sNFIRST{I)sNLAST(I)}} 1= 19NPART)
READ(5s14) (NFREE(I)sI=1sNOD)

FORMAT (4012)

DO 12 I=1sAR

DO 12 J=1sNCOLN

PP(IsJ)=0c

DO 8 II=1sNXL

READ(5511) (Is(PP(IsJ)sJ=1sNCOLN))

FORMAT(14:5F10.0)

CONT INUE
*%***"****')’r**w%*****%************
INPUT SIMPLIFIED FOR THIS STRUCTURE

IN THE GENERAL CASE THE NODE NUMBERS NI AND THE TRANSFORMATION
MATRICES MUST BE DIRECTLY READ IN ,
**-X—**-X-X—*%(—%-XX%%%%X—-X--X—%’:**"****%***%%

NLN=NPART*16
NLN IS THE TOTAL NUMBER OF ELEMENTS ON THE LATERAL SJRFAE OF THE

B

*.

"PYRAMID

NLNN=NLN+1 ‘
READ THE NODE NUMBERS FOR THE ELEMENTS IN THE FIRST TWO PARTITION
FROM BOTTOM

READ(5516) {{NI{IsJ)sJ=153)91=1522)




16

17
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FORMAT (4012) , | : |
CALCULATE THE NODE NUMBERS FOR THE REMAINING ELEMENTS ON THE
OUTER SURFACE | |

DO 17 NPT=3;NPART.

DO 17 1=153

" DO 17 J=1s516

18

(4]

19

20

21

25

22

KK=J+{NPT-2)%16
K=J+{(NPT-11%16
NI(KsT)=NI(KKs1)+8
READ THE NODE NUMBERS FOR THE LAST-E SIX ELEMENTS
READ(5:36) ((NI(IsJ)sJd=193),I=NLNNsNELEM)
THICKNESS OF ALL THE ELEMENTS EXCEPT THE LAST SIX ELEMENTS .12%
DO 18 F=1,NLN
THICK(I}=0.125
CONT INUE
THICKNESS OF THE LAST SIX ELEMENTS IS 0.5 INCHES
DO 19 I=NLikNsNELEM ‘
THICK(I}=0.5
CONT INUE 4
READ THE ANGLES OF INCLINATIONS OF THE FOUR FACESs THE BASE WIDTi
AND THE TOTAL HEIGHT. ’ o :
READ(5:201ATsBTsCTsDTsHs AA
*FORMAT(8F10.C) _ A
CONVERT ANGLES INTO RADIANS
ATR=AT%3,1415926/180.
BTR=8BT*3.1415926/180.
CTR=CT%3.1415926/180.
DTR=DT*3.1415926/180.
ATR=ATAN(48./31.5) -
BTR=ATAN{48¢/4.) _
CTR=31416-ATAN(48./12.)
DTR=ATAN(48./15:5) :
READ THE HEIGHTS OF THE PARTITIONS
READ(5s2C) (HH{I)sI1=1sNPART]I
CALCULATION OF ELEMENT COORDINATES
BB=AA ’ ‘ :
‘DO 21 NPT=1,NPART .
NST 1S THE FIRST ELEMENT IN EACH PARTITION
NST=1+(NPT-1)%16
HHH=HH (NPT}
IF(NPT.EQ.1) GO TO 22
HP=HH(NPT~-1)
AA=AA~HP%COS(DTR)/SIN(DTRI~HP*COS(BTR) /SIN(BTR)
BB=BB—~HP*COS{ATR) /SIN(ATR) ~HP*COS(CTR)/SINICTR)
CALL SUBROUTINE TO CALCULATE THE NODAL CC-ORDINATES FOR EACH TRI
CALL FORT{AABB:ATRsBTRsCTRsDTRsHHIHsNST! : :
CONT INUE |
READ THE NODAL CO-ORDINATES FOR THE LAST SIX ELEMENTS,
READ(5525) {(X(I5J)sJ=1353)1=NLNNsNELEM)
READ(5925) ({Y(IsJ)sJ=153)5I=NLNN,;NELEM)
FORMAT (8F10,0) '
ROTATE THE TOP PLANE BY 30 DEG.
TT=3.1415296/60 '
DO 26 NM=NLNN,NELEM
DO 26 I=153
XN=X{NMs I ) #COSCTT)+Y (NMs IP2SIN(TT)
YN==X(NMs T ) *SIN(TT)+Y(NMs I %COS(TT!
YINMsT Y=¥YA : “



26

27

28

29

30

32

33

aNaNal
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401

403
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Y(NMsI)}=YN

CONTINUE

INITIALIZE THE ARRAY

DO 31 NM=1¢NELEM

DO 31 1=1s3

DO 31 J=1,3

TNF(NMsIsJ)=0¢

TRANSFORMATION MATRIX FOR FACE 1

DO 27 I=1,4

DO 27 NM=IsNLNs1l6

TNF (NMs1s2)=~10

TNF{NMs2+1)=COS(ATR}

TNF{NMs2s3)=SIN(ATR)

CONTINUE

TRANSFORMATION MATRIX FOR FACE 2

DO 28 1=5.8

DO 28 NM=IsNLNs16

TNFI{NMelsl)=1,

TNF{NMs2s2)=COS{BTR)

TNF(NMs293}=SIN(BTR)

TRANSFORMATION MATRIX FOR FACE 3

DO 29 1=9,12

DO 29 NM=1sNLNs16

TNF(NMs1s2)=1e

TNF (NMs2512)==COS(CTR)

TNF (NMs23s3)=SIN(CTR)

TRANSFORMATION MATRIX FOR FACE 4

DO 30 I1=13416

DO 30 NM=1sNLNs16,

TNF(NMslsl)==~1s

TNF (NMs2+2)==COS(DTR)

TNF(NMs2s3)=SIN(DTR)

TRANSFORMATION MATRIX FCR THE LAST SIX ELEMENTS

DO 32 NM=NLNNsNELEM

TNF{NMs1s1)=COS(TT)

TNF (NMels2)=SIN(TT)

TNF(NMs2s1)1==SIN(TT)

TNF (NMs2s2)=COS(TT)

TNF (NMs3s3)=1,

CALCULATE THE THIRD ROW OF EACH TRANSFORMATION MATRIX IN TERMS
OF THE ELEMENTS OF THE FIRST TWO ROWS

DO 33 NM=1sNELEM

TNF (NMs3s1)= TNF(hMal92)*TNF(NMsZaB)—TNF(NM9292)*TNF(NWa193)
TNF (NMs3s2) =TNF(NMs2 s 1) #TNF (NMs1s3)=TRF (NMs1ls1)*TRNF (NMs2s3)
TNF (NMs393)=TNF(NMs1 sl )¥TNF {NMs2s2)~TNF (NMs25s1)*¥TNF (NMs1,s2)
FA N B S A T B T R RS R I I I I R S R
PRINTING DATA

P A T T A SR R T R R - R N R N S N N S S S
WRITE(6s400) H

FORMAT (10X s 20HHEIGHT OF STRUCTURE=3sF10e 3)

WRITE(654C1l) EMsV

FORMAT (/510X s 19HMATERIAL PRUPERTIES;//glOX,ZdE—9&12 445Xy 2HV=
1E1204)

WRITE(65403) NPARTsNODsNELEMsNCOLNyNXL

FORMAT(// 5 lJXsZBHNPARTsNOD»NELEWgNCOthNXLs/95140)
WRITE(6s402) (HH(I),1=1sNPART)

FORMAT (/10X s25HHEIGHTS OF PARTITIONS ARE /s (6F1563))

DO 442 J=1sNCOLN :

x

#*

X

*
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443

446
442

410

406
405

430

431

425

437
436

8888

38

37
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DO 442 NL=1sNR

IF(PP(NLsJ/elEelc0E=8) GO TO 442
WRITE(6s443) J

FORMAT (/s5X s *EXTERNAL LOAD VECTOR NQOe¥516)
WRITE(6s446) PP(NLsJ)sNL
FORMAT(5XsF15e4s%LBS AT%516])

CONT INUE

IF(NTLeNEel) GO TO 8888

WRITE(6s410)

“FORMAT ( 1H1 55X s 29HNODAL PATTERN AND COORDINATESs//3s5Xs11HELEMENT NG
1es10Xs2HNI 332X s1HX 945X s1HY s/ /)

DO 406 1=1sNELEM

WRITE(6s405) Is(NI(IaJ)9J=193j9(X(IsJ)aJ:193)9(Y(I9J19J=193)

CONT INUE

FORMAT(16510X531856F153)

WRITE(6s430) (NFREE(I),I=1sNOD)

FORMAT(//52015}

WRITE(69431) ((NSTART(I1)sNEND(I)sNFIRST(I)sNLAST(1))sI=1sNPART)
FORMAT(//+4125) '

WRITE(6s425) ATRsBTRsCTRsDTR

FORMAT (/7 s5X s 10HTHE ANGLESs//s4E20.3)

DO 436 NM=1sNELEM

WRITE(6s437) ((TNF(NMsIlsJd)sJ=133),51=143)

FORMAT(9F1363s/)

CONT INUE

KV T T R A O A T R K R - I N I R S NS R R S S
FORMATION AND ASSEMBLY OF MATRICES

A T AR I IR TR R NN G R T
REWIND 1

REWIND 2

REWIND 4

DO 35 NPT=1sNPART

NA=NSTART(NPT)

NB=NEND (NPT

MA=NSUM(NFREE s NA—1)

MB=NSUM(NFREE s NB )

MI=MA+1

M1=MB~MA

IF (NPToGE«NPART) GO TO 39

NC=NEND(NPT+1)

MC=NSUM{NFREE s NC)

M2=MC~MB

GO TO 5 -

M2=M1

DO 37 I=1sMl

DO 38 J=1sMl

Al sJ)=00

DO 37 J=1sM2

C(IsJ)=00

CONTINUE

LA=NFIRST(NPT) S

LB=NLAST(NPT)

DO 36 NM=LAsLB

X1=X(NMs1) ‘ é
X2=X{NMs2) ;
X3=X(NMs3) _ |
Y1=Y(NMs1) - ;
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Y3=Y{NMs3)
T=THICK (NM) .
CALL PLAN(Xl’X29X39Y19Y29Y39EM9V9PK9T)
T=THICK(NM)
CALL BEND(X19X29X3s5Y1sY25Y3sEMsVsTsBK)
CALL GROUP(STsPKsBK)
CALL ASSEBL(NMasAsCsSTsNI «NPT 9NPART)

36 CONT INUE
WRITE(2IMLoM2s ((A(IsJ) sI=1sM1)oJd=1sML1) s ((C(IsJ)sl=1eM1)sd=1sM2)s
1((PP(IsJ)sI=MIsMB)sJ=1sNCOLN)

35 CONTINUE

C R I T A R - - N - SR N - S S - S S SN S - S
C THE MATRICES ARE FORMED AND WRITTEN IN TAPE 2
C P R I S - - S SR S S N S N - NS S - N SN S N ST
REWIND 1
REWIND 2
REWIND 4
C CALL SUBROUTINE TO SOLVE THE TRIDIAGONAL EQUATIONS
CALL RECUR({AsCsNPART sNCOLN)
REWIND 1 ]

DO 200 MM=1sNPART
NPT=NPART+1-MM
NA=NSTART(NPT)
NB=NEND(NPT)
MA=NSUM{(NFREE sNA=1)
MB=NSUM{NFREE sNB)
MA=MA+1
C READ SYSTEM DISPLACEMENTS FROM TAPE 1

READ(1) ((PP(IsJ)sl=MAsMB) sJ=1sNCGLN)

200 CONTINUE ‘
WRITE(65415) ‘

415 FORMAT(1H155X3s38HTHE STRESSES SXXsSYYsSXYsSMAXsSMI ARE s/ /)

C AR e TS S RS S R R L R R e e e
C CALL SUBROUTINE TO CALCULATE ELEMENT DISPLACEMENTS AND STRESSES
C FHBRFRFH R R RGN EFREH RN IR, K333 3 309 5 56 9 3636 3336 3636 038 2% 30 3636 34 36 %

DO 215 NM=1sNELEM

CALL DEFL(NIsNCOLNsXELsNM)

T=THICK(NM)

CALL STRESS(NCOLNsXEL sTsNii)
215 CONTINUE
1500 CONTINUE

STOP

END

FUNCTION NSUM(NFREEsNN)
C SUBPROGRAM TO FOR CALCULATING THE TOTAL NO. OF DEGREES OF FREEDOM
C UPTO A PARTICULAR NCDE

DIMENSION NFREE(100)

NSUM=0
IF (NNcEQoO) RETURN
b0 10 I=1sNN
NSUM=NSUM+NFREE (I}
10 CONT INUE
RETURN : N
END
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A44?3sCMlZUuuU;T2uuv, ‘ ‘ ~ WIN MeMo
RUNTS) :

SETINDF.
LOADER{PPLOADR)

REDUCE »

¢ 6400 END OF RECORD

1TAPES) _
PROGRAM TST (INPUTsQUTPUTsTAPES=INPUT s TAPE6=0UTPUT s TAPELs TAPE2,

C }*****1\“***********’X‘**%**%*********

C [COWPER POLYNCMIAL IS USED AS THE DEFLECTION FUNCTION.

C ! PROGRAM TO CALCULATE DEFLECTIONS IN A SHELL BY

C ! THE METHOD TRIDIAGONALIZATION

C . MAIN PROGRAM ]

C P T TR N R SR R I N A A A 2 R T R S R
DIMENSION NSTART(15) sNEND(15)sNFIRST(15)sNLAST(15)sNFREE(1QU)
DIMENSION PK(6+6) sBK(18518) sST(27:27)sM(20)sN(20)sRTF(9:9)
DIMENSION HA(15)

DIMENSION PP{689+s2) s TNF({16635353)sTHICK{166):NI(166:3)sX(16643)

DIMENSIGCN Y(166s3)

DIMENSION A{72,72)sC(72+s72)sTHITA(166)

COMMON NODSNELEMsEMsVsNSTARTsNEND s NFREE s TNF sPP

COMMON AsCoNIsRTFsXsY

READ(5514) NPROB
C **'X'*'X-'X")\"A‘*'X'**%***%**%*****%**%%*%*
C * THE DEFLECTION OF THE FOLweD PLATE STRUCTURE 1S5 FOUND

PI=3¢14159206

C BY THE COWPER POLYNOMIAL &

C READING DATA

C' PR R 2 T TR RN RS R R T T R T S S S R S R

DO 15V0 NTL=1sNPROB
WRITE(659) NTL
9 FORMAT(1H1 s LUuX s *PROBLEM NOe¥*9155//)
READ(5514) (M(I)s1=1s20)s(N(I)sI=1+20)
. READ(>510) NPARTsNODsNELEMs NCOLNs N9 s NXL
10 FORMAT (2014) :

C ~ NR IS THE TOTAL NUMBER OF DEGREES OF FREEDOM FOR THE STRUCTURE
NODE=NOD-8 _

C NOe OF EFFECTIVE NODESsEXCLUDING THE ORIGINAL ASSUMED NODES

C AT THE BASEs MAKING THE BASE RIGIDLY FIXED. ~
NE9=N9-4

NR=NE9%9+ (NODE~NE9 ) %844
NPARD=NPART+1 _
NO. OF PARTITIONSs STARTING FROM THE BASE WHICH IS ASSUMED
NOT FIXEDo
15 BERRAT 12215541V
READ (551U} (ANSTART (1) sNEND(I)sNFIRST(I}sNLAST(I))sI=1sNPARD)
READ{5s14) {(NFREE(I)sI=1sNOD)
14 FORMAT(4012)
DO 12 I=1sNR
. DO 12 J=1sNCOLN .
12 PP(1sJ)=0,
DO 8 II=1sNXL
READ(5511) (Is{PP(IsJ)sJ=1sNCOLN))
11 FORMAT(I4s5F 100}
8 CONTINUE :
C L2 - A R - ST R RN N S - )
C INPUT SIMPLIFIED FOR THIS STRUCTURE

ala)

b3
4
*
b4
Sk
3
3k
K
sk
b3
o
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IN THE GENERAL CASE THE NUDE NUMBERS NI AND THE TRANSFORMATION
MATRICES MUST BE DIRECTLY READ IN
**%%*%’r**%**%***%*%%***%*****-)’:-X—-X-***
NLN=NPART*16
NLN IS THE TOTAL NUMBER OF ELEMENTS ON THE LATERAL SURFAE OF THE
PYRAMID
NLNN=NLN+1
READ THE NODE NUMBERS FOR THE ELEMENTb IN THE FIRST TWO PARTITIONS
FROM BOTTOM
READ(5516) ({NI{(IsJ)sJ=1s31sl=1+16)

16 FORMAT (4012)

CALCULATE THE NODE NUMBERS FOR THE REMAINING ELEMENTS ON THE

OUTER SURFACE

DO 17 NPT=ZsNPART

DO 17 1=1,3

DO 17 J=1s16

KK=J+(NPT=-2) %16

K=J+(NPT-1)%16

17 NI(KsI)=NI{KKsI)+8

C READ THE NODE NUMBERS FOR THE LAST SIX ELEMENTS
READ(5516) ((NI{IsJ)sJ=1s3)sI=NLNNsNELEM) :

! THICKNESS OF ALL THE ELEMENTS EXCEPT THE LAST SIX ELEMENTS IS o125
DO 18 I1=1sNLN '
THICK(1)=Ue125

18 CONTINUE

: THICKNESS OF THE LAST SIX ELEMENTS IS 0.5 INCHES
DO 19 I=NLNNsNELEM :
THICK({I)=Ue5

19 CONTINUE :

. READ THE ANGLES OF INCLINATIONS OF THE FOUR FACESs THE BASE WIDTH

g AND THE TOTAL HEIGHT ‘ '
READ(5s20)AT sBTsCTsDT sHsAA

20 FORMAT(8F1040)

DO 1115 NM=13sNELEM

1115 THITA(NM)=U.U

g CONVERT ANGLES INTO RADIANS
ATR=AT*3,1415926/180,
BTR=BT*3,1415926/180.
CTR=CT#3,1415926/180.
DTR=DT%3,1415926/18U
ATR=ATAN(48¢/3145)
BTR=ATAN (480 /4o )
CTR=361416-ATAN(48%/120)
DTR=ATAN(48:/1565)

. READ THE HEIGHTS OF THE PARTITIONS
READ(5520) (HH(I1)s1=1sNPART)

© . CALCULATION OF ELEMENT COORDINATES
BB=AA
DO 21 NPT= 19mPART .

. NST IS THE FIRST ELEMENT IN EACH PARTITION

NST=1+(NPT~1)%16

HHH=HH (NPT _

IF(NPToEQoel) GO TO 22

HP=HH(NPT-1)

AR D I

LA S

2

L §

LN B

AA=AA—HP%COS (DTR)/ZSIN(D RECOSIBTR)/SIN(BT

AAZABTHREEOSIRIRIZ2INIR ¥§ pxcOZIEIR]/SIRIBY

- CALL SUBROUTINE TO CALCULATE THE NODAL CO~ORDINATES FOR EACH TRIANGLE
22 CALL FORT(AAsBBsATRs>BTRsCTRsDTR s HHHsNST )

21 CONTINUE ,
Z READ THE NODAL CO—-ORDINATES FOR THE LAST SIX ELEMENTS



[aNaNe
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READ(5525) ({X{IsJ)sJd=153)sI=NLANsNELEM)
READ(53525) ((Y(IsJ)sJ=153)s I=NLNNsNELEM) ‘ 139
FORMAT(8Flusu) ‘

INITIALIZE THE ARRAY _ \

DO 31 NM=1sNELEM

DO 31 I=193

DO 31 J=153

TNF{NMsIsJ)=0Uo )

TRANSFORMATION MATRIX FOR FACE 1

DO 27 1=1:4

DO 27 NM=IsNLNs16

TNF{(NMsls2)=-1c

NEINM3 25 5 25ORTATR)

CONTINUE

TRANSFORMATION MATRIX FOR FACE 2
DO 28 I=5s8

DO 28 NM=1sNLNs16

TNF(NMslsl)=1o
TNF(NMs252)=COS{BTR)
TNF({NMs2s3)=SIN(BTR)
TRANSFORMATION MATRIX FOR FACE 3

DO 29 1=9s12
DO 29 NM=1sNLNs16

TNF (NMs1s2)=1a

TNF (NM9251)==COS(CTR)

TNF(NM»253)=5IN(CTR)

TRANSFORMATION MATRIX FOR FACE 4

DO 30 1=13s16

DO 30 NM=IsNLNs16

TNF (NMs1s1)=~1,

TNF (NM5252)=-COS(DTR)

TNF(NMs253)=SIN(DTR)

TRANSFORMATION MATRIX FOR THE LAST EIGHT ELEMENTS

DO 32 NM=NLNNsNELEM

D032 1=153

ORETH 113 =000

IF(IoEGQed) TNF(NMsIsJ) =160

CONT INUE

CALCULATE THE THIRD ROw OF EACH TRANSFORMATION MATRIX IN TEKMS
OF THE ELEMENTS OF THE FIRST TwO ROWS

DO 33 NM=1»,NELEM

TNF (NMs351)=TNF (NMs152)%TNF(NM>253)—TNF (NM3s252) *TNF (NHs1s3)
TNF (NMs352)=TNF(NMs2s1)*TNF (NM»>153)=TNF (NMs1s1) % TNF (NMs253)
TNF (NMs353)=TNF (NM>1s 1 ) ¥THF (NMs252)=TNF (NMs 25 1) % TNF (Niis 152)

2 R TR R T S I SN R R I CHEE - R R SR S R S
PRINTING DATA |

PR T TSR - N R SR N R - R N N N R T R
WRITE(6540U) H

FORMAT (1UXs2UHHEIGHT OF STRUCTURE=5F1043)

WRITE(65401) EMsV

FORMAT (/5 1UX s I9HMATERIAL PROPERTIESs//s10Xs2HE=sE12455Xs2HV=s
1E12:4)

WRITE{654U3) NPARTsNODsNELEMs NCOLNsNXL

FORMAT (//31UXs25HNPART s NOU s NELEM s NCOLNsNXL 5 /55120)
WRITE(654U2) (HH{I)sI1=1sNPART)

FORMAT (/5 1UX s 25HHETGHTS OF PARTITIONS AREs/ s (6F1563))

DO 442 J=1sNCOLN

DO 442 NL=1sNR



IF(PP(NLsJ)eLEolc0E=8) GO TO 442
WRITE(65443) J
443  FORMAT (/55X *EXTERNAL LOAD VECTOR NOo¥*s16) 140
WRITE(69446) PP(NLsJ) sNL
446 FORMAT(5XsFLl5e4s*LBS AT*516)
442 CONTINUE
IF(NTLoNE«1) GO TO 8888
WRITE(65410)
410 FORMAT(1H1s5Xs29HNODAL PATTERN AND COURDINATES»>//35Xs11HELEMENT NO
los1UXs2HNI 932X s IHX 545X s 1HY s/ /)
DO 4U6 1=1sNELEM -
WRITE(654U5) Ts(NI(IsJ)sJ=153)s(X{IsJ)sJ=1s3)s(Y(IsJ)sJ=1s3)
406 CONTINUE : i
405 FORMAT(I1691UX3531856F1563)
WRITE(6543U) (NFREE(I)s1=15sNOD)
WRITE(65430) (NFREE(I)sI=1sNODE)
430 FORMAT(//520G15)
WRITE(65431) ((NSTART (1) sNEND(I)4NFIRST(I)yNLAST(I)) sI=1sNPARD)
431 FORMAT(//s4125)
WRITE(65425) ATRsBTRsCTRsUTR
425 FORMAT(//3s5Xs1UHTHE ANGLESs//s4E20¢3)

C XX X ¥ % ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ X ¥ X O X o ¥ X % X X ¥ % K ¥ ¥ O K X
C FORMATION AND ASSEMBLY OF MATRICES
C ¥ K OH X F K R ¥ O ¥ X ¥ ¥ ¥ ¥ X X ¥ ¥ ¥ ¥ X ¥ ¥ ¥ F ¥ ¥ ¥ X X x ¥
8888 REWIND 1
REWIND 2
REWIND &

DO 3% NPT=1sNPARD
NA=NSTART (NPT}
NB=NEND(NPT)

MA=NSUM(NFREE s NA-1sNPT)

MBszUM(NFREE9NBsNP1)

=MA+1
Ml MB~-MA ’

IF(NPT.GE.NPARD) GO TO 39
NC=NEND(NPT+1)

MC=NSUMINFREEsNCsNPT)

M2=MC-Mb
GO T0O 5
39 M2=M1
5 DO 37 I=1oMl

DO 38 J=1sM1
38 Alled) =0,
DO 37 J=1sM2
Cl{led)=Uo
37 CONTINUE
LA=NFIRST(NPT)
LB=NLAST(NPT)
DO 36 NM=LAsSLB
IFCABSIY (NMs2)=~Y(NMs1l))elTe louE 8) GO TO 11153
IFCABSIX(NMs2)=X(NMs1))elTcleCOE-8) GO TO 1112
THITA{(NM)=ATAN{(Y(NMs2)=Y (NMs 1))/ (X{NMs2)=X(NMms1)))
S=ESURTIIXENM a2 ) =X {NMs L) 1 ¥%2+(YINMo2) =Y (NMs 1)) *%2)
P=((X{NMs2)—X(NMs3) )% (X{NMs2)=X(NMeI))+(Y{NMs2) =Y (NMs3) )% {Y(NMs2)~
1Y{NMs1}))/S :
P=ABS(P)
Q=0 (XINMs3)=XINMs L} I *¥(X{INMa 2 =X INMs L) Y4+ (YL{MNMs3) =Y (NMs1) ) ¥ (Y INMe2) -
IY(NMs1))Y/S
Q=ABS(Q)
RE=CIXINMe2)~X{INMs 1) )% (Y (NMo3) =Y (NMesL1))=({X(aMs3)-X{NMs1}I*¥(Y(NMs2) -
IY(NMs1}))/S '
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1112

1114

36

565

35
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R=ABS (R} ' ‘
PsQsR-THE MAGNITUTE OF THt ELEMENTSHENCE THE ABS. VALUES ARE
CONSIDERTDo . .
GO TO 1114
P=X{NMs2)—X({NMs3)
P=ABS(P)
Q=X({NMs3)—=X(NMs 1)
Q=ABS{(Q)
R=Y(NMs3)
R=ABS(R)
S=ABS(P+Q)
GO TO 1114
P=Y(NMs2)-Y {NMs3)
P=ABS (P)
Q=Y(NMs3)—=Y {NMs 1)}
Q=ABS(Q)
R=X{NMs1)-X(NMs3) . '
R=ABS(R)
S=ABS(P+Q)
TRANSLATION AND ROTATION OF AXES ARE CONSIDEREDe
STIFFNESS MATRIX OF THE ELEMENT I TRANSFERRED TO THZ PLATE COORDINMATE
SYSTEM BEFORE ASSEMBLY.
THE COURUINATES OF THE LOCAL SYSTEM ARE OBTAINED wvY TAKING THE APPRGE
VALUES OF THE VARIBLES P+Qs AND Ro
X1==Q
X2=pP
X3=0Uo
Y1=0Uoe
YZ2=Uoe
Y3=R
T=THICK({NM)
CALL PLAN(XlsXZsz»YleZsYDsEMaVaPK )
T=THICK{NM)
CALL BEND(PsQsRsMmoNsVeEMsT sBK)
CALL GROUP(STsPKsBK) '
ALPHA=THITA(NM)
CALL TRANF1(ALPHASST)
CALL ASSEbL(NMsSTsNPT snNPARD)
CONTINJE
IFI(NPTeNEel) GO TO 565
CALL ELIM(M1osMZ )
Ml=¢4
MB=4
WRITE(2)MY M2 ((A{TIsJ)sI=lsMl)od=1sMl)s ((ClIsJ)sl=19MLl)sJd=1sM2)s
1(PP{Iod)sI=MIsMB)osJ=1aNCULN)
CONTINUE '

P R E R EEEE I IR T S U T
THE MATRICES ARE FORMED AND WRITTEN IN TAPE 2

¥R K K X ¥ K % ¥ ¥ K X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ X ¥ X ¥ ¥ ¥ ¥ ¥
REWIND 1 -

REWIND 2

REWIND &

CALL SUBRGUTINE TG SOLVE THE TRIDIAGONAL EWUATIONS
CALL RECUR {NPARDsNCOLN)
CONTINUE

STOP
END

CD 10T u3u0
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APPENDIX VII - LIST OF EQUIPMENT
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LIST OF EQUIPMENTS

1. OBLIQUE TRUNCATED PYRAMID LIKE STRUCTURE.

2. STORAGE OSCILLOSCOPE (TYPE 564).

3. OSCILLATOR (TYPE DISA 51E02 555).

4. REACTANCE CONVERTER (TYPE DISA 51E01).

5. STRAIN INDICATOR (TYPE BUDD MODEL P-350).

6. MICROMETER PROXIMITY TRANSDUCER (TYPE DISA 51D11).
7. STRAIN GAGES AND ALLTED EQUIPMENTS.

8. SWITCH AND BALANCE UNITS (SERIAL NO. 005520).
9. TURNBUCKLE. |

©'10. LOAD CELL WITH WIRE CORD.

11. TINIUS OLSEN TESTING MACHINE (NO. 66712).

12. CDC 6400 DIGITAL COMPUTER.






