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Lay Abstract

High-end chemical products, ranging from pharmaceuticals to specialty plastics, are

key to improving quality of life. For these products, production quality is more

important than quantity. To produce high quality products, industries use a piece

of equipment called a batch reactor. These reactors are favorable over alternatives

because if any single batch fails to meet a quality specification, it can be easily dis-

carded. However, given the high-value nature of these products, even a small number

of discarded batches is costly.

This motivates the current work which addresses the complex topic of batch quality

control. This task is achieved in two steps: first methods are developed to model

prior reactor behavior. These models can be applied to predict how the reactor

will behave under future operating policies. Next, these models are used to make

informed decisions that drive the reaction to the desired end product, eliminating

off-spec batches.
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Abstract

Batch reactors are often used to produce high quality products because any batch that

does not meet quality specifications can be easily discarded. However, for high-value

products, even a few wasted batches constitute substantial economic loss. Fortunately,

databases of historical data that can be exploited to improve operation are often

readily available. Motivated by these considerations, this thesis addresses the problem

of direct, data-based quality control for batch processes. Specifically, two novel data-

driven modeling and control strategies are proposed.

The first approach addresses the quality modeling problem in two steps. To begin,

a partial least squares (PLS) model is developed to relate complete batch trajectories

to resulting batch qualities. Next, the so called missing-data problem, encountered

when using PLS models partway through a batch, is addressed using a data-driven,

multiple-model dynamic modeling approach relating candidate input trajectories to

future output behavior. The resulting overall model provides a causal link between

inputs and quality and is used in a model predictive control scheme for direct quality

control. Simulation results for two different polymerization reactors are presented

that demonstrate the efficacy of the approach.

The second strategy presented in this thesis is a state-space motivated, time-

invariant quality modeling and control approach. In this work, subspace identification

methods are adapted for use with transient batch data allowing state-space dynamic

models to be identified from historical data. Next, the identified states are related
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through an additional model to batch quality. The result is a causal, time-independent

model that relates inputs to product quality. This model is applied in a shrinking

horizon model predictive control scheme. Significantly, inclusion of batch duration

as a control decision variable is permitted because of the time-invariant model. Sim-

ulation results for a polymerization reactor demonstrate the superior capability and

performance of the proposed approach.
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Introduction
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From a broad, historical perspective, chemical engineering is a discipline concerned

with adaptation of chemical procedures, developed at a small scale, to large-scale,

industrial production. Traditionally, focusing on scale-up meant moving batch-wise

lab-scale techniques to higher capacity continuous flow systems. However, a more

recent trend in chemical industries has been a focus on high-value specialty chemical

products. This broad class of products, ranging from pharmaceuticals to high-end

polymers, share the common trait that value is derived from producing relatively low

volumes of high-quality, on-spec product.

The paramount importance of quality in specialty chemical products necessitates

a reconsideration of traditional chemical engineering approaches. Specifically, high-

volume continuous flow systems are not necessary in these low-volume processes.

Furthermore, continuous flow systems introduce problems isolating off-spec product.

In some cases, off-spec product can be mitigated by downstream blending, however

for high end products blending solutions may not be acceptable. As an alternative,

specialty chemical products are produced in industrial batch reactors where off-spec

batches can be easily isolated. However, given the high-value nature of specialty prod-

ucts, substantial economic gains can be achieved by reducing or eliminating off-spec

batches. To that end, this work concerns development of direct batch quality control

methods by adapting well-studied continuous flow modeling and control techniques.

This introductory chapter provides a birds-eye-view motivation for batch control

and a general overview of the contributions made by this work. The purpose of
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this chapter is to serve as a road-map for the contributions herein. With that in

mind, and in an effort to avoid repetition, detailed literature reviews of existing batch

control solutions are relegated to the introductory remarks of each chapter (as they

are relevant to the contributions in those chapters).

A wide variety of batch configurations are used in different industries. In the

course of studies herein, examples as small as a few milliliters, in the case of a protein

PEGylation process, and as large as tens of tons, in the case of a stainless-steel

reactor, were observed. However, all batch processes are characterized by a few key

steps: first, the reactor is initialized with a charge of initial ingredients according to

a specified recipe. Next, a transient (often transforming) process is carried out over a

finite duration of time. Finally, the contents of the reactor are discharged, the reactor

is cleaned, and the process is repeated for a new batch. The transient operation

of these processes is in contrast to continuous flow processes that operate around a

steady-state condition. It this key difference, namely the lack of a steady-state and

the fact that the objective is not necessarily to reach a steady-state, that necessitates

the study of batch control.

Traditionally in process control, the objective is to stabilize operations around a

steady-state operating condition. For batch processes, the lack of a steady-state neces-

sitates a new objective. Fundamentally, this control objective is to reach the desired

product-quality at the end of the batch. However, in practice, this objective of direct

quality control is fraught with a number of difficulties. These include lack of online

3
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quality measurement, limited process inputs, poor process knowledge, and dynamic

issues arising from the large range of operating conditions exposed by these transient

processes. To overcome some of these difficulties, previous batch control approaches

settled for simplified control objectives such as tracking measurable variables. These

simplified approaches are discussed, as they are relevant, in the introduction section

of each following chapter to motivate the contributions therein. However, to address

direct quality control, these difficulties must be understood more explicitly.

A key challenge in batch control is that process inputs are often limited. In this

work, we consider inputs to be anything that can influence the evolution of the pro-

cess. In the context of discretely sampled (digital) control, these inputs can be broadly

categorized into continuous and discrete inputs. In this context, we define continuous

inputs as independently manipulated variables that influence the process evolution

through dynamics. A common continuous input is a heating/cooling jacket that con-

tinuously adds or removes heat from the reaction media. Conversely, discrete inputs

are are independently manipulated variables that occur at one or more instances

through out the batch and cause a discontinuity in process state. An example of this

second type of input is an ingredient addition made some time during the batch.

In general, product quality variables are not available online. These variables,

such as molecular weight distributions for polymerization reactors, are often difficult

to measure because of the often complex chemical nature of specialty chemicals. In

most cases, these measurements become available only after off-line analysis. Online
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measurements are typically limited to easily measurable variables such as tempera-

tures, pressures, and volumes. As a result, direct quality control can only be achieved

by inferring the relationship between these measurable variables and the correspond-

ing product quality.

Another source of difficulty for direct quality control of batch processes is that

there is often a lack of first principles knowledge about these processes. Given the

complex nature of specialty chemicals, the reaction mechanisms used to make them

are often poorly understood. Even in cases where decent first-principles knowledge

of reactions is available, carrying out the designed experiments necessary to uniquely

identify parameters for a reliable first-principles model is usually prohibitively expen-

sive. This is especially true considering the wide range of operating conditions over

which such a model would need to be valid to be applied for a transient batch reactor.

Previous contributions to solve the challenges discussed above focused on the use of

latent variable approaches. These contributions used statistical, time-indexed models

to describe variance in process measurements and provide input movement policies.

Further discussion of these latent variable approaches is presented in the subsequent

chapters of this thesis. (Particularly see Chapter 4 which devotes an entire section to a

detailed analysis of one latent variable modeling and control approach.) While these

methods have been proven successful through a number of industrial applications,

their time dependence limits their performance in some key situations.

The challenges for direct quality control discussed above motivate the key objec-
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tives of the work presented in this thesis. This objective can be phrased concisely as

follow: to develop data-driven modeling and control methods capable of using avail-

able online measurements and inputs to reject disturbances and drive batch processes

to a desired quality set-point. This thesis presents two novel approaches to address

this objective. These two approaches are developed and discussed over the next four

chapters, each of which contains a journal paper published on the subject. The re-

mainder of this introduction provides a brief overview of each of these chapters and

discusses their novel contributions.

The first manuscript included in this work, in chapter 2, addresses a fundamental

problem with state-of-the-art latent variable approaches. These approaches use pro-

jection to latent spaces (PLS) models to relate process measurements to batch quality.

To do this, measurements from the entire duration of a batch are concatenated into a

single vector and subsequently multiplied by appropriate time-varying coefficients to

achieve quality predictions. Apply these PLS models in a batch control framework re-

quires quality predictions to be made before measurements from the end of the batch

become available. In this contribution, the problem is addressed by using a previously

developed multiple-model dynamic modeling approach to make predictions of the fu-

ture process measurements based on the candidate input trajectory. This method

provides a causal way to relate candidate input trajectories to output measurements

and, through the inferential PLS model, quality variables. The approach is particu-

larly impactful early in batches when alternative missing-data methods are likely to

6
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be inaccurate or fail completely.

Chapter 3 extends the results from the preceding chapter by applying the methods

discussed in that work to a polymethyl methacrylate (PMMA) polymerization reactor.

Note that the PMMA simulation model adapted in this paper provided a good test

bed for all of the subsequent contributions in this thesis. In addition to validating

the approach with a second simulation example, this work adds two contributions:

first, the work demonstrates the ability of the approach to efficiently use limited

available inputs. Second, the work demonstrates how the model validity constraints

can be applied to the control problem to improve controller performance by preventing

extrapolation. Furthermore, the work demonstrates a rudimentary model adaptation

method by which model validity constraints can be loosened with each closed-loop

batch.

In Chapter 4 a completely novel approach to batch quality control is presented.

The motivation for this approach came from analyzing batch processes from a dy-

namic, state-space based perspective. Fundamental to this perspective is the idea that

there is an underlying process state that completely captures the instantaneous condi-

tion of the process. Driven by this understanding, a time-invariant, state-space based

batch modeling methodology was pursued. The solution was achieved by adapting

subspace identification methods, developed for systems operated around steady-state

operating points, for use with transient batch processes. This work, demonstrates

that these subspace methods can be used to identify time-invariant state-space mod-
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els from batch input and output data. Furthermore, it is demonstrated that quality

can be predicted from the resulting identified states. One of the most powerful re-

sults afforded by the time-independence of this approach is the ability to use training

batches of varying duration without the need for alignment. In addition to mod-

eling contributions, this work also proposed a novel direct quality control method.

Specifically, the models identified in this work were applied in a receding horizon

MPC scheme. Closed loop simulation results for the PMMA process demonstrate the

efficacy of the approach for online quality control.

The final chapter of contributions, Chapter 5, extends results from the preced-

ing chapter. This paper provides two substantial new contributions to the work

that expand its industrial applicability. The first major contribution is to provide

a framework, in both the modeling and control steps, for handling discrete inputs.

Appropriately handling these discrete influences, which are common industrially, rep-

resents one of the greatest challenges in batch control. To demonstrate this capability,

the nominal batch recipe for the PMMA process is modified to include an addition

of monomer half-way through the batch duration. The proposed controller is able to

adjust the amount of monomer added for improved quality control.

In addition to handling discrete (instantaneous) inputs, the second major con-

tribution in Chapter 5 is inclusion of batch duration as a decision variable in the

control scheme. Fundamentally, batch duration has an important impact on product

quality. However, it is difficult to appropriately account for batch duration in con-
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trol approaches using time-varying quality models. As such, the proposed method is

one of the first literature contributions to consider batch duration as a decision vari-

able in data-driven batch control. Simulation results for the PMMA process clearly

demonstrate the powerful impact of allowing variable duration on improving quality

control.

The last chapter of this thesis draws a few brief conclusions from the contributions

of this work and proposes a few areas for further research. Many of the suggestions

in this chapter draw on planned collaborative postdoctoral work with the preeminent

batch control company, ProSensus.
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Chapter 2

Data-driven model predictive
quality control of batch processes
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Manuscript Overview

This chapter presets a novel method for dealing with the so-called missing data prob-

lem that arises when using PLS models for batch quality control. This missing data

problem stems from the need for complete batch measurement trajectories to make

quality predictions. The key idea in the work is to make predictions of these mea-

surement trajectories using a previously developed, data-based, multi-model dynamic

modeling approach.

This work was completed in collaboration with another Ph.D. student, Siam Aumi

(now Dr. Aumi). In his studies, Dr. Aumi developed the multi-model dynamic

modeling methods used in this work. As such, my principal contribution to this

paper was in implementation of the quality modeling and the overall closed loop

quality control. (Specific details of the quality aspect are discussed in sections: 2.2.2,

2.2.3, 2.3, 2.4.2, and 2.4.3.) The paper is included in this thesis to showcase my

work on the quality control aspect of the problem. It also provides background and

motivation for subsequent manuscripts of which I was the principal investigator.
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Data-driven Model Predictive Quality Control of
Batch Processes

Siam Aumi, Brandon Corbett, Tracy Clarke-Pringle, and Prashant
Mhaskar

Originally published: August, 2013, in AIChE Journal ; DOI: 10.1002/aic.14063

Abstract

This work considers the problem of driving a batch process to a specified product

quality using data-driven model predictive control (MPC). To address the problem of

unavailability of online quality measurements, an inferential quality model, which

relates the process conditions over the entire batch duration to the final quality,

is required. The accuracy of this type of quality model, however, is sensitive to

the prediction of the future batch behavior until batch termination. In this work,

we handle this “missing data” problem by integrating a previously developed data-

driven modeling methodology, which combines multiple local linear models with an

appropriate weighting function to describe nonlinearities, with the inferential model in

a MPC framework. The key feature of this approach is that the causality and nonlinear

relationships between the future inputs and outputs are accounted for in predicting

the final quality and computing the manipulated input trajectory. The efficacy of

the proposed predictive control design is illustrated via closed-loop simulations of a

nylon-6,6 batch polymerization process with limited measurements.
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2.1 Introduction

Batch processes constitute a class of processes that play an important role in the

production and processing of a wide range of value-added products (i.e., chemical,

pharmaceuticals, bio-chemicals, etc.). They are finite duration processes with unique

characteristics, such as the absence of steady-state operating points and nonlinear

and time-varying dynamics over a wide range of operating conditions, that preclude

the direct application of control strategies designed for continuous systems. Unlike

continuous systems, which are characterized by control at an steady-state operating

point, the primary control objective in batch processes is to reach a specified prod-

uct quality by batch termination. The economic benefits from batch processing are

realized from the consistent production of on-spec product. Direct control to the

specified quality, however, is impractical in most cases because quality measurements

are unavailable online and only made offline after batch completion.

In the past, batch-to-batch operation policy consisted of charging the reactor with

a recipe and then implementing predetermined input trajectories. These trajectories

were either optimized offline, determined through data-mining, or historically yielded

on-spec product. This type of open-loop operation policy, however, negatively im-

pacted the reproducibility of quality since it was susceptible to disturbances encoun-

tered during the process and in the initial conditions (i.e., raw material impurities).

Motivated by the increased demands of consistent production of high quality prod-

ucts, numerous batch-to-batch (offline) and within-batch (online) control strategies
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were adopted.

The idea behind batch-to-batch control is to refine the batch recipe and operat-

ing trajectories for the upcoming batch using past data in an attempt to bring the

new batch’s quality closer to the specified value [1]. Batch-to-batch control strategies

range from updating the model parameters and then re-computing the batch input

trajectories (and/or batch recipe) to directly updating the process variable trajecto-

ries using an optimization-based algorithm[2] or the iterative learning control (ILC)

framework[3, 4]. The former drives the process towards a specified optimum batch-

wise while the latter exploits the repetitive nature of batch systems by using the error

in the final quality from the last batch to update the process variable trajectories

and/or initial conditions.

Batch-to-batch control represents an entirely offline strategy and lacks any real-

time feedback mechanism for rejecting disturbances encountered during batch evolu-

tion, motivating the use of real-time, within-batch control approaches. The within-

batch quality control problem has been investigated extensively in the literature with

many studies assuming availability of a detailed, first-principles process model[5, 6].

However, in instances where the development and maintenance of an accurate first-

principles model may not be possible, control designs need to rely on empirical or

data-driven modeling. Data-driven modeling methods are particularly well-suited for

batch systems because they can exploit existing batch databases and also provide an

opportunity to update the model following the completion of each batch. Note that
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because continuous processes are operated around steady-states and narrower oper-

ating ranges, there is little useful information for identifying data-based models from

typical operation. Instead, the process must be excited in some fashion to collect

meaningful identification data. In contrast, due to the inherent process nonlinear-

ity and moving setpoint, databases of batch processes are comprised of trajectories

of online measurements of the key process variables from previous batches and con-

tain important information about the process states, allowing a reliable model to be

identified.

Within-batch control approaches can be broadly divided into trajectory tracking

and inferential quality control approaches. Trajectory tracking is utilized where there

is expected to be very little variance in the initial conditions for the batch, and hence

reference trajectories for the measurable process variables (such as temperatures and

pressures) can be tracked to reliably meet the specified quality. Tracking is achieved

using classical control designs [7] or advanced control designs, such as differential

geometric[8, 9] or predictive[10, 11, 12, 13, 14, 15, 16, 17] controllers, which are ca-

pable of compensating for the effects of nonlinearity and tracking set-points over a

wide operating range. While trajectory tracking controllers can reject disturbances

online, even with perfect tracking, there is no guarantee that the desired quality will

be met if there is significant variation in the initial conditions from batch to batch.

This is because disturbances encountered during the new batch could alter the re-

lationship between the product quality and the trajectories of the process variables.

15



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

Thus, implementing the same reference trajectories batch-to-batch is not guaranteed

to consistently produce on-spec product.

Inferential quality control refers to the control approach aimed at controlling qual-

ity directly, and is most commonly achieved through multivariate statistical process

control (SPC) approaches, particularly those utilizing latent variable tools, such as

principal component analysis (PCA) or partial least squares (PLS) regression [18].

For batch processes, the model development for the majority of SPC applications be-

gins with the so-called “batch-wise” unfolding of multiway batch data [19, 20]. The

unfolded data are regressed (commonly via PLS regression) onto a matrix of final

quality measurements to obtain an inferential PLS quality model[21] that is usable

for predicting the final quality prior to batch completion. For batches with multi-

ple phases or stages with distinct dynamics, multiple phase-specific (and transition)

models can also be constructed[22, 23]. During the batch evolution, the final quality

can be predicted (at every sampling instant or predetermined decision points) and if

the prediction exceeds the control limits, appropriate remedial action can be taken to

correct the batch. The nature of the corrective action may be heuristics or knowledge

based or more systematic wherein the quality model is inverted (one way or another)

to directly compute the future input trajectories that recover the batch. The latter ap-

proach has been classified as a mid-course correction (MCC) control strategy[24, 25].

Since it requires model inversion, the effectiveness of a MCC approach is particularly

dependent on the underlying quality model and in general, demands richer training
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data that spans a wider operating range and exhibits more input variation compared

to modeling for SPC[26].

An important issue that arises in SPC and MCC approaches is that future online

measurements that are required to predict the quality are incomplete. More specif-

ically, the data arrangement in the model building process calls for the entire batch

trajectory to predict the quality of the batch. However, during a batch, measurements

are only available up to the current sampling instant, and the future data are required

to predict the final quality. In the literature, this has so far been treated as a ‘missing

data’ problem, with the choice of the data completion technique playing a key role in

the overall performance of the control design. Prediction error in the future data are

propagated to the quality prediction error, and both of these errors add uncertainty to

any control action computed using the model. This problem is particularly prevalent

during the early stages of the batch when most of the information is unknown. In

fact, with poor prediction of the future batch behavior, inputs determined from using

the model can drive the batch to a point from where good quality product cannot

be produced. This characteristic is typical of methods that lack a causal relationship

between the inputs and the process trajectory, and in turn, the quality, which leads

to the treatment of the future trajectory as a ‘missing data’ problem[24].

A variety of ad-hoc approaches exist to handle this ‘missing data’ problem. Many

methods utilize missing data algorithms available for latent variable methods. These

missing data algorithms work on the assumption that the correlation structure be-
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tween the collected measurements and future measurements for the new batch is the

same as in the training data. Another approach has been to build a finite set of quality

models at predetermined decision points (possibly at every sampling instant), and in

building each model, rather than using the entire batch trajectory, data only up to the

decision point is used [27, 26]. This idea of an evolving model has also been modified

for improving the quality prediction in multi-stage batches through consideration of

critical-to-quality time periods at specific phases of the batch [28, 29]. One issue with

these multi-model based approaches, however, is that quality models developed at

early time points may be highly inaccurate since they will not capture the effects of

large periods of the batch duration towards the batch quality. While these missing

data approaches are useful for predicting the quality and monitoring applications,

when the inferential model is used in a control design, the need to consider the non-

linear casual relationship between the future input-output behavior is obvious. The

quality control problem, therefore stands to gain from the use of a causal, nonlinear

model that does not treat the future trajectory as a missing data problem and in-

stead recognizes it as the problem of choosing the remaining input trajectory, which

determines the rest of the measured variables trajectory and in turn the final quality.

Motivated by the above considerations, in this work we develop a within-batch

quality control strategy for batch processes that unites a single PLS inferential quality

model with a previously developed nonlinear, data-driven modeling approach. By

properly representing the future behavior using a dynamic model, control inputs can
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be chosen that result in improved quality control. The rest of this manuscript is

organized as follows: first, we describe the class of processes being considered and

review the key concepts, namely the different modeling approaches used in the control

design. Next, we present the details of a predictive controller that is designed to drive

a batch process to a desired specified product quality by batch termination. The

efficacy of the control design is then demonstrated via simulations of a nylon-6,6

batch polymerization system. Finally, we summarize our results.

2.2 Preliminaries

In this section, we first describe the class of batch processes considered. Next, we

discuss how an inferential quality model can be identified from existing batch data

through multiway analysis. This is followed by an overview of partial least squares

(PLS) regression, a latent variable technique used to compute the inferential quality

model parameters. Finally, we review a previously developed data-based modeling

approach[30, 31] that serves as the basis for predicting the future state trajectory (for

a candidate input profile) when using the inferential quality model for quality control.
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2.2.1 Process Description

We consider batch processes subject to input constraints and limited measurements

described by:

ẋ = f(x,u)

y = g(x,u) + v

q = h(x,u)

t ∈ [t0, tf ],u(·) ∈ U ,x(t0) = x0

(2.1)

Note that the above model is used only to illustrate the class of processes that the

proposed modeling approach is expected to work, and the proposed approach does

not require a model of the form of Eq. 2.1 to be available. The times, t = t0 and

t = tf , are the initial and termination times, respectively. The vectors, x ∈ Rn,

y ∈ Rp, and q ∈ Rq denote the state variables, measurable process variables, and

quality variables, respectively. Measurements of y are assumed to be available at

every sampling instant whereas the elements of q are only measured once following

batch completion. The vector v ∈ Rp represents zero-mean, normally distributed

measurement noise. The vector u ∈ Rm consists of constrained manipulated inputs,

taking values in a nonempty, convex set, U , {u | umin ≤ u ≤ umax} ⊂ Rm

where umin and umax define the minimum and maximum (respectively) allowable

input values.
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2.2.2 Inferential Quality Model

To understand how to build a quality model that can be used during batch evolution to

predict the quality at batch termination, we first describe the nature of data available

in a batch database. Consider a typical batch run in which j = 1, 2, . . . , J = m + p

variables are measured at k = 1, 2, . . . , K sampling instants. For b = 1, 2, . . . B

batches, this data can be organized into a three-dimensional array, X (B × J ×K),

as shown in Figure 2.1.

Each vertical slice in this array, which has dimensions B×J , represents the values

of all the measurable variables for all batches at a common sampling instant. In

addition to X, measurements of q = 1, 2, . . . Q quality variables taken post-batch

can be summarized in a B × Q quality matrix, Q, as shown in Figure 2.2. Finally,

information about the initial conditions for each batch is also typically available (i.e.,

feed-stock properties, measured raw material properties and compositions, charges of

each ingredient, etc.), and this can be summarized in a B×M matrix, Z0, (see Figure

2.3) where M is the number of known variables related to the initial conditions.

To identify an inferential quality model that can be used to predict the batch

quality, the three-dimensional array, X, is first transformed into a two-dimensional

B × JK matrix by unfolding it “batch-wise” such that each of its vertical slices is

arranged side-by-side [19, 20] (note that the dynamic model that we use to predict the

batch process dynamics[30] does not require this kind of unfolding). Next, the initial

conditions matrix, Z0, is concatenated to the unfolded matrix, forming a regressor
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Figure 2.1: Process variable trajectories, X
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Figure 2.2: Quality data, Q

matrix,

[
Z0 X

]
, as shown below in Figure 2.4.

The matrix in Figure 2.4 can be regressed onto the quality data matrix (Figure 2.2)

using linear regression, yielding a model that relates the initial and process conditions

to the quality characteristics as shown below:

Q̂ =

[
Z0 X

]
Λ (2.2)

1 M. . .

Initial measurements

1

B

...

B
at

ch
es

Figure 2.3: Initial conditions, Z0

22



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

Time 1 · · · Time K

1 M. . .

Initial measurements
1 JK. . .

Online measurements

1

B

...
B

at
ch

es

Figure 2.4: Rearrangement of the batch data in Figure 2.3 to form the regressor
matrix for identifying the quality model in Equation 2.2

where Q̂ is the predicted quality and Λ is a (M + JK) × Q matrix of the quality

model coefficients. Due to the high dimensionality/multivariate nature of the regres-

sor matrix and the likely presence of correlations among its variables, a latent variable

regression technique, such as partial least squares (PLS) regression or principal com-

ponent regression (PCR), is necessary for appropriately estimating Λ.

Remark 1 An assumption made during the batch-wise unfolding scheme is that all

batches are of equal length and the trajectories are synchronized (a requirement relaxed

in recent results[30], albeit for the purpose of dynamic modeling, not quality models).

In practice, this assumption may not hold for raw batch data. Consequently, several

methods have been proposed for addressing unequal batch lengths and to synchronize

trajectories. The most common method involves choosing a monotonic indicator vari-

able common to all batches, such as conversion, and re-sampling the variables with

respect to this variable instead of time[32]. Additional methods for aligning batch

trajectories include dynamic time-warping [33] and curve registration [34].
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2.2.3 Partial Least Squares (PLS) Regression

When variables in the regressor matrix are (auto/cross) correlated, the use of ordi-

nary least squares (OLS) regression leads to parameter estimates with large variances

(due to covariance of the regressor matrix being ill-conditioned). Correlations can re-

sult from data being collected under closed-loop conditions [35] and/or from lagging

the variables. One way to handle the numerical issues arising from correlations is

through partial least squares (PLS) regression. Geometrically, in PLS regression, the

variables in the regressor and response matrices,

[
Z0 X

]
and Q, are projected onto

corresponding orthogonal subspaces of A-pairs of latent variables. Each pair of latent

variables accounts for a certain percentage of the variance in the original matrices.

Mathematically, PLS regression consists of decomposing

[
Z0 X

]
and Q as the sum

of the outer products of a score and loading vector:

[
Z0 X

]
=

A∑
a=1

tap
′
a + E (2.3)

Q =
A∑
a=1

dar
′
a + F (2.4)

where ta and da are the input and output scores representing the projections of the

variables in

[
Z0 X

]
and Q on the subspaces, pa and ra define the orientation of the

corresponding subspaces, and E and F denote residual matrices. Because it is desired

to obtain a useful relationship between the original data matrices, the two matrices
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are linked by an inner relation between their scores of the form:

da = bata + ea ∀a ∈ [1, A] (2.5)

where ba are the coefficients of the inner relationship and ea are the residuals. In

PLS algorithms, such as Nonlinear Iterative Partial Least Squares (NIPALS)[18], the

subspace orientation and scores for both matrices are determined simultaneously to

maximize the correlation between

[
Z0 X

]
and Q and therefore obtain the optimal

fit for the inner relationship. The final result from PLS regression is a linear model

between

[
Z0 X

]
and Q where the coefficients are functions of the scores and loadings

from the matrix decompositions.

Remark 2 In the PLS model, trajectories of the process variables over the entire

batch duration and initial conditions are projected onto a latent variable subspace,

and the values of the latent variables in this space are related to the scores of the

final quality through the inner relationship. The projection essentially represents an

estimation of the batch states at the end of the batch while the inner relationship is a

“measurement” function relating the states at batch termination to the final quality.

For a new batch, at sampling instant k, process variable trajectories are only available

only up to k. More specifically, the process outputs are available up to sampling instant

k and the inputs are available up to k − 1. As a result, the vector required to make

the state estimation at batch termination is incomplete. There are ways to eliminate
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this problem in monitoring applications (e.g., by using multiple models [26], lookup-

tables [36], or a different unfolding scheme [19]); however, when using the model for

control, the prediction of the future behavior for a given input is a necessity. Rather

than eliminating the need for future data, we recognize the causal nature of the inputs

in determining the future trajectory and in turn the quality.

Remark 3 In conventional PLS modeling, a common pre-processing step is to nor-

malize the regressor and response matrices to zero mean and unit variance. Scaling to

unit variance gives each variable equal importance during model identification; how-

ever, in many batch systems, there are specific periods during the batch that are known

(ie operator knowledge) to play a more critical role in determining the final quality

than others. A simple way to account for these quality-critical periods within the PLS

regression framework is to multiply the appropriate columns in the regressor matrix by

weighting factors that make them more influential during the computation of the model

parameters (and therefore during quality prediction). More formalized approaches for

considering time-specific effects are also available[27, 28].

2.2.4 Multi-model Data-driven Modeling for Batch Systems

In this section, we review a multi-model, data-driven modeling approach that is used

for predicting the future output behavior when using the inferential quality model

[30, 31]. Mathematically, the model for the process outputs takes the form of a
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weighted combination of L linear dynamic models as shown below in Equation 2.7.

ŷ(k) =
L∑
`=1

w`(k)β̂`x̃(k) (2.6)

=
L∑
`=1

w`(k)β̂`

[
y′(k − 1) · · · y′(k − ny) · · · u′(k − 1) · · · u′(k − nu)

]′
(2.7)

where w`(k) is model `’s weight at sampling instant, k, β̂` defines the `-th local model,

and x̃(k) is a vector of lagged inputs and outputs. The scalars, ny and nu, denote the

number of lags in the outputs and inputs (respectively). For notational simplicity, we

have assumed the same number of lags, ny and nu, for each output and input variable

(respectively) and the same lag structure for all L models. These assumptions can be

readily relaxed.

Using the following definitions,

β̂ ,

[
β̂1 · · · β̂` · · · β̂L

]
h(k) ,

[
w1(k)x̃′(k) · · · w`(k)x̃′(k) · · · wL(k)x̃′(k)

]′

Equation 2.7 can be re-written in the vector form:

ŷ(k) = β̂h(k) (2.8)

The model identification procedure consists of an initial clustering step followed
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by solving a linear regression problem. In the first step, for a given lag structure, a

matrix, X̃, corresponding to x̃(k), is generated by sorting the plant data sample-wise

(not time or critical variable wise, as is done in existing batch modeling approaches)

and then, x̃ (or its equivalent latent variable space[30]) is clustered into L clusters

using an appropriate clustering technique. Thus, observations of lagged inputs and

outputs are clustered together, and, to illustrate our results, in this work we use

fuzzy c-means clustering. In fuzzy c-means clustering, points that are mathematically

“similar” according to the Euclidean 2-norm are clustered into overlapping spherical

clusters with corresponding center points [37]. Each cluster represents a region in the

X̃ space where an associated model has the highest degree of validity, and in this way,

the cluster’s center point represents the linearization point of its associated model.

Using the results of the clustering step (the cluster center points), the weights, w`(·),

for the training data can be computed prior to the model coefficients (to be discussed

shortly). Consequently, the h(k) vector in Equation 2.8 is completely specified for the

training data. Thus, a regressor matrix corresponding to h(k) can be constructed,

and the local linear models, β̂, are computable using linear regression.

Intuitively, from Equation 2.1, the model weights, w`(·), should depend on the

current values of the states and inputs since they define the system dynamics through

f(·). In other words, the local models should be weighted according to the current

process conditions. In the absence of state measurements, the vector of lagged outputs

and inputs, x̃(k), can be used to infer the current process conditions, and each model’s
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weight can be assigned based on the proximity of the operating conditions to its

center point. For instance, denoting model `’s center point as c`, its weight should be

inversely proportional to the squared distance between x̃(k) and c`:

w`(k) ∝ ‖x̃(k)− c`‖−2

Normalizing this expression over all clusters yields the following normalized weighting

function:

w`(k) =
‖x̃(k)− c`‖−2∑L
i=1 ‖x̃(k)− ci‖−2

The number of clusters is an important parameter in this approach. Well-defined

criteria (based on the cluster geometry) to iteratively refine the number of clusters are

available[38]. Additionally, to evaluate the goodness of the final fuzzy partitions, many

validation measures have also been proposed with the most popular being the Xie-Beni

index [39], which is a ratio of the total within-cluster variance to the separation of the

cluster centers (and therefore should be minimal for the best partition). In this work,

we picked the number of clusters (iteratively) based on how well an independent

validation data set was predicted. Thus, there was a balancing of the number of

clusters and prediction error.
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2.3 Model Predictive Quality Control

In this section, the data-driven modeling approach reviewed in the previous subsection

is used in conjunction with an inferential quality model in a MPC design. The quality

model captures the (time-cumulative) effects of the entire batch trajectory on the final

quality while the multiple linear models for the measurable process variables take the

causality and nonlinear relationship between the inputs and outputs into account. The

benefit from this approach is the ability to account for the direct connection between

the control action and the quality, something that is both expected and desired.

Given a batch database, consider the case where the quality and process variable

models have been identified. The following MPC optimization problem is solved to

compute the control action with the objective of achieving a desired product quality,

qdes.

min
u(k)∈U

(q̂ − qdes)
′Ψ (q̂ − qdes) +

K∑
i=k

∆u′(i)Φ∆u(i) (2.9)

s.t.: ŷ(k) = y(t) (2.10)

ŷ(k) =
L∑
`=1

w`(k)β̂`x̃(k) (2.11)

x′future =

[
u′(k) ŷ′(k + 1) u′(k + 1) · · · u′(K − 1) ŷ′(K)

]′
(2.12)

q̂ =

[
xpast xfuture

]
Λ (2.13)

In this optimization problem, the objective function consists of a term for minimizing
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the discrepancy between the target product quality and the predicted quality, q̂, and

a move suppression factor. Each term’s relative importance is traded-off using the

positive-definite weighting matrices, Ψ and Φ. Equation 2.10 is the MPC initial-

ization at the current plant conditions and Equation 2.11 represents the prediction

of the future process variables using the data-driven model (given the current input

trajectory in the optimizer). The predicted process outputs and optimizer inputs are

stored appropriately in the row vector, xfuture, through Equation 2.12. This vector is

concatenated with a vector of previous plant outputs and implemented inputs, xpast.

Note that the vector, xpast, is known prior to solving the MPC optimization prob-

lem; specifically, x′past =

[
z′(0) y′(0) u′(0) · · · y′(k)

]′
where z′(0) denotes all

the information known prior to starting the batch (i.e., the initial conditions). The

concatenated vector,

[
xpast xfuture

]
, is used to predict the quality through Equation

2.13.

The way the multi-model approach is integrated with the inferential quality model

is illustrated in Figure 2.5. At sampling instance k, the vector required to predict the

quality is incomplete; the inputs and outputs beyond k are unknown. However, when

the model is embedded in the MPC optimization problem (wherein the prediction

horizon extends to the end of the batch), a candidate input trajectory exists in the

optimizer that can be used to predict the future outputs up to batch termination. In

our work, we use the multi-model approach to predict these future outputs. For a

candidate input trajectory, the final product quality can be thus predicted, allowing
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q̂ = z′(0) y′(0) u′(0) · · · y′(k) u′(k) ŷ′(k + 1) u′(k + 1) · · · u′(K − 1) ŷ′(K)

Known information at k

Unknown information at k:
y(k + 1) · · · y(K) predicted using the multi-

model approach given u(k) · · · u(K − 1)

Λ
Vector required to predict the quality

Figure 2.5: Schematic of how the multi-model approach is used with the inferential
quality model to predict the future (unknown) output trajectories

direct control to a desired quality.

Remark 4 A distinguishing feature of this MPC design includes the use of a causal

(and effectively nonlinear) model for predicting the future observations expected if a

particular candidate input trajectory is implemented. The majority of control designs

that have utilized a multivariate, PLS-based inferential quality model instead treat this

as a missing data problem. Based on the data collected up to the current sampling

instant, these algorithms essentially invert the linear, PLS model such that the future

behavior maintains the same correlation structure as previous batches. This leads to

an inherent mismatch in the sense that the predicted future behavior is based on past

data (that typically uses existing, PI controllers) which in turn is used to compute

the current control action via a different control algorithm than in the data set. In

contrast, the proposed approach recognizes that the problem is not that of missing data,

because the future trajectories depend on state and input trajectories up to the current

point as well as future input moves. The only ’missing’ part therefore is the part that

needs to be computed by the controller - the set of future control moves. By utilizing an

appropriate model (which captures the process nonlinearity) that links the future inputs
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to the future process outputs and in turn to the quality, the controller then computes

the set of input moves that would yield the desired quality. The problem of unequal

batch lengths can also be readily handled by the proposed quality prediction approach by

virtue of using a dedicated (nonlinear) model for predicting the future batch behavior.

In particular, all the batch data can be used to build the dynamic model, while the

quality model can be built using a common time from the end of batch for all batches

(i.e., using the batch time of the shortest batch, if not significantly shorter than the

other batches).

Remark 5 Other control designs have tried to eliminate the missing data problem

completely through evolving quality models (at each sampling instant or a selected

number of pre-determined decision points), which utilize measurements only up to a

given time. These models are designed to forecast the final quality without the future

batch trajectories and inherently rely on the assumption that the same control action

is implemented for the rest of the batch. Therefore, while such methods may be good

to ‘predict’ the quality under an existing controller, they are not well suited for use in

a control design aimed at computing the control action to yield the desired quality.

Remark 6 The prediction horizon for the MPC optimization problem above must

extend to the end of the batch; thus, the prediction horizon, P = K − k, shrinks at

every sampling instant. During the early stages of the batch when k is low, the MPC

optimization problem may be too computationally demanding for real-time implemen-

tation. Under such circumstances, the optimization problem can be used to update the
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reference trajectories for local controllers rather than directly computing the inputs.

Specifically, while the optimization problem is being solved, trajectory tracking con-

trollers can be used to track the nominal reference trajectories, and upon completion

of the optimization problem, the trajectories of the measurable output variables from

the solution can be specified as the updated nominal reference trajectories in the local

trajectory tracking controllers.

2.4 Simulation Results

In this section, we demonstrate the efficacy of the proposed MPC design through

closed-loop simulations of a nylon-6,6 batch polymerization process. First, we give an

overview of the process and state the control objective. Next, we develop data-driven

models for the measurable process variables and product quality from a database gen-

erated using a rigorous first principles model (also used as a test bed for implementa-

tion of the control design). Finally, using these models, we implement the proposed

MPC design and compare its performance against trajectory tracking control.

2.4.1 Process Overview and Control Objective

For this work, we focus on nylon-6,6 production by the amidation of adipic acid and

hexamethylenediamine (HMD) in a batch reactor. The reactor is initially charged with

molten adipic acid and HMD (from an evaporator) in approximately stoichiometric

(1:1) proportions. The polymerization reaction (a polyamidation) is summarized as
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follows: Carboxylic end groups (C) on adipic acid or the polymer chain react (re-

versibly) with amine end groups (A) on HMD or the polymer chain, producing a

polymer chain link (L) and a water molecule (W):

Polyamidation: C + A� L + W (2.14)

This polymerization is typically carried out in an autoclave reactor equipped with a

steam jacket for providing the heat needed for vaporization (and reaction) and a valve

for venting vaporized water. The polymerization occurs in three phases: (1) initial

heating phase, (2) boiling phase, and (3) finishing phase. During the initial heating

phase, the vent valve is closed to prevent the loss of volatile HMD and heat is supplied

through the steam jacket, driving the polymerization reaction. After a certain extent

of reaction, the valve is opened, initiating the boiling phase. During this phase, excess

water is removed, which is important for achieving high molecular weight of the final

polymer. After venting water for an appropriate amount of time, the vent is closed,

and the finishing phase begins during which the final quality characteristics of the

polymer are developed.

For our studies, we utilized a mathematical model of this process[40] that takes

the general form shown in Equation 2.1. The reaction model, modeling assumptions,

equations, and parameter values[40] are omitted here for brevity. The state vector is

comprised of the molar amounts of each functional group and evaporated HMD, and

the reaction medium mass and temperature. The states were assumed to be measured
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only once at the initial time, but note that many of the states were trivially zero due

to the absence of any reaction. The manipulated inputs were taken to be the steam

jacket pressure, Pj (psi), and vent rate, v (g/h): u =

[
Pj v

]′
, and the constraints

were defined as follows: umin =

[
700 0

]′
and umax =

[
1.8× 103 2.5× 106

]′
. All

batches were assumed to be 3 hours, eliminating the requirement for any trajectory

synchronization, with a sampling period of 1 minute.

The measurable process variables were taken to be the reaction mixture temper-

ature, T (K), volume, V (L), and the viscosity, η (cP): y =

[
T V η

]′
. Note that

in practice, while the viscosity may not be directly measurable at the sampling pe-

riod of 1 minute, stirrer torque measurements are typically available in real time at

every sampling instant. The stirrer torque is strongly correlated with the solution

viscosity with a more viscous polymer resulting in higher torque (for a fixed RPM

stirrer motor). Thus, the torque measurements provide important infomration about

the viscosity evolution.

The product quality of nylon-6,6 polymer is defined by the number average molecu-

lar weight, MW, and the residual amide concentration, RNH2 (mol/g): q =

[
MW RNH2

]′
.

Both qualities are related to the state variables through highly nonlinear relationships[40].

The control objective considered in this work was to achieve end-point qualties of

qdes =

[
5569 136

]′
.
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Figure 2.8: Trajectories used during database generation

2.4.2 Inferential Quality and Process Variable Models

To develop data-driven models for the quality and process variables, an artificial batch

database of the form in Figure 2.3 was first generated. To this end, the determin-

istic model was simulated 80 times from different initial conditions (30 batches were

reserved as the validation data set). In generating the database, a set of reference

T and V profiles presented in Figure 2.6 were tracked using Pj and v (respectively)

via two tightly tuned PI controllers. In addition to these closed-loop trajectories,

the database was supplemented with 4 open-loop identification batches. For these

batches, low amplitude, pseudo-random-binary-sequence (PRBS) signals were added

on top of the nominal input trajectories. In Figure 2.7, the input trajectories for one

of these identification batches are shown together with the nominal trajectories (that

correspond to the T and V trajectories in Figure 2.6).
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The final database consisted of measurements of the states at the initial time, T ,

V , and η at every sampling instant, and the qualities at batch termination. Prior to

developing the models, the η measurements were replaced by ln (η), in recognition of

the fact that viscosity typically satisfies a power law correlation. Using this database,

an inferential quality model was developed using PLS regression. As discussed in

Remark 3, quality-critical periods during the batch can be given more weight prior

to computing the model parameters. For the nylon-6,6 process, the initial conditions

and process behavior during the boiling and finishing phases are more influential to

the final quality compared to the heating phase; consequently, columns corresponding

to these conditions in the unfolded regressor matrix (see Figure 2.4) were given 6, 2,

and 4 times more weight than the heating phase (respectively).

The motivation behind placing the lowest weight on the heating phase was be-

cause it corresponded to a limited extent of the polymerization compared to the other

phases. The weights for the other phases and initial conditions were found iteratively

and chosen to minimize the root mean squared error (RMSE) in the predicted quali-

ties of the validation batches. Thus, these weights were essentially tuning parameters

in the model. High weights were placed on the initial conditions to compensate for

the fact that they constituted a very small portion of the regressor matrix compared

to the other phases. In Figure 2.9, the qualities predicted by the PLS model for the

30 validation batches are displayed along with the database qualities. The number

of principal components in the PLS model, 24, was selected to minimize the RMSE
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Figure 2.9: Comparison of the predicted quality by the inferential PLS based data-
driven model with the nonlinear (first-principles simulation) model

in the predicted qualities of the validation batches. From the discussion in Remark

2, this meant 24 latent variables were required to estimate the states at batch ter-

mination. Note that the total number of columns in the regressor matrix was over

900; thus, 24 latent variables still represent a significant reduction in the dimension-

ality of the process. Additionally, the training data contained 4 identification batches

that expanded the range of typical operating conditions, calling for additional latent

variables. Overall, the inferential quality model predicted the final qualities with

relatively good accuracy.

Next, multiple local linear models of the form described in Section 2.2.4 were

developed for T , V , and ln (η) since these variables must be predicted (for a given input

trajectory) as part of the quality prediction. To cluster the database and compute the

resulting local linear models, the following parameters were required to be specified:

the lag structure (ny and nu) and the number of clusters, L. The model identification

procedure was as follows. For a given lag structure (which sets the dimensions of X̃),
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Figure 2.10: Comparison of the predicted (measurable process) variables by the data-
driven model with the nonlinear model for a random validation batch

the X̃ matrix was constructed, decomposed using PCA, and clustered for a range of

clusters, L = {1, 2, . . . , 20}. For each cluster choice and a lag structure, a PLS model

was identified. This was repeated for all possible lag structures with a lag range of

0−2 for each variable. The goodness of each fit (and the number of latent variables to

retain in the PLS regression) was judged using its RMSE in predicting the validation

batches. The number of input and output lags were found to be 1 (i.e. ny = nu = 1)

and the number of clusters, L, was 7. One explanation for requiring only one lag

is the assumption of the same lag structure for all the local models (note that this

assumption can be readily relaxed if needed). With this assumption, using all first

order models minimized the possibility of over-fitting, and in this case, yielded the

lowest RMSE values. In Figure 2.10, we compare the output of the nonlinear model

with the model output from the data-driven model for a set of initial conditions

in the validation data set. Overall, the multi-model approach captured the major

nonlinearities and provided relatively reliable predictions.
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2.4.3 Closed-loop Simulation Results

Using the models developed in the previous section, in this section, we present the re-

sults from implementing the predictive controller and compare its control performance

against trajectory tracking via PI controllers. For these simulations, we considered 21

new initial conditions that were not in the training or validation data sets. The refer-

ence trajectories for the PI based trajectory tracking simulations were those presented

earlier in Figure 2.6, and the loop-pairings and tunings were kept consistent with the

database generation procedure. In solving the MPC optimization problem, the ini-

tial guess for the input trajectories was set to the nominal trajectories at t = 0 and

the tail of the solution at the previous sampling instant for all subsequent sampling

instants. The computation time (as reported by the Matlab functions, tic and toc)

for the predictive controller at t = 0 was 1.5 seconds on an Intel Quad Core machine

using GAMS with IPOPT as the optimization software. The computation times for all

successive sampling times were lower due in part to the shrinking horizon nature of

the optimization problem.

In Figure 2.11, the final qualities yielded from trajectory tracking are compared

with those from the proposed MPC design. On average, there was a significant im-

provement in meeting the specified quality. With trajectory tracking, the standard

deviations from the target quality were 3392 and 69.69 mol/g for MW and RNH2

respectively. These values were reduced to 1240 and 40.71 mol/g by the predictive

controller.
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Figure 2.11: Comparison of the final qualities obtained from trajectory tracking and
corresponding quality-based MPC design for 21 new initial conditions.
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Figure 2.12: Inputs prescribed by the predictive and trajectory tracking controllers
for one of the batches in the closed-loop simulations

Input trajectories (from both controllers) for one of the batches are shown in

Figure 2.12. For these inputs, trajectory tracking yielded qualities of 6434 and 110

mol/g for MW and RNH2 (respectively) while MPC yielded qualities of 5559 and 131

mol/g. Recall that the desired values for the final MW and RNH2 were 5569 and 136

mol/g. Comparing the input trajectories in Figure 2.12, we observe that the MPC

prescribed inputs followed the same general trends as with trajectory tracking but

with sufficient refinements to significantly improve upon the quality.
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2.5 Conclusions

In this work, we proposed a predictive control design for batch systems designed to

drive the batch to a specified quality by batch termination. The MPC design utilized

two types of models: a linear, PLS model which relates the process conditions over the

entire batch duration to the final product quality and weighted local linear models

that, for a candidate input trajectory, predict the future process conditions up to

batch termination. Accounting for the causality and nonlinear relationships between

the future input and process measurements trajectory through the multiple local

linear models led to more effective control action. The proposed control design was

demonstrated via simulations of a highly nonlinear nylon-6,6 batch polymerization

system, and it significantly improved on the final quality variance over that obtained

using trajectory tracking control.

43



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

Bibliography

[1] Clarke-Pringle TL, MacGregor JF. Optimization of Molecular-Weight Distribu-
tion Using Batch-to-Batch Adjustments. Ind & Eng Chem Res. 1998;37(9):3660–
3669.

[2] Dong D, McAvoy TJ, Zafiriou E. Batch-to-Batch Optimization Using Neural
Network Models. Ind & Eng Chem Res. 1996;35(7):2269–2276.

[3] Flores-Cerrillo J, MacGregor JF. Iterative Learning Control for Final Batch
Product Quality Using Partial Least Squares Models. Ind & Eng Chem Res.
2005;44(24):9146–9155.

[4] Lee JH, Lee KS, Kim WC. Model-based iterative learning control with a
quadratic criterion for time-varying linear systems. Automatica. 2000;36(5):641
– 657.

[5] Soroush M, Kravaris C. Multivariable nonlinear control of a continuous polymer-
ization reactor: An experimental study. AIChE J. 1993;39(12):1920–1937.

[6] Soroush M, Kravaris C. Optimal-design and operation of batch reactors. 1. The-
oretical framework. Ind & Eng Chem Res. 1993;32:866–881.

[7] Cruickshank SM, Daugulis AJ, McLellan PJ. Dynamic modeling and optimal
fed-batch feeding strategies for a two-phase partitioning bioreactor. Biotech and
Bioeng. 2000;67:224–233.

[8] Clarke-Pringle T, MacGregor JF. Nonlinear adaptive temperature control of
multi-product, semi-batch polymerization reactors. Comp & Chem Eng. 1997;
21(12):1395–1409.

[9] Kravaris C, Soroush M. Synthesis of multivariable nonlinear controllers by in-
put/output linearization. AIChE J. 1990;36(2):249–264.

[10] Peterson T, Hernandez E, Arkun Y, Schork F. Nonlinear DMC algorithm and
its application to a semibatch polymerization reactor. Chem Eng Sci. 1992;
47(4):737–753.

[11] Shi D, El-Farra NH, Li M, Mhaskar P, Christofides PD. Predictive control of
particle size distribution in particulate processes. Chem Eng Sci. 2006;61(1):268–
281.

[12] Shi D, Mhaskar P, El-Farra N, Christofides P. Predictive control of crystal size
distribution in protein crystallization. Nanotechnol. 2005;16(7):562–574.

44



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

[13] Golshan M, MacGregor JF, Bruwer MJ, Mhaskar P. Latent Variable Model
Predictive Control (LV-MPC) for trajectory tracking in batch processes. J of
Process Control. 2010;20(4):538 – 550.

[14] Golshan M, MacGregor JF, Bruwer MJ, Mhaskar P. Latent Variable MPC for
trajectory tracking in batch processes: Role of the Model Structure. In: Proc. of
the American Control Conference. 2009; pp. 4779–4784.

[15] Aumi S, Mhaskar P. Safe-steering of Batch Processes. AIChE J. 2009;55:2861–
2872.

[16] Aumi S, Mhaskar P. Robust model predictive control and fault-handling of batch
processes. AIChE J. 2010;57:1796–1808.

[17] Mhaskar P, Aumi S. Transition from Batch to Continuous Operation in Bio-
Reactors: A Model Predictive Control Approach and Application. Can J Chem
Eng. 2007;45:416–423.

[18] Geladi P, Kowalski B. Partial Least-Squares Regression: A Tutorial. Anal Chim
Acta. 1986;185:1–17.

[19] Wold S, Geladi P, Esbensen K, Ahman J. Multi-way principal components-and
PLS-analysis. J of Chemometrics. 1987;1(1):41–56.

[20] Nomikos P, MacGregor JF. Monitoring batch processes using multiway principal
component analysis. AIChE J. 1994;40(8):1361–1375.

[21] Flores-Cerrillo J, MacGregor JF. Within-Batch and Batch-to-Batch Inferential-
Adaptive Control of Semibatch Reactors: A Partial Least Squares Approach. Ind
& Eng Chem Res. 2003;42(14):3334–3345.

[22] Undey C, Cinar A. Statistical Monitoring of Multistage, Multiphase Batch Pro-
cesses. IEEE Control Syst Mag. 2002;22(5):1361–1375.

[23] Ng YS, Srinivasan R. An adjoined multi-model approach for monitoring batch
and transient operations. Comp & Chem Eng. 2009;33(4):887–902.

[24] Flores-Cerrillo J, MacGregor JF. Control of Particle Size Distributions in Emul-
sion Semibatch Polymerization Using Mid-Course Correction Policies. Ind & Eng
Chem Res. 2002;41(7):1805–1814.

[25] Yabuki Y, MacGregor JF. Product Quality Control in Semibatch Reactors Using
Midcourse Correction Policies. Ind & Eng Chem Res. 1997;36(4):1268–1275.

[26] Wang D, Srinivasan R. Multi-model based real-time final product quality control
strategy for batch processes. Comp & Chem Eng. 2009;33(5):992–1003.

45



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

[27] Gunther JC, Conner JS, Seborg DE. Process monitoring and quality variable
prediction utilizing PLS in industrial fed-batch cell culture. J Process Control.
2009;19(5):914–921.

[28] Lu N, Gao F. Stage-Based Process Analysis and Quality Prediction for Batch
Processes. Ind & Eng Chem Res. 2005;44(10):3547–3555.

[29] Zhao C, Wang F, Mao Z, Lu N, Jia M. Quality prediction based on phase-specific
average trajectory for batch processes. AIChE J. 2008;54(3):693–705.

[30] Aumi S, Mhaskar P. Integrating Data-Based Modelling and Nonlinear Control
Tools for Batch Process Control. AIChE J. 2012;58:2105–2119.

[31] Aumi S, Corbett B, Mhaskar P, Clarke-Pringle T. Data-based Modelling and
Control of Nylon-6,6 Batch Polymerization. IEEE Trans Control Sys Technol.
2011;(in press).

[32] Kourti T, Lee J, Macgregor JF. Experiences with industrial applications of
projection methods for multivariate statistical process control. Comp & Chem
Eng. 1996;20:745–750.

[33] Kassidas A, MacGregor JF, Taylor PA. Synchronization of batch trajectories
using dynamic time warping. AIChE J. 1998;44(4):864–875.

[34] Undey C, Williams BA, Cinar A. Monitoring of batch pharmaceutical fermenta-
tions: Data synchronization, landmark alignment, and real-time monitoring. In:
Proc. of the IFAC World Congress on Automatic Control, vol. 15. Barcelona, ES.
2002; .

[35] Huang B, Ding XS, Qin SJ. Closed-loop subspace identification: an orthogonal
projection approach. J Process Control. 2005;15(1):53–66.

[36] Patel S, Yelchuru R, Ryaliand S, Gudi RD. Discriminatory Learning based Per-
formance Monitoring of Batch Processes. In: Proc. of the American Control
Conf. 2011; pp. 2552–2557.

[37] Bezdek J. A Convergence Theorem for the Fuzzy ISODATA Clustering Algo-
rithms. IEEE Trans Pattern Anal Mach Intell. 1980;2(1):1–8.

[38] Frigui H, Krishnapuram R. Clustering by competitive agglomeration. Pattern
Recognit. 1997;30(7):1109–1119.

[39] Xie XL, Beni G. A Validity Measure for Fuzzy Clustering. IEEE Trans Pattern
Anal Mach Intell. 1991;13:841–847.

[40] Russell SA, Robertson DG, Lee JH, Ogunnaike BA. Control of product quality
for batch nylon-6,6 autoclaves. Chem Eng Sci. 1998;53(21):3685–3702.

46



Chapter 3
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Manuscript Overview

The previous chapter addressed a novel approach to the so called missing-data problem

when using PLS models for batch-quality control. In this chapter, these previous

results are extended. Specifically, the methods from the previous chapter are applied

to a different simulation example with substantially more limited inputs. Furthermore,

new measures are introduced to improve controller performance by enforcing model

validity in control decisions. Finally, a basic adaptation method is proposed to expand

the model validity region with each completed closed-loop batch.

This work was carried out with the assistance of a summer research intern, Brian

Macdonald. Brian’s role in this work was to supervise simulations and help tune

controllers.
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Abstract

This work considers the problem of quality control for the production of Polymethyl

methacrylate (PMMA) to achieve prescribed number and weight average molecular

weights. To this end, with a detailed first principles model used to simulate the pro-

cess, a dynamic multiple-model based approach is estimated from past batch data.

Subsequently, the multiple-model is integrated with a quality model to enable pre-

dicting the end quality based on initial conditions and candidate control input (jacket

temperature) moves. A data-driven model predictive controller is then designed to

achieve the desired product quality while satisfying input constraint, a lower bound

on the conversion, as well as additional constraints that enforce the validity of data-

driven models for the range of chosen input moves. Simulation results demonstrate the

superior performance (10.3% and 7.4% relative error in number average and weight

average molecular weight compared to 20.4% and 19.0%) of the controller over tradi-

tional trajectory tracking approaches.
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3.1 Introduction

Polymethyl methacrylate (PMMA) is a staple of the polymer industry. Originally

marketed as PlexiglassTM , PMMA now has applications in many products ranging

from its traditional application as a glass substitute to medical implants. The desirable

properties of PMMA are strongly dependent on the molecular weight distribution,

often characterized by the number and weight average molecular weight. The primary

control objective, therefore, is to reach a specified weight average and number average

molecular weight, resulting in high quality product, motivating their production in a

batch fashion. Polymerization of PMMA in this fashion is representative of a class

of polymerization reactions that is common in industry (batch production when high

quality products are required).

Batch PMMA production has typical batch characteristics including finite dura-

tion, nonlinear dynamics over a wide operating range, and the absence of steady-state

operating points. The absence of a nominal steady-state operating point precludes the

direct application of controllers designed for continuous processes. Furthermore, the

molecular weight distribution (or the number and weight average molecular weight)

are typically not measured online during the batch process, but only made offline after

batch completion, making the direct control of the quality variables infeasible.

Existing batch control approaches can be broadly divided into trajectory tracking

and inferential quality control approaches[4]. In trajectory tracking PMMA quality

control, the approach is to first identify using a first principles model [13, 21, 22,
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23, 18, 19, 25, 5], past data, or determine using off-line optimization, trajectories for

the temperature that result in the desired quality at the end of the batch, and then

track these trajectories using traditional PI control or MPC [20, 24, 28]. However,

even with perfect tracking, disturbances encountered during the new batch effec-

tively alter the relationship between the product quality and the temperature profile.

Thus, implementing the same reference trajectories batch-to-batch is not guaranteed

to consistently produce on-spec product. The availability of extensive past batch

data however, motivates the use of data-driven model to better capture the nonlinear

dynamics of the system and to readily ‘update’ the model with newly available data.

Data-driven inferential quality control is often achieved through multivariate sta-

tistical process control (SPC) approaches, particularly those utilizing latent variable

tools, such as principal component analysis (PCA) or partial least squares (PLS) re-

gression [10]. For batch processes, the model development for the majority of SPC

applications begins with the so-called “batch-wise” unfolding of multiway batch data

[26, 15]. The unfolded batch data are regressed onto a matrix of final quality mea-

surements to obtain a model that is usable for predicting the final quality prior to

batch completion [12, 8, 11, 27].

An important issue that arises in data-driven inferential quality control approaches

is that future online measurements are required to predict the quality. More specif-

ically, the data arrangement in the model building process calls for the entire batch

trajectory to predict the final quality. However, during a progressing batch, measure-
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ments are only available up to the current sampling instant. This issues is treated as

the so-called missing data problem, wherein an attempt is made to ‘fill in’ the missing

data in some appropriate fashion.

A variety of ad-hoc approaches exist to handle the missing data problem. Many

methods utilize missing data algorithms available for latent variable methods (see

[14]). These missing data algorithms work on the assumption that the correlation

structure between the collected measurements and future measurements for the new

batch is the same as in the training data, which in turn necessitates the use of the

same controller in the current batch as was used in the past batches. However, in

practice this is not the case, as the sole objective of the inferential quality based

controller is to replace the earlier control design in the hope of achieve better quality

control. In this sense, the problem is not really one of missing data but rather one

of dynamic modeling. To understand this, consider a batch process say halfway into

the batch. The rest of the process variable ‘measurement’ or evolution depends on

the future control inputs and the past process variable trajectory- therefore what is

needed is a dynamic model relating a candidate input trajectory to the future process

variable trajectory, which in turn can be used to predict the end-point quality, and

therefore select the best input moves. A framework for data-driven quality model was

recently developed in [1] and illustrated on a nylon-6,6 batch polymerization system.

The results in [1], however, did not account for the additional information available

through the initial condition by virtue of all the states measurements being available,
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nor did it constrain the control action to keep the process within the range of process

validity.

Motivated by the above considerations, in this work, we present a within-batch

molecular weight distribution modeling and control strategy for the PMMA process.

The approach unites a single PLS inferential model with a nonlinear, data-driven

dynamic modeling approach, while accounting for the variation in information during

the batch and also ensuring that the process stays within the range of model validity.

3.2 Process Overview and Control Objective

In this section, we first describe the process and a detailed first principles model that

will be used as a test-bed for the implementation, followed by the control objectives.

3.2.1 Process Description

This work considers the free radical polymerization of PMMA. The kinetic mechanism

for this reaction can be found in [16]. The process is carried out in a reactor with

a heating/cooling jacket. The deterministic model used in this work is adapted[6]

while making suitable alterations [7, 16]. In particular, the efficiency of the initiator

(which is dependent on viscosity) was calculated by expressions taken from [7]. The

effect increased viscosity has on decreased heat transfer ability between the jacket and

the reactor volume was modeled by an expression taken from [16]. Viscosity values

(which can be readily inferred from the torque measurements in the stirrer) were
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assumed to be measured, and related to the process conditions by equations given in

[7]. Finally, the expression for the overall reaction rate used in the heat-balance was

modified from the form given in [6] which assumed a quasi steady-state assumption.

The overall reaction which was implemented is in accordance with the expression

given in [20].

The key states in the deterministic model are the three moments of the living and

dead polymer distributions. These six states can be related to end product quality.

In particular, they can be used to calculate (through expressions presented in the

appendix) the weight and number average molecular weight as well as the conver-

sion of monomer. The weight and number average molecular weight are particularly

important properties for end use.

3.2.2 Control objectives

For the PMMA process, the objective is to reach some target qualities. The key

variables that affect the final quality for the PMMA process are the initial ingredient

recipe and the jacket temperature trajectory. In this work we focus primarily on

the problem of determining the jacket temperature trajectory that in turn affects

the reactor temperature trajectory to yield the desired weight and number average

molecular weight at the end of the batch.
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3.2.3 Data-base

The proposed dynamic model building approach relies on the availability of past data

to build the dynamic (and quality) models. We use the model described above to

build this data of past batches. Each batch was started from a new initial condition

to reflect normal variation in feed stock. In the past databases, a proportional-integral

(PI) controller was used to track a nominal reactor temperature profile. This profile

was based on a temperature trajectory presented in [16] (figure 9). The PI controller

was tightly tuned to minimize the integral of absolute error (IAE). Furthermore,

measurements recorded in the database were corrupted with random noise to replicate

sensor error.

The database consisted of initial conditions (states), measurements at each sam-

pling instance, manipulated variable moves, and quality measurements at the com-

pletion of the batch. The initial conditions were defined by monomer and initiator

concentration as well as initial temperature. The measurable outputs were taken to be

temperature, density, and viscosity. The recorded qualities were monomer conversion,

number average molecular weight and weight average molecular weight.

In addition to the batches tracking the nominal profile, five identification batches

were generated. The purpose of these batches was to enrich the database for later

model fitting. Of these batches, two were operated at temperatures shifted up and

down from the nominal operating temperatures by ±1◦C. The remaining three were

operated with pseudo-random binary sequencing signals added on top of the nomi-

55



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

nal temperature trajectory (average switching time of six sampling instances with a

variance of ±0.5◦C).

Remark 7 Note that the baseline for comparison could very well have been another

data-based/first principles based approach for trajectory tracking. The focus in the

present manuscript is not to compare PI control with advanced controllers but instead

a trajectory tracking controller with a dedicated ‘quality’ controller. As can be seen, the

PI is able to track the trajectories reasonably well, so any improvement in closed-loop

performance (for quality control) is expected to be attributed to determining (online)

improved control moves that better reach the target quality.

Remark 8 Note also that while we have available a first principles model that cap-

tures well the inherent process dynamics, the model is not easily amenable for online

optimization (and control calculation) because of the nonlinearity of the differential

and algebraic equations governing the dynamics. The model does serve well, however,

as a ‘replica’ of the process and to test the performance of the proposed modeling and

control method.

3.3 Dynamic Model Development

In this section, we apply a multi-model, data-driven modeling approach to predict the

future output behavior (temperature, ln η, and ρ, and subsequently the final quality

[2]) for a candidate manipulated input trajectory. Mathematically, the model for the
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process outputs takes the form of a weighted combination of L linear discrete time

input-output models as shown below in Eq. 3.1.

ŷ(k + 1) =
L∑
`=1

w`(k)β̂`y(k) (3.1)

where y(k) = [T (k) ln (η(k)) ρmix(k) Tj(k)] ∈ R4 is a vector of process measure-

ments at time k. w`(k) is model `’s weight at sampling instant, k, and β̂` is a 4x4

matrix and defines the `-th local model. Using the following definitions,

β̂ ,

[
β̂1 · · · β̂` · · · β̂L

]′
(3.2)

h(k) , [w1(k)ȳ(k) · · ·

· · · w`(k)ȳ(k) · · · wL(k)ȳ(k)]′
(3.3)

Eq. 3.1 can be re-written in the form:

ŷ(k + 1) = β̂
′
h(k) (3.4)

The model identification procedure consists of an initial clustering step (in essence

determining how many local linear models need to be used, albeit not using the mea-

surements directly, but first performing PCA to retain only independent measure-

ments) followed by solving a linear regression problem. In the first step, a matrix,

Ȳ =

[
T ln(η) ρmix Tj

]
is generated by sorting the plant data sample-wise and
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then, Ȳ (or its equivalent latent variable space - see [2] for details) is clustered into

L clusters using fuzzy c-means clustering (note that ȳ(k) in Eq. 3.3 represents the

kth row of Ȳ). In fuzzy c-means clustering, points that are mathematically “similar”

according to the Euclidean 2-norm are clustered into overlapping spherical clusters

with corresponding center points [17, 3]. Each cluster represents a region in the Ȳ

space where an associated model has the highest degree of validity, and in this way,

the cluster’s center point represents the linearization point of its associated model.

Using the results of the clustering step (the cluster center points), the weights, w`(·),

for the training data can be computed prior to the model coefficients (to be discussed

shortly). Consequently, the h(k) vector in Eq. 3.4 is completely specified for the

training data. Thus, a regressor matrix corresponding to h(k) can be constructed,

and the local linear models, β̂, are computable using linear regression.

Intuitively, the model weights, w`(·), should depend on the current values of the

states and inputs. In other words, the local models should be weighted according

to the current process conditions. Because full state measurement is not available

for the PMMA system, the vector of outputs and inputs, Ȳ (k), can be used to infer

the current process conditions, and each model’s weight can be assigned based on

the proximity of the operating conditions to its center point. For instance, denoting

model `’s center point as c`, its weight should be inversely proportional to the squared
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distance between Ȳ (k) and c`:

w`(k) ∝ ‖ȳ(k)− c`‖−2

Normalizing this expression over all clusters yields the following normalized weighting

function:

w`(k) =
‖ȳ(k)− c`‖−2∑L
i=1 ‖ȳ(k)− ci‖−2

Note that the choice of the number of clusters is made using cross-validation to

keep the number of clusters that enable a good fit and prediction while avoiding over-

fitting. To do this, the second part of the training data set with 15 batches was used

and the optimal number of clusters was found by evaluating several possibilities. In

particular, models were fit for each combination of 1 to 8 clusters and 4 to 25 principal

components. Models were evaluated in terms of the root mean squared error (RMSE)

of prediction of the batch trajectories. It was found that the best number of clusters

for this system was 6 clusters. For this number of clusters, the optimal number of

principal components was found to be 25. Using these modeling parameters, the root

mean squared error was found to be 0.22, 0.415, and 3.06 in predictions of temperature,

ln η, and ρ respectively. Figure 3.1 shows predicted trajectories for a new batch, and

shows the utility of the model for feedback control (note that the predicted trajectory

is entirely ‘open-loop’, i.e., shares only the initial condition with the actual data).
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Figure 3.1: Output Trajectories Predicted By The Multi-Model Dynamic Model
(Dashed Lines) Compared To Actual Measured Output Trajectories (Solid Lines)
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3.4 Quality Model Development

In this section the development of a model to predict end point quality from batch

trajectories is described. First, the model fitting procedure is described followed by

the validation results. To obtain an inferential quality model for the PMMA process,

the initial conditions and online measurements from each batch in the training data

were regressed onto the final qualities. To this end, a regressor matrix, X, was formed

such that each row of X contained the initial measurements and complete trajecto-

ries for a given batch. This was accomplished by first unfolding the measurement

trajectories in a batch-wise fashion. To understand this unfolding, first consider a

three dimensional matrix of online measurements split into two parts with dimen-

sions B × J ×K where B denotes batch index (B = 30 for the first part to be used

to compute model parameters, B = 15 for the second part to be used to pick the

best number of principle components), J denotes measurement index (J = 4), and K

denotes sampling time (K = 241). In this unfolding scheme, each row of the regres-

sor matrix contains the complete trajectories for a single batch. Thus the unfolded

process measurements would form a two dimensional B × JK matrix. To form the

final regressor matrix, initial measurements were added to the unfolded process mea-

surements. In the case with I initial measurements (I = 3), the final matrix would

have dimensions B × (JK + I) (ie 30 × 967)[9]. The regressand matrix, Y contains

the quality measurements from each of the batches in the regressor matrix. In the

case with Q final product qualities (for the PMMA system Q = 3), this would form
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a B ×Q matrix.

Remark 9 Note that in the case with full state measurement, the end qualities could

be calculated directly from the final state measurements in the batch. This is a result

of the fact that by definition, the state of the batch describes all properties of the batch.

However, continuous full state measurement is rare in batch systems. The inherent

assumption made by the approach followed here (and in a sense in all inferential

quality approaches) is that the final state of the system can be estimated from the

complete output trajectory of the batch, which in turn can be used to estimate the

quality.

Having formed the regressand and the regressor matrix, regression can be carried

out to calculate model coefficients. Note that the columns of the regressor matrix

described previously will inherently have a high degree of correlation. This is a result

of the fact that the regressor contains measurements of the same variable taken one

sampling instant apart. This correlation results in a near singular matrix and will

cause ordinary least squares regression to fail. To address this issue, partial least

squares (PLS) regression is applied. Mathematical details of PLS and the NIPALS

algorithm used to identify PLS models can be found in [10].

Remark 10 The key model parameter in PLS is the number of principal components

used. In this work, the number of principal components was determined using a val-

idation data set. To do this, a model was fit for each possible number of principal
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components (limited by the dimension of training data set). Then, each model was

used to predict a separate validation data set. The number of principal components

selected was the one that provided the smallest root mean squared error in predicting

the validation data.

Figure 3.2 demonstrates the performance of the quality model for the PMMA sys-

tem. The predictions shown in this figure are made from completed batch trajectories

of new batches operated under PI trajectory tracking control. Note that the model

provides reasonable prediction of both number average and weight average molecular

weight, and is therefore amenable for the purpose of feedback control.

3.5 Model Predictive Quality Control

In this section, the data-driven modeling approach reviewed in Section 3.3 is used in

conjunction with the inferential quality model described in Section 3.4 in a quality

based MPC design.

3.5.1 MPQC formulation

Note that the quality model captures the (time-cumulative) effects of the entire batch

trajectory on the final quality while the multiple linear models for the measurable

process variables take the causality and nonlinear relationship between the inputs

and outputs into account. The benefit from this approach is a more causal prediction

of the final quality, which, in turn, leads to more effective control action.
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Having identified the dynamic and quality model, the desired quality qdes is

achieved by solving the following optimization problem to determine the entire jacket

temperature trajectory from the current time to the end of the batch (resulting in a

shrinking horizon MPC implementation):

min
u(k)∈U

(q̂ − qdes)
′Ψ (q̂ − qdes) +

K∑
i=k

∆Tj
′(i)Φ∆Tj(i) (3.5)

s.t.: ŷ(k) = y(t) (3.6)

ŷ(k + 1) =
L∑
`=1

w`(k)β̂`ŷ(k) (3.7)

x′future = [u′(k) y′(k + 1) u′(k + 1) · · ·

y′(k + 2) u′(k + 2) · · ·y′(K)]′
(3.8)

SPE < SPElim (3.9)

T 2 < T 2
lim (3.10)

q̂ =

[
xpast xfuture

]
Λ (3.11)

where Ψ and Φ are positive-definite weighting matrices imposing penalties on end

point quality deviation and rate of change of control moves. In this work, Ψ was

an identity matrix and Φ was a diagonal matrix with diagonal elements equal to

1.0×10−6. Equation 3.6 is the MPC initialization at the current plant conditions and

Eq. 3.7 represents the prediction of the future process variables using the data-driven
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model (given the current input trajectory in the optimizer). The predicted process

outputs and optimizer inputs are stored appropriately in the xfuture vector through

Eq. 3.8. This vector is concatenated with a vector of previous plant outputs and im-

plemented inputs, xpast. Note that the vector, xpast, is known prior to solving the MPC

optimization problem; specifically, x′past = [z′(0) y′(0) u′(0) y′(1) u′(1) · · · y′(k)]

where z′(0) denotes all the information known prior to starting the batch (i.e., the

initial conditions). The concatenated vector,

[
xpast xfuture

]
, is used to predict the

quality through Eq. 3.11. Note that the prediction horizon for the MPC must extend

to the end of the batch; thus, the prediction horizon, P = K − k, shrinks at every

sampling instant.

In addition to process constraints, Eq. 3.9 and Eq. 3.10 enforce model validity for

the quality model, by enforcing constraints on the squared prediction error (SPE)

and T 2, Enforcing these constraints ensures that the model is applied for trajectories

that make the process operate in regions ‘dynamically similar’ and also having the

same ‘relationship’ between process trajectories and end-point quality variables as

that found in the training data. In geometric terms, SPE can be thought of as the

distance off the latent variable model plane while T 2 can be thought of as the distance

along the plane from the origin of the latent variable space.
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3.5.2 Data-driven model-based quality control results

The model predictive control scheme was implemented for the PMMA system, and

results summarized for twenty batches simulated from new initial conditions. The set

point for the quality based control was a weight average molecular weight of 85,000

and a number average molecular weight of 150,000. The penalty on the control moves

was set to 1 × 10−6. The T squared and SPE limits were calculated from the 95%

and 99.99% confidence intervals respectively. The nonlinear quadratic program solver

CONOPT was used to solve the optimization problem at each sampling instant. At the

first sampling instance of each batch, the optimizer was initialized with the nominal

input trajectory. At each subsequent sampling instance, the tail of the previous

solution was used.

Note that the use of the multiple local model has significant computational advan-

tages compared to using a nonlinear first principles model for optimization, making

the approach feasible for online implementation. In particular, the median time for

the first control move calculation was 74 seconds on a dual core Intel processor (note

that the average time was 93 seconds but is skewed by a few outliers). The average

calculation times for each subsequent sampling instances was 8.71 seconds which is

well below the 60 second sampling time.

The closed loop simulation results were evaluated both in absolute terms and

also by comparison to the PI trajectory tracking performance. Figure 3.3 shows

the relative error for both the PI trajectory tracking and the proposed MPQC. The
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average relative errors for the MPQC were 10.3% and 7.4% for number average and

weight average molecular weight respectively. This is compared to 20.4% and 19.0%

for the PI trajectory tracking. In 20 out of 21 cases, the MPQC produces a product

closer to spec then the trajectory tracking scheme for both number and weight average

molecular weight. Figure 3.4 shows a representative MPQC input trajectory. The

MPQC input trajectories were generally similar to the nominal input and the PI

trajectory but deviate slightly (and sufficiently, at critical times) to provide improved

quality.

Remark 11 Note that both T 2 and SPE (shown in Figure 3.5) are moved to their

limits by the optimizer. While this behavior is undesirable from a model validity per-

spective, it is expected. This is because in order to improve the quality from that pro-

duced by PI control, the optimizer must implement a different input output correlation

than was observed in the training data. Fortunately, because of the batch-to-batch up-

dating, each batch that is operated this way makes the models more robust and thus

more accurate for future deviations in input output correlation.

3.6 Conclusions

In this work, we considered the problem of data driven quality control for a PMMA

process. To do this, a dynamic multiple-model based approach was first built and

then integrated with an inferential quality model to yield an overall model for the
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Figure 3.3: Relative error in the molecular weight distribution qualities compared
between the proposed model predictive quality control scheme and trajectory tracking
PI controller

68



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

0 0.5 1 1.5 2 2.5 3 3.5 4

330

335

340

345

Time [h]

J
ac

ke
t

T
em

p
er

at
u
re

[K
]

Nominal
PI

MPQC

0 0.5 1 1.5 2 2.5 3 3.5 4

335

340

345

Time [h]

T
em

p
er

at
u
re

[K
]

Nominal
PI

MPQC
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batch under MPQC and PI control
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(dashed line)

system which was utilized in a model predictive controller. Simulation results demon-

strated the superior performance of the proposed modeling and control method over

traditional trajectory tracking approaches.

Bibliography

[1] S. Aumi, B. Corbett, T. Clarke-Pringle, and P. Mhaskar. Data-driven model
predictive quality control of batch processes. AICHE J., 59(8):2852–2861, AUG
2013.

[2] S. Aumi and Prashant M. Integrating data-based modeling and nonlinear control
tools for batch process control. AICHE JOURNAL, 58(7):2105–2119, JUL 2012.

[3] J. Bezdek. A Convergence Theorem for the Fuzzy ISODATA Clustering Algo-
rithms. IEEE Trans. Pattern Anal. Mach. Intell., 2(1):1–8, 1980.

[4] D. Bonvin, B. Srinivasan, and D. Hunkeler. Control and optimization of batch
processes. Control Systems, IEEE, 26(6):34 –45, dec. 2006.

[5] J. P. Corriou and S. Rohani. A New Look at Optimal Control of a Batch Crys-
tallizer. AIChE J., 54(12):3188–3206, 2008.

[6] E. E. Ekpo and I. M. Mujtaba. Evaluation of neural networks-based controllers in
batch polymerisation of methyl methacrylate. Neurocomputing, 71(7):1401–1412,
2008.

70



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

[7] S. Fan, S. P. Gretton-Watson, J. H. G. Steinke, and E. Alpay. Polymerisation of
methyl methacrylate in a pilot-scale tubular reactor: modelling and experimental
studies. Chem. Eng. Sci., 58(12):2479–2490, 2003.

[8] J. Flores-Cerrillo and J. F. MacGregor. Within-batch and batch-to-batch
inferential-adaptive control of semibatch reactors: A partial least squares ap-
proach. Ind. Eng. Chem. Res., 42(14):3334–3345, 2003.

[9] J. Flores-Cerrillo and J. F. MacGregor. Control of batch product quality by tra-
jectory manipulation using latent variable models. J. Process Control, 14(5):539
– 553, 2004.

[10] P. Geladi and B.R. Kowalski. Partial least-squares regression: A tutorial. Anal.
Chim. Acta, 185:1 – 17, 1986.

[11] P. Kesavan, J. H. Lee, V. Saucedo, and G. A. Krishnagopalan. Partial least
squares (PLS) based monitoring and control of batch digesters. J. Process Con-
trol, 10(2-3):229 – 236, 2000.

[12] T. Kourti, P. Nomikos, and J. F. MacGregor. Analysis, monitoring and fault
diagnosis of batch processes using multiblock and multiway PLS. J. Process
Control, 5(4):277 – 284, 1995.

[13] D. J. Kozub and J. F. MacGregor. Feedback control of polymer quality in semi-
batch copolymerization reactors. Chem. Eng. Sci., 47(4):929 – 942, 1992.

[14] P. R. C. Nelson, P. A. Taylor, and J. F. MacGregor. Missing data methods in
PCA and PLS: Score calculations with incomplete observations. Chemom. Intell.
Lab. Syst., 35(1):45 – 65, 1996.

[15] P. Nomikos and J. F. MacGregor. Monitoring batch processes using multiway
principal component analysis. AIChE J., 40(8):1361–1375, 1994.

[16] H. J. Rho, Y. J. Huh, and H. K. Rhee. Application of adaptive model-predictive
control to a batch MMA polymerization reactor. Chem. Eng. Sci., 53(21):3729–
3739, 1998.

[17] G. A. F Seber. Multivariate Observations. John Wiley & Sons, New York, NY,
USA, 1984.

[18] D. Shi, N.H. El-Farra, M. Li, P. Mhaskar, and P.D. Christofides. Predictive
control of particle size distribution in particulate processes. Chemical Engineering
Science, 61(1):268–281, 2006.

[19] D. Shi, P. Mhaskar, N.H. El-Farra, and P.D. Christofides. Predictive control
of crystal size distribution in protein crystallization. Nanotechnology, 16:S562,
2005.

71



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

[20] M. Soroush and C. Kravaris. Nonlinear control of a batch polymerization reactor:
an experimental study. AIChE journal, 38(9):1429–1448, 1992.

[21] M. Soroush and C. Kravaris. Multivariable nonlinear control of a continuous
polymerization reactor: An experimental study. AIChE J., 39(12):1920–1937,
1993.

[22] M. Soroush and C. Kravaris. Optimal-design and operation of batch reactors. 1.
Theoretical framework. Ind. Eng. Chem. Res., 32:866–881, 1993.

[23] B. Srinivasan and D. Bonvin. Real-time optimization of batch processes by track-
ing the necessary conditions of optimality. Industrial & engineering chemistry
research, 46(2):492–504, 2007.

[24] C. Welz, B. Srinivasan, and D. Bonvin. Measurement-based optimization of batch
processes: Meeting terminal constraints on-line via trajectory following. Journal
of Process Control, 18(3):375–382, 2008.

[25] C. Welz, B. Srinivasan, A. Marchetti, D. Bonvin, and N. L. Ricker. Evalua-
tion of input parameterization for batch process optimization. AIChE journal,
52(9):3155–3163, 2006.

[26] S. Wold, P. Geladi, K. Esbensen, and J. Ahman. Multi-way principal
components-and PLS-analysis. J. of Chemometrics, 1(1):41–56, 1987.

[27] Y. Yabuki, T. Nagasawa, and J. F. MacGregor. An industrial experience with
product quality control in semi-batch processes. Comput. Chem. Eng., 24(2-
7):585 – 590, 2000.

[28] G. P. Zhang and S. Rohani. On-line optimal control of a seeded batch cooling
crystallizer. Chem. Eng. Sci., 58:1887–1896, 2003.

72



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

3.7 Appendix A: First-principles PMMA Model

From Literature

Differential equations [6]:

dT

dt
= −Hrxn

Rp

Cpρmix
− UA (T − Tj)

1

CpV ρmix
(3.12)

dξ0

dt
= 2fkdCi − ktξ2

0 (3.13)

dξ1

dt

= 2fkdCi + kpCmξ0+

. . . (kfmCm + kfsCs) (ξ0 − ξ1)− ktξ0ξ1

(3.14)

dξ2

dt

= 2fkdCi + (2ξ1 + ξ0) kpCm+

. . . (kfmCm + kfsCs) (ξ0 − ξ2)− ktξ0ξ2

(3.15)

dµ0

dt
= (kfmCm + kfsCs) ξ0 + (0.5kt) ξ

2
0 (3.16)

dµ1

dt
= (kfmCm + kfsCs + ktξ0) ξ1 (3.17)

dµ2

dt
= (kfmCm + kfsCs) ξ2 + ktξ0ξ2 + ktξ

2
1 (3.18)

dCi
dt

= −kdCi (3.19)

dCm
dt

= − (kp + kfm)Cmξ0 (3.20)

(3.21)
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Kinetic Parameters [6] (including gel and glass effect):

kp =
kp0

1 + kp0ξ0
Dkθp

kt =
kt0

1 + kt0ξ0
Dkθt

(3.22)

kp0 = 7× 106 exp

(−2.6334× 104

RgT

)
(3.23)

kt0 = 1.79× 109 exp

(−1.1704× 104

RgT

)
(3.24)

kθp = 3.0233× 1013 exp

(−1.1700× 105

RgT

)
(3.25)

kθt = 1.454× 1020CI0 exp

(−1.4584× 105

RgT

)
(3.26)

kd = 1.58× 1015 exp

(−1.2874× 105

RgT

)
(3.27)

kfm = 4.661× 109 exp

(−7.4479× 104

RgT

)
(3.28)

kfs = 1.49× 109 exp

(−6.6197× 104

RgT

)
(3.29)
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Additional Algebraic Equations [6]:

D = exp

(
2.303 (1− φp)

D2

)
(3.30)

D2 = 0.168− 8.21× 10−6(T − 387)2+

. . . 0.03(T − φp)
(3.31)

φm =
CmMWm

ρm
φp =

µ1MWm

ρp
(3.32)

f = f0 exp

(
−C

(
1

Vf
− 1

Vfcr

))
(3.33)

Vfcr = 0.1856− 2.965× 10−4(T − 273) (3.34)

Vf = 0.025 + 0.001(T − 167)φm+

. . . 0.00048 ((T − 387)φp + (T − 249)φs)
(3.35)

Rp = kpCmξ0 (3.36)

ρmix = (µ1 + Cm)MWm + CsMWs + CiMWi (3.37)

Cp =
µ1Cp,p + CmCp,m + CsCp,s

µ1 + Cm + Cs
(3.38)

U = U0

(
0.2 + 0.8 exp

(
−5x5

))
(3.39)

η = η0 (1 + ηsp) (3.40)

ηsp = cηint (1 + khηintc) (3.41)

c = µ1MWm/103 (3.42)

ηint = 6.75× 10−3 (Mw)0.72 (3.43)

Quality Variables:

Mn =
µ1 + ξ1

µ0 + ξ0

MWm (3.44)

Mw =
µ2 + ξ2

µ1 + ξ1

MWm (3.45)

x =
µ1

Cm,0
(3.46)

• In equations 3.17 and 3.19, f is used to denote the efficiency of the initiator
(which is dependant on viscosity). We calculated this effect in equations 3.33
to 3.35 which were taken from [7].

• As the reaction progresses, the increased viscosity causes a decrease in the heat
transfer ability between the jacket and the reactor volume. This is modeled in
equation 3.39 taken from [16].
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• Viscosity values (which can be readily inferred from the torque measurements in
the stirrer) were assumed to be measured, and related to the process conditions
by equations 3.40 to 3.43 taken from [7].

• Equation 3.36 is different from [6] (where a quasi steady state assumption is
made only for this equation) and uses ξ0 [20] which is consistent with the use of
dynamic equations describing the evolution of the moments.
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Subspace Identification for
Data-driven Modeling and Quality
Control of Batch Processes
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Manuscript Overview

In the previous two chapters a novel approach for batch quality control using PLS

models was presented. The key contributions of these two manuscripts focused on

the so-called missing data problem in the latent variable modeling approach. While

the approach in these previous chapters provided a time-independent approach for

dynamic modeling, the quality model was still inherently a time-varying model. While

this kind of time-varying methodology works well for some systems, there are potential

gains to be made by moving to a strictly time-invariant model structure.

This chapter introduces a novel, completely time-invariant approach to batch mod-

eling and quality control. The approach is motivated by the observation that, given

the correct state-space description, the complete instantaneous condition of the batch

can be captured by the state. By describing the batch from this state-based perspec-

tive, we eliminate the need for time-varying descriptions. As will be shown in this

and the following chapters, removing time-dependence provides valuable flexibility in

both model building and quality control.
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Subspace Identification for Data-driven Modeling
and Quality Control of Batch Processes

Brandon Corbett and Prashant Mhaskar

Originally published: May, 2016, in AIChE Journal ; DOI: 10.1002/aic.15155

Abstract

In this work we present a novel, data-driven, quality modeling and control approach

for batch processes. Specifically, we adapt subspace identification methods for use

with batch data to identify a state-space model from available process measurements

and input moves. We demonstrate that the resulting LTI, dynamic, state-space model

is able to describe the transient behavior of finite duration batch processes. Next, we

relate the terminal quality to the terminal value of the identified states. Finally, we

apply the resulting model in a shrinking-horizon, model predictive control scheme

to directly control terminal product quality. The theoretical properties of the pro-

posed approach are studied and compared to state-of-the-art latent variable control

approaches. The efficacy of the proposed approach is demonstrated through a sim-

ulation study of a batch polymethyl methacrylate (PMMA) polymerization reactor.

Results for both disturbance rejection and set-point changes (that is, new quality

grades) are demonstrated.
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4.1 Introduction

Batch processes represent a class of chemical processes characterized by a reaction

carried out over a finite duration. The use of batch processes is widespread in chemi-

cal industries including the pharmaceutical, biotech, specialty chemical, agricultural,

and microelectronics industries [1]. Amongst others, a few key advantages of batch

processes are that they are able to produces multiple related products using the same

equipment, handle variation in feed, and adjust to variations in product specs. Fur-

thermore, since the volume of each batch is relatively low and each batch is uncorre-

lated, batch processes are especially important in the production of low volume, high

value products. This is because after each batch, the product specifications can be

tested and, in the cases where specifications are unmet, the product can be discarded

without further loss of materials. This kind of policy is appropriate when reaching

the product specification is more economically valuable then obtaining high through-

put and product yield. In summary, batch processes play an important role in the

production of high value products where product quality is of paramount importance.

The objective for batch processes, therefore, is to reach the desired product quality

at the termination of the batch. This objective is often hindered by the effect of

feedstock variation and other disturbances on the evolution of the process. To address

these disturbances and to drive the process to the desired quality, continuous inputs

(such as heat addition and removal) are made to the process. The (control) policy by

which these inputs are selected has a profound impact on whether the desired quality
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is obtained.

Many batch processes are operated under a simple open loop ‘control’ policy where

the same, time-indexed input-trajectory is applied for each batch [1]. This approach

is motivated by the assumption that by repeating historically successful actions, the

desired product quality will be obtained. Open loop policies are beneficial in that

they are easy to implement, do not require online measurement or process models,

and can be easily adapted from lab scale procedures. However, because there is no

feedback mechanism in this approach, it is incapable of rejecting disturbances that

effect the process.

In order to reject disturbances effecting the product quality, closed-loop approaches

must be applied. However, closed-loop quality control needs to overcome several chal-

lenges inherent to batch processes. First of all, variables of importance for product

quality are typically not measured online precluding their direct use in quality con-

trol. Often these variables are either too costly to measure in real-time or real-time

measurement is physically impossible. Instead, quality variables are measured in a

laboratory setting after the completion of the batch. Another complicating factor is

that, like most chemical processes, evolution of fundamental process states is gov-

erned by nonlinear dynamics. However, unlike the continuous systems, there is no

valid direct linearizion of these process dynamics because the process is transient.

These two factors limit the applicability of traditional control approaches such as

proportional-integral (PI) or dynamic matrix control (DMC). Instead, entirely new
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control approaches are needed.

One common control approach for batch process is trajectory-tracking. In trajectory-

tracking control, a predefined set-point trajectory for a measurable process variable is

tracked. The underlying assumption for this approach is that if the process is tightly

controlled to follow the same trajectory as a historically successful batch, the desired

quality will be obtained. In its simplest form, trajectory tracking can be achieved

using a PI controller. To account for the nonlinear evolution of the process states,

techniques such as gain scheduling may be applied [2, 3]. While this approach provides

a simple, easily implemented solution, even with perfect tracking the desired quality

may not be obtained. This is because relationship between the controlled variable and

final quality may change significantly with changes in feedstock, and other variations.

Furthermore, this approach is inherently time-indexed which may become a problem

when the duration of batches is not consistent.

More advanced control approaches universally rely on the availability of some sort

of model for the process. In many studies, the existence of an accurate first principles

dynamic model of the process is assumed. Given such a model, approaches such as

linearizing control [2], and direct model predictive control [4, 5, 6, 7, 8, 9, 10, 11]

can be applied. However, a large part of the reason that batch processes are so

ubiquitous is that, compared to their continuous counter-parts, batch processes are

relatively simple to design and implement. This leads to a short time-to-market but

also has important implications in terms of process control. Because maintaining
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low development cost is often of utmost importance, it is often impractical to carry

out the thorough identification experiments necessary to determine the parameters in

first principles models [12]. This motivates the use instead of simpler process models,

where the parameters can be determined using statistical techniques. In these control

approaches, models built from historical and limited identification data are used to

calculate control actions. Because of the central role of the models in these approaches,

the model building methodology is an integral part of the resulting control design.

Statistical batch control methods (and the related model identification) can be

broadly classified into two classes: batch-to-batch approaches and within batch ap-

proaches. In batch-to-batch approaches, the key assumption is that there are distur-

bances influencing the batch quality that are correlated from one batch to the next.

Therefore, these approaches build models to predict the quality of the next batch

from the qualities of the previous series of batches and their corresponding input

trajectories. Between batches, the input trajectory is updated to reject disturbances

observed in the preceding batches. A significant number of literature contributions

have been made addressing this approach [13, 14, 15, 16, 17, 18, 19, 20]. Most no-

tably related to the current work is a proposed batch-to-batch approach where the

dynamic evolution of the quality variables between batches was identified using sub-

space identification [20]. While batch-to-batch approaches are valuable if there is

correlation between the batches, it is not applicable when batches are independent

events. Furthermore, even if consecutive batches are correlated, batch-to-batch meth-
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ods do not address the problem of rejecting disturbances that arise within individual

batches. This motivates the need for within batch control. Within batch approaches

utilize measurements taken during the batch in conjunction with a model to reject

disturbances as they arise throughout the batch. These approaches can be further

categorized as trajectory-tracking and quality control methods. As previously dis-

cussed, the premise of trajectory-tracking control is to regulate a process variable

to track a historically successful trajectory. Advanced trajectory-tracking control is

most commonly achieved by replacing traditional PI controllers with model based

control. Specifically, in these contributions, some form of dynamic model is used to

predict the evolution of the controlled variable for a candidate input trajectory. The

primary difference between these contributions lies in the models they employ. Of

particular relevance to this work are contributions in which empirical dynamic mod-

els are employed. In [21], local linear ARX models are identified and combined using

a weighting function to describe the nonlinear evolution of the process. In [22, 23],

neural networks are used to identify a dynamic model. One of the most commonly

studied approaches in literature is the application of latent variable methods and in

particular principal component analysis (PCA). In these approaches, the correlation

between subsequent measurements is employed to describe the evolution of the pro-

cess [24, 25, 26, 27]. As with more traditional trajectory-tracking approaches, the

drawback of all trajectory-tracking approaches is that the relationship between the

controlled variable and quality may change. The solution is to apply direct quality
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control.

In general, direct quality control is achieved using model based control. Specifi-

cally, a model is developed that relates the past observations, current observations,

and the candidate input trajectory to quality. A variety of modeling methodologies

have been applied to identify such models. One approach has been to train artifi-

cial neural networks on batch data [28]. The most commonly used modeling method

however, is projection to latent structures (PLS) [29, 30, 31, 21, 32]. In these contri-

butions, trajectories of process measurements and inputs are related to quality in the

model building step. Then, to control a new batch, the model is applied to available

process measurements to determine an appropriate input. A key challenge in the

control step is that fewer measurements may be available then were used in model

fitting. Specifically, partway through the batch only process measurements from the

past and current sampling instant are available. A number of approaches have been

taken to solve this problem including use of missing-data algorithms [29] and indepen-

dently building dynamic models [31] to estimate the necessary values. Note that the

problem of estimating future process measurements is essentially a dynamic modeling

problem.

The primary contribution of the current work is the use of subspace identification

to model the dynamic evolution of the process and relate available process measure-

ments to quality. Subspace identification is a class of linear, time-invariant, dynamic

model identification techniques in which the first step is to identify a valid state tra-
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jectory from training data before fitting model parameters. Early contributions in

this field established the broad success of these methods for identifying LTI models

of continuous processes [33, 34, 35, 36]. However, very little work has been carried

out on applying subspace identification to batch processes. In [37], CVA (a class of

subspace identification algorithms) is used to build a model for monitoring of batch

processes but the issue of control is not addressed. In [20] subspace identification is

use for batch-to-batch control. Neither of these contributions treat the use of subspace

identification for within batch control.

This paper presents a novel approach to within batch quality modeling and control

with the ability to handle variable batch durations. To this end, first a dynamic model

of the process is built by adapting existing subspace identification methods for batch

data. Next, a quality model is built to relate subspace states to product quality. These

two models are used in conjunction to make predictions for new batches. To make

control decisions, a model predictive control (MPC) scheme is designed which uses

the two models to proscribe appropriate input moves. The efficacy of this approach

is demonstrated by comparison to a state-of-the-art latent variable approach and tra-

ditional PI trajectory-tracking control. The paper is organized as follows: in the next

section we define the class of batch processes studied and review literature results on

which the proposed method is based. We also review a state-of-the-art latent variable

model predictive control scheme which we use as a benchmark in this work. Following

the preliminaries, we present the batch reaction of Polymethyl Methacrylate (PMMA)

86



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

as a motivating example process. Next, we present an analysis of latent variable mod-

eling approaches from a state-space perspective. In the following section, we present

the novel subspace quality model predictive control (SQMPC) design. The subse-

quent section provides application results in which the proposed SQMPC, LVMPC,

and traditional PI trajectory tracking are compared. Finally, we draw conclusions

and discuss areas for future work.

4.2 Preliminaries

In this section we review the fundamental principles and methodologies that lay the

groundwork for the novel elements of this work. To begin, in the first subsection we

define the class of system studied in this work. Next, we briefly review latent variable

methods which have traditionally played a large role in batch modeling and control.

In the final subsection we briefly review subspace identification, a dynamic modeling

approach which we heavily utilize in the proposed approach.
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4.2.1 Class of Processes

In this work, we consider batch processes, described mathematically:

ẋ = f (x,u) (4.1)

y = g (x,u) (4.2)

q = h (x,u) (4.3)

where x is the state variable, f , g, and h are nonlinear mappings that relate the

evolution of the process, output, and quality respectively to the state and input.

The outputs are denoted by y[k] where k indexes the sample. In general, output

variables are assumed to have minimal to zero delay in availability. Examples of

typical output variables include temperature and volume. We denote the input by

u (t). In this work we consider inputs with a zero order hold with the same frequency

as the sample frequency of the output. We represent this as u[k] corresponding to

the input implemented when measurement y[k] becomes available. Quality variables

are aspects of the final product that are important to the consumer of the product

(either for downstream processing or commercially). Quality variables may be difficult

to measure, involving long measurement delays and typically only become available

after the completion of the batch. In this work we denote quality measurements with

the vector q[T ] where T is the duration of the batch.
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4.2.2 Latent Variable Methods

One popular approach to modeling and control of batch processes involves statisti-

cal techniques, or latent variable methods, for model building. Before we analyze

an existing approach, and integrate some of these concepts into a state space based

modeling and control approach, in this section we review some of the key concepts

behind these methods. The underpinning concept of latent variable methods is the

projection of data from a high dimension (measurement space) in which the indepen-

dence of variables is uncertain into a lower dimensional (latent space) with guaranteed

variable independence. In this subsection we present the fundamentals of the latent

variable methods: principal component analysis (PCA), principal component regres-

sion (PCR), and projection to latent structures (PLS).

PCA is, in some sense, the most basic latent variable method. PCA is concerned

only with the representation of a single measurement space (the X block) in a reduced

dimensional space. Mathematically this is represented in the following form:

X = TP′ (4.4)

where X is the measurement space with columns containing variables and rows ob-

servations. T is the latent space, referred to as the score matrix, with the same

interpretation as X. P defines the orientation of the latent variable space and is

referred to as the loading matrix.
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PCR is an extension of PCA and ordinary least squares regression. The objective

of PCR is to regress dependent variables referred to as the y-block, Y, onto a set

of possibly-correlated, independent variables X. Ordinary least squares regression

fails in this case because X is column-rank deficient. PCR is accomplished by first

using PCA to project the X space variables into an uncorrelated latent (score) space.

Ordinary least squares (OLS) regression is then carried out; the columns of Y are

regressed onto the scores. It is worth noting that the resulting model is nevertheless

a linear model relating X and Y.

In contrast to PCR, when using PLS both the x and Y blocks are projected into

corresponding latent variable spaces. This is accomplished in practice by evaluating

a three component objective: maximizing the explained variance in the X space,

maximizing the explained variance in the Y space, and maximizing the correlation

between the two. Mathematically:

T = XW∗ (4.5)

Y = UC′ (4.6)

Where T and U are the score-spaces of the X and Y blocks, respectively. In appli-

cation, it is assumed that T = U which is valid because of the maximized correlation

between the two score spaces. The resulting PLS model takes the same form as an

OLS or PCR model; namely it is a linear model relating the X and Y blocks. We

next describe an existing approach that applies the idea behind PLS for the purpose
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of batch process modeling and control.

4.2.3 LVMPC

In this subsection we will review the latent variable model predictive control (LVMPC)

[29]. This work addresses the problem of direct quality control by inverting a PLS

model to determine the input move, and has found widespread application and success.

We review the approach here to enable its subsequent analysis from a state space based

perspective, and also to serve as an excellent benchmark for our proposed approach

that utilizes an altogether different perspective to the quality control problem.

All modeling approaches inherently assume a certain model structure and then

determine the best fit values of the parameters. To do this the data must be arranged

appropriately for parameter estimation. The LVMPC proposed utilizes batch-wise

unfolding to build and implement the model (see, e.g., [29] and many subsequent

contributions). Batch-wise unfolding is accomplished by re-arranging the training

data such that each row of the X matrix contains the input and output trajectories

from a complete batch. This is represented as

X =


y(1)[1] u(1)[1] · · · y(1)[kf ] u(1)[kf ]

...
...

...
...

y(B)[1] u(B)[1] · · · y(B)[kf ] u(B)[kf ]

 (4.7)

where y(b)[k] and u(b)[k] are vectors output measurements and inputs respectively
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for batch b at sampling instant k. In the Y matrix, each row is comprised of the

corresponding quality measurements.

Y =


q(1)[kf ]

...

q(B)[kf ]

 (4.8)

Model fitting is accomplished by applying PLS to the X and Y block (as described

in the previous subsection).

Remark 12 Batch-wise unfolding necessitates that each batch in the training data

has the same length so that complete columns of the X block can be populated. In

practice, it is common for batches to have varying duration. In many cases, this

is due to operating policies whereby the reaction is stopped when a condition is met

(ie. when a sample with high enough conversion is taken). One commonly adopted

solution in literature [38, 39, 40, 41, 42] is to “align” batches based on a measured,

monotonically-increasing variable. Under batch alignment, columns of the X block

correspond to equal values of the alignment variable rather than equal elapsed time.

Once a PLS model is identified, LVMPC can be used at decision points throughout

the batch to adjust the input trajectory and drive the process to the desired quality.

In the interest of brevity, only an outline of, and the most simple form of the LVMPC

calculation will be presented here. The method can be thought of in three steps.

First, the current score is calculated from the existing measurements and nominal
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input trajectory. At each decision point, only a partial row of the X space can be

constructed because output measurements following the decision point are not yet

available. Therefore, the score is calculated using a missing-data algorithm. These

algorithms utilize the observed correlation in the X space to fill calculate the score

despite the unavailable values. In the next step, a quadratic program is evaluated to

determine a move in the score space. The move is calculated such that the resulting

score corresponds to a predicted quality close to the quality set-point. Finally, the

move in the score space is translated into an input move trajectory to be implemented

for the remainder of the batch. The inquiring reader is referred to [29] for details. We

next review an alternate modeling approach.

4.2.4 Subspace Identification

In this subsection we will give a brief overview of subspace identification. While we

refer the reader to literature for details (see [35, 34, 43, 33, 44]), we provide enough

nomenclature to describe the application of subspace identification in this work.

In these approaches, the model parameters are identified assuming a discrete linear

model of the form:

x̊[k + 1] = Åx[k] + Bu[k] (4.9)

y[k] = C̊x[k] + Du[k] (4.10)

where x̊ denotes the subspace states (note that the distinction between subspace
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states denoted x̊ and first principal states x will be discussed in detail later in the

paper). The objective of subspace identification is to identify the system matrices A,

B, C, and D utilizing the input and output data u and y. To do this, first a valid

state trajectory is identified by finding a common basis between lagged input and

output data. Once a state trajectory is obtained, the system matrices can be easily

determined (for example by OLS).

One important tool that is utilized in the determination of the state trajectories

are the Hankel matrices of input and output data. In this work, we will adopt the

standard notation of these matrices where Y1|i and U1|i represent Hankel matrices of

output and input data respectively. Under this notation, the subscripts denote the

range of sampling instances in the first column. For instance:

Y1|i =


y[1] y[2] · · · y[j]

...
...

...

y[i] y[i+ 1] · · · y[i+ j − 1]

 (4.11)

Once the data has been arranged into Hankel matrices, a wide variety of subspace

identification methods can be used. Subspace identification methods can be broadly

categorized into deterministic, stochastic, and combined deterministic stochastic meth-

ods. The key difference between these methods is their handling of process noise (ie

noise in the states), resulting from the model structure that is assumed. In essence,

utilizing of combined deterministic stochastic methods (under assumptions of a spe-
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cific structure of the data) also enables estimating the process and measurement noise

covariance matrices that can then be utilized within say a Kalman filter for improved

state estimation. Three of the most prominent combined deterministic stochastic

methods are numerical subspace state space system identification (N4SID), multivari-

able output error state space (MOESP), and canonical variate analysis (CVA) [36].

In [45], a unifying framework is presented for these three methods where the principal

difference is the selection of two weighting matrices which determine the orientation

of the resulting state-space. For simplicity of use, and for the purpose of illustration

of our proposed approach, in this work we will use the simple deterministic algorithm

presented by Moonen et. al. [35]. Note that the proposed approach can be readily

generalized to utilize the combined deterministic stochastic methods.

4.3 Motivating Example: Polymethyl Methacry-

late Process

In this section we introduce the Polymethyl Methacrylate Process(PMMA), an industrially-

relevant batch process, under traditional trajectory tracking control, to motivate the

proposed approach. PMMA is a staple of the polymer industry. Originally mar-

keted as Plexiglass, PMMA now has applications in many products ranging from its

traditional application as a glass substitute to medical implants. For high end appli-

cations, quality is a key factor. As with many products, when quality is of paramount
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importance it is preferable to carry out the polymerization as a batch process.

The quality of a batch of PMMA can be characterized by the molecular weight

distribution of the polymer. Since measurement of the complete molecular weight dis-

tribution is often not practicable, it is common to summarize the key characteristics

of the distribution. The number and weight average molecular weights provide suffi-

cient information to classify the properties of the product. Therefore, the objective

for the batch production of PMMA is to reach the desired number and weight average

molecular weight at batch termination.

Batch, free-radical polymerization of PMMA is carried out in a jacketed reac-

tor with a continuous stirrer. The reactor is charged with methyl methacrylate

(monomer), AIBN (initiator), and toluene (solvent). The heat addition to the re-

actor is manipulated via the coolant/heating fluid flow rate. The nominal recipe for

a batch (in terms of concentration) is presented in table 4.1. In this work, we use

a first principles dynamic model of the PMMA process to generate historical and

identification data, and as a testbed to evaluate control designs. This model includes

nine states dictated by nonlinear algebraic and differential equations. These states

include six molecular weight distribution moments, concentration of monomer and

initiator, and reactor temperature. Throughout this study, we regarded the first prin-

ciples model as a black-box model. This first principles model is adapted from [46]

while making suitable adaptations [47, 48]. More discussion of these adaptations is

provided in [31].
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Table 4.1: Initial batch conditions for PMMA reaction

Variable Value σ2 Units

Initiator Concentration 2.06×10−2 1.0×10−3 kg/m3

Monomer Concentration 4.57 0.5 kg/m3

Temperature 61 2.5 ◦C

As one example of a traditional control implementation, PI trajectory tracking of a

nominal temperature profile is used, where a tightly tuned controller rejects deviations

in the measured temperature from the nominal trajectory by manipulating the jacket

temperature. The key idea being that the nominal temperature trajectory, shown to

provide good quality in historical batches, should continue to provide good quality in

subsequent batches. Once the batch has begun, reaction is carried until the density

reaches a predefined level.

To reflect common variation in the feed, each of these initial conditions is in-

dependently drawn from a normal distribution centered around the nominal initial

condition. The standard deviations for these initial conditions is given in table 4.1.

In this work, we take the measured process variables to be temperature within the

reactor, volume of the reactants, and stirrer torque. From the volume measurement

we assume that the density can be determined. For the PMMA process, density is

a monotonically increasing variable which reflects, in some sense, the extent of the

reaction. Therefore, it provides a crude indication of when the target product has

been reached. By terminating the batch based on density rather than at a specific

batch duration, the resulting quality variation is reduced. An example of the resulting
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Figure 4.1: Jacket temperature trajectory for a characteristic closed loop batch under
PI (dotted line), LVMPC (dot-dashed line), and the proposed SQMPC (solid line)

PI jacket and reactor temperature trajectories is shown in figures 4.1 and 4.2 respec-

tively. The bottom row of plots in figure 4.3 shows histograms of the resulting number

and weight average molecular weight as well as conversion in terms of percent error

from the desired values. While the temperature trajectory plot demonstrates that

the PI control is able to effectively track the desired temperature trajectory, clearly

the desired quality is not always achieved. This is due to the fact that the expected

(or past) relationship between a temperature profile and the final quality does not

continue to hold. Note that in the present process, viscosity can also be calculated

from the stirrer torque. Therefore, there exists a possibility to implement advanced

control approaches that utilize all the available measurements for improved quality

control.
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Figure 4.2: Measured outputs from a characteristic closed loop batch under PI (dotted
line), LVMPC (dot-dashed line), and the proposed SQMPC (solid line)
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Figure 4.3: Histograms of case 1 qualities resulting from 186 batches operated under
SQMPC, LVMPC, and PI control.
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4.4 Latent Variable Control Analysis

In this section, we will conduct a brief analysis of latent variable methods. In partic-

ular, we focus our discussion on the model form of latent variable models when built

on batch-wise unfolded data to reconcile the inherent requirements of equal batch

duration in these approaches.

Latent variable methods have proven successful for data-based MPC of batch pro-

cesses [29, 27, 14, 49, 26, 25]. A key issue in these contributions is the arrangement

of batch data into matrices for latent variable analysis. In many of these contri-

butions, a latent variable model is built by unfolding batch data in the batch-wise

manner described in equations 4.7 and 4.8. Once identified the models are applied

in a controller to control a new batch. Note that at the decision points, partway

through the batch, only the past and current measurements are available. Therefore,

one important aspect of these methods is to use the identified model to predict the

future batch measurement trajectory. This prediction is accomplished using missing

data algorithms. In some sense, the missing data algorithms turn the latent variable

models into dynamic models of the process. A key to understanding the success of

LVMPC is to understand the structure and functioning of latent variable models used

in this fashion.

To begin we will examine the structure of latent variable models. Particularly,

consider applying the previously identified model to data from a new batch. To do

this, the data are arranged into a row, xnew of the same format as the rows of the X
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training matrix. The first step in applying the model is to center and scale the row

in the same way as was done in the training data. This can be represented

x̄new = (xnew − µx)�
[

1
σx1

· · · 1
σxkf

]
(4.12)

where µx represents a vector of the column means of the training data and σxi rep-

resents the standard deviation of the ith column. Because of the unfolding policy

described by equation 4.7, this implies that µx contains the time-indexed average tra-

jectory of the inputs and outputs in the training data. Likewise, σxi represents the

time-indexed standard deviation of the inputs and outputs in the training data. After

centering and scaling, the score is calculated as

t = x̄neww∗ (4.13)

where w∗ is the coefficient matrix identified in the modeling step. To clarify structure

of this model, we can substitute the form from equation 4.7. Doing this we get

t =

[
y[1] u[1] · · · y[kf ] u[kf ]

]
w̃∗ − µxw̃∗ (4.14)

where w̃∗ is the result of taking the appropriate Hadamard product of the coefficients

and the standard deviation vector. Next we can partition the matrix w̃∗ into sub-

matrices based on the sampling instant of the output measurement or input they
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multiply. Then equation 4.14 can be written as:

t =

kf∑
k=1

([
y[k] u[k]

]
− µx[k]

)
w̃∗[k] (4.15)

where µx[k] is the sub-vector of the mean input and output trajectories corresponding

to the kth sampling instant. This reformulation clearly demonstrates that latent

variable models built on batch-wise unfolded data yield time-dependent linear models

of the process.

Next we consider how this structure is utilized by missing data algorithms. There

are a large variety of missing data algorithms that have been discussed in literature

each with its own advantages [50, 51]. While each missing data algorithm is unique in

its methodology, the basic steps are similar between algorithms. Specifically, first a

score is calculated from the available data, then the missing trajectory is filled in with

values consistent with the calculated score. Regardless of the algorithm, both of these

steps involve using the relevant parts of the weighting matrix w̃∗. Therefore, these

missing data algorithms inherit the time-dependency of the latent variable model

structure. In this way, using a latent variable model and missing data algorithms to

make trajectory predictions is equivalent to using a linear time-dependent dynamic

model in which the dynamic model coefficients depend on sampling instant.

To illustrate the time-dependent indexed nature of latent variable methods when

used as dynamic models, we will demonstrate the use of the projection to model plane

(PMP) missing data algorithm for estimating the score using measurements available
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midway through a batch. In many latent variable batch approaches, this score value

forms the basis for subsequent control decisions and output prediction. Consider that

output data are available up until the current sampling instant, kc, and the complete

input trajectory (past inputs and future candidate trajectory) is also available. Using

the PMP method, the estimated score, t̂ can be obtained as:

t̂ =
(
w∗
′

knownw
∗
known

)−1

w∗
′

known · · ·([
y[1] u[1] · · · y[kc] u[kc] u[kc + 1] · · · u[kf ]

]
− µx,known

)
�
[

1
σx,known

]
(4.16)

where w∗
′

known is a sub-matrix of the projection matrix, w∗
′
, formed by selecting only

columns corresponding to known information at instant kc. Similarly, µx,known and

σx,known are respectively the mean and standard deviation values corresponding to the

known information. Note that for all three of these matrices, their contents depends

on kc and therefore is time-dependent. Once t̂ has been calculated, the predicted

output trajectory is given by:

[
y[kc + 1] · · · y[kf ]

]
= t̂P′unknown (4.17)

Where Punknown is a submatrix of the loadings matrix, P. Once again, the contents of

the submatrix P is time dependent. By substituting equation 4.16 into 4.17, the over-

all model is a time-varying linear combination of time-indexed past outputs, inputs,
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and the candidate input trajectory.

The advantage of using time-dependent models for batch processes is that they

provide a way to account for nonlinear batch behavior. Batches that are initialized

consistently from the same initial conditions will follow the same state-trajectories. In

this case, a time dependent model is capable of capturing the dynamic behavior of the

process because at corresponding batch times, the process is at corresponding states

and therefore has corresponding dynamic behavior. However, for batches that are

initialized from a range of initial conditions, the state-trajectories do not correspond

for corresponding times. More importantly, the time indexing then necessitates the

training of the model from batches of equal length (or necessitates the search for an

alignment variable).

4.5 Subspace Quality Model Predictive Control

(SQMPC)

In this section we present a novel data-driven model predictive control scheme for

batch quality control. The model building approach combines subspace identification

to obtain a dynamic model and principal component regression (PCR) to relate pro-

cess states and product quality. Together, these two models provide a causal model

relating a candidate input trajectory to the resulting quality. The section is orga-

nized as follows: first, we will present an adaptation of subspace identification for
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batch processes that allows its application for batch data. Next, we will discuss the

use of PCR to relate state and quality. Finally, we will demonstrate how the resulting

models can be incorporated in a model predictive control scheme to directly control

product quality.

4.5.1 Subspace Identification of Batch Dynamics

In this subsection we present an adaptation of subspace identification for batch pro-

cesses. Out of the wide variety of subspace algorithms, one commonality is the rear-

rangement of training data into Hankel matrices. In order to use subspace identifi-

cation for batch processes, the formation of the Hankel matrices from training data

has to be carefully considered. In order to understand the necessary modifications,

we first consider the form of training data for subspace identification of continuous

processes. To carry out subspace identification for a continuous process, the process is

first brought to the desired steady-state condition. Next, perturbations (for example

by PRBS) are made to the inputs over some duration of time. These inputs and

the corresponding outputs form a contiguous block of data. The appropriate Hankel

matrices for a given subspace identification algorithm can be readily formed from this

contiguous block of data in the manner presented in the preliminaries section.

In contrast to continuous processes, batch processes, by their very definition, do

not possess meaningful steady-state conditions around which to identify a model.

Instead, the objective is to develop a model for the transient dynamic behavior of the
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process. To achieve this, the entire range of dynamic behavior for which a model is

desired must be present in the training data. This can be partially accomplished by

using data from the complete duration of a batch. However, owing to the variation

in initial conditions, it is unlikely that any single batch (even with experimental

augmentation) would cover the range of operating conditions necessary to build a

reliable, general model. This motivates the need to include multiple batches in the

training data. However, since each batch is independent of the batches before or after

it, this results in a database with multiple contiguous blocks of data rather than one

single contiguous block. One approach would be to build separate Hankel matrices

for each of these blocks and then modify the chosen subspace identification algorithm

to incorporate the multiple batches. In this work, however, we took the simpler

approach of modifying the form of the Hankel matrices themselves. This approach

has the benefit of maintaining generality so that any subspace identification algorithm

can be applied without further modification.

To incorporate multiple independent blocks of training data, corresponding to

multiple batches, we horizontally concatenate Hankel submatrices formed from each

block. Consider the notation y(b)[k] for the vector of output measurements where the

superscript, (b), denotes the database batch index and k denotes the sampling instant

(indexed from batch initiation). Then the Hankel submatrix for any batch b is formed
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as:

Y
(b)
1|i =


y(b)[1] y(b)[2] · · · y(b)

[
j(b)
]

...
...

...

y(b)[i] y(b)[i+ 1] · · · y(b)
[
i+ j(b) − 1

]

 (4.18)

Once the sub-matrices have been formed for each batch, they can be concatenated to

form the overall Hankel matrix as follows:

Y1|i =

[
Y

(1)
1|i Y

(2)
1|i · · · Y

(B)
1|i

]
(4.19)

where B is the number of batches in the training data. Hankel matrices of input

data can be formed in exactly the same fashion. The resulting matrices elegantly

handle the blocks of data corresponding to independent batches while maintaining

the properties required for subspace identification.

Remark 13 Notice that in equation 4.18 the final time index j is indexed itself by

b. This is an important and valuable distinction of the proposed method. The index j

corresponds to the final sampling instant at which there is sufficient past and future

data to fulfill the required lag structure. In this way the value of j reflects the length of

the batch. Because the Hankel matrices for each batch are concatenated horizontally,

only the number of rows in each submatrix need to match. In other words, the number

of columns can vary for each submatrix corresponding to each batch. Therefore, the

length of each batch in the training data can be different. This is markedly different

from time-dependent models that inherently need training batches of equal length (or
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aligned to have equal length).

The proposed form of the Hankel matrices is permissible because it maintains the

row-space structure of the traditional form. Specifically, the row spaces of the Hankel

matrices Y1|i and Yi+1|2i still share a common basis related to the state of the system

at time i. Subspace algorithms determine viable states by exploiting this property of

the row space. If instead the Hankel matrix was constructed by first concatenating

the outputs from each batch, the discontinuity between batches would violate the

row space relationship in the corresponding columns in the Hankel matrix. Because

the proposed form of the Hankel matrices preserves the row-space relationship, any

desired subspace identification algorithm can be applied without modification.

Remark 14 It is well recognized that a common characteristic of industrial batch

processes is sparsity of available measurements. This sparsity does not hinder the

application of the subspace identification methods due to unobservability limitations

since by construction the LTI system that is identified is naturally observable. The key

implication of limited measurements is if they prohibit the identification of a system

structure with (the entire set of) states that impact the final product quality. That,

however, would be a fundamental limitation of the process instrumentation, and no

other approach would be able to capture the process quality from the available measure-

ments either. The construction of the quality model in the proposed approach readily

allows diagnosis of a problem with measurement sparsity and can be used to motivate

improved instrumentation. The response of the proposed method to sparse measure-
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ments is demonstrated in the subsection on quality model fitting in the simulation

study later in this paper.

Remark 15 Many subspace identification methods make an assumption about the

stationarity (or quasi-stationarity) of the processes. These assumptions are impor-

tant when the identified model structure is a combined deterministic-stochastic model.

In these cases, stationarity has an important impact on the stochastic part of the iden-

tified model. While the current work could readily be extended to utilize a combined

deterministic-stochastic model, the current focus is on deterministic subspace identi-

fication methods for which stationarity is not a concern. Therefore, discussion of the

stationarity of the unfolded training data will be postponed to future work, and instead

the applicability of the proposed approach demonstrated through application.

The result of subspace identification is a single, linear, time-invariant model of the

form presented in equations 4.9 and 4.10. For clarity we will refer to the identified

dynamic model using the following nomenclature:

x̊[k + 1] = Åx[k] + Bu[k] (4.20)

y[k] = C̊x[k] + Du[k] (4.21)

Where the subspace state is denoted as x̊ to avoid confusion with x which represents

the first-principal states from the process equations 4.1 to 4.3.

To some readers, the linear form of equations 4.20 and 4.21 will seem incongruent
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with the emphasis placed on the unavoidable, inherent nonlinearity of batch systems.

Indeed the nonlinear dynamics of batch processes when expressed in terms of mean-

ingful process variables (such as concentrations and temperature) is an important

consideration in batch processes. However, there is no meaningful time-invariant way

to linearize a nonlinear representation of the process. Consider that a first princi-

ples model of the form of equations 4.1 to 4.3 was available (note that the present

formulation does not require knowledge of this model), in terms of the original state

variables, x. Since the process is inherently transient, any selected center (state) of

linearization is departed quickly rendering the linearization around that point useless.

The key distinction of the proposed approach is that we are not linearizing an

existing nonlinear state-space model. Instead, we are identifying model parameters

for a LTI model that describes the evolution of the process outputs. This is fun-

damentally different from linearizing a nonlinear representation because the system

order is determined during the identification. One of the reasons that subspace meth-

ods have been met with such success is their ability to determine system order as a

first step of the identification. Specifically, the system order is determined based on

the order needed to adequately describe the dynamics observed in the data. It is a

well known result that any discrete series can be exactly represented in the frequency

domain in a finite number of frequency bands using a discrete Fourier transform. It

follows that a finite number of observations can be represented exactly by LTI with a

finite system order. Obviously, an exact fitting of the data would result in dramatic
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over-fitting. Fortunately, LTI models identified by subspace methods fit states in an

order that maximizes the amount of variance explained by each new state. Therefore,

it is practicable to fit LTI models of a reasonable order that adequately predict the

evolution of the process over an appropriate region in state space.

Remark 16 Clearly, the system order is of particular importance for fitting an LTI

model to batch data. In subspace identification, the system order is often selected such

that the explained variance falls above a specified threshold. This threshold is a key

modeling parameter and is especially important given the potentially high-order models

needed to explain transient batch behavior. One robust threshold selection method is

to test the predictive ability of the resulting dynamic model on validation batches.

Doing this, the threshold should be set at the value which minimizes the prediction

error for the validation batches. The primary downside to this approach is the need

to set aside valuable training data to use instead for validation. One solution to

address this problem would be the use of cross-validation however, this approach was

not implemented in this work. Better methods for determining the explained variance

threshold will be the topic of future work.

The identified model provides a theoretically sound way to predict the evolution

of the process outputs (and the associated states) for a candidate input trajectory. In

order to be useful for quality control, a model between the subspace states and the

final quality must be determined. In the next subsection, we will present a method

for modeling this relationship.
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4.5.2 PCR Quality Model

In the last subsection, we demonstrated that subspace identification can be used to

obtain a LTI dynamic models from batch data. In this subsection, we motivate and

present a modeling approach for relating subspace states, x̊, to batch quality. The

key idea in building this model can be described in two logical steps. First, since both

the subspace states, x̊, and the first principles states, x capture the instantaneous

condition of the process, there must be a direct relationship between x̊ and x. Next,

since quality is known to depend on process state, as described by equation 4.3, there

must be a causal relationship between x̊ and quality. In this subsection, we will

present a method for first obtaining state estimates (we utilize a Luenberger observer

for the purpose of illustration), then relating the terminal state of the batch to quality.

The first step in the proposed quality model methodology is to estimate the sub-

space states x̊ at the end of each training batch. One of the intermediate results of

subspace identification is a vector of state estimates for the training data. However,

this vector does not contain states corresponding to the last sampling instant in each

batch because lagged future outputs are needed to obtain each state. Furthermore,

the state estimates obtained during subspace identification are based on a limited

number of lagged past and future outputs. To build an accurate quality model, we

require the best possible terminal state estimate, ˆ̊x[kf ], obtainable from the complete

trajectories of measured inputs and outputs.

To obtain an estimate of the terminal subspace state for model building, ˆ̊x[kf ],
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a Luenberger observer is used. The observer can easily be designed based on the

identified model such that the state estimates converge after being updated with

measurements from the beginning of the batch. By updating the observer with outputs

from the duration of the batch, the best possible estimate of x̊[kf ] is obtained. By

repeating this procedure, terminal subspace state estimates for each training batch

are obtained. These estimate are then used in the next stage of building the quality

model.

Once estimates of the terminal subspace states are obtained, what remains is to

identify the correlation between these states and quality. In this work we use principal

component regression (PCR) for this task. As discussed in the preliminaries, PCR is a

method for regressing observations X onto dependent variables Y. In this application

the X and Y blocks take the following form:

X =

[
ˆ̊x(1)
[
k

(1)
f

]
· · · ˆ̊x(B)

[
k

(B)
f

]]T
(4.22)

Y =

[
q(1) · · · q(B)

]T
(4.23)

where kf is the final sampling instant. After completing PCR, the quality model takes

the linear form:

q = Qˆ̊x[kf ] + cq (4.24)

where Q is a matrix of model coefficients and cq is a vector of constants. Using

this linear relationship, any terminal subspace state estimate can be used to predict
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quality.

Remark 17 Note that in equation 4.22, kf is indexed by batch. This is to denote the

fact that there is no necessity for batches to share the same length (be aligned) using

this method. Any miss-match in batch length is elegantly and appropriately dealt with

by the Luenberger observer. This reflects our understanding that quality is determined

by state and therefore should not be dependent on time. Taken together, both the dy-

namic and quality modeling are independent of batch duration meaning that the overall

modeling approach is equally valid for training data with miss-matched batch length.

There is no need to address the alignment problem. This is particularly beneficial

because available historical operation data often contains batches of varying lengths,

and a monotonically behaving ‘alignment’ variable might not be readily available.

Remark 18 PCR is used to build the quality model to address correlation in the X

space, or equivalently states that appear correlated. In principal, all states identified

by subspace identification are independent. Therefore, one might think that there

is no correlation in the X space of this regression. However, while the states are all

uncorrelated, it might be possible that the existing batches evolve in a manner where by

the end of the batch some states may be correlated. In this case, using PCR improves

the performance of the identified model as opposed to models built using ordinary least

squares (OLS) regression. In the case where there is no correlation in the terminal

states, PCR will identify the same model as OLS so there is no loss of generality.
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4.5.3 SQMPC - Formulation

In the previous two subsections we described procedures for identifying a dynamic

model and quality model from batch data. When combined, these two models provide

an overall, causal model of batch quality. In this subsection, we first demonstrate the

manner in which these models can be used to make quality predictions based on

available process measurements and a candidate input trajectory. Next, we present a

model predictive control (MPC) formulation that uses these models to directly control

batch quality.

For any point in time sufficiently after the initiation of a new batch, the problem

of predicting final quality for a candidate input trajectory is addressed as follows:

At batch initiation, the Luenberger observer from the quality model development is

initialized. As the batch progresses, the observer is updated with each new output

measurement. Convergence of the observer is indicated by the innovation term. Once

the innovation has fallen below a selected threshold, the state estimate is considered

converged and quality predictions can commence.

To make a quality prediction from the available models, first the terminal subspace

state for the batch must be determined. Naturally, the terminal state depend on both

the latest estimated state of the process and the future inputs, and can be computed

by using the identified dynamic model, written succinctly as:

ˆ̊x[kf ] = Akf−k ˆ̊x[k] +

[
Akf−k−1B Akf−k−2B · · · B

]
v[k] (4.25)
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where k is the current sampling instant, kf is the final sampling instant in the batch,

and the vector v[k] contains the candidate input trajectory for the remaining batch

duration:

v[k] =



u[k]

u[k + 1]

...

u[kf − 1]


(4.26)

From this terminal state estimate we next use the quality model to predict the result-

ing quality. Specifically:

q̂ = Qˆ̊x[kf ] + cq (4.27)

Where Q and cq are the model coefficients from the quality model identification.

Direct quality control can be achieved by (in some sense) inverting the relationship

between candidate input trajectory and quality described by equations 4.25 and 4.27.

One way to carry out this inversion, which provides a number of practical benefits, is

to formulate the problem in a shrinking-horizon, model predictive control framework.

Mathematically, this approach takes the form of a quadratic programming problem
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defined by:

min
v[k]

(q̂− qd)
T M (q̂− qd) + (∆v[k])T P (∆v[k]) (4.28)

s.t. q̂ = Q

(
Akf−k ˆ̊x[k] +

[
Akf−k−1B Akf−k−2B · · · B

]
v[k]

)
+ cq (4.29)

∆v[k] =



u[k]

u[k + 1]

...

u[kf − 1]


−



u[k − 1]

u[k]

...

u[kf − 2]


(4.30)

vmin[k] ≤ v[k] ≤ vmax[k] (4.31)

where qd is the desired quality (ie quality set-point). The first term of the objective

function penalizes deviations of the projected quality from the desired quality and the

second term penalizes large input moves. More specifically, M is a positive definite

(diagonal) matrix where each diagonal element sets the penalty for the corresponding

quality variable. P is also a positive definite (diagonal) matrix where diagonal ele-

ments set the penalty on input moves for the corresponding sampling instant. The

first constraint of the problem enforces the dynamic and quality model (arrived at by

substituting equation 4.25 into 4.27). The second constraint defines the input move-

ment and the third constraint applies hard bounds on the input trajectories based on

process constraints.

The application of the proposed MPC is carried out as follows: first, in the begin-
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ning of the batch, the Luenberger observer is initialized with an arbitrary state value.

In the beginning of the batch, a nominal, open-loop input trajectory is applied. Since

input movements in the beginning of the batch have less impact on quality than those

at the end, applying an open loop input trajectory early on in the batch has little

impact on the ability to reach the desired quality. As each measurement becomes

available the Luenberger observer is updated. Once the innovation term of the Luen-

berger observer falls below a threshold, the state estimate is considered converged and

the model predictive control is switched on. At the first MPC sampling instant, the

optimization is initialized with the nominal input trajectory. The solution of the first

MPC calculation is a complete input trajectory for the remainder of the batch. At the

next sampling instant, the first input in the candidate trajectory is implemented and

the MPC is recomputed with the updated state estimate. This procedure is repeated

for the remainder of the batch.

Remark 19 One of the primary advantages of the proposed MPC is that the required

optimization is a convex, quadratic-programming problem. This class of problems can

be efficiently and quickly solved to a global optimal solution. This is in contrast to

many batch MPC approaches which require the solution of a non-linear programing

(NLP) problem at every sampling instant. NLP solvers can be slow to converge on a

solution and global optimality is generally not guaranteed.

Remark 20 The proposed MPC incorporates a feedback mechanism through its inclu-

sion of the latest state estimate. As the process progresses and the state estimate is up-
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dated, if the state estimate does not follow the projected trajectory (due to plant-model

miss-match, noise, or disturbances), the candidate input trajectory will be updated to

respond to the latest measurements. Another nice feature of the MPC design is that as

the batch progresses, the model accuracy improves. The improvement is resultant of

the shortening prediction horizon. At the same time, as the prediction horizon shrinks,

larger input moves are necessary to obtain the desired quality. The naturally arising

combined effect of increasing model accuracy concurrent with increasingly aggressive

input moves yields a stabilizing effect on the resulting quality; as the predictions get

better, more aggressive but also more appropriate input moves are prescribed. The

improved model available toward the batch termination benefits the accuracy of the

final set of control moves that are implemented, which in turn significantly affect the

final quality. This can be understood by recognizing that there could be multiple paths

from the initial set of states to the final desired (in that they yield the desire quality)

states. The initial input moves influence which path is taken, and (as long as this

path does not lead to a set of states from where the final quality becomes unreachable),

the final set of control moves eventually determine the proximity to the target states.

Remark 21 In the literature on batch MPC it is common to limit MPC calculation

to a few predefined decision points [30, 29]. The motivation for these limited decision

times is to avoid unnecessary excitation of the process. While the proposed approach

could be easily adapted to implement decision points, we choose instead to carry out

control calculations at each sampling instant. There are two reasons for this decision.
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First, it allows the incremental feedback from each new measurement to be immediately

acted upon for quick disturbance rejection. Second, since these decision points are

triggered by reaching a specified elapsed time from batch initiation, the use of decision

times inherently introduces a time dependence on the modeling and control approach.

Note that one of the key contribution of the present work is the design of a model based

on a state space perspective, and avoiding explicit time dependence. One elegant way

to incorporate some of the positive aspects of the decision time approach would be

to calculate a new input trajectory at every sampling instant (thus incorporating the

frequent feedback) but only update the input trajectory if a ‘large enough’ change in

the calculated input trajectory occurs.

Remark 22 In addition to hard constraints on the inputs, the projected state tra-

jectories calculated in each sampling instant of the proposed MPC allow for the im-

plementation of output constraints as well. Specifically, the output trajectory can be

calculated from the projected state trajectory through the identified C matrix. In a

traditional sense, the ability to add output constraints is important for safety critical

process variables (ie reactor temperature). However, applying output constraints is

also a viable way to prevent the controller from extrapolating too far from the process

operations in the training data.
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4.6 Application to the PMMA process example

In this section we compare traditional PI trajectory tracking, a simple implementa-

tion of LVMPC, and the proposed SQMPC for quality control. To this end, each of

the aforementioned control approaches is implemented on a simulation of the PMMA

process previously described. The section is organized as follows: in the first subsec-

tion, we discuss the training database to be used in model identification. Next, we

use the training data to fit a state-space dynamic model using subspace identifica-

tion. Subsequently, a second model is identified relating the terminal states of the

system and the resulting quality. The following subsection presents the closed loop

results from the proposed approach and compares the results to those obtained using

a nominal implementation of LVMPC and PI trajectory tracking.

4.6.1 Database Generation

The first step in this simulation study was to generate a database of batch data for use

in model identification. This database is used in both the LVMPC approach and the

proposed SQMPC and is comprised of complete input and output trajectories as well

as the resulting quality measurements. The objective in the database development

was to mimic the data that would be available in an industrial setting. To this end,

a modest database of 17 historical and identification batches was developed (note

that the batches were not of equal duration). Each of these batches was initialized

from initial conditions with natural variations (as previously described). White noise
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Table 4.2: Summary of training database composition

Input policy Number of batches

Historical batches (PI trajectory tracking) 9
PRBS added to PI set-point trajectory 3
PRBS added to nominal input trajectory 5

Total batches 17

signals of appropriate magnitude were added to all simulated output measurements

to simulate measurement noise. Table 4.2 summarizes the composition of the training

database for reference.

In order to simulate historical data, nine batches operated under PI trajectory

tracking control (as described previously) were included. In addition to historical

batches, eight identification batches were included in the training database. These

were batches with inputs designed to excite the system so that the causality between

inputs and outputs could be observed. Of the eight identification batches, three identi-

fication batches were generated by adding a pseudo-random, binary sequence (PRBS)

signal to the set-point trajectory of the PI controller. This method of introducing an

identification signal provides the benefit that, since the batch is still in closed loop,

the deviation from normal operations is small. This is beneficial for two reasons, first

the observed behavior is similar to what is expected for a normal batch. Second, the

resulting product may still be usable which minimizes the cost of the experiment.

The primary disadvantage of this type of identification batch is that the input is still

dependent on the output. For this reason, the remaining five identification batches

were operated in open loop. In these batches, the input was created by adding a
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PRBS to the nominal process input. These batches provide the necessary indepen-

dence between inputs and outputs for subspace identification. However, they may be

costly because the open-loop operation may lead to off-spec product.

Remark 23 In the current work, we included open loop identification batches to sat-

isfy the subspace identification requirement for independence between input and output

measurements. This approach was chosen in order to simplify the model identifica-

tion task. However, a large body of literature exists addressing subspace identification

from closed loop data [52, 53, 44, 54], and can be readily used as part of the proposed

framework.

Remark 24 While white noise was added to simulated output measurements, we as-

sumed the availability of noise free quality measurement. Of course, in practice there

will always be some noise in this type of measurement. The motivations for this

assumption are twofold. First, measurement of quality is typically done off-line in

a laboratory. The analytical ability in such settings is significantly better than that

available from online sensors. Furthermore, repeated measurements can be made to

improve the quality measurement. Future work will address the situation where this

assumption is relaxed (necessitating a more stochastic approach to quality prediction

and control).

Figure 4.4 plots three selected input trajectories representative of the three input

policies used in the training database. All three input trajectories follow the same

124



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

334

335

336

337

338

339

340

341

Time (hr)

J
ac
k
et

T
em

p
er
at
u
re

(K
)

Figure 4.4: Selected representative examples of the three input policies used in the
training batches: nominal input plus PRBS (dotted line), PI with set-point trajectory
shifted by PRBS (dot-dashed line), and traditional PI trajectory tracking (solid line).

general trend but each policy provides a different level of information pertaining to

the process dynamics. In the next subsection, we discuss building a dynamic model

from this training data using subspace identification.

4.6.2 Dynamic model fitting

The input and output trajectories from the training database described in the previous

subsection were used to identify a dynamic process model. To this end subspace

identification was applied as previously described. First the data was unfolded into

the appropriate Hankel matrices as in equation 4.19. As previously mentioned , one

of the key modeling decisions in subspace identification is the number of rows to use
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in the Hankel matrices. In this simulation study, we experimented with the number of

Hankel rows to gage the effect on the resulting model. A range of values between 10

and 25 was tested. To evaluate the effect, the resulting models were used to predict the

dynamic evolution of a large set of validation batches. In general, we found that the

resulting models were insensitive to the number of Hankel rows. From a theoretical

perspective, this makes sense because adding “extra” Hankel rows does not increase

the rank of the Hankel matrix since the additional observations are dependent on

the prior observations. For the present applicaiton, 15 Hankel rows were utilized for

building our final model.

The other key model fitting parameter, as described in the previous section, was

the threshold for explained variance. Similarly to the choice of number of Hankel

rows, we experimented with different threshold values and used the validation data to

determine the best value. First of all, because of the order in which subspace states

are fit to the data, each subsequent state is more susceptible to noise. In this regard,

choosing to high a threshold, and correspondingly a high system order, results in

over fitting and a reduction in the predictive ability for validation data. In contrast,

selecting a low threshold results in meaningful dynamic behavior in the data being

unmodeled and also results in poorer predictions of the validation data. Note that a

parallel result to this logic is that too much noise in the outputs masks meaningful

trends in the data and prevents the identification of a model of appropriate order.

Thus a threshold resulting in nine states was selected. With the modeling parameters
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defined, the dynamic model was identified and validated.

The identified dynamic model was validated by checking its predictive ability for

a set of validation batches. Recall that the relationship between the subspace states,

x̊, and the process states, x, is unknown. Furthermore, the process states are un-

measured. As a result, there is no point of comparison to validate the evolution

of the subspace states directly. Instead, the best practicable validation method is

comparison of output predictions. For a new validation batch however, the initial

subspace state and corresponding output predictions, are unknown. Therefore, the

following validation approach was taken: first, the Luenberger observer was updated

with process measurements from the beginning of the validation batch. At a sample

instant well after the convergence of the observer (as determined by the innovation),

the current state estimate was used as the initial condition to predict the state trajec-

tories corresponding to the input for the remainder of the batch. The resulting state

trajectories were then used to predict outputs by multiplication with the identified

C matrix. This predicted output trajectory was then compared with the measured

output trajectory to evaluate the fit of the dynamic model.

Figure 4.5 demonstrates the described validation procedure for a validation (ie

not in the training data) batch. In the beginning of the batch duration, the conver-

gence of the Luenberger observer is apparent. Visually, the outputs corresponding to

the state estimates converge after about half an hour of output measurements. To

guarantee convergence, we continue updating the observer until it has been updated
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Figure 4.5: Validation of the dynamic model by comparison of output trajectory
prediction for a validation batch: output corresponding to subspace states estimated
by updating the luenberger observer (solid line), outputs predicted by the dynamic
model from the converged state estimate (dot-dashed line), actual output (dotted
line).

with two hours worth of measurements. Then, using the current state-estimate as an

initial condition, the dynamic model is used to predict the output trajectory from the

remaining input profile. Clearly, the predicted output trajectory closely follows the

true evolution of the process. This demonstrates that the dynamic model effectively

captures the dynamic behavior of the process.

Remark 25 To attenuate the effect of noise on the identified model, a first-order
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filter was applied to the output measurements. The smoothing factor for this filter was

selected to be high enough to visually reduce noise while not introducing significantly

delayed response. This filter was also applied to output measurements before passing

them to the proposed SQMPC. To provide an unbiased comparison, the filter was

additionally applied to output measurements before they were used in the benchmark

LVMPC and PI control.

4.6.3 Quality model fitting

Having identified the dynamic model, next a quality model was identified as previously

described. Recall that the quality objective for the PMMA process is to reach the

desired weight and number average molecular weight. To this end, the quality model

should relate the subspace states from the dynamic model identified in the previous

subsection to these variables. In addition to the molecular weight distribution, another

important quality variable for PMMA polymerization is the overall conversion at the

end of the reaction. To reflect this, conversion was included as an additional quality

variable and was also related to the subspace states. The first step in building the

quality model was to design a Luenberger observer.

The performance of a Luenberger observer is parameterized by the location of the

observer poles. By placing the poles appropriately, the convergence properties of the

observed states can be designed. In this work we choose to place the observer pole

for each state on the real axis in the neighborhood of 0.66 (specifically, poles were
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placed at uniformly distributed random locations between 0.66 and 0.67 because it is

not mathematically realizable to place all poles at exactly the same position) . This

value was chosen by observing the convergence of the outputs corresponding to state

estimates for validation data. Specifically, the value was selected so that the response

was stable (poles were within the unit circle) and converged quickly but remained

robust to noise.

Next, the Luenberger observer was used to determine the terminal subspace states.

As previously described, this was achieved by updating the observer with the output

measurements (temperature, density, and log viscosity) for each batch in the training

data over its entire duration. The final state estimate for each batch taken as that

batch’s terminal subspace state.

Having obtained terminal subspace states, regression was used to relate the state

estimates to the quality measurements in the training data. As noted in the pre-

vious subsection, the dynamic model we identified had nine states. These states in

conjunction with the dynamic model were demonstrated, by validation, to provide

a good description of the dynamic evolution of the outputs. However, as previously

mentioned, each subsequent state in the identified model is increasingly sensitive to

noise. When we examined evolution of the state estimates for the validation data,

we observed this effect to be particularly pronounced for the last five states of the

identified system. While we were able to verify that these states provided meaningful

contributions to modeling the dynamic process, we found that the last five states had
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a significantly lesser importance in predicting quality. In fact, in some cases the high

level of noise in these states diminished predictive ability of the model. Therefore, we

decided to build our quality model only on the first four states of the process.

Remark 26 In general, we propose using PCR to relate subspace states and quality.

As noted earlier, the use of PCR is particularly important when the terminal subspace

states are correlated. In this study, however, the four states that we used to build our

quality model were not correlated. In this case, PCR is equivalent to using ordinary

least squares regression.

Figure 4.6 is three scatter plots showing the impeccable ability of the model in

predicting quality for 70 validation batches. Specifically, the x data for these plots is

the actual quality and the y data are the qualities predicted. Datum points falling

on the plotted 45 degree line represent accurate prediction. This result validates the

overall methodology of using subspace states to capture the process condition and

explain quality.

Remark 27 As previously mentioned, one common characteristic of batch processes

is sparsity of available process measurements. To demonstrate the response of the

proposed method to sparse measurements we repeated both model fitting steps but in-

stead of using the three process outputs from before, we only considered temperature

measurement. In doing this, the number of observable states identified in the subspace

identification step fell from 9 to 3. The quality model was built as before. Quality
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Figure 4.6: Quality model predictions for 70 validation batches using terminal state-
estimates obtained by updating a Luenberger observer with output measurements
from the duration of the batch
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predictions for the same 70 validation batches as the training data are shown in Fig-

ure 4.7. Note that, while the quality predictions are less accurate, the resulting model

still has a reasonable predictive ability. This demonstrates the capacity of the proposed

method to elegantly use the information identifiable from sparse measurements.

4.6.4 Closed loop results

In the previous two subsections we utilized the proposed modeling methodology to

fit a dynamic model and a quality model for the PMMA process. In this subsection,

we will present results obtained by applying the identified model in the proposed

SQMPC. First we will discuss implementation and tuning aspects of the approach.

Our discussion of the closed loop results will be presented in two parts. In the first

part we will demonstrate the “regulatory” ability of the control design: in other words,

its ability to reject disturbances and drive the process to the nominal condition from

the training data. In the second part, we will demonstrate the “set-point tracking”

ability of the control design. Specifically, we will demonstrate the ability of the

controller to drive the process to a quality set point that differs significantly from

that of the nominal batch. Note that in both of these cases we will use the same

tuning and implementation. The only difference from an implementation perspective

is the selection of the quality set-point.

Once the required models are identified, implementation and tuning of the pro-

posed SQMPC is straightforward. Because the models effectively capture and char-
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Figure 4.7: Quality model predictions for the same 70 validation batches as the base
case but using only temperature measurement demonstrating the robustness of the
approach to sparse measurements
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acterize the behavior of the process, tuning the SQMPC is an intuitive procedure.

This is particularly true when compared to other batch control methods, such as gain

scheduling, where the tuning itself takes on the primary role in accounting for the

dynamic behavior of the batch. Recall from its definition that the proposed SQMPC

depends on two tuning matrices. These matrices, M and P both have intuitive mean-

ing in terms of the process. Specifically, M penalizes deviations of the predicted

quality from the set-point and P penalizes large input moves.

Remark 28 When the quality model is fit, the first step in the PCR modeling proce-

dure is to scale both the X and Y space to be centered with unit variance. We refer

to the centered and scaled values as being in the scale space. When implementing

SQMPC there are two options: either the predicted quality variables can be rescaled to

measurement space or the set-point can be correspondingly scaled to scale space. Both

options are mathematically equivalent in terms of the solution to the optimization

problem but leaving the quality predictions in scale space has the advantage that the

penalty matrix, M, has a more interpretable meaning. Specifically, because the quality

variables are scaled to have unit variance, each of the penalties, mi, directly represents

the relative importance of meeting that quality set-point. For instance, setting all of

the diagonals to the same value would apply equal weighting to every quality. Setting

mi = 2mj applies twice as much weight an meeting the ith quality as it does on meet-

ing the jth. For this reason, in this study we choose to keep the quality predictions in

the scale space.
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In the PMMA process we have considered three qualities: number average molec-

ular weight, weight average molecular weight, and conversion. Correspondingly, the

M matrix is a three-by-three diagonal matrix with entries m1, m2, and m3. To tune

these values, we started with all three penalties equal to one then adjusted the values

based on our observation of the closed loop results for a small number of batches. Our

final tuning was m1 = 187, m2 = 58, and m3 = 9.2 where m1, m2, and m3 correspond

to the weights on number average molecular weight, weight average molecular weight,

and conversion respectively.

The other tuning parameter is the penalty on input moves, P. The individual

diagonal elements of P represent the penalty on input moves for each corresponding

sampling instant. Due to the shrinking horizon nature of the MPC, the dimension

of the P matrix is decremented at each sampling instant. From an implementation

perspective, this necessitates reforming matrix P at every sampling instant as a sub-

matrix of the P matrix from the beginning of the batch. Doing so allows for a penalty

profile to be placed on the input moves of the batch. For instance, higher penalties

could be placed on the beginning of the batch to keep input moves smaller during

that time. However, there is a strong argument to be made for instead using a single,

constant penalty for all sampling instances of the batch. This argument is based on

the desire to avoid introducing unnecessary time indexed elements to the control de-

sign. For this reason, we have chosen to use the same penalty, p1 = 3 for all sampling

instances. (Note that if the system had multiple inputs a constant input penalty
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would instead be represented by repeating a vector pc along the diagonal of the P

matrix.)

In addition to the penalty on input moves, hard constraints were applied on the

input at plus and minus 15◦ C from the nominal jacket temperature trajectory. These

bounds simulate limitations on the process arising either from equipment constraints

or operator requirements. These bounds were rarely reached in the presented case

studies. However, further experiments designed to test the behavior of the system

under significantly tighter input constraints demonstrated that the proposed SQMPC

is able to propose input trajectories that respect the input constraints while providing

improved quality. These results are omitted from explicit presentation in the paper

for brevity.

Remark 29 While the training data sets used in the present work are of unequal

length, the closed-loop batches are picked to be of the same length. This is done be-

cause both LVMPC and the proposed SQMPC required knowledge of the batch duration

(which could very well be different for each batch) before the batch starts, so the input

trajectories for that duration can be computed. Thus for fairness of comparison, both

controllers are given the same batch length, and this value is kept the same for all

closed-loop batches. In general, the batch duration could also be a decision variable in

the proposed SQMPC framework. This possibility will be pursued in a future research

study.
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Implementation of the SQMPC was carried out in MATLABTM1 using the built

in QP solver to calculate the input move at each sampling instant. The optimization

problem in this work is relatively efficient to solve and global optimality is guaranteed

(see Remark 19 for details). For instance, for the regulation application the solution

of the optimization problem was solved to the global optimal in an average time of

0.0132 seconds (on a 2.40 GHz, Intel, Quad-core, 32-bit machine). The maximum

solution time was 0.2207 seconds. Clearly, these values are far shorter than the 60

second sampling frequency meaning that the controller would be readily operable

online.

All of the closed loop results presented in this section were obtained by applying the

various control approaches to batches initialized from the same 186 initial conditions.

These initial conditions were drawn from the normal distributions used to generate

the training data as previously described. The same set of initial conditions were used

for each proposed method and over both case studies to enable unbiased performance

comparison. The number of batches, 186, was chosen to be sufficiently large to provide

statistically relevant results. The following two cases present these results.

Case 1: Regulatory Control

In the first case study, we consider the problem of rejecting disturbances in initial

conditions to obtain the quality set-point for each batch. Specifically, the set-point

1 c©2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The Math-
Works, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product
or brand names may be trademarks or registered trademarks of their respective holders.
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in this case study is the quality from the nominal batch. The temperature trajectory

for the nominal batch is the set-point tracked by the existing control. Furthermore,

the initial condition for the nominal batch is the mean initial value for all subsequent

batches. Therefore, the existing control is most likely to be effective in reaching

this quality set-point. This choice of set-point is also a meaningful base case for

LVMPC and SQMPC. The base open-loop input and closed-loop set-point trajectory

in the training data for the LVMPC and SQMPC are taken from the nominal batch.

As a result, driving to the nominal quality is the case that is least likely to cause

extrapolation from the training data. For these reasons, this case can be thought of

similarly to the regulation problem in continuous processes where the objective is to

maintain operations at the original set-point in the face of disturbances.

Figure 4.1 shows the PI, LVMPC, and SQMPC input trajectories for a typical

batch. The corresponding output trajectories for this batch are plotted in figure 4.2.

The relative quality errors for the plotted batch are given in table 4.3. Some of the

notable characteristics of the outputs plotted in these figures are consistent with the

general behavior of each of these control methods. First of all, notice that the SQMPC

follows a smooth trend over the duration of the batch. This smoothness is partially

resultant of the input movement penalty. However, even in cases where the input

penalty was dramatically reduced, the input profile tends to remain smooth. Another

characteristic of note is that the SQMPC input follows the same general trend as

the PI throughout the beginning and middle of the batch up to around 2.4 hours.
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Table 4.3: Relative error in controlled qualities for characteristic batch plotted in
figures 4.1 and 4.2

Number Ave. Mol. Wt. Weight Ave. Mol. Wt. Conversion

SQMPC 0.13% 2.42% 7.90%
LVMPC 4.04% 4.74% 4.99%
PI 8.97% 8.41% 1.76%

At around 2.4 hours, the SQMPC significantly diverges from the trend of both the

LVMPC and PI inputs. This divergence occurs as quality predictions improve allowing

the SQMPC to take the appropriate corrective action to account for deviations from

the set-point.

Remark 30 SQMPC is able to obtain especially smooth inputs when compared to

other data driven control approaches. This is a direct result of the way the models

are identified. When identifying time indexed models (such as batchwise-unfolded PLS

models), coefficients are identified for each sampling instant from observations at that

sampling instant. Therefore, the number of observations available to identify each co-

efficient is equal to the number of training batches. This small number of observations

reduces the ability to average out the impact of noise on the coefficients. Furthermore,

the effect of the noise on coefficients is time dependent. When applied in closed loop,

the modeled time-dependent noise may be amplified resulting in a jittery input tra-

jectory. In contrast, in the proposed approach, the formation of the Hankel matrices

allows a much larger number of observations to be used in identifying each model coef-

ficient. As a result, noise from the training data can be effectively averaged out. More

importantly, these coefficients are constant at every sampling instant. Therefore, any
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modeled noise effects the predictions consistently through time and does not induce a

jittery input trajectory.

Figure 4.3 is a table of histograms showing the distributions of each of the quality

variables for each of the control approaches under case 1. These results demonstrate

the clear gains in control of the molecular weight distribution under the proposed

SQMPC. Specifically, the distributions of both number and weight average molecu-

lar weight are narrowed when compared to the existing PI and LVMPC approaches.

Furthermore, the distributions are centered around the quality set-point. The distri-

bution of conversions suffers slightly under the proposed SQMPC but remains within

acceptable bounds of approximately plus and minus ten percent. The results of this

case study strongly support the efficacy of the proposed SQMPC for disturbance re-

jection. Note that we use only the simplest version of LVMPC for benchmarking

purposes; improved performance with the LVMPC could very well be possible. The

key recognition is the fact that comparable (and in this instance better) performance

is achievable using the proposed approach that does not require the existence of any

alignment variable as with the LVMPC.

Remark 31 While we were tuning the MPC, we found that there was an appar-

ent trade-off between obtaining the desired conversion and molecular weight distribu-

tion. Upon further investigation, we discovered that more than 99.9% of the variance

in the quality measurements from the training data can be explained by two dimen-

sions. While this result is not conclusive proof, it strongly suggests that conversion
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and the molecular weight properties cannot be independently controlled. In design-

ing the SQMPC we made the decision to trade off conversion in favor of reaching

the desired molecular weight distribution. This is reflected in the tuning parameters

where conversion has a significantly lower weighting. The decision is justifiable from

an industrial perspective since the molecular weight distribution is the primary defin-

ing property of the product. This explains the reduced performance of the SQMPC in

regulating the conversion.

Case 2: Set-point Tracking

In the previous case, we demonstrated the ability of the proposed SQMPC to reject

disturbances and drive the process to the nominal quality set-point. In this case,

we consider the added complexity of driving the process to a quality set-point that

is markedly different from the qualities observed in the training data. This type of

problem is of particular relevance industrially for processes where there is a desire to

produce multiple grades of product. The set-point tracking ability demonstrated by

the results in this case study also provide evidence for the theoretical integrity of the

proposed method.

The only change from the previous case was the quality set-point of the controller.

All other aspects of both the LVMPC and the SQMPC – including the initial batch

conditions, tuning, models, and filtering – remained unchanged. The new set-point

was selected from an outlier in a large database of historical operations. The reason

for selecting an outlier, instead of inventing a quality set-point, was to ensure that
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the new quality set-point was physically reachable. The selected quality set-point was

well outside the range of qualities observed in the training database.

Figure 4.8 is a scatter plot comparing closed-loop, SQMPC qualities for the first 15

batches in case 1 with those achieved by changing the set-point in case 2. For reference,

the corresponding qualities using the existing PI are also presented. Figure 4.9 shows

the resulting quality distributions under SQMPC, LVMPC, and PI control for case

2. Note that since the existing PI control does not directly control quality, there is

no change in the PI results from case 1 to case 2. As with case one, the distributions

clearly demonstrate the efficacy of the proposed method. Of the three control designs

(PI, LVMPC, and SQMPC), SQMPC is the only one with a distribution centered

around the new quality set-point. In fact, none of the LVMPC batches reach the

desired weight average molecular weight. Furthermore, while PI and LVMPC produce

broad distributions, those of SQMPC are only slightly broader then in case 1. It is

also noteworthy that, for this case, SQMPC also produces a conversion distribution

that is broad but centered around the set-point.

Remark 32 The superior set-point tracking ability of the SQMPC results directly

from the fact that the dynamic evolution of the batch is modeled based on state rather

than time. When the operation of a batch differs from those in the training data, the

process states deviate from the trajectories they took in the database. Fundamentally,

the dynamics of the process are dependent on the process sate (as described by equation

4.1). For a time-indexed model therefore, when the process is moved to a new process
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Figure 4.8: Scatter plot comparing the PI qualities (circles), SQMPC qualities for case
1 (squares) and SQMPC qualiteis for case 2 (triangles) where the set-point for case
1 is the nominal quality (x) and the set-point for case 2 is an outiler from historical
operation (star)
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Figure 4.9: Histograms of case 2 qualities resulting from 186 batches operated under
SQMPC, LVMPC, and PI control.
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state trajectory, time-indexed models fail capture the dynamic behavior.

4.7 Conclusions

In this work we presented a novel data-driven model predictive control scheme for

batch processes. The method adapts subspace identification techniques to identify a

LTI, dynamic, state-space model from historical and identification batch data. The

states of the identified system are then related to quality. The overall model relates

process inputs and measurements in a causal manner to batch quality. The identified

model is then applied in a model predictive control scheme. Simulation results for

a batch PMMA reaction show the efficacy of the approach. Specifically, we are able

to demonstrate favorable results when compared with other benchmark batch control

schemes. The favorable results obtained by the proposed approach are explicable by

the beneficial theoretical properties inherent to the method.
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4.8 Appendix A: Identified PMMA Models

4.8.1 Dynamic Model (Subspace Identification)

A =



0.98516 −0.041768 −0.11588 −0.081012 0.14133 0.027337 0.065944 −0.008974 0.026833
−0.053849 0.79861 0.063273 −0.074642 0.41775 0.21953 0.16301 0.074074 0.0076323
0.014815 0.053163 0.98982 0.039297 −0.078398 0.084098 0.075658 −0.01062 −0.015769
−0.0084043 −0.029059 0.010815 0.96612 0.11911 −0.033243 0.078468 0.039254 0.0071832
−0.005217 −0.019198 0.0048115 −0.011641 0.8878 −0.080295 −0.030649 −0.13453 0.1784
−0.001108 −0.0040268 0.00085731 −0.004503 −0.03083 0.93209 −0.038058 −0.12716 0.052801
−0.00041708 −0.001586 −0.00040162 −0.00030684 0.1618 0.086359 0.80687 −0.077694 −0.20116
−0.006212 −0.022836 0.004279 −0.011486 −0.076859 −0.10873 −0.20005 0.18359 0.014277
0.0037065 0.013566 −0.002334 0.0087541 −0.13833 −0.0099258 0.39496 0.66942 0.4205



λA =



0.2224
0.56704 + 0.19029i
0.56704− 0.19029i

0.80866
0.86491

0.99958 + 0.0039544i
0.99958− 0.0039544i

0.98534
0.95601



B =



−0.058874
−0.20903
0.057585
−0.032671
−0.020277
−0.004307
−0.0016209
−0.024143
0.014406


C =

−0.26209 −0.97571 0.49382 −0.081618 0.077041 0.15654 0.3934 0.34012 −0.064527
0.003204 0.16186 0.23888 −0.63143 0.010558 −0.1874 −0.030857 0.00037325 −0.01769
−0.72052 0.17384 0.02821 0.024757 0.21978 0.045767 0.094573 −0.051717 0.00075872


4.8.2 Quality Model

Q =


−0.0043689 −0.016241 −0.073542 0.038459
1458.7852 12206.803 21917.8887 −41581.0424
2432.0509 19726.6489 33292.0309 −72136.2077
−0.00039146 −0.021493 −0.056014 0.03811
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ck =


−5.0845

1985711.0276
3323464.3048

1.3826
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4.9 Appendix B: Tuning Parameters for Bench-

mark Control

4.9.1 PI

kc = −0.1

τI = 30

4.9.2 LVMPC

Number of principal components = 5

Q1 =


0.01 0 0 0

0 0.01 0 0
0 0 0.01 0
0 0 0 0



Q2 =


10 0 0 0 0
0 10 0 0 0
0 0 10 0 0
0 0 0 10 0
0 0 0 0 10


λ = 100;

|∆t| ≤ 0.5
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Chapter 5

Data-driven Modeling and Quality
Control of Variable-duration Batch
Processes with Discrete Inputs
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Manuscript Overview

This chapter consists of a manuscript which extends the results from the previous

chapter with two significant novel contributions. These are the inclusion of a mecha-

nism to handle discrete inputs and including batch duration as a decision variable in

the control scheme. Both of these contributions substantially improve the performance

of the proposed quality controller. Including variable batch duration is particularly

impactful since other data-driven batch control approaches have struggled with this

complex problem. In addition to the two major contributions, other smaller contribu-

tions include heuristic policies to improve performance and an adaptation of a batch

state observer more suitable than the Luenberger observer used in previous work.
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Data-driven Modeling and Quality Control of
Variable Duration Batch Processes with Discrete

Inputs

Brandon Corbett and Prashant Mhaskar

Submitted for publication: August 2016, to Industrial Engineering & Chemistry
Research

Abstract

Batch process reactors are often used for products where quality is of paramount im-

portance. To this end, this work addresses the problem of direct, data-driven, quality

control for batch processes. Specifically, previous results using subspace identification

for modeling dynamic evolution and making quality predictions are extended with

two key novel contributions: first, a method is proposed to account for mid-batch

ingredient additions in both the modeling and control stages. Second, a novel model

predictive control scheme is proposed that includes batch duration as a decision vari-

able. The efficacy of the proposed modeling and control approaches are demonstrated

using a simulation study of a polymethyl methacrylate (PMMA) reactor. Closed loop

simulation results show that the proposed controller is able to reject disturbances in

feed stock and drive the number average molecular weight, weight average molecular

weight, and conversion to their respective set-points. Specifically, mean absolute per-

centage errors (MAPE) in these variables are reduced from 8.66%, 7.87%, and 6.13%

under traditional PI control to 1.61%, 1.90%, and 1.67% respectively.
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5.1 Introduction

Specialty chemical products ranging from high end polymers to pharmaceuticals make

up a cornerstone of the modern economy. The Society of Chemical Manufacturers and

Affiliates (SOCMA) reports that its members alone produce $24 billion in products

and services [1]. Batch reactors are a natural choice for specialty chemical production

because they are sufficient to meet low volume demands while providing benefits over

continuous reactor configurations as discussed below. In batch reactors a sequence of

ingredient addition and reaction steps are carried out over a finite period of time to

produce the desired product. This sequence, often directly adapted from lab proce-

dures, is referred to as the recipe. Because of the high value of the products, even

infrequent off-spec batches represents a substantial economic loss. It is imperative,

therefore, to develop control strategies to reduce process variations that result in

off-spec product.

The most ubiquitous closed-loop batch strategy tracks predefined trajectories of

measurable process variables such as temperatures and pressures. This is referred to

as trajectory tracking control. In most implementations, traditional PI controllers are

used, sometimes with gain scheduling to account for the nonlinear dynamics arising

from the large range of state-space encountered by the process [2, 3]. However, many

more advanced trajectory tracking schemes using model based control have also been

considered [4, 5, 6]. While trajectory tracking is a good first step to reduce product

quality variation, even with perfect trajectory tracking, the desired quality specifica-
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tions may not be achieved. This is because only output trajectories are being tracked

(not the corresponding state trajectories), thus even if the measured outputs traverse

the same path, the process states might be at an entirely different point, thus not

yielding the desired product quality.

The key challenge for direct quality control is that quality variables are often

not measured online. Therefore, to solve the problem of direct quality control, first

one must use models to make terminal quality predictions from measurable process

variables. The most intuitive way to achieve this is by using models developed from

first-principles knowledge of the reaction mechanisms [7, 8, 9, 10, 11, 12, 13, 14, 15,

16]. In many instances, however, substantial amount of historical data are available

that could be utilized for development of models that are easier to both build and

implement.

One approach to data driven batch quality modeling and control is to use latent

variable methods (see [17] for an excellent review). The common component of these

methods is projecting measurements from the process into a reduced dimensional

space where inferences about the process operation can be drawn based on past oper-

ations. The key difference between these approaches is the way in which the data are

projected into this lower dimensional space. The orientation of this projection is de-

termined by the arrangement (unfolding) of batch data into a two dimensional matrix

where columns represent measurements and rows represent observations. One of the

most common projection method [18, 19, 20] is to use batch-wise unfolding where each

159



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

row represents a complete batch duration. However, this unfolding method introduces

problems dealing with batches of unequal duration. To address these problems, two

methods have been introduced. One method uses a monotonically increasing variable

to align batches [19]. The second, more advanced method, uses a technique developed

for alignment of sound in voice recognition called dynamic time warping (DTW) [21].

While these approaches are useful tools for batch monitoring, they are not as helpful

for control because it is unclear how to map future variable trajectories back to the

real time domain. Models created from this unfolding represent time varying models,

and can easily be adapted to handle mid-batch quality measurements and mid-batch

additions. Because of the time varying nature of the underlying model, however, these

models are not directly applicable to batches of different durations. More explicitly,

while possible for monitoring, these models cannot be directly utilized to vary batch

durations to achieve improved product quality in a feedback control framework. An-

other batch quality control approach, referred to as batch-to-batch control, allows

changing batch durations [22, 23, 24, 25, 26, 27, 28, 29], however, the approaches do

not incorporate feedback during a batch (but only from batch-to-batch).

Beside the time varying modeling approaches, there also exist other approaches

to capture process nonlinearity (see [30, 31, 32]). One such approach combined local

linear ARX models with weights which depended on the lagged outputs and inputs at

any given sampling instant for trajectory tracking [31] and quality control [33] for fixed

batch durations. This limitation was necessary because, while a time independent
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model was used for output predictions, quality predictions were achieved using a time-

dependent latent variable model. In more recent work, a subspace based modeling

and control approach for batch quality [32] control was proposed, comprising a state

space dynamic model and a quality model, that also did not require batches to be

of the same duration for building the model. However, this work stopped short of

including batch duration as a decision variable in closed loop control. Furthermore,

the work [32] considered a relatively simplistic batch recipe which did not include

mid-batch additions which often play a critical role in batch processes.

The current work generalizes the method proposed in [32] to address both mid-

batch additions and batch duration. Specifically, novel identification method is in-

troduce that accounts for and identifies the effects of mid-batch additions. Also, the

ability to use the identified models in batch quality control where batch duration

is a decision variable is demonstrated. The remainder of the paper is structured as

follows: first, in Section 5.2, background and notation needed to support the contri-

butions in subsequent sections is provided. Section 5.3 outlines the model structure

used for identification. Next, Section 5.4, goes step-by-step through the proposed

identification method. Section 5.5 proposes a shrinking horizon model predictive con-

trol scheme to use the identified models for direct quality control. To demonstrate

the efficacy of the proposed approach,Section 5.6 demonstrates the proposed identi-

fication and control methods applied to a simulation of a Poly Methyl Methacrylate

(PMMA) batch reactor. Finally, Section 5.7 draws a few brief conclusions.

161



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

5.2 Preliminaries

The first subsection of this section explicitly defines the class of processes considered

by this study. Then the well researched field of subspace identification is briefly

reviewed.

5.2.1 Class of processes

The key contributions of this work are motivated by the Markov assumption which

states that future behavior of the process is dependent solely on its current state

and future input excitation. For chemical systems, the state is captured by chemical

composition of the reaction media and thermodynamic variables (temperatures and

pressures). In this work, states in this physically motivated variable space are referred

to as fundamental states and are denoted as x.

The current work considers processes with two types of inputs: continuous and

discrete. Continuous inputs are defined as independently manipulatable variables

whose values impact process behavior through dynamics. A cooling jacket which

continually removes heat from the reactor is a good example of a continuous input.

Continuous inputs are denoted with the standard u notation. Discrete inputs are

defined as factors that effect the process state instantaneously (or sufficiently fast so

its easiest to treat it as instantaneous). For example, addition of an ingredient causes

concentration of the added species to instantly increase. Notationally, discrete inputs

are represented as ud.
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To implement digital control, some narrowing of the input space is necessary.

Specifically, this work makes two assumptions: first, that continuous inputs occur

at a regular sampling frequency, equal to the measurement sampling frequency for

convenience of feedback, with a zero order hold. Second, that discrete inputs can only

occur at the end of sampling instances, immediately prior to the measurement of the

subsequent sampling instant. Note that the proposed approach would readily work

with any other policy, for instance a first-order hold policy. Also, the timing of the

addition of the discrete inputs could be easily changed.

In general, measurements are nonlinear functions of state. For instance, for a

polymerization reactor, the viscosity of the reaction media is a nonlinear function

of the temperature and composition. Further, process measurements are classified

into two types: online measurements and offline quality measurements. As the labels

imply, online measurements are taken from process sensors and are sampled frequently

in (nearly) real-time. This work denotes online measurements with the standard y

notation. Quality measurements, denoted by the vector q, provide a more direct and

detailed evaluation of the reaction product. These measurements capture the useful

properties of the product and, as such, define the production objectives. However,

quality measurements are generally only available infrequently (often at the end of a

batch) and with substantial delay.
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The system described above can be represented mathematically as follows:

xk+1 = f (xk,uk) ∀ k /∈ Kd (5.1)

xk+1 = fd
(
x−d ,udk

)
∀ k ∈ Kd (5.2)

x−d = f (xk,uk) (5.3)

yk = g (xk) (5.4)

qk = h (xk) (5.5)

where f (xk,uk) is the nonlinear function governing the dynamic evolution of the

fundamental states. fd is the function capturing the effect of the discrete addition

at the end of a sampling instant. g describes the relationship between states and

frequently sampled measurements. h is the relationship between fundamental states

and quality. x−d is the state immediately before a discrete addition occurs. Finally,

Kd is the set of all sampling instances at the end of which a discrete input occurs.

Note that the subsequent results do not require knowledge of the above functions;

they have only been introduced for notational purposes.

Remark 33 By definition, every batch has at least one discrete input at t = 0 cor-

responding to the initial charge of the reactor and another at t = Tf when the reactor

is discharged. This observation could be useful to extend the approaches presented in

this paper to situations where a statistical dependency is observed between subsequent

batches (for instance in a manner consistent with the case studies in batch-to-batch
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control approaches). However, this work focuses on the within batch control problem.

Remark 34 For a system in the continuous time-domain, the discrete inputs in this

work (and the resulting discontinuities in state-space) could be handled exactly using

impulse functions. However, in the discrete-time (sampled) case, the additional steps

presented in this paper are necessary to adequately describe the behavior of the sys-

tem. Even for processes where additions involve some mixing dynamics, the methods

presented here are likely useful since the timescale of the mixing dynamics are likely

dramatically faster then the process sampling rate.

5.2.2 Subspace identification

This subsection provides a brief overview of subspace identification methods. These

methods were developed to be stable, non-iterative approaches for identifying state-

space, dynamic models directly from input and output data. Traditionally, these

methods are used to identify models around steady-state operating conditions, as is

the case for continuously fed chemical processes. Standard practice is to excite the

system using an identification signal (for instance pseudo random binary sequence

signals (PRBS)). This excitation is necessary to correctly isolate the influence of each

input on each of the states.
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Consider the linear, time-invariant, discrete, state-space system:

xk+1 = Axk + Buk (5.6)

yk = Cxk + Duk (5.7)

To begin the identification procedure, a contiguous sequence of i+ j − 1 input values

and the corresponding output measurements from this system are arranged into a

Hankel matrix as follows:

Y1|i =


y1 y2 · · · yj

...
...

...

yi yi+1 · · · yi+j−1


Note that the notation Y1|i in this context refers to the Hankel matrix in which the

first column contains outputs from 1 to i. A corresponding unfolding of the state

vectors is defined as:

Xi =

[
xi xi+1 · · · xi+j−1

]

Having defined these matrix arrangements of the available observations, the update

and output state-space equations (equations 5.6 and 5.7) can be re-expressed as:

Xi+1 = AiX1 + ∆iU1|i (5.8)

Y1|i = ΓiX1 + HiU1|i (5.9)
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Where Ai is the dynamic A matrix to the ith power. ∆i, Γi, and Hi can be derived

by appropriate iterative substitutions of equations 5.6 and 5.7 (see [34] for the defini-

tion and derivation of these matrices). Next, using the pseudo-inverse (denoted •+),

equation 5.9 is solved for X1 which can be plugged into equation 5.8 and re-arranged

to get:

Xi+1 =

[
∆i −AiΓ+

i Hi AiΓ+
i

]U1|i

Y1|i

 (5.10)

Next, re-write equation 5.9 for observations from i+ 1 to 2i to get:

Y i+1|2i = ΓiXi+1 + HiU i+1|2i (5.11)

Equations 5.10 and 5.11 taken together demonstrate the fundamental principal

behind subspace identification methods. Particularly, note that the matrix Xi+1 ap-

pears in both of these equations and forms a partial basis for the output measurements

in both cases. Assuming that inputs are independent from outputs (i.e., not purely

closed loop), it is possible to identify this basis through a series of appropriate pro-

jections (perpendicular to ’future’ inputs, U i+1|2i). In practice, care must be taken to

exploit this theoretical result in a numerically stable fashion. To this end, a number

of algorithms have been proposed.

This work does not present a new subspace identification algorithm; accordingly,

readers are referred to existing literature for algorithmic information. For specific

details of the subspace identification principles used in this work, including numeri-
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cally stable algorithms, see [34]. For a good review and analysis of different subspace

identification methods see [35]. In previous work, [32], it was demonstrated that by

appropriately modifying Hankel matrices, one could apply the methods from [34] to

identify dynamic models for batch processes. This work generalizes these results for

batches with discrete inputs.

5.3 Proposed Model Structure

The idea motivating the selected model structure is to break the overall model into

multiple distinct parts. Partitioning the model facilitates identification by allowing

each part of the model to be identified individually. The selected partitioning, and

structure of each model part, is motivated by our fundamental understanding of these

processes as presented in Section 5.2.1. Specifically, the model is composed of a

dynamic model to explain the effects of continuous inputs, discrete input models for

instantaneous influences, and a quality model to predict quality at the end of the

batch. All three models are related through the state, x̊, defined by the dynamic

model. Mathematically, the model is represented as:

x̊k+1 =


Ax̊k + Buk ∀k /∈ Kd

Ad (Ax̊k + Buk) + Bdudk + cd ∀k ∈ Kd

yk = Cx̊k + Duk

qTf = Mqx̊Tf + µq
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Where A, B, C, and D as well as the selected length (order) of x̊ comprise the

dynamic, state model; the matrices Ad, Bd, and the vector cd comprise the dth

discrete addition model; and matrix Mq and vector µq comprise the quality model

relating the terminal state, x̊Tf , to the terminal quality, qTf .

Note that this model structure is based on a latent state, x̊. Section 5.4.1, where

identification of the dynamic model using subspace methods is discussed, briefly de-

scribes the advantages afforded by this latent state including the ability to adequately

describe the evolution of the process dynamics using the proposed linear structure.

For a deeper examination of the way that LTI models capture behavior that is non-

linear in fundamental states space, readers are referred to the detailed treatment of

the topic in [32]. Other identification sections discuss the linear representations of the

quality and discrete input models as well.

5.3.1 Observer

The fact that the proposed model structure is state-space based introduces the state

estimation problem. Before presenting the proposed approach, this subsection in-

troduces a receding horizon observer design based on one presented in [36]. This

optimization based observer is used to estimate the states of the proposed model

structure for a series of inputs and the corresponding measured response. Impor-

tantly, this observer intuitively incorporates the full model structure proposed in this

section including the discrete-input component of the model stricture. To estimate a
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state trajectory at sampling instant k, ˆ̊xi∀i ≤ k, from measurements, yi, continuous

inputs, ui, and discrete inputs, udi, the optimization problem is formulated as:

min
ˆ̊x1,...,ˆ̊xk

(
ˆ̊x1|k−1 − ˆ̊x1|k

)′
Q0

(
ˆ̊x1|k−1

ˆ̊x1|k

)
+ · · ·

k∑
i=1

(yi − ŷi)′R (yi − ŷi) + · · ·

k−1∑
i=1

ω′iQωi

s.t. ωi =


x̊i+1 − (Ax̊i + Bui) ∀i /∈ Kd

x̊i+1 − (Ad (Ax̊i + Bui) + Bdudi + cd) ∀i ∈ Kd

ŷi = Cˆ̊xi + Dui

where Q0, R, and Q are symmetric, positive-definite tuning matrices. ˆ̊x1|k−1 is the

state estimate at the first sampling instant of the process calculated during the last

update of the observer. Similarly, ˆ̊x1|k is equivalent in our notation to ˆ̊x1 and is the

new estimate of the initial state. With these two definitions in mind, the first term

and the corresponding symmetric, positive-definite, tuning matrix, Q0 provides an

iterative dampening effect. The purpose of this term is to stabilize the state estimate

trajectories when the observer is updated online at each sampling instant with new

observations. The second term is similar to the innovation term in a Luenberger or

Kalman estimator and penalizes deviations between the observed output and that

predicted by the model. The final term enforces model validity. While it would be
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equally feasible to include this term as a constraint (i.e., ωi = 0), doing so would not

enable accounting for plant model mismatch.

Remark 35 An alternative approach would be to use a Kalman filter. In fact, for

a linear system with Gaussian process and measurement noise a Kalman filter is

provably optimal. There are, however, a number of reasons not to use a Kalman

filter for the present framework. First and foremost, the underlying assumptions for

Kalman filters are not necessarily met. Specifically, as discussed later, in this work

non-linear dynamics are approximated using a linear dynamic model. As a result,

using a Kalman filter would result in a biased estimate because the state update error

would be autocorrelated and would not be Gaussian centered on the true state.

Furthermore, the presented batch estimator is provably equivalent to a Kalman

filter if the process is well described by the linear system and process noise is Gaussian

[36]. Therefore, there are no possible benefits to using a Kalman filter in place of the

proposed estimator. Another advantage of using a batch estimator is the ability to

‘even out’ the effect of the measurement noise over the entire batch without unduly

detuning the estimator.

5.4 Model Identification

The previous section proposed a model structure for batch processes motivated by

facilitating identification from process data. This section, provides methodology for
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identifying the corresponding model parameters. The proposed method is simple

enough to be practical for industrial applications, yet general enough to describe

batches with a wide variety of recipes.

Model identification is broken into four distinct steps: first, subspace identification

is used to find a dynamic model. Next, discrete input models are identified. To

improve the early-batch performance of the proposed observer, a prototypical initial

state is determined. Finally, a model is developed relating terminal state to terminal

quality. Each of these steps is dependent on the preceding steps. Taken together, these

steps provide a way of using historical operation data in conjunction with minimal

identification data to describe the complex behavior of batch processes.

5.4.1 Dynamic model using subspace identification

[32] demonstrated that observations from a number of batches could be combined in

the Hankel matrix construction step of subspace identification. To achieve this, first

Hankel matrices were constructed from each individual batch using observations from

the entire batch duration as a single block of contiguous data. The resulting Hankel

sub-matrices were then concatenated horizontally to form a Hankel matrix containing

information from multiple batches. After concatenation, the completed Hankel matri-

ces possess the same pertinent row-space relationship as a training matrix constructed

from a single block of contiguous data. Accordingly, these Hankel matrices can be

used in unaltered subspace identification methods. Moreover, by including a number
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of different batches in the training data, a sufficient range of the fundamental state-

space was exposed to identify a model capable of accurately capturing the dynamic

behavior of the system.

Remark 36 Note that these results incorporated batches of varying durations in the

training data. This was possible because the duration of the training data altered

only the number of columns in each Hankel sub-matrix. For horizontal concatenation,

only the number of rows must be consistent. The number of Hankel rows is a user

parameter (defining a size of a history of observations around the identified state) and

was therefore consistent regardless of batch duration.

The subspace identification approach adopted in the current work is a general-

ization of the framework presented in [32] to handle discrete inputs. To include

batches with discrete inputs in the training data, again Hankel matrix construction

is addressed. Subspace identification methods rely on the assumption that all state

changes arise from process dynamics or dynamic responses to input variables. Recall

that by our definition, a discrete input causes a discontinuity in state. As a result,

including observations around this discrete input would, at best, be inconsistent and

at worst substantially skew the identified model dynamics. Mathematically this is

reflected in the row-space of Hankel matrices. Consider, for instance, the case where

a discrete input is made half way through a batch. Were one to proceed as before,

constructing a Hankel matrix using observations from a complete batch, the row-space

relationship assumed of the Hankel matrix would be violated in the columns spanning
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the discrete input.

To address the effects of discrete inputs, the Hankel sub-matrix for each batch

is further divided into sub-matrices. In some sense, one can think of the period of

time between each discrete input as an individual batch; for the duration between

each addition, the state of the process is transformed from an initial state (the result

of the last discrete input) to a final state (the state before the next discrete input).

This transformation is governed by process dynamics and continuous inputs made

during that time. Hence, it is appropriate to build Hankel sub-matrices for each of

these intervals. It is assumed that discrete inputs can only modify the system-state

and that process dynamics remain unaltered by discrete inputs. Therefore, instead

of modifying system dynamics, the effect of each discrete input is accounted for by

allowing a discontinuity in the identified state. With this in mind, it makes sense to

identify one dynamic model for the entire duration of the batch (including all intervals

between discrete events). Mathematically these ideas can be represented as follows.

For the set of L discrete input times:

Kd = {d1, d2, · · · , dL}
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Define the set of l + 1 corresponding continuous intervals

I1 = {k |1 ≤ k ≤ d1}
... =

...

Il = {k |dl−1 < k ≤ dl}
... =

...

IL+1 = {k |dL < k ≤ Tf }

Then define the following sub Hankel matrices for each batch, b, and interval Il:

Yb,Il
1|i =



ydl−1+1 ydl−1+2 · · · ydl−2i

ydl−1+2 ydl−1+3 · · · ydl−(2i−1)

...
...

...

ydl−1+i ydl−1+i+1 · · · ydl−i



(b)

Likewise for Y i+1|2i get:

Yb,Il
i+1|2i =



ydl−1+i+1 ydl−1+2 · · · ydl−i

ydl−1+i+2 ydl−1+3 · · · ydl−(i−1)

...
...

...

ydl−1+2i ydl−1+i+1 · · · ydl



(b)
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Then combine the data from all intervals and all sampling instances to form:

Y1|i =

[
Y1,1

1|i Y1,2
1|i · · · Y1,L

1|i Y2,1
1|i Y2,2

1|i · · · Y2,L
1|i · · · YB,L

1|i

]

The corresponding concatenation of sub-Hankel matrices Yb,Il
i+1|2i gives the complete

Hankel matrix Y i+1|2i. Similarly, the same procedure can be used go generate U1|i

and U i+1|2i. Note that by partitioning the Hankel matrices around discrete inputs,

the Hankel matrices of inputs only contain continuous inputs. Critically, by parti-

tioning data into segments omitting sample instances with discrete inputs, the row-

space relationship of the resulting Hankel matrix is consistent with that described in

Section 5.2.2. Therefore, from this point forward, it is permissible to apply subspace-

identification algorithms without further alteration.

The result of the subspace identification algorithm’s state identification step is a

state vector for each training batch, b, of the following form:

X
(b)
i =

[
x

(b)
i x

(b)
i+1 · · · x

(b)
d1−i x

(b)
d1+i x

(b)
d1+i · · · x

(b)
Tf−i

]

From this state progression and the corresponding input and output progressions it

is trivial to identify the state-space matrices, A, B, C, and D. In this work, this

step was done using linear regression (see [34] for details). However, as discussed

in the literature it is also possible to back calculate these values directly from the

intermediate calculation matrices. Linear regression was chosen to for simplicity.
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The state matrices identified in this section are used extensively in the remaining

identification steps to inform the state observer. These remaining identification steps

are discussed next.

Remark 37 One side effect of partitioning the Hankel matrices around discrete in-

puts is that only states up to i sampling instances before and after the discrete input

can identified. This is, however, not a restriction of the proposed approach. As long

as there is sufficient time interval between discrete inputs (for batch processes, there

always is), and the sampling frequency is sufficiently fast compared to the process dy-

namics (necessary from a process identification standpoint regardless), the approach

enables capturing the discrete and continuous components of the process dynamics.

5.4.2 Identification of discrete input model

With continuous dynamics of the system identified, the next step in the proposed

method is to identify the effect of discrete inputs. The objective is to identify a

model relating the state immediately prior to the discrete input to that immediately

following it. One approach would be to use the state-estimates resulting directly from

the subspace identification step as training data. However, recall from the previous

section that the state-estimates provided by subspace identification leave a gap around

each discrete addition. This is undesirable since it is necessary to isolate the effects

of discrete inputs from the effects of continuous inputs implemented during the gap.

Therefore, another approach is required.
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In order to identify the effect of the discrete input in isolation, first the state im-

mediately before and after the input takes place must be estimated. To achieve this, a

paired down version of the observer proposed in Section 5.3.1 is used on the continu-

ous observations from each of the L+ 1 segments of each batch. After completing the

dynamic identification, the only model parameters available to use from the overall

model proposed in Section 5.3 are the continuous dynamic matrices A, B, C, and D.

With these matrices, enough information is available to apply the observer indepen-

dently on each of the L+ 1 segments of continuous observations in the training data.

Note that since this is not an iterative application, and a good initial state estimate

is not available, Q0 is set to zero, Q0 = 0. The resulting observer is given by:

min
ˆ̊xi,i∈Il

∑
i∈Il

(yi − ŷi)′R (yi − ŷi) + · · · (5.12)

∑
i∈Il

ω′iQωi (5.13)

ωi = x̊i+1 − (Ax̊i + Bui) (5.14)

ŷi = Cˆ̊xi + Dui (5.15)

The solution of the above optimization problem is an estimated state trajectory,

ˆ̊xi, i ∈ (dl−1, dl]. By solving for all L+1 intervals, a complete state estimate trajectory

is obtained for each training batch. Of specific interest, for each discrete input, l,

now available are the states one sampling instant before the discrete input, ˆ̊xdl and

the state immediately after the discrete input, ˆ̊xdl+1. Recall however, that discrete
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inputs are made at the end of sampling intervals, immediately prior to the next

measurement. Accordingly, the state at the end of the sampling instant, directly

preceding the discrete input, must be determined before a model from this data can

be built. Since no measurement is available after the sampling instant but before the

discrete addition, the best method to accomplish this is to propagate the state estimate

at x̂sdl forward using the continuous model. This is represented mathematically as:

ˆ̊x−dl = Aˆ̊xdl + Budl

Where ˆ̊x−dl is our best estimate of the state immediately before the discrete addition

given our knowledge of the continuous process dynamics, measurements, and contin-

uous inputs.

With ˆ̊x−dl and ˆ̊xdl+1 identified, it is possible to construct regression matrices to

identify Ad, Bd, and cd. These regression matrices are given by:

Yreg =

[
ˆ̊x

(1)
dl+1

ˆ̊x
(2)
dl+1 · · · ˆ̊x

(B)
dl+1

]
(5.16)

Xreg =

ˆ̊x
− (1)
dl

ˆ̊x
− (2)
dl

· · · ˆ̊x
− (B)
dl

ud
(1)
dl

ud
(2)
dl
· · · ud

(B)
dl

 (5.17)

Then solving the regression problem yields:

Yreg =

[
Ad Bd

]
Xreg + cd (5.18)
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Remark 38 Note that the proposed approach is designed to handle situations where

multiple discrete additions are part of the batch recipe. If the discrete additions are at

fixed instances during the batch, or involve the addition of separate ingredients, they

could be accounted for using separate models. On the other hand, the approach could

be readily generalized to handle variable discrete addition time by building a single

model for the discrete addition events.

Remark 39 An alternative to the form of the mid-batch model proposed above is

to instead model the change in state ∆x̊. This alternative form is motivated by the

assertion that a discrete input of zero magnitude should have no effect on the state

of the system. To use this alternative form, the steps to identify ˆ̊x−dl and ˆ̊xdl+1 are

unaltered. The new regression matrices are:

Yreg =

[
ˆ̊x

(1)
dl+1 − ˆ̊x

− (1)
dl

ˆ̊x
(2)
dl+1 − ˆ̊x

− (2)
dl

· · · ˆ̊x
(B)
dl+1 − ˆ̊x

− (B)
dl

]
(5.19)

Xreg =

[
ud

(1)
dl

ud
(2)
dl
· · · ud

(B)
dl

]
(5.20)

For regression matrices in this form, it makes sense to force the regression solution

to pass through the origin. The direct result of the regression is Bd while Ad for this

case is the identity matrix and cd is the zero vector.
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5.4.3 Identification of initial state model

In state-estimation applications where a first-principles, state-space model is used,

it is practical to provide an initial state estimate based on process knowledge. For

instance, initial concentration of product in a batch reactor would likely be close to

zero. However, in the proposed approach, the subspace states of the system have no

direct physical meaning. As a result, it is not possible to draw a reasonable initial

system state from process knowledge. Instead, a reasonable initial state must be

obtained from training data. This subsection provides one approach to setting a good

initial state estimate. In particular, the average of each initial state in the training

data are taken as initial state estimate vector. To determine the initial state estimate

for each training batch, first the observer outlined in Section 5.3.1 was applied to each

training batch. Note that, with the discrete input model(s) identified, the observer

can be applied to complete output, input, and discrete input trajectories from each

batch. Once again, the Q0 matrix is set to zero because the observer is not being

used iteratively.

Remark 40 For batch processes where measurements in excess of the first online

measurement are available, rather than using the average value for the initial state, a

model relating these additional measurements to initial state could also be built. Doing

so would leverage available initial measurements to make appropriate early control

decisions.
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5.4.4 Identification of quality model

The last step to the proposed identification process is to identify the quality model.

Recall from Section 5.2.1 that quality is a function of state. Because the identified

models will be used to implement quality control, it is expected that the controller

will drive the quality to a narrow range. Therefore, our quality prediction model only

needs to be accurate for a small range of qualities near the set-point. As such, it is

reasonable to use a simple linear model to relate the quality to the terminal state.

This has the added advantage that it simplifies the identification process.

To identify a linear model relating terminal state and quality, the procedure is

similar to that from the previous subsection for identifying the initial state. First, an

observer of the form from Section 5.3.1 is constructed using the dynamic model and

discrete input model(s) identified in the previous sections. Note that once again Q0 is

set to 0. Next, the observer is solved with the measurements, continuous inputs, and

discrete inputs from each batch in the training data. The result, as in the previous

subsection, is a state trajectory for each batch in the training data.

Once a state trajectory has been identified for each batch, quality can be regressed

onto the terminal state of each batch to yield a linear model of the desired form.

Specifically, the matrices in this regression are:

Xreg =

[
ˆ̊x

(1)
Tf

ˆ̊x
(2)
Tf
· · · ˆ̊x

(B)
Tf

]
(5.21)
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where ˆ̊x
(b)
Tf

denotes the state estimate after the final sampling instant in the bth batch.

Note that there is no requirement for the training batches to have equivalent length

(ie. Tf may be different for each batch).

Yreg =

[
q

(1)
Tf

q
(2)
Tf
· · · q

(B)
Tf

]

where q
(b)
Tf

is the terminal quality measurement in the database for the bth batch. The

result of this regression is a model of the form:

qTf = Mqx̊Tf + µq

where Mq is the coefficient matrix and µq is the intercept term that results from

appropriately centering the variables before the regression.

5.5 VD-SQMPC

In this section a model predictive control scheme is presented that uses the model

defined in Section 5.3 and identified in Section 5.4 in closed loop for direct quality

control. The decision space of this optimization problem includes future continuous

inputs and future discrete inputs. In addition, the proposed controller has the ability

to select the optimal duration of the batch. The proposed approach is one of the first

purely data driven, within-batch control designs to effectively incorporate batch dura-
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tion as a decision variable. Furthermore, this result is achieved in a computationally

tractable manner that is suitable for online control.

To maintain a modest computational load, the proposed control problem is divided

into a two level optimization problem. The lower level controller is responsible for

determining the best input trajectory for a fixed batch duration. The upper level

selects between the solutions of the lower level to find the optimal duration. In

addition to the two optimization levels, a decision level is included in each calculation

step. This decision step is responsible for determining whether or not to terminate

the batch at the current sampling instant.

5.5.1 Inner MPC: fixed batch duration

This subsection discusses the lower level MPC for the proposed overall control ap-

proach. The objective of this level of MPC is to calculate the best input policy for a

fixed duration.
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The optimization problem for this level of the control problem is given by:

min
uk+1,uk+2,··· ,uTf ,ud1

,··· ,udL

(q̂ − qset)′M (q̂ − qset) +

Tf∑
i=k+2

(ui − ui−1)′P (ui − ui−1) + · · ·

(5.22)

L∑
l=1

(udl − udl,set)′Pd (udl − udl,set)

s.t. q̂ = Mqx̊Tf + µq (5.23)

x̊i+1 =


Ax̊i + Bui ∀k /∈ Kd

Ad (Ax̊i + Bui) + Bdudi + cd ∀k ∈ Kd

∀ k + 1 ≤ i ≤ Tf − 1

(5.24)

x̊k+1 = ˆ̊xk+1 (5.25)

umin ≤ ui ≤ umax (5.26)

udl,min ≤ udl ≤ udl,max (5.27)

where M is a positive-definite, symmetric, tuning matrix penalizing deviations of the

predicted quality for the candidate input from the target quality. In practice, it is

a natural choice to make this matrix a diagonal matrix so that the relative weight

on deviations from each of the quality targets can be set explicitly to reflect the

importance of each product quality to the end use of the product. P is also a positive-

definite, symmetric, tuning matrix which penalizes large input movements. This term

of the objective function provides a means of dampening input movements. Pd is
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the final positive definite tuning matrix. The third term of the objective requires

a bit more analysis. Similar to the second term, Pd acts as an input dampening

matrix. However, since discrete inputs are made infrequently, the objective is not to

prevent movement as it is for the continuous inputs. Instead, the goal of this term

is to maintain discrete inputs close to a desired set point. The physical justification

of this is twofold. First, from an industrial operation perspective, it is desirable

to follow prior recipes as closely as possible. Second, and more importantly, this

term in the objective prevents undue extrapolation from the identified model. This

is particularly important for the discrete addition. While historical operation data

likely contains variations in continuous input policies (i.e., introduced by trajectory

tracking controllers rejecting disturbances) it is far less likely that a database rich in

discrete inputs is available. Naturally, in order to identify a discrete input model,

some variation in discrete inputs must be introduced in training batches. However,

even with these identification batches, it is likely that the training data for these

discrete input models will be less rich and it is therefore prudent to take extra steps

to avoid extrapolation.

Remark 41 Care must be taken in scaling the penalty matrices when unscaled engi-

neering units are used in the measurements and input levels. In this work, first tuning

matrices were set in an unscaled space so that a unity scaling would give equal influ-

ence to each variable in the objective. Next, tuning matrices were rescaled using the

average input and quality measurement levels. This allowed the control optimization
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problem to be formulated in the original variables while providing consistent, intuitive

tuning parameters. An alternative and equivalent approach would be to rescale the

measurements before identification and control calculations.

The constraints in this level of the optimization problem enforce the identified

models, maintain operations between physical bounds on the system, and provide

the feedback mechanism for the control calculations. Specifically, equations 5.23 and

5.24 respectively enforce the quality and state models presented in Section 5.3 and

identified in Section 5.4. Equations 5.26 and 5.27 restrict continuous and discrete

inputs respectively between their operational bounds. Equation 5.25 implements the

current estimate of the state into the control calculation as the starting point for the

predicted state and quality predictions. This step is critical to the proposed method

and provides the feedback mechanism that allows the proposed control approach to

reject disturbances and drive the process to the desired set-point.

Note that all terms of the proposed optimization problem are quadratic and all

constraints are linear. Furthermore, all decision variables on this level of the MPC

are continuous bounded variables. As a result, the proposed optimization problem

is a relatively modest QP. Furthermore, the problem is convex. Therefore, exact

solutions to this lower level of the proposed control scheme can be calculated in a

computationally efficient manner.

The formulation proposed in this subsection provides a means to efficiently cal-

culate optimal input trajectories for a batch of fixed duration. However, as noted
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earlier, batch duration is a key factor in determining batch quality. With this in

mind, the next subsection describes how the formulation from this section can be

used to implement an overall controller that considers batch duration as a decision

variable.

5.5.2 Outer MPC: selecting duration

The previous subsection described a control scheme to find the optimal input policy

for a batch process (including discrete and continuous inputs) given a fixed batch

duration, Tf . The control calculation depended on the current state estimate, ˆ̊xk+1

and the current input uk. This subsection will refer to this mapping from state

estimate and input to optimal input as follows:

{u∗,u∗d, q̂∗} = C1

(
Tf , ˆ̊xk+1,uk

)

Where u∗ denotes the optimal continuous input trajectory and u∗d denotes the optimal

discrete input policy. By applying the identified models, the predicted quality result-

ing from implementing the calculated input trajectories, q̂∗, is also obtained. With

these definitions at hand, a policy for selecting the optimal duration can defined. The
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optimization problem is as follows:

min
Tf∈Z

(q̂∗ − qset)′M (q̂∗ − qset) (5.28)

s.t. {u∗,u∗d, q̂∗} = C1

(
Tf , ˆ̊xk+1,uk

)
(5.29)

Tf,min ≤ Tf ≤ Tf,max (5.30)

where Tf ∈ Z denotes that Tf is restricted to integer values. Note that this restriction

is necessary because the discretization of our dynamic models prevents their applica-

tion for partial sampling instances. The objective of this optimization problem is a

paired down version of the optimization problem at the lower level. In this work, the

design decision was made to eliminate the input movement suppression term and the

discrete input set-point term in the upper level MPC. This decision is motivated by

the fact that at the upper level, the input vector is of different lengths for different

batch durations. As a result, in extreme cases, a longer duration batch providing

better predicted quality could be overtaken in the objective function by a shorter

batch with fewer input movements to penalize. There is, however an argument for

including input movement in both levels of the MPC. That argument runs that if

smooth input trajectories are desirable, jumpy inputs should be penalized at all levels

and doing otherwise is inconsistent. One way to rectify these opposing views would be

to incorporate an input penalty weighting so that all input trajectory lengths would

be penalized equally.
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Remark 42 In this work, focus is on processes where the primary economic benefits

come from tight quality control and therefore quality control is more important than

production rate. That said, for batch processes, batch duration fixes production rate.

As a result, in many industrial examples one objective of batch operations is to mini-

mize batch durations. In order to address these production goals, an alternative viable

configuration of the outer control level would be to select the minimum duration for

which the optimal quality, q∗Tf falls within an acceptable range. Note that, in this situ-

ation, it is better to make quality control a constraint: otherwise the optimal solution

could select short batch durations at the direct detriment of product quality. However,

note that with quality as a constraint, quality control to an exact quality set-point is

not feasible, instead one must settle for driving quality to an acceptable range.

Implementation of the optimization problem specified by equations 5.28 to 5.30

includes more subtleties compared to the lower level. The first subtlety arises from the

fact that the decision variable is an integer variable making the optimization an integer

programing problem. Furthermore, the constraint governing q∗ is itself a constrained

quadratic problem. Fortunately, the decision space for this optimization problem is

limited to a tightly bounded one dimension range. This small decision space and

the relatively quick solution of the lower level QP permits solution of this problem

by total enumeration. In subsection 5.5.4, where the practical implementation of the

proposed control design is discussed, further steps to solve this outer MPC problem

will be addressed.
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Further improvement in the ability of our controller to reach the desired quality

can be achieved using the quality model to make an informed decision about when

to terminate a batch. In the next subsection logic is proposed to make this batch

termination decision.

5.5.3 Batch Termination

Recall that the quality model permits quality predictions from any state estimate.

With this in mind, one logical way to determine whether to terminate a batch would

be as follows: first calculate the quality corresponding to the current state estimate.

Apply the quality deviation term from the MPC objective function to this predicted

current quality. Next carry out the MPC calculations. If the objective of the quality

at the current sampling instant is less then the quality objective predicted by the

MPC, terminate the batch. This policy makes intuitive sense since it terminates the

batch if and only if the current predicted quality is better then any future quality.

Unfortunately, this approach will inevitably fail. To understand why, consider that it

is extremely improbable for any current state to produce exactly the correct quality.

However, the MPC will usually be able to invert the model in a way to drive the

quality to the set-point at some time in the future. Therefore, the termination policy

proposed above would lead to a controller continually ’chasing’ the set-point. The

factor that is unaccounted for in this termination method is that there is always

plant-model mismatch which is not accounted for in the predicted future qualities.
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To overcome these difficulties, a different termination strategy is required.

The flawed termination logic proposed above has two logical features that make

it beneficial in theory. These are that the batch is terminated if the quality is very

close to the desired set-point and that the batch is terminated if no better quality is

expected in the future. Ideally, both of these features should be kept in the proposed,

effective termination logic. To achieve this, in the proposed approach two possible

termination criteria are considered. If either is true, the batch is terminated. The first

termination criteria is designed to address the current state. As before, the current

state-estimate is used to predict the current quality. Then, this predicted current

quality is checked to see if it is within a set of tight terminal quality bounds. If it is,

the batch is immediately terminated. This provides the first feature of termination

logic that the batch should terminate if it is very close to the desired quality target.

However, it does so while avoiding the chasing behavior that is set up by comparing

the current quality to potential future quality.

The second termination condition deals with the possibility that the current qual-

ity is better then any future qualities will be. This is achieved by asserting that a

batch should be terminated if the current time is equal to the optimal duration se-

lected by the controller at the previous sampling instant. Recall that the outer layer

of the MPC makes duration decision based on selecting the best quality from the

set of predicted qualities for all possible durations. Therefore, if the batch duration

selected in the last sampling instant is equal to the current time, it means that at
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the last control calculation it was determined that any longer batch durations would

result in poorer quality objectives. Terminating based on duration selected in the

previous sampling instant effectively solves the set-point chasing problem since all of

the qualities considered by the outer MPC are pure prediction and therefore incorpo-

rate the same plant-model mismatch. In a sense, the comparison made by the outer

MPC when selecting duration is a comparison of apples to apples so the plant-model

mismatch is not a problem.

The previous three subsections have presented the fundamentals for a data-driven,

model predictive control scheme capable of direct quality control considering batch

duration as a decision variable. While these fundamentals provide a basis for the

method proposed in this work, practical implementation considerations and a few

heuristic methods are needed to achieve the most effective control. The next subsec-

tion outlines these practical considerations and provides a complete overview of the

proposed method.

5.5.4 Additional features and implementation

This subsection presents the so-called bells and whistles that make the methods pro-

posed in the previous subsection practicable. First, consider the timing of the pro-

posed method will addressed. Figure 5.1 shows the timing of the proposed MPC steps.

The process begins when the batch is charged. Immediately, the first measurement

is taken and the first continuous input is applied. Note that since there is no time
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Figure 5.1: Flow diagram of timing of the proposed MPC scheme

between the first measurement becoming available and the first input being applied,

it is not possible to apply the MPC until the subsequent sampling instant. Instead,

for the first sampling instant of the process, a nominal input is used. After a new

measurement becomes available at sampling instant k, the observer is updated with

the new measurement. The observer update provides the state ˆ̊xk. Since the input uk

has already been implemented, the next input to decide is uk+1. As such, the state

ˆ̊xk+1 needs to be the basis of control calculations. To get ˆ̊xk+1 the dynamic model

(and discrete input model if needed) is applied to the last available state estimate

ˆ̊xk. Next, the prediction of ˆ̊xk+1 is used in the termination calculations to determine

whether to end the batch. If the decision is made to terminate, the controller waits

until the end of the current (kth) sampling instant, discharges the batch and takes the

final quality and output measurements. Otherwise, the MPC calculations are carried

out to determine the optimal input policy. When the sampling instant is complete,

the discrete input and first input of the candidate input profile is implemented and

the process repeats.

In the beginning of the batch, the relatively small number of output measurements

available means that the state-estimate is relatively inaccurate. This inaccuracy arises
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despite using our initial state model because the initial state model cannot account

for batch-to-batch variations in feed-stock. Importantly, the state estimate is the only

source of feedback informing the decision of input trajectory by the MPC. As a result,

using input trajectories calculated by the MPC based on an inaccurate state estimate

is, at best, unhelpful and at worst, could drive the process into a region of state-

space for which our models are inaccurate or for which the quality is far off-spec. To

avoid this, in practice tight bounds on the input trajectory (around a nominal input

trajectory) are applied for the first several sampling instances of a new batch. This

provides time for the observer to converge to a correct state estimate before large

input moves are implemented.

Like the beginning of the batch, special care must be taken towards the end of

the batch. However, unlike the beginning of the batch, the issues at the end of the

batch do not arise from inaccurate state estimates. Instead, the issue that needs to

be avoided is over-excitation of the process. Because the quality term in the objective

function only penalizes the last sampling instant, there is a large incentive (from an

optimization perspective) to make large input moves in the last few sampling instances

of the batch to exploit the linear dynamic model by exciting the process enough to

hit the desired quality. Of course, since this kind of excitation does not occur in any

of the training data, this input behavior takes the models well outside their range of

validity. Therefore, it is unlikely that this kind of policy will actually result in the

predicted behavior. To avoid this effect, tight bounds on input movements are placed
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on a period towards the end of the batch.

Remark 43 In principal, there is an argument that tight input movement constraints

like the ones discussed above should be applied to all sampling instances throughout

the batch. It is true that large input movements cause model validity problems in

all time regions of the process. However, for every sampling instant where an input

movement constraint is included, two new inequality constraints must be added to the

optimization problem. In our experience, the tendency for the controller to proscribe

this kind of large input only occurs towards the end of the candidate input (likely

because the input movement penalty prevents it in other parts of the batch). Therefore,

in order to reduce the number of constraints and increase the computational speed, we

elected to only include input movement constraints for a window at the end of the

batch.

The final heuristic tweak used in this work are so-called blackout regions. Prac-

tically, these are user specified regions around critical batch events (discrete inputs,

batch termination, etc.) where rather then calculating new input trajectories at every

sampling instant, the candidate input trajectory from the last sampling instant be-

fore the blackout region is implemented. In this work, these regions are used around

discrete inputs and before batch termination. The justification for using blackout

regions after discrete additions is similar to that for using a restricted input range at

the beginning of a batch. Discrete inputs generally have a large, instantaneous impact

on the system state. As a result, directly after a discrete addition, it is likely that the
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state-estimate will have higher then average error. Applying a blackout region after

the discrete addition provides the observer some time to converge and prevents input

decisions from being made with poor state estimates.

The justification for applying a blackout phase before discrete additions is more

nuanced. The benefit of this policy stems from the identification of the dynamic

model. Recall that for a period of i sampling instances before and after the addition,

it is impossible to identify a state trajectory during subspace identification. This

inability is because a window of i contiguous past and future output measurements are

needed. As a result, our dynamic models have a built-in blind-spot around the discrete

addition sampling instant. This slightly reduces the accuracy of the dynamic model

around those instances. From experimental observations, this inaccuracy appears to

particularly negatively impact the state observer around those sampling instances.

Once again, to avoid making detrimental input decisions based on inaccurate state

estimates, a blackout period is applied.

The same justification as the above about blackout regions before discrete inputs

can be made about the end of the batch. In the subspace identification step, state

values of any given training batch cannot be determined for i sampling instances

before batch termination. However, there is a second, stronger justification. It is

that applying a blackout period at the end of the batch further avoids the set-point

’chasing’ behavior described in subsection 5.5.3. Applying a blackout period at the

end of the batch ensures that the duration decision is made several sampling instances
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Figure 5.2: Time line of implementation features that improve the ability of the
proposed controller to obtain desired quality

before termination which effectively prevents the controller from chasing the set-point

trying to eliminate plant-model mismatch.

Remark 44 The most extreme extension of the blackout region concept is to use a

small number of fixed decision points throughout the batch and blackout all other sam-

pling instances. This decision point strategy has been widely proposed and accepted in

the batch literature [20]. The justification for this policy in general is to prevent undue

excitation of the process. It also has the benefit of allowing the operator to approve

candidate input trajectories after every decision point. For the proposed approach,

using decision points has some theoretical justification as well in that it potentially

reduces the amount of excitation of the process which allows the observer to converge

to a more accurate state estimate. However, the downside is that by limiting the num-

ber of times the trajectory is updated, the speed at which the controller can reject new

disturbances is also reduced.
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5.6 Simulation study

This section demonstrates the efficacy of the proposed approach through an indus-

trially relevant simulation example. Specifically, this simulation study considers the

free radical polymerization reaction of polymethyl methacrylate (PMMA). In this

section, first a brief overview of the process, its objectives and its simulation are pre-

sented. Next the model building approach is demonstrated and validation results are

presented. Finally, the ability of the proposed controller to eliminate quality error

introduced through feed-stock disturbance is demonstrated.

5.6.1 Overview of PMMA process

In this study, PMMA quality is characterized by its number and weight average

molecular weight as well as the percent conversion of monomer to polymer. Therefore,

the control objective is to reach the desired values of these three variables by batch

termination.

The reaction takes place in a continuously stirred jacketed reactor where jacket

temperature is manipulated following a zero-order hold throughout the batch. Note

that it is assumed that jacket temperature dynamics are much faster then the reactor

dynamics so that, for modeling purposes, jacket dynamics are considered negligible.

At the beginning of each batch, the vessel is charged the monomer, the initiator

(AIBN), and the solvent (toluene). To simulate feed stock disturbances, normally

distributed errors are introduced to the initial charge recipe. The nominal recipe for
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Table 5.1: Initial conditions for PMMA simulations

Ingredient Nominal initial concentration Standard deviation
Monomer 3.0 kg/m3 0.5
AIBN Initiator 1.03×10−2 kg/m3 1×10−3

Temperature 61 ◦C 2.5

this initial charge, as well as the standard deviation for each ingredient, are presented

in Table 5.1.

To achieve the desired number and weight average molecular weight, the recipe for

this process calls for a mid-batch addition of monomer. In this work, it is assumed that

this addition is time indexed (i.e., made a specified amount of time after the initial

charge of the reactor). Specifically, the recipe calls for an addition of 1.3 kilograms of

monomer two hours after the start of the batch.

Throughout the batch, online measurements of reaction media temperature, den-

sity (calculated using volume measurements), and viscosity (calculated from stirrer

torque) are considered available with a sampling frequency of one minute. To simu-

late measurement noise, white noise was added to each of the measurements. To serve

as the simulation test bed, a nonlinear first-principles model from [37] was adapted

with appropriate changes from [38] and [39]. The final model consisted of nine states

dictated by non-linear ODEs. These states were the concentration of monomer, con-

centration of initiator, six states for the moments of the molecular weight distribution,

and the temperature. Throughout the study this model was treated as a purely black-

box model. The model was used to generate a database of historical and training data

and as a test bed for the proposed control.
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Table 5.2: Tuning for benchmark PI trajectory tracking controller

Parameter Value
kc -.1
τi 30

5.6.2 Existing PI Control

It is assumed that the batch has been historically operated under a PI controller track-

ing an optimal temperature trajectory taken from [37]. The overall rate of reaction

for each batch varies because of variations in the initial concentrations of initiator

and monomer. To account for this variation, alignment techniques were applied to

the set-point trajectory. Specifically, the set-point trajectory for a nominal batch

was indexed to density, which increases monotonically and captures overall reaction

progress. For new batches, the temperature set-point at any given sampling instant

was selected from the set-point from the nominal batch at the corresponding density.

With this alignment in place, the tracking PI controller was tightly tuned for a set

of batches to minimize the root mean squared tracking error. The resulting tuning

parameters for the PI are shown in Table 5.2. Despite the nonlinear dynamic response

of the reactor, the trajectory tracking performance of the PI controller was very good

as demonstrated in Figure 5.3.

To address the effects of batch duration on the quality for the PI trajectory tracking

case, density measurements were used. Because density reflects the average polymer

chain length, it also reflects, on some level, closeness to the desired molecular weight
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Figure 5.3: Representative PI trajectory tracking response. Nominal set-point (dotted
line), set-point aligned on density (dashed line), response (solid line)

distribution. For the PI case, this was exploited by using density measurements to

determine when to terminate a batch. Specifically, a density threshold was taken

from the nominal batch. For new batches, the reaction was carried out until either

the density threshold from the nominal batch was reached or the maximum amount

of time (five hours) had elapsed.

The PI trajectory tracking controller described above served two roles in this

work. First, it provided a reasonable way to simulate data available from historical

operation of an industrial process. This historical data was used in training and

validating models as discussed in the following subsections. The PI controller was

also used as a benchmark for comparison of the proposed model predictive control.

This PI scheme is a reasonable benchmark both because it is representative of the
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Table 5.3: Composition of batch database for model identification

Batch input policy Number of batches
Historical PI operation 20
PI with perturbations of monomer addition 10
PRBS added to nominal continuous input 3
Nominal input shifted up or down by a constant 4

industrial state-of-the-art and because it provides a rudimentary implementation of

variable batch duration.

5.6.3 Training data generation

The first step in this simulation study was to generate an appropriate database of

historical and identification batches to use as training data for the proposed model

identification technique. To this end, a database of 37 batches was constructed. A

summary of the input policies for these batches is given in Table 5.3. Of these batches,

20 batches were generated under the PI trajectory tracking control as described in

the previous subsection. These batches were intended to simulate data that would be

available from historical process operation.

Ideally, all of the models could be identified from historical data which has the

distinct advantage of being cost free. In contrast, running identification batches may

yield off-spec product which is either less profitable or completely unsalable. Un-

fortunately, historical data alone is unlikely to provide a rich enough database to

adequately identify dynamic behavior. To improve the richness of the training data,

seven open loop training batches were generated (shown in Figure 5.4). Of these
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Figure 5.4: 7 identification input signals (3 PRBS (solid line) and 4 shifted nominal
(dash dotted line)) added to the training database

batches, three were generated by implementing the nominal input trajectory shifted

by a pseudo-random binary sequence signal (PRBS). The remaining four identifi-

cation batches were generated by shifting the nominal input by a constant amount

(two shifted higher, two lower). These shifted nominal trajectories provide valuable

information because they illuminate the behavior of the process when inputs are oper-

ated near their limits, expanding the range in which identified models can be applied

without extrapolation.

In addition to dynamic identification batches, batches designed to identify effects

of monomer addition were also generated. Recall that in the existing control scheme,

the amount of monomer added in each batch was constant. In order to quantify the

effect of monomer addition, the amount added was varied linearly between 0 and 2.6
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kilograms for the seven identification batches and 10 PI batches. The large number

of discrete input identification batches required is reflective of the fact that each of

these batches only provides one new datum point. This is in contrast to dynamic

identification batches which each provide hundreds of new dynamic observations.

Remark 45 For continuous processes, when closed loop controllers are applied, the

inputs are strongly dependent on the previous outputs because of the proportional mode

of the controller. Mathematically this is because of the constant set-point in this kind of

control design. Fortunately, for batch processes under trajectory tracking control, this

problem is alleviated by the constantly changing set-point trajectory. By implementing

a time-varying set-point, there is a component, independent from the output measure-

ments, that is introduced to the error at each sampling instant. Theoretically this

breaks the necessity to have purely open loop data for subspace identification. How-

ever, from a practical standpoint, open loop data still provides the richest dynamic

information for identification purposes.

5.6.4 Model training and validation

This subsection describes how the database identified in the previous subsection was

used to apply the methods discussed in Section 5.4 to identify a dynamic, discrete

input, initial state, and quality model for the PMMA process.
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Dynamic model

The first step of the proposed identification approach is to identify a dynamic state-

space model from training-data outputs and inputs using subspace identification. Re-

call from Section 5.4.1 that the number of Hankel rows i and number of identified

states are user specified parameters. Generally speaking, the number of Hankel rows

should be selected to be slightly higher then the number of states. With this in mind,

focus can be solely on selecting an appropriate number of states.

In literature, subspace algorithms are shown to be capable of selecting system

order from training data based on the amount of explained variance. However, for

the transient systems in this work, selecting system order from training data alone is

fraught as it is impossible to tell if undue over-fitting has occurred. The solution is to

use a set of validation batches omitted from the training data. If the identified model

adequately predicts behavior of the validation batches, it is strong evidence that an

appropriate system order has been selected.

Remark 46 Even if the user has very good process knowledge, it is not straight-

forward to estimate the model order. This is because process knowledge only informs

the nonlinear evolution of fundamental states. A process which can be described well

with a small number of nonlinear fundamental states may require substantially more

LTI states to be described effectively. Similarly, it is possible that some fundamental

states are redundant and the process can be represented with substantially fewer LTI

subspace states.
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The metric for validation is a comparison of predicted outputs and measured out-

puts from validation batches. In practice, validation is complicated by discrete inputs.

Consider the validation steps: first, an observer is constructed using the dynamic

model identified with a given number of states. Next, for each validation batch, the

observer is updated with observations from the beginning of the batch. This provides

a state estimate for sampling instant kpredstart. Next the dynamic model is applied

to make output predictions for the rest of the batch using the estimated state as an

initial condition and the input trajectory in the database. Unfortunately, however,

without first identifying a discrete input model, the effects of discrete additions can-

not be accounted for. Consequently, outputs occurring after discrete inputs cannot

be used for the validation. The solution is to identify the discrete input model prior

to validation. Doing so has the added advantage that validation evaluates accuracy

of the combined dynamic and discrete input models. As a result, the system order

that provides the best overall dynamic description of the process is selected. With

this in mind, in the next subsection identification of the monomer addition model is

discussed and validation results are presented for the combined models.

Mid batch addition model

As described in Section 5.6.1, the recipe for this process involves a single discrete input,

in the form of a shot of monomer, which takes place 120 minutes into the batch. To

identify the discrete input model the observer based on the dynamic model identified

in the previous subsection was updated, for each batch in the training data, first with

207



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

observations up to 119 minutes and then again with observations from 120 minutes

on. The resulting state-estimates were used to fit a regression model as discussed in

Section 5.4.2.

As mentioned in the previous subsection, the discrete input model and the dy-

namic model were validated together. For each potential system order, the root mean

squared error (RMSE) of output predictions for validation batches were calculated.

Each number of states between four and sixteen was tested. Based on these results,

it was determined that using six subspace states gave the best output predictions for

the validation batches. On this basis, the dynamic and discrete input models with six

states were used for the rest of this work.

Figure 5.5 shows the output results for the validation of the dynamic model. To

generate this figure, for each validation batch, first the observer was updated with

observations between 1 and 50 minutes. This provided the state estimate at k = 50.

Next the dynamic model was applied utilizing the actual inputs to the process. The

identified mid-batch model was applied as appropriate between the 119th and 120th

minutes. Finally, the complete state trajectories were used with the identified C andD

matrices to make output predictions for each validation batch. These results demon-

strate the predictive ability of both the dynamic model and the monomer addition

model.

As discussed earlier, for subsequent validation and closed-loop results, the initial

values of the states were the mean value of the indentifed states from the training
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Figure 5.5: Validation of dynamic and mid batch addition model for prediction be-
ginning after updating the observer for 50 minutes of outputs. Dot-dashed line is the
true output values, solid line is the prediction.
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Table 5.4: Initial state model

state value
x̊1 1132.2219
x̊2 -10.2826
x̊3 -0.6371
x̊4 1.9188
x̊5 -0.2167
x̊6 0.1616

data set and are reported in Table 5.4.

Quality model

The next step in the identification process was to identify the quality model. This

was done as discussed in Section 5.4.4. In the simplest implementation of the method

proposed, there are no user defined model parameters involved in this identification

step. However, in practice, it was found that better results (in terms of overall valida-

tion) can be obtained by limiting the number of states used in this step. To explain

this finding, recall that the states in subspace identification are identified in order of

decreasing explained output variance. As a result, the last states in the identified dy-

namic model are substantially more difficult to observe and are also more susceptible

to noise. While these states demonstrably improve dynamic behavior prediction (see

previousSection discussing validation of dynamic models), error in model predictions

for these states negatively impacts quality predictions. For the PMMA process, it

was found that a model built on the first four subspace states gave the best perfor-

mance. This number was arrived at by comparing validation results. Therefore, the
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final identified quality model related four terminal subspace states to MN , MW , and

conversion.

To validate the identified quality model, the observer was applied to obtain termi-

nal state estimates for each of the validation batches. These terminal state estimates

were then applied in the quality model and the results compared to the actual mea-

sured qualities. This comparison is plotted in the bottom row plots in Figure 5.6.

The results clearly demonstrate the predictive ability of the model.

Overall validation

The last model identification step was a final, overall model validation. In this step,

the dynamic, discrete input, and quality models were combined to verify the predic-

tive ability of the coupled models. Similar to the dynamic validation procedure, first

the observer was applied for each batch with observations up to a specified prediction

start time. Next, these state estimates were applied in the dynamic and discrete input

models (as appropriate), using the input implemented for each validation batch, to

predict the terminal subspace state of each batch. Finally, the predicted terminal

subspace states were used to make quality predictions. This procedure provides valu-

able validation insights as it closely resembles the way these models are applied in

model predictive control. The results of this procedure for predictions starting at 50

minutes and 120 minutes are shown in Figure 5.6.

Remark 47 Note that quality predictions improve as the length of the prediction
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Figure 5.6: Rows 1 and 2 - Overall validation of the combined models for predictions
starting 50 minutes and 180 minutes after the beginning of the batch. Row 3 -
Validation of the quality model for ’true’ terminal state. (Note: points on the diagonal
represent perfect predictions)
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horizon shrinks and more observations are used in the estimator. In the beginning

of the batch, using the first 50 minutes of measurements, quality predictions are not

accurate but are good enough to inform input moves of the correct direction. By the

end of the batch, predictions improve allowing for tight quality control. This creates

a stabilizing effect where, as the batch gets closer to termination, better predictions

allow for appropriate inputs to fine tune the final quality.

5.6.5 Tuning

With the models identified, the next step was to construct the model predictive control

for this process. This was done following the framework laid out in Section 5.5. In

practice, determining reasonable values for each of the tuning parameters can be

challenging. For the base case, the tuning parameters needing to be identified are:

the quality penalty, the input movement penalty, the observer initial state penalty,

the observer output penalty, and the observer state validity penalty. When one also

includes the features discussed in Section 5.5.4, additional tuning parameters are

introduced. These are the duration of restricted input movements at the start of the

batch, the duration of the black-out regions at discrete inputs and at the end of the

batch, and the duration of the restricted input movement at the end of the batch. In

principal, this large number of tuning parameters could be a distinct downside to the

proposed method. Fortunately, it was found that the method is fairly insensitive to

the values of the selected tuning parameters.
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Figure 5.7: Comparison of 20 random tunings for the proposed controller applied to 10
representative batches. Plotted points are mean absolute percentage errors (MAPE)
for all three qualities and all 10 batches. Error bars show the maximum and minimum
observed absolute percentage errors over the 10 batches and 3 qualities. Similarly,
the dot-dashed line shows the MAPE for the same batches under PI control and the
dashed line shows the maximum absolute percentage error for PI.

To demonstrate that the proposed method is robust to tuning parameter selection,

simulations of batches, starting from a representative set of 10 initial conditions, were

repeated for 20 randomly selected tunings. The results, in terms of mean, maximum,

and minimum relative error for each tuning are shown in Figure 5.7. Note that,

for all but three tunings, the mean absolute percentage error was lower then that

for PI trajectory tracking. In 14 of the 20 tunings, the maximum error over the

three qualities and 10 batches was also reduced. This demonstrates the relatively low

sensitivity of the proposed approach to the specific values of tuning parameters.
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Table 5.5: Controller tuning used for the closed loop studies. Note that all penalties
are rescaled so that presented represent relative weight in the objective function (based
on magnitude of variables they penalize)

Tuning Parameter Value
Penalty on MN 10
Penalty on MW 4
Penalty on conversion 8
Jacket Temp. Movement Penalty 0.5
Observer Initial State Penalty diag(.01)
Observer Innovation Penalty diag(200)
Observer State Validity Penalty diag(60)
Initial input restriction 50 minutes
Blackout before monomer addition 25 minutes

following monomer addition 15 minutes
before batch termination 50 minutes

Batch end input movement restriction 30 minutes

For the remainder of this simulation study, the tuning parameters presented in

Table 5.5 are used. This tuning was selected from a Monte Carlo approach similar to

the one described above. Clearly, this kind of Monte Carlo tuning is not practicable

for an actual process. However, this approach was used in this work in an effort to

demonstrate the efficacy for control of models identified using the proposed identifi-

cation approach. Future work will address tuning using a more explicit and practical

procedure.

5.6.6 Closed loop results

To demonstrate the efficacy of the proposed control structure, the models identified in

the previous subsections were applied in the control framework presented in Section
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5.5. To demonstrate the flexibility of the proposed approach, two case studies were

carried out. For both case studies in this section, the same 200 initial conditions,

different from the training and validation set, were used. These initial conditions were

drawn from a normal distribution centered on the nominal initial batch condition.

Table 5.1 shows the nominal initial fundamental state and the standard deviation

in each initial condition. The two case studies differ only in the selected quality

set-point. Therefore, comparison of these studies demonstrates the efficacy of the

proposed approach to drive the process to the desired quality.

Base Case: Nominal Quality Set-point

In the first case study, the quality set-point for the controller was taken from a nom-

inal batch in the training database. For the nominal batch, the initial fundamental

state was exactly the nominal initial fundamental state and trajectory tracking was

applied. At the discrete monomer addition, the nominal amount of monomer was

added. Because every variable in the nominal batch was forced to the middle of its

distribution, the nominal batch quality represents a reasonable expectation for the

quality arising from PI trajectory tracking. Therefore, it is a good set-point to use for

the proposed controller to provide a comparison to the trajectory tracking approach.

Figure 5.8 shows histograms of the qualities achieved by the proposed VD-SQMPC

compared to the trajectory tracking control for the first case study. Clearly, the

proposed control scheme is able to reduce the variance of all three quality variables

compared to PI trajectory tracking. Specifically, the mean absolute percentage error
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Figure 5.8: Histograms of relative errors in qualities resulting from PI trajectory
tracking and the proposed VD-SQMPC control schemes for the base case

(MAPE) values for the base case for both the PI and VD-SQMPC are shown in

Table 5.6. Furthermore, in 172 out of the 200 batches, the magnitude of the error

was reduced for every one of the three quality measurements when compared with PI

control. Figure 5.9 shows a scatter plot matrix of qualities resulting from both PI

trajectory tracking and the proposed VD-SQMPC. Note that the VD-SQMPC rejects

disturbances in initial condition and, as a result, significantly tightens the cluster of

qualities obtained.

Figure 5.10 shows the input trajectories for five representative batches from the

proposed VD-SQMPC approach. PI trajectories for the same batches are shown in

light gray for reference. Interestingly, the shape of the input trajectory proscribed
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Table 5.6: Mean absolute percentage error (MAPE) in qualities resulting from PI and
the proposed VD-SQMPC control schemes

Quality Variable VD-SQMPC (%) PI (%)
Conversion 1.67 6.13
Mn 1.61 8.66
Mw 1.90 7.87
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Figure 5.9: Scatter plot matrix showing quality set-points for both case studies and
resulting qualities achieved by PI and VD-SQMPC. Note that all three data sets
contain the same initial conditions and quality results are achieved purely through
continuous and discrete inputs
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Figure 5.10: Representative input trajectories for the base case.

by the VD-SQMPC varies substantially between batches. This variation reflects the

different actions taken by the proposed controller to reject disturbances in the initial

conditions. In addition to selecting an appropriate continuous input, the VD-SQMPC

is able to coordinate the approach to the continuous input with the discrete addition of

monomer. Figure 5.11 is a histogram of the monomer addition amounts for the batches

in the base case. The fairly even distribution of monomer addition amounts indicates

that the inverted empirical models are able to appropriately proscribe monomer ad-

dition amounts.

Remark 48 It is interesting to note the high percentage of batches for which the
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Figure 5.11: Histogram of monomer added in the base case.

maximum allowable monomer addition (2.5 kg) was made. Since a large number of

batches hit this upper bound, it indicates that there would potentially be an advantage

to increasing the limit on added monomer. However, to do this, additional training

batches with greater amounts of added monomer would be necessary to expand the

range of monomer additions. In principle, this could readily be done by using these

new batches to re identify the model and use for the purpose of closed-loop control.

Figure 5.12 is a histogram of the batch durations selected by the controller. In-

terestingly, the distribution is centered very near the nominal batch duration of 240

minutes. This makes intuitive sense since the duration of the reaction has a strong

impact on the degree of completion of the reaction and therefore the resulting quality.
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Figure 5.12: Histograms of batch durations for the base case and the new quality
set-point

5.6.7 Case Two: Set-Point Change

In the second case study, the set-point of the controller was changed. Specifically, a

quality from an extreme outliers of the qualities obtained by the PI control scheme

in the first case study was selected as a new target. Figure 5.13 is a histogram of

the resulting relative error in qualities obtained in this case. Note that, in contrast

to the previous case study, there is no meaningful way to compare these results to

the PI control scheme. That is because there is no way to directly specify a quality

set-point under the PI control scheme. Instead, to make a quality change in the

trajectory tracking approach, a new temperature trajectory expected to result in the

desired quality would have to be determined. This difficulty is one of the principal

shortcomings of trajectory tracking control.

Figure 5.9 also shows the resulting qualities for this second case. Clearly, the
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Figure 5.13: Histograms of the qualities resulting from the proposed controller with
a new quality set-point. (The dashed line is the set-point from the base case.)

proposed control scheme is able to drive batches closer to the desired quality. That

said, in both Figures 5.9 and 5.13, it is apparent that the quality control attained in

this case is not nearly as tight as that from the base case. The decrease of performance

in this case is directly related to the empirical modeling process. Note that models for

this second case are not re-identified, instead models from the base-case are applied

at the far limit of their validity range. This kind of extrapolation from the training

data naturally degrades the predictive ability of the models and therefore their ability

to provide good quality control.

Figure 5.12 shows (in dark gray) the histogram of batch durations used in this
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second case study. Clearly, one of the key ways that the controller is able to meet

the new quality set-point is by appropriately shortening the duration of the batch.

This capability to recognize and act on the influence of batch durations is one of the

strongest advantages of the proposed method.

Remark 49 Ideally, one would like to be able to improve the performance for each

subsequent batch after a quality set-point change. Intuitively, this should be achievable

because each batch operated with the new set-point provides added information about

operations in the new state-space region. To achieve this, one option is to add an

adaptation step to retrain the models after each batch is complete using the new ob-

servations from that batch. In practice, this kind of adaptation needs to be approached

carefully because there may be a risk of reducing the predictive ability of the models

by diluting the valuable insights from identification batches with too much closed loop

data. As such, methods to successfully adapt the models between batches is an area of

future research.

5.7 Conclusions

In this work, results from [32] were generalized to encompass two key features of batch

processes: namely, discrete inputs were incorporated and batch duration was included

as a control decision variable. We approached these problems in two steps. First, a

new model structure and a corresponding identification method for that structure

223



Ph.D. Thesis - Brandon Corbett McMaster University - Chemical Engineering

are proposed to relate process measurements, continuous inputs, and discrete inputs

to product quality. Next, a model predictive control scheme was designed for direct

quality control. Through a simulation example, the efficacy of this approach was

demonstrated. The results of this simulation study clearly demonstrate the advantage

of including batch duration as a decision variable.
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In this chapter, we will draw conclusions from the current work and present a few

ideas for future research.

6.1 Conclusion

This thesis presented two novel approaches for data-based modeling and quality con-

trol of batch processes. The first of these approaches, discussed in Chapters 2 and 3,

adapts the well studied technique of using PLS models to make quality predictions

from complete batch measurement and input trajectories. The novel aspect in these

chapters is the use of a data-driven, multiple-model dynamic modeling approach to

fill future measurement trajectories before batch completion. In Chapter 2, the fun-

damentals for this method of quality control were discussed. To demonstrate the

efficacy of this approach, simulation examples were carried out on a batch nylon-6,6

polymerization reactor. Results were notably improved over PI trajectory tracking

control which is the industrial standard for this process.

In the next chapter, Chapter 3, the results from the previous chapter were ex-

tended to a batch PMMA polymerization reactor. In this work, constraints were

added to the quality control scheme to ensure model validity. Closed-loop simula-

tions demonstrated that these model validity constraints were often active in optimal

input profiles. To address the apparent need to broaden these constraints, without

dramatically increasing the need for identification batches, a basic adaptive scheme

was adopted such that each new closed-loop batch could broaden the model validity
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range. As with the nylon-6,6 process from the preceding chapter, closed-loop results

for the PMMA process demonstrated that this method could effectively reduce quality

variance. Specifically, average relative errors in number average and weight average

molecular weight were reduced from 20.4% and 19.0% for the PI trajectory tracking

to 10.3% and 7.4% for the proposed approach.

Remark 50 Note that the PMMA reactor, first described in Chapter 3, was used as

a simulation test-bed for each of the remaining chapters. It is important to highlight

that no direct inferences should be gleaned from comparison of the closed-loop results

in each of these cases: conditions were varied between these studies to facilitate study

of different aspects of the batch control problem. However, the similarity between

the simulation examples does permit observation of an overall trend of increasing

effectiveness from one study to the next.

In Chapter 4, a novel state-space based approach was introduced for data-driven

batch modeling and quality control. To achieve this, subspace identification methods

were adapted for use with batch data. Using these methods, LTI dynamic models

were identified that described the evolution and captured the underlying state of

the process. The resulting subspace states were then related to quality. The over-

all resulting model provided a time-independent, causal link between batch inputs,

measurements and the resulting quality. This relationship was inverted using a shrink-

ing horizon model predictive control scheme for direct quality control. Notably, the

method permitted models to be built from variable duration training batches without
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using alignment techniques. The ability of the proposed approach was demonstrated

on the PMMA simulation example. In so doing, the ability of the proposed controller

for both disturbance rejection and quality set-point tracking was demonstrated.

Finally, in Chapter 5, the results from Chapter 4 were extended with two addi-

tional contributions. These were the inclusion of discrete inputs and variable batch

duration as decision variables in the control scheme. This was achieved in two steps:

first, a comprehensive methodology for identification of models with instantaneous

discrete inputs was proposed. Next, a new, two-layer, shrinking-horizon model pre-

dictive control scheme was proposed. Through simulations of the PMMA process, the

increased quality control ability afforded by these additions was demonstrated.

6.2 Future Research

The results presented in this thesis provide a starting-point for a wide variety of new

research directions in batch and batch-like control. Some of these research directions

are already under investigation by other members of the Mhaskar research group.

Others will be the topic of a planned postdoctoral collaboration with the tech com-

pany, ProSensus. This section provides a few very brief thoughts on two of these

future directions.
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6.2.1 Incorporating Additional, Infrequent Measurements

In the current work, we have considered online measurements available frequently

during the course of a batch. However, industrially it is common that other, less

frequent measurements are also available. These additional measurements potentially

provide valuable information about the state of the process that may not be captured

by the online measurements alone. In some cases, complete measurements of mid-

batch qualities may be available. The challenge, however, is that these additional

measurements are often the result of slow lab analysis. As a result, such measurements

are typically only available with substantial (relative to batch duration) delays.

One fairly easily implementable adaptation to the method proposed in Chapter

5 would exploit infrequent measurements. In order to incorporate these measure-

ments into the state-estimation process, and therefore use the information contained

in them for control, two steps would need to be accomplished. The first step would be

to build a model relating historical supplemental mid-batch measurements to the cor-

responding best state-estimate obtained from complete historical online measurement

trajectories. This step is similar to the quality modeling step in Chapter 5. Next,

a term penalizing prediction error for the identified mid-batch measurement model

would be added to the observer. In a new batch, this new observer term would be

given zero weight until the measurement became available, at which point the term

would incorporate the new measurement into the current state estimate. Note that

this approach would elegantly deal with the delay in the measurement and provide a
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means to use infrequent measurements for quality control.

6.2.2 Better Framework for Adaptive Models

In Chapter 3, we presented a rudimentary method for adapting models with the

results from new closed-loop batches. Namely, after each new batch, the resulting

trajectories were added to the training data and the models retrained. In that work,

this adaptation was incorporated as a means to slowly improve model validity without

the need for excessive numbers of training batches. However, industrially, there is a

different and more critical need for model adaptation.

All industrial processes ‘drift’ over time. In this context, the word drift refers to the

fact that process dynamics change slowly as equipment ages, heat exchangers foul,

catalysts degrade, etc.. Accordingly, these drifting effects need to be incorporated

into data-driven models to maintain successful control performance. The adaptation

method discussed in Chapter 3 provides some adaptive ability but is not practical for

long term use because the training data set would become prohibitively large with

time. This highlights the need to develop more explicit ways to adapt the proposed

models as new batch data becomes available.
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