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Abstract

Event Related Potential (ERP) measures derived from the electroencephalogram (EEG)

have been widely used in research on language, cognition, and pathology. The high di-

mensionality (time x channel x condition) of a typical EEG/ERP dataset makes it a time-

consuming prospect to properly analyze, explore, and validate knowledge without a partic-

ular restricted hypothesis. This study proposes an automated empirical greedy approach to

the analysis process to datamine an EEG dataset for the location, robustness, and latency

of ERPs, if any, present in a given dataset. We utilize Support Vector Machines (SVM), a

well established machine learning model, on top of a preprocessing pipeline that focuses on

detecting differences across experimental conditions. A hybrid of monte-carlo bootstrap-

ping, cross-validation, and permutation tests is used to ensure the reproducibility of results.

This framework serves to reduce researcher bias, time spent during analysis, and provide

statistically sound results that are agnostic to dataset specifications including the ERPs in

question. This method has been tested and validated on three different datasets with dif-

ferent ERPs (N100, Mismatch Negativity (MMN), N2b, Phonological Mapping Negativity

(PMN), and P300). Results show statistically significant, above-chance level identification

of all ERPs in their respective experimental conditions, latency, and location.
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Notation and abbreviations

ANN Artificial Neural Network

ANCOVA Analysis of Covariance

ANOVA Analysis of Variance

BCI Brain Computer Interfacing

DNN Deep Neural Network

EEG Electroencephalography

EP Evoked Potential

ERP Event Related Potential

ICA Independent Component Analysis

LORETA Low Resolution Electromagnetic Tomography

LSTM Long Short Term Memory (network)

MEG Magnetoencephalography

MMN Mismatch Negativity

MRMR Maximum Relevance Minimum Redundancy
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PCA Principal Component Analysis

PMN Phonological Mapping Negativity

RBF Radial Basis Function

SD Standard Deviation

SNR Signal to Noise Ratio

SPL Sound Pressure Level

SVM Support Vector Machine

viii



Contents

Acknowledgements iv

Abstract vi

Notation and abbreviations vii

1 Introduction 1

1.1 Electroencephalography and the Event Related Potential method . . . . . . 2

1.1.1 N100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Mismatch Negativity (MMN) and the N2b . . . . . . . . . . . . . . 5

1.1.3 Phonological Mapping Negativity (PMN) . . . . . . . . . . . . . . 6

1.1.4 P300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Conventional ERP Analysis Techniques . . . . . . . . . . . . . . . . . . . 8

1.3 Machine Learning Background . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Common Problems in Machine Learning . . . . . . . . . . . . . . 13

1.3.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.4 Machine Learning on EEG/ERP . . . . . . . . . . . . . . . . . . . 20

1.4 Summary of Research and Question . . . . . . . . . . . . . . . . . . . . . 22

ix



2 Methods 24

2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Coarticulation violation . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1.2 Stimuli and experimental conditions . . . . . . . . . . . 27

2.1.1.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Mismatch negativity . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2.2 Stimuli and experimental conditions . . . . . . . . . . . 29

2.1.2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3 Attentional P300 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.3.2 Stimuli and experimental conditions . . . . . . . . . . . 32

2.1.3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Offline Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Framework outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Validation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Pre-analysis permutation and randomization . . . . . . . . . . . . . 42

2.5.2 Monte Carlo bootstrapping . . . . . . . . . . . . . . . . . . . . . . 43

x



3 Results 45

3.1 Coarticulatory violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Mismatch negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Frequency deviants . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Duration deviants . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 Intensity deviants . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Attentional P300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Frequency deviants . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.2 Duration deviants . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.3 Intensity deviants . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Discussion 81

4.1 Dataset inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Coarticulatory Violation . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.2 Mismatch Negativity . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.3 P300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.4 Salience of the Duration Deviant . . . . . . . . . . . . . . . . . . . 86

4.1.5 Mismatch Negativity and the N100 . . . . . . . . . . . . . . . . . 87

4.1.6 P3a vs P200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Future directions and uses . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Class extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.2 ERP alterations through time . . . . . . . . . . . . . . . . . . . . . 91

4.2.3 Time-series specialization . . . . . . . . . . . . . . . . . . . . . . 92

4.2.4 Single-subject grading . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.5 Domain extension of output units . . . . . . . . . . . . . . . . . . 95

xi



5 Conclusions 97

xii



List of Tables

3.1 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs intensity deviant) in the coar-

ticulatory violation dataset constrained by the consonant /p/ at the highest

time point close to the PMN region: 184 ms post stimulus onset. Results

are reported for all five averaging settings. . . . . . . . . . . . . . . . . . 49

3.2 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (congruent vs incongruent) in the coarticu-

latory violation dataset constrained by the consonant /t/ at the highest time

point pertaining to the PMN region: 238 ms post stimulus onset. Results

are reported for all five averaging settings. . . . . . . . . . . . . . . . . . . 49

3.3 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs frequency deviant) in the MMN

dataset at the highest time point pertaining to the P200 region: 246 ms post

stimulus onset. Results are reported for all five averaging settings. . . . . . 59

3.4 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs frequency deviant) in the MMN

dataset at the highest time point pertaining to the MMN region: 137 ms

post stimulus onset. Results are reported for all five averaging settings. . . . 59

xiii



3.5 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs duration deviant) in the MMN

dataset at the highest time point pertaining to the P200 region: 254 ms post

stimulus onset. Results are reported for all five averaging settings. . . . . . 60

3.6 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs duration deviant) in the MMN

dataset at the highest time point pertaining to the MMN region: 160 ms

post stimulus onset. Results are reported for all five averaging settings. . . . 63

3.7 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs intensity deviant) in the MMN

dataset at the highest time point pertaining to the P200 region: 231 ms post

stimulus onset. Results are reported for all five averaging settings. . . . . . 66

3.8 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs intensity deviant) in the MMN

dataset at the highest time point pertaining to the MMN region: 106 ms

post stimulus onset. Results are reported for all five averaging settings. . . . 66

3.9 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs frequency deviant) in the P300

dataset at the highest time point pertaining to the P300 region: 316 ms post

stimulus onset. Results are reported for all five averaging settings. . . . . . 71

3.10 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs frequency deviant) in the P300

dataset at the highest time point pertaining to the N200 region: 152 ms post

stimulus onset. Results are reported for all five averaging settings. . . . . . 71

xiv



3.11 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs duration deviant) in the P300

dataset at the highest time point pertaining to the P300 region: 285 ms post

stimulus onset. Results are reported for all five averaging settings. . . . . . 75

3.12 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs duration deviant) in the P300

dataset at the highest time point pertaining to the N200 region: 199 ms

post stimulus onset. Results are reported for all five averaging settings. . . . 75

3.13 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs intensity deviant) in the P300

dataset at the highest time point pertaining to the P300 region: 340 ms post

stimulus onset. Results are reported for all five averaging settings. . . . . . 79

3.14 Mean accuracies, and their 95% confidence intervals, of the learned model

in predicting the correct class (standard vs intensity deviant) in the P300

dataset at the highest time point pertaining to the N200 region: 160 ms

post stimulus onset. Results are reported for all five averaging settings. . . . 79

xv



List of Figures

1.1 An example illustrating the problem of overfitting in machine learning. The

blue curve highlights a possible learned model on the datapoints (black

dots) with high overfitting, and the red line represents a better model that

is likely to generalize better. (Buduma, 2014) . . . . . . . . . . . . . . . . 14

1.2 An example of local and global minima in optimization problems. (Com-

mons, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Examples of linear separability, non-linear separability, and inseparability

(Lohninger, 1999). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 The standard 64-electrode Biosemi layout used by all three datasets dis-

cussed in the present thesis. . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Brain responses to congurent and incongruent stimuli in the coarticulation

violation paradigm for all consonant and vowel types. Equal number of

trials for each condition was sampled and then averaged across all subjects

to form the grand averages displayed. Trials extend from 200 ms before

stimulus onset to 1000 ms after. Due to space constraints and for ease of

visibility, only the medial line electrodes of Fz, Cz, and Pz are plotted. . . 46

xvi



3.6 Brain responses to congurent and incongruent stimuli in the coarticulation

violation paradigm constrained to the words beginning with the /p/ con-

sonant. Equal number of trials for each condition was sampled and then

averaged across all subjects to form the grand averages displayed. Trials

extend from 200 ms before stimulus onset to 1000 ms after. Due to space

constraints and for ease of visibility, only the medial line electrodes of Fz,

Cz, and Pz are plotted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Brain responses to congurent and incongruent stimuli in the coarticulation

violation paradigm constrained to the words beginning with the /t/ con-

sonant. Equal number of trials for each condition was sampled and then

averaged across all subjects to form the grand averages displayed. Trials

extend from 200 ms before stimulus onset to 1000 ms after. Due to space

constraints and for ease of visibility, only the medial line electrodes of Fz,

Cz, and Pz are plotted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xvii



3.8 Differences between elicited brain responses to congruent and incongru-

ent deviant tones in the coarticulation violation paradigm constrained to

words starting with the consonant /t/. Accuracies obtained from classifica-

tion of sliding windows across time (abscissa) between both conditions are

shown as the blue plot corresponding to the left axis. The shaded region

corresponds to the 95% CIs as reported by the Monte Carlo bootstrapping

submodule. The red plot’s ordinate corresponds to the right axis and dis-

plays the difference of the Cz electrode between responses to incongruent

and congruent vowel sounds’ grand averages. The accuracy maximum cor-

responding to the PMN is analyzed topographically to generate the topog-

raphy plot of electrode accuracies (in %). . . . . . . . . . . . . . . . . . . 51

3.9 The accuracy of correctly classifying between congruently and incongru-

ently -spliced words starting with the /t/ consonant in the coarticulatory

violation paradigm. The five curves show accuracies using the proposed

methods across the 5 different averaging settings. . . . . . . . . . . . . . . 52

xviii



3.10 Differences between elicited brain responses to congruent and incongru-

ent deviant tones in the coarticulation violation paradigm constrained to

words starting with the consonant /p/. Accuracies obtained from classifica-

tion of sliding windows across time (abscissa) between both conditions are

shown as the blue plot corresponding to the left axis. The shaded region

corresponds to the 95% CIs as reported by the Monte Carlo bootstrapping

submodule. The red plot’s ordinate corresponds to the right axis and dis-

plays the difference of the Cz electrode between responses to incongruent

and congruent vowel sounds’ grand averages. The accuracy maximum cor-

responding to the PMN is analyzed topographically to generate the topog-

raphy plot of electrode accuracies (in %). . . . . . . . . . . . . . . . . . . 53

3.11 The accuracy of correctly classifying between congruently and incongru-

ently -spliced words starting with the /p/ consonant in the coarticulatory

violation paradigm. The five curves show accuracies using the proposed

methods across the 5 different averaging settings. . . . . . . . . . . . . . . 54

3.12 Brain responses to the four types of stimuli in the MMN paradigm. Equal

number of trials for each condition was sampled and then averaged across

all subjects to form the grand averages displayed. Trials extend from 200

ms before stimulus onset to 1000 ms after. Due to space constraints and

for ease of visibility, only the medial line electrodes of Fz, Cz, and Pz are

plotted here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xix



3.13 Differences between elicited brain responses to standard and frequency de-

viant tones in the MMN paradigm. Accuracies obtained from classifica-

tion of sliding windows across time (abscissa) between both conditions are

shown as the blue plot corresponding to the left axis. The shaded region

corresponds to the 95% CIs as reported by the Monte Carlo bootstrapping

submodule. The red plot’s ordinate corresponds to the right axis and dis-

plays the difference at the Cz electrode between grand averaged responses

to frequency deviants and standard tones. The accuracy maxima corre-

sponding to the P2 and MMN are analyzed topographically to generate the

right and left topography plots of electrode accuracies (in %), respectively. 57

3.14 The accuracy of correctly classifying a frequency deviant from a standard

tone trial in the MMN dataset using the proposed methods and showing the

differences across the 5 different averaging settings. . . . . . . . . . . . . 58

3.15 Differences between elicited brain responses to standard and duration de-

viant tones in the MMN paradigm. Accuracies obtained from classifica-

tion of sliding windows across time (abscissa) between both conditions are

shown as the blue plot corresponding to the left axis. The shaded region

corresponds to the 95% CIs as reported by the Monte Carlo bootstrapping

submodule. The red plot’s ordinate corresponds to the right axis and dis-

plays the difference at the Cz electrode between grand averaged responses

to duration deviants and standard tones. The accuracy maxima correspond-

ing to the P2 and MMN are analyzed topographically to generate the right

and left topography plots of electrode accuracies (in %), respectively. . . . 61

xx



3.16 The accuracy of correctly classifying a duration deviant from a standard

tone trial in the MMN dataset using the proposed methods and showing the

differences across the 5 different averaging settings. . . . . . . . . . . . . 62

3.17 Differences between elicited brain responses to standard and intensity de-

viant tones in the MMN paradigm. Accuracies obtained from classifica-

tion of sliding windows across time (abscissa) between both conditions are

shown as the blue plot corresponding to the left axis. The shaded region

corresponds to the 95% CIs as reported by the Monte Carlo bootstrapping

submodule. The red plot’s ordinate corresponds to the right axis and dis-

plays the difference at the Cz electrode between grand averaged responses

to intensity deviants and standard tones. The accuracy maxima correspond-

ing to the P2 and MMN are analyzed topographically to generate the right

and left topography plots of electrode accuracies (in %), respectively. . . . 64

3.18 The accuracy of correctly classifying a intensity deviant from a standard

tone trial in the MMN dataset using the proposed methods and showing the

differences across the 5 different averaging settings. . . . . . . . . . . . . 65

3.19 Brain responses to the four types of stimuli in the attentional P300 paradigm.

Equal number of trials for each condition was sampled and then averaged

across all subjects to form the grand averages displayed. Trials extend from

200 ms before stimulus onset to 1000 ms after. Due to space constraints

and for ease of visibility, only the medial line electrodes of Fz, Cz, and Pz

are plotted here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xxi



3.20 Differences between elicited brain responses to standard and frequency de-

viant tones in the P300 paradigm. Accuracies obtained from classifica-

tion of sliding windows across time (abscissa) between both conditions are

shown as the blue plot corresponding to the left axis. The shaded region

corresponds to the 95% CIs as reported by the Monte Carlo bootstrapping

submodule. The red plot’s ordinate corresponds to the right axis and dis-

plays the difference at the Cz electrode between grand averaged responses

to frequency deviants and standard tones. The accuracy maxima corre-

sponding to the N200 and P300 are analyzed topographically to generate

the left and right topography plots of electrode accuracies (in %), respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.21 The accuracy of correctly classifying a frequency deviant from a standard

tone trial in the P300 dataset using the proposed methods and showing the

differences across the 5 different averaging settings. . . . . . . . . . . . . 70

3.22 Differences between elicited brain responses to standard and duration de-

viant tones in the P300 paradigm. Accuracies obtained from classifica-

tion of sliding windows across time (abscissa) between both conditions are

shown as the blue plot corresponding to the left axis. The shaded region

corresponds to the 95% CIs as reported by the Monte Carlo bootstrapping

submodule. The red plot’s ordinate corresponds to the right axis and dis-

plays the difference at the Cz electrode between grand averaged responses

to duration deviants and standard tones. The accuracy maxima correspond-

ing to the N200 and P300 are analyzed topographically to generate the left

and right topography plots of electrode accuracies (in %), respectively. . . 73

xxii



3.23 The accuracy of correctly classifying a duration deviant from a standard

tone trial in the P300 dataset using the proposed methods and showing the

differences across the 5 different averaging settings. . . . . . . . . . . . . 74

3.24 Differences between elicited brain responses to standard and intensity de-

viant tones in the P300 paradigm. Accuracies obtained from classifica-

tion of sliding windows across time (abscissa) between both conditions are

shown as the blue plot corresponding to the left axis. The shaded region

corresponds to the 95% CIs as reported by the Monte Carlo bootstrapping

submodule. The red plot’s ordinate corresponds to the right axis and dis-

plays the difference at the Cz electrode between grand averaged responses

to intensity deviants and standard tones. The accuracy maxima correspond-

ing to the N200 and P300 are analyzed topographically to generate the left

and right topography plots of electrode accuracies (in %), respectively. . . 77

3.25 The accuracy of correctly classifying a intensity deviant from a standard

tone trial in the P300 dataset using the proposed methods and showing the

differences across the 5 different averaging settings. . . . . . . . . . . . . 78

xxiii



Chapter 1

Introduction

Cognitive processes such as attention, vigilance, memory, and language are targets of re-

search that aims to uncover the intricacies of the most complex organ present in the human

body: the brain. An avenue for tapping into the processes that occur in the brain lies in

the use of electrophysiological measurement methods. Such methods, however, come with

many issues due to the sensitivity of currently available recording equipment, nature of the

biological signals and, consequently, noisiness of data recorded. The intent of this thesis

is to formulate a framework that provides a fast, validated, and automated method of an-

alyzing electrophysiological signals that can be used to more efficiently answer research

questions in cognitive neuroscience.

This study has five main parts: first, an introduction to the required background and

a brief literature review of both traditional views and novel advancements in the field;

second, an introduction to the modules, algorithms and paradigms that are to be used;

third, a summary of the validation criteria utilized and applied to generate the results of the

modules; fourth, the framework that uses the smaller parts to generate useful information

out of a generic dataset; fifth, some insight into the applicability of the framework to three
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different EEG datasets by showing the process and results.

1.1 Electroencephalography and the Event Related Poten-

tial method

Electroencephalography (EEG) is a method that has been used extensively in the field of

neuroscience, dating to the 1930s (Luck, 2014). Briefly, EEG provides a means by which

brain signals, mostly large postsynaptic potentials, can be measured non-invasively from

the scalp. Amplifiers are used to capture the small electric potentials generated by millions

of neurons during brain activity. This, in turn, makes the procedure very susceptible to

noise that is amplified as well. Different procedures, paradigms and recording character-

istics are used in EEG labs to serve different scopes of research, and different hypotheses.

However, a few important yet variable features of EEG implementation in research will

be explicitly mentioned in this section; namely: referencing, electrode density, and basic

preprocessing.

An EEG captures electric potentials through electrodes with metal tips that are set up

with conducting gel to minimize impedance with the scalp/skin. While results are usually

discussed in terms of electrode locations, recorded signals are the electrical potential differ-

ence between a measuring electrode (active) and a reference. The most important aspect of

a reference electrode is that it captures the overall noise in a participant’s head region, yet

ideally does not capture the particular brain response in question; otherwise, its subtraction

would remove the response in question from the data. Commonly used references are tip

of the nose, average of the mastoids, earlobe(s), and average reference. In practice, both

tip of the nose and average of mastoid references are commonly used, along with some
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usage of the average reference. However, there have been arguments made against using

the average, especially in low density setups (e.g., Desmedt et al. 1990). In the present

thesis, only mastoid reference is utilized. An in-depth discussion of different referencing

methods can be found in (Dien and Santuzzi, 2005, Desmedt and Tomberg, 1990).

Different numbers of electrodes have been used in different studies based on study-

specific criteria. Some of these criteria include setup time, participant population, and

planned method usage. For instance, in patient and child populations, a lower number

of electrodes is used to shorten setup time and reduce participant irritation. Conversely,

methods like Independent Component Analysis (ICA) (Comon, 1994), and low resolution

electromagnetic tomography (LORETA) (Pascual-Marqui et al., 1994) require a large num-

ber of electrodes in order to function adequately, in terms of providing reliable and valid

estimates of component identities and their significance. Typically, more electrodes are

used when either multiple uncorrelated, independent, or spatially separated components

are to be extracted. While EEG has low spatial resolution, relative to fMRI, some insight

on localization can be provided by analysis techniques involving a high density array.

While there is not one defined pipeline that all researchers use for preprocessing, there

are several steps which are typically run on raw data. These steps are outlined in the second

chapter. Please note that the order of these steps is not necessarily consistent across labs,

setups, or experiments. A traditional pipeline of EEG analysis includes analog filtering

of data during recording, further digital filtering of recorded data during preprocessing,

referencing of the data, artifact rejection, artifact correction, segmentation, and baseline

correction.

Event-related potentials (ERPs) are electrophysisiological brain responses elicited to

specific types of stimuli (events). These signals are typically hard to observe in continuous
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EEG recordings; thus, it is common to utilize averaging windows of preprocessed EEG

data (trials or segments) across individual occurrences of a type of stimulus in question,

setting the stimulus as a time-locking point. ERPs are known to reflect a wide variety of

brain functions including attention, cognition, and memory. Some of the early potentials

are emitted or elicited due to direct sensory input (exogenous) and are mostly referred to as

evoked potentials (EPs). Others, commonly later in latency, can be observed as a result of

cognitive processing of the time-locked event (endogenous). Examples of ERPs and EPs

used in the present thesis are discussed below.

1.1.1 N100

The N100 is a negative-going evoked potential (EP) peaking at 80-150 ms following the

presentation of a stimulus. While it has usually been studied in the auditory modality, it

has also been shown to arise following visual stimuli (Näätänen and Picton, 1987). It was

shown that the N100 is exogenously driven in that it varies with different kinds of stim-

ulus manipulations such as frequency (Hz), loudness (dB), and duration (ms) (Näätänen

and Picton, 1987). An exogenous EP is described as arising due to a sensory signal prop-

agating from sensory organs and reaching parts of the brain detectable by the EEG. This

EP has been shown to be elicited following the presentation of a variety of auditory and/or

visual stimuli including tones, speech, and animal sounds. When the transient aspects of

the stimuli are controlled, the N100 responses exhibit similar characteristics on repeated

presentations. Attention is not a requirement for the elicitation of the N100. On the con-

trary, the EP can be observed in subjects during periods of inattention, coma, and sleep.

While aspects of the N100 waveform differ when a subject is presented with a sequence of

varying stimuli, it has been shown not to be the underlying brain response behind pattern
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matching and recognition (Näätänen and Picton, 1987, Näätänen et al., 2005).

1.1.2 Mismatch Negativity (MMN) and the N2b

Mismatch negativity is an ERP commonly associated with the brain’s auditory processing

system. It arises in response to deviation from an established pattern. For instance, sev-

eral identical tones followed by an identifiably different (deviant) tone will elicit a negative

peak 150-250 ms after the onset of the deviant stimulus. The MMN has been shown to

arise due to several types of deviant stimuli (Todd et al., 2008, Näätänen, 1992). Even

though the temporal aspect of the MMN is similar to that of the N100, studies have shown

that the MMN is dissociated from the N100 in its function (Näätänen et al., 2005). The

MMN has been argued to be a manifestation of a part of the underlying mechanism for

auditory awareness (Näätänen et al., 2005). Auditory awareness should not be confused

with attention, however, as the MMN has been shown to arise in an inattentive subject

who is not actively identifying the types of target stimuli presented. The lack of a require-

ment for active participation makes the MMN a viable option for testing the degree of

consciousness in individuals in comas, vegetative states, and minimal consciousness states

(Morlet and Fischer, 2014). It has also been shown to be a good predictor of coma recovery

(Cowan et al., 1993). Other clinical research applications of the MMN have been shown in

Todd et al. (2003, 2008), where it is demonstrated that schizophrenic patients emit smaller

MMN responses when compared to healthy controls. Such results signify higher auditory

discriminatory thresholds in schizophrenic populations.

In paradigms similar to what have been highlighted above, adding a task requiring ac-

tive attention from participants to the stimuli is known to elicit a negative peak (to deviants)

after, and sometimes overlapping with, the MMN (Näätänen et al., 1982); this negativity
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has been repeatedly replicated and is labeled the N2b. The ERP has been shown to orig-

inate from generator(s) anterior to those of the MMN’s and to be closely associated with

the appearance of the P3a. Furthermore, attenuation of the MMN has been reported in at-

tention for lower intensity deviants (see Näätänen et al. 1993). This, however, was shown

to not be the case in response to lower frequency deviants; for the MMNs detected were

equal in amplitude and unaffected by all sort of attention modulation.

1.1.3 Phonological Mapping Negativity (PMN)

The PMN has been shown to be observable after a violation of phonological expectation

with auditory stimuli (Connolly and Phillips, 1994). For example, in (1), the contextual

information in the sentence gives rise to an expectation that the word luck will follow the

word bad. This expectation can be characterized by a high cloze probability, a quantifi-

able measure defined as the probability of a target word given a particular sentence (Kutas

and Federmeier, 2014). A violation of that expectation elicits an N400 response which is

characterized by a negative peak 400 ms post-stimulus onset (Kutas and Federmeier, 2014).

(1) The gambler had a streak of bad luggage.

(2) Don caught the ball with his glove.

While that is the case for semantically violating sentence-final words, as well as low cloze

probability, for words that are semantically matched (albeit with smaller amplitudes) a dif-

ferent ERP arises in response to the particular violation of an expected initial phoneme in

the word, irrespective of the semantic matching. For example, in (2), the ending glove is

semantically compatible, however the more highly expected word (hand) has a different
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initial phoneme. Consequently, this mismatch generates a negative-tending peak that nor-

mally occurs 250-300 ms post stimulus (Connolly and Phillips, 1994, Newman and Con-

nolly, 2009). Moreover, it has been shown that the component is elicited independently

from the N400 and can be individually manipulated by experimental procedures, as in (2).

1.1.4 P300

The P300 has been intensively studied as a marker for attention and memory. It typically

is characterized by a positive peak arising 300 ms after stimulus onset, although in practice

it can be delayed (Polich, 2007). The P300 is very robust and, compared to other ERPs,

it is the easiest component to detect on a single trial basis (Blankertz et al., 2011). The

experimental design most associated with the P300 is the oddball paradigm. The classic

version of this experimental design involves two stimuli that differ along some dimension

(e.g., duration or intensity) with one stimulus (the standard) occurring more often (e.g.,

80% of the time) than the other (the deviant, which occurs the remaining 20% of the time).

The participant is instructed to attend to the stimuli being presented and respond (e.g.,

button press) to the less frequently occurring stimulus. The P300 is seen in response to

a deviant stimulus that is identified as such by the participants. However, the P300 has

also been shown to arise in response to stimuli during periods of inattentiveness or sleep.

The ERP was also observed in cases of consciousness disorders, although it was seen as an

indication of covert consciousness (Perrin et al., 2006, 1999). The P300 is not stimulus-

specific as it can be elicited (or emitted) in response to auditory, visual, somatosensory,

and olfactory stimuli for example. Also, the nature of the stimuli in the auditory and visual

modalities can range from simple tones/light flashes to words, pictures, and familiar sounds

(e.g., telephone ring). The presence of the P300 in an oddball paradigm is driven more by
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frequency of occurrence of the relevant stimulus than its modality.

This ERP can be further classified into two observed components: the P3a and the P3b

(Polich, 2007). The P3b is associated with tasks that involve memory processing of some

sort, with or without attention. It can arise due to a violation of a certain expectancy, or pre-

sentation of a target stimulus. For example, in a paradigm shown in Lefebvre et al. (2005)

when an expected sequence of digits is broken, a P3b is elicited. The oddball paradigm

is another example of a P3b elicitation (Polich, 2007). The P3a has been associated with

observing novel stimuli, such as a dog bark or a car honk, given that the context does not

provide an expectation for such stimuli. The P3a has been proposed to arise as the brain

is undergoing attention allocation (Polich, 2007). Due to the robustness of the ERP, it has

been used in several brain-computer interfacing paradigms in spellers, cursor control, and

concealed information tests (Krusienski et al., 2006, Wolpaw and McFarland, 2004, Meijer

et al., 2007).

1.2 Conventional ERP Analysis Techniques

Time-locked analysis (e.g., averaging) is historically the default way of processing and

presenting ERPs. This technique is used to study differences across conditions and experi-

mental groups, utilizing brain responses that are elicited or emitted after differing stimulus

types. Data is epoched (segmented) into trials, where each trial consists of signals recorded

by the EEG and time-locked to stimulus presentation. As a convention of ERP studies, a

portion of data before stimulus presentation is kept as a form of baseline in contrast to brain

responses after stimulus onset. As signal-to-noise ratio in raw EEG signals is very low, tri-

als are normally averaged for each experimental condition. Averaging serves to remove

background oscillations, artifacts, and other cognitive responses that are not of interest,
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while emphasizing the brain response(s) relevant to a study. Characteristics of observed

ERP(s) such as latency, baseline-peak amplitude, and area under the curve are viable can-

didates for analysis as dependent variables in typical analyses of variance (ANOVA) across

different factors pertaining to experimental conditions, population groups, and brain re-

gions of interest (Teplan, 2002, Luck, 2014).

In typical studies, one of the above-mentioned features is used as the continuous de-

pendent variable in an ANOVA in order to account for differences across experimental cat-

egories. This is usually done by utilizing a mixed model with between-subject factors (sex,

treatment, population group) and within-subject factors (condition, brain region). While

this approach is effective and has served to analyze numerous EEG/ERP studies, it has four

main limitations. Firstly, an ANOVA provides limited capability in accounting for the time

dimension inherent in ERP data. While this is usually solved by specifically using sin-

gle points (or averages of consecutive points) along the time axis representing a particular

ERP, many disadvantages arise such as researcher bias, and loss of information. Secondly,

a loss of power arises resulting from the reduction of numerous trials across many subjects

to grand averages that represent the general trend of responses across a group. Thirdly,

the use of high density EEG recordings efficiently is not trivial when utilizing ANOVAs.

Data dimensionality reduction, similar to trial-averaging, is required which in turn reduces

topographic information. Lastly, an ANOVA does not provide a clear measure by which

to control for continuous independent variables such as: age, and time since an important

event prior to EEG recording. This is a clear disadvantage when accounting for continu-

ous independent variables is necessary for testing a certain hypothesis. There exist some

solutions to counteract these limitations. These alternatives will be discussed here briefly,

although by no means is this a complete account.
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When several times of interest are in question, for example when multiple ERPs are

expected to arise due to experimental design choices, one option is to extract features from

time windows that correspond to each ERP in question. This window location can then

be added as an extra factor in the ANOVA. While this method provides a means by which

to satisfy analysis needs, the window approach also introduces many parameters that need

to be adjusted by the researcher such as window length and features extracted from a des-

ignated window. As researcher choices multiply, the likelihood for uncorrected multiple

comparisons pertaining to sets of selected parameters increases; although there are well-

established correction methods, failure to use them appropriately remains an issue. Another

complication arises when comparing ERPs that overlap temporally. A clear windowed def-

inition of different ERPs becomes difficult and would lead to further window boundary

manipulations. Although not always possible, there are many examples of counteracting

this issue with clever use of experimental design techniques to isolate components. An

example can be seen in experiments shown by Näätänen et al. (2005) to disentangle the

N100 and the MMN; another is the study by Connolly and Phillips (1994), demonstrating

the dissociation of the N400 from the PMN.

The general trend of grand averaging across subjects stands in contrast to more ad-

vanced analysis methods that are finer grained for both time and evaluation of performance

from the individual subject. Single-trial basis of analysis has recently become more preva-

lent due to advancements in signal processing, analysis techniques, and machine learning.

Two main aspects of this problem need to be highlighted. The first is that, ignoring the

fact that having low signal-to-noise ratio (SNR) would inherently increase the likelihood of

Type II errors, using single trials directly will artificially inflate the degrees of freedom. In

a normal ANOVA setup, this would not be statistically sound as, for example, an increase
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in the number of trials in a particular experiment should not be equated to an increase in

the number of subjects. The second concern is the loss of information that is entailed by

the inherent cross-trial variability within a subject. An effect that increases through time

then proceeds to diminish, due to fatigue for example, would affect an entire subject’s data.

Artificial points can be added to the timeline of the experiment to split trials into categories

that can be analyzed separately. However, many issues, not different from ones highlighted

above, may also arise with that solution. An in-depth discussion of issues and pitfalls of us-

ing ANOVAs on EEG/ERP data pertaining to this point can be found in Dien and Santuzzi

(2005).

Similar to the single-trial problem, using a high number of electrodes without forms

of simplification can also cause inflation of the degrees of freedom (Dien and Santuzzi,

2005). This is especially wasteful when high density EEG is used in the recording, only

to be simplified to averages of electrode signal values in regional blocks. This reduces the

usefulness of said EEG setups and results in a bottleneck on information inference during

the analysis phase. These issues can be counteracted by more effective techniques.

Using continuous independent variables is sometimes required when dealing with spe-

cific research questions such as those of Meulman et al. (2015). In this study, age of lan-

guage acquisition is tested for effects on the elicitation of syntax-related ERPs. While an

analysis of covariance (ANCOVA) can be used to control for these variables, more sophis-

ticated analysis methods are needed to test for different relations between the dependent

variable and the continuous independent variables. A prime example of a novel statistical

tool capable of this type of analysis is the general additive model (GAM) used by Meulman

et al. in the same study.
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1.3 Machine Learning Background

1.3.1 Objective

Model derivation, pattern recognition, and learning are all aspects of computation that are

generally applied directly by human experts or handcrafted specifically to fulfill specific

directives. Machine learning (ML) is one of the names used to describe the study of algo-

rithms that can be executed by computers in order to reach one or more of the aforemen-

tioned objectives. The field has gained significant traction in recent years and its methods

are currently used in many aspects of our modern society, including smartphones, search

engines, voice recognition, and autonomous vehicles.

A main goal of machine learning is to extract knowledge from data. For example, given

a dataset of images, a machine learning algorithm will try to create a model that is capable

of identifying the class of a certain image. Possible example classes include: portrait,

nature landscape, and text. The model created is mainly dependent on the data supplied to

the learner and requires relatively little human-expert interaction.

Within machine learning, there are roughly three major divisions that tackle learning

differently: supervised, unsupervised, and reinforcement learning. In supervised learning,

a large, labeled dataset is provided to the learner. The learner uses generalized learning

techniques to produce a model that is capable of predicting what the labels are. While

supervised learning is well-suited to classification tasks, it is also possible to use such

machines to generate regressor models that are able to predict a value given some input

data. For instance, a regressor model could predict the price of a house given features such

as neighborhood, how old the building is, and condition of the estate. In unsupervised

learning methods, the algorithm is given a set of unlabeled data. The learner is then tasked
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with finding patterns, groupings, and other forms of information that describe the data.

This process is logically similar to a child grouping types of cars together as a sort of

class without being explicitly provided a label each time he/she sees a different car. Lastly,

reinforcement learning follows the Psychology construct of the same name in which an

algorithm is given an indication of whether or not it is doing well a few steps after it

has taken an action. For example, a checkers machine-learned model player has been

developed by giving the learner an indication of reward when it won, or punishment, when

it lost. The learner is responsible for retracing its steps and recognizing what turns could

be improved upon to win in later games. Even though machine learning methods have

also been developed to form algorithms that are an amalgamation of two or more of these

discrete types, the basic ideas behind them revolve around these three categories. In this

thesis, only methods of supervised machine learning have been used. For a more in-depth

review of machine learning methods, refer to Michalski et al. (2013).

1.3.2 Common Problems in Machine Learning

The main goal of machine learning is to automatically generate a model that generalizes

to new data, which has not been seen during the learning process. That, however, is not

normally an easy task since learning algorithms often fall into problems of overfitting, local

minima, and poor validation.

Since a learner’s task is to use features of a particular dataset to infer underlying struc-

ture, it is common for the learner to draw very definite conclusions (to the point of obser-

vation memorization) on the given input. Normally, this results in a model that can attain

almost perfect classification accuracy on the data it was trained on, while achieving very
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Figure 1.1: An example illustrating the problem of overfitting in machine learning. The
blue curve highlights a possible learned model on the datapoints (black dots) with high
overfitting, and the red line represents a better model that is likely to generalize better.
(Buduma, 2014)
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poor results on unseen data. For example, given data y (y-axis) sampled from a linear func-

tion in terms of feature x (x-axis) plus some additive noise ε , a likely overfitting model can

be seen in figure 1.1. The appropriate model (red) is not achieved due to the ML algorithm

trying to attain perfect accuracy (blue) on the training data (black). Instances similar to

this example critically reduce machine-learned model accuracy, and are categorized under

overfitting. This is the reason why a fundamental aspect of machine learning is to divide

the dataset into at least two different sets: training and testing. The resultant accuracies

on the testing set are almost always the reported one for a given model. This, however, is

a manner by which to simply check generalization and not to actually improve it. Many

methods have been adopted to partly solve overfitting problems, some of which are used

in this thesis. In-depth discussion of the advanced methods are not within the scope of this

thesis, but can be explored further in Browne (2000), Srivastava et al. (2014), Larochelle

et al. (2009).

Stemming from the overfitting problem arises the issue of local minima. Many machine

learning algorithms are built on top of a minimization optimization problem on the error of

the model resulting from an arbitrary point on the parameter hyperplane compared to the

truth values held in the labeled data. Concretely, the machine learning algorithm starts with

a function (model formed by randomly-set parameters) that simulates how a dependent

variable (the target of prediction) varies as the independent variables (features) differ. Ini-

tially, that function is incorrect where the difference between the model-predicted value and

the true value recorded in the data is called the error. Using optimization algorithms, that

error is then minimized iteratively by changing the model parameters. This optimization

problem is convex (there is a unique minimum with the lowest error possible) for several

algorithms, most prominently in linear Support Vector Machines (SVMs). That, however,
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Figure 1.2: An example of local and global minima in optimization problems. (Commons,
2013)
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is not always the case with more complex learning methods such as deep neural networks.

In those cases, for specific initialization parameters, the learner can get stuck in a minimum

that is low in its local position on the manifold but is not the optimal solution globally (see

figure 1.2). Often, this is counteracted by running the learner several times with different

initialization parameters and choosing the one that generalizes most and provides the best

results. There are also several methods that improve or transform the search space to one

solvable as a convex-like problem, but the details of those are outside the scope of this

thesis. Several examples of these methods can be found in Rasmussen (2006), Hofmann

et al. (2008).

Lastly, the issue of poor validation is a substantial one when it comes to generating

models that are practical and provide comparable results on unseen data. This issue, while

theoretically quite different, is similar in nature to statistical analysis results not being re-

producible given identical experiments, data, and researchers. While machine learning

fundamentally uses the separation of training and testing data, there are other systematic

biases that can be caused by improper use of validation. For instance, given a considerably

small dataset, it is possible to run the machine learning algorithm repeatedly with different

hyperparameters minimizing the errors for specific training and testing sets. However, this

introduces the possibility of generating a model that does not necessarily generalize well

to unseen data, but to only this specific test set given the provided training one. This issue

is usually counteracted by using K-fold cross validation, which involves splitting the data

into K mutually exclusive folds. K-1 folds are used as the training set, with the remaining

fold as the testing set. The learner is then run on all possible combinations. The mean

resulting accuracy on all folds is then considered to be the generalization accuracy. The

issue of multiple runs of modified learners on a dataset can be associated with multiple
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Figure 1.3: Examples of linear separability, non-linear separability, and inseparability
(Lohninger, 1999).

comparisons in statistics where the p-value is adjusted to compensate for random chance

effects. Other commonly used solutions include: using a cross validation set to optimize

hyperparameters, permutations on each run of the learner, Monte Carlo, Bootstrapping, and

comparisons to random data. Several of these methods have been implemented within the

proposed framework and will be discussed in more detail in the next chapter.

1.3.3 Classifiers

Support Vector Machines (SVMs) have been mathematically defined by Cortes and Vap-

nik (1995). In classification, they are characterized by separation with a hyperplane that

provides the maximal margin between classes. In the linear case, for example, given two

linearly separable classes, the logistic regression algorithm would yield a result that di-

vides the two classes. However, logistic regression would not provide a unique answer,

since there are infinite possible lines that can split provided data. The SVM improves on

that ambiguity by providing the solution that maximally separates the two classes. This,

while not affecting the result in some examples, achieves two main points: 1) It provides a

better basis for generalization; and, 2) generates a unique convex problem solution. While

examples are normally shown for two dimensions, SVMs can easily be applied to feature
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spaces of more. In practice, however, data is sometime not linearly separable (see fig-

ure 1.3). In these cases, an SVM can be extended using the kernel method to transform

a nonlinear problem into a domain where it can be solved linearly. This allows data that

are better classified using polynomial or radial hyperplanes to be solved as a convex prob-

lem. In cases where the classes are not separable, the SVM has been derived to also yield

a unique solution which, although it does not split the data perfectly, aims to counteract

outliers and generalize to unseen data.

While SVMs are generally robust to distractor features, as the ratio of features to data

points (observations) increases, the models generated are less capable of capturing under-

lying patterns; an issue that SVMs share with other machine learning methods. There are

three main possible solutions to that problem: collection of more data, use of a feature

selector, and/or utilization of a human expert to select relevant features. The first solution

is possible in cases when data collection is not costly, which is not always possible in re-

search and with specific types of datasets. The second solution is capable of improving

performance, however, since a feature selector’s accuracy is usually sub-optimal, there is a

chance that a useful feature can be seen as a distractor and vice versa. The last solution is

often not realistic given the intricate and time-consuming nature of processing some data.

For the sake of this thesis project, the second solution was taken when dealing with SVMs

in cases where a brute force approach of removing distractor features was not computation-

ally feasible.

There are many alternative algorithms that are widely used in ML classification appli-

cations that have not been used in the framework discussed in this thesis. That decision

was made primarily due to time-constraints, as more sophisticated ML techniques require

considerably more customization to work for specific types of data, especially time-series.
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The two main approaches that were put into consideration and briefly tested, although no

results are provided here due to insufficient testing, are deep neural networks and Gaussian

processes (Deng et al., 2014; Rasmussen, 2006). SVMs were instead used modularly, al-

lowing for later replacement with better-performing counterparts if proven beneficial to the

application.

1.3.4 Machine Learning on EEG/ERP

Machine learning’s capability of automatically extracting knowledge from data has made

it a primary tool for online analysis of EEG data in recent years. The main field affected

by, and heavily dependent on, ML is brain-computer interfacing (Krusienski et al., 2006,

Wolpaw and McFarland, 2004, Blankertz et al., 2004). Brain-computer interfacing (BCI)

revolves around forming a dependable, accurate, and precise link between a computer and a

human user, utilizing brain generated signals detectable by a form of brain imaging without

depending on muscle activity. As previously mentioned, EEG’s high temporal resolution,

in addition to its mobility and low price, have made it a prime candidate for use in BCI.

However, the field is still hindered by many issues. These include low information transfer

rates, low accuracy, and user discomfort. Nonetheless, the field is continuously improv-

ing as processing power increases, BCI-specific techniques are refined, and new machine

learning methods are developed.

On the other hand, ML has also been considered for use on ERP data as an automated

decoder. By definition, running ML on ERP data is usually done post-recording and is less

concerned with overcoming transient aspects which are more prevalent in realtime process-

ing. As there is no time constraint, an observation used for learning can be a single trial,

a single subject’s average, or an averaged subset of trials depending on the hypothesis in
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question. For example, single subject approaches have been used to create a model capa-

ble of identifying individuals with schizophrenia that have a high chance of responding to

Clozapine therapy (Ravan et al., 2015). Additionally, Ramkumar et al. (2013) demonstrated

that exogenous responses to visual stimuli can be accurately detected in data captured by

magnetoencephalography (MEG). Importantly, the study showed a case where brain re-

sponses that match the expected biological behavior were unobservable using traditional

analysis approaches, but were detected using ML.

Single-subject classification of an MMN dataset utilizing SVMs was performed by Par-

var et al. (2015). Results showed high discrimination between the two conditions, averaged

for each subject. These tools were utilized in the classification of several other ERPs, show-

ing high classfication accuracies for all when averaging across single-subjects (Sculthorpe-

Petley et al., 2015).

One of the most common forms of BCI utilizes a user’s P300 response to a stimulus

representing the user’s choice; other stimuli representing unwanted choices don’t elicit a

P300. The accuracy of detecting such ERPs with as few repetitions as possible has been a

prime research direction in BCI that is concerned with single-trial classification (Blankertz

et al., 2011). These methods, however, do not normally apply directly to other ERPs, since

the P300 is very robust in comparison. On the other hand, Dou et al. (2007) have proposed

a framework to datamine generic ERP datasets in order to achieve goals similar to the ones

highlighted in this thesis. The main differences lie in the amount of data expected and

needed by the two frameworks; this thesis is concerned with single-study data, in contrast

with Dou’s motivation to compile multiple-study data to generate rules that correspond to

single ERPs.
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1.4 Summary of Research and Question

Due to the variable nature of EEG/ERP trials, it is a nontrivial problem to classify single

trials with considerable accuracy. While in some EEG research an ERP is robust enough

to be detected on an almost trial-by-trial basis, exploring other ERPs remains stuck in the

domain of averaging and statistically analyzing differences between grand averages. The

main focus of this thesis is to develop a framework of analysis and argue for its ability

to report when an ERP is elicited, where it originates in terms of electrode locations, and

how consistent it is across trials. There are advantages to this approach; firstly, when val-

idated correctly, machine learning is capable of forming models that are independent of

researcher bias, since they are validated on unseen data. Secondly, while a hypothesis with

proper experimental design remains a requirement, this approach would also be well-suited

to exploratory ERP research. For example, given a dataset with known experimental con-

dition differences but unknown ERP responses, this framework would be able to analyze

how conditions differ in terms of brain responses empirically. Lastly, machine learning is

mainly an automation utility. This lends itself to accelerating the process of analysis where

numerous researcher hours can be delegated to a predefined analysis procedure that mainly

uses computer time.

It is important to note that while this method aims to facilitate research in the field,

good experimental design is key to resolving research questions. While utilizing the meth-

ods presented here can uncover differences in cognitive responses, the implication of such

findings can only be useful when applied in conjunction with well-designed experiments

and properly controlled variables. A major drawback of using machine learning methods,

however, is the need for large datasets. Single subject case studies with low numbers of

trials per condition, aside from very robust ERP experiments, are unlikely to produce any
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significant results. On the other hand, it can be argued that small datasets would be hard to

deal with even using conventional methods.

The hypothesis of this thesis is that the proposed machine learning based approach

is capable of automatically highlighting differences across conditions. Such differences

signify underlying ERP components in a generalized and statistically validated manner

that rivals, in some cases surpasses, conventional methods. Application to three different

datasets, collected as parts of different independent studies, has been shown to produce

robust results that conform to both the literature of the studied datasets’ paradigms and the

results achieved using traditional ERP analysis.
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Chapter 2

Methods

In the present chapter, datasets to be used as a demonstration of the capability of the frame-

work are discussed followed by a detailed explanation of the the framework’s structure.

Section order reflects the sequence of analysis starting at acquiring the dataset, and ending

with the validation of the results produced by the sub-modules contained and run by the

framework.

2.1 Datasets

Three datasets are used to test and demonstrate the capabilities of the proposed analysis

framework; they are referred to as follows: coarticulation violation, mismatch negativity,

and attentional P300. The first dataset was collected as part of an original study discussed

in the dissertation by Kramer (2014). The other two were part of a post-concussion effects

study in adolescents, in addition to healthy controls (unpublished data).

All datasets employed the same electrophysiological recording methods. Continuous

EEG was recorded using the Biosemi ActiveTwo 64 Ag/AgCl electrode system (see figure
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Figure 2.4: The standard 64-electrode Biosemi layout used by all three datasets discussed
in the present thesis.
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2.4). Electrodes were arranged on the head using a cap allowing for accurate placement

according to the 10-20 labeling system. A sampling rate of 512 Hz was used during acqui-

sition with hardware bandpass filtering between 0.01 Hz and 100 Hz. Online recordings

were referenced to the driven ground electrode circuit and rereferenced offline to the av-

erage of the mastoids. Electrooculographic (EOG) activity was recorded from electrodes

placed above and over the outer canthus of the left eye. Data was collected and stored to

be analyzed offline.

2.1.1 Coarticulation violation

This experiment was conducted to study the effect of coarticulatory violations on cognitive

processing in the brain using EEG/ERP techniques. Coarticulation is characterized by a

single phoneme having different sounds depending on neighbouring speech sounds. For

example, the sound /b/ in bat would have a different sound than the one present in beet

due to the different vowels following the consonant. Coarticulatory cues have been shown

to contain information that facilitate word recognition (McQueen et al., 1999, Gow and

McMurray, 2007, Archibald and Joanisse, 2011). This study aimed to analyze the brain

response to contextually primed words having various types of coarticulatory anomalies

(see below). The hypothesis was that a violation would elicit an early cognitive response

manifesting as a negative peak between 250-350 ms after stimulus onset corresponding to

the PMN. Three ERP components were analyzed as part of the original study: the N100,

P300, and PMN. Further details of this experiment can be found in the original study by

Kramer (2014).
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2.1.1.1 Participants

Data were collected from twenty-two native English speakers (14 female) participating

through the linguistics department course credit system. No history of neurological, audi-

tory, or visual problem was reported by any of the participants. The McMaster University

linguistics undergraduate research pool was used to recruit participants for data collection.

This research was approved by the local research ethics board and all participants provided

informed consent.

2.1.1.2 Stimuli and experimental conditions

The stimuli consisted of 76 different 3 letter monosyllabic English words where the middle

letter was a vowel surrounded by two consonants. Each of the words had one of the four

corner vowels of English: /i, u, æ, A/. A vowel was given an onset with an anterior stop /p,

t, b, d, m, n/ and an oral stop /p, t, k, b, d, g/ with the restriction that the combination forms

an English word.

Stimuli were recorded from five female native speakers of English where a participant

heard a randomized 20% subset of the stimuli produced by each speaker. Praat sound soft-

ware (Boersma, 2002) was used to splice onsets from one word to another in custom pairs.

A trial started with the presentation of a written word, followed by an audio recording ac-

cording to the trial’s condition, and ending with the participant’s response to whether the

two matched. There were three experimental conditions in total: congruent, incongruent,

and unrelated. In the congruent condition, an audio recording of the word presented visu-

ally was spliced at the consonant-vowel juncture with another production of the same word.

The incongruent condition was the auditory presentation of the word presented visually,

but spliced with another word that had an identical consonant structure but different vowel.
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Lastly, in the unrelated condition, the spoken word was spliced as in the congruent con-

dition but was presented after a lexically-incongruent written word. During analysis, only

the congruent and incongruent trials were compared; the unrelated condition was only in-

cluded as an obvious mismatch, and was not within the scope of the coarticulation-specific

analysis.

2.1.1.3 Procedure

Testing took place at the Language, Memory and Brain Lab at McMaster University. The

procedure lasted approximately 2 hours including setup time. Auditory stimuli were de-

livered binaurally using earphones (Etymotic Research) and an amplifier (ARTcessories

HeadAmp4). Both visual and auditory stimuli were presented using Presentation software

(NeuroBehavoiuralSystems Presentation 14.7).

A testing session session consisted of two runs through the experiment file each includ-

ing a total of 315 presented tokens (630 total) with 184 congruent, 396 incongruent, and

56 unrelated stimulus tokens. Each trial was initiated with a fixation cross for 1250 ms

followed by the presentation of a written word on the screen. Following the written word

priming, the spoken word was played to the participant. Participants were asked to respond

to the spoken word by indicating whether or not the previously shown word was identical

to the word they had just heard by using two mouse buttons (left click for same word, right

click for different word).

2.1.2 Mismatch negativity

This dataset was captured as a part of a post-concussion effects study that aimed to explore

the ERP differences between a healthy participant’s brain signals and those of a person
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that has recently experienced a minor traumatic brain injury (mTBI)/concussion. The data

that has been utilized in this thesis corresponds to the 20 healthy controls of that study.

Data collected in this study has been analyzed using conventional methods to assess the

differences between the two populations (unpublished data at the date of writing).

The three different deviants were assessed individually in comparison with the standard

tones. The ERPs expected to arise as a result of stimuli presented in this study are the N100

(all tones), and the MMN (deviants only) which correspond to a negative peak at the 100

ms point, and a negative peak at the 200 ms post stimulus onset points respectively.

2.1.2.1 Participants

Data were collected from twenty undergraduate participants (16 female) for course credit.

All participants were native English speakers with no history of neurological, auditory,

or visual problems. Recruitment was done through the McMaster University linguistics

undergraduate research pool. This research was approved by the local research ethics board

and all participants provided informed consent.

2.1.2.2 Stimuli and experimental conditions

Stimuli used in the acquisition of this dataset were a replication of the experimental paradigm

by Todd et al. (2008). The paradigm elicited the MMN in response to 3 different deviants:

frequency (1200 Hz), duration (125 ms), and intensity (90 dB sound pressure level [SPL]).

Standard tones were 50 ms long at 1000 Hz and 80 dB SPL. The deviants form 18% of

the stimuli presented with the remaining being standard tones. The different deviants are

equally mixed (6% each) and randomized for each session. In total, there are 1968 standard

tone trials, and 144 trials of each deviant.
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Triggers are placed at the initial point of each presented tone marking its type: standard,

frequency deviant, duration deviant, or intensity deviant. The interstimulus interval (ISI)

was 500 ms. All stimuli were presented using Presentation software (NeuroBehavoiural-

Systems Presentation 14.7).

2.1.2.3 Procedure

Stimuli were presented binaurally, using earphones (Etymotic Research) and an amplifier

(ARTcessories HeadAmp4), with no response required from the participants. A video was

played with no sound during the experiment as a distractor and participants were asked to

not pay attention to auditory cues. The experiment lasted 23 minutes in addition to setup

time; no break was explicitly included in the paradigm.

Although measures were taken to eliminate participants’ attention to presented tones

during the experiment, it was possible that a participant might still focus on the tones. Thus,

four participants’ averages had positivities around the 300 ms regions signifying elicitation

of P300s instead of the expected MMNs. No measures were taken during preprocessing

to filter those participants out to conform to the consistency criterion of the method in

cases where some confounding variables cannot be avoided. It is important to note that

the number of trials for a given participant that show P300-like components can not be

determined; however, if we make a conservative assumption that a quarter of the deviant

trials were incorrectly labeled as generating an MMN, then:

Percentageo f incorrect deviants =
0.25×ParticipantswithP300

Partcipants
×100≈ 5%o f deviants

Note that a ratio assumption above a quarter (of deviants eliciting P300s per subject) is
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less conservative; for it will give the proposed method a larger margin of explainable error.

Moreover, a lower ratio was postulated to produce subject averages with less pronounced

positivities; however, it can still be argued that the larger, more robust P300s can affect

the averages with fewer elicitations. Hence, results reported in the present thesis are not

modified for incorrectly-labeled MMN deviants.

2.1.3 Attentional P300

This dataset was also part of the concussion study discussed in the last subsection. Only

healthy participants’ data were used in the analysis presented in this thesis as ERPs from

participants with histories of concussion could be affected in terms of latency variability

from trial to trial, elicitation latency , and amplitude. ERPs expected in this study are:

the N100, and the P300. The N100s follow the justification presented for the previous

dataset. The P300 should be elicited due to participants being instructed to attend to the

stimuli, in order to actively complete the task, that a rare deviant tone is different from the

more frequent standard tones. The P300 was expected to manifest as a positive peak at

300 ms post-deviant-stimulus onset. Moreover, the addition of attention does not directly

inhibit the elicitation of the MMN; however, attention was expected to modulate the ERP.

Attention was also expected to elicit the negative component called the N2b.

2.1.3.1 Participants

Data were collected from twenty undergraduate participants (16 female) for course credit.

All participants were native English speakers with no history of neurological, auditory,

or visual problems. Recruitment was done through the McMaster University linguistics

undergraduate research pool. This research was approved by the local research ethics board
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and all participants provided informed consent.

2.1.3.2 Stimuli and experimental conditions

The MMN paradigm from Todd et al. (2008) was adapted to elicit the P300 by adding

a task of identifying standard tones from deviant tones. The number of stimuli was re-

duced by a factor of four (600 total) resulting in 492(36) trials of standard tones (each

deviant). Triggers were kept for the tones, with ones added for participant responses. A

response trigger indicated when a response took place in addition to whether it was one of

the following: true standard, true deviant, false standard, and false deviant; true indicated a

participant’s correct identification of the stimulus type. To accommodate for response time

delays, the original paradigm’s ISI was extended to 1000 ms. All stimuli were presented

using Presentation software (NeuroBehavoiuralSystems Presentation 14.7).

2.1.3.3 Procedure

Participants were seated 1m away from a monitor in the Language, Brain, and Memory

Lab. Stimuli were presented binaurally using earphones (Etymotic Research) and an am-

plifier (ARTcessories HeadAmp4). A fixation cross at the center of the monitor was present

at all times on which the participants were asked to fixate through the duration of the ex-

periment. Participants were instructed to identify each tone heard as a standard (commonly

occurring) or deviant (one of the three less commonly occurring) by pressing one button

for the standard and another for the deviant. Participants were not instructed to memorize

any of the deviants as specific targets.

A break was presented halfway through the experiment where the participant was in-

structed to switch fingers (counterbalancing within participant). The initial button setup
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was also counterbalanced across participants. The procedure lasted 10 minutes in addition

to the break and setup time.

2.2 Offline Preprocessing

Data was passed through a finite impulse response bandpass filter (order 50) with cutoff

frequencies at 0.5 - 15 Hz and using a Hanning window. Using the MATLAB function

filtfilt, the filter had a zero-phase effect enabling ERPs to be traced in time without the need

for time-shifting. This had the effect of doubling the filter order.

The used frequency boundaries were chosen based on apriori knowledge from the liter-

ature indicating that most known ERPs lie in that range. More specific filters that constrain

the data further to highlight specific responses could be used in adapting the algorithm to

individual ERPs, however that is outside the scope of this thesis.

Continuous data was viewed using Fieldtrip’s semi-automated artifact rejection soft-

ware where a trial was rejected if its statistical features exceeded a defined threshold. Fea-

tures included: variance (< 4000), kurtosis (< 10), and Z values (< 15). Trials containing

values that were outliers (observed visually) within the dataset were selected for removal.

Since this approach is very subjective to the user, a very conservative approach was taken

when removing artifactual trials yielding slightly noisier data but being less susceptible to

researcher bias.

Independent Component Analysis (ICA) was run on individual participant data to es-

timate components that corresponded to ocular artifacts. The InfoICA algorithm from the

Fieldtrip package, which in turn utilizes the one implemented by EEGLAB, was used to

generate and display components and their topographical maps. The algorithm was run on

segmented trials corresponding to all analyzed experimental conditions in a given dataset.
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Components that showed fronto-central mappings and had high correlations with the ver-

tical/horizontal EOG electrodes were removed. Electrode data was recalculated using the

remaining components to generate artifact-corrected signals. The two components most

commonly removed corresponded to blinks and horizontal eye movements, although there

were instances when only blinks were correctly detected by the blind source separation

algorithm. That can be attributed to some participants closely following instructions to

maintain their gaze at the fixation cross during stimulus presentation.

DC detrending was considered to correct for amplifier drift. However, the final frame-

work did not utilize any form of detrending as the effects were negligible; an effect partly

attributable to the cutoff for the highpass filter (0.5 Hz).

Two different referencing schemes were considered for data analyzed in the present the-

sis: mastoids and tip-of-nose. The differences between grand averages for the two methods

were analyzed. Preliminary observations showed no significant difference between meth-

ods, as grand averages were almost identical. The choice was made to use the average

of the mastoids as the referencing scheme for this study, partly due to some participants

showing noisy readings from the tip-of-nose electrode.

Using appropriate markers from each of the experiments, epochs are extracted and cat-

aloged according to their conditions. An epoch was 1200 ms long extending from 200 ms

before stimulus onset to 1000 ms after. All epochs from an individual subject were baseline

corrected by subtracting the average of all prestimulus portions from the individual epochs

across all conditions.

After all preprocessing steps were complete, the data were downsampled. Due to the

large number of analysis steps and repetitions in the framework, data were decimated to

128 Hz to reduce processing power needed for analysis.
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All individual trials collected from all subjects were aggregated and treated as one since

single-subject analysis was not within the scope of this study. After a dataset was passed

through this pipeline, the output was M tensors of T x C x S dimensions where M was the

number of conditions, T was trials, C was channel, and S was sample. In this study, C was

64 and S was (128 x 1.2). Data were saved to disk for later analysis in a format that is

readable by MATLAB (.mat).

2.3 Framework outputs

The framework discussed in the present thesis serves to uncover three aspects of an ERP

component present in a generic EEG dataset: latency, topography, and strength/consistency.

These criteria were mined from data collected from all participants in a particular study.

This analysis method does not consider inter-subject variability and assumes that a brain

response to a stimulus-type will be in the same topographical and temporal range for all

subjects. Consequently, direct application of this analysis is not appropriate across different

experimental groups. Further discussion of how this can be extended to between-group

analysis is presented in a later chapter.

2.3.1 Latency

One of the main criteria for identifying ERPs lies in their latencies after stimulus presenta-

tion. This motivates the first goal of the framework: to locate any signal disparity between

two conditions that is prominent enough to shift the classification accuracy away from

chance level at a given latency. This signal disparity is attained by constraining features fed

into the machine learning algorithm to data samples within a window in time.
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A sliding window approach is taken for choosing features in the time domain. A win-

dow needs to be strict enough so that there is no major smearing of accuracies across time;

moreover, it also needs to be sufficiently large to account for jitter (different response la-

tencies across different trials) commonly observed in ERPs. Several window sizes were

tested including ones of 6, 11, and 21 samples (a sample corresponds to around 8 ms where

data is downsampled to 128 Hz prior to processing). This was set to be 6 samples as an

arbitrary length where all results are reported on windows of that size. A window is taken

starting at the first sample corresponding to -200 ms before stimulus onset and then moved

1 sample for each iteration totaling in 149 overlapping windows. A window of features

corresponding to a given class and trial was a matrix of size C x S where C is the number

of channels (64) and S is the number of samples in a single window (6). These data are

passed into the pipeline starting with feature extraction and ending with model validation

before moving on to the next window in sequence. An in-depth description of the pipeline

and its procedures is in section 2.4.

Results produced by this step are visualized by plotting cross validated accuracies

through time (corresponding to shifting windows) with error bars representing the 95%

confidence intervals. A visual indication of where an ERP is detected can be seen where

the confidence intervals of post and pre-stimulus don’t overlap; brain responses before

stimulus onset are supposedly unrelated to the experiment. Retaining pre-stimulus data

also serves as a convenient validity check, because if the accuracy prior to stimulus pre-

sentation is above chance level, it means the data have been handled in an erroneous way

earlier in the pipeline.

It should also be noted that the concept of a growing window could be analyzed where

a window’s start point is the first sample and with each iteration the length of the window
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is incremented by one sample. This would serve to show at which point in time a distin-

guishable signal starts to appear between conditions. This has been briefly tested, but it

proved to have high variance due to the learning algorithm’s inability to deal with large

numbers of features that, in many cases, severely outnumber the observations. Growing

windows are susceptible to type II errors, especially when dealing with late latency ERPs,

as higher accuracies given by characteristic signal differences would be counteracted by a

decrease in accuracy caused by the increasing number of non-contributing features earlier

in the window span.

2.3.2 Topography

There are two likely directions by which assessing the topographical distribution of an

ERP can be tackled. The first lies in applying the same approach from the previous sub-

section where iterations are run on whole trials but are limited to data from a single (or

smaller subset of) electrode(s); a classification between the two conditions would yield

above-chance accuracies for electrodes containing a characteristic differentiating signal.

While more intuitive and beneficially independent, the large increase in features, from the

expanded time-dimension to a full trial, yielded low chance-level accuracies for most con-

ditions. Thus, a second approach was taken where the latency information learned about

the detected signals, from the previous subsection, is incorporated into feature selection.

The finalized module iterated through all electrodes, selecting samples that are only within

the best time window(s) selected in the time-variant process. A vector of features cor-

responding to 1 trial within a given condition was of length six before being passed into

further feature extraction submodules. This component’s results can also be easily assessed

visually using topographical plots as shown in in the next chapter where above chance level
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accuracies are attainable in signals recorded from defined regions on the scalp.

The main drawback to this approach is that only individual electrodes are assessed.

This granular nature of the features does not permit topographical combinations of more

than one electrode’s data. In order to maintain a fast and relatively simple framework,

this has been a trade-off that is acknowledged. Possible expansions on the framework that

allow both brute-force combinatorial, and greedy feature mixing are briefly discussed in

the future directions section.

2.3.3 Consistency

Due to the variable nature of EEG/ERP trials, it is a non-trivial problem to classify sin-

gle trials with considerable accuracy. Since the main focus of this thesis is to highlight

where and when an ERP arises between differing conditions, a hybrid approach was taken

to extract relevant information in an automated manner. The intuition is that for a certain

number of individual ERP-containing trials of the same experimental condition, a differ-

ence can be detected when comparing to baseline trials. ERPs that are consistent between

both types of trials will not be detected; hence, only highlighting targeted responses of a

paradigm. This is the same approach taken when using conventional analysis methods,

provided that ERP windows are specified for the comparison. In contrast to using grand

averages, however, a systematic averaging process is taken before each iteration of the

classifier generation/validation phase. The framework starts by assessing accuracies on a

dataset of single trials. The data is then processed so that one observation is an average

of four random trials within the same condition. That process is repeated for averages of

8, 16, and 32 trials. The resulting accuracies can be interpreted as how consistent an ERP

is. An ERP that only shows above chance level classification accuracies for 16 averaged
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trials and above would indicate that the ERP is small or is not elicited in the same manner

every time a corresponding stimulus is presented. For example, the P300 is known to have

a strong signal that is consistent across trials which in turn would give high accuracies with

observations formed by averages of less than 8 trials.

The use of consistency in the proposed pipeline is analogous to effect size in traditional

approaches. For instance, a small difference between two conditions is less likely to be

accurately detected given low SNR data. As larger numbers of trials are averaged, SNR

increases and smaller effects are prominent enough to be detected by the learning algorithm.

In terms of module sequence, consistency is analyzed while processing both earlier

measures; averages of trials are assessed once during latency analysis, then again within

single-electrode topography extraction. For most plots and figures presented in this thesis,

an average of 8 trials per observation is the assumed default visualization.

2.4 Machine Learning Methods

Following preprocessing by the module outlined in section 2.2, a given dataset was passed

to the machine learning analysis module. The expected input to the module was an EEG/ERP

dataset split into two tensors, corresponding to two experimental conditions (N), each with

T x C x S dimensions where N was the number of conditions, T was the number of tri-

als, C was the number of channels, and S was the number of samples. In cases when the

two tensors had an unequal number of trials, sampling without replacement was done from

the larger tensor to attain the same number of trials (as the smaller one). The following

sequence of submodules were run twice consequently to: 1) extract latency information

from the dataset; and 2) use information from (1) to extract topographical information. For

details on the intuition behind the two runs, refer back to section 2.2. During a latency data
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mining run, the pipeline was run on all sliding windows (in sequence) spanning 6 samples

from 200 ms prior to stimulus onset and until 1000 ms after. On the other hand, a topogra-

phy mining run looped through all individual electrodes constrained by a 6 sample window

of interest. The underlying algorithm for the machine learning module can be found in

pseudo-code form in 2.1.

The first step in the analysis module began with aggregating trials into the observations

to be analyzed by the rest of the pipelines. Aside from the single-trial run, which just out-

puts the data as they were, the submodule divided the number of trials into X observations

where X = floor(T
n ) , T was the number of randomly sampled trials from one condition, and

nε{2,4,8,16} was the number of aggregated trials.

Procedure 2.1 Framework algorithm for a given dataset
1: Given data Xi, j,k and labels Yi where i is trial, j is channel, k is sample
2: Sample without replacement Xa

i1,j,k and Xb
i2,j,k for class a and b respectively where i1 =

i2
3: for all sliding windows of 5 samples (latency) or electrodes at window of interest

(topography) do
4: extract features from Xi1,Xi2
5: Premute and merge both classes and generate labels Y
6: for i=0, loop until i >= 20 do
7: Split to training and testing datasets
8: model = trainSvm(Xtrain,Ytrain)
9: Run MonteCarloBootstrap(model,Xtest ,Ytest)

10: i = i + 1
11: end for
12: end for
13: function MONTECARLOBOOTSTRAP(model,X,Y)
14: Accuracies = model.predict(X) == Y
15: for i = 0, loop until i >= 1000 do
16: meanAccuracies[i] = mean(sampleWRep(Accuracies))
17: end for
18: return confInt(meanAccuracies,95), mean(meanAccuracies)
19: end function
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Initially, an approach utilizing a multitude of features in combination with a feature

selection algorithm was used. From each dataset, the following features were calculated:

power spectral density (PSD), cross power spectral density (CPSD), autocorrelation, cross-

correlation, kurtosis, skewness, and mean. These features were originally calculated on

larger windows of 50 samples to increase the frequency resolution. Features were gener-

ated for each trial to form N matrices of dimensionality T x F where N was the number

of conditions, T was the number of trials, and F was the number of features. Features

were passed through the mutual information based feature selection algorithm minimum

redundancy maximum relevance (mRMR) which selects non-redundant features that max-

imize the difference between the two classes (Peng et al., 2005). mRMR is a supervised

method as it has access to class labels within the training set. The feature selection al-

gorithm required the discretization of the input data. Following recommendations of the

original author, data were divided to 5 bins as follows: below 2 SDs of the data, between 2

SDs and 1 SD below mean, between 1 SD below and 1 SD above the mean, between 1 SD

and 2 SDs above the mean, higher than 2 SDs above the mean. This process was applied

to the training set where 50 features are selected to maximize differences between classes

(calculated on testing set).

This, however, proved to be processing-heavy and didn’t offer a significant improve-

ment over smaller subsets of features. Several runs were made on different feature com-

binations where the fastest, highest scoring combination was to be used for later analysis.

The finalized features comprised the amplitude values for the given samples, their mean,

variance, kurtosis, and skewness. All further analyses and results discussed in the present

thesis were done utilizing only those 4 feature types. After feature extraction was com-

pleted, the two tensors corresponding to the two analyzed conditions were each split into
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a training and testing set. A training (testing) set contained an equal number of observa-

tions from each condition and was comprised of 70(30)% of observations from the original

dataset.

As the main goal of this study was to formulate a difference detection automated algo-

rithm, improving accuracy ratings beyond the point of significance was not the main focus.

Therefore, intricate methods that require considerable attention to hyperparameter and de-

sign were discarded for a simpler and more robust alternative. The classifier used for the

present thesis was the support vector machine (SVM). The MATLAB version of libsvm

library (version 3.12) was used. The linear SVM was used with the cost parameter set to

1. The training set was passed to the classifier as a matrix N of dimensions O×F where

Fi was the feature vector of an observation Oi. After training was completed, the testing

set was passed through the generated model for label prediction. The labels predicted were

then assessed as presented in depth in the next section. This process (dataset split, train-

ing, prediction, and validation) was run 20 times where all values were averaged post loop

completion. The repetition of the above procedure was in place to ascertain that a particular

random split of the training/test sets did not erroneously bias the results.

2.5 Validation Methods

2.5.1 Pre-analysis permutation and randomization

A certain degree of bias in an analytical process can be introduced by maintaining the same

ordering of observations. For instance, if a machine learning algorithm is always given

the same training set, the goal of improving accuracies becomes finding a set of hyperpa-

rameters, algorithms, and features that work exactly for that ordering to yield an increase
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in model efficiency. Since a researcher normally runs the data through a pipeline several

times, this bias increases considerably. To counteract that, several permutation points were

added before major analysis nodes. This is prominent in three parts: choosing trials in

cases of condition skewness, averaging trials to form new observations, and dividing the

dataset into testing and training sets. The first occurs when there is a mismatch between

the number of observations in the two classes. For instance, in an MMN study the number

of standard trials are outnumbered by the number of deviants; this is a requirement for the

ERP to be elicited. To maintain an equal number of observations for each class, the domi-

nant class is randomly sampled without replacement for the number of observations in the

smaller class. Undergoing that process strengthens the generalization of results as there is

a higher chance of including more of the captured data in the analysis. Secondly, when

averaging multiple trials to form individual observations, bias can ensue due to time-driven

effects. For example, a subject might show stronger P300 responses in the beginning of an

experiment in contrast to near the end; averaging randomly ordered trials counteracts that

bias. The last works to eliminate bias given by constant splits of the data at arbitrary points

and providing a higher chance that an observation is seen both as a training point and as a

testing point in different iterations.

2.5.2 Monte Carlo bootstrapping

In order to assess the effectiveness of a model in discerning the difference between two

conditions, there needs to be a measure that is robust to random variation in results. This

need is accentuated by the many comparisons and models being trained on the different

time windows, electrodes, and trial aggregations, which increase the likelihood of both

type I and II errors. The approach taken was to use Monte Carlo bootstrapping on each
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of the trained models to generate both a mean value over multiple label predictions, and

confidence intervals which serve as the link to traditional statistical significance in the

present thesis.

This method follows closely what Ramkumar et al. (2013) utilized in validating the

results of machine learning applications on MEG data.The validation submodule takes a

learned model, and a testing set. It initializes by generating the predictions of the model

given the training data and comparing them with the labels generating a binary vector of

correctly vs. incorrectly classified observations. It then proceeds to sample with replace-

ment from the binary vector another vector equal in length and averages it to form a single

mean accuracy. This process is repeated 999 times where all means are later observed

and the 95% confidence intervals are calculated. By definition, if the confidence intervals

do not overlap with chance level, a significant difference has been found. Moreover, it is

possible to compare these intervals with data portions that are known not to contribute to

meaningful signals as a confirmatory check during processing time.
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Chapter 3

Results

3.1 Coarticulatory violation

Two different runs of this dataset through the pipeline were carried out. The first cor-

responded to dividing the data into the two main conditions, congruent and incongruent

coarticulation, disregarding the effects of specific vowels or consonants. Differences be-

tween the two conditions were minimal and barely visible in the grand average (see figure

3.5). In this analysis, the data was split where each half contained all remaining trials (after

preprocessing) for all subjects. The run yielded no significant differences between the two

conditions as a whole.

The second run had the two classes constrained by either the consonant or vowel in a

stimulus word. Since the number of significant results was small in comparison with all

possible sub-conditions, only significant, or near-significant results, are discussed in detail.

No difference in signal was detected when constraining the dataset by vowels. This was

characterized by accuracy confidence intervals that overlap, sometimes completely, through

the post-stimulus interval with ones from the pre-stimulus presentation period. That was
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Figure 3.5: Brain responses to congurent and incongruent stimuli in the coarticulation
violation paradigm for all consonant and vowel types. Equal number of trials for each
condition was sampled and then averaged across all subjects to form the grand averages
displayed. Trials extend from 200 ms before stimulus onset to 1000 ms after. Due to space
constraints and for ease of visibility, only the medial line electrodes of Fz, Cz, and Pz are
plotted.
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Figure 3.6: Brain responses to congurent and incongruent stimuli in the coarticulation vio-
lation paradigm constrained to the words beginning with the /p/ consonant. Equal number
of trials for each condition was sampled and then averaged across all subjects to form the
grand averages displayed. Trials extend from 200 ms before stimulus onset to 1000 ms
after. Due to space constraints and for ease of visibility, only the medial line electrodes of
Fz, Cz, and Pz are plotted.
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Figure 3.7: Brain responses to congurent and incongruent stimuli in the coarticulation vio-
lation paradigm constrained to the words beginning with the /t/ consonant. Equal number
of trials for each condition was sampled and then averaged across all subjects to form the
grand averages displayed. Trials extend from 200 ms before stimulus onset to 1000 ms
after. Due to space constraints and for ease of visibility, only the medial line electrodes of
Fz, Cz, and Pz are plotted.
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# of trials per observation Mean % Upper bound % Lower bound %

Single 55.05 61.54 48.56

Two 54.68 63.89 45.59

Four 60.43 73.05 47.64

Eight 59.16 77.41 40.83

Sixteen 69.51 91.92 45.38

Table 3.1: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs intensity deviant) in the coarticulatory violation
dataset constrained by the consonant /p/ at the highest time point close to the PMN region:
184 ms post stimulus onset. Results are reported for all five averaging settings.

# of trials per observation Mean % Upper bound % Lower bound %

Single 54.84 60.02 49.58

Two 56.21 63.51 48.88

Four 62.88 73.04 52.26

Eight 59.67 74.05 44.64

Sixteen 66.2 84.29 46.9

Table 3.2: Mean accuracies, and their 95% confidence intervals, of the learned model
in predicting the correct class (congruent vs incongruent) in the coarticulatory violation
dataset constrained by the consonant /t/ at the highest time point pertaining to the PMN
region: 238 ms post stimulus onset. Results are reported for all five averaging settings.
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also manifest in confidence intervals crossing random chance. Since the temporal aspect of

the signal showed no accuracy peaks, the topographical step was omitted.

When constraining by the type of consonant, \t\ showed a significant accuracy peak

in the 230 ms post-stimulus onset region (see figure 3.7 and 3.8 for grand average and

analysis results, respectively). No other peaks showed a significant difference to baseline

or chance level. The peak was observed to be more negative in the coarticulatory violation

(incongruent) condition in comparison to correct-spliced words (congruent). The bump in

accuracy can be seen in single trial analysis, but the confidence intervals fail to rise above

chance level. As the number of averaged trials per observation rises, the accuracy rises

to significance (see table 3.2). The effect on accuracy of the increased trials-averaged per

observation can be seen in figure 3.9.

The /p/ sound showed a visible difference between the two conditions when inspecting

the grand averages (see figure 3.6). This difference was not significant according to the

framework proposed in this thesis (figure 3.8). The visually observable difference is ar-

gued to have dissipated after the reduction of trials to an equal number per condition. The

effect of randomly sampling trials followed by averaging to form observations is shown in

figure3.9. It can be argued that a signal is observed in the averages-of-eight run, but the

confidence intervals cross the 50% boundary (see table 3.1). The constant increase in accu-

racy with increased averaging, failing in larger averages due to the variance caused by low

number of total observations, provides evidence to suggest that a larger dataset can result

in a positive result. In other words, the present framework’s conservative approach is likely

to have been responsible for a false negative in this particular sub-condition analysis.
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Figure 3.8: Differences between elicited brain responses to congruent and incongruent
deviant tones in the coarticulation violation paradigm constrained to words starting with
the consonant /t/. Accuracies obtained from classification of sliding windows across time
(abscissa) between both conditions are shown as the blue plot corresponding to the left
axis. The shaded region corresponds to the 95% CIs as reported by the Monte Carlo boot-
strapping submodule. The red plot’s ordinate corresponds to the right axis and displays
the difference of the Cz electrode between responses to incongruent and congruent vowel
sounds’ grand averages. The accuracy maximum corresponding to the PMN is analyzed
topographically to generate the topography plot of electrode accuracies (in %).
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Figure 3.9: The accuracy of correctly classifying between congruently and incongruently
-spliced words starting with the /t/ consonant in the coarticulatory violation paradigm. The
five curves show accuracies using the proposed methods across the 5 different averaging
settings.
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Figure 3.10: Differences between elicited brain responses to congruent and incongruent
deviant tones in the coarticulation violation paradigm constrained to words starting with
the consonant /p/. Accuracies obtained from classification of sliding windows across time
(abscissa) between both conditions are shown as the blue plot corresponding to the left
axis. The shaded region corresponds to the 95% CIs as reported by the Monte Carlo boot-
strapping submodule. The red plot’s ordinate corresponds to the right axis and displays
the difference of the Cz electrode between responses to incongruent and congruent vowel
sounds’ grand averages. The accuracy maximum corresponding to the PMN is analyzed
topographically to generate the topography plot of electrode accuracies (in %).
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Figure 3.11: The accuracy of correctly classifying between congruently and incongruently
-spliced words starting with the /p/ consonant in the coarticulatory violation paradigm. The
five curves show accuracies using the proposed methods across the 5 different averaging
settings.

54



M.Sc. Thesis - Rober Boshra McMaster - Neuroscience

3.2 Mismatch negativity

Since the paradigm involved 3 different types of deviants, the algorithm was run separately

for each against standard tones. Grand averages for all conditions exhibited visually iden-

tifiable responses as seen in figure 3.12. In the latency analysis, all three types of deviants

showed significant intervals around both the MMN and the N100 ERP regions compared to

the standard condition. Additionally, another region of significance manifested around the

200 ms region and was identified as the P200. The difference waves between responses to

deviants and standard tones as recorded by the Cz electrode, chosen for visualization due

to its central head position, can be seen as the red plots in figures 3.17, 3.13, and 3.15.

Results from the latency analysis on deviant responses are shown in figures 3.17, 3.13,

and 3.15. The blue curves correspond to the accuracies of models generated using features

extracted from 6 consecutive samples (corresponding to approximately 47 ms). The ab-

scissa for the curve corresponds to the initial time of a particular window and extends to

the full window length for feature extraction. The shaded region surrounding the curve cor-

responds to 95% CI of accuracies when classifying between the two conditions (classes).

The blue plot is taken from the average of 4 trials run for consistency across the present the-

sis; a larger number would cause accuracy saturation (almost 100%) for some comparisons,

while lesser trial average would not show a significant difference for others. Confidence

intervals for topographies are not included in the the aforementioned plots for visual sim-

plicity. It is important to note that the MMN dataset contains four times the trials present in

the P300 dataset due to the difference in number of presented stimuli. This is expected to

cause more stability over higher trial-averages and smaller confidence intervals in general.
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Figure 3.12: Brain responses to the four types of stimuli in the MMN paradigm. Equal
number of trials for each condition was sampled and then averaged across all subjects to
form the grand averages displayed. Trials extend from 200 ms before stimulus onset to
1000 ms after. Due to space constraints and for ease of visibility, only the medial line
electrodes of Fz, Cz, and Pz are plotted here.
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Figure 3.13: Differences between elicited brain responses to standard and frequency de-
viant tones in the MMN paradigm. Accuracies obtained from classification of sliding
windows across time (abscissa) between both conditions are shown as the blue plot cor-
responding to the left axis. The shaded region corresponds to the 95% CIs as reported
by the Monte Carlo bootstrapping submodule. The red plot’s ordinate corresponds to the
right axis and displays the difference at the Cz electrode between grand averaged responses
to frequency deviants and standard tones. The accuracy maxima corresponding to the P2
and MMN are analyzed topographically to generate the right and left topography plots of
electrode accuracies (in %), respectively.

3.2.1 Frequency deviants

For the frequency deviant, significant accuracy peaks manifested at the expected latencies

corresponding to the the MMN and a later positive-going signal as seen in figure 3.13.

In further discussion of this positive wave, it was identified as the P200. Reasons for

identifying it as the P200, as opposed to the P300, are discussed in detail in the next chapter.

Accuracies for trial averages at the maximal points detected for these two ERPs can be seen

in tables3.4 and 3.3.

The results of the five different trial-averaging approaches can be seen in figure 3.14.
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Figure 3.14: The accuracy of correctly classifying a frequency deviant from a standard tone
trial in the MMN dataset using the proposed methods and showing the differences across
the 5 different averaging settings.
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# of trials per observation Mean % Upper bound % Lower bound %

Single 61.53 63.92 59.12

Two 66.14 69.36 62.84

Four 71.4 75.78 66.88

Eight 77.46 83.13 71.55

Sixteen 83.47 90.51 75.96

Table 3.3: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs frequency deviant) in the MMN dataset at the
highest time point pertaining to the P200 region: 246 ms post stimulus onset. Results are
reported for all five averaging settings.

# of trials per observation Mean % Upper bound % Lower bound %

Single 60.79 63.21 58.39

Two 64.07 67.37 60.75

Four 70.11 74.53 65.59

Eight 77.51 83.13 71.67

Sixteen 82.4 89.47 74.6

Table 3.4: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs frequency deviant) in the MMN dataset at the
highest time point pertaining to the MMN region: 137 ms post stimulus onset. Results are
reported for all five averaging settings.
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# of trials per observation Mean % Upper bound % Lower bound %

Single 73.18 75.33 71

Two 79.78 82.53 76.95

Four 88.87 91.85 85.73

Eight 92.93 96.18 89.17

Sixteen 97.68 99.8 94.62

Table 3.5: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs duration deviant) in the MMN dataset at the highest
time point pertaining to the P200 region: 254 ms post stimulus onset. Results are reported
for all five averaging settings.

For visual clarity the CIs were omitted in the plot where only the mean accuracies are re-

ported for each curve. It can be noted that the signal is clearly detected starting from the

single-trial approach, albeit with considerably small accuracies. Accuracies grow system-

atically until their maximum at the average-of-16 trials run.

Results show the two peaks as equal identifiers for class differences as accuracies match

at around 61%. The polarity of the first peak can be confirmed as negative using the red

curve, while the second peak is shown as positive in the difference wave. Note that a rise in

accuracy (blue curve) at a particular point in time does not indicate an ERP at that particular

point; however, it indicates that a difference between the conditions has been detected in the

38 ms window following that point. Concretely, a rise in accuracy (blue curve) is expected

before the respective increase in amplitude (either negatively or positively) in the difference

wave (red curve).
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Figure 3.15: Differences between elicited brain responses to standard and duration deviant
tones in the MMN paradigm. Accuracies obtained from classification of sliding windows
across time (abscissa) between both conditions are shown as the blue plot corresponding to
the left axis. The shaded region corresponds to the 95% CIs as reported by the Monte Carlo
bootstrapping submodule. The red plot’s ordinate corresponds to the right axis and displays
the difference at the Cz electrode between grand averaged responses to duration deviants
and standard tones. The accuracy maxima corresponding to the P2 and MMN are analyzed
topographically to generate the right and left topography plots of electrode accuracies (in
%), respectively.
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Figure 3.16: The accuracy of correctly classifying a duration deviant from a standard tone
trial in the MMN dataset using the proposed methods and showing the differences across
the 5 different averaging settings.
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# of trials per observation Mean % Upper bound % Lower bound %

Single 70.79 72.96 68.57

Two 77.13 79.98 74.2

Four 83.82 87.32 80.09

Eight 87.72 92.06 83

Sixteen 94.3 98.28 89.32

Table 3.6: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs duration deviant) in the MMN dataset at the highest
time point pertaining to the MMN region: 160 ms post stimulus onset. Results are reported
for all five averaging settings.

3.2.2 Duration deviants

Duration deviants produced comparable responses to the ones corresponding to frequency

with a slight shift in latency observed in both accuracy and difference waves (figure 3.15).

Brain responses to deviants were discernible from those to standard tones at the MMN

peak with 84% accuracy when four trials averaged into each observation. The P200 proved

to also contain differentiating features across the two conditions with accuracies matching

and in some cases surpassing those seen for the MMN.

Similar to other conditions, accuracies showed a constant growth when increasing the

number of trials averaged per observation with an increase in certainty as observed by

smaller confidence intervals (see figure 3.16). Accuracies across the duration deviant

showed the highest classification rates in the MMN dataset. The detailed results for both

peaks of interest across the five averaging settings can be seen in tables 3.5 and 3.6.

Topographically, the MMN had a central distribution with lateral extension not unlike

the frequency deviant’s (see topography on the left in figure 3.15). Training on single
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Figure 3.17: Differences between elicited brain responses to standard and intensity deviant
tones in the MMN paradigm. Accuracies obtained from classification of sliding windows
across time (abscissa) between both conditions are shown as the blue plot corresponding to
the left axis. The shaded region corresponds to the 95% CIs as reported by the Monte Carlo
bootstrapping submodule. The red plot’s ordinate corresponds to the right axis and displays
the difference at the Cz electrode between grand averaged responses to intensity deviants
and standard tones. The accuracy maxima corresponding to the P2 and MMN are analyzed
topographically to generate the right and left topography plots of electrode accuracies (in
%), respectively.

electrodes in the fronto-central region attained accuracies between 75-80% . The P200 peak

showed a left, central distribution as can be seen in topography on the right (figure3.15).

3.2.3 Intensity deviants

The intensity deviants for the MMN dataset, not unlike the P300’s, offered the least dis-

tinction in responses evident in lower accuracies across all runs. The latencies of both

accuracy peaks were analogous to those found in the frequency deviants (see figure 3.17).
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Figure 3.18: The accuracy of correctly classifying a intensity deviant from a standard tone
trial in the MMN dataset using the proposed methods and showing the differences across
the 5 different averaging settings.
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# of trials per observation Mean % Upper bound % Lower bound %

Single 61.05 63.43 58.65

Two 63.65 66.94 60.33

Four 68.78 73.29 64.22

Eight 75.03 81.02 68.86

Sixteen 80.02 87.63 71.79

Table 3.7: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs intensity deviant) in the MMN dataset at the highest
time point pertaining to the P200 region: 231 ms post stimulus onset. Results are reported
for all five averaging settings.

# of trials per observation Mean % Upper bound % Lower bound %

Single 60.39 62.8 57.99

Two 64.66 67.97 61.3

Four 70.72 75.12 66.17

Eight 77.24 82.83 71.16

Sixteen 83.28 90.15 75.86

Table 3.8: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs intensity deviant) in the MMN dataset at the highest
time point pertaining to the MMN region: 106 ms post stimulus onset. Results are reported
for all five averaging settings.
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A consistent growth in accuracy was observed as the number of trials averaged per obser-

vation increased; however, both peaks of interest did not attain accuracies perceived for

other deviants (see figure 3.18).

The topographies of both peaks show a spread across the scalp tending towards the

fronto-central region as seen in both topographies in figure 3.17. Accuracies based on

single electrodes were considerably closer to chance level than for other conditions. Mean

accuracies and confidence intervals for both peaks can be seen in tables 3.7 and 3.8.

3.3 Attentional P300

Three latency analyses were run on the P3 dataset corresponding to comparisons between

each deviant and standard tones. All three of these comparisons yielded peaks correspond-

ing to ERPs expected after presentation of the P3 paradigm stimuli. The grand averages for

deviants are plotted in figure 3.19 with standard tones over the three medial line electrodes:

Fz, Cz, and Pz. The three ERPs expected in this paradigm (N100, MMN, and P300) can be

seen across the head with slightly varying amplitudes and latencies. The difference waves

given by subtracting responses to standard tones from the deviants, corrected for an equal

number of averaged trials, are also presented as the red curves in figures 3.22, 3.20, and

3.24.

Since the P300 is considered to be a robust ERP, the number of trials in this paradigm

was low (compared to the MMN dataset). This was accentuated by the progressively

smaller training/testing sets being used with each iteration of averaging, reducing the num-

ber of observations by a factor of two each. As this is a direct cause for increased variance

across different runs of the pipeline, the confidence intervals provided by the Monte-Carlo

bootstrapping algorithm are especially important for this dataset’s analysis.
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Figure 3.19: Brain responses to the four types of stimuli in the attentional P300 paradigm.
Equal number of trials for each condition was sampled and then averaged across all subjects
to form the grand averages displayed. Trials extend from 200 ms before stimulus onset to
1000 ms after. Due to space constraints and for ease of visibility, only the medial line
electrodes of Fz, Cz, and Pz are plotted here.
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Figure 3.20: Differences between elicited brain responses to standard and frequency de-
viant tones in the P300 paradigm. Accuracies obtained from classification of sliding win-
dows across time (abscissa) between both conditions are shown as the blue plot correspond-
ing to the left axis. The shaded region corresponds to the 95% CIs as reported by the Monte
Carlo bootstrapping submodule. The red plot’s ordinate corresponds to the right axis and
displays the difference at the Cz electrode between grand averaged responses to frequency
deviants and standard tones. The accuracy maxima corresponding to the N200 and P300
are analyzed topographically to generate the left and right topography plots of electrode
accuracies (in %), respectively.

For all deviant types, an early negative component was detected that was slightly de-

layed compared to MMNs from the previous dataset with similar topographies. An initial

categorization as late MMNs was discarded for reasons discussed in detail (see chapter 4).

In this section, all instances of the early negativity will be referred to as N200s.

3.3.1 Frequency deviants

Brain responses to the frequency deviants show a spread of the early negativities (figure

3.20). The P300 component shows similar amplitude with a slight delay of around 25 ms
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Figure 3.21: The accuracy of correctly classifying a frequency deviant from a standard tone
trial in the P300 dataset using the proposed methods and showing the differences across the
5 different averaging settings.
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# of trials per observation Mean % Upper bound % Lower bound %

Single 71.52 75.68 67.26

Two 75.32 80.84 69.57

Four 84.88 91.17 77.91

Eight 85.38 93.91 75.59

Sixteen 97.28 100 92.04

Table 3.9: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs frequency deviant) in the P300 dataset at the high-
est time point pertaining to the P300 region: 316 ms post stimulus onset. Results are
reported for all five averaging settings.

# of trials per observation Mean % Upper bound % Lower bound %

Single 65.96 70.31 61.46

Two 72.51 78.25 66.62

Four 77.3 84.71 69.32

Eight 80.87 90.55 70.18

Sixteen 87.02 97.96 73.52

Table 3.10: Mean accuracies, and their 95% confidence intervals, of the learned model
in predicting the correct class (standard vs frequency deviant) in the P300 dataset at the
highest time point pertaining to the N200 region: 152 ms post stimulus onset. Results are
reported for all five averaging settings.
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compared to the duration deviant’s. The analysis modules discussed in this thesis were

able to detect two main components corresponding to two time regions. This is observable

by an increase in accuracy as the sliding window approaches these regions of signal dif-

ference. The peaking accuracies are at 152, 316 ms with polarities negative, and positive,

respectively, as observed in the difference wave in figure 3.20.

A detailed look into the originating patterns in classification, when using the different

number of trials per average, can be observed in figure 3.21. As expected, noise increases

as the number of aggregations increases peaking at the average of 16 trials per observation

run. As the signal to noise ratio in each observation rises, as expected from averaging,

accuracies exhibit significant increases as well. Most importantly, the plot shows that even

single-trial analysis of the P300 frequency deviants shows mean accuracies above 70%. On

the other extreme end, averaging 16 trials for each observation was able to yield above 95%

mean accuracy. Mean accuracies for each detected ERP component, along with their 95%

confidence intervals, can be seen in tables 3.10 and 3.9.

Single-electrode analysis at the peaks of interest yielded the topography maps shown

in figure 3.20. The earlier negative waveform is shown to have been elicited centrally with

slight lateral extensions on both sides. The other map, corresponding to the P300, shows a

fronto-central topography peaking in the Fz region.

3.3.2 Duration deviants

By visual inspection of the duration deviant difference waveform, 2 peaks can be identified:

a 200 ms negativity, and a 300 ms positivity. The primary ERP observed in this experiment

was the P300 and is seen to be close to a 10 µV difference between the two conditions at

Cz. The negative early peak lies in the range of the MMN/N2b. The two observable ERPs
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Figure 3.22: Differences between elicited brain responses to standard and duration deviant
tones in the P300 paradigm. Accuracies obtained from classification of sliding windows
across time (abscissa) between both conditions are shown as the blue plot corresponding
to the left axis. The shaded region corresponds to the 95% CIs as reported by the Monte
Carlo bootstrapping submodule. The red plot’s ordinate corresponds to the right axis and
displays the difference at the Cz electrode between grand averaged responses to duration
deviants and standard tones. The accuracy maxima corresponding to the N200 and P300
are analyzed topographically to generate the left and right topography plots of electrode
accuracies (in %), respectively.
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Figure 3.23: The accuracy of correctly classifying a duration deviant from a standard tone
trial in the P300 dataset using the proposed methods and showing the differences across the
5 different averaging settings.
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# of trials per observation Mean % Upper bound % Lower bound %

Single 78.59 82.36 74.7

Two 83.71 88.41 78.79

Four 91.44 96.22 86.06

Eight 95.82 99.55 90.73

Sixteen 98.34 100 95.37

Table 3.11: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs duration deviant) in the P300 dataset at the highest
time point pertaining to the P300 region: 285 ms post stimulus onset. Results are reported
for all five averaging settings.

# of trials per observation Mean % Upper bound % Lower bound %

Single 74.78 78.73 70.68

Two 80.96 86.02 75.73

Four 87.84 93.45 81.42

Eight 92.61 98.41 85.18

Sixteen 99.25 100 97.78

Table 3.12: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs duration deviant) in the P300 dataset at the highest
time point pertaining to the N200 region: 199 ms post stimulus onset. Results are reported
for all five averaging settings.
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are robustly detected by the ML analysis as can be seen in Figure 3.22 where accuracies

are displayed taking the average of four trials as one observation. While duration deviants

show a delayed negative peak, the P300 response in the grand average is shown to arise

at exactly 300 ms post stimulus presentation; this shows an earlier brain response time

compared to the other two deviants in this dataset.

The duration deviant provided the highest accuracies in both MMN and P300 datasets.

This is especially notable in the incremental rise of classification accuracy as the number

of averaged trials increases (see figure 3.23). Duration deviants elicited a salient P300

response with more than 90% classification accuracy on average of four trial runs and

above (see table 3.11). Additionally, the detected N200 peak offered comparable, in some

cases higher, accuracies as can be seen in table 3.12. It is important to note that compared

to the slightly weaker robustness of the N200 peak in response the other deviant types, the

duration deviant counterpart was as salient as the P300.

In terms of topography, the two observed peaks where analyzed as outlined in the meth-

ods chapter yielding two topography maps for the N200 (left), and P300 component (right)

as seen in figure 3.22. The ability to discern the deviant from the standard at the early neg-

ative peak showed a fronto-central distribution that extends laterally to both sides. Features

extracted from single electrodes in the middle of that region yielded up to 85% accuracy on

the average of four run. The P300 component offered a strong fronto-central topography

reaching 90% accuracy for observations constituting four trials each.

3.3.3 Intensity deviants

As can be seen in figure 3.24, the intensity deviant offered the lowest accuracies compared

to the other deviants. The waveform was very similar to that of the frequency deviant’s, but
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Figure 3.24: Differences between elicited brain responses to standard and intensity deviant
tones in the P300 paradigm. Accuracies obtained from classification of sliding windows
across time (abscissa) between both conditions are shown as the blue plot corresponding
to the left axis. The shaded region corresponds to the 95% CIs as reported by the Monte
Carlo bootstrapping submodule. The red plot’s ordinate corresponds to the right axis and
displays the difference at the Cz electrode between grand averaged responses to intensity
deviants and standard tones. The accuracy maxima corresponding to the N200 and P300
are analyzed topographically to generate the left and right topography plots of electrode
accuracies (in %), respectively.
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Figure 3.25: The accuracy of correctly classifying a intensity deviant from a standard tone
trial in the P300 dataset using the proposed methods and showing the differences across the
5 different averaging settings.
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# of trials per observation Mean % Upper bound % Lower bound %

Single 65.16 69.51 60.63

Two 68.7 74.77 62.52

Four 77.13 84.82 68.98

Eight 78.81 88.91 67.73

Sixteen 91.31 99.44 80.37

Table 3.13: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs intensity deviant) in the P300 dataset at the highest
time point pertaining to the P300 region: 340 ms post stimulus onset. Results are reported
for all five averaging settings.

# of trials per observation Mean % Upper bound % Lower bound %

Single 64.68 69.06 60.18

Two 65.84 72.03 59.68

Four 71.26 79.27 62.55

Eight 73.42 84.55 61.55

Sixteen 75.86 90.74 59.54

Table 3.14: Mean accuracies, and their 95% confidence intervals, of the learned model in
predicting the correct class (standard vs intensity deviant) in the P300 dataset at the highest
time point pertaining to the N200 region: 160 ms post stimulus onset. Results are reported
for all five averaging settings.
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had small amplitudes overall in Cz with a 1.5 µV smaller P300, and a 1 µV smaller MMN.

Furthermore, latencies were also homologous to their frequency deviant counterparts.

Addition of trials to averages per observation offered a consistent increase in accuracy

(figure 3.25). Accuracies corresponding to the two peaks of interest were significantly

lower for the N200 as seen in tables 3.13 and 3.14. This, however, was more apparent in

the higher averages as the N200 had higher variance and lower mean accuracy compared

to the P300.

The topographical analysis of the earlier peak of interest yielded a distribution similar

to that elicited by the two other deviants. It can be clearly seen that the signal is much

weaker than its counterparts in the other conditions as apparent by the low accuracies (see

figure 3.24). The P300 shows a more spread signal topography and a drop in accuracy for

average of four trial classification on single electrodes compared to other deviants.
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Chapter 4

Discussion

Analysis of the three datasets using the proposed machine learning framework has shown

results that both correlate with the literature, and shed light on aspects of ERP waveforms

that are not normally analyzed. Although the relevance of the detected information is not

within the focus of the present thesis, a discussion on the inferences from the data are

included as an example for later application of the framework to other studies.

4.1 Dataset inferences

4.1.1 Coarticulatory Violation

The framework of analysis discussed in the present thesis was least efficient when dealing

with this dataset. Utilizing the entire dataset as a 2-class classification problem yielded no

results. Constraining observations to particular expected vowels, initial consonants, or both

highlighted only one positive finding. The accuracy peak corresponding to the detected

ERP in the incongruent condition while constraining the dataset to words beginning with
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the /t/ sound is seen to correspond to the PMN (Connolly and Phillips, 1994). Accuracy

peaks at the window starting 238 ms post-stimulus onset placing the detected signal at the

characteristic PMN latency region. The consonant sound /p/ offered comparable results

which did not pass the significance threshold. The peak detected in the /p/ constraint was

also relatively early to be identified as a PMN.

Note that when constraining to the /t/ sound, all vowel combinations are left intact in

the data. It can be postulated that certain vowel sounds and combinations can be more

discernible, mirroring consonant differences, and possibly resulting in a stronger ERP re-

sponse when sufficient constraints are enforced; however, the data provided had a limited

number of trials that were spread across all subconditions. Constraining by both vowel and

consonant left the dataset with trials too limited in number to proceed with the analysis

pipeline. In general, the lack of distinction between the two classes when constraining by

all but one consonant sound can correspond to either of the following: 1) the framework’s

limitation when dealing with a relatively small ERP, and a low number of trials, 2) the PMN

was not consistently generated across trials/subjects in this study. Further experimentation

with the dataset using the pipeline and using direct analogies of results yielded by classical

statistical methods is required to reach an understanding of the results.

4.1.2 Mismatch Negativity

As expected, the differences between responses to each deviant and standard tones included

a negative peak corresponding to the MMN topography and latency (Todd et al., 2008).

These findings were characterized by a significant increase in the classification accuracy

between a deviant and the standard condition as the sliding window approached 150-175

ms post stimulus onset. Latency was delayed for the duration deviant, consistent with
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results also found by Todd et al. (2008). Polarity of these accuracy peaks were confirmed

to be negative by visual inspection of the difference waves for each relevant comparison.

It was not determined whether the peak identified as the MMN is solely composed of

that ERP. Changes in the features of the higher frequency tone, compared to the standard,

is expected to change the elicited N100; thus, increased differentiability between the two

conditions is expected to arise from sources other than the endogenous ERP (see Näätänen

et al., 2005, Näätänen and Picton, 1987). A separate condition where the high frequency

tone is used as a standard was not included in the paradigm, consequently a conclusion

cannot be directly formulated on the contribution of each component. The same argument

applies for the other two deviants.

Another ERP was found 100 ms following the MMN for each of the deviants. Inspec-

tion of the difference waves indicated its positivity. The ERP was found to be as salient

to the distinction between deviant and standard trials as the MMN. The ERP was initially

identified as the P200, as opposed to the P300; however, in depth discussion of several

complications to that categorization is discussed below in the next section. Notably, the

positivity is not found in the original study of the MMN paradigm (Todd et al., 2008).

Results indicated robust findings that match the expected MMN response with its re-

spective latencies and topographies. Different deviant types produced distinguishable dif-

ferences in the ERP waveform (Alho, 1995, Näätänen and Picton, 1987). Most notably,

the intensity deviant elicited a weaker response compared to its counterparts. This was as-

sumed to be due to the difference between the deviant and the standard tone being hard to

distinguish for some subjects. That was later confirmed by examination of the behavioral

responses, to the same intensity-deviant tones, in the P300 dataset.
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It is important to reiterate that four of the participants exhibited averages that had posi-

tivities around the 300 ms region indicating a likely elicitation of P3as in some of the trials.

No measures were taken during preprocessing to filter those participants out to conform to

the robustness criterion of the method in cases where some confounding variables cannot

be avoided. This inclusion, however, has undoubtedly affected the results for the MMN

dataset unfavorably. Concretely, the supervised ML approach takes a passed label (de-

viant, for instance), as the truth value. If these labels are not correct, then the performance

of the algorithm deteriorates due to both training on wrong examples, and/or erroneously

counting a correctly-classified, mislabeled observation as incorrect.

4.1.3 P300

The P300 dataset offered the most robust responses that in turn had the highest classification

accuracies among other datasets discussed in the present thesis. This was expected due to

the ERP’s robustness, large amplitude, and low intra-subject variance Polich (2007).

In terms of the P300 latency, all three deviants elicited peaks at the 300 ms region.

Differences in latency across different sites were not analyzed in depth; however, visual

inspection of figure 3.19 shows comparable latencies. Amplitudes and consistencies varied

slightly across deviants: responses to duration deviants being the largest and most easily

detectable, frequency deviants showing slightly smaller responses, and intensity deviants

eliciting smaller, higher variance responses. Topography of the P300 response was evi-

dently fronto-central, providing strong evidence against the elicitation of the posterior P3b.

On inspection of prior literature, it can be argued that this type of response was due to the

lack of a memory role in the cognitive processing of the participants (Polich, 2007). The

only tone in memory was the standard one, anything deviating from that norm was regarded
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as a different stimulus, and thus followed by the appropriate behavioral response.

The earlier negative response offered latencies similar to peaks elicited by the MMN

paradigm across all conditions, although being consistently delayed. An initial postulation

that these peaks correspond to elicited MMN was later invalidated. While it was possible

to attribute that delay to variance, the consistency by which all peaks (see figure 3.19)

have been shifted is unlikely to be random. Comparison with results from the study by

Näätänen et al. (1982) provided evidence suggesting the negativity to be an N2b. Näätänen

and associates have shown that the two components in the N200 region can be dissociated

into both the MMN and the N2b; an ERP that is closely tied with the P3a and showing a

similar fronto-central topography. Further discussion of this issue is presented in the next

section.

Contrary to hypotheses, higher intensity tones did not provide comparable results to the

other two deviant sounds. A possible hypothesis is that the difference in loudness between

the standard and the intensity deviant was not consistently detected by the participants.

This could either be due to inter or intra -participant variability which requires further

single-subject analysis.

While the number of trials per subject and condition was comparatively low to that

found in MMN dataset, classification accuracies between a P300-producing deviant and

standard tones were high; frequency (duration) deviant trials were distinguishable at above

70% (80%) accuracy in the single-trial runs. The small number of trials, however, affected

the variance of the results. Confidence intervals for each of the analyses run on this dataset

were larger than their counterparts in the MMN dataset.
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4.1.4 Salience of the Duration Deviant

Upon inspection of the two datasets where the duration deviant tone was presented as a

stimlus, it can be noted that responses have similar characteristics (see figures 3.15, 3.22).

This is especially important given that the other two deviants had different responses cross-

paradigm. This raises the issue of whether the peaks observed in the grand averages, and

detected by the proposed framework, correspond to the same ERPs; essentially conveying

that for this deviant type, participant attentiveness did not factor in eliciting ERP compo-

nents.

Concretely, there are four notable observations that can be seen in the data: 1) responses

to the duration deviant in the MMN paradigm showed a positive peak similar, although

smaller in size, to the one in the P300 paradigm, 2) a double-peaked negativity can be seen

in the MMN region for both paradigms and especially for the P300 one (see figures 3.19,

3.12), 3) the early negative peaks detected in the P300 paradigm for both frequency and

intensity deviant responses were less consistent compared to their respective P300 peaks,

and 4) responses were most consistent to duration deviants for both paradigms.

These observations were found to coincide with data reported by Näätänen et al. (1982).

The study compared elicited brain responses through mismatch with a standard tone by

three types of deviants: proximal higher frequency, proximal lower frequency, and ex-

tremes of high frequency. Results for when participants were asked to attend to the stimulus

and respond to a type (or all) of deviant(s) were reported. Moreover, the same stimuli were

used in an inattentive paradigm where participants read a book during stimulus presenta-

tion. Although sound features and tasks differed, the extremes from Näätänen et al. (1982)

elicited very similar responses to what can be seen for duration deviants. For the inattentive

part of the experiment, a bimodal negativity was elicited by the extremes followed by a later
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positivity identified as the P3a. These peaks increased in amplitude when participants were

asked to actively detect deviants. Additionally, the bimodal negativity and P3a elicitation

during inattentiveness were attenuated, sometimes completely, for the proximal deviants in

the paradigm. These results follow closely the observations highlighted above, suggesting

a particular salience of the duration deviant and relating it to the extreme stimuli. The com-

parable results also suggest that what has been identified as the generic N200, is an N2b.

Additionally, the positive peak elicited by the duration deviant in the MMN paradigm can

be argued to be an attenuated P3a, as opposed to the exogenous P200. Hence, it can be

argued that it was difficult for participants to disregard duration deviants during the MMN

paradigm.

Classification of the P200 peak for the two other deviants in the MMN paradigm re-

mains uncertain. In contrast to the unimodal P200 peak, the N200 peak in the P300

paradigm elicited by both the intensity and frequency deviants was spread across time and

small in amplitude. Categorization of that peak to either the MMN or the later N2b was not

pursued; however, proximal deviant results from Näätänen et al. (1982) and the accuracy

plateaus spanning both ERP time regions (see figures 3.20, 3.24) suggest the overlap of the

two components.

4.1.5 Mismatch Negativity and the N100

As can be observed in both P300 and MMN experiments, the MMN elicited due to the

presentation of the duration deviants are slightly delayed compared to the two other types.

This can be attributed to the deviant tone being longer. In order for an observer to recognize

that the tone is longer than its standard counterpart, one whole duration of the standard tone

(50 ms) needs to pass in addition to a variable number of milliseconds that depends on a
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subject’s delay in perception of duration. That hypothesis is supported by comparing the

MMN waveform in figures 3.15, 3.22 to 3.20, 3.24, 3.13, and 3.17. It can be observed

that the timing for the peaks being compared are both within the region for both the N100

and the MMN. An assumption that the difference being detected is only a resultant of the

MMN component is simply not true as the N100 is affected directly by the features of the

sounds being presented Näätänen and Picton (1987). Thus, a clear identification of either

ERP component and its role in signal disparity between two conditions is not attainable,

limited by both the experiment design and utilized methods.

Since the stimuli are identical in features until the 50 ms mark for both the standard and

duration deviant conditions, the comparison between the two signals should yield a dispar-

ity which only highlights the MMN (Näätänen et al., 2005); however, it can be argued that

the tone still being presented at 50 ms (extending for 50 more milliseconds) would play a

role in the addition of an exogenous component on top of the developing MMN. The ex-

ogenous effect is expected to be comparable to sustained potentials highlighted by Picton

et al. (1978). However, since comparisons in that study were done across drastically differ-

ing tone lengths, an accurate estimate is difficult. If the sustained potential is assumed to

be relatively small, compared to the MMN and the onset N100, the expected elicited signal

would be an N100 of comparable characteristics to the standard response overlayed on a

delayed MMN. A more in-depth study of the underlying response can include subtracting

the standard tone responses from the duration deviants’ and delaying the result by 50 ms.

The produced signal should hypothetically correspond to the isolated MMN with a slight

negative shift corresponding to the short sustained potential. That analysis was not within

the scope of the present thesis and thus was left for future work.

88



M.Sc. Thesis - Rober Boshra McMaster - Neuroscience

4.1.6 P3a vs P200

Analysis done on the MMN dataset showed a consistent positive peak that arose in deviant

conditions after the component identified as the MMN. The latency of the positive com-

ponent categorize it as either the P3a (homologous to the P300 dataset), or the exogenous

P200. The dissociation between the two components, or lack thereof, can then be estab-

lished by the similarities between the peaks arising at the characteristic latency across the

two datasets. While a complete dissociation and categorization of the component to one of

the two ERPs would be the optimal outcome, another proposition is the possible overlap of

the two to form the detected peak.

Upon inspection of the accuracy and difference waveforms, it is apparent that the pos-

itive peaks show different characteristics, especially for frequency and intensity deviants

(see figures 3.13 vs 3.20, 3.15 vs 3.22, and 3.17 vs 3.24). For frequency and intensity

deviants, the elicited positive peaks were more than 50 ms earlier in the MMN dataset

compared to their counterparts in the P300 dataset. While this early latency has been ob-

served in P3a literature (see Polich, 2007), different elicitation latencies for the same ERP

(P3a) are difficult to explain given the identical stimuli across the two datasets. Inspection

of topography shows a distinction between the two positive peaks elicited by the frequency

deviants. This topography effect, however, is not observable for the other two deviants.

These differences are seen to provide evidence suggesting the dissociation between the

positive components elicited by frequency and intensity deviants across the two datasets;

P3a responses are found in the P300 dataset, P200s are elicited or emitted in the MMN

dataset.

Contrary to the differences observed for the intensity and frequency deviant responses,
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duration deviants elicited comparable waveforms across the two datasets. Following the ar-

guments discussed in subsection 4.1.4, it is postulated that the salience of duration deviants

was homologous to the extremes in Näätänen et al. (1982); thus eliciting a P3a even during

inattentiveness.

4.2 Future directions and uses

The present thesis discussed a basis for approaching EEG/ERP analysis in semi-automation

utilizing ML and validation utilities. Efficiency and accuracy of the framework in the de-

tection of ERPs was presented using 3 sample datasets. It was demonstrated that using

minimal apriori knowledge, detailed descriptions of ERPs found in a dataset can be ex-

tracted using the three criteria focused on by the framework: consistency, latency, and

topography. The capability of ML techniques in dealing with the high-dimensionality in-

herent in EEG was further confirmed by achieving high classification accuracies on both

small trial averages, and single trials.

There are, however, many limitations and constraints that prevent the proposed tech-

niques from being a full valid replacement for traditional methods. This section highlights

several direct uses of the framework, in addition to future upgrades that would increase its

suitability to a variety of research questions and industrial applications.

4.2.1 Class extension

A two class constraint was put on the data for all possible comparisons. While this was

possible on the three datasets previously discussed, there are many instances where that

falls short of analysis requirements. For instance, interactions between conditions and
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other independent variables are hard to analyze given the skeleton structure of the pipeline

discussed here. Moreover, consider the P300 dataset previously discussed, data was always

split to a pair of classes (standard and one type of deviant). If the researcher required

comparisons between each possible pair of conditions, a direct application of the proposed

framework would generate (4−1)! = 6 different models with their separate three measures

giving 18 items of information that reduce result clarity significantly as class comparisons

overlap.

An intuitive resolution to this issue would be to replace basic binary class SVMs with

multi-class versions. While this appears a trivial refactoring of classifier submodules, com-

plications would arise. For instance in the P300 example, some conditions will be similar

(intensity and frequency deviants) henceforth significantly reducing the overall accuracy of

an inclusive model and contributing to an increase in type II errors.

4.2.2 ERP alterations through time

A main strength of the proposed analysis design was its capability of ERP detection utiliz-

ing a small number of trials. A traditional analysis design treats the average of a subject’s

trials as one data point (for every channel and condition). This approach is undertaken to

increase the SNR significantly in exchange for the loss of finer details across the duration of

an experiment (see chapter 1 for more details). This loss can be circumvented considerably

by utilizing the suggested analysis pipeline.

The development of ERPs throughout an experiment can be extracted by the addition

of a module encompassing all current ones, splitting a dataset through elapsed time during

an experiment. This new module can extract the required information in one of two ways:

1) checking for differences between two conditions in the discretized time-regions, and 2)
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comparing the deviant condition in the local time-split to a global ERP shape. The first

will serve to highlight the progress of the cognitive processing without particular focus on

a particular ERP which can be especially beneficial in exploratory studies; for instance,

the change of coma patients’ responses to stimuli through time. The second would be

more appropriate in the study of particular ERP and their progress as the same stimuli

are presented repeatedly to participants; a study of how the P300 changes under fatigue

conditions, for example.

It is important to note that the idea of observing ERPs through a continuous time period

is not new. On the contrary, this is the basis on which most current BCI algorithms work

(Krusienski et al., 2006, Wolpaw and McFarland, 2004, Blankertz et al., 2004). Other

methods were also developed following that approach both for diagnostic purposes and

ERP-specific research (see Armanfard et al., 2016, Fallgatter et al., 1997).

4.2.3 Time-series specialization

Current used submodules implement methods that were not developed with time-series

signal analysis as a goal application. This limitation was handled by assuming that samples

can be treated and analyzed in isolation from others along the time axis of a given EEG

trial. Although utilizing this simplification allowed for fast analysis time, there are two

main aspects this pipeline fail to address.

Firstly, the current iteration of the method offer no insight on the interactions between

components that interact across time. For instance, in a hypothetical case where the N1-

P2 complex has strong interactions with a late ERP (400 ms post-stimulus onset as an

example), a generated model would only be able to capture the relevance of the earlier

component(s) in isolation. A “smarter” method would be able to extract information about
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the entire waveform as a whole, and hence, uncovering a more intricate layer of inter-

component interactions within conditions.

Stemming from the first point, a main drive for delegating intricate datamining proce-

dures to automated learning machines is for the machine to solve the problem as a whole.

An expert in the field employing, in some cases, arbitrary discretization boundaries is by no

means an optimal solution but merely one in favor of practicality. This is analogous to is-

sues that arise in traditional EEG/ERP methods where arbitrary windows are taken around

ERPs in question as preprocessing in order to perform analyses of variation. An excellent

example of how a novel statistical modeling method, namely generative additive models,

has managed to offer more information on the data can be found in Meulman et al. (2015).

Two main propositions arise when trying to resolve the aforementioned issues. 1) Ap-

plication of deep learning on entire trials where the network would be complex enough to

capture possible correlations and interactions across both time, and location (electrodes).

2) Abandoning the entire approach of trial segmentation and utilizing time-series-specific

algorithms that excel at recognizing trends in continuous data, mostly the long-short-term-

memory network (Hochreiter and Schmidhuber, 1997, Davidson et al., 2007). While of-

fering a continuous time interface is beneficial to EEG/ERP analysis, it must be noted that

a main criterion for choosing the correct method needs to account for global sequences in

time and not just their local shapes; an ideal model should be able to differentiate between

two different ERPs with similar shapes and polarities while being given no information

about stimulus onset time.
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4.2.4 Single-subject grading

The proposed method was created to handle a dataset as a whole with no restrictions or

information gathered on smaller entities, aside from two compared conditions. This is an

issue when handling datasets with multiple conditions, as discussed in an earlier subsection.

More importantly, it does not allow for direct inter-subject comparisons. This problem is

two fold: firstly, the current way of measuring component consistency and jitter comes as a

percentage value representing the accuracy of discerning two experimental conditions. This

does not lend itself to other forms of comparisons where two subjects have both: a lower

number of trials for a proper analysis, and a possible variance in latency needing proper

statistical constraints to test for significance. The other issue stems from the fact that there

is no clear indication of what a specific accuracy truly means aside from comparing it to

the baseline’s.

For instance, assume a sufficiently large number of trials is present for two subjects per

condition in a particular dataset. Given that we know one of the two subjects is a healthy

control (HC), how is it possible to compare the non-control (NC) to the HC’s results? A

trivial state would be if the NC shows no significance peaks, while the HC does. However,

complications arise if both subjects show significance but on different accuracy ranges; how

much difference would be due to a true effect, and which would be attributed to variance?

Moreover, in cases where it is not a subject’s component amplitude that differs in accuracy,

but the latency at which the accuracy peak manifests, it would also not be clear if the

change proves significant. Mainly, collapsing several trials to a couple of datapoints for

comparisons needs to be done in properly designed manner that does not discard useful

information in the process and provides a clear indication of how different two subjects, or

a subject and a population, are.
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4.2.5 Domain extension of output units

Due to resource constraints, many research projects are often limited to analysis of data ei-

ther constrained by either a small number of subjects or few acquisition repetitions. This is

often justified due to experimental design choices which limit experiments to strictly cross-

section or longitudinal designs. While this is a well-suited approach for self-contained

studies, there have been movements towards making datasets freely available on online

repositories for further analyses, aggregation into studies with wider scopes, and tackling

different hypotheses. A main obstacle when dealing with such a varied group of datasets,

is that analysis techniques are at a risk of failing to capture information that generalizes

well. This is a primary focus of using traditional statistics to generate inferences that can

be replicated given another sample of data. While the field of statistics has defined formal

structures for generalization, which also often fail, a pure machine learning approach can

not directly be claimed to be the same. Measures of significance captured by the proposed

framework can be justifiably proven to show signals that are empirically different. How-

ever, a complete dissociation between a difference detected due an underlying brain signal,

as opposed to bias caused by recording error for instance, is lacking.

A preliminary step in generalization of the knowledge, is confirming the ability to apply

models learned from a set of participants to others which have not been involved in model

creation. A direct application of attaining this generalization would come in the form of di-

agnostic tools which are capable of extracting a participant’s brain response to certain types

of stimulus and comparing them to a previously collected response dataset (condensed to a

learned model).

Generalization is also important for intra-subject variability. For example, a partici-

pant’s state can greatly affect recorded responses. A subject’s level of consciousness, prior
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hours of sleep, fatigue, and age are some of these factors. Other facets of variance are

session-related. A subject’s data can be different across different sessions due to surround-

ing noise, electrical interference, or different hardware setups. The goal of extending the

generalization capabilities is to attain a level of abstraction of the data that is automatically

computed and which transforms a given EEG signal to an invariant form, less affected by

session/participant -specific features.
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Chapter 5

Conclusions

In the present thesis, a semi-automated analysis framework of EEG/ERP datasets has been

presented. The method utilizes a modular pipeline centered on machine learning theory

and algorithms. Validation approaches are implemented to ensure correctness of provided

results, corrected for numerous runs of each submodule on a given dataset. The framework

was applied on three EEG/ERP datasets that were recorded as parts of other independent

studies. The framework was shown to provide clear indication of the consistency, topogra-

phy, and latency of each ERP expected in each of the corresponding datasets. The pipeline

outlined by the framework provides the aforementioned ERP component features while re-

quiring minimal human-expert intervention. The compelling results reported on each of the

discussed datasets demonstrate the capabilities of the analysis scheme; moreover, enhance-

ments to the framework, outlined in chapter four, can be directly used in basic, industrial,

and clinical research with both ERP and EEG methodologies.
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