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Abstract

In this dissertation, I explore a variety of methods for the econometric anal-

ysis of firm-level production data. Three distinct approaches are considered,

namely i) proxy variable methods of controlling for unobservable productivity,

ii) data envelopment techniques for estimating the boundary of a production

set, and iii) stochastic frontier methods for estimating the productive ineffi-

ciency of firms. Much of the focus is on semiparametric and nonparametric

estimators that allow for a highly flexible specification of the function that

relates input combinations to output quantities.

After a brief introductory chapter that outlines the theme and objectives

of this dissertation, in the second chapter, I propose a semiparametric method

of estimating a Cobb-Douglas model of firm-level production in which the elas-

ticity coefficients can be functions of both continuous and discrete predictors.

I show that the varying-coefficient method is better able to reflect the hypoth-

esized relationship between factor elasticities and their corresponding input

expenditure shares than the constant-coefficient partially linear alternative.

Using plant-level data from the Colombian manufacturing sector, I provide an

empirical example in which the elasticity of output with respect to capital and

labour can vary by industry and across different time periods. In this setting,

the contribution of unskilled labour to final output diminishes over time, which
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brings about an overall decline in estimated returns to scale.

In the third chapter, I propose a robust nonparametric estimation proce-

dure for deterministic frontier models with a count output variable. It exhibits

minimal sensitivity to outliers without resorting to aggressive data trimming

that tends to have an overreaching effect on non-extreme-valued observations.

The estimator’s favourable performance is primarily attributable to its use

of a novel trimming parameter selection routine that combines k-means and

hierarchical clustering techniques. Evidence from a Monte Carlo experiment

suggests that both the nonsmooth and the smooth versions of the proposed

estimator give rise to a better fit of the frontier function than existing robust

data envelopment methods. I conclude with an empirical example that uses

historical patent count data from the U.S. manufacturing sector to estimate

the efficiency of firm-level R & D spending.

In the fourth chapter, I outline a nonparametric estimation procedure for

stochastic production frontier models for panel data, making it possible to de-

compose firm-level inefficiency into a persistent and a time-varying component.

Existing approaches tend to rely on a simple linear specification of the frontier

function, but this can give rise to imprecise estimates of i) the frontier itself,

ii) factor elasticities, and iii) firm-level inefficiency. In contrast, the method

that I propose dispenses with parametric assumptions vis-a-vis the functional

form of the frontier and the distribution of inefficiency, thereby avoiding some

of the potentially adverse consequences of model misspecification. It is shown

that the kernel-based method is better able to account for heterogeneity in

production technology that exists across firms and over time. A test for first-

order stochastic dominance suggests that the nonparametric framework often

iv



yields estimates of firm-level inefficiency that are uniformly lower than those

obtained by following the parametric approach.

In the fifth chapter, my co-authors and I consider whether a fairly well-

established empirical relationship between liberalized trade and firm produc-

tivity growth is sensitive to the choice of an identification strategy for produc-

tion function estimation. We estimate the productivity of Colombian manufac-

turing plants using the methods of Levinsohn and Petrin (2003), Ackerberg,

Caves, and Frazer (2006), and Gandhi, Navarro, and Rivers (2016), and at

times come to surprisingly different conclusions about the country’s experience

with trade policy reform during the 1980s. Results from a quantile regression

model and a productivity growth decomposition exercise tend to vary as we

experiment with different specifications of the production function. Research

that is concerned with the short and medium-term impact of trade liberaliza-

tion on domestic manufacturing industries should therefore pay close attention

to issues of robustness to alternative strategies for estimating the productivity

of firms. Finally, in the sixth chapter, I recapitulate the central methodologi-

cal insights that are offered in this dissertation, and provide some concluding

remarks that sum up the overall implications of my research.
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Chapter 1

Introduction

Econometric models of firm-level production are one of the foundational tools

of modern empirical research in economics. While neoclassical production the-

ory provides a rich analytical framework to better understand the input and

output decisions of firms, putting its propositions into practical use with real-

world data presents a number of interesting opportunities and challenges for

the applied statistician. Hence this dissertation explores a variety of methods

for the econometric analysis of firm-level production data, with a particular

focus on semiparametric and nonparametric approaches. It offers new method-

ological insights pertaining to the estimation of the most salient aspects of

firms’ production technology, while generally avoiding parametric assumptions

about the nature of the statistical relationship between input combinations

and output quantities. Each of the empirical techniques that is proposed is

typically illustrated by means of a Monte Carlo simulation in which its finite-

sample performance is contrasted with that of alternative approaches that have

been adopted previously in the economics literature. In addition, each of the

econometric routines that is presented is reinforced by an applied example that
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involves firm-level data from the manufacturing sector.

There exist three broad categories of models of firm-level production, each

of which has its own dedicated chapter in this thesis. Control function meth-

ods introduced by Olley and Pakes (1996) and Levinsohn and Petrin (2003)

use proxy variables to control for firm productivity which is modeled as an

unobservable residual from an equation that relates input combinations to

output quantities. This type of approach is ideally-suited for models of pro-

duction that are subject to simultaneity bias whereby the unobservable pro-

ductivity of firms tends to influence their input decisions, which can lead to

biased estimates of the marginal importance of certain factors of production

(Marschak and Andrews, 1944; Griliches and Mairesse, 1995). Deterministic

frontier analysis originates in the work of Farrell (1957), Charnes, Cooper, and

Rhodes (1978), and Deprins, Simar, and Tulkens (1984), and is concerned with

estimation of the boundary of a production set, which is defined as the col-

lection of technologically-feasible input-output combinations. In this setting,

the objective is to identify the maximum attainable output quantity for any

particular choice of inputs, and then to compute the productive inefficiency of

each firm as its output shortfall vis-à-vis the frontier. In practice, data envel-

opment methods can be used to estimate the boundary of the production set

for a sample of firms. On the other hand, a stochastic frontier doesn’t nec-

essarily need to envelop every observation in the data. In this type of model,

which was first explored by Aigner, Lovell, and Schmidt (1977) and Meeusen

and van den Broeck (1977), the distance that separates a firm’s realized out-

put and the production frontier is not uniquely attributable to inefficiency;

it is assumed that part of the deviation stems from unexplained variation in

2
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output that might be due to either random noise or measurement error. Thus,

a central challenge is to extract the inefficiency component of the convoluted

error term after the frontier function has been estimated.

If there is a single unifying theme to be found in the four chapters that

make up the main body of this dissertation, it is the importance of statistically

robust estimation of models of firm-level production. From this perspective,

robust econometric methods for the analysis of firm data tend to satisfy two

criteria, among others: first, they are applicable to a broad range of speci-

fications of the production model, not just one. Parametric approaches do

not, in general, meet this requirement because they rely on a somewhat rigid

characterization of the production set, factor elasticities, returns to scale, and

the productive efficiency of firms. Hence it is often preferable to adopt a more

robust semiparametric or nonparametric framework that allows for greater

flexibility in these and other respects. The second robustness criterion per-

tains to an estimator’s sensitivity to outliers. Extreme-valued observations

can be quite problematic in the context of production frontier modelling, since

the objective is to estimate a function that envelops the set of feasible output

quantities for any given input combination. Given that traditional methods of

frontier estimation are unduly influenced by outliers, it can be quite beneficial

to follow a more robust approach that is resistant to anomalies in the data.

While these two robustness criteria for models of firm-level production have

received quite a bit of attention in the econometrics literature, they are not

always given adequate consideration in applied research settings. In this dis-

sertation, I draw attention to some of the aberrant outcomes that one might

encounter when dealing with models that are built on erroneous functional

3
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form assumptions or with data that is compromised by measurement error,

and show how these complications can be avoided when conducting empirical

research on the productivity of firms.

In Chapter 2, I propose a semiparametric varying coefficient estimation

procedure for production functions that use a proxy variable to control for

unobservable productivity. I draw attention to a difficulty that can arise when

applying the standard framework of Cobb and Douglas (1928) to situations

where there is intra-industry heterogeneity in factor payments as a share of

firm revenue. In particular, the log-linearized Cobb-Douglas production func-

tion tends to treat the elasticity of output with respect to each of the factors

of production as a fixed parameter, even though the corresponding input ex-

penditure’s share of revenue is almost never the same for all firms. Thus, the

traditional parametric approach cannot be considered robust to different spec-

ifications of the factor elasticities in the model of firm-level production. In

contrast, the semiparametric estimator that is offered as an alternative treats

factor elasticities and returns to scale as flexible functions of mixed data type

predictors that vary across firms, industries, or time periods, which yields

greater consistency with standard theories of firm behaviour as it relates to

input decisions. This estimation procedure is especially useful in a panel data

context, where the researcher might suspect that the production technology

of a certain industry has undergone significant changes over time. Under this

scenario, one can apply local weighting to the elasticity coefficient estimator

based on the value of a discrete or a continuous time variable, which will allow

for intertemporal heterogeneity in the function that relates factors of produc-

tion with firm-level output.

4
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In Chapter 3, I outline a framework for robust nonparametric estimation of

deterministic production frontiers for count data. As mentioned earlier, fron-

tier models of the deterministic variety assume that all observed input-output

combinations in a sample of firms are enveloped by the boundary of the pro-

duction set, and consequently, they are often not robust to the presence of

outliers in the data. Building on previous work by Cazals, Florens, and Simar

(2002), Aragon, Daouia, and Thomas-Agnan (2005), and Martins-Filho and

Yao (2008), who make use of data trimming procedures to either reduce or

eliminate the standard frontier estimator’s sensitivity to extreme-valued ob-

servations, I propose a novel approach to data trimming parameter selection

that relies on hierarchical clustering as a means of distinguishing robust fron-

tier estimates from those that are driven by a handful of outliers. The robust

production frontier is based on the distribution of order-one conditional out-

put quantile estimates for a large number of resampled subsets of observations

in the data. One of the interesting features that distinguishes this particular

methodological discussion from the ones that appear in the other chapters is

its focus on the special case of an output variable that is expressed as a dis-

crete count, rather than a continuous quantity. The analysis of count data in a

frontier modelling context offers many interesting possibilities, since there are

a number of industries where it is more realistic for the empirical researcher to

assume that the output of firms has been drawn from a discrete distribution.

In Chapter 4, I delineate a fully nonparametric method of estimating

stochastic frontier models for panel data, and contrast its characterization

of the output frontier and the productive efficiency of firms with that of Hesh-

mati and Kumbhakar’s (1995) linear parametric framework. The functional

5
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form and distributional assumptions that underlie the parametric method are

closely scrutinized, and it appears that model misspecification is a very real

concern. For instance, as mentioned earlier, stochastic frontier estimation in-

volves a deconvolution problem whereby the productive inefficiency of firms

must be distinguished from the random noise component of the model. In

a parametric or semiparametric framework, this requires assumptions about

their respective densities so that they can be estimated using a maximum like-

lihood approach once an expression for the convoluted error term has been

formulated. Amsler, Schmidt, and Wang (2011) propose two goodness-of-fit

tests that can help determine whether these density functions have been cor-

rectly specified, and in the context of the example that is considered in the

present study, two of the most common distributional assumptions that are

found in the literature are frequently rejected by the data. Therefore, the

parametric stochastic frontier model for panel data isn’t really robust to alter-

native specifications of the convoluted error’s density, which suggests that a

different methodology for the estimation of firms’ productive inefficiency might

be preferred.

Chapter 5, which is co-authored with Pau S. Pujolàs and César Sosa-

Padilla, sheds light on an empirical inconsistency that can complicate analyses

of productivity growth during periods of policy reform. We consider three sep-

arate identification strategies for the estimation of production functions that

have been proposed in the literature - the “control function” methods of Levin-

sohn and Petrin (2003) and Ackerberg, Caves, and Frazer (2006), and the more

recent nonparametric approach of Gandhi, Navarro, and Rivers (2016) - and

assess whether our estimates of firm productivity exhibited similar dynamic

6
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behaviour following a trade policy liberalization episode in Colombia during

the 1980s. The empirical analysis is motivated by the theoretical propositions

of Melitz (2003), who shows that opening up to trade strengthens productivity

overall via reallocation of resources from inefficient to efficient firms and mar-

ket exit (entry) on the part of unproductive (productive) firms. Surprisingly,

we find that our conclusions about how these different channels contributed

to productivity growth after trade policy reform are quite dependent on our

chosen identification strategy for estimation of each firm’s production func-

tion. This suggests that in applied research, if the objective is to study how

firms or industries might have responded to a change in the policy environ-

ment, it is important to verify whether one’s results are robust to alternative

specifications of the production-related variables that appear in one’s model.

Securing access to reliable microdata is one of the most significant chal-

lenges faced by academic researchers who are interested in studying produc-

tivity at the firm-level. Detailed information on firms’ investment in capital

goods, employment of different forms of labour, and consumption of interme-

diate inputs such as raw materials and energy is generally only collected by

means of a government-sponsored industrial census, and this data is almost

never made available to the public at large. Fortunately, given that this disser-

tation’s primary focus is on the pursuit of methodological rigour rather than

uncovering fundamental truths about a particular industry in a single geo-

graphic region,1 using the most up-to-date proprietary/confidential firm-level

datasets to illustrate new econometric techniques offers little in terms of added

1While the focus of Chapter 5 is methodological in the sense that it highlights how al-
ternative specifications of the production function can lead to different conclusions about
whether a policy reform has encouraged productivity growth, it may nevertheless be con-
sidered an exception to this claim.
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value. The empirical example at the end of Chapter 3 is based on patent count

data from the U.S. manufacturing sector in 1975-1979 that first appeared in

Hall, Griliches, and Hausman (1986), and that is now publicly-available as part

of a computational exercise in the textbook of Cameron and Trivedi (2013).

Meanwhile, the econometric methods that are explored in Chapters 2, 4, and 5

are implemented using data from a 1981-1991 census of manufacturing plants

in Colombia that was first put together by Mark J. Roberts and James R.

Tybout, and that has been made available to me by Kim J. Ruhl and Pau S.

Pujolàs. The reader should be aware that there is substantial overlap in the

preliminary data summaries that are provided in these three chapters of the

thesis.

The semiparametric and nonparametric estimation strategies that are de-

scribed in Chapters 2 through 4 make heavy use of kernel methods. Hayfield

and Racine’s (2008) np package and Racine and Nie’s (2014) crs package

in the R statistical computing environment are an indispensable resource for

this type of analysis, insofar as they provide user-friendly routines for carrying

out locally-weighted regression, kernel estimation of conditional distribution

functions, and consistent hypothesis testing. The np package’s generalized

kernel summation function is also an invaluable tool, to the extent that it

greatly facilitates programming of new semiparametric and nonparametric es-

timation procedures that do not have an already-defined command in R. In

addition, wherever the processing capabilities of a consumer laptop have been

insufficient to perform this project’s most computationally-intensive empirical

tasks, the resources of the Shared Hierarchical Academic Research Computing

Network (SHARCNET) have made these workloads a lot more manageable.
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The R code that is used to implement the various estimation routines that are

outlined in this dissertation is available from the author upon request.
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Chapter 2

Semiparametric estimation of a Cobb-

Douglas production function with vary-

ing elasticity coefficients

2.1 Introduction

Methodological developments in the estimation of firm-level production func-

tions have featured prominently in economic research for nearly a century.

The continued importance that has been attached to this area of inquiry since

the seminal work of Cobb and Douglas (1928) is unsurprising given its nu-

merous applications in both micro- and macroeconomic modelling. However,

a problematic feature of the conventional Cobb-Douglas specification is its

somewhat dubious characterization of factor elasticities. Specifically, factor

elasticities are treated as fixed parameters that do not exhibit any intertem-

poral or intra-industry variation, but this is incompatible with the substantial

heterogeneity of firm-level input expenditure shares that is often observed in

real-world data. This chapter seeks to develop a more flexible empirical frame-
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work that addresses this shortcoming.

Much of the econometric literature relating to the estimation of firm-level

production functions has centered on the attenuation of ‘simultaneity bias,’

which can arise when firms’ input decisions are influenced by unobserved pro-

ductivity realizations (Marschak and Andrews, 1944; Griliches and Mairesse,

1995). Special attention has been given to dynamic panel data methods (Arel-

lano and Bond, 1991; Blundell and Bond, 1998, 2000) and proxy variable

approaches (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg,

Caves, and Frazer, 2006; Wooldridge, 2009). However, these empirical tech-

niques fail to consider any variation in factor shares across firms and over

time by treating their corresponding Cobb-Douglas elasticities as constant.

Of course, one way to rectify this apparent contradiction is to dispense with

rigid parametric specifications of firm-level input-output models. For instance,

Gandhi, Navarro, and Rivers (2016) have sketched out a framework for the

identification and estimation of production functions in a nonparametric set-

ting. This avenue of research holds promise insofar as nonparametric and

semiparametric econometric techniques have generally not received much at-

tention in the literature.

The present chapter shows how semiparametric varying coefficient meth-

ods can be used to estimate a Cobb-Douglas production function with highly

flexible factor elasticities, which allows the researcher to abandon some of

the restrictive assumptions that have hindered previous methodological ap-

proaches. Most importantly, the proposed framework makes it possible to

obtain elasticity estimates that follow similar patterns of variation as their

theoretically-analogous input expenditure shares, which represents an impor-
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tant innovation in the literature. Varying coefficient models have proven popu-

lar among statisticians and econometricians since they constitute somewhat of

a “middle ground” between fully parametric and fully nonparametric specifi-

cations. This class of estimators originates in the work of Hastie and Tibhirani

(1993) and Chen and Tsay (1993), and can be implemented using either spline

methods (Huang, Wu, and Zhou, 2004; Lee, Mammen, and Park, 2012) or ker-

nel weighting (Li, Huang, Li, and Fu, 2002; Cai and Li, 2008; Li and Racine,

2010). Many of the key theoretical developments in this area of semiparamet-

ric modelling are discussed in Park, Mammen, Lee, and Lee (2015).

The remainder of this chapter is structured as follows: Section 2.2 out-

lines the semiparametric estimation procedure for a Cobb-Douglas production

function with varying elasticity coefficients, while Section 2.3 provides an em-

pirical example that makes use of a plant-level dataset from the Colombian

manufacturing sector. Section 2.4 presents the results of a Monte Carlo exper-

iment that assesses the proposed estimator’s finite sample performance, while

Section 2.5 concludes.

2.2 Varying elasticity coefficients in a Cobb-Douglas set-

ting

Consider a logarithmic transform of a Cobb-Douglas production function:

yit = xitβ + witγ + vit + eit, (2.1)

where yit is the natural log of firm i’s value-added output in period t, xit is the

natural log of a vector of quasi-fixed inputs, wit is the natural log of a vector of
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variable inputs, vit is the firm’s (unobservable) total factor productivity, and

eit is a random disturbance term whose mean conditional on current and past

inputs is equal to zero. The vectors β and γ, which the econometrician would

like to estimate, denote the elasticity of output with respect to the quasi-fixed

and variable inputs, respectively. For ease of comparison, (2.1) is expressed in

the same notation that appears in Wooldridge (2009). Of course, one of the

assumptions that is implied by the functional form of (2.1) is that production

technology, as reflected by the elasticity parameters β and γ, is homogeneous

among all firms and across all time periods. In panel datasets that comprise

firms with diverse characteristics, however, this level of inflexibility in the elas-

ticity parameters can potentially be problematic.

Elementary microeconomic theory of the firm suggests that factor elastic-

ities and input expenditure shares ought to be closely related. If the variable

input prices that correspond to the d-dimensional vector wit = (w1it, ..., wdit)

are denoted by pw1 , ..., pwd , and if the price of the final good is denoted by py,

then the first-order conditions governing the firm’s input decisions yield the

following identity:

γwj =
pwjWjit

pyYit
j = 1, ..., d, (2.2)

where the right-hand side of each of the identities in (2.2) is easily interpreted

as the ratio of variable input expenditures to total revenue (lower-case and

upper-case letters indicate that a variable is being expressed in log and level

form, respectively). It is worthy of note that equation (2.2) points to a po-

tential inconsistency between standard theories of firm behaviour on the one

hand, and much of the econometric literature dealing with the estimation of

production functions on the other. In particular, unless one assumes that the
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ratios
pwjWjit

pyYit
remain fixed across all plants and over all time periods, in em-

pirical applications, it does not make much sense to estimate the elasticity

coefficients γw1 , ..., γwd as constant parameters.1 In the light of the possibility

that firm-level production technology is more heterogeneous than previously

assumed, it might be advisable to make a small modification to the functional

form of (2.1):

yit = xit · β (zit) + wit · γ (zit) + vit + eit, (2.3)

where β and γ are now functions of the vector zit that can include a mix-

ture of continuous and discrete data.2 Specifically, let zit = (zcit, z
u
it, z

o
it) =(

zc1,it, ..., z
c
q,it, z

u
1,it, ..., z

u
r,it, z

o
1,it, ..., z

o
s,it

)
denote a q + r + s-dimensional vector

that consists of q continuous, r unordered discrete, and s ordered discrete

variables that encapsulate industry, time, and firm-specific characteristics.

An important consideration that has been discussed at length in the empir-

ical industrial organization literature, and one that will affect the identification

of β (zit) and γ (zit) in (2.3), is the influence that the unobservable productivity

term vit likely has on the firm’s choice of its period-t variable input quantity

wit. Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al.

(2006), and others have shown that one way of dealing with this challenge is

to use a vector of proxy variables, mit, that are observable in the data and

strictly increasing in vit, holding xit fixed. For instance, the entries in mit

might include investment, as in Olley and Pakes (1996), or consumption of

intermediate inputs (raw materials, energy, etc), as in Levinsohn and Petrin

1Of course, it is possible to argue that price-cost markups are responsible for any dis-
crepancy that is observed between the time-invariant elasticity parameters and their cor-
responding input expenditure ratios. This possibility is not considered here, although the
interested reader may consult Kilinc (2014).

2It is assumed, however, that zit, xit, and wit do not have any overlapping elements.
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(2003). The intuition that underlies this approach is rather straightforward:

for a given quantity of quasi-fixed inputs, more productive firms tend to be

more profitable, and hence they have more reason to invest in the expansion

of their capital stock. Similarly, firms who are more productive are ceteris

paribus able to produce more output; as a result, they tend to require greater

quantities of raw materials and energy. In what follows, we adhere to the same

procedure that is delineated in Wooldridge (2009), who expresses the vector

of proxy variables as a function of the period-t state variables and the unob-

servable productivity term mit = m (xit, vit). Moreover, given the assumption

that the entries in mit are strictly increasing in vit, holding xit fixed, the func-

tion m (xit, ·) is invertible. Let the function g (xit,mit) = m−1 (xit, vit) denote

the inverse of m (xit, vit). The unobservable productivity term vit can then be

expressed as a function of the vector of quasi-fixed inputs and the vector of

proxy variables:

vit = g (xit,mit) , (2.4)

where the functional form of g (·) has not yet been specified in a parametric

sense.

In addition to (2.4), it is typically assumed in the production function

literature that firm productivity follows a first-order Markov process:

vit = E (vit|vit−1) + ait

= f (vit−1) + ait,

(2.5)

where ait denotes the unanticipated component of firm i’s productivity in

period t and once again, the functional form of f (·) is not parametrically-
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specified. Therefore, by combining (2.5) and (2.4), it is possible to re-express

the production function in (2.3) as:

yit = xit · β (zit) + wit · γ (zit) + f [g (xit−1,mit−1)] + ait + eit. (2.6)

Note that (2.6) is the varying coefficient counterpart of equation (2.9) in

Wooldridge (2009).

2.2.1 Estimation strategy

Even though (2.6) bears a close resemblance to Robinson’s (1988) partially

linear model, it cannot be estimated using the standard semiparametric re-

gression approach because 1) the elasticity coefficients β and γ are not fixed

parameters, and are instead functions of the vector zit, and 2) wit is not in-

dependent of ait. Nevertheless, as a first step in estimating (2.6), one can

follow a similar approach to that of Robinson (1988) and take the conditional

expectation of yit:

E (yit|xit−1,mit−1, zit) = E (xit|xit−1,mit−1, zit) · β (zit)

+ E (wit|xit−1,mit−1, zit) · γ (zit) + f [g (xit−1,mit−1)] ,

(2.7)

where (2.7) makes use of the fact that E (ait + eit|xit−1,mit−1, zit) = 0. Sub-

tracting (2.7) from (2.6) then yields the following:

ỹit = x̃it · β (zit) + w̃it · γ (zit) + ait + eit, (2.8)
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where (2.8) uses the notational convention ỹit = yit − E (yit|xit−1,mit−1, zit),

x̃it = xit − E (xit|xit−1,mit−1, zit), and w̃it = wit − E (wit|xit−1,mit−1, zit). In

practice, ỹit, x̃it, and w̃it can respectively be estimated by taking the residuals

from nonparametric regressions of yit, xit, and wit on xit−1, mit−1, and zit.

In this chapter, these regressions are carried out using the Nadaraya-Watson

local constant method of Racine and Li (2004) in Hayfield and Racine’s (2008)

‘np’ package in the R statistical computing environment.

Given that it is assumed in this chapter that the firm makes its variable

input decision after observing the unanticipated productivity shock ait at the

beginning of period t, w̃it in equation (2.8) is endogenous. On an intuitive

level, the dependence of wit on ait stems from the fact that the latter in-

fluences the marginal product of the former which, holding the output price

fixed, has implications for the firm’s optimal choice of variable input quan-

tities. Fortunately, finding a suitable instrument does not present much of

a challenge since w̃it−1 = wit−1 − E (wit−1|xit−1,mit−1) is in most instances

strongly correlated with w̃it, and it is necessarily independent of ait.
3 At

this juncture, the objective is to make use of the orthogonality assumptions

E (ait + eit|x̃it) = 0 and E (ait + eit|w̃it−1) = 0 in order to identify the func-

tional elasticity coefficients β (zit) and γ (zit). Adopting the shorthand nota-

tion δ (zit) =
[
β (zit)

′ γ (zit)
′]′ for the vector of varying elasticity coefficients,

ṽit = [x̃it w̃it] for the vector of endogenous regressors, and ˚̃vit = [x̃it w̃it−1]

for the vector of instruments, the sample moment condition that corresponds

3Li and Stengos (1996) propose a similar solution to the problem of endogeneity in partial
linear models.
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to E (ait + eit|x̃it) = 0 and E (ait + eit|w̃it−1) = 0 can be written as:

1

NT

∑
i

∑
t

˚̃v′it (ỹit − ṽitδ (zit))ωit = 0, (2.9)

where ωit is a local weighting function.

The exact functional form of ωit will depend on the variables that are

included in zit, although it can be expressed using Li and Racine’s (2010)

general notation of a product kernel for mixed data types:

ωit =

q∏
j=1

ωcj,it

r∏
k=1

ωuk,it

s∏
l=1

ωol,it, (2.10)

where the ωcit’s, ω
u
it’s, and ωoit’s respectively weight observations in the sample

based on their values of the q + r + s continuous, unordered discrete, and

ordered discrete variables that influence the coefficients β and γ. For a given

continuous variable zc in the vector z, the kernel weighting function is defined

as ωcit = 1
h
·k
(
zcit−zc
h

)
, where h is a smoothing parameter whose value is chosen

according to some sort of selection criterion, and the bounded, symmetric

kernel k (·) satisfies
∫
k (ϕ) dϕ = 1,

∫
ϕ2k (ϕ) dϕ > 0, and

∫
k2 (ϕ) dϕ > 0. In

most applications, a second-order Gaussian kernel is used for k (·). Next, the

weighting function ωuit that corresponds to a given unordered discrete variable

zu in z is defined according to:

ωuit =

1 if zuit = zu

µ if zuit 6= zu,
(2.11)
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where µ ∈ [0, 1] is once again a smoothing parameter whose optimal value can

be determined using a variety of methods (more on this later). Finally, the

function that weights observations in the sample in relation to the ordered

discrete variable zo in z is expressed as

ωoit =

1 if zoit = zo

λ|z
o
it−zo| if zoit 6= zo

(2.12)

for some λ ∈ [0, 1]. Note that (2.11) and (2.12) bear a close resemblance to

one another; their sole distinguishing feature, aside from the fact that their

respective smoothing parameters µ and λ will generally be assigned different

values, is that the former attaches no meaning to the “distance”between zuit

and zu, whereas the latter treats |zoit − zo| as significant.

For a given product kernel ωit with smoothing parameters (h′q×1, µ
′
r×1, λ

′
s×1),

simplification of the sample moment condition in (2.9) yields

δ̂ (zit) =
[
β̂ (zit)

′ γ̂ (zit)
′
]′

=

[∑
i

∑
t

˚̃v′itṽitωit

]−1 [∑
i

∑
t

˚̃v′itỹitωit

]
.

(2.13)

Equation (2.13) is effectively an application of the smooth coefficient gener-

alized method of moments framework proposed by Tran and Tsionas (2010)

and the class of varying coefficient models with mixed data types proposed

by Li and Racine (2010). Estimation is carried out using the kernel summa-

tion function in Hayfield and Racine’s (2008) ‘np’ package in the R statistical

computing environment.
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2.2.2 Bandwidth selection

While providing empirical applications of their smooth coefficient GMM esti-

mator, Tran and Tsionas (2010) rely on a “rule-of-thumb” criterion for band-

width selection. Although this approach is not entirely without theoretical

justification4, it has several deficiencies that make it unsuitable for the estima-

tion of (2.13). Most importantly, the rule-of-thumb criterion is only applicable

to functions of a continuous variable; if, on the other hand, estimation of the

coefficients β and γ involves a weighting function such as (2.10), then an al-

ternative bandwidth selection procedure must be followed.

As a second option, regardless of whether the vector zit consists of contin-

uous or discrete data (or both), the optimal bandwidth vector (h∗′q×1, µ
∗′
r×1, λ

∗′
s×1)

can be selected using data-driven methods such as least-squares cross-validation:

(
h∗′q×1, µ

∗′
r×1, λ

∗′
s×1
)

= arg min
h,µ,λ

1

NT

N∑
i=1

T∑
t=1

[
ỹit − ṽitδ̂−it (zit)

]2
, (2.14)

where δ̂−it is a “leave-one-out”estimator that is computed using a variation

of (2.13) in which observation i, t has been excluded from the sample, and

evaluated at zit.
5 The least-squares cross-validation procedure is analogous

to minimizing the integrated mean squared error of the estimated smooth

coefficient regression function, and a detailed explanation of its properties can

be found in Li and Racine (2004, 2007). The constrained minimization routine

that is used to compute the optimal bandwidth vector in (2.14) is implemented

using the ‘nlminb’ command in the R statistical computing environment.

4See, for instance, Silverman (1986).
5For notational simplicity, (2.14) applies to the special case of a balanced panel dataset.

23



PhD Thesis - John M. Kealey McMaster University - Economics

2.2.3 Plant productivity

The discussion up to this point has centered on the identification and estima-

tion of the elasticity coefficients in (2.3); however, it remains to be seen what

the implications are for the analysis of firm-level productivity. Consider once

again the Cobb-Douglas model in (2.3). The unobservable plant productivity

term, vit, can be expressed as:

vit = yit − xit · β (zit)−wit · γ (zit)− eit, (2.15)

where the reader will recall that eit is a random disturbance term whose mean

conditional on current and past inputs is equal to zero. If one follows the proce-

dure that is articulated in Section 2.2, obtaining estimates of the elasticity vec-

tors β (zit) and γ (zit) is straightforward. Let r̂it = yit−xit · β̂ (zit)−wit · γ̂ (zit).

One can then write r̂it = vit + eit. Using the proxy expression vit = g (xit,mit)

from (2.4), where the precise functional form of g (·) is unknown, and the con-

ditional expectation E (eit|xit,mit) = 0, the nonparametric regression equation

below can be used to estimate plant-level productivity:

r̂it = g (xit,mit) + eit. (2.16)

Equation (2.16) can be estimated using, for example, the nonparametric local

constant (i.e. Nadaraya-Watson) regression method.
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2.3 Empirical example

The unbalanced panel dataset that underlies the empirical analysis that fol-

lows consists of 54,545 observations on Colombian manufacturing plants from

22 different industries6 and is obtained from an annual census that was con-

ducted during the period 1981-1991. The advantage of using this plant-level

data from Colombia is that it has been used in a number of other studies for

the estimation of firm-level production functions, and hence the results that

are reported in Section 2.3.2 can be readily contrasted with what is found else-

where in the literature.7 To begin, the value-added term yit on the left-hand

side of (2.6) is computed as the difference between the gross value of firm i’s

output and its intermediate consumption in period t. The latter is defined

as the sum of energy purchased, raw materials consumed, and miscellaneous

industrial expenditures incurred.8

Next, firm i’s capital stock in period t is assumed to be the sole quasi-

fixed input xit in the model. The capital stock variable comprises land, build-

ings/structures, machinery/equipment, transportation equipment, and office

equipment, whose respective values are computed using the perpetual in-

ventory method and annual 3-digit industry-level depreciaton data found in

Pombo (1999). The assumption that physical capital is quasi-fixed stems from

the fact that the construction of new buildings and structures, as well as the

6Industries are differentiated based on the 3-digit International Standard Industrial Clas-
sification (ISIC) system. The 22 3-digit industries can be further subdivided into 79 unique
4-digit ISIC codes.

7See for instance Roberts and Tybout (1997), Fernandes (2007), and Gandhi et al. (2016).
8The miscellaneous industrial expenditures include, for instance, purchases of fuels and

lubricants, purchases of accessories and replacement parts of less than one year duration,
and payments to third parties for repairs and maintenance.
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purchase and installation of new machinery and equipment, tend to require

a rather significant time commitment. As a result, firms are unlikely to be

able to make these types of input decisions with complete flexibility in the

short term. Moving on, the variable input vector wit = [ws,it wu,it] in (2.6)

has two entries that are respectively defined as the total number of skilled

and unskilled workers employed by the firm in a particular year. The census

of Colombian manufacturers specifies five categories of employees: managers,

skilled workers, technicians, unskilled workers, and apprentices. In the data

that is used to estimate the smooth coefficient production function in (2.6),

managers, skilled workers, and technicians are classified as “skilled”, whereas

unskilled workers and apprentices are classified as “unskilled.” Next, following

the same blueprint as Levinsohn and Petrin (2003), firm i’s period-t consump-

tion of energy serves as the scalar proxy variable mit that is used to generate

a function controlling for unobservable productivity vit in (2.1). To restate

what was mentioned earlier in Section 2.2, the assumption that underlies this

choice of a proxy variable is that more productive firms, when their capital

stock is held fixed, are able to manufacture more output and hence, they need

to consume more intermediate inputs such as energy. The energy consump-

tion variable is measured in thousands of Colombian pesos. As a final note, it

should be pointed out that the value-added (yit), capital stock (xit), and energy

consumption (mit) variables are all deflated by an annual 3-digit industry-level

price index prior to taking their logs in order to normalize input and output

quantities across time periods. In the census data, both the nominal and the

real values of a firm’s total output are reported annually, and hence the price

index is obtained by taking the ratio thereof. For additional details vis-a-vis
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the panel dataset of Colombian manufacturers and the multi-year census from

which it originates, the interested reader is encouraged to consult Roberts

(1996).

2.3.1 Functional specification of the elasticity coefficients

Given that the dataset described above comprises observations from a number

of different industries, not much information will be gleaned from the estima-

tion of an aggregate production function using the pooled sample of plants

whose final goods and input requirements are likely quite heterogeneous. The

convention that is followed in much of the literature is to estimate separate

production functions using industry-level subsamples of a given dataset; how-

ever, one of the disadvantages of this approach is a reduction in sample size

that might lead to less precise estimates of the various industries’ elasticity

coefficients. Alternatively, one may choose to keep the pooled sample of firms

intact and use kernel methods to weight individual observations based on their

industry identifier. Similarly, in light of the fact that the panel of Colombian

manufacturing plants spans an 11-year period, it might be wise to loosen the

assumption that production technology is static and instead allow the elastic-

ity coefficients β and γ to vary over time. Hence, the model that is estimated

here is a varying coefficient production function for plant i in industry j and

period t:

yit = xit · βjt +wu,it · γu,jt +ws,it · γs,jt + f [gj (xit−1,mit−1)] + ait + eit, (2.17)
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where, to reiterate, xit, wu,it, and ws,it denote the natural log of plant i’s

period-t capital stock and quantity of unskilled (u) and skilled (s) workers,

respectively. In terms of the notation from Section 2.2, zit would be a two-

dimensional vector that comprises the industry and time indicators, which

are treated as unordered and ordered discrete variables, respectively. Hence,

the function ωit that weights observations in the sample according to {j, t}

is defined as the product of the kernels in (2.11) and (2.12). Note that the

proxy function gj (·) controlling for unobservable productivity is now assumed

to be industry-specific, which is why it is indexed by the subscript j along

with the time-varying elasticity coefficients βjt, γu,jt, and γs,jt. As a means of

reducing the variance of the estimate of βjt arising from a very high degree of

correlation between xit and xit−1, the firm’s stock of machinery and equipment

in period t−1 rather than it’s entire capital stock is denoted by xit−1. In what

follows, the empirical approach that is outlined in Section 2.2.1 is applied to the

estimation of (2.17), and the various outcomes of this exercise are discussed.

2.3.2 Elasticity coefficient estimates

Although the census of Colombian manufacturers collects data on plants who

operate in 22 different industries, much of the production function literature

has tended to focus on four industries that are deemed particularly important

for South American economies. For instance, Levinsohn and Petrin (2003),

Ackerberg et al. (2006), and Gandhi et al. (2016), all center their analyses

on food processing (ISIC=311), textiles (ISIC=321), finished wood products

(ISIC=331), and fabricated metal (ISIC=381).9 In accordance with this con-

9The apparel industry (ISIC=322) is also considered in Gandhi et al.’s (2016) analysis of
Colombian manufacturing plants but is omitted from the analyses of Levinsohn and Petrin
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vention, the discussion that follows revolves around these four key industries.

Figures 2.1 and 2.2 comprise plots of the elasticity coefficient estimates β̂jt,

γ̂u,jt, and γ̂s,jt, as well as their bootstrapped 90 percent confidence intervals,

over time. For comparative purposes, these plots also include superimposed

estimates of β, γu, and γs, obtained using the method of Li and Stengos (1996),

under the scenario where these parameters are treated as fixed. The first

four plots that appear in figure 2.1 suggest that Colombian food processors’

production technology, particularly in terms of physical capital and unskilled

labour, underwent some significant changes between 1982 and 1991. The time-

varying estimates of βjt, which denotes the elasticity of output with respect

to physical capital, are steadily on the rise throughout the decade, starting at

0.1258 in 1982 and eventually reaching a peak of 0.2210 in 1991. Meanwhile,

there is a very noticeable downward trend in the estimated elasticity of output

with respect to unskilled labour; specifically, over a ten-year period, γ̂u,jt falls

from a high of 0.5629 in 1982 all the way down to 0.2945 in 1991. The year-by-

year estimates of γs,jt do not exhibit the same dramatic movements as γ̂u,jt,

and instead are characterized by a comparatively subtle U-shaped pattern

during the 1982-1991 period. Altogether, over the course of a decade, there is

a substantial decline in the estimated returns to scale, which start out at 1.08

and end up at just 0.885 by the early 1990s.

Coefficient estimates for the textile industry are presented in the last four

plots of figure 2.1, while the β̂jt, γ̂u,jt, and γ̂s,jt for the wood products and

fabricated metal industries are plotted in the top-half and bottom-half portions

of figure 2.2, respectively. Overall, the changes that are observed in the textile

(2003) and Ackerberg et al. (2006), who use data from the Chilean manufacturing sector.
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industry’s production function over a ten-year period are qualitatively similar

to what was noted for food processors. Specifically, the estimated elasticity

of output with respect to capital is higher in the early 1990s than it was at

the outset in 1982. Over the ten-year period that is covered in the sample,

β̂jt increases by about 0.07, while the change in γ̂s,jt is comparatively small.

Meanwhile, in the textile, wood products, and fabricated metal industries,

there appears to be a rather substantial downward trend in the contribution

of unskilled labour to value-added output, as attested to by the respective

decreases in γ̂u,jt of 0.218, 0.237, and 0.188 between 1982 and 1991. Returns

to scale estimates fall by a similar magnitude. It is interesting to note that

these latter results closely mimic what was reported for food processing plants.

2.4 Monte Carlo experiment

In this subsection, a series of Monte Carlo experiments with M=100 draws

in each case are undertaken as a means of evaluating the extent to which

the proposed semiparametric framework is able to capture different levels of

variation in parameters of the type that appear in (2.17), which we continue

to denote by βjt, γu,jt, and γs,jt. Sample sizes n = 500, 1000, 2500, 5000, and

10000 are considered for a version of the model shown in (2.6) where xit, xit−1,

and mit−1 are all univariate, and wit = [wu,it ws,it], wit−1 = [wu,it−1 ws,it−1]

are both two-dimensional. The five variables that are assumed to be exogenous,

namely xit, xit−1, mit−1, wu,it−1, and ws,it−1, are drawn from a multivariate

Gaussian distribution with mean vector 0 and covariance matrix Σ, where

Σi,i = 1 for i = 1, ..., 5 and Σi,j = 0.4 for all i 6= j. The random disturbance

term is distributed eit ∼ N (0, .2), while the endogenous wu,it and ws,it are
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respectively given by wu,it = 0.5 + 0.75wu,it−1 + 0.5eit and ws,it = 0.85wu,it−1 +

0.6eit. The analogs of the industry and time variables are drawn from discrete

uniform distributions with possible values j ∈ {1, 2, 3} and t ∈ {0, 1, ..., 10},

respectively. Three distinct scenarios relating to the functional form of βjt,

γu,jt, and γs,jt are considered:

1. βjt = j
2
· sin

(
πt
5

)
, γu,jt = j

2
·
(
− cos

(
πt
10

))
, γs,jt = j

2
· cos

(
πt
5

)
2. βjt = j

2
·
(
t
10

)3
, γu,jt = j

2
·
(
1− t

10

)
, γs,jt = j

2
· sin

(
πt
10

)
3. βjt = j

2
· 0.35, γu,jt = j

2
· t
10

, γs,jt = j
2
· 0.65

Note that in this example, it is assumed that the industry identifier j affects

the magnitude but not the curvature of the elasticity functions. Under the

first two scenarios that are outlined above, there is a considerable amount of

time variation in βjt, γu,jt, and γs,jt and furthermore, the functions that un-

derlie these coefficients exhibit contrasting degrees of curvature. Meanwhile,

the third functional form specification covers the special case where two of the

three elasticity coefficients do not vary from one time period to another, so

that it can be ascertained that the kernel weighting framework proposed in

Section 2.2.1 does not yield time-varying coefficient estimates when they are

not in fact found in the underlying data generating process. Given that it is

somewhat peripheral to the core analysis being undertaken here, the unknown

composite function f [gj (xit−1,mit−1)] from (2.6) is straightforwardly specified

in all three cases as f [gj (xit−1,mit−1)] = j · 0.2 · (xit−1 −mit−1).

Figure 2.3 illustrates the respective outcomes of the Monte Carlo experi-

ments with sample size n = 2500. The median coefficient estimates at each

t ∈ {0, 1, ..., 10}, holding j = 2 fixed, are represented by small red x’s, while
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the shaded vertical line segments at each t reflect the 90 percent confidence

intervals for βjt, γu,jt, and γs,jt. The estimation procedure outlined in Sec-

tion 2.2.1 appears to perform rather well in finite sample environments where

the data-generating process is known to the researcher. Table 2.2 shows that

under all 3 model specifications, the average mean squared error (AMSE) of

the different coefficient estimates shrinks toward zero as the sample size grows

incrementally from n = 500 to n = 10000. Unsurprisingly, the AMSE tends

to be larger for the coefficients that exhibit the most variation, although even

under the first scenario where βjt, γu,jt, and γs,jt are all periodic functions of

t, the semiparametric method yields a good fit of the model.

2.5 Conclusion

This chapter has delineated a semiparametric method of estimating a firm-level

Cobb-Douglas production function with varying elasticity coefficients that are

determined by a combination of continuous and discrete predictors. The vary-

ing coefficient approach is more consistent with the theoretical relationship

that ought to exist between factor elasticities and their corresponding plant-

level input expenditure ratios. Using a dataset from Colombia that has proven

popular elsewhere in the literature, it has been shown that production technol-

ogy can exhibit considerable variation over time. In particular, the elasticity

of output with respect to unskilled labour in four key manufacturing indus-

tries appears to have been in decline during the ten-year period between 1982

and 1991. This gave rise to a rather sharp drop in estimated returns to scale.

Altogether, the semiparametric estimator performs well in a Monte Carlo set-

ting; when the true data generating process is known, it yields fairly precise
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estimates of varying coefficients under a number of different specifications of

the model. Implications for the measurement of firm productivity have been

briefly considered, although this portion of the analysis can likely be expanded

upon in future research.
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Appendix

Food processing Textiles Wood products Fabricated metal
β

VC min 0.126 0.101 0.062 0.081
VC max 0.223 0.181 0.104 0.112
CC 0.189 0.141 0.087 0.084

γu

VC min 0.294 0.344 0.430 0.344
VC max 0.563 0.566 0.667 0.532
CC 0.400 0.402 0.525 0.400

γs

VC min 0.342 0.444 0.346 0.521
VC max 0.391 0.504 0.510 0.552
CC 0.364 0.477 0.395 0.529

RTS

VC min 0.885 0.979 1.030 0.963
VC max 1.080 1.126 1.112 1.165
CC 0.953 1.021 1.007 1.013

Table 2.1: Summary of varying coefficient (VC) and constant coefficient (CC) elas-
ticity and returns to scale estimates.
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n = 500 n = 1000 n = 2500 n = 5000 n = 10000

1. βjt = j
2
· sin

(
πt
5

)
.03117 .01374 .00490 .00193 .00128

γu,jt = j
2
·
(
− cos

(
πt
10

))
.03477 .01706 .00644 .00244 .00200

γs,jt = j
2
· cos

(
πt
5

)
.04066 .01669 .00605 .00201 .00162

2. βjt = j
2
·
(
t
10

)3
.00907 .00394 .00160 .00065 .00031

γu,jt = j
2
·
(
1− t

10

)
.01263 .00549 .00217 .00090 .00061

γs,jt = j
2
· sin

(
πt
10

)
.01513 .00625 .00251 .00100 .00048

3. βjt = j
2
· 0.35 .00300 .00156 .00059 .00028 .00016

γu,jt = j
2
· t
10

.01169 .00630 .00229 .00096 .00050
γs,jt = j

2
· 0.65 .00648 .00308 .00112 .00036 .00029

Table 2.2: Average mean squared error for 100 Monte Carlo replications.
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Food Processing (ISIC=311)
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Textiles (ISIC=321)
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Figure 2.1: Varying coefficient estimates and their bootstrapped 90 percent confi-
dence intervals. Constant coefficient estimates superimposed in red.
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Wood Products (ISIC=331)
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Fabricated Metal (ISIC=381)
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Figure 2.2: Varying coefficient estimates and their bootstrapped 90 percent confi-
dence intervals. Constant coefficient estimates superimposed in red.
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Figure 2.3: Results of Monte Carlo experiment with 100 replications and n=2500:
true coefficient values (black circles), mean coefficient estimates (red x’s), and 90
percent confidence intervals (shaded lines).
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Chapter 3

Robust nonparametric frontier estima-

tion for count data

3.1 Introduction

The construction of a robust methodological framework for the statistical esti-

mation of models of firm-level production remains a central endeavour of mod-

ern economic research. While this subfield of econometric analysis is rather

diverse, much of it is rooted in an elementary notion from neoclassical pro-

duction theory, namely the existence of a frontier function that conveys how

a collection of inputs can be most efficiently combined to produce a particu-

lar output. However, an important empirical consideration that is frequently

overlooked in the literature is that in some settings, it is more realistic to ex-

press a firm’s output as a count, rather than a continuous quantity. That is,

many production frontier estimators fail to take into explicit consideration the

special case of discrete count data, even though it may be the most suitable for
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measurement of certain types of industrial output.1 On the other hand, even

if a frontier estimation framework is compatible with a count-valued output,

it might be overly-sensitive to outliers, which can arise due to measurement

error or some other imperfection in the data collection process. Outliers are a

serious concern when applying data envelopment techniques to the extent that

they can introduce significant bias into the estimated frontier function. Hence

this chapter proposes a statistically-robust nonparametric production frontier

estimator for models that involve a count output variable. It improves upon

existing robust approaches by making use of a novel data trimming procedure

that is based on a combination of k-means and hierarchical clustering.

Contemporary models of firm-level production trace their theoretical roots

to the pioneering work of Debreu (1951), Koopmans (1951), and Shephard

(1970). In an environment where the vector of inputs x is used to produce out-

put y, one defines the production set Ψ = {(x, y) : x can produce y} which, in

turn, gives rise to the notion of a production frontier g (x) = sup {y : (x, y) ∈ Ψ}.

That is, the function g(x) provides information about the maximum output

quantity that can be feasibly produced using the input combination x. Hence,

the productive efficiency of a firm, institution, or economic region can be con-

ceptualized in terms of its output shortfall vis-a-vis the frontier. The literature

on statistical estimation of frontier functions and productive efficiency is quite

vast, and most methodological approaches tend to be categorized as either i)

stochastic or ii) deterministic. Given a sample of observed input/output com-

binations {(xi, yi)}ni=1, the key distinction that can be drawn between these

two classes of models is that the latter requires (xi, yi) ∈ Ψ for i = 1, ..., n,

1For instance, the output of a mid-cap aircraft manufacturer or the patents awarded to
a biotech research firm are clearly counts.
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while the former does not. That is, the stochastic frontier framework allows

for a certain amount of random noise that may give rise to the inequality

yi > g (xi) for a limited number of observations. The stochastic frontier litera-

ture stems from the early contributions of Aigner, Lovell, and Schmidt (1977)

and Meeusen and van den Broeck (1977), and is reviewed in detail by Kumb-

hakar and Lovell (2000) and Parmeter and Kumbhakar (2014). Four papers

have focused on models with a count-valued dependent variable. Fe (2013)

and Hofler and Scrogin (2008) respectively consider the scenario of an eco-

nomic bad (good) that ought to be minimized (maximized), although neither

framework can be generalized to incorporate both output categories, i.e., both

goods and bads. Fe and Hofler (2013) propose a more generalizable parametric

and nonparametric stochastic frontier estimator for count data that is based

on a conditional mixed Poisson distribution. Drivas, Economidou, and Tsionas

(2014) introduce a Poisson stochastic frontier model that is augmented with

a finite mixture structure to allow for heterogeneity of technology classes and

that is also able to account for endogeneity of regressors.

Meanwhile, deterministic frontier modelling, which is the focus of the present

chapter, originates in the work of Farrell (1957), and comprises two broad

subcategories, namely free disposal hull (FDH) and data envelopment analy-

sis (DEA) methods. Deprins, Simar, and Tulkens’ (1984) FDH estimator is

anchored in the assumption that if (x, y) ∈ Ψ, then for any x′ ≥ x and y′ ≤ y,

(x′, y′) ∈ Ψ, while Farrell’s (1957) and Charnes, Cooper, and Rhodes’ (1978)

DEA estimator makes an additional assumption of convexity of the production

set. Asymptotic results for the FDH and DEA estimators have been derived

by Gijbels, Mammen, Park, and Simar (1999) and Park, Simar, and Weiner
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(2000), respectively. A comprehensive survey of existing deterministic frontier

analysis methods can be found in Simar and Wilson (2013). Unfortunately, as

Cazals, Florens, and Simar (2002) have pointed out, deterministic frontier es-

timation techniques are hindered by their inordinate sensitivity to outliers and

so, as an alternative, the authors propose an expected maximal output function

that trims the most extreme-valued observations out of the picture. Aragon,

Daouia, and Thomas-Agnan (2005) and Martins-Filho and Yao (2008) offer

an alternative robust estimation procedure that is based on the conditional

quantile function of the output variable. However, an important shortcoming

of the aforementioned approaches is their reliance on trimming parameters

whose values must typically be selected in an ad hoc fashion. In contrast, the

frontier estimator that is proposed in this chapter entails a fairly straightfor-

ward and effective trimming parameter selection routine.

The remainder of the chapter is structured as follows: Section 3.2 begins

with an overview of robust (deterministic) frontier estimation and then intro-

duces a new approach that can be applied in settings that involve a count-

valued output variable and a handful of extreme-valued observations in the

data. Section 3.3 shows how one can make use of k-means and higherarchical

clustering to determine suitable trimming parameter values for the proposed

frontier estimator. Section 3.4 gives an outline of the nonsmooth robust frontier

estimator’s smooth kernel-based counterpart. Section 3.5 comprises a Monte

Carlo experiment that assesses the smooth and nonsmooth estimators’ finite-

sample performance, while Section 3.6 offers an empirical example involving

firm-level patent count data from the U.S. manufacturing sector. Section 3.7

concludes.
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3.2 Robust nonparametric frontier estimation

We lay the foundation for the empirical framework that is developed in this

chapter by recalling the definition of the conditional distribution of the output

variable y given a quantity of inputs x:

F (y/x) =
F (y, x)

FX (x)
, (3.1)

where F (y, x) = P(Y ≤ y,X ≤ x) denotes the joint distribution of the random

vector (Y,X), and FX(x) = P(X ≤ x) is the associated marginal distribution

of X.2 Note that if x = (x1, ..., xd) is a d × 1 vector, the inequality X ≤ x is

shorthand for (X1 ≤ x1, ..., Xd ≤ xd). Assuming that the conditional distribu-

tion function in (3.1) is monotone nonincreasing on the set {x : FX(x) > 0},

the production frontier is defined as follows:

g(x) = inf {y : F (y/x) = 1} . (3.2)

Thus, when the function g(·) is evaluated at the vector x, it returns the

smallest output value y such that no productive unit with inputs less than

or equal to x is able to produce more than y. That is, if we define the order-

α conditional quantile for the distribution function that appears in (3.1) as

qα(x) = F−1(α/x) = inf {y : F (y/x) ≥ α} for α ∈ [0, 1], then the frontier in

(3.2) can be equivalently expressed as the order-one conditional quantile q1(x).

Now that the basic framework for deterministic frontier analysis has been

2This chapter follows the notational convention whereby a distinction is drawn between
the conditional probabilities F (y/x) = P(Y ≤ y|X ≤ x) and F (y|x) = P(Y ≤ y|X = x).

47



PhD Thesis - John M. Kealey McMaster University - Economics

briefly described, we move on to a discussion of two important empirical con-

siderations that may arise in applied settings. In particular, in the discussion

that appears in Sections 3.2.1 and 3.2.2, we address the challenge of estimat-

ing a frontier function that is i) robust to outliers and ii) suitable for models

that involve count (as opposed to continuous) data for the output y. Even

though there already exist a number of frontier estimators that are robust to

the presence of extreme-valued observations - most notably those proposed by

Cazals et al. (2002), Aragon et al. (2005), and Martins-Filho and Yao (2008)

- it will be shown that they each have their own shortcomings, and hence

there is still room for improvement. Meanwhile, to the best of the author’s

knowledge, this chapter is the first in the deterministic frontier literature3 to

specifically address the issue of robust estimation in a count data setting. It

turns out that the manner in which some of the existing approaches deal with

the problem of outliers limits their applicability to models in which the output

variable is expressed as a count, and therefore, the estimation procedure that

is proposed in Section 3.2.2 makes an important contribution to the literature

in this regard.

3.2.1 Existing robust estimators

The production frontier in (3.2) is straightforwardly estimated as the order-

one empirical quantile of output y conditional on inputs x. That is, for a

given sample {(xi, yi)}ni=1, we compute F̂ (y/x) = F̂ (y,x)

F̂X(x)
, where F̂ (y, x) =

1
n

∑n
i=1 1(yi ≤ y, xi ≤ x) and F̂X (x) = 1

n

∑n
i=1 1(xi ≤ x), and define the

3As mentioned in the introduction, Fe (2013), Hofler and Scrogin (2008), Fe and Hofler
(2013), and Drivas et al. (2014) have proposed estimators for stochastic frontier models
involving count data, but their framework is entirely different from the one that is developed
here.
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frontier estimator as ĝ(x) = q̂1(x) = inf
{
y : F̂ (y/x) = 1

}
. As mentioned

earlier, one of the challenges that is encountered in this setting is that outliers

(i.e, observations with unusually large values of yi) tend to exert too much

influence on the estimates of q1(x). To remedy this issue, Cazals et al. (2002)

propose an expected maximum output function of order m:

gm(x) = E(max(Y1, ..., Ym)|X ≤ x). (3.3)

The order-m frontier estimator is formulated as follows:

ĝm(x) =

∫ ∞
0

(1− [F̂ (z/x)]m)dz

= ĝ(x)−
∫ ĝ(x)

0

[F̂ (z/x)]mdz,

(3.4)

where ĝ(x) is the order-one conditional output quantile associated with the

conditional distribution F̂ (y/x) and the trimming parameterm is user-selected.4

The advantage of this approach is that it is fairly robust to outliers while

nonetheless possessing the asymptotic property that ĝm(x)→ ĝ(x) as m→∞;

that is, the estimator is asymptotically equivalent to the empirical order-one

conditional quantile q̂1(x) even though it doesn’t envelop all of the data under

finite samples. In practice, (3.4) is computed via either numerical integration

or a Monte Carlo algorithm that is delineated by Daraio and Simar (2005).

An alternative estimation procedure proposed by Aragon et al. (2005) en-

sures robustness to extreme output values by defining the production threshold

4Cazals et al. (2002) provide a formal proof that if Ymax = max(Y1, ..., Ym), then
P(Ymax ≤ z|X ≤ x) = 1 − [F (z/x)]m. Hence, E(max(Y1, ..., Ym)|X ≤ x) =

∫∞
0

(1 −
[F (z/x)]m)dz. The second equality in (3.4) comes from the fact that F (z/x) = 1 for all

z ≥ g(x). Thus,
∫∞
0

(1− [F (z/x)]m)dz =
∫ g(x)
0

(1− [F (z/x)]m)dz = g(x)−
∫ g(x)
0

[F (z/x)]mdz.
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in terms of the order-α conditional quantile:

qα(x) = F−1(α/x) = inf {y : F (y/x) ≥ α} , (3.5)

where α ∈ [0, 1] is the share of productive units with inputs less than or equal

to x and output not exceeding y. Thus, one can estimate a frontier func-

tion that is less sensitive to outliers than the order-one conditional quantile

by setting α to a value that is slightly less than one. In practice, one of-

ten chooses a quantile that lies somewhere in the interval 0.90 ≤ α ≤ 0.99.

Aragon et al.’s (2005) estimator is implemented as follows: for a given in-

put quantity x, one draws a subsample {(xi, yi)}nxi=1 comprising the nx ob-

servations that satisfy xi ≤ x, which gives rise to the distribution function

F̂ (y/x) = 1
nx

∑nx
i|xi≤x 1(yi ≤ y). The production frontier of order α is then

estimated as q̂α(x) = min
{
yi : F̂ (yi/x) ≥ α

}
, implying that as α → 1, q̂α(x)

converges to the FDH estimator. Martins-Filho and Yao’s (2008) approach is

also based on equation (3.5); however, it makes use of a smooth kernel-based es-

timator of the conditional distribution F (y/x) that has more favourable prop-

erties than its nonsmooth empirical counterpart in finite samples. Within this

framework, the joint distribution function that appears in (3.1) is estimated as

F̂ (x, y) = 1
nh

∑n
i=1

∫ y
0
κ
(
yi−γ
h

)
dγ1(xi ≤ x), where κ(·) is a univariate kernel for

continuous data (i.e. Gaussian, Epanechnikov) and h is a bandwidth parame-

ter. Thus, the estimator of the order-α production frontier q̂α(x) = F̂−1(α/x)

will always be a smooth function of α, whereas the empirical estimator of

Aragon et al. (2005) will not.

At this juncture, it is worth drawing attention to two key limitations of
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the frontier estimators that have just been described. First, the trimming

procedures that they rely on to curtail the influence of extreme values in the

data often have the undesirable side-effect of cutting non-outlier observations

out of the picture as well. That is, when either the order-m or the α-quantile

methods are being employed, one is faced with a tradeoff whereby sensitivity

to outliers can only be reduced at the expense of having a production fron-

tier that does not envelop all of the data. Figures 3.1 and 3.2 illustrate this

tradeoff quite clearly. The four plots that appear in the former display a col-

lection of order-m frontier estimates (m=1,2,5,10) obtained for a simulated

dataset with n=500 observations, 1 percent of which are outliers.5 Given that

E(max(Y1, ..., Ym)|X ≤ x) is decreasing in m, the plots with the headings

m = 1 and m = 2 are characterized by a considerable amount of trimming,

whereas in the plots that correspond to m = 5 and m = 10, a far greater pro-

portion of the data is enveloped by the frontier estimates. Thus, as the value of

m increases (decreases), the order-m frontier estimator trims out fewer (more)

of the observations and consequently becomes more (less) sensitive to outliers.

Meanwhile, the four plots that appear in figure 3.2 depict α-quantile frontier

estimates for the same simulated dataset, where α assumes the values 0.99,

0.98, 0.97, and 0.96. In this scenario, a decrease in the quantile parameter α

has the same effect as a decrease in the value of m in the previous example,

namely more extensive trimming, which reduces the sensitivity of the frontier

estimates to extreme-valued observations but also at times leads to inferior

envelopment of the data. This is seen in the bottom-right plot that corre-

sponds to α = 0.96. On the other hand, in the top-left plot with the heading

5This simulated dataset also underlies the second Monte Carlo experiment that is carried
out in section 3.5.1.
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α = 0.99, the frontier estimates are being driven by a small number of outliers

and hence they are not very different from what would be obtained under the

basic free disposal hull (FDH) framework. One must choose either α = 0.98 or

α = 0.97 in order to obtain an acceptable fit of the model. Ideally, we would

like to specify a deterministic frontier estimator that is just as, if not more,

robust to outliers as the order-m and α-quantile approaches, but that doesn’t

require aggressive trimming of the data. This challenge will be addressed in

Section 3.2.2.

An additional limitation of Cazals et al.’s (2002) and Martins-Filho and

Yao’s (2008) methods is that neither one of them is suitable for models in

which the output variables is expressed as a discrete count.6 For instance,

closer examination of (3.4) reveals that there is no guarantee that ĝm(x) ∈ Z+,

even if yi ∈ Z+ for i = 1, ..., n. That is, if the n-observation sample of output

quantities has been drawn from a subset of the positive integers, the order-m

frontier ĝm(x) that is obtained by subtracting the real-valued
∫ ĝ(x)
0

[F̂ (z/x)]mdz

from the positive integer-valued ĝ(x) may often belong to R+ \ Z+. Thus, in

count data settings, using a trimming procedure like the one in (3.4) cur-

tails the influence of outliers but at the expense of generating estimates of

the output frontier that cannot, by definition, be elements of the production

set. In a similar vein, the nonparametric α-quantile method of Martins-Filho

and Yao (2008) is incompatible with a count-valued output variable since it

uses a continuous Gaussian or Epanechnikov kernel to estimate the condi-

tional distribution F (y/x). Given that F̂ (y/x) is a continuous function of

y, when the order-α frontier is estimated by means of the inversion formula

6Note that this is not a shortcoming of the empirical α-quantile estimator of Aragon
et al. (2005).
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q̂α(x) = F̂−1(α/x), it will frequently be the case that q̂α(x) ∈ R+ \ Z+. Thus,

there is an apparent need for a nonparametric estimator that is i) robust to the

presence of outliers, ii) more restrained in its use of trimming, and iii) able to

generate exclusively count-valued estimates of the production frontier. In the

section that follows, we introduce a frontier estimator that satisfies all three

of these criteria.

3.2.2 A robust frontier estimator for count data

The methodological framework that we develop here combines features of both

Cazals et al.’s (2002) order-m and Aragon et al.’s (2005) α-quantile definitions

of a production frontier, and hence the method that we are proposing shall be

referred to as the α-quantile order-m estimator. In short, our analysis focuses

on the conditional distribution of max(Y1, ..., Ym) given X ≤ x, rather than on

its conditional mean E(max(Y1, ..., Ym)|X ≤ x) which, it will be shown, makes

it possible to significantly reduce the influence of outliers without trimming

very many (if any) non-outlier observations out of the data. To begin, we

delineate the procedure to obtain the α-quantile order-m frontier estimator for

values of α and m that are given for now but that will need to be determined

at a later stage. The procedure can be described in terms of the following

resampling scheme:

1. For b = 1, ..., B, draw a subsample of size m < n without replacement{
x
(b)
i , y

(b)
i

}m
i=1

2. Compute the order-one conditional quantile as q̂
(b)
1,m(x) = max

{
y
(b)
i : x

(b)
i ≤ x

}
3. Define the frontier ĝα,m(x) as the α-quantile of the q̂

(b)
1,m(x)
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Thus, for given values of α and m, when the resampling scheme comprises B

iterations, the frontier estimator is given by:

ĝα,m(x) = inf

{
q̂
(b)
1,m(x) :

1

B

B∑
b′=1

1[q̂
(b′)
1,m(x) ≤ q̂

(b)
1,m(x)] ≥ α

}
(3.6)

The sequence of steps that is set out above is very similar to the Monte Carlo

algorithm that is provided in the appendix of Cazals et al. (2002). Its key dis-

tinguishing feature is found in step 3 and equation (3.6), where the α-quantile

rather than the mean of the q̂
(b)
1,m(x) is computed. Note that there are two sepa-

rate justifications for following this approach. First, it is very likely that some,

and perhaps many, of the B iterations of the resampling scheme will assign out-

lier values of yi to q̂
(b)
1,m(x), and this will bias one’s estimate of the conditional

expectation E(max(Y1, ..., Ym)|X ≤ x). In contrast, if a suitable value of α is

used in step 3 and equation (3.6) above, then the estimator ĝα,m(x) will not

suffer from this bias. Second, replacing the conditional mean of max(Y1, ..., Ym)

given X ≤ x with its α-quantile ensures that the frontier function always re-

turns a count value. As mentioned in Section 3.2.1, in the event that the

output variable y ∈ {0, 1, ..., p− 1} can only be sensibly expressed as one of p

possible non-negative integers, the standard order-m trimming procedure will

often give rise to frontier estimates that lie in R+ \ Z+. This will not occur if

the frontier function is defined in terms of ĝα,m(x).

Of course, without detailed knowledge of the data generating process and

by extension, the nature of the outlier problem, there is nothing that imme-

diately suggests what values of the trimming parameters α and m might be

appropriate for robust estimation of the frontier. As α → 1 one m → n,
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ĝα,m(x) converges to the FDH (i.e. the order-one quantile) estimator, and con-

sequently becomes more sensitive to extreme-valued observations in the data.

Figure 3.3 provides an intuitive illustration of this tendency. Using the same

simulated dataset with n = 500 (1 percent of which are outliers) that was

referenced in the previous subsection, the figure comprises four plots that each

correspond to a particular combination of α and m. The two plots on the right-

hand side indicate that assigning too great a value to either parameter when

outliers are present in the data can lead to very poor estimates of the frontier

function; in fact, these estimates are more or less indistinguishable from what

one would obtain under the FDH approach. In contrast, the two plots on the

left-hand side of figure 3.3 demonstrate that the right amount of trimming (in

this instance, either α = 0.5 and m = 50 or α = 0.05 and m = 200) yields

improvements over the standard order-m and α-quantile frontiers that are de-

picted in figures 3.1 and 3.2. For the sake of comparison, figure 3.4 comprises

frontier plots that are based on simulated data without any outliers; in this

setting, most values of the trimming parameters, provided they are not too

close to their respective lower bounds, produce sensible estimates of the fron-

tier function, although α = 1 and m = n are obviously optimal. Therefore,

under the typical real-world scenario of an unknown DGP, the challenge is

to select values of α and m that will trim outliers out of the data while still

ensuring that ĝα,m(x) envolops as many non-outlier observations as possible.

We now move on to a discussion of how this objective can be achieved.
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3.3 Cluster-based selection of trimming parameters

The α-quantile order-m framework requires a preliminary assessment of the

sensitivity of the frontier estimates to the chosen values of the trimming pa-

rameters. To make this determination, we follow a clustering approach that is

somewhat computationally-demanding, but that can also lead to substantial

improvements over existing trimming methods. Given that the proposed esti-

mator ĝα,m(x) depends on α and m, if we have a sample of size n, we can fit a

frontier function as in (3.6) over a grid of combinations of α = αmin, ..., 1 and

m = mmin, ..., n, where αmin and mmin denote the parameters’ pre-established

lower bounds. We consider the same simulated example as in the previous sec-

tion where the dataset comprises n = 500 observations, 1 percent of which are

outliers, and where the frontier is specified as a step function. We apply our es-

timation procedure for every pairwise combination of α = 0.05, 0.10, ..., 0.95, 1

and m = 30, 40, ..., 490, 500, which implies 960 different fits of the frontier

model. It should take a few minutes at most for a computer with a reasonably

fast processor to perform this operation. Given that the input x ∈ {1, 2, ..., 10}

is modelled as a count with 10 unique values, each of the 960 points in the grid

will have a corresponding 10 × 1 fitted vector ĝα,m = [ĝα,m(1), ..., ĝα,m(10)]′.7

If outliers have a lot of leverage over the frontier estimates, then the vector

of the ĝα,m(x) should vary substantially across different pairwise combinations

of the trimming parameters. In particular, one should be able to divide the

frontier estimates into two disjoint clusters - one with relatively large values

7In the event that x = (x1, ..., xd) is multivariate with a mixture of continuous and
discrete count data, then if one defines ne evaluation points for each of x1, ..., xd, the fitted
vector ĝα,m will be nde × 1 rather than 10× 1. In practice, one could set ne = 5 and use the

0.10th, 0.30th, 0.50th, 0.70th, and 0.90th quantiles of each of x1, ..., xd.
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of α and m that displays sensitivity to extreme observations and another with

smaller α and m that is more robust to outliers. Let these two clusters of

frontier estimates be denoted by C1 and C2. As explained in Hastie, James,

Tibshirani, and Witten (2013), one needs to solve the minimization problem

below:

min
C1,C2


2∑

k=1

1

|Ck|
∑

(α,m)∈Ck
(α̃,m̃)∈Ck

ĝ′α,mĝα̃,m̃

 , (3.7)

where |Ck| denotes the number of different ĝα,m in cluster k. Hence the fron-

tier estimates that are most similar to one another will end up in the same

cluster. For details on the algorithm that is used to solve (3.7), the reader

is encouraged to consult Hastie et al. (2013), or the documentation for the

kmeans function in the R statistical computing environment.

Figure 3.5 plots the outcome of this k-means clustering exercise for the

simulated dataset. The separation pattern of the frontier estimates based on

the values of α and m used to compute them is indicative of a potential outlier

problem. For the sake of juxtaposition, we also apply the k-means clustering

method to data that does not include any outliers. The outcome is plotted

in figure 3.6. In this instance, we find that the lower-left cluster of frontier

estimates shrinks to a fraction of its original size; only the very smallest values

of α and m give rise to ĝα,m that can be considered meaningfully different from

the rest.8 This limited degree of separation suggests that the frontier is not

particularly sensitive to the choice of trimming parameters, and consequently,

the FDH estimator might be appropriate after all.

8In fact, given that very small values of α and m will always be grouped together because
they tend to collectively understate the magnitude of the frontier, (3.7) can be specified as
a 3-cluster problem, where the cluster containing ĝαmin,mmin

is ultimately discarded.
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k-means clustering facilitates outlier detection to the extent that it identi-

fies fundamental differences between ĝα,m(x) and the FDH estimator for various

choices of α and m. However, it does not provide a clear suggestion of which

values of α and m ought to be used in (3.6), since not all combinations of the

trimming parameters that are assigned to the lower-left cluster in figure 3.5

yield frontier estimates that are 100 percent robust to outliers. Interestingly,

hierarchical clustering can serve as a very useful guide when choosing among

possible combinations of the trimming parameters. If, after performing the

k-means procedure, one suspects that the frontier estimates are indeed being

influenced by a handful of outliers, then suitable values of α and m are likely

to be found somewhere in the lower-left portion of figure 3.5. We take into

consideration all of the ĝα,m that satisfy α ≤ 0.5 and m ≤ 200. If we perform

hierarchical clustering on this subset of the ĝα,m, we can plot the results in a

dendrogram such as the one that appears in figure 3.7. The interested reader

is encouraged to consult Hastie et al. (2013) for a thorough explanation of hi-

erarchical clustering and interpretation of dendrogram plots. In short, each of

the observations (i.e. the subset of the ĝα,m) is represented by its own branch

at the base of the dendrogram, and the hierarchical procedure progressively

clusters the vectors of frontier estimates in the order of their similarity to one

another. The distance that separates two observations or clusters is given by

the point on the vertical axis at which they are fused together. Hence, we

should expect the robust frontier estimates to form a cluster at or very near

the base of the dendrogram, that is, somewhere in the neighbourhood of zero

on the vertical axis. Once this cluster has been identified, one can choose any

of its associated pairs of α and m. For instance, in figure 3.7, there is a very
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large cluster of frontier estimates at the centre-left of the base of the dendro-

gram. If we select a combination of α and m that corresponds to any one of the

fused branches, we will find that ĝα,m ends up being a perfect estimate of the

frontier.9 Further experimentation in Section 3.5 with this hierarchical clus-

tering procedure for trimming parameter selection reveals that the proposed

α-quantile order-m frontier estimator can substantially improve upon existing

robust methods in finite sample settings. Before elaborating on this point,

however, we first describe an extension of our robust nonparametric estimator

that relies on kernel smoothing instead of an empirical conditional distribution

function.

3.4 A smooth frontier estimator for count data

In the preceding discussion, we proposed a robust nonparametric frontier esti-

mator that was based on a nonsmooth (i.e. empirical) conditional distribution

function F̂ (y/x) = F̂ (y,x)

F̂X(x)
. However, as Martins-Filho and Yao (2008) and

others have pointed out, it might be advantageous to use a smooth kernel-

based estimator instead. Hence we now consider a setting in which out-

put y ∈ {0, 1, ..., p− 1} is expressed as one of p possible count values, and

where the (q+r)-dimensional input vector x = (xc, xd) comprises q continuous

and r discrete count variables, respectively denoted by xc = (xc1, ..., x
c
q) and

xd = (xd1, ..., x
d
r). The objective is to estimate a frontier function that is based

9This procedure can be automated via identification of the largest cluster for a particular
cut-off point on the vertical axis of the dendrogram; however, the optimal cut-off value will
be context-specific insofar as it depends on the range and variability of the frontier estimates
for different α and m. In the present example, using the base of the dendrogram as a cut-off
point is the best option, but this will not always be the case. Hence the clustering method is
primarily an exploratory tool whose interpretation must ultimately be left to the researcher.
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on the conditional distribution F (y/x) = F (y,x)
FX(x)

, which is now defined as:

F (y/x) =
F (y, x)

FX(x)
=

P(Y ≤ y,Xc ≤ xc, Xd ≤ xd)

P(Xc ≤ xc, Xd ≤ xd)
. (3.8)

Inversion of (3.8) gives rise to a FDH-style frontier function that is analogous

to the one in (3.2), where g(x) = q1(x) = inf {y : F (y/x) = 1} now reflects the

fact that y is a count and that the vector x comprises a mix of continuous and

discrete count data.

Estimation of (3.8) can proceed along the lines of the kernel-based frame-

work that is laid out in Li and Racine (2003, 2008). This particular nonpara-

metric estimator for distributions that involve mixed continuous and discrete

data is ideally suited to the present setting, since we would like to model a

count output frontier that is a function of a mixed-data input vector. We begin

by defining a kernel weighting function for the count output y that can also be

applied to each of the r discrete count inputs in the vector xd = (xd1, ..., x
d
r):

lλ(yi, y) =


1 if yi = y

λ|yi−y| otherwise ,

(3.9)

where λ ∈ [0, 1] is a smoothing parameter whose value is yet to be determined.

In regard to the continuous inputs xc = (xc1, ..., x
c
q), we follow a similar ap-

proach to that of Martins-Filho and Yao (2008) and define whj(x
c
ij, x

c
j) =

1
hj
κ
(
xcij−xcj
hj

)
for j = 1, ..., q, where hj is a bandwidth parameter and the

bounded, symmetric kernel κ(·) satisfies
∫
κ(z)dz = 1,

∫
z2κ(z)dz > 0, and∫

κ2(z)dz > 0. In the analysis that follows, a second-order Gaussian kernel is

used for κ(·). Finally, the weighting function for the discrete count input xdk,
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where k = 1, ..., r, is defined exactly as in (3.9) and is henceforth denoted by

lγk(x
d
ik, x

d
k) for a given smoothing parameter γk ∈ [0, 1].

Li and Racine (2003) introduce the notion of a “general product kernel”

so that weights can be assigned to observations in the sample based on the

(q + r)-dimensional vector x = (xc, xd). Let Wh(x
c
i , x

c) =
∏q

j=1whj(x
c
ij, x

c
j)

and Lγ(x
d
i , x

d) =
∏r

k=1 lγk(x
d
ik, x

d
k) denote product kernels for the continuous

and discrete count variables, respectively. The nonparametric estimator of the

joint density function f(y, x) is given by:

f̂(y, x) =
1

n

n∑
i=1

lλ(yi, y)×Wh(x
c
i , x

c)× Lγ(xdi , xd). (3.10)

In a similar vein, the estimator of the marginal density function fX(x) is given

by:

f̂X(x) =
1

n

n∑
i=1

Wh(x
c
i , x

c)× Lλ(xdi , xd). (3.11)

Estimators of the joint and marginal distributions are then obtained by plug-

ging the density functions in (3.10) and (3.11), respectively, into the expres-

sions below:

F̂ (y, x) =
∑
y′≤y

∑
xo′1 ≤xo1

· · ·
∑
xo′r ≤xor

∫ xc1

0

· · ·
∫ xcq

0

f̂
(
xc′1 , ..., x

c′
q , x

d′
1 , ..., x

d′
r , y

′) dxc′1 · · · dxc′q
(3.12)

F̂X (x) =
∑
xd′1 ≤xd1

· · ·
∑
xd′r ≤xdr

∫ xc1

0

· · ·
∫ xcq

0

f̂X
(
xc′1 , ..., x

c′
q , x

d′
1 , ..., x

d′
r

)
dxc′1 · · · dxc′q .

(3.13)

Thus, the joint and marginal CDFs are obtained by either summing or integrat-

ing the joint and marginal density functions over all of the input and output

variables. Fortunately, (3.12) and (3.13) have straightforward analytical solu-

61



PhD Thesis - John M. Kealey McMaster University - Economics

tions because the integral is well-defined for the second-order Gaussian kernel

appearing in the local weighting functions for the q continuous inputs. In par-

ticular, the integral of Wh(x
c
i , x

c) in (3.12) and (3.13) is given by Gh(x
c
i , x

c) =∫ xc1
0
· · ·
∫ xcq
0

(∏q
j=1whj(x

c
ij, x

c′
j )
)
dxc′1 · · · dxc

′
q =

∏q
j=1

1
hj

∫ xcj
0 κ

(
xcij−xc′j
hj

)
dxc′j , while

the (r + 1) summation expressions that involve the discrete count variables’

weighting functions lλ(yi, y) and Lγ(x
d
i , x

d) =
∏r

k=1 lγk(x
d
ik, x

d
k) are rather easy

to compute.

The final task that remains before we can proceed with estimation of the

distribution functions in (3.12), (3.13), and (3.1) is to select appropriate values

of the q+r+1 smoothing parameters λ, h = (hj)
q
j=1, and γ = (γk)

r
k=1, which are

henceforth denoted by the shorthand θ = (λ, h, γ). Li, Li, and Racine (2014)

build on previous work by Ju, Li, and Liang (2009) and propose a data-driven

bandwidth selection method for CDFs that involve a combination of contin-

uous and discrete variables. Under this framework, we first generate a set of

evaluation points {xj, yj}nej=1 by drawing a subsample of size ne < n (without

replacement) from the n-observation dataset {xi, yi}ni=1. We then use a non-

linear optimization routine to identify the vector of smoothing parameters θ

that minimizes the cross-validation function below:

CV (θ) =
1

nne

n∑
i=1

ne∑
j=1

[1(yi ≤ yj, x
c
i ≤ xcj, x

d
i ≤ xdj )− F̂−i(yj, xcj, xdj )]2, (3.14)

where F̂−i(yj, x
c
j, x

d
j ) is the “leave-one-out” estimator of the joint distribution

function. It is obtained by deleting observation i from the sample, using the

n − 1 observations that remain to compute (3.10) and (3.12), and then eval-

uating the function at (yj, x
c
j, x

d
j ) for i = 1, ..., n and j = 1, ..., ne. Note that
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(3.14) applies to the joint distribution F (·), and hence one has the option of

either using the h and γ that minimize CV (θ) above to estimate the marginal

CDF FX(·), or repeating the bandwidth selection procedure for a new cross-

validation function that excludes the output variable y. In this chapter, we

opt for the latter.

Now that we have established how the nonparametric conditional distribu-

tion estimator F̂ (y/x) = F̂ (y,x)

F̂X(x)
can be defined along the lines of Li and Racine’s

(2003; 2008) and Li et al.’s (2014) kernel-based framework, we can model the

α-quantile order-m frontier function for a count ouput variable in more or less

the same fashion as in Section 3.2.2. The procedure is delineated as follows:

1. For b = 1, ..., B, draw a subsample of size m < n without replacement{
x
(b)
i , y

(b)
i

}m
i=1

2. Estimate the smoothed conditional distribution F̂ (b)(y/x) = F̂ (y,x)

F̂
(b)
X (x)

3. Compute the order-one conditional quantile q̂
(b)
1 (x) = inf

{
y : F̂ (b)(y/x) = 1

}
4. Define the frontier function as the order-α quantile of the q̂

(b)
1 (x)

Selection of suitable values of α and m can once again be undertaken using

the k-means and hierarchical clustering methods that were outlined in Section

3.2.2. By now, it should be obvious that the smooth frontier estimator for

count data is asymptotically-equivalent to the FDH framework in (3.2) insofar

as ĝα,m(x) converges to the order-one conditional quantile q̂1(x) as α→ 1 and

m → n. In this sense, it mimics the large-sample behaviour of Cazals et al.’s

(2002) order-m estimator and Aragon et al.’s (2005) α-quantile method. Note

that the smooth conditional distribution function F̂ (y/x) that is obtained us-

ing Li and Racine’s (2003; 2008) general product kernel can also be applied to
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the formulation of a count data analogue of Martins-Filho and Yao’s (2008)

α-quantile frontier estimator. However, we leave this extension of the present

framework as a topic for future research. In the section that follows, we con-

sider a number of simulated examples that shed light on both the smooth and

the nonsmooth α-quantile order-m estimators’ behaviour in finite-sample set-

tings. It turns out that when the frontier model is characterized by i) a count

output variable and ii) outliers in the data, both of the estimators that we

have proposed consistently outperform existing nonparametric approaches.

3.5 Monte Carlo simulation

We now perform a Monte Carlo experiment in order to evaluate the proposed

α-quantile order-m estimator’s performance under a number of different spec-

ifications of the frontier model. In a simulated setting where the production

set’s underlying data generating process is known, we would like to compare

the results of the estimation procedure in Sections 3.2.2 and 3.4 with those of

existing nonparametric approaches. In the first part of what follows, we use

the estimators of Cazals et al. (2002) and Aragon et al. (2005), respectively, as

benchmarks for comparison. The key attribute that ties these two approaches

together is their robustness to outliers by means of trimming methods that

lead to a certain proportion of the data points not getting enveloped by the

frontier. Hence they form a relevant backdrop against which the finite-sample

behaviour of our nonsmooth α-quantile order-m frontier estimator for count

data can be assessed - specifically, we would like to establish whether the newly-

proposed trimming procedure offers meaningful improvements over methods

that already exist. As an extension, we also incorporate Martins-Filho and
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Yao’s (2008) kernel-based α-quantile framework into the simulation exercises

and contrast its performance under a variety of DGPs with that of our smooth

nonparametric frontier estimator for count data. All of the supporting tables

and figures that are referenced below can be found in the appendix.

3.5.1 Nonsmooth estimators

In this first experiment, we consider a scenario where the efficient output

count is a function of a single discrete count variable. Furthermore, we assume

that there are a handful of extreme-valued observations in the data that have

the potential to distort the statistical analysis of productive efficiency. We

consider three specifications of the non-outlier data generating process for the

production set Ψ:

1. Ψ = {(X, Y ) : Y ≤ X}

2. Ψ = {(X, Y ) : Y ≤ s(X)}

3. Ψ = {(X, Y ) : Y ≤ X2},

where s(X) in the second instance above is a step function with two more or

less equally-spaced jumps. In each instance, the input X ∼ U {1, 10} and the

output Y ∼ U
{⌊

g(X)
2

⌋
, g(X)

}
are drawn from a discrete uniform distribu-

tion, where g(X) denotes the frontier that envelops all non-outlier data points

for a given value of X,10 and
⌊
g(X)
2

⌋
denotes the largest integer that is less

than or equal to g(X)
2

. We consider sample sizes of n = 500 and n = 1000

10Thus, we have g(X) = X, g(X) = s(X), and g(X) = X2 under the first, second,
and third specifications of the frontier model, respectively. The step function is defined as
s(X) = 3 · 1(1 ≤ X ≤ 3) + 7 · 1(4 ≤ X ≤ 7) + 10 · 1(8 ≤ X ≤ 10), where 1(·) denotes an
indicator function.
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where in each case, one percent of the total number of observations are as-

signed extreme values. One can assume that outliers such as these have arisen

due to measurement error or some other imperfection in the data collection

process. The outliers in the simulation exercise are generated as follows: for

a subset of input values X ∈ {1, 2, ..., 10}, we define various output intervals

such that there is a significant amount of separation between each interval and

the frontier. Hence, the endpoints that characterize each of these intervals will

depend on both the value of the input variable X and the specification of the

frontier function g(X) (i.e., linear, step, or quadratic). In each iteration of the

Monte Carlo experiment, we draw a new set of outlier observations from these

pre-determined intervals in order to introduce some variation into the outlier

generation process.11

We estimate the linear, step, and quadratic frontier models using our pro-

posed nonsmooth nonparametric approach, the order-mmethod of Cazals et al.

(2002) that is depicted in equations (3.3) and (3.4), and the α-quantile frame-

work of Aragon et al. (2005) that is outlined in equation (3.5). Given that we

only briefly alluded to the numerical integration procedure that is involved in

the order-m estimator’s implementation, we provide a quick overview of what

it entails before proceeding with the Monte Carlo simulation. For a given

x ∈ {1, ..., 10}, we let nx =
∑n

i=1 1(xi ≤ x) and draw a subsample of all nx

observations satisfying xi ≤ x, which yields the ordered sequence of output

11For example, under the quadratic specification of the production set with X ∼ U {1, 10},
Ψ =

{
(X,Y ) : Y ≤ X2

}
, and n = 500, we take the subset x = 3, 4, 5, 6, 7 and draw the

five corresponding output outliers from the intervals {45, ..., 55}, {45, ..., 55}, {60, ..., 80},
{50, ..., 60}, and {70, ..., 90}. Note the considerable distance that separates the lower end-
points of these intervals and the respective output frontier values of g(x) = 9, 16, 25, 36, 49.
Replication code that details the outlier generation process for each specification of the
frontier model is available upon request.
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values {yj}nxj=1, where y1 < y2 < ... < ynx . The order-m frontier ĝm(x) is given

by:

ĝnsm (x) =
nx∑
j=2

(1− [F̂ (yj/x)]m)(yj − yj−1), (3.15)

where for j = 1, ..., nx, the empirical conditional distribution function is com-

puted as F̂ (yj/x) = j
nx

. Meanwhile, the α conditional quantile frontier es-

timate is given by ydαnxe, where dαnxe denotes the smallest integer that is

greater than or equal to αnx.

The results of the Monte Carlo experiment are reported in table 3.1. Each

entry corresponds to the average root mean squared error (RMSE) for a par-

ticular specification of the model (i.e. linear, step, quadratic) and sample size,

based on M = 500 random draws of the data. The RMSE that is recorded

for both the order-m and the α-quantile estimators is the minimum across

all values of m and α, respectively.12 Thus, the first four columns should be

interpreted as the “best” possible outcomes for the nonsmooth estimators of

Cazals et al. (2002) and Aragon et al. (2005) in this simulated setting; their

finite-sample performance is not quite as impressive as one moves away from

the optimal m and α. Meanwhile, the proposed α-quantile order-m estimator

is implemented using values of α and m that have been selected via the hierar-

chical clustering method described in Section 3.3, and hence the average RMSE

that is reported in the fifth and sixth columns should be close but not neces-

sarily equal to the minimum across all possible combinations of the trimming

parameters. Three key results of this exercise are worth highlighting. First,

12In particular, the frontier model is estimated using m = 1, ..., 15 and α =
0.94, 0.95, ..., 0.99, 1 (anything beyond m = 15 or α = 0.94 results in a very large RMSE due
to excessive trimming), and whichever of these values yields the smallest average RMSE is
used to compute what appears in the first four columns of table 3.1.

67



PhD Thesis - John M. Kealey McMaster University - Economics

the order-m estimator is consistently outperformed by both the α-quantile and

α-quantile order-m methods. We observe that under all three specifications

of the frontier model, the average RMSE in columns 1 and 2 is considerably

higher than in columns 3 through 6. Second, the α conditional quantile tends

to provide very good estimates of the frontier when either α = 0.98 or α = 0.99.

For example, when the frontier is either a linear or a step function of x, the

pointwise RMSE associated with q̂α(x) is remarkably close to zero, although

this only holds when one has chosen the optimal value of α. Third and most

importantly, the estimator that was proposed in Section 3.2.2 has the lowest

RMSE in all six instances that are considered in table 3.1. That is, it actually

outperforms q̂α(x) with an ideally-chosen trimming parameter, and provides

near-perfect estimates of the linear and step frontiers.

At this juncture, it is worth pointing out that the results of the Monte

Carlo simulation are not intended as a suggestion that our proposed method

will always give rise to the best fit of the production set; this would indeed

be somewhat of an exaggeration. The clustering method that is used for trim-

ming parameter selection should, in general, lead to a better fit than the more

rudimentary order-m or α-quantile approaches, but one shouldn’t expect this

outcome 100 percent of the time. Rather, the preceding discussion has es-

tablished that for sensibly-chosen values of α and m, the α-quantile order-m

frontier estimator can perform just as well, if not better, than the optimal

versions of ĝm(x) and q̂α(x).
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3.5.2 Smooth estimators

In this second exercise, we compare our smooth frontier estimator for count

data with the kernel-based α-quantile method of Martins-Filho and Yao (2008).

Given that the latter will tend to perform very well when the frontier function

exhibits a considerable amount of curvature, we specify the data generating

process as follows:

1. Ψ =
{

(X, Y ) : Y ≤ 2X−1
}

2. Ψ = {(X, Y ) : Y ≤ 100 + (X − 5)3}.

The bandwidth selection for the smooth α conditional quantile estimator q̂α(x)

can be carried out using the same cross-validation procedure that appears in

(3.14), with the exception that smoothing will in this instance only be applied

to the output variable y, which is treated as continuous rather than discrete.

Once again, we consider sample sizes n = 500 and n = 1000, and assume

that one percent of the total number of observations consists of outliers that

lie well outside of Ψ. The outlier generation process is the same as what

was described in the previous subsection, and replication code is available

upon request. Considering the amount of variation that is exhibited by the

output frontier under the two specifications of the model, table 3.2 suggests

that both Martins-Filho and Yao’s (2008) approach and the method that we

are proposing in this chapter perform quite well. As in the first simulation,

the average RMSE that is reported for the smooth α-quantile estimator is the

minimum across a number of different values of α. Meanwhile, the fit of the

α-quantile order-m estimator is based on trimming parameter values that have

been selected via hierarchical clustering - the chosen values of α and m are

69



PhD Thesis - John M. Kealey McMaster University - Economics

reported in the description under table 3.2. Altogether, the approach that is

delineated in Section 3.4 gives rise to the lowest RMSE; however, to reiterate

what was mentioned in the last paragraph of Section 3.5.1, the objective of this

Monte Carlo experiment is not to demonstrate that our procedure will always

outperform existing methods. Instead, it merely shows that the proposed

smooth estimator ĝα,m(x) is well-behaved in finite sample settings; that is, it

yields a fit of the frontier function that is comparable to the smooth version

of q̂α(x) with an optimally-chosen trimming parameter α. On top of this, it

has the added benefit that it is fully compatible with a count-valued output

variable, unlike the competing smooth estimator that is primarily suited for

continuous data types.

3.6 An empirical example using firm-level patent data

In this section of the chapter, we estimate a frontier model in which the depen-

dent variable is a count of patents granted to U.S. manufacturing firms between

1975 and 1979. The dataset that we use originally appeared in Hall, Griliches,

and Hausman (1986), and has been made publicly available by Cameron and

Trivedi (2013). The five-year balanced panel comprises a total of 735 ob-

servations on 147 unique firms. Five different industries are represented in

the sample, namely manufacturing of pharmaceuticals, computers, scientific

instruments, chemicals, and electric components. To ensure lucidity of exposi-

tion, we estimate a very simple model that specifies a firm’s patent count as a

univariate function of the log of its investment in research and development in

any given year. Hence in this context, the frontier estimator ought to be able

to shed light on the efficiency with which various firms translate their R&D
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expenditures into proprietary technology.

We begin by estimating the α-quantile order-m frontier for a number of

different pairwise combinations of the trimming parameters, and we plot the

outcome of the k-means clustering outlier detection procedure in figure 3.8.

While there is not quite as much separation of the fitted vectors ĝα,m as there

was in the simulated example from Section 3.3, we nevertheless see some ev-

idence of outliers in the data. For the sake of illustration, we estimate the

frontier using values of α and m that appear in the lower-left portion of fig-

ure 3.8, and contrast this with what is obtained under the free disposal hull

framework (i.e., the order-one quantile with m=n). The results of this exercise

are plotted in figures 3.9 and 3.10. When α = 0.3 and m = 240, roughly 7

percent of the observations do not get enveloped by the frontier, unlike when

the FDH method is implemented. The efficiency of each firm’s R&D endeav-

ours can be computed in terms of its relative distance from the patent count

frontier; that is, if xit and yit denote firm i’s period-t R&D spending and

patent count, respectively, then the α-quantile order-m measure of efficiency

is given by yit
ĝα,m(xit)

, whereas the FDH measure is given by yit
q̂1(xit)

. It should

be obvious by now that the inequality yit
q̂1(xit)

≤ yit
ĝα,m(xit)

will always hold be-

cause ĝα,m(xit) ≤ q̂1(x) by construction. This relationship can be clearly seen

in figure 3.12, where we have plotted the respective distributions of the two

categories of efficiency estimates. Note that extreme-valued observations are

not as much of a problem in Hall et al.’s (1986) firm-level dataset as they were

in some of the simulated examples that were presented earlier in this chapter,

and hence the distance that separates the two CDF plots might actually be a

lot wider under alternative circumstances. At the end of the day, in applied
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settings, the decision of whether or not to resort to data trimming is left to

the judgement of the researcher, although whatever the case may be, the α-

quantile order-m procedure is a sound benchmark against which the robustness

of the FDH frontier can be evaluated.

3.7 Conclusion

This chapter has proposed a robust nonparametric estimation procedure for

deterministic frontier models with a count-valued dependent variable. It has

argued that a cluster-based approach to trimming parameter selection may be

preferable to the ad hoc methods that are commonly employed by existing

robust estimators, and it has provided Monte Carlo evidence to support this

claim. For suitably-chosen trimming parameter values, both the nonsmooth

and the smooth versions of the proposed α-quantile order-m estimator are

well-behaved in finite sample settings, and they generally give rise to a better

fit of the outlier-free frontier than competing approaches, namely those based

on either a conditional quantile or an expected maximal output function. An

empirical example has been provided using publicly-available data on firm-

level patent counts and R & D spending; in this instance, 7 percent of the

observations are labelled as outliers, and are consequently not enveloped by

the robust frontier. Refinement of the hierarchical clustering framework so

that it allows for more automatic trimming of extreme-valued data points

offers many intriguing possibilities for future research.
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Specification order-m α-quantile α-quantile order-m
of frontier n = 500 n = 1000 n = 500 n = 1000 n = 500 n = 1000

1. linear 1.500 1.365 0.056 0.028 0.006 0.001

2. step 1.498 1.395 0.010 0.003 0.010 0.002

3. quadratic 11.186 13.837 4.062 3.678 1.998 1.338

Table 3.1: Average root mean squared error (RMSE) for the nonsmooth order-
m, α-quantile, and α-quantile order-m frontier estimators based on M=500 draws
with sample sizes n=500 and n=1000. The RMSE for the order-m and the α-
quantile estimators is the minimum for all possible choices of m and α, respectively.
The RMSE for the α-quantile order-m estimator is obtained using, row-by-row,
(α,m) = (0.25, 100), (0.25, 90), (0.25, 90), (0.25, 90), (0.2, 130), (0.25, 150).

Specification α-quantile α-quantile order-m
of frontier n = 500 n = 1000 n = 500 n = 1000

1. cubic 7.832 7.675 5.579 5.810

2. exponential 15.001 12.025 12.567 10.001

Table 3.2: Average root mean squared error (RMSE) for the smooth α-quantile and
α-quantile order-m frontier estimators based on M=500 draws with sample sizes
n=500 and n=1000. The RMSE for the α-quantile estimator is the minimum for all
possible choices of α. The RMSE for the α-quantile order-m estimator is obtained
using, row-by-row, (α,m) = (0.5, 50), (0.5, 50), (0.25, 90), (0.45, 70).
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Figure 3.1: Order-m frontier estimates for simulated data with n = 500 (5 outliers).
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Figure 3.2: α-quantile frontier estimates for simulated data with n = 500 (5 outliers).
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Figure 3.3: α-quantile order-m frontier estimates for simulated data with n = 500
(5 outliers).
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Figure 3.4: α-quantile order-m frontier estimates for simulated data with n = 500
(no outliers).
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Figure 3.5: Clustering of α-quantile order-m frontier estimates.
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Figure 3.6: Clustering of α-quantile order-m frontier estimates (no outliers).
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Figure 3.7: Dendrogram plot for hierarchical clustering procedure.
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Figure 3.8: Clustering of α-quantile order-m patent count frontier estimates.
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Figure 3.9: FDH patent count frontier (α = 1,m = n).
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Figure 3.10: Nonsmooth α-quantile order-m patent count frontier (α = 0.3,m =
240).
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Figure 3.11: Smooth α-quantile order-m patent count frontier (α = 0.4,m = 200).
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Figure 3.12: Distribution of patent count efficiency estimates (nonsmooth).
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Figure 3.13: Distribution of patent count efficiency estimates (smooth).
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Chapter 4

Nonparametric estimation of stochas-

tic production frontier models for panel

data

4.1 Introduction

Stochastic frontier modelling enjoys considerable popularity as a methodolog-

ical framework for the analysis of firm-level production. Ever since the pi-

oneering contributions of Aigner, Lovell, and Schmidt (1977) and Meeusen

and van den Broeck (1977), the basic framework has been extended to cover a

broad variety of model specifications in both cross-sectional and panel data set-

tings. However, the literature has yet to capitalize on recent developments in

the area of nonparametric conditional mean and gradient estimation against

a panel data backdrop. This has been a lost opportunity, since stochastic

frontier methods often need to be applied to datasets that have both a cross-

sectional and a time series dimension, and nonparametric estimators offer a

degree of flexibility that is simply not found in their parametric counterparts.
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Hence, this chapter proposes a kernel-based estimation procedure for produc-

tion frontier models that have both persistent and time-varying inefficiency

components. It is shown that the parametric and nonparametric approaches

yield substantially different estimates of i) the frontier itself, ii) factor elastic-

ities, and iii) firm-level inefficiency.

The stochastic frontier literature is extremely vast and spans a period of

nearly four decades. In the panel data context, Heshmati and Kumbhakar

(1995), Greene (2005a,b), and Hardaker, Kumbhakar, and Lien (2014) out-

line a number of useful methods for the estimation of frontier models that

include firm-specific intercepts and multi-dimensional measures of inefficiency

comprising both persistent and time-varying elements. However, one of the

downsides of the aforementioned approaches is their reliance on a parametric

specification of the frontier function which, if incorrect, can give rise to im-

precise estimates of both the frontier and the various components of firm-level

inefficiency. Semiparametric and nonparametric estimators make it possible

to sidestep the issue of model misspecification and hence, kernel-based ap-

proaches have sporadically appeared in the stochastic frontier literature. In

particular, Fan, Li, and Weersink (1996), Parmeter and Racine (2012), and

Martins-Filho and Yao (2015) apply kernel weighting methods to the estima-

tion of a production frontier while maintaining parametric assumptions about

the distribution of the inefficiency and stochastic error terms. However, both

of these semiparametric estimation procedures are intended for cross-sectional

data settings in which firm-level inefficiency is entirely time-invariant.

Fortunately, the econometric literature offers a variety of nonparametric

regression techniques that are entirely suitable for stochastic frontier models
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that involve panel data. For instance, Henderson and Ullah (2005), Su and

Ullah (2007), and Martins-Filho and Yao (2009) propose kernel-based meth-

ods of estimating the types of error component models that are frequently

used to model frontier functions and firm-level inefficiency. The first two of

these approaches are based on a two-step locally-weighted generalized least

squares procedure, while the third relies on a two-step transformation of the

regression equation into one with errors that have a spherical parametric co-

variance structure. More recently, Ma, Racine, and Ullah (2015) have proposed

a regression-spline random effects modelling framework that can be viewed as

an alternative to two-step kernel-based methods. In the present chapter, we

make use of Martins-Filho and Yao’s (2009) procedure, although any of the

aforementioned approaches would be appropriate in a panel data environment.

An ongoing challenge in the production frontier literature relates to the sep-

arate identification of time-varying inefficiency and stochastic noise in panel

data settings. Identification is generally not possible without making para-

metric assumptions about the distribution of the former, but this can be prob-

lematic insofar as it introduces a risk of model misspecification. Horrace and

Parmeter (2011) have built on previous work by Meister (2006) and outlined a

semiparametric deconvolution procedure to recover the density of time-varying

inefficiency, while Hall and Simar (2002) have proposed a kernel-based estima-

tor for its mean; however, neither of these approaches can be used to mea-

sure each individual firm’s distance from the production frontier. Kneip and

Simar’s (1996) nonparametric stochastic frontier estimator for panel data is

somewhat promising, but it requires either i) an unrealistically-large number

of observations for each cross-sectional unit or ii) an assumption that firm-level
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inefficiency is entirely time-invariant. In contrast, the present chapter shows

how it is possible to separately identify the persistent and time-varying com-

ponents of inefficiency without making any parametric assumptions about the

functional form of the production frontier or the distribution of the convoluted

error term.

The chapter proceeds as follows: Section 4.2 provides an overview of both

the baseline parametric stochastic frontier estimator and the nonparametric

alternative that is being proposed. Section 5.3 discusses the firm-level dataset

from the Colombian manufacturing sector that underlies the empirical anal-

ysis in Section 5.4, where evidence is provided that the parametric and non-

parametric inefficiency estimates are characterized by a first-order stochastic

dominance relationship. Section 4.5 presents the results of two specification

tests that serve to scrutinize the distributional assumptions underlying the

parametric frontier model. Section 4.6 comprises a Monte Carlo experiment

that illustrates the adverse consequences of a misspecified frontier function in

a finite sample environment, while Section 4.7 concludes.

4.2 Model specification and estimation strategy

This section provides an overview of the baseline parametric stochastic frontier

model for panel data and a nonparametric alternative that can be estimated

via kernel-based random effects regression. These two approaches are dis-

tinguished by their characterization of the frontier function and of firm-level

inefficiency. The parametric framework relies on a set of functional form and

distributional assumptions that the nonparametric framework renders unnec-

essary.
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4.2.1 A parametric stochastic frontier model for panel data

Heshmati and Kumbhakar’s (1995) parametric stochastic production frontier

model is specified as:

yit = α0 + x′itβ + eit − vit − ui, (4.1)

where yit is the log of firm i’s output in period t, xit is a vector of inputs

(capital, labour, etc.) with a corresponding vector β of factor elasticities, α0

is an intercept that is common across all firms, and eit is a i.i.d. N (0, σe) error

term. The non-negative measure of technical inefficiency vit + ui is divided

into a time-varying (vit ≥ 0) and a persistent (ui ≥ 0) component; these

components are independent both of one another and of eit. Note that the non-

negativity of vit and ui implies E (vit + ui|xit) 6= 0 and hence, the production

frontier α0 + x′itβ 6= E (yit|xit). Consequently, (4.1) cannot be estimated by

following a standard panel data regression approach; instead, one can adopt

the strategy that is outlined in Hardaker et al. (2014) and rewrite (4.1) as

follows:

yit = α0 − E (vit)− E (ui) + x′itβ + eit + E (vit)− vit + E (ui)− ui

= γ0 + x′itβ + ξit + ηi,

(4.2)

where now, γ0 = α0−E (vit)−E (ui), ξit = eit+E (vit)−vit, and ηi = E (ui)−ui.

This alternative specification of the model ensures that E (ξit|xit) = 0 and

E (ηi|xit) = 0, which clears the way for estimation of the conditional mean
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E (yit|xit) = γ0 + x′itβ by means of a random effects regression.1

Given that the random effects regression yields predicted values of ηi =

E (ui) − ui, it is possible to estimate the persistent component ui of firm-

level inefficiency by adopting the method that is outlined in Heshmati and

Kumbhakar (1995) and Hardaker et al. (2014):

ûi = max (η̂i)− η̂i. (4.3)

Next, in order to separate vit and eit, it is standard practice in the stochastic

frontier literature to assume that vit is characterized by either a half-normal2

or an exponential distribution. In this setting, the time-varying component of

firm-level inefficiency can be estimated via maximum likelihood. Given that

eit ∼ N (0, σe), the density function that underlies ξ′it = eit− vit = ξit−E (vit)

is specified as either normal-half-normal or normal-exponential:

f (ξ′it) =
2

σ
φ

(
ξ′it
σ

)
Φ

(
−ξ
′
itλ

σ

)
(4.4)

f (ξ′it) =
1

σv
Φ

(
−ξ
′
it

σe
− σe
σv

)
· e

ξ′it
σv

+
σ2
e

2σ2
v , (4.5)

where φ (·) and Φ (·) denote the standard normal probability density and cu-

mulative distribution functions, respectively, σ =
√
σ2
v + σ2

e , and λ = σv
σe

.

Parmeter and Kumbhakar (2014) show that the log-likelihood functions cor-

1The random effects regression framework assumes that xit is independent of vit and ui,
that is, productive inefficiency does not influence the input decisions of firms. Alternatively,
one can adopt the fixed effects specification proposed by Schmidt and Sickles (1984) and
summarized in Parmeter and Kumbhakar (2014), which does not require independence of
xit, vit, and ui.

2A half-normal distribution N+ (0, σ) is simply a N (0, σ) distribution with restricted
domain [0,∞).
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responding to (4.4) and (4.5) are expressed as:

lnL = −NT lnσ +
N∑
i=1

T∑
t=1

ln Φ

(
−ξ
′
itλ

σ

)
− 1

2σ2

N∑
i=1

T∑
t=1

ξ′2it (4.6)

lnL = −NT lnσv +NT

(
σ2
e

2σ2
v

)
+

N∑
i=1

T∑
t=1

ln Φ

(
−ξ
′
it

σe
− σe
σv

)
+

1

σv

N∑
i=1

T∑
t=1

ξ′it.

(4.7)

Note that one can substitute ξ′it = yit − γ̂0 − x′itβ̂ − η̂i − E (vit) into (4.6) and

(4.7), where γ̂0 and β̂ are the random effects regression coefficient estimates

from (4.2). The unknown mean E (vit) =
√

2
π
· σv when the assumed distribu-

tion of vit is half-normal and E (vit) = σv when it is exponential. Fan et al.

(1996) also show how a bit of algebra makes it possible to express the normal-

half-normal likelihood function in terms of the single unknown parameter λ,

which results in a simplified optimization problem. Once the parameters λ, σ,

σe, σv, and E (vit) have been estimated, the production frontier is obtained by

adding Ê (ui) and Ê (vit) to the fitted values γ̂0 + x′itβ̂ from the random effects

regression at the outset. Finally, depending on which of the half-normal or

exponential distributional assumptions have been adopted, the method of ei-

ther Jondrow, Lovell, Materov, and Schmidt (1982) or Kumbhakar and Lovell

(2000) can be used to compute the time-varying component of firm i’s period-t

inefficiency v̂it.

4.2.2 A nonparametric stochastic frontier model for panel data

Consider a setting in which neither the functional form of the production fron-

tier nor the distribution of firm-level inefficiency is subject to any parametric
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assumptions. In particular, suppose the model is now expressed as:

yit = gt (xit) + eit − ui, (4.8)

where gt (·) ≡ g(·, t) denotes the frontier function, ui ≥ 0 denotes persistent

inefficiency, and eit is a stochastic noise term. In the baseline parametric

model for panel data that was discussed in the previous subsection, the maxi-

mum output quantity that can be achieved with the input vector xit does not

change over time, but this seems at odds with intuitive conceptualizations of

technological progress and productivity growth. Instead, a more appropriate

assumption might be that a firm’s output lies somewhere on or below a pro-

duction frontier whose location and shape are nevertheless evolving at each

t = 1, ..., T . The varying component of inefficiency vit that was discussed in

Section 4.2.1 has been dropped from the analysis and, instead, the frontier

function includes a time subscript gt (·). Given that the (unknown) distribu-

tion of ui has non-negative support, it cannot be assumed that E (ui|xit) = 0

and hence, (4.8) must be rewritten as:

yit = ht (xit) + eit + ηi, (4.9)

where ht (xit) = gt (xit)− E (ui) and ηi = E (ui)− ui.

The conditional mean function ht (xit) = gt (xit)−E (ui) and the q×1 vector

of factor elasticities∇ht (xit) =
(
∂ht
∂x1

(xit) , ...,
∂ht
∂xq

(xit)
)

=
(
∂gt
∂x1

(xit) , ...,
∂gt
∂xq

(xit)
)

are estimated using the two-step, kernel-based nonparametric random effects

estimator of Martins-Filho and Yao (2009).3 In short, the estimation procedure

3Alternatively, one may use the kernel estimators of Henderson and Ullah (2005) or Su
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can be delineated as follows:

1. Estimate (4.9) by means of a pooled local quadratic4 regression

2. Use the residuals from step 1 to compute the variance estimates σ̂2
e and

σ̂2
η, just as one would do under the parametric random effects framework

3. Use σ̂2
e and σ̂2

η to transform the regression equation into one with errors

that have a spherical covariance structure

4. Estimate the transformed equation using a local quadratic regression

The inclusion of the discrete time variable t in the model implies that the non-

parametric random effects estimator must admit a mixture of continuous and

discrete predictors. To this end, Li and Racine’s (2004) generalized product

kernel is used to construct a local weighting function, which is then incor-

porated into Martins-Filho and Yao’s (2009) proposed framework. A more

thorough summary of the procedure that is used to estimate the conditional

mean function Et (yit|xit) = ht (xit) can be found in the appendix. In practice,

the method is implemented using the generalized local polynomial regression

and kernel summation functions in the ‘crs’ and ‘np’ packages, respectively, in

the R statistical computing environment (Hayfield and Racine, 2008).

Note that one of the primary advantages of the nonparametric random ef-

fects estimator is that it is fully compatible with heterogeneous firm-level factor

elasticities. Given that the estimates of∇ht (xit) = ∇gt (xit) =
(
∂gt
∂x1

(xit) , ...,
∂gt
∂xq

(xit)
)

and Ullah (2007), or the spline-based approach that is delineated in Ma et al. (2015). Under
a fixed effects specification, the nonparametric estimator of Lee and Robinson (2015) might
be an option, although this particular framework is not considered here.

4The local quadratic specification is favoured over the local linear specification because
it gives rise to better estimates of the first derivative of the conditional mean function.

92



PhD Thesis - John M. Kealey McMaster University - Economics

are functions of the firm-specific input vector xit and of time, the method al-

lows for both intra-industry and intertemporal variation in the elasticity of

output with respect to x1, ..., xq. This ensures a far greater degree of flexibility

than the conventional parametric random effects framework, which tends to

rely on the rather rigid assumption of constant elasticities. An issue raised in

Kealey (2015) is that even though the log-linear Cobb-Douglas specification

of a firm-level production function has proven popular in applied research5, it

is nonetheless incompatible with an elementary theoretical result that equates

factor elasticities and their corresponding input expenditure shares. Mean-

while, one can expect the kernel-based estimator to yield a more realistic degree

of co-movement between these expenditure shares and the partial derivatives

in ∇̂gt (xit).

The nonparametric random effects regression yields the predicted values

ĥt (xit) and η̂i. Subsequent application of the formula in (4.3) yields ûi, Ê (ui),

and ĝt (xit) = ĥt (xit) + Ê (ui), which can be applied to the computation of

the proposed time-varying measure of firm-level inefficiency. This involves two

simple steps:

1. Define ĝt∗ (x) = max
t=1,...,T

ĝt (x) for any input vector x

2. Firm i’s period-t inefficiency is given by γ̂it = ĝt∗ (xit)− yit + êit

Importantly, γ̂it is obtained without making any parametric assumptions about

its underlying density function. Moreover, it can be decomposed in a manner

5See, for instance, Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg,
Caves, and Frazer (2006), and Wooldridge (2009).
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that elucidates the intuition behind the proposed approach:

γ̂it = ĝt∗ (xit)− yit + êit

= ĝt (xit)− yit + êit − (ĝt (xit)− ĝt∗ (xit))

= ûi + (ĝt∗ (xit)− ĝt (xit)) .

(4.10)

Thus, γ̂it comprises firm i’s distance from the frontier in the current period

(ûi) in addition to the distance between the frontier functions ĝt∗ and ĝt when

they are both evaluated at xit.
6 If the production frontier is expanding and/or

contracting over time (which, it is argued here, ought to be interpreted as

a form of productivity growth), then this will result in changing values of

γ̂it when t = 1, ..., T . We now turn to a comparison of this new measure of

firm-level inefficiency with the one that was outlined in Section 4.2.1.

4.3 Data

The balanced panel dataset that underlies the empirical analysis in Section

5.4 of this chapter comprises 12,749 observations on Colombian manufactur-

ing plants over the period 1981-1991. Four broadly defined industries are

represented in the sample: food processing, textiles and apparel, furniture and

finished wood products, and fabricated metal. The data were originally col-

lected in a country-wide industrial census whose coverage extended to all man-

ufacturers with 10 or more employees. This Colombian dataset has appeared

previously in a number of studies that are concerned with the estimation of

firm-level productivity (Roberts and Tybout, 1997; Fernandes, 2007; Gandhi,

6Note that ĝt∗ (xit)− ĝt (xit) ≥ 0 by construction and hence, γ̂it ≥ ûi for t = 1, ..., T .
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Navarro, and Rivers, 2016).

The production models in (4.1) and (4.8) are estimated under both a gross

output and a value-added specification. In the context of the former, yit de-

notes the natural log of firm i’s gross output in period t, while the vector

xit is composed of the natural log of five inputs, namely capital, unskilled

labour, skilled labour, raw materials, and energy. The capital stock variable

is constructed by taking the sum of land, buildings/structures, machinery,

transportation equipment, and office equipment, whose respective values are

computed using the perpetual inventory method and 3-digit industry-level de-

preciation data found in Pombo (1999). The unskilled and skilled labour

inputs are expressed in terms of the number of workers employed by a plant in

a particular year, while the raw materials and energy consumption variables

(i.e., the intermediate inputs in the gross-output specification of the produc-

tion function) are measured in thousands of Colombian pesos. In accordance

with the convention that is followed in much of the productivity literature, the

model is estimated using logarithmic transforms of each of the entries in xit.

In addition, prior to their log transformation, the gross output, capital stock,

and intermediate input variables are all deflated by an industry-year-specific

index7 so that the common unit of measurement across the entire panel is

thousands of pesos at 1991 price levels.

Under the alternative value-added specification of the models in (4.1) and

(4.8), yit denotes the log of the difference between a firm’s gross output and

its consumption of raw materials and energy. Meanwhile, the input vector

xit is composed of the capital stock and the skilled/unskilled labour variables.

7The price index is computed as the ratio of the nominal to the real value of production
for any given firm in a particular industry and year.
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The value-added production function might be preferred over the gross output

version of the model if there is reason to believe that the efficiency of a firm

(either persistent or time-varying or both) tends to influence its intermediate

input decisions; the interplay between firm productivity on the one hand, and

chosen variable input quantities on the other, and the ensuing risk that factor

elasticity estimates will suffer from “transmission bias”, has been the subject

of much discussion in the econometrics and industrial organization literature

(Marschak and Andrews, 1944; Olley and Pakes, 1996; Levinsohn and Petrin,

2003; Ackerberg et al., 2006).

Figure 4.2 illustrates the distribution of firm-level factor shares in the food

processing, textile and apparel, furniture and finished wood products, and

fabricated metal industries. The four boxplots respectively correspond to the

capital stock, skilled wages and benefits, unskilled wages and benefits, and

intermediate inputs, and each of these is expressed as a share of firms’ gross

output in each year between 1981 and 1991. It is clear that factor shares exhibit

a considerable amount of heterogeneity across firms and over time. Firm-level

capital-output ratios are quite dispersed and are generally increasing over the

11 year period, whereas the fraction of output being allocated to wage and

benefit payments to unskilled workers appears to be in decline. This raises

doubts about the specification of the frontier model in Section 4.2.1, where

corresponding factor elasticities are treated as fixed parameters.

4.4 Results

The results that are presented in this section pertain to the parametric and

nonparametric estimates of factor elasticities and firm-level inefficiency (i.e.
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each firm’s measured distance from the production frontier). The supporting

figures that are referenced in what follows can be found in Appendix B.

4.4.1 Factor elasticity estimates

As mentioned earlier in Section 4.2.2, an important difference between the

parametric and nonparametric frontier models is that the former treats factor

elasticities as fixed while the latter allows them to vary across firms and over

time. Figures 4.3 and 4.4 provide a clear illustration of this contrast. Boxplots

of the input elasticity estimates obtained using the kernel-based random effects

estimator suggest that there is a considerable amount of intra-industry and in-

tertemporal heterogeneity in the partial derivative of gross output with respect

to capital, skilled labour, unskilled labour, energy, and raw materials. This is

consistent with the substantial variation in Colombian manufacturing plants’

input expenditure shares that was noted in Section 5.3. Boxplots for the value-

added model where capital and labour are the only inputs are also provided

in figure 4.5, and the results are qualitatively similar to those obtained under

the gross output specification. Table 4.1 presents Spearman correlations of the

nonparametric factor elasticity estimates and their corresponding expenditure

shares. In nearly every instance, the sign and magnitude of the correlation co-

efficients are consistent with what standard theories of firm behaviour would

tend to predict. This is particularly true for the two largest industries in the

sample, namely food processing and textiles/apparel manufacturing.

In all four industries, it appears that plant-level production technology

becomes less and less dependent on unskilled labour over the 11-year period

1981-1991, which has also been discussed in Kealey (2015) in the context of
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a varying-coefficient estimator for a Cobb-Douglas production function. Fur-

thermore, the food processing, textiles/apparel, furniture/finished wood prod-

ucts, and fabricated metal industries appear to become more capital-intensive

toward the late 1980s and early 1990s. Note that this is entirely consistent

with the time trends that were observed in the input expenditure boxplots

when basic features of the plant-level dataset were discussed in Section 5.3.

For the sake of comparison, parametric elasticity estimates from the model

in (4.1) have been superimposed in dashed lines onto the boxplots in figures

4.3 through 4.5. Clearly, modelling the production frontier as a simple linear

function leads one to either underestimate or overestimate the factor elastic-

ities of most of the firms in the sample - a complication that is for the most

part avoided when one follows the nonparametric estimation procedure that is

being proposed in this chapter.

4.4.2 Firm-level inefficiency estimates

To begin, we would like to consider whether the parametric and nonparamet-

ric frontier methods yield broadly similar estimates of firm-level inefficiency.

That is, even though the two approaches model the frontier function and fac-

tor elasticities in very different ways, it is entirely possible that this makes

little difference for the measurement of firms’ distance from the production

frontier. We make use of Li, Maasoumi, and Racine’s (2009) nonparametric

test for equality of densities to determine whether the two samples of inef-

ficiency estimates were drawn from the same hypothetical distribution. To

begin, let {v̂it + ûi}NTi,t=1 denote the parametric estimates from the stochas-

tic frontier model in Section 4.2.1 and let {γ̂it}NTi,t=1 denote the nonparamet-
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ric inefficiency estimates from equation (4.10) in Section 4.2.2. If f (·) and

g (·) are the density functions that underlie v̂it + ûi and γ̂it, respectively, the

object of interest is the integrated squared difference
∫

[f (z)− g (z)]2 dz =∫
[f (z) dF (z) + g (z) dG (z)− f (z) dG (z)− g (z) dF (z)], where F (·) andG (·)

are the cumulative distribution functions for v̂it+ ûi and γ̂it, respectively. This

integrated squared difference forms the basis of Li et al.’s (2009) test statistic:

INT =
1

NT (NT − 1)

N∑
i=1

T∑
t=1

N∑
i′ 6=i

T∑
t′ 6=t

k

(
v̂it + ûi − v̂i′t′ − û′i

h

)

+
1

NT (NT − 1)

N∑
i=1

T∑
t=1

N∑
i′ 6=i

T∑
t′ 6=t

k

(
γ̂it − γ̂i′t′

h

)

− 2

(NT )2

N∑
i=1

T∑
t=1

N∑
i′=1

T∑
t′=1

k

(
v̂it + ûi − γ̂i′t′

h

)
,

(4.11)

where k(·) denotes a univariate Gaussian kernel function and h is a smooth-

ing parameter. The null distribution of INT must be approximated using a

bootstrap procedure. In practice, the nonparametric specification test can be

carried out using the npdeneqtest() function in Hayfield and Racine’s (2008)

‘np’ package in the R statistical computing environment.

Tables 4.2 and 4.3 show that the null hypothesis of equality of densities is

unequivocally rejected in each of the 16 instances where the test is performed.

The computed p-values are all equal to zero up to several decimal places, which

suggests that the parametric and nonparametric frontier models give rise to

substantially different estimates of firm-level inefficiency. While this outcome

might seem intuitive, it is in fact a bit surprising. Regardless of which of the

two methods is adopted, estimation of the conditional mean of the output vari-

able E (yit|xit) and the persistent component of inefficiency ui is carried out by

means of a random effects regression. Thus, even though they rely on differing
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assumptions about the functional form of E (yit|xit), the approaches that are

delineated in Sections 4.2.1 and 4.2.2 need not produce dissimilar estimates

of ui. However, this appears to be what has occurred. Consider, for exam-

ple, the gross output version of the parametric frontier model. Estimation

of the time-varying component of inefficiency vit via maximization of the log-

likelihood function in (4.6) results in σ̂v = 0 in all four industries and hence,

the measure of inefficiency ends up not having a time-varying component at

all (i.e., the normal-half-normal distribution characterizing eit−vit collapses to

theN (0, σe) distribution of the stochastic noise term). That is, the parametric

inefficiency estimate is simply given by ûi. Meanwhile, in the nonparametric

setting, decomposition of γ̂it = ûi+(ĝt∗ (xit)− ĝt (xit)) in (4.10) into its persis-

tent and time-varying elements reveals that ûi tends to account for 90 percent

or more of a firm’s measured distance from the production frontier. Hence

one might expect the parametric and nonparametric estimates of inefficiency

under the value-added specification of the model to be rather similar, but this

is not what is observed in the empirical example that involves the Colombian

manufacturing data.

Figures 4.6 and 4.7 comprise plots of the parametric and nonparametric

inefficiency estimates’ empirical distributions. Interestingly, there appear to

be considerable differences in the magnitude of the estimates that arise from

the two competing methods. In particular, in all four industries, the distance

that separates firms’ output from the production frontier tends to be larger

under the parametric framework than under the nonparametric framework.

From a practical point of view, this result has important implications inso-

far as it suggests that firms’ productive efficiency may be either understated
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or overstated depending on the model specification that has been chosen. In

fact, casual observation of the empirical distribution plots in figures 4.6 and

4.7 raises questions about whether there might even exist a stochastic domi-

nance relationship between the two classes of firm-level inefficiency estimates.

This proposition can be examined by means of the statistical test for first-

order stochastic dominance that was originally proposed by Klecan, McFad-

den, and McFadden (1991) and subsequently extended by Linton, Maasoumi,

and Whang (2005).

4.4.3 A test for first-order stochastic dominance

To begin, let F (·) and G (·) denote the distribution functions that underlie

the parametric and nonparametric estimates of inefficiency, respectively. We

would like to determine whether the parametric inefficiency estimates first-

order stochastically dominate the nonparametric ones, that is, whether F (z) ≤

G (z) for all nonnegative values of z. Given that the aforementioned CDFs do

not have a known functional form, we make use of the empirical distribution

functions that are defined as follows:

F̂ (z) =
1

NT

N∑
i=1

T∑
t=1

1 (v̂it + ûi ≤ z) ; Ĝ (z) =
1

NT

N∑
i=1

T∑
t=1

1 (γ̂it ≤ z) ,

(4.12)

where (4.12) uses the same notation as the frontier models in (4.1) and (4.10)

where the parametric and nonparametric estimates of inefficiency are given by

v̂it + ûi and γ̂it, respectively. To test the null hypothesis that there exists a

first-order stochastic dominance (FOSD) relationship between the two groups
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of inefficiency estimates, we make use of Klecan et al.’s (1991) test statistic:

D = min
{

max
z

[F̂ (z)− Ĝ(z)],max
z

[Ĝ(z)− F̂ (z)]
}
, (4.13)

where in practice, the maximum in (4.13) can be taken over some interval in

R+ that includes the support of both F̂ (·) and Ĝ(·). The null and alternative

hypotheses are stated as:

H0 : D ≤ 0

Ha : D > 0

(4.14)

Linton et al. (2005) propose a bootstrap procedure for obtaining a critical

value D∗ such that H0 is rejected if D > D∗. For a given number of boot-

strap iterations B, let n = N − B + 1 be the size of the subsample (without

replacement) of firms that is used in each b = 1, ..., B. If the manufacturing

firms in the sample are indexed by j, then for each b = 1, ..., B, we re-estimate

firm-level inefficiency using observations j = b, ..., n+ b− 1, define F (b) (·) and

G(b) (·) as in (4.12), and compute D(b) as in (4.13). The critical value D∗ is

given by the (1−α)-quantile of the
{
D(b)

}B
b=1

. In this chapter, we compute the

sampling distribution of the test statistic using B = 199 bootstrap iterations

for the food processing, textiles/apparel, and fabricated metal industries, and

B = 79 iterations for the furniture/finished wood products industry due to

sample size limitations.8

8Resampling occurs at the cross-sectional level, and given that n = N − B + 1, there
is a tradeoff between the number of bootstrap iterations and the size of the subsample for
each b = 1, ..., B. In the finished wood products industry, there are only N = 104 unique
firms in the data with T = 11 observations each. Using B = 79 implies that each subsample
comprises n = (104−79+1)·11 = 286 observations. If we opted for more bootstrap iterations,
i.e., B = 99 instead of B = 79, that would only leave us with n = (104− 99 + 1) · 11 = 66,
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Tables 4.4 and 4.5 present one of this chapter’s central findings, namely

that the parametric and nonparametric inefficiency estimates exhibit a FOSD

relationship in 11 of the 16 instances where Klecan et al.’s (1991) test is per-

formed. Furthermore, this result is not very sensitive to the distributional

assumptions (i.e. normal-half-normal vs. normal-exponential) that underlie

the time-varying components of the parametric frontier model. Given that

the null hypothesis of the test is F (z) ≤ G (z) for all nonnegative values of z,

where F (·) and G (·) respectively denote the CDFs of the parametric and non-

parametric inefficiency estimates, a p-value that is substantially greater than

zero should serve as evidence of FOSD. In the 11 different cases where we fail

to reject the null hypothesis in (4.14), the p-values appearing in parentheses

in tables 4.4 and 4.5 range from 0.19 to 1, and are frequently greater than

0.5; hence, there is reason to believe that Heshmati and Kumbhakar’s (1995)

parametric frontier model tends to generate inflated estimates of firm-level in-

efficiency when the nonparametric framework is used as a benchmark. While

the results of the formal test for FOSD are indeed important, they are not

particularly surprising in the light of the empirical CDF plots in figures 4.6

through 4.9. These plots depict a pattern whereby the estimated v̂it + ûi are

larger than the γ̂it on a more or less consistent basis. In fact, even when the

time-varying inefficiency term vit in the parametric model is estimated to be

zero for all i and t, which is what occurred under the gross output specifica-

tion with vit ∼ N+(0, σv), the null hypothesis of FOSD is still not rejected in

3 of the 4 industries (the fabricated metal industry being the sole exception).

Hence the difference in magnitude of the inefficiency estimates that is clearly

which is insufficient for a kernel regression with multiple predictors.
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observed in figures 4.6 through 4.9 cannot be explained by the replacement of

vit by a time-varying frontier function gt (x) under the nonparametric frame-

work. Rather, it is more likely that the greater flexibility of the kernel-based

random effects estimator yields an improved fit of the frontier function which,

in turn, enhances the accuracy of both the persistent and the time-varying

components of firm-level inefficiency. Monte Carlo evidence to support this

claim will be provided later on in Section 4.6.1.

4.5 Testing the plausibility of distributional assump-

tions

An important question that has not yet been answered in this chapter is

the appropriateness of the assumption that the time-varying inefficiency and

stochastic noise terms are distributed as either normal-half-normal or normal-

exponential. Recall from Section 4.2.1 that this assumption is required for the

separate identification of vit and eit under the parametric modelling framework;

however, in the event that the distribution of eit−vit has been erroneously spec-

ified, the ensuing estimates of firm-level inefficiency will be biased. It might

therefore be prudent to scrutinize the distributional assumptions that underlie

the parametric frontier model by means of one of the specification tests that

is described in Amsler, Schmidt, and Wang (2011). Sections 4.5.1 and 4.5.2

summarize the two different approaches that these authors propose, namely

the Kolmogorov-Smirnov and the Pearson χ2 goodness of fit tests, while Sec-

tion 4.5.3 points to evidence that favours rejection of the normal-half-normal

and normal-exponential distributional assumptions in the parametric frontier
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model.

4.5.1 Kolmogorov-Smirnov test

Let F (·) and Fn (·) respectively denote the normal-half-normal (or normal-

exponential) cumulative distribution function and the empirical distribution

function for the estimates of eit − vit. The KS statistic is given by:

KS = sup
z
|F (z)− Fn (z) |. (4.15)

Given that the normal-half-normal and normal-exponential CDFs do not have

known closed-form expressions, Amsler et al. (2011) recommend using tab-

ulated quantiles from a simulated dataset and pre-determined values of the

unknown parameters.9 The authors also suggest that a wild bootstrapped

1− α critical value for a KS test can be computed as follows: let b = 1, ..., B

denote the the bootstrap draw, and for b = 1, let e
(b)
it − v

(b)
it denote sample val-

ues of the stochastic noise and time-varying inefficiency terms from the known

distribution F (·). Next, define y
(b)
it = α̂0+x′itβ̂− ûi+e

(b)
it −v

(b)
it and re-estimate

E
(
y
(b)
it |xit

)
, ui, and eit−vit using Heshmati and Kumbhakar’s (1995) procedure

from Section 4.2.1. One can then compare the empirical distribution Fn (·) of

the latter with the known distribution F (·) of the e
(b)
it − v

(b)
it , and compute a

Kolmogorov-Smirnov statistic KS(b) as in (4.15). Repeating this procedure B

times yields the empirical distribution of the KS(b), from which the 1−α criti-

cal value can be derived and compared with the Kolmogorov-Smirnov statistic

that is based on the original data.

9For example, in the normal-half-normal case, a separate cdf needs to be tabulated for
every unique value of λ = σv

σu
.
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4.5.2 Pearson χ2 test

Once again, let F (·) and Fn (·) respectively denote the hypothesized CDF

(i.e. normal-half-normal or normal-exponential) and the empirical distribution

function for the estimates of eit − vit. Define the interval Iz = [zmin, zmax],

where zmin is the lesser of sup {z : F (z) = 0} and sup {z : Fn (z) = 0}, and

zmax is the greater of inf {z : F (z) = 1} and inf {z : Fn (z) = 1}. Amsler et al.

(2011) write that the Pearson χ2 test involves splitting Iz into k subintervals

I1, ..., Ik and computing for each j = 1, ..., k:

Oj =
∑
i,t

1(êit − v̂it ∈ Ij) =
∑
i,t

1(zminj ≤ êit − v̂it < zmaxj)

Ej = NT · [F (zmaxj)− F (zminj)],

(4.16)

where in (4.16), the endpoints of subinterval Ij are denoted by zminj and

zmaxj .
10 Thus, Oj is the number of êit− v̂it that are observed in the subinterval

Ij, while Ej is the number of êit− v̂it that one would expect to observe in Ij if

the null hypothesis of a normal-half-normal or normal-exponential distribution

is true. The two expressions in (4.16) give rise to the following test statistic:

χ2 =
k∑
j=1

(Oj − Ej)2

Ej
. (4.17)

Amsler et al. (2011) point out that if the density functions in (4.4) and (4.5)

corresponding to the hypothesized CDF F (·) did not include any unknown

parameters, the statistic in (4.17) would have a chi-squared distribution with

10The authors consider k = 3, k = 5, and k = 10 for sample sizes that range from n = 50
to n = 500, while the present chapter considers k = 5, k = 10, and k = 25 for sample sizes
that range from n = 1144 to n = 4862. It turns out that the results are not very sensitive
to the choice of k.
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k − 1 degrees of freedom. This would allow for a straightforward test of the

null hypothesis that F (·) does not suffer from misspecification. However,

inference is complicated by the fact that maximum likelihood estimates of the

unknown parameters in (4.4) and (4.5) must be substituted into F (·) in order

to compute (4.17). Instead, one can use a wild bootstrap procedure that is

analogous to the one described in the previous subsection for the Kolmogorov-

Smirnov goodness of fit test.

4.5.3 Results of specification tests

Tables 4.6 through 4.9 provide reason to doubt the validity of both the normal-

half-normal and the normal-exponential distributional assumptions that un-

derlie eit−vit in the parametric frontier model. The p-values that are included

in parentheses are nearly all equal to 0 up to several decimal places, which

implies that the null hypothesis of a correctly specified parametric model is re-

jected at all conventional significance levels. The one exception that is worth

noting is the value-added model for the furniture and finished wood prod-

ucts industry, where it cannot be rejected that the stochastic noise and time-

varying inefficiency terms are distributed as normal-exponential. Altogether,

both the Kolmogorov-Smirnov and the Pearson χ2 tests yield similar conclu-

sions, namely that in the context of the Colombian manufacturing data, the

inclusion of vit in the frontier model is potentially problematic. This serves as

part of the justification for the fully nonparametric framework where intertem-

poral variation in firm-level inefficiency is conceptualized in terms of shifts in

the frontier function; the advantage of this approach is that the intertemporal

shifts can be identified separately from the random error eit without making
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any distributional assumptions. Of course, one must not lose sight of the fact

that in the parametric model, vit tends to be much smaller in magnitude than

the persistent measure of inefficiency ui whose distribution does not need to

be known in advance. Thus, in practice, while the results of the specification

tests are indeed significant, they pertain to only a relatively small fraction of

firms’ measured distance from the production frontier.

4.6 A semiparametric alternative to the parametric model

In the event that the specification tests described in Section 4.5 do not result

in a rejection of the null hypothesis that eit−vit is drawn from either a normal-

half-normal or a normal-exponential distribution, it doesn’t immediately follow

that the parametric frontier model of Heshmati and Kumbhakar (1995) is

the best available option. For example, it might be preferable to retain the

parametric assumptions about the distribution of vit and eit, but to adopt

a more flexible specification of the frontier function. In particular, consider

the semiparametric framework below that constitutes somewhat of a “middle

ground” between the approaches that are delineated in Sections 4.2.1 and 4.2.2:

yit = g (xit) + eit − vit − ui, (4.18)

where the functional form of g (·) is unknown, the time subscript in (4.8) has

been dropped in favour of a varying inefficiency term vit with a known distri-

bution, and both eit and ui are defined exactly as in Section 4.2.1. Estimation

of (4.18) is very straightforward; it can be carried out by following the same

procedure that is outlined in Section 4.2.1, with the exception that the para-
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metric random effects regression is replaced by a kernel-based method. This

ought to give rise to improved estimates of the frontier, factor elasticities, and

firm-level inefficiency, even when the parametric density function that under-

lies the latter is correcly specified. In what follows, we illustrate this point by

means of a simple Monte Carlo experiment.

4.6.1 Monte Carlo simulation

This section uses simulated data to evaluate the relative performance of the

parametric and semiparametric frontier estimators when the distribution of the

stochastic noise and varying inefficiency terms eit − vit is correctly specified.

The Monte Carlo experiment comprises M = 500 draws with a sample size of

either n = 500 (N = 50, T = 10) or n = 1000 (N = 100, T = 10). Three

different specifications of the frontier function are considered:

1. yit = 1− xit + eit − vit − ui

2. yit = ln (1 + xit) + eit − vit − ui

3. yit = 8 (xit − 0.5)3 + eit − vit − ui.

Hence, the linear parametric model is correctly specified under the first sce-

nario but it is misspecified under the other two. In each instance, xit is i.i.d.

U [0, 1], while ui, vit, and eit are respectively i.i.d. U [0, umax], N+ (0, σv), and

N (0, σe). The parameters umax (and by extension, σu), σv, and σe are chosen

so that the inefficiency and error terms collectively exhibit about a quarter

of the variation of the frontier function. We assume that the persistent com-

ponent of inefficiency varies twice as much as the time-varying component

and four times as much as the stochastic noise term by setting σu = 0.2σf(x),
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σv = 0.1σf(x), and σe = 0.05σf(x), where σf(x) denotes the standard deviation

of the production frontier. The parametric and semiparametric approaches

are evaluated based on the mean squared error of their respective estimates of

i) the production frontier, ii) the factor elasticities ∂y
∂x

(xit), and iii) firm-level

inefficiency.

4.6.2 Finite-sample performance

We begin with the baseline case in which the parametric model in (4.1) does

not suffer from any misspecification issues. A standard result from the statis-

tics and econometrics literature is that a correctly-specified parametric model

tends to outperform the semiparametric or nonparametric alternative, and this

is precisely what is observed in the first stage of the Monte Carlo experiment.

Table 4.10 provides a comparison of the median root mean squared error of the

parametric and semiparametric frontier, elasticity, and inefficiency estimates.

Under the baseline linear specification of the model, the parametric estimator

yields the best fit overall. Nonetheless, the competing approach that makes

use of the kernel-based random effects regression framework performs quite

well, particularly vis-a-vis the measurement of firm-level inefficiency. In this

case, there is zero difference in median RMSE between the two methods both

when n=500 and n=1000. Meanwhile, when the production frontier is charac-

terized by a logarithmic function, the parametric model is misspecified and the

semiparametric estimator yields the best fit by a wide margin. For instance,

in the middle portion of table 4.10, when the sample size n=1000, we observe

that the median RMSE of the kernel-based frontier, elasticity, and inefficiency

estimates are respectively 81, 88, and 42 percent lower than the parametric
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alternatives. Even larger reductions of 95, 93, and 72 percent, respectively,

are noted in the third simulated scenario when the frontier is cubic. An addi-

tional result that is omitted from table 4.10 but that is nevertheless worthy of

note relates to the identification and estimation of the time-varying inefficiency

term vit when the frontier function is misspecified. It appears that under the

third scenario where f (x) is cubic, σv is frequently incorrectly estimated to

be zero when the parametric frontier estimates are used in the log-likelihood

function in (4.6). In particular, when n=500 and n=1000, σ̂v = 0 in 44 and

46 percent of the draws, respectively, while σ̂v > 0 in all 500 draws when the

semiparametric approach is followed. This serves to partially explain why the

estimates of firm-level inefficiency obtained under the parametric framework

tend to be relatively imprecise.

4.7 Conclusion

This chapter has proposed a nonparametric estimation procedure that can be

applied to stochastic production frontier models for panel data. It has shown

that dispensing with parametric assumptions vis-a-vis the functional form of

the frontier and the distribution of the convoluted error term has some key

advantages, namely i) a greater capacity to account for intra-industry and

intertemporal heterogeneity in factor elasticities and ii) more robust decompo-

sition of firm-level inefficiency into its persistent and varying constituent parts.

Using survey data from the Colombian manufacturing sector, this chapter has

established that the parametric and nonparametric approaches give rise to

substantially different estimates of firm-level inefficiency and in fact, these

estimates are often characterized by a first-order stochastic dominance rela-
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tionship. In addition, results from two different specification tests suggest

that the parametric model is built on problematic distributional assumptions.

Altogether, there is a lot to be gained from using kernel-based methods to

evaluate the productive efficiency of firms in panel data settings.
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4.8 Appendix

4.8.1 Kernel regression with random effects

Martins-Filho and Yao (2009) propose a kernel-based nonparametric estimator for

panel data models with random effects, such as the one that appears in (4.9) in

Section 4.2.2:

yit = ht (xit) + eit + ηi. (4.19)

For a fixed x = (x1, x2, ..., xq)
′, we define the (2q + 1) × 1 vector of predictors

x̃it = [1, x1it − x1, ..., xqit − xq, (x1it − x1)2, ..., (xqit − xq)2]′, which is then used to

construct the NT × (2q + 1) matrix X = (x̃11, ..., x̃1T , ..., x̃N1, ..., x̃NT )′. We define

the first-stage local quadratic estimator α̂1S (x) as the solution to the following

minimization problem:

min
α

(y−Xα (x))′K (x) (y−Xα (x)) , (4.20)

where K (x) is a NT × NT kernel weighting matrix for a mixture of continu-

ous and discrete data (see Li and Racine, 2004). The first element of α̂1S (x)

is the first-stage estimate of the conditional mean in (4.19), which can be sub-

tracted from the output vector to obtain the residuals ε̂it = yit − e′1α̂
1S (xit),

where e1 = (1, 0, ..., 0)′ is a (2q + 1) × 1 vector in which the first entry is a 1

and the remaining entries are 0’s. We define σ̂2e = 1
N(T−1)

∑N
i=1

∑T
t=1

(
ε̂it − ¯̂εi

)2
and σ̂2η = 1

N

∑N
i=1

¯̂ε2i −
σ̂2
ξ

T , and the NT × NT matrix P̂ (σ̂e, σ̂η) that satisfies

P̂ (σ̂e, σ̂η) P̂ (σ̂e, σ̂η)
′ = IN ⊗ (σ̂eIT + σ̂η1T1

′
T ), where IN , IT , and 1T respectively

denote a N × N identity matrix, a T × T identity matrix, and a T × 1 vec-

tor of 1’s. Next, we construct the matrix Ĥ = diag
{
ρ̂−1ii
}NT
i=1

using the diago-

nal elements ρ̂ii of the matrix inverse P̂
−1

(σ̂e, σ̂η), and define the new variable
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z = ĤP̂
−1

y +
(
INT − ĤP̂

−1)
ĥ, where ĥ is the vector of first-stage conditional

mean estimates from (4.19). The second-stage conditional mean and gradient esti-

mates for the random effects model α̂ (x) =
(
ĥt (x) , ∇̂ht (x)′ , ∇̂2ht (x)′

)′
are given

by the solution to the following:

min
α

(z−Xα (x))′K (x) (z−Xα (x)) , (4.21)

where ∇̂ht (x) =
(
∂̂ht
∂x1

(x) , ..., ∂̂ht∂xq
(x)
)′

and ∇̂2ht (x) =

(
∂̂2ht
∂x2

1
(x) , ..., ∂̂

2ht
∂x2
q

(x)

)′
.
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4.8.2 Tables and figures
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Figure 4.1: Boxplots of firm-level input expenditure shares of gross output over time
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Figure 4.2: Boxplots of firm-level input expenditure shares of gross output over time
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Figure 4.3: Elasticity boxplots for gross output model. Parametric estimates super-
imposed in red.
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Figure 4.4: Elasticity boxplots for gross output model. Parametric estimates super-
imposed in red.
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Figure 4.5: Elasticity boxplots for value-added model. Parametric estimates super-
imposed in red.
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Figure 4.6: Distribution of inefficiency (gross output model with normal-half-normal
assumption)
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Figure 4.7: Distribution of inefficiency (value-added model with normal-half-normal
assumption)
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Figure 4.8: Distribution of inefficiency (gross output model with normal-exponential
assumption)
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Figure 4.9: Distribution of inefficiency (value-added model with normal-exponential
assumption)
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Food Processing Textiles/Apparel Furniture/Wood Products Fabricated Metal
Capital

Gross output 0.620 0.377 0.506 0.396
Value-added 0.210 0.519 0.597 0.426
Skilled labour

Gross output 0.520 0.574 0.295 0.483
Value-added -0.002 0.420 0.311 0.368
Unskilled labour

Gross output 0.670 0.805 0.397 0.694
Value-added 0.244 0.350 0.309 0.438
Intermediates

Gross output 0.740 0.628 0.671 0.538
Value-added N/A N/A N/A N/A

Table 4.1: Spearman correlations for nonparametric factor elasticities and corre-
sponding expenditure shares

Food Processing Textiles/Apparel Furniture/Wood Products Fabricated Metal
Gross output 155.49 145.40 74.76 111.69

(0.000) (0.000) (0.000) (0.000)

Value-added 155.39 64.29 134.45 178.23
(0.000) (0.000) (0.000) (0.000)

Table 4.2: Li-Maasoumi-Racine (LMR) test statistics where the null hypothesis is
equality of the parametric and nonparametric inefficiency estimates’ densities. The
parametric model assumes a half-normal distribution for vit. Bootstrapped p-values
are in parentheses.

Food Processing Textiles/Apparel Furniture/Wood Products Fabricated Metal
Gross output 1881.00 696.78 70.39 71.20

(0.000) (0.000) (0.000) (0.000)

Value-added 439.83 57.62 152.61 165.86
(0.000) (0.000) (0.000) (0.000)

Table 4.3: Li-Maasoumi-Racine (LMR) test statistics where the null hypothesis is
equality of the parametric and nonparametric inefficiency estimates’ densities. The
parametric model assumes an exponential distribution for vit. Bootstrapped p-values
are in parentheses.

Food Processing Textiles/Apparel Furniture/Wood Products Fabricated Metal
Gross output 0.030 0.162 0.071 0.662

(1.000) (0.402) (0.595) (0.020)

Value-added 0.917 0.255 0.000 0.000
(0.060) (0.000) (0.608) (0.618)

Table 4.4: Linton-Maasoumi-Whang test statistics where the null hypothesis is
that the parametric and nonparametric inefficiency estimates are characterized by
a stochastic dominance relationship. The parametric model assumes a half-normal
distribution for vit. Bootstrapped p-values are in parentheses. B=199 bootstrap
iterations are used for the food processing, textiles/apparel, and fabricated metal
industries, while B=79 iterations are used for the furniture/wood products industry
due to sample size limitations.
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Food Processing Textiles/Apparel Furniture/Wood Products Fabricated Metal
Gross output 0.000 0.060 0.036 0.602

(0.322) (0.819) (0.608) (0.015)

Value-added 0.130 0.672 0.009 0.000
(0.186) (0.000) (0.494) (0.538)

Table 4.5: Linton-Maasoumi-Whang test statistics where the null hypothesis is
that the parametric and nonparametric inefficiency estimates are characterized by
a stochastic dominance relationship. The parametric model assumes an exponential
distribution for vit. Bootstrapped p-values are in parentheses. B=199 bootstrap
iterations are used for the food processing, textiles/apparel, and fabricated metal
industries, while B=79 iterations are used for the furniture/wood products industry
due to sample size limitations.

Food Processing Textiles/Apparel Furniture/Wood Products Fabricated Metal
Gross output 0.130 0.080 0.062 0.084

(0.000) (0.000) (0.003) (0.000)

Value-added 0.088 0.050 0.067 0.071
(0.000) (0.000) (0.000) (0.000)

Table 4.6: Kolmogorov-Smirnov (KS) test statistics where the null hypothesis is a
normal-half-normal distribution for eit − vit. Bootstrapped p-values are in paren-
theses.

Food Processing Textiles/Apparel Furniture/Wood Products Fabricated Metal
Gross output 0.132 0.084 0.066 0.074

(0.000) (0.000) (0.000) (0.000)

Value-added 0.088 0.048 0.034 0.073
(0.000) (0.000) (0.313) (0.000)

Table 4.7: Kolmogorov-Smirnov (KS) test statistics where the null hypothesis is a
normal-exponential distribution for eit − vit. Bootstrapped p-values are in paren-
theses.

Food Processing Textiles/Apparel Furniture/Wood Products Fabricated Metal
Gross output

k = 5 992.14 426.36 40.79 148.45
(0.000) (0.000) (0.000) (0.000)

k = 10 1016.24 434.78 67.15 184.14
(0.000) (0.000) (0.000) (0.000)

k = 25 1313.97 613.02 97.56 257.11
(0.000) (0.000) (0.010) (0.000)

Value-added

k = 5 499.90 142.34 42.19 166.10
(0.000) (0.000) (0.000) (0.000)

k = 10 515.29 185.28 51.40 131.36
(0.000) (0.000) (0.000) (0.000)

k = 25 638.49 162.77 95.02 171.39
(0.000) (0.000) (0.008) (0.000)

Table 4.8: Pearson χ2 test statistics where the null hypothesis is a normal-half-
normal distribution for eit − vit. Bootstrapped p-values are in parentheses.
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Food Processing Textiles/Apparel Furniture/Wood Products Fabricated Metal
Gross output

k = 5 879.66 410.00 78.27 156.28
(0.000) (0.000) (0.000) (0.000)

k = 10 1074.16 431.49 62.24 205.22
(0.000) (0.000) (0.003) (0.000)

k = 25 1060.51 541.10 83.99 214.21
(0.000) (0.000) (0.013) (0.000)

Value-added

k = 5 388.87 104.76 35.20 67.77
(0.000) (0.000) (0.000) (0.000)

k = 10 518.82 137.33 17.81 117.32
(0.000) (0.000) (0.343) (0.000)

k = 25 554.85 166.68 94.77 174.67
(0.000) (0.000) (0.003) (0.000)

Table 4.9: Pearson χ2 test statistics where the null hypothesis is a normal-
exponential distribution for eit − vit. Bootstrapped p-values are in parentheses.

N=50, T=10 N=100, T=10
Parametric Semiparametric Parametric Semiparametric

1. f (x) = 1− x

frontier 0.0066 0.0073 0.0043 0.0048
elasticity 0.0035 0.0148 0.0026 0.0113
inefficiency 0.0150 0.0150 0.0140 0.0140

2. f (x) = ln (1 + x)

frontier 0.0183 0.0052 0.0184 0.0035
elasticity 0.1400 0.0230 0.1400 0.0170
inefficiency 0.0160 0.0100 0.0164 0.0096

3. f (x) = 8 (x− 0.5)3

frontier 0.1570 0.0110 0.1550 0.0070
elasticity 1.9600 0.1700 1.9600 0.1400
inefficiency 0.0690 0.0200 0.0640 0.0180

Table 4.10: Median root mean squared error of the parametric and semiparametric
frontier, elasticity, and inefficiency estimates based on M=500 draws with sample
sizes n=500 and n=1000.
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Chapter 5

Trade policy reform and firm-level pro-

ductivity growth: Does the choice of

production function matter?

5.1 Introduction

Contemporary theories of international trade tend to advance the point of view that

import competition is beneficial for the productivity of domestic firms. From this

perspective, one of the key advantages of a liberalized trade policy environment is

that, by expanding the availability of foreign-produced goods, it encourages innova-

tion among local producers who do not wish to see their market share erode. This,

in turn, has a modernizing effect on the home country’s industrial landscape. The

need for empirical validation of the aforementioned theoretical stance has, in recent

decades, given rise to a vast literature that is concerned with estimating the influ-

ence that trade barriers have on the dynamics of firm productivity. Of course, it

is important to recognize that any serious discussion pertaining to the productivity

of firms needs to be grounded in a well-thought-out methodological framework that
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allows for proper identification of an underlying production function. While many

empirical researchers acknowledge this fact, they rarely give sufficient consideration

to the sensitivity of their findings to their chosen strategy for identifying and esti-

mating firm productivity. Hence this chapter considers three different identification

strategies that are commonly employed for the estimation of production functions,

namely those of Levinsohn and Petrin (2003; henceforth LP), Ackerberg, Caves, and

Frazer (2006; henceforth ACF), and Gandhi, Navarro, and Rivers (2016; henceforth

GNR), and examines whether they yield consistent conclusions vis-à-vis firm-level

productivity growth during periods of trade liberalization. Using data from the

Colombian manufacturing sector, which has appeared in a number of related studies

in the past, we find that switching from a “control function” Cobb-Douglas spec-

ification to a more flexible nonparametric framework tends to alter our findings

regarding certain industries’ experience with trade policy reforms.

A fair amount of evidence can be found in the empirical literature of a negative

association between barriers to trade and firm productivity. For instance, Tybout

and Westbrook (1995), Pavcnik (2002), Schor (2004), Fernandes (2007), Topalova

and Khandelwal (2011), and Hu and Liu (2014) demonstrate that the liberalization

of trade policy has generally coincided with productivity growth at the firm-level

in Mexico, Chile, Brazil, Colombia, India, and China, respectively. The empirical

focus of these studies tends to be the conditional mean of firm productivity, given

different levels of trade protection; that is, most authors employ linear regression

methods to evaluate whether there exists a rather general relationship between trade

policy on the one hand, and the conditional expectation of firm productivity on the

other. However, results that are obtained using standard linear regression techniques

fail to shed light on whether different types of firms, ranging from the least to the

most efficient producers of a particular good, exhibit similar responses to changes

in the policy environment. Thus, in the present chapter, we opt for a quantile re-
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gression approach that is better able to reflect trends in the distribution of firm

productivity, as opposed to its conditional mean, during Colombia’s era of liberal-

ization. From a theoretical point of view, it makes sense to focus on outcomes at

different quantiles because there is likely some intra-industry variation in the effect

that competition from trade has on innovation behaviour and productivity. Indeed,

Melitz (2003) posits that open trade enhances productivity through three distinct

channels, namely i) reallocation of resources and market share from inefficient to

efficient producers, ii) market exit on the part of inefficient firms, and iii) market

entry on the part of efficient firms.1 Melitz and Polanec (2015) build on previous

work by Olley and Pakes (1996) and propose a decomposition procedure that allows

for the empirical isolation of these contributing factors to aggregate productivity

growth. We apply this methodology to each of the LP, ACF, and GNR productivity

estimates and set out to identify any overlap that exists in our results. It turns

out that our decomposition of industry-level productivity growth into the effects

of market share reallocation among incumbents, exit of inefficient producers, and

entry of productive firms is quite sensitive to the chosen identification strategy for

estimation of the production function.

The remainder of the chapter is structured as follows: Section 5.2 provides a

comprehensive summary of the three different methods that we employ to estimate

firm-level productivity in the Colombian manufacturing sector. Section 5.3 describes

the input, output, and trade policy data that is used in the analysis in Section 5.4,

where we discuss the coefficient estimates that we obtain under several specifications

of our quantile regression model, and the results of the Melitz-Polanec decomposi-

tion exercise that we perform for a long list of manufacturing industries. Section 5.5

1Thus, the testable implications of Melitz’s (2003) theoretical framework relate primar-
ily to the distribution of productivity within a particular industry insofar as entry, exit,
and market share reallocation among incumbents will tend to have a pronounced effect on
productivity growth near the left and right tails of the distribution of firms.
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concludes.

5.2 A review of methods for estimating firm productiv-

ity

In this section, we provide a detailed overview of three different strategies for the

identification and estimation of firm-level productivity. These approaches, which

are presented in the chronological order of their appearance in the productivity

literature, were originally proposed by Levinsohn and Petrin (2003), Ackerberg et al.

(2006), and Gandhi et al. (2016), and are now in widespread use in a number of

different subfields of empirical economics. In what follows, we adopt the convention

whereby lower-case (upper-case) letters are used to denote the log (level) values of

the variables in the production model.

5.2.1 Levinsohn and Petrin’s control function method

Consider a logarithmically-transformed Cobb-Douglas production function:

yit = αkkit + αllit + αmmit + ωit + εit, (5.1)

where yit is the log of firm i’s gross output in period t, kit is the log of the capital

stock, lit is the log of quantity of labour employed by the firm, and mit is the log of

an intermediate input variable comprising raw materials and energy consumption.

Firm-level productivity is denoted by ωit and εit is a random error term. Levinsohn

and Petrin (2003) propose a “control function” approach whereby the firm’s inter-

mediate input demand is a function of its capital stock and its level of productivity:

mit = m (kit, ωit) . (5.2)
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Assuming that the function m (·) is strictly increasing in ωit holding kit fixed, one

can invert (5.2) to obtain an expression for firm-level productivity:

ωit = m−1 (kit,mit) . (5.3)

Inserting (5.3) into (5.1) yields:

yit = αkkit + αllit + αmmit +m−1 (kit,mit) + εit

= αllit + θ (kit,mit) + εit,

(5.4)

where θ (kit,mit) = αkkit +αmmit +m−1 (kit,mit). One can specify θ (kit,mit) as a

third-order polynomial2 in kit and mit and estimate (5.4) by means of an ordinary

least squares regression. This yields an estimate of the elasticity of output with

respect to labour, α̂l.

Next, Levinsohn and Petrin’s (2003) framework assumes that firm-level produc-

tivity evolves according to a first-order Markov process:

ωit = g (ωit−1) + ηit, (5.5)

where ηit can be interpreted as an unanticipated productivity shock. Using the

fitted values θ̂ (kit,mit) from the regression in (5.4), one can obtain the following

expression for ωit:

ωit (αk, αm) = θ̂ (kit,mit)− αkkit − αmmit. (5.6)

Lagged productivity, ωit−1 (αk, αm), is analogously defined. We specify (5.5) as a

third-order polynomial without an intercept ωit = ρ1ωit−1 + ρ2ω
2
it−1 + ρ3ω

3
it−1 + ηit

2We make the same functional form assumptions as LP, who propose a third-order poly-
nomial specification of θ (kit,mit).
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and estimate ρ1, ρ2, and ρ3 for given values of αk and αm, which allows us to write the

unanticipated productivity shock as a function of the unknown elasticity parameters

ηit (αk, αm). Levinsohn and Petrin (2003) use the following moment condition to

identify the elasticity of output with respect to capital and intermediate inputs:

E [ηit (αk, αm) |kit,mit−1] = 0. (5.7)

Finally, once α̂k and α̂m have been obtained using the sample analogue of the mo-

ment condition in (5.7), they can be plugged into (5.6) to obtain firm i’s period-t

productivity, ω̂it.

5.2.2 Ackerberg, Caves, and Frazer’s value-added model

Ackerberg et al. (2006) point out that Levinsohn and Petrin’s (2003) approach suffers

from a multicollinearity issue stemming from the likelihood that a firm’s labour and

intermediate input decisions are both influenced by its level of productivity. They

show how this can complicate estimation of αl in the partially linear model that

is depicted in (5.4), and as an alternative, they propose the following value-added

Cobb-Douglas production model:

vait = αkkit + αllit + ωit + εit, (5.8)

where now, vait denotes the log of firm i’s value-added output in period-t. The right-

hand side of (5.8) is the same as in (5.1), with the exception that the intermediate

input variable mit has been omitted. Ackerberg et al. (2006) use the same control
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function as Levinsohn and Petrin (2003) that appears in (5.3), and rewrite (5.8) as:

vait = αkkit + αllit +m−1 (kit,mit) + εit

= φ (kit, lit,mit) + εit.

(5.9)

Note that the central difference between the current approach and the one described

in Section 5.2.1 lies in the specification of φ (kit, lit,mit) in (5.9) as opposed to that

of θ (kit, lit,mit) in (5.4). Once again, φ (kit, lit,mit) can be specified as a third-order

polynomial in kit, lit, and mit and estimated via OLS.3 Productivity can then be

written as ωit (αk, αl) = φ̂ (kit, lit,mit)−αkkit−αllit and the productivity shock ηit in

(5.5) can be expressed in terms of the unknown elasticity parameters ηit (αk, αl) by

following the same procedure that was described in the previous subsection. Finally,

Ackerberg et al. (2006) use the following moment condition to identify αk and αl:

E [ηit (αk, αl) |kit, lit−1] = 0. (5.10)

Again, once the elasticity parameters α̂k and α̂l have been obtained using the sample

analogue of the moment condition in (5.10), firm-level productivity is computed as

ω̂it = φ̂ (kit, lit,mit)− α̂kkit − α̂llit.

5.2.3 Gandhi, Navarro, and Rivers’ nonparametric identification

strategy

Gandhi et al. (2016) show how one can estimate a production function whose un-

3ACF estimate φ (kit, lit,mit) by means of a kernel regression, but we follow the approach
of LP who propose a third-order polynomial specification for the first-stage regression. The
correlation coefficient of the fitted φ̂ (kit, lit,mit) obtained under the two different approaches
lies between 0.980 and 0.996 in all industries in the sample.
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derlying functional form is unknown:

Yit = F (Kit, Lit,Mit) e
ωit+εit , (5.11)

where the upper-case Yit, Kit, Lit, and Mit denote the output, capital stock, labour,

and intermediate input variables in level form. Meanwhile, the productivity and

error terms are once again denoted by ωit and εit, respectively. Gandhi et al.’s (2016)

approach makes use of the firm’s first-order condition for its choice of intermediate

inputs:

pM = pY FM (Kit, Lit,Mit) e
ωitE [eεit ] , (5.12)

where pM and pY are respectively the intermediate input and final output prices and

FM (Kit, Lit,Mit) is the partial derivative of the production function with respect to

the intermediate input variable. Next, it can be shown that if one subtracts the log

of (5.11) from the log of (5.12) and subsequently adds the log of Mit to both sides

of the resulting expression, one obtains:

ln

(
pMMit

pY Yit

)
= ln

(
FM (Kit, Lit,Mit)Mit

F (Kit, Lit,Mit)
E (eεit)

)
− εit, (5.13)

where (5.13) reflects the well-known theoretical relationship that ought to exist be-

tween intermediate input expenditures’ share of total revenue and the elasticity of

output with respect to intermediate inputs. The left-hand side of (5.13) can be

computed using firm-level input expenditure and revenue data, while the expres-

sion in parentheses on the right-hand side can be approximated by a second-order

polynomial4 in kit, lit, and mit (lower case letters denote the logs of the input vari-

ables). The equation can then be estimated by means of a non-linear least squares

regression, and this yields estimates of εit, E (eεit), and FM (Kit,Lit,Mit)Mit

F (Kit,Lji,Mit)
.

4This is the same specification that is used by GNR.
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As a next step in the process of identifying a firm’s production function, Gandhi

et al. (2016) make use of the equality FM (Kit,Lit,Mit)
F (Kit,Lit,Mit)

= ∂
∂Mit

lnF (Kit, Lit,Mit). In-

tegrating both sides of this expression gives us

∫
FM (Kit, Lit,Mit)Mit

F (Kit, Lit,Mit)

dMit

Mit
= lnF (Kit, Lit,Mit) + C (Kit, Lit) . (5.14)

Given that FM (Kit,Lit,Mit)Mit

F (Kit,Lit,Mit)
has already been identified and estimated in (5.13), the

expression above makes it possible to identify lnF (Kit, Lit,Mit) up to a constant of

integration, which Gandhi et al. (2016) denote by C (Kit, Lit).
5 Combining (5.14)

and the log of (5.11), the firm-level productivity term ωit satisfies the following

equality:

ωit = lnYit −
∫
FM (Kit, Lit,Mit)Mit

F (Kit, Lit,Mit)

dMit

Mit
− εit + C (Kit, Lit) . (5.15)

For the sake of notational simplicity, the above expression is rewritten as

ωit = Yit + C (Kit, Lit) , (5.16)

where Yit is shorthand for the more cumbersome lnYit−
∫ FM (Kit,Lit,Mit)Mit

F (Kit,Lit,Mit)
dMit
Mit
−εit.

Lagged productivity, ωit−1, is analogously defined. The constant of integration is

modelled as a second-order polynomial in kit and lit.
6 Once again, we can follow the

same procedure that was described in Sections 5.2.1 and 5.2.2 and model the evolu-

tion of ωit as a first-order Markov process ωit = ρ1ωit−1+ρ2ω
2
it−1+ρ3ω

3
it−1+ηit. The

moment condition E (ηit|Kit, Lit,Yit−1,Kit−1, Lit−1) = 0 identifies the parameters

in C (Kit, Lit), yielding an estimate of firm-level productivity ωit.

5Note that the integral has a straightforward closed-form solution because a second-order

polynomial approximation was used to estimate FM (Kit,Lit,Mit)Mit

F (Kit,Lit,Mit)
.

6Again, this is the specification that is used by GNR.
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5.3 Data

The dataset that underlies the analysis in Section 5.4 is taken from a census of

Colombian manufacturers whose participants include all plants with 10 or more

employees over the 11-year period 1981-1991. It consists of more than 61,000 obser-

vations on nearly 11,000 plants in 22 different industries. Note that while industries

are classified according to their 3-digit ISIC code, they can be further subdivided on

the basis of the 71 unique 4-digit ISIC codes that appear in the sample. The primary

advantage of using the Colombian manufacturing data is that it has appeared in pre-

vious empirical studies that examine the relationship between trade and firm-level

productivity (Roberts and Tybout, 1997; Fernandes, 2007). The gross ouput, value-

added, capital stock, and intermediate input variables are all expressed in thousands

of Colombian pesos, and are deflated using an industry-by-year price index that is

found in the data.7 Intermediate inputs, which are included in the production func-

tions of Levinsohn and Petrin (2003) and Gandhi et al. (2016) but absent from that

of Ackerberg et al. (2006), are defined as the total amount of energy and raw ma-

terials consumed by a plant in a given year. A plant’s value-added production is

therefore obtained by subtracting its intermediate input consumption from its gross

output. Meanwhile, the labour variable is expressed as the total number of workers

that are on a plant’s payroll, but with the slight modification that unskilled and

skilled labourers are weighted by the ratio of their respective median salaries.

The trade policy predictor that appears in our regression model is measured in

two different ways. First, we use the Colombian government’s import tariff schedule

that is available for each of the 71 unique 4-digit ISIC codes that are represented in

the census. For the 11-year period that runs from 1981 to 1981, tariff data is miss-

7In particular, both the nominal and the real value of production is recorded for each
observation in the panel of manufacturing plants and hence, the ratio of these two variables
serves as an industry-level price index.
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ing for 1982 and 1989-1991, and so the first specification of the regression model is

estimated using a 7-year subsample of the original dataset. In addition to the tariff

data, we also use the effective rate of protection (ERP) as a trade policy indicator.

This is intended to reflect the dual impact of protectionism, i.e. reduced competi-

tion from abroad on the one hand and increased imported input costs on the other.

The ERP is computed as vad−vaw
vaw

, where vad and vaw respectively denote manufac-

turers’ value-added under distorted domestic (d) and undistorted world (w) prices.

The effective rate of protection data is available for 22 unique 3-digit ISIC codes

for the years 1981, 1984, 1985, 1990, and 1991, and so once again, the regressions

that include the ERP as a predictor are only carried out on a 5-year subsample of

the data. Tables 5.1 and 5.2 shed some light on the extent to which Colombia’s

trade policy regime underwent reform during the period that is under consideration.

Minimum and maximum tariff and ERP values are reported for each of the 3-digit

and 4-digit industries that are covered by the sample. In many instances, there

is substantial liberalization, with some industries experiencing a 50 to 60 percent-

age point decrease in import tariffs between the mid-1980s and the early-1990s. In

fact, in the textile industry, the difference between the min and max ERP is about

120 percentage points, which constitutes quite an aggressive policy reform over a

relatively short time-frame.

5.4 Trade liberalization and firm productivity: A few

results

Before proceeding with our discussion of the dynamics of firm-level productivity

before and after Colombia’s trade policy reforms, a couple of brief comments on the

productivity estimates themselves might be in order. First, the ACF, GNR, and

LP identification strategies often give rise to substantially different productivity
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estimates. In table 5.4, we report industry-level Spearman correlations for the three

alternative measures. We find that there is a fair amount of positive comovement

between the ACF and GNR estimates, whereas their respective pairwise correlations

with the LP measure tend to be much lower and even negative at times. This is

quite a remarkable outcome, particularly since the Spearman correlation coefficients

are intended to reflect the extent to which the ranking of firms’ productivity remains

consistent across the three identification strategies. An additional point that is worth

mentioning is that the ACF, GNR, and LP productivity estimates do not exhibit

the same amount of dispersion. Given that the first of these is based on a value-

added model, it displays more heterogeneity than the latter two which arise from

a gross output specification of the production function. Industry-level coefficients

of variation for the three estimates are reported in table 5.3. Now that we are

aware of these differences in characteristics across the ACF, GNR, and LP measures

of productivity, we are ready to move on to a summary of the main results of this

chapter. In Section 5.4.1, we discuss the output of a simple quantile regression model

in which the dependent and independent variables are firm-level productivity and an

industry-level indicator of trade policy, respectively. In Section 5.4.2, we apply the

methodological framework of Melitz and Polanec (2015) and quantify the relative

contributions of incumbent firms, new entrants, and exiting firms to industry-level

productivity growth as Colombia switched from a protectionist to a more liberalized

trade policy regime during the 1980s.

5.4.1 Quantile regression coefficient estimates

In table 5.5, we report coefficient estimates for a number of different specifications

of a quantile regression model in which the log of firm productivity and the 4-digit

industry-level import tariff are the dependent and explanatory variables, respec-

tively. For each of the LP, ACF, and GNR measures of productivity, we estimate
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three equations - one that includes an industry dummy, another that includes both

an industry and a time dummy, and finally, one where consideration is limited to

industries that are categorized as “import-competing”. This latter categorization

has been applied in previous studies that examine the empirical link between trade

policy and productivity, most notably in Pavcnik (2002), who defines a 4-digit indus-

try as import-competing if the ratio of imports to total output exceeds a particular

threshold. The author experiments with different cutoff values and finds that her

results remain fairly consistent when the ratio lies between 0.10 and 0.25. In her

final analysis, she settles on 0.15, which is the value that we use here as well.

As explained in Cameron and Trivedi (2005), the quantile regression coefficient

estimates β̂q are obtained by minimizing the objective function below, which is an

extension of the framework originally proposed by Koenker and Bassett (1978):

Q(βq) =

N,T∑
i,t:ωit≥x′itβq

q|ωit − x′itβq|+
N,T∑

i,t:ωit<x′itβq

(1− q)|ωit − x′itβq|, (5.17)

where ωit denotes the log of firm i’s productivity in period t, xit is a vector of

explanatory variables that includes the trade policy indicator and the industry/year

dummies, and the q subscript in βq reflects the fact that the coefficient estimates

vary by quantile. The coefficients in β̂q are therefore interpreted as the estimated

change in the qth quantile of log firm productivity ωit when there is a unit change

in the explanatory variables in xit.
8 In the present study, we estimate βq using the

approach in (5.17) for q = 0.10, 0.25, 0.5, 0.75, 0.90. Hence, this empirical strategy

allows us to shed light on the statistical association between indicators of trade

protectionism such as import tariffs or the ERP and the overall distribution of firm-

level productivity which, as mentioned earlier, is one of the most important testable

8Note that the tariff and ERP variables are expressed in decimal form, so the estimated
change in the qth quantile of log firm productivity given a percentage-point change in the
tariff/ERP would be given by the coefficient β̂q divided by 100.
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implications of the theoretical framework of Melitz (2003).

Three key findings in table 5.5 are worth emphasizing. First the sign of the

quantile regression coefficient estimates displays a fair amount of sensitivity to the

manner in which the production function has been specified. In columns 1-6 where

the log of the LP and ACF productivity estimates are the dependent variables,

most of the coefficient estimates - especially those that correspond to the median,

upper quartile, and top decile - are negative. However, when the Cobb-Douglas

specification of LP and ACF is replaced by the nonparametric framework of GNR

in columns 7-9, we often observe a positive association between import tariffs and

firm productivity. Second, regardless of whether the LP, ACF, or GNR estimation

procedures are employed, there is more of an adverse association between the tariff

rate and firm-level productivity in the right tail than in the left tail of the distribu-

tion of firms. Evidence of this phenomenon can be seen in pretty much every single

column of table 5.5, where the regression coefficient estimates tend to be in decline

as one moves downward from the row that corresponds to the 0.10th quantile to

the one that corresponds to the 0.90th quantile. Hence, much of the productivity

growth that was experienced during Colombia’s era of trade liberalization appears

to have taken place among firms who were already among the most efficient in their

respective industries. Third, when we restrict our attention to import-competing

industries, which constitues about one-quarter of the sample, we find some evidence

of a negative relationship between import tariffs and the top three quantiles of the

GNR productivity estimates. We also observe moderate increases in the coefficient

estimates for the bottom decile, lower quartile, and median of the LP and ACF

measures of firm productivity.

Next, we re-estimate the nine quantile regression models that have just been dis-

cussed, but where the effective rate of protection (ERP) now serves as the indicator

of trade policy. The results are reported in table 5.6. In this instance, we observe
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a similar pattern to what was noted in the previous paragraph. The negative asso-

ciation between the ERP and productivity becomes more pronounced as one moves

closer to the right-tail of the distribution of firms. Thus, during the period of trade

liberalization from the mid-1980s to the early-1990s, the most productive firms seem

to have made the greatest efficiency gains, and this finding holds across each of the

LP, ACF, or GNR identification strategies. In addition, there is an interesting point

of divergence between the regression models that use the tariff rate and the ERP,

respectively, as the explanatory variable reflecting the trade policy regime. While

the former yields positive and statistically significant coefficient estimates for the

lower-half of the distribution of GNR productivity, the latter gives rise to coeffi-

cient estimates that are either negative or quite small in magnitude relative to their

standard errors (or both). This suggests that of the three different measures of pro-

ductivity that are considered in this chapter, the one that relies on the most flexible

(i.e. nonparametric) specification of the production function exhibits a more am-

biguous statistical relationship with the indicators of trade protectionism than the

measures arising from a more traditional linearized Cobb-Douglas functional form.

5.4.2 Decomposition of aggregate productivity changes

Melitz and Polanec (2015) build on previous work by Olley and Pakes (1996) and

outline a framework for the decomposition of industry-level productivity changes

into the respective contributions of surviving firms, new entrants, and exiting firms.

In the present context, let t ∈ {H,L} denote a time period that is characterized by

either a high (H) or a low (L) tariff regime, and let j ∈ {S,X,E} denote the group to

which firm i belongs, namely either survivors (S), exiters (X), or entrants (E). Note

that in the Colombian manufacturing data, the high-tariff period generally precedes

the low-tariff period, and hence the exiting firms and new entrants only appear in

the sample in periods H and L, respectively. Let ωijt denote firm i’s productivity
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and let sijt represent its share of industry-level output under tariff regime t, where

the subscript j serves to indicate that firm i belongs to group j. Thus, group j’s

share of aggregate output in period t is given by sjt =
∑

i sijt and its aggregate

productivity is computed as Φjt =
∑

i
sijt
sjt
ωijt. Melitz and Polanec (2015) then show

that aggregate industry-level productivity under the tariff regimes H and L can be

written as:

ΦH = sSHΦSH + sXHΦXH

ΦL = sSLΦSL + sELΦEL.

This gives rise to the following decomposition of the change in aggretate productivity

∆Φ when an industry’s trade policy regime switches from H to L:

∆Φ = (ΦSL − ΦSH) + sEL(ΦEL − ΦSL) + sXH(ΦSH − ΦXH)

= ∆ω̄S + ∆covS + sEL(ΦEL − ΦSL) + sXH(ΦSH − ΦXH),

(5.18)

where ∆ω̄S denotes the change in the mean productivity of surviving firms, ∆covS

denotes the change in the covariance of surviving firms’ productivity and their share

of total output, and sEL(ΦEL − ΦSL) and sXH(ΦSH − ΦXH) respectively capture

the effects of entry of more productive firms and exit of less productive firms in the

intervening period between the high tariff and low tariff regimes. Thus, Melitz and

Polanec’s (2015) framework makes it possible to test some of the theoretical predic-

tions that are found in Melitz (2003) and quantify the relative importance of four

distinct channels through which trade liberalization is believed to affect industry-

level productivity.

Tables 5.7 through 5.10 contain the raw results of the decomposition exercise

that has been performed using the LP, ACF, and GNR measures of productivity.

All of the reported values have been normalized by setting ΦH = 1 for each in-
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dustry. Two different samples - respectively comprising the years in which import

tariffs and the effective rate of protection attain their max and min values - are

once again used for the analysis.9 Given that the large volume of the raw results

makes them somewhat difficult to interpret, we provide a simplified summary of

some of the key findings in tables 5.11 through 5.13. To begin, in table 5.11, we

report the frequency with which the aggregate and decomposed estimates of firm

productivity growth exhibit a positive sign, as might be predicted by modern trade

theory. Regardless of whether the tariff rate or the ERP is used as the indicator

of protectionism, the first column shows that aggregate ACF productivity experi-

ences positive change with the greatest frequency; in this instance, the sign of ∆Φ is

greater than zero in nearly three-quarters of the industries that appear in the sam-

ple. On the other hand, when the 3-digit industry-level change in ERP is considered,

aggregate LP productivity growth is positive only half of the time. In regard to the

decomposed growth estimates, we find that efficiency gains among surviving firms

(∆ω̄S), efficient reallocation of market share among incumbents (∆covS), and the

exit of inefficient firms (sXH(ΦSH −ΦXH)) tend to play a more important role than

the entry of productive firms into the market (sEL(ΦEL − ΦSL)). While the latter

is characterized by a positive sign in less than half of the industries in our sample,

its magnitude is generally very small, and hence we conclude that it rarely makes

any noteworthy contribution to industry-level productivity growth.

Tables 5.12 and 5.13 shed light on the consistency of the results of the decom-

position exercise across the LP, ACF, and GNR productivity measures. The former

includes Spearman correlations of the three estimates of each of the growth compo-

nents in (5.18), while the latter reports on a pairwise basis the frequency with which

they display the same expected positive sign. Here, we observe one of this chapter’s

9The max of both tariffs and the ERP tends to be observed in the mid-1980s, while the
min tends to be observed in either the late 1980s (tariffs) or the early 1990s (ERP), due to
differences in data availability.
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more interesting results, namely that there is far less uniformity than might origi-

nally have been anticipated in the dynamics of the LP, ACF, and GNR estimates

as Colombia shifted from a protectionist to a more liberalized trade policy regime.

The Spearman correlations in table 5.12 are quite modest and in some cases, are

actually negative. The decomposition procedure gives rise to particularly differ-

ent outcomes under the LP and GNR identification strategies. Table 5.13 reflects

a similar tendency whereby under the very best scenario, the various components

of productivity growth only exhibit the same sign across the different measures of

productivity in about half of the industries in the sample. Moreover, this finding

does not change when we move from the 4-digit industry-level tariff to the 3-digit

industry-level ERP as the trade policy indicator in the model. Hence, any judge-

ment about the relative contributions of incumbent firms, exiters, and new entrants

to industry-level productivity growth ultimately depends on the underlying specifi-

cation of the production function. If we wish to evaluate the performance of firms

and industries subsequent to trade policy reforms, it is therefore imperative that we

keep in mind the sensitivity of the Melitz-Polanec framework in (5.18) to the choice

of a Cobb-Douglas functional form vs. a more flexible nonparametric alternative.

5.5 Conclusion

This chapter has applied three commonly-used strategies for identifying production

functions and has examined whether a consistent pattern emerges vis-à-vis the dy-

namics of firm productivity during periods of trade policy reform in the Colombian

manufacturing sector. It has found that the statistical association between produc-

tivity and both the nominal and effective rate of protection is rather sensitive to the

chosen production function estimation procedure. Switching from a value-added to

a gross output model, or from a Cobb-Douglas “control function” framework to a
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more flexible nonparametric specification tends to alter the results of our quantile

regression model and of the productivity growth decomposition exercise that we per-

form for a number of manufacturing industries. This raises questions about whether

previous empirical findings in the productivity and trade literature are robust to al-

ternative specifications of the production function. Extending our analysis to other

firm-level datasets offers interesting possibilities for future research.

148



PhD Thesis - John M. Kealey McMaster University - Economics

References

Ackerberg, D., K. Caves, and G. Frazer (2006): “Structural identification of

production functions,” Mpra paper, University Library of Munich, Germany.

Cameron, A. C. and P. K. Trivedi (2005): Microeconometrics: Methods and

Applications, New York, NY: Cambridge University Press.

Fernandes, A. (2007): “Trade policy, trade volumes and plant-level productivity

in Colombian manufacturing industries,” Journal of International Economics, 71,

52–71.

Gandhi, A., S. Navarro, and D. Rivers (2016): “On the identification of pro-

duction functions: How heterogeneous is productivity?” Manuscript.

Hu, A. G. and Z. Liu (2014): “Trade liberalization and firm productivity: Ev-

idence from Chinese manufacturing industries,” Review of International Eco-

nomics, 22, 488–512.

Koenker, R. and G. Bassett (1978): “Regression quantiles,” Econometrica, 46,

33–50.

Levinsohn, J. and A. Petrin (2003): “Estimating production functions using

inputs to control for unobservables,” Review of Economic Studies, 70, 317–341.

Melitz, M. J. (2003): “The impact of trade on intra-industry reallocations and

aggregate industry productivity,” Econometrica, 71, 1695–1725.

Melitz, M. J. and S. Polanec (2015): “Dynamic Olley-Pakes productivity de-

composition with entry and exit,” RAND Journal of Economics, 46, 362–375.

Olley, S. G. and A. Pakes (1996): “The dynamics of productivity in the telecom-

munications equipment industry,” Econometrica, 64, 1263–97.

149



PhD Thesis - John M. Kealey McMaster University - Economics

Pavcnik, N. (2002): “Trade liberalization, exit, and productivity improvements:

Evidence from Chilean plants,” Review of Economic Studies, 69, 245–276.

Roberts, M. and J. Tybout (1997): “The decision to export in Colombia: An

empirical model of entry with sunk costs,” American Economic Review, 87, 545–

64.

Schor, A. (2004): “Heterogeneous productivity response to tariff reduction: Evi-

dence from Brazilian manufacturing firms,” Journal of Development Economics,

75, 373–396.

Topalova, P. and A. Khandelwal (2011): “Trade liberalization and firm pro-

ductivity: The case of India,” Review of Economics and Statistics, 93, 995–1009.

Tybout, J. R. and M. D. Westbrook (1995): “Trade liberalization and the

dimensions of efficiency change in Mexican manufacturing industries,” Journal of

International Economics, 39, 53–78.

150



PhD Thesis - John M. Kealey McMaster University - Economics

5.6 Appendix

ISIC min tariff max tariff ISIC min tariff max tariff
3111 0.265 0.411 3513 0.266 0.398
3112 0.298 0.470 3521 0.288 0.463
3113 0.413 0.653 3522 0.092 0.139
3114 0.285 0.446 3523 0.367 0.637
3115 0.170 0.401 3529 0.214 0.343
3116 0.260 0.382 3551 0.181 0.274
3117 0.375 0.620 3559 0.397 0.585
3118 0.169 0.289 3560 0.490 0.812
3119 0.000 0.633 3620 0.269 0.430
3121 0.259 0.415 3691 0.218 0.351
3122 0.090 0.110 3692 0.136 0.224
3131 0.568 0.930 3699 0.280 0.453
3132 0.488 0.798 3710 0.185 0.288
3133 0.325 0.475 3811 0.337 0.559
3134 0.400 0.660 3812 0.400 0.797
3211 0.403 0.815 3813 0.252 0.449
3212 0.655 1.224 3819 0.326 0.550
3213 0.672 1.331 3821 0.089 0.205
3214 0.700 1.255 3822 0.059 0.189
3215 0.450 0.721 3823 0.152 0.270
3219 0.460 0.806 3824 0.162 0.271
3220 0.657 1.217 3825 0.220 0.476
3231 0.191 0.336 3829 0.236 0.417
3232 0.425 0.425 3831 0.254 0.474
3233 0.464 0.775 3832 0.226 0.329
3240 0.564 0.934 3833 0.365 1.005
3311 0.382 0.604 3839 0.284 0.468
3312 0.445 0.735 3841 0.173 0.287
3319 0.358 0.592 3842 0.197 0.496
3320 0.400 0.823 3843 0.367 0.578
3411 0.223 0.369 3844 0.404 0.772
3412 0.392 0.647 3845 0.101 0.198
3419 0.308 0.482 3849 0.371 0.613
3420 0.362 0.511 3851 0.196 0.314
3511 0.180 0.290 3852 0.208 0.329
3512 0.054 0.128 Pooled 0.000 1.331

Table 5.1: Import tariffs in the Colombian manufacturing sector 1981-1988 (4-digit ISIC).

ISIC min ERP max ERP ISIC min ERP max ERP
311 0.791 1.470 352 0.250 0.413
313 0.574 1.349 355 0.536 1.004
321 0.826 2.033 356 0.712 1.467
322 0.734 1.900 362 0.360 0.561
323 0.441 0.990 369 0.383 0.625
324 0.821 1.674 371 0.242 0.395
331 0.649 1.182 381 0.585 0.988
332 0.565 1.371 382 0.163 0.372
341 0.415 0.668 383 0.370 0.815
342 0.360 0.595 384 0.504 1.058
351 0.208 0.378 385 0.224 0.428

Table 5.2: Effective rate of protection in the Colombian manufacturing sector 1981-1991 (3-digit ISIC).
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ISIC LP ACF GNR ISIC LP ACF GNR
311 0.651 1.280 0.258 352 0.369 0.739 0.203
313 0.051 0.840 0.407 355 0.281 0.564 0.342
321 1.745 0.489 0.199 356 0.333 0.581 0.148
322 0.352 0.586 0.147 362 0.154 0.464 0.230
323 0.431 0.562 0.123 369 0.204 0.829 0.254
324 0.449 0.485 0.114 371 0.180 0.659 0.297
331 0.144 0.376 0.148 381 0.101 0.529 0.157
332 0.147 0.308 0.137 382 1.393 0.771 0.219
341 0.235 2.249 0.222 383 0.098 0.583 0.178
342 0.175 0.458 0.144 384 0.114 0.602 0.258
351 0.164 0.736 0.234 385 0.369 0.590 0.169

Table 5.3: Coefficient of variation of LP, ACF, and GNR productivity estimates by industry.

LP ACF GNR LP ACF GNR
311 352
LP 1 LP 1
ACF 0.355 1 ACF 0.181 1
GNR -0.402 -0.794 1 GNR 0.093 0.875 1
313 355
LP 1 LP 1
ACF 0.341 1 ACF 0.557 1
GNR 0.338 0.885 1 GNR 0.517 0.891 1
321 356
LP 1 LP 1
ACF 0.639 1 ACF -0.058 1
GNR 0.384 0.802 1 GNR -0.303 0.858 1
322 362
LP 1 LP 1
ACF 0.306 1 ACF 0.083 1
GNR 0.249 0.887 1 GNR -0.321 0.750 1
323 369
LP 1 LP 1
ACF 0.624 1 ACF 0.209 1
GNR 0.478 0.779 1 GNR 0.033 0.829 1
324 371
LP 1 LP 1
ACF 0.289 1 ACF -0.003 1
GNR -0.070 0.724 1 GNR -0.369 0.809 1
331 381
LP 1 LP 1
ACF -0.418 1 ACF 0.197 1
GNR -0.705 0.819 1 GNR -0.008 0.885 1
332 382
LP 1 LP 1
ACF 0.284 1 ACF 0.023 1
GNR -0.203 0.743 1 GNR -0.055 0.944 1
341 383
LP 1 LP 1
ACF 0.328 1 ACF 0.248 1
GNR 0.134 0.881 1 GNR 0.255 0.938 1
342 384
LP 1 LP 1
ACF 0.176 1 ACF 0.170 1
GNR -0.073 0.802 1 GNR 0.129 0.844 1
351 385
LP 1 LP 1
ACF 0.267 1 ACF -0.416 1
GNR -0.103 0.755 1 GNR -0.787 0.701 1

Table 5.4: Spearman correlations of productivity estimates by 3-digit industry.
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ISIC ∆Φ ∆ω̄S ∆covS sXH (ΦSH − ΦXH ) sEL (ΦEL − ΦSL)
3111 0.109 0.275 -0.162 -0.001 -0.003
3112 0.187 0.060 0.123 0.012 -0.008
3113 -0.048 0.000 -0.052 0.006 -0.001
3114 0.007 -0.055 0.031 0.011 0.019
3115 0.069 0.109 -0.043 0.006 -0.004
3116 0.109 -0.039 0.165 0.012 -0.028
3117 0.020 0.007 0.009 0.008 -0.005
3118 0.017 -0.017 0.035 -0.001 -0.001
3119 0.080 0.039 0.049 0.014 -0.023
3121 0.054 0.021 0.029 0.005 -0.001
3122 0.115 0.044 0.077 0.007 -0.013
3131 0.033 0.005 0.026 0.002 0.000
3132 0.001 0.018 -0.016 0.001 -0.001
3133 0.016 0.003 0.013 0.000 0.000
3134 0.014 -0.001 0.016 0.000 -0.001
3211 0.050 0.019 0.004 0.013 0.014
3212 0.039 -0.024 0.044 0.010 0.009
3213 -0.003 -0.008 0.009 0.001 -0.006
3214 -0.028 -0.034 0.009 0.000 -0.004
3215 -0.023 -0.009 -0.014 0.000 0.000
3219 -0.145 0.007 -0.146 0.005 -0.011
3220 -0.003 -0.01 0.011 0.006 -0.010
3231 0.053 0.068 -0.018 0.001 0.002
3233 0.092 0.361 -0.257 -0.007 -0.005
3240 0.045 -0.048 0.09 0.017 -0.015
3311 -0.012 -0.002 -0.023 0.034 -0.020
3312 -0.053 -0.004 -0.025 0.000 -0.023
3319 -0.007 -0.038 0.027 -0.004 0.008
3320 0.001 -0.011 0.034 -0.005 -0.016
3411 -0.048 -0.005 -0.039 -0.005 0.000
3412 0.064 0.030 0.040 0.005 -0.011
3419 -0.010 0.008 0.003 -0.015 -0.006
3420 0.037 -0.004 0.042 -0.003 0.003
3511 0.030 0.015 -0.006 0.001 0.020
3512 0.026 0.060 -0.048 0.004 0.010
3513 -0.006 0.028 -0.048 0.004 0.010
3521 0.113 0.033 0.092 0.005 -0.018
3522 -0.017 0.008 -0.030 -0.001 0.006
3523 -0.032 0.012 0.019 -0.002 -0.061
3529 0.037 0.029 0.010 0.001 -0.003
3551 -0.052 0.019 -0.071 0.003 -0.003
3559 0.000 0.004 -0.008 0.013 -0.009
3560 0.07 -0.003 0.035 0.001 0.038
3620 -0.062 -0.014 -0.051 -0.001 0.004
3691 -0.003 -0.013 0.005 -0.001 0.006
3692 0.044 0.041 0.038 -0.030 -0.005
3699 0.106 0.021 0.145 -0.074 0.015
3710 0.033 -0.015 0.045 0.003 0.000
3811 0.004 0.001 0.002 0.003 -0.002
3812 -0.024 0.009 -0.028 -0.002 -0.003
3813 -0.011 0.001 -0.014 0.006 -0.004
3819 -0.024 0.002 -0.027 -0.001 0.002
3821 -0.014 -0.003 -0.012 0.000 0.000
3822 -0.005 -0.071 0.071 0.002 -0.007
3823 -0.535 -0.006 -0.004 -0.532 0.006
3824 0.001 0.005 0.006 -0.004 -0.006
3825 0.038 0.002 0.041 0.007 -0.013
3829 0.023 0.017 0.013 -0.004 -0.003
3831 0.019 0.019 0.002 0.003 -0.005
3832 0.022 0.011 0.009 0.007 -0.006
3833 0.016 0.014 -0.008 0.006 0.004
3839 0.013 -0.002 0.015 0.002 -0.002
3841 0.004 0.003 -0.045 0.002 0.045
3842 -0.014 -0.043 0.008 0.028 -0.006
3843 0.005 0.017 -0.011 0.003 -0.004
3844 0.018 -0.022 0.021 0.039 -0.020
3845 -0.130 -0.055 -0.074 0.000 -0.001
3849 0.018 0.043 -0.021 0.000 -0.004
3851 0.028 -0.025 0.045 -0.004 0.011
3852 -0.032 -0.170 0.136 -0.004 0.006

Table 5.7: Melitz-Polanec decomposition of LP productivity growth following tariff cut.
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ISIC ∆Φ ∆ω̄S ∆covS sXH (ΦSH − ΦXH ) sEL (ΦEL − ΦSL)
3111 0.136 0.053 0.058 -0.024 0.049
3112 0.095 0.074 0.021 0.029 -0.029
3113 -0.251 -0.020 -0.243 0.010 0.002
3114 -0.230 -0.077 -0.004 -0.130 -0.018
3115 -0.152 -0.079 -0.073 0.004 -0.004
3116 0.125 0.032 0.117 0.015 -0.039
3117 -0.030 0.074 -0.109 0.005 0.000
3118 -0.113 -0.015 -0.091 -0.002 -0.005
3119 0.118 0.087 0.128 -0.038 -0.059
3121 0.110 0.103 0.022 0.004 -0.020
3122 0.040 0.029 0.022 -0.015 0.003
3131 0.233 0.046 0.176 0.012 -0.001
3132 -0.108 -0.212 0.104 0.012 -0.012
3133 0.303 0.314 -0.010 -0.001 0.000
3134 -0.049 -0.105 0.048 0.011 -0.002
3211 0.165 0.045 0.023 0.019 0.078
3212 0.265 0.000 0.324 0.015 -0.073
3213 0.007 -0.008 0.021 0.004 -0.008
3214 -0.093 -0.108 0.015 0.000 0.000
3215 0.050 0.064 -0.014 0.000 0.000
3219 0.013 0.094 -0.066 0.006 -0.021
3220 0.133 -0.017 0.179 0.009 -0.037
3231 -0.074 0.123 -0.168 -0.033 0.005
3233 0.015 -0.031 0.026 -0.039 0.059
3240 0.015 0.023 -0.028 0.018 0.002
3311 -0.093 0.014 -0.037 -0.037 -0.033
3312 0.341 0.182 0.055 0.000 0.103
3319 0.034 0.047 -0.003 0.008 -0.018
3320 0.288 0.077 0.338 -0.012 -0.115
3411 0.043 0.256 -0.199 -0.010 -0.004
3412 0.096 0.046 0.067 0.019 -0.035
3419 0.005 -0.137 0.234 -0.083 -0.008
3420 0.001 0.065 -0.071 0.003 0.005
3511 0.090 0.025 -0.032 -0.027 0.124
3512 0.077 0.228 -0.198 0.012 0.034
3513 0.381 0.205 0.220 -0.078 0.034
3521 0.395 0.096 0.404 -0.040 -0.065
3522 0.440 0.020 0.053 -0.014 0.382
3523 0.093 0.071 0.063 0.004 -0.046
3529 0.175 0.208 -0.001 -0.009 -0.023
3551 0.187 0.063 0.127 0.006 -0.009
3559 0.122 0.044 0.076 0.013 -0.011
3560 0.134 0.014 0.039 0.005 0.077
3620 0.067 -0.022 0.012 -0.002 0.078
3691 0.012 0.021 -0.031 0.021 0.001
3692 0.061 -0.050 0.118 0.004 -0.010
3699 0.067 0.032 0.066 -0.119 0.089
3710 0.163 0.155 0.001 0.011 -0.003
3811 0.177 0.135 0.040 -0.002 0.004
3812 1.924 0.074 2.248 -0.027 -0.370
3813 0.296 0.129 0.076 -0.023 0.114
3819 0.287 0.077 0.213 0.019 -0.022
3821 -0.244 -0.126 -0.118 0.000 0.000
3822 -0.116 -0.066 -0.014 0.004 -0.040
3823 -0.017 0.050 -0.066 -0.094 0.093
3824 0.104 0.073 0.010 0.001 0.020
3825 0.504 0.406 0.317 -0.114 -0.105
3829 0.289 0.174 0.171 0.116 -0.171
3831 0.443 0.228 0.213 -0.007 0.009
3832 0.113 0.041 0.065 0.015 -0.008
3833 0.927 0.054 0.096 0.018 0.760
3839 0.212 0.096 0.118 0.002 -0.004
3841 0.402 0.192 0.472 -0.004 -0.258
3842 -0.326 -0.346 -0.009 0.019 0.009
3843 -0.044 0.034 -0.075 0.007 -0.011
3844 -0.053 -0.080 0.050 0.242 -0.267
3845 -0.265 0.114 -0.375 0.000 -0.004
3849 0.063 0.130 -0.074 0.000 0.007
3851 0.918 0.038 0.250 0.004 0.626
3852 -0.080 -0.011 -0.078 0.000 0.009

Table 5.8: Melitz-Polanec decomposition of ACF productivity growth following tariff cut.
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ISIC ∆Φ ∆ω̄S ∆covS sXH (ΦSH − ΦXH ) sEL (ΦEL − ΦSL)
3111 -0.009 -0.028 0.039 0.016 -0.036
3112 -0.017 -0.013 -0.003 -0.014 0.014
3113 -0.108 -0.011 -0.108 0.012 0.000
3114 -0.080 -0.080 -0.125 0.127 -0.002
3115 0.027 -0.011 0.032 0.002 0.003
3116 0.022 -0.029 0.051 -0.015 0.014
3117 0.068 -0.007 0.084 -0.010 0.001
3118 -0.077 -0.017 -0.062 0.001 0.001
3119 -0.051 -0.006 -0.046 -0.008 0.009
3121 -0.043 -0.027 -0.025 0.001 0.008
3122 -0.060 -0.051 -0.014 0.003 0.002
3131 0.182 0.052 0.119 0.012 -0.001
3132 -0.077 -0.163 0.066 0.007 0.013
3133 0.032 -0.072 0.103 0.000 0.000
3134 0.042 -0.051 0.082 0.014 -0.003
3211 0.031 0.000 0.021 0.016 -0.006
3212 0.010 -0.045 0.023 0.011 0.020
3213 -0.007 0.001 0.000 -0.004 -0.004
3214 -0.034 -0.015 -0.018 0.000 -0.002
3215 0.008 0.012 -0.004 0.000 0.000
3219 -0.010 0.050 -0.057 0.001 -0.005
3220 -0.010 -0.006 -0.005 0.003 -0.001
3231 0.135 0.072 0.057 0.001 0.005
3233 -0.014 -0.026 0.028 -0.023 0.008
3240 -0.035 0.03 -0.074 -0.003 0.011
3311 -0.028 -0.002 0.001 -0.009 -0.018
3312 0.147 0.071 0.030 0.000 0.046
3319 0.032 0.021 0.014 0.008 -0.011
3320 0.048 0.025 0.031 -0.002 -0.005
3411 0.030 0.056 -0.024 -0.004 0.002
3412 0.078 0.059 0.020 0.006 -0.008
3419 0.108 0.024 0.110 -0.022 -0.004
3420 0.068 0.064 0.016 -0.022 0.010
3511 -0.026 -0.009 -0.001 -0.005 -0.010
3512 -0.002 -0.029 0.029 0.003 -0.005
3513 0.071 0.024 0.056 -0.011 0.003
3521 0.130 -0.006 0.147 0.009 -0.020
3522 0.017 0.003 0.010 -0.007 0.011
3523 -0.017 0.038 0.037 0.003 -0.095
3529 0.048 0.057 0.000 0.002 -0.011
3551 0.277 0.073 0.208 0.003 -0.007
3559 0.081 0.018 0.068 -0.002 -0.003
3560 0.004 0.009 0.003 -0.006 -0.001
3620 0.245 0.064 0.143 -0.011 0.050
3691 0.032 -0.015 0.029 0.023 -0.006
3692 0.203 0.116 0.042 0.050 -0.0053
3699 0.102 0.026 0.098 -0.033 0.010
3710 0.090 0.084 0.005 0.006 -0.006
3811 0.079 0.063 0.017 -0.001 0.000
3812 0.033 0.017 0.029 -0.012 -0.002
3813 0.135 0.050 0.069 -0.011 0.028
3819 0.019 -0.001 0.010 0.008 0.001
3821 -0.050 -0.048 -0.002 0.000 0.000
3822 -0.026 -0.024 0.018 0.003 -0.023
3823 -0.013 0.021 -0.033 -0.067 0.066
3824 0.069 0.045 0.016 0.000 0.009
3825 -0.006 -0.008 0.045 -0.050 0.006
3829 0.098 0.063 0.059 0.021 -0.045
3831 0.097 0.026 0.054 0.001 0.017
3832 0.015 -0.003 0.011 0.008 -0.001
3833 0.093 0.019 0.080 0.009 -0.014
3839 0.049 0.043 0.014 0.004 -0.012
3841 0.287 0.120 0.421 -0.004 -0.250
3842 -0.275 -0.267 -0.011 0.010 -0.007
3843 0.076 0.033 0.046 0.000 -0.003
3844 0.021 -0.043 0.050 -0.057 0.071
3845 -0.341 -0.036 -0.302 0.000 -0.003
3849 0.024 0.002 0.034 0.000 -0.012
3851 -0.027 -0.010 0.024 0.005 -0.046
3852 -0.059 -0.004 -0.048 0.002 -0.009

Table 5.9: Melitz-Polanec decomposition of GNR productivity growth following tariff cut.
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ISIC ∆Φ ∆ω̄S ∆covS sXH (ΦSH − ΦXH ) sEL (ΦEL − ΦSL)

Levinsohn-Petrin

311 0.078 0.024 0.059 -0.001 -0.003
313 -0.019 0.000 -0.030 0.008 0.003
321 -0.013 0.018 -0.008 -0.014 -0.008
322 0.108 0.021 0.068 0.041 -0.022
323 0.052 0.252 -0.206 0.011 -0.006
324 0.127 -0.013 0.137 0.017 -0.014
331 0.077 0.001 0.082 0.023 -0.029
332 0.013 0.032 0.002 -0.003 -0.019
341 0.016 0.011 0.006 -0.001 0.000
342 0.046 -0.017 0.054 -0.002 0.011
351 -0.024 0.000 -0.034 0.008 0.001
352 0.010 0.016 0.021 -0.004 -0.023
355 -0.064 0.086 -0.152 0.009 -0.007
356 0.023 0.018 0.012 -0.006 -0.001
362 -0.073 0.000 -0.078 0.002 0.004
369 0.069 0.023 0.087 -0.047 0.006
371 -0.131 -0.064 -0.082 0.011 0.003
381 -0.017 0.005 -0.02 -0.001 0.000
382 -0.075 0.010 0.020 -0.085 -0.02
383 -0.008 -0.005 -0.009 0.006 0.000
384 -0.006 0.007 -0.018 0.007 -0.002
385 0.202 0.036 0.141 -0.003 0.029

Ackerberg-Caves-Frazer

311 -0.358 -0.128 -0.246 -0.019 0.036
313 -0.108 -0.02 -0.200 0.075 0.037
321 0.117 0.071 0.095 -0.020 -0.029
322 0.350 0.067 0.182 0.142 -0.041
323 -0.069 0.058 -0.127 -0.010 0.01
324 1.186 0.105 1.396 0.047 -0.361
331 0.674 0.085 0.640 0.068 -0.118
332 0.101 0.056 0.067 0.014 -0.035
341 0.055 0.002 0.058 0.000 -0.005
342 0.047 0.073 -0.023 -0.018 0.014
351 0.003 -0.025 0.026 -0.028 0.029
352 0.017 0.089 -0.030 -0.006 -0.035
355 -0.170 -0.018 -0.160 0.017 -0.01
356 -0.039 -0.056 0.013 0.011 -0.007
362 -0.074 -0.08 -0.069 0.008 0.068
369 0.013 -0.013 0.068 -0.077 0.035
371 0.089 -0.010 0.094 0.011 -0.005
381 0.289 -0.028 0.332 0.003 -0.019
382 0.224 0.232 0.156 -0.072 -0.092
383 0.021 -0.027 0.037 0.020 -0.01
384 0.051 -0.040 0.103 -0.029 0.017
385 0.176 -0.042 0.063 0.018 0.137

Gandhi-Navarro-Rivers

311 0.018 -0.001 0.000 0.024 -0.005
313 -0.079 -0.012 -0.153 0.079 0.007
321 0.017 0.003 0.020 0.006 -0.012
322 0.019 -0.001 0.013 0.015 -0.008
323 0.101 0.010 0.091 0.000 -0.001
324 0.084 -0.003 0.068 0.007 0.012
331 0.092 0.023 0.063 0.017 -0.011
332 0.032 -0.010 0.038 0.008 -0.004
341 0.033 0.037 -0.010 0.000 0.006
342 0.067 0.068 -0.023 -0.019 0.041
351 -0.028 -0.017 -0.004 -0.002 -0.005
352 0.000 0.034 0.003 -0.001 -0.036
355 -0.204 0.051 -0.262 0.008 0.000
356 -0.013 -0.028 0.011 0.003 0.000
362 0.172 0.013 0.119 -0.007 0.047
369 0.146 0.023 0.109 0.006 0.007
371 0.058 0.034 0.027 0.003 -0.005
381 0.013 -0.025 0.029 -0.001 0.01
382 0.089 0.110 0.001 -0.016 -0.006
383 0.010 -0.021 0.031 0.005 -0.005
384 -0.056 -0.015 -0.053 -0.005 0.017
385 -0.080 -0.061 -0.015 0.008 -0.012

Table 5.10: Melitz-Polanec decomposition of productivity growth following ERP cut.
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∆Φ ∆ω̄S ∆covS sXH (ΦSH − ΦXH ) sEL (ΦEL − ΦSL)

∆Tariff

LP 0.614 0.571 0.600 0.600 0.314
ACF 0.743 0.729 0.629 0.543 0.400
GNR 0.614 0.529 0.700 0.514 0.400

∆ERP

LP 0.545 0.727 0.545 0.500 0.455
ACF 0.727 0.455 0.682 0.545 0.409
GNR 0.682 0.500 0.682 0.682 0.455

Table 5.11: Proportion of industry-level productivity changes that have expected positive sign.

∆Tariff ∆ERP

∆Φ

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.221 1 ACF 0.260 1
GNR 0.102 0.523 1 GNR 0.133 0.221 1

∆ω̄S

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.293 1 ACF -0.112 1
GNR 0.147 0.435 1 GNR -0.032 0.596 1

∆covS

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.198 1 ACF 0.390 1
GNR -0.110 0.482 1 GNR 0.065 0.328 1

sXH (ΦSH − ΦXH )

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.312 1 ACF 0.571 1
GNR 0.072 0.443 1 GNR 0.294 0.609 1

sEL (ΦEL − ΦSL)

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.468 1 ACF 0.819 1
GNR -0.019 0.208 1 GNR 0.444 0.320 1

Table 5.12: Spearman correlation of component-wise LP, ACF, and GNR productivity growth.
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∆Tariff ∆ERP

∆Φ

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.493 1 ACF 0.409 1
GNR 0.423 0.535 1 GNR 0.409 0.545 1

∆ω̄S

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.500 1 ACF 0.364 1
GNR 0.343 0.471 1 GNR 0.364 0.318 1

∆covS

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.429 1 ACF 0.409 1
GNR 0.414 0.529 1 GNR 0.409 0.500 1

sXH (ΦSH − ΦXH )

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.400 1 ACF 0.364 1
GNR 0.371 0.400 1 GNR 0.364 0.455 1

sEL (ΦEL − ΦSL)

LP ACF GNR LP ACF GNR
LP 1 LP 1
ACF 0.225 1 ACF 0.273 1
GNR 0.155 0.239 1 GNR 0.273 0.227 1

Table 5.13: Frequency with which the pairwise LP, ACF, and GNR productivity growth components have the same expected
positive sign.
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Chapter 6

Conclusion

In this dissertation, I have covered a variety of semiparametric and nonparametric

methods for the econometric analysis of firm-level production data. I have con-

sidered three distinct approaches, namely deterministic frontier analysis, stochastic

frontier analysis, and proxy function methods of controlling for unobserved produc-

tivity, and in each case, I have offered new methodological insights that should be

appealing to practitioners. I have highlighted the importance of two robustness cri-

teria that an estimator ought to satisfy in the context of modelling the production

technology of firms; first, the estimation procedure should apply to a number of

different specifications of the function that relates input combinations and output

quantities, or the distribution that characterizes firms’ productive efficiency. The

traditional parametric log-linearized Cobb-Douglas framework is generally unsatis-

factory in this regard because it does not allow for much flexibility in how factor

elasticities are modelled. Similarly, the parametric stochastic frontier model for

panel data is inadequate whenever it is built on erroneous assumptions about the

density of firm-level inefficiency. In contrast, the semiparametric and nonparametric

approaches that have been delineated in Chapters 2 and 4 of this thesis are rather

flexible in terms of the functional form and distributional assumptions that they
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rely upon, and in this sense, they satisfy the first robustness criterion.

In regard to the second robustness criterion, Chapter 3 of this dissertation has

shown that extreme-valued observations can be a very serious concern in the context

of deterministic production frontier estimation. When data envelopment methods

are being applied, a single outlier that has arisen due to measurement error can

severely distort the estimated boundary of a production set. Thus, it is unsurpris-

ing that the literature has sought to address the challenge of defining a frontier

estimator that does not explicitly allow for random noise or measurement error

(hence the “deterministic” label), but that is nevertheless robust to outliers. The

approach that I have proposed improves upon existing robust estimation procedures

insofar as it makes use of hierarchical clustering to determine an optimal amount of

data trimming; this results in as many non-extreme-valued observations as possible

getting enveloped by the frontier, while outliers end up being dropped from the

analysis. Chapter 3 has also acknowledged that in certain industries, the output of

firms is more realistically expressed as a count rather than a continuous quantity and

hence, in instances such as these, the existing robust frontier estimation framework

needs to be modified accordingly. A notable example of this phenomenon is found

in the R & D sector, where the production of proprietary technology is measured in

terms of firm-level patent counts.

The methodological considerations that have been put forward in this thesis

ought to prove useful to those who are engaged in applied research and/or policy

analysis that involves firm-level data. Chapter 5 provided a clear example of how

a simple change in model specification can alter one’s assessment of the success

or failure of a policy reform that is intended to promote productivity growth at

the firm-level. It is therefore important to consider a number of different empirical

strategies when modelling input-output relationships and the productive efficiency

of firms, and the various approaches that have been outlined here can be beneficial
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in this regard. Although it might not have been immediately obvious to the reader,

this dissertation has also served to highlight just a few of the many tasks that can be

performed in the R statistical computing environment when applying kernel meth-

ods to the analysis of microdata. All of the smooth estimators that were described

in Chapters 2 through 4 were implemented using the np and crs packages in R,

and the applied researcher who is interested in semiparametric and nonparametric

econometric analysis will find that these offer a more comprehensive range of func-

tions than what is currently available in some of the proprietary statistical software

packages that are popular in the social science community.
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