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Abstract: This dissertation explores numerical solutions for the cohomogeneity one
Einstein and Ricci soliton equations when the principal orbits are SU(3)/T? and
Sp(3)/Sp(1)3. We present new numerical evidence for steady, expanding solitons as
well as Einstein metrics with positive scalar curvature. In the case of steady solitons
we produced a one-parameter family of solutions. In the expanding case, we generated
a two-parameter family of solutions and in particular in the negative Einstein case
we generated a one-parameter family of solutions. In the compact Einstein case we
found numerical evidence for an infinite number of Einstein metrics.
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1 Overview 1

1 Overview

A Ricci soliton consists of a complete Riemannian metric ¢ and a complete vector
field X on a manifold which satisfy the equation

1
Ric(g) + 5Lxg + 59 = 0

where L is the Lie derivative. If ¢ > 0 the soliton is called expanding, if ¢ < 0
shrinking, and steady if e = 0 [1]. In particular if the middle term on the left hand
side is zero, then we have an Einstein metric. In the Einstein case, this reduces the
soliton equation to Ric(g) = —§g. This happens precisely when X is a Killing vector
field for the metric g. Thus the scalar curvature is positive (resp negative) if € < 0
(resp € > 0). If € = 0, such Einstein metrics are called Ricci-flat.

Most known examples of Ricci solitons are of gradient type, that is, X = grad(u) for
some smooth function u. In this case, the Ricci soliton equation becomes

Ric(g) + Hess(u) + %g =0.

This dissertation presents numerical solutions in cases where the soliton is expand-
ing, or steady and for the Einstein case with e < 0. We consider cohomogeneity one
metrics in which case, the Einstein and soliton conditions reduce to a system of non-
linear ordinary differential equations on the orbit space I with appropriate boundary
conditions to ensure we have a smooth metric. As none of the ordinary differential
equations have known analytic solutions we make use of computer algebra softwares
and known numerical schemes to provide numerical solutions.

. . . : o .. SO(p+1)xSO(q+1)
Various analytic solutions were found in the past. For the principal orbit =57 ) x50

there are results for compact Einstein metrics [6], Ricci flat and negative Einstein met-
rics [7], and steady soliton solutions [9][19]. For U(n + 1)/U(n), both [10] and [11]
found results for the compact Einstein case as well the Ricci-flat metric with [4]. For
SO(n +1)/SO(n), there also exists steady soliton solutions due to Bryant. Finally
for the case Sp(2)/Sp(1)U(1), only the Ricci-flat solutions were generated [13].

In 1989, Bryant and Salamon showed that the cone Ry X Sgé?’) has an incomplete

Ricci-flat metrics with G5 holonomy [14]. In section 8 of Bohm’s paper [6], he showed
analytically that there are infinitely many Einstein metrics with positive scalar cur-
vature on




2 The Adjoint Representation and Isotropy Representation 2

S* 5<k<9
Sk x ¢ 5<k+0<9 2<k</
SEHL % Q 3<k+1<9—-dimQ, 1 <dimQ <6

Finally there are also numerical work done in [1] and [15]. The algorithm used in this
dissertation was partly and independently developed by Jonathan Baker.

In section 2, 4, 3, and 5 we provide brief background material. In sections 6 and 7 we
lay the groundwork for the numerics and finally section 8 presents the main result.

2 The Adjoint Representation and Isotropy Rep-
resentation

Let G be a Lie group, then a manifold M is a homogenous space of G if the group GG
acts smoothly and transitively on M. Let K be a closed subgroup of G, it is possible
to introduce a smooth structure on the set G/K = {gK : g € G} of all left cosets of
K in G [3]. In particular we may select K to be an isotropy subgroup for the G—
action on M.

A Riemannian manifold M whose isometry group (M) acts transitively is called a
Riemannian homogenous space. The isometry group of a Riemannian manifold
is a Lie group, this is a result of Myers-Steenrod [17].

Let G/K be a homogeneous space and 7 : G — G /K defined by

m(g) = gK

be the projection map. Let € be the Lie algebra of K C GG and g be the Lie algebra
of G. Let X € g and exp(tX) be the corresponding one-parameter subgroup. The
differential dr, : g — T,(G/K) where o = m(e) = K can be computed in the following
way,

Are(X) = % (x o exp(tX) -  (exp(tX) K)

From this we see that dm.(€) = 0, and in fact ker dm, = € [20]. Furthermore, because
dr is onto [20], we obtain the canonical isomorphism,

t=0

g/t =g/kerdr, ~ T,(G/K).
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If K is compact, then there is an Adx—invariant inner product on g by averaging.
So since &€ C g, we can define an orthogonal complement p = & C g through this
inner product. Because of the quotient vector space structure, from the previous
isomorphism, we also obtain the isomorphism,

p =1t ~T,(G/K).

It is known that the isotropy representation of K in T,(G/K) is equivalent to the
adjoint representation of K in p through the commutative diagram.

Adg (k)
p;)p

ldﬂeha ldﬂ’eh)

(dTk)o

T,(G/K) — T,(G/K)
Here 7, (9K) = kgK is the left translation. The proof of this can be found e.g. in [3].

Hence we conclude that the isotropy representation of G/K can be computed by
computing the adjoint representation of K in p where p = £+ denotes the complement
of the Lie algebra of K in the orthogonal decomposition g =t @ & =€ D p.

3 Cohomogeneity One Manifold

Let G be a compact Lie group acting smoothly on the n—dimensional manifold M
such that the orbit space M /G is connected.

Then by a theorem from [8], there exists a maximum orbit type G/K for G on M
(i.e., K is conjugate to a subgroup of each isotropy). The union of orbits of type G/ K
is open and dense in M and its image in M /G is connected.

The maximum orbit type for orbits in M guaranteed by the above theorem is called
the principal orbit type and orbits of this type are called principal orbits. Let
P ~ G/K be a principal orbit and @) ~ G/H be any other orbit. Then K is conjugate
to a subgroup of H, and so we may assume that K C H. Then there is an equivariant
map P — @ is a fiber bundle projection G/H — G/K with fiber K/H. If dim P >
dim @ (i.e., dim K/H > 0), then @ is called a singular orbit [8].

A cohomogeneity one manifold M is a Riemannian manifold acted on by a compact
Lie group G with orbit space of dimension one. Here in this dissertation, we will
restrict our discussion to the case where the orbit space is either a closed interval or
a half open interval.
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Now let (M, g) be a cohomogeneity one manifold of dimension n + 1. Let p € M be
a point in a principal orbit and P = G /G, be the corresponding principal orbit with
isotropy subgroup G,. Similarly we select singular point ¢ € M and let QQ = G/G,
be the corresponding singular orbit with isotropy subgroup G. Define the projection
map

T M—M/G=1.

Let I = [0,a) and define I = int(I). The preimage 7 '(I) consists of principal
orbits and 771({0}) is the singular orbit Q. Select a geodesic v : [0,00) — M
parametrized by arclength starting from the point ¢ intersecting all principal orbits
orthogonally!. All points on this geodesic in the principal orbits then have the same
isotropy subgroup. Further, there is also a diffeomorphism

(/b:IAXG/GA/(t)%MOCM

(1)
oL, 9GA)) = g(1).

Here M, denotes the union of principal orbits in M, I = (0,00), and G, is the

isotropy subgroup of the points (t) for ¢t > 0. Then P, = ¢(t,G/Gyw) = G/G) is

the principal orbit passing through the point ~(t).

Once again we take ¢ from one of its singular orbit G/H where H = (G, and consider
its tangent space T,(G/H) C T,(M) and its normal space N,(G/H) C T,(M). In its
isotropy subgroup H, select h € H and consider its derivative dh : T, M — T, M.

Now since dhly, /@ To(G/H) — T,(G/H) and dh acts by isometry, we have
dh|y,/my : No(G/H) — No(G/H) by invariance (as Ny(G/H) is the orthogonal com-
plement to T,(G/H)). On each normal space N,(G/H), there exists S¢ C N,(G/H)
with a positive radius r where dh maps S¢ into S? by the isometry of dh. Now let us
select and fix a non-zero element v € N,(G/H). Set

L = {dh(v) |h € HY,

to be the image set of all derivatives of h applied to v. We claim L = S?. First we
have the inclusion L C S? but now suppose there is an element w € S¢ — L, then
the projection 7 : M — M /G = I will map w into the orbit space. By a proposition
from [8], which asserts that there is a one-to-one correspondence between the orbit
space M /G and orbit space N,(G/H)/H, the projection map will take w into a point
different from 7(v).

But since M is a cohomogeneity one manifold, the orbit space is one-dimensional and
all other vectors in the radial geodesic defined from ¢ to v all mapped into a different
point into the orbit space as each point belongs to a principal orbit. The element w

LA consequence of Gauss’s Lemma, but we use the normal exponential map.
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is at a fixed radius r from the point ¢, the same r of v by definition. This means that
the point w cannot exist, hence L = S ~ H/K and so H acts transitively on S¢.

4 Cohomogeneity One Metrics

In this section we will describe cohomogeneity one Riemannian metrics on the space
M. Using (1) and its constructions for this entire section, consider the metric g on
I x G/K, that is the pullback of g through the map ¢.

¢*(g) = dt* + g(t) (2)

Here g(t) as described in the introduction are the G— invariant metrics on the hyper-
surfaces G/ K ).

Let p ~ T(G/G,w) be the tangent space to y(t) of the hypersurface G/K, with
t € I and the adjoint representation of K in p. As discussed in section (2), if K is
compact we may first select an Adg(K)—invariant inner product @ on p. Then we
may decompose p into (Q—orthogonal real Adg(K)—irreducible subspaces,

pP=p1Eps®-- B, (3)

such that the first k— direct summands p; @ - - Bpr ~ T (H/K) and pyy1D- - - Dp, ~
Ty(G/H).

Lemma 4.1 If each of the p;s are pairwise inequivalent Adg(K') representations, then
Schur’s lemma imply that (,)|, = g;Ql,, for some functions g; to be determined.

Proof:

The metric can be written as g(X,Y) = (T'X,Y) |, for some self-adjoint linear oper-
ator T :p — pand moT : p; — p; where 7w : p — p; is the projection map of p onto
the jth component of p.

The existence of T follows from the fact that if (e;) is an orthonormal basis for
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background metric () of p, then that means

g(X, Y) =g <X> Z <Yv ei> ’P€i>
=3 g(X.e) (v,
=3 e ho(X.e)

= <Y7 Zg(Xa ei)€i> b

= (Y, TX)|,.

This map is linear and self adjoint because (I'X,Y)|, = g(X,Y) = ¢g(Y,X) =
(TY, X) |, and is K —invariant because

(T(kX),Y) |y = g(kX,Y)

gk kX, E7Y)
= g(X,k7Y)
(TX, k7YY |,

= (kTX,kk™'Y') |,
= (kTX,Y) |,.

The linear map T is self-adjoint, therefore it has real eigenvalues A. The map (7 o
T — M)y, : p; — p; is also self-adjoint and Ker(moT — XI) # 0 is not trivial as A
is an eigenvalue and is an invariant subspace of p;, therefore Schur’s lemma implies
that the non-injective map on p; is Ker(moT — A\) = p; meaning m o T — A is the
zero map. In other words, moT = AI. On the other hand if the kernel is trivial for a
map mo S : p; — p;, then this means S o7 is an linear isomorphism, but this cannot
happens as p;s are inequivalent.

In this dissertation, we will consider two cases where r = 3 and the action of Adg(K)
on the inequivalent p;, so that such a decomposition is unique up to permutation and
the summands p; are orthogonal with respect to the background metric/inner product
(), that is,

g(t)ly, ~ ()= g O], L g} (Oh], L L gi(t)h

o (4)
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5 Ricci Soliton Equation Reduction

This part will borrow notations from [12]. Denote by V and R the Levi-Civitia
connection and curvature tensor of g respectively for our cohomogeneity Riemannian
manifold (M, g).

Let N =d¢ (%). Then it is a unit normal field for the hypersurface family except at
t =0, and let L(t) be the shape operator of the hypersurface P, = ¢(P x {t}) defined
by )

L(t)X =VxN

for any X € TP,. We consider the shape operator as a one parameter family of en-
domorphisms on T'P through the diffeomorphism ¢ described in the previous section.

Then using the fact the bracket between [N, X] is 0 for X € T'P, (because we are on
a product manifold on M) we get,

9 g(X,Y) = 20 (L)X, Y) = 2(g 0 L)(X, ).

Now using the Riccati equation for L(t) and the Gauss-Codazzi equations for the
hypersurfaces P;, we obtain for X,Y € TP, and an orthonormal basis {e;} of g,

Ric(X,Y) = Ric(X,Y) — tr(L)g(L(X),Y) — g @—f(){), Y)

Ric(X,N) = Z (Ve, L)X, ;) — ((Ve, L)X )es, €;)
= —tr(X=6VL)

Ric(N, N) = —tr (ag—f)) —tr (L(t)?)

Here YV = ((V.,L)X, e;) and — is the interior product.

Let r(t) denote the Ricci endomorphisms of T'P of the metrics g, then g(r:(X),Y) =
Ric(g;)(X,Y). We do the same for § and denote 7(¢) for the Ricci endomorphisms for
g. The gradient Ricci soliton equation on My now reduces to the system

Proposition 5.1
L'=v'L—tr(L)L+7r—¢l (5)
tr(L') = u" — tr(L*) — ¢ (6)
—tr(X=0VL) =0 (7)
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Remark 5.1 Fquations (5) refer to the components of the equation in the tangential

direction to the hypersurfaces and (6) refer to the components in the % direction.

Finally (7) represents the equation in mized direction.

In the case where ¢ is an Einstein metric we have

Proposition 5.2

g =2gL (8)

L' = —to(L)L+7— el 9)

tr(L') = —tr(L*) — ¢ (10)
—tr(X=6VL) =0 (11)

Remark 5.2 If we take the trace of (9) and use (10), we obtain the conservation law
equation

s —tr(L)? + tr(L?*) = (n — 1)e. (12)

Here s(t) = tr(r(t)) denotes the scalar curvature of g(t).
Remark 5.3 Note that (8) implies L = 3974/

Finally if there is a special orbit of dimension strictly smaller than n, and furthermore
if (9) holds for a sufficiently smooth (C*) metric and potential, then (6) also holds. If
the well-known conservation law

i+ (—u+tr(L)i—eu=C (13)

holds for some fixed constant C, then (10) also holds. Therefore we can use (13) in
place of (10)
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6 Isotropy Representation of SU(3)/T"

This section concerns with the triplet (G, H, K) = (SU(3),S(U(2)U(1)),T?) where
S(U((2)U(1))/T? ~ S? and SU(3)/S(U(2)U(1)) ~ CP?

Let us denote the Lie group of special matrices (unitary matrices with determinant
1) as

G = SU(n) = {A € U,(C) : A*A = AA* = I and det(A) = 1}.

Here A* = A~! denotes the the adjoint of A.

Let A(t) € SU(n) and suppose A(0) = I and B = A’(0). Differentiating A*A =
AA* = I and evaluating at t = 0 yields B + B* = 0. In other words this is the set
su(n) of traceless skew-Hermitian matrices. The space su(n) has dimension n? — 1.

Let g = su(n) denote the Lie algebra of SU(n),
su(n) ={B e gl(n,C) : B=—-B"}.

The objects B have the form

@ W12 Ce Wln
B —Wu 2?2 . W%
Wi —Wan ... b,

In the above Wj;, are complex numbers.

Let us choose the background metric for su(n) to be Q(X,Y) = —3tr(XY) with
X,Y € ¢, then we see that su(n) is spanned by the orthonormal basis

0 0 0 O 0 0 0 0
0 H; 0 0 —; 0 0 0, — 0
0 —H; 0 0 10 0, 0 Z ' ’
0 0 0 0f .\ 0O 00/,
0 1 0 1
e () )

In particular for n = 3, we select
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0 10 0 ¢ 0 0 01 0 0 1 0 0 0 0 00
-1 00},{z 00],{O0 OO},10 0 O0O},{0O O 1}|,10 O ¢
0 00 000 -1 0 0 i 00 0 -1 0 0 ¢ 0
= (Xla X2a X3a X4a X57 Xb)
to be our orthonormal basis for p = £+
et 0 0
Let T? = 0 €% 0 |:0,4+6:+63=0p be the maximal torus of SU(3).
0 0 e
This is a torus because of the isomophism
diag(e®t, €2, ... ) = diag(e'®) !0 i0n-1))
that maps 7" onto the maximal torus U(n — 1).
The Lie algebra of T is
W, 0 0
t= 0 292 0 201+92+03:0
0 0 b
Its isotropy representation is the map Adg(K) : ¢+ — €+
e 00 e~ 0 0
0 €% 0 |X;,| 0 e 0
0 0 e 0 0 eifs
Now we calculate for i =1...6.
e 0 0 0 1 0\ /e 0 0
tXit7h=( 0 €% 0 -1 0 0 0 e 0
0 0 e 0 00 0 0 e s
0 efe=i2
= | —e2e" 0 0
0 0 0
0 eil1—=02) )
= | —eilti—02) 0 0
0 0 0

= cos(6) — 02) Xy +sin(0; — 63) X,
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e 0 0 0 i 0
tXot7h=1 0 €% 0 i 00
0 0 e%) \0o 00

0 efe=i02 ()

= | —eif2en 0 0

0 0 0

0 iel®1=02) ()

= | iei@1-62) 0 o)

0 0 0

e~ 0 0

0 e 9
0 0 e

= — sin(91 — 62>X1 + COS(el — QQ)XQ

e 0 0 0 01
tXst'=1 0 €% 0 0 00
0 0 €%/ \-100

0 el1=%) 0

= | —eilti-03) 0 0

0 0 0

= cos(f; — 03) X5 + sin(0; — 63) Xy

e 00 00 1
tX,t7t=1 0 €% 0 00 0
0 0 e i 00

0 iel®1=0s) ()

= iez‘(el—eg) 0 O)

0 0 0

e 0 0 0 0 0
tXst7t=1| 0 €% 0 0 0 1
0 0 e 0 —1 0
0 0 0
— 1o 0 ei(92*93)

0 —etl02—03) 0
= COS(@Q — 03)X5 + Sin(eg - 93>X6

e~ 0 0
0 e 0
0 0 e s
e 0
0 e 0
0 0 e s

11
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e 00 0 0 0\ /e ™ 0 0
tXst b= 0 €% 0 00 0 e 0
0 0 eifs 0 i 0 0 0 eifs
0 0 0
=10 0 iei(02—05)
0 ei(02—03) 0

= — Siﬂ(@g — 63>X5 + COS(GQ — 93)X6

tX1t = cos(f) — 02) X, + sin(6; — 65))Xo
tXot ™t = —sin(f; — 02) X, + cos(6; — 05) Xy
t X35t~ = cos(f) — 03) X3 + sin(6; — 05) X,
tXyt = —sin(f; — 03) X3 + cos(6; — 03) X4
tX5t™t = cos(fy — 05) X5 + sin(fy — 05) X
tXgt ™t = —sin(fy — 03) X5 + cos(fy — 03) X

The complement £+ is decomposed into three irreducible pieces & for i = 1...3 and
each component p;t is a two-dimensional vector subspace that can be denoted by
p; = span{X;, X;1} Cpfori=2i—1...2i and p = p; B p2 D p3

Therefore the isotropic representation is given by:

cos(0y —0y)  sin(6, — 6s) 0 0 0 0
—sin(6y — 6) (cos(by — 62) 0 0 0 0
0 0 cos(f; — 63)  sin(6; — 03) 0 0
0 0 —sin(f; — 05) cos(6, — 03) 0 0
0 0 0 0 cos(fy — 03)  sin(fy — 63)
0 0 0 0 —sin(fy — 05) cos(fy — 03)

and its smooth metric ¢ is a 6 x 6 matrix with 2 x 2 block entries with numbers
a; € R>0.

0,1[2 0 0
g X, Y)=Y"| 0 aly 0 |X.
0 0 asly

In section 8, these values a; shall be set to functions a; = g?(t) to be evaluated.

SU(3)
T2

6.1 Ricci Curvature of

We use the following formulaes
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Killing form
B(X,Y)sum) = 2ntr(XY) (14)

Ricci Curvature Tensor [5] (page 185)
(X, X) :——Z||XX]H2——B(XX + = Z (X5, X]p, X)? (15)
ij

Here [,] is the bracket of the Lie algebra and B is the Killing Form and (X;) is
an orthonormal basis with respect to the G—invariant metric g.

We calculate r( X7, X1).

1 Xl X1 1 2 3 6 a;=4b; 3
B (2L S} = o btr(XY) = — 2 (—2) = — =
2 <\/a_1 \/a_l) 20, ) = (D = 4 20,

Now

2a3 2a9 \ a=ar; 1 [ b3 by
- (X 2 _Z Q= (s ST
Z H 1’ H 2 (CLl(IQ * Cllag) 4 (blbg + b1b3)

Note [\f—i f] \/#T?’Xl and by anti-commutativity and the fact that Xy € po,

we introduce a factor of 4 to account for [ X3, X5|, [ Xy, X5], [X3, X¢], and [Xy, X]

2
X; X X 1 2 ] o
Vaz as],y/ax Vaiazaz a1a2a3 a3 babs

So the sum 1 b
n XmX aX 1
Z v X1/va1)® = 1habs

Therefore in accordance with section 8, we get

3 b b 1 b
3+_2>+_1

r(Xp, Xi) = — — = (

20, biby = bibs 4 bybs

Likewise the calculations for r(X3, X3) and r(X5, X5) follow

3 1 bl bg 1 b2
Xgy Xg) = — — = (o P8y 1P
rXe Xa) = 5 =1 (1)253 * b1b2> T Aobs

by
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3 1

by b\ 1 bs
Xo Xg) = — — (2 2 ) 2
riXs Xs) = o 4(52b3+blb3> 1510y

Remark 6.1 Taking the trace of the above Ricci curvature tensor, we obtain the
_ 1,1 41 1 (b b b -

scalar curvature Sgy(z) 2 = 3 (E +5 T 5) -3 <ﬁ + 5 T @) with respect to

the background metric V(X,Y) = —2tr(XY).
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7 Isotropy Representation of Spmxgig’%x Sp(1)

This section concerns with the triplet (G, H, K) = (Sp(3),Sp(2) x Sp(1),Sp(1) x

Sp(2)xSp(1) ~ G4 __5pB) __ ~ 2
Sp(1) x Sp(1)) where Sp(l)pXSp(l)pXSp(l) ~ S* and Sp(Z)pXSp(l) ~ HP

Let us denote the Lie group of n X n unitary matrices by
Un)={A € GL,(C): AA* =TI}.

Here we identify the adjoint as the complex transpose A* = A’ of A.

Let us denote the symplectic Lie group matrices with quaternion entries as
Sp(n) ={A € Gl,(H) : AA* = I}.

The conjugate of the quaternion ¢ = t+ix+yj+kz is ¢ = t —ix —yj —iz. Sometimes
it is more convenient to use the equivalent definition

Sp(n) ={AcU((2n): A'J = JA'},

where J = diag(FE,...,E) and E = <(1) _01) :

The matrices in this space take the form

ai bll el e Q1np _bln

—b11 [0 5 _bln A1p
A=

QAp1 bnl e e QApn _bnn

_bnl an1 - - - . _bnn QApn

Here each aji, = tj, + ixj, and bjp = y;, + 12

Let ¢ = t+1ix+yj+ kz € H be a quaternion, which is identified with the point
(t,z,y,2) € R* or the point (¢ + iz,y + iz) € C% There is an isomorphism between
the quaternions and certain 2 x 2 matrices given by

t+ix y+z’z)_(t+m y+iz

—(y+iz) t+iz (y —i2) t—m>€M2<C)

ng:q(—)(

In terms of real matrices we have,
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- t —z vy
-y z t —x
-z -y t

Vg € My(R).

Denote sp(3) by the Lie algebra of Sp(3). Following the same procedures for the
previous calculations in SU(3)/T? we obtain

sp(3) = {B € g(6;C) : B+ B* = 0and B'J + JB = 0}

The objects B have the form

Rll W12 . Wln
o | W
Wi, —Wa o0 Ry
Here R;; = Z:]J _;;Zj) and Wy, = (_% aLk) with entries u; € R and aji, bji, v; €
J J

C. The Rj; are obtained from the skew-Hermitian condition B = —B* and W}, are
obtained from B!J + JB = 0.

If one selects the background inner product Q(X,Y) = —2tr(XY') where XY € ¢,
then we have the following orthonormal basis for sp(n) from decomposing B:

0 0 ... 0 0 0 0 0
110 0 0 110 Hi; 0
0 Ej; 0 22 |0 —m; 0
0 00 1<j<n 0 0 0 0 1<i<j<n

So in particular for the 3 x 3 case,
Ry Wiy Wi

B=-Wy, Ry Wi
Wiy —W3; Ras
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7 Isotropy Representation of 500

The Lie algebra of K = Sp(1) x Sp(1) x Sp(1)) is the subalgebra

sp(l) 0 0
t = 0 sp(l)
0 0 sp(1)

So by direct sum decomposition, we obtain

0 WIQ Wl3
p= EJ— = _Wl*Q 0 W21
W3 W5 0

The adjoint representation of Sp(1) x Sp(1) x Sp(1) = K in €+ is given by the map
by X = kXk™!

for X € ¢+

We calculate the isotropy representation of the compact connected Lie group K by
taking advantage of the fact that the representation is uniquely determined by its
restriction to a maximal torus. This is a consequence of corollary 2.8 from [18]. We
therefore consider,

e 0 e 0 0
0 €% 0 |X;] 0 e 0
0 0 e 0 0 e~is

Here €% are the unit complex numbers lying in Sp(1). To make the calculation

simpler, we shall identify each of the H;; by its quaternion form and we will drop
the constant ﬁ for the remainder of the calculation and we will remember their
presences in future calculations. For example, let

0 the 0 10
Xl = —H21 0 0 | with H12 = (0 1) —q= 1
0 0 O
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xSp(1)xSp(1)

et 0 0 0 Hy 0 e~ 0 0
0 €% 0 —Hy, 0 0 0 e 0
0 0 ¢ 0 0 0 0 0 e

0 efre=i02
= | —e2e" 0 0

0 0 0

0 eil01=02) )
= | —¢il01—02) 0 0

0 0 0

= cos(6) — 02) Xy +sin(0; — 6) X,

0 Hyy 0O

Xo=|—-Hy 0 0 withHm:(é _OZ.><—>q:z'
0 0 0
6191 0 0 0_ Hyy O €_i91 0 0
0 €% ¢ —Hyy 0 O 0 e 0
0 0 &% 0O 0 0 0 0 e
0 eje=02 ()
= | 240 0 0
0 0 0
0 el01=02);
= | eil01-62); 0 0
0 0 0
= — sin(Ql — 92)X1 + COS(Ql — 02)X2
0 Hyp O 0 i
0 0 0
et 0 0 0_ Hi O e~ 0 0
0 €% ¢ —Hyy 0 0 0 e 0
0 0 e 0 0 0 0 0 e s

0 ke
= | e2femi01 0 0

0 0 0
— 6i(91+92)X3

= COS(Ql + 02)X3 - sin(Ql + ‘92)X4
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0 Hi, O 0 1
0 0 O
et 0 0 0_ Hi O e~ 0 0
0 €% ¢ —Hyy 0 O 0 g0z 0
0 0 ¢ 0 0 0 0 0 e
0 efje=i92
= | e%2je i 0 0
0 0 0
— 6i(91+92)X3

= COS(Ql + 02)X4 + Sin(91 + 92)X3

0 0 Hyp : o
X5 = O_ 0 O Withngz(O _i)Hq:i
—Hy 0 0
et 0 0 0 0 Hyz\ [e® 0 0
0 e 0 0O 0 0 e 02 0
0 0 e —H;; 0 0 0 0 e s
0 0 eilli=0s);
_ 0 0 0
ei01=03); ()
-1

= cos(6, — 03)

0
0 O
0 O

0

o O O

? 0
0]+ sin(91 — 93) 0
0 1

o O

—1

= cos(bh — 03) X5 — sin(0; — 03) X

0 0 Hp Lo
Xe=| 0 0 0 withH13:(0 1)(—)(]:1
~Hy 0 0
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et 0 0 0 0 His e~ 0 0
0 €% 0 0 0 0 0 e 0
0 0 ¢% —Hsy; 0 0 0 0 e
0 0 ei(01—03)
= 0 0 0
—ei®=6:) 0 0
0 01 0 0 2
=cos(f;—03) | 0 O O] +sin(@1—03)| 0 0 0O
-1 0 0 - 00
= COS(Ql — 03)X6 + Sin(@l - 93)X5
0 0 His 0 i
—Hs; 0 0
et 0 0 0 0 His e~ 0 0
0 €% 0 0 0 0 0 e 0
0 0 e —Hz; 0 0 0 0 e
0 0 erke s
= 0 0 0
e ke 0
0 0 k 00 g
=cos(f; +63) [0 0 O] —sin(f; +65) {0 0 0O
kE 0 0 7 00
= COS(Ql + 6)3)X7 — sin(Ql -+ 493)X8
0 0 His 0 1
- 10
—Hs;
0 0 13 €_i91 0 0
0 0 0 e 0
—Hs; O 0 0 e
0 et je=is
= 0 0 0
203] —1601 0 0
00 g 0 0 k
=cos(f;+65) 10 0 O] +sin(f;+65) [0 0 0
7 00 E 0 0

= SlIl 6)1 + 93 X7 + COS(Ql + 93)
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0 0 0 i 0
Xg =10 O_ Hys | with H23 = (O —Z) S qg=1
0 —Hsz, 0
e 0 0 0 0 0 e”® 0 0
0 ¢ 0 ]|0 0 H23 0 e™ 0
0 0 g% 0 —Hs 0 0 e
0
=10
O 67,(92 93
= COS(@Q — 03 Xg — sm 92 — 03 X10
0 0 0 10
XlO =10 0_ H23 with H23 = (O 1) —q= 1
0 —Hsz; O
e 0 0 0 0 0 e~ 0 0
0 e 0 0 0_ Hoys 0 g0z 0
0 0 e 0 —Hs 0 0 0 e s
0 0 0
=10 0 ei(02=63)
0 —eti(f2—0s) 0

= Sil’l(92 — (93)X9 + COS(@Q — 03)X10

0 O 0

Xui=10 0_ Hys | with Hys = (? (Z)> —q= k
0 —H;, O

e 0 0 0 0 0 e~ 0 0

0 €% 0 0 0 H23 0 e 0

0 0 g% 0 —Hs 0 0 e
0 0

=10 0 92+93>k:

0 1(92+93

(92 +93 XH — SlIl 92 +93 Xlg

0 0 0 1
Xip = 0 0 H23 with H23 = —q :]
0 -1 0
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7 Isotropy Representation of

Sp(1)xSp(1)xSp(1)

e 00 0 0 0 —i 0
0 e 0 0 0 H23 0 e "0 0
0 0 eis 0 E 0 0 e~ s
0

=1lo 92+03
0 6(92+93

= COS(QQ + 03 Xll + Sln 92 + 03 X12

k’Xl = COS(Gl — (92)X1 + sin(91 — HQ)XQ
]-CXQ = — Sin(Ql — 92)X1 + COS(Gl — QQ)XQ
kX3 = COS<91 + 92)X3 — SiH(Gl —+ 92)X4

kX, = sin(6y + 05) X3 + cos(0; + 02) Xy
kX5 = cos(b) — 03) X5 — sin(0; — 63) X
kXe¢ = sin(6y — 05) X5 + cos(6; — 03) Xs
kX7 = cos(6y + 03) X7 — sin(0; + 05) Xy
kXg = sin(6; + 05) X7 + cos(0; + 03) Xs
kXg = cos(fy — 03) X9 — sin(fy — 03) X190
kX9 = sin(fy — 03) Xg + cos(0s — 05) X1

)
kXH = COS(@Q + 03)X11 - SID(QQ + 93)X12
qu = sm( + 63)X11 + COS(@Q + 93)X12

Thus the isotropy representation is given by the 12 x 12 matrix

Gy O 0
0 G O
0 0 Ga3
with block sub-matrices G;
COS(¢91 — 92) sin(91 — 92) 0 0
o sin(f; — 6) cos(6; — 65) 0 0
n= 0 0 cos(0y + 05) —sin(6; + 02)
0 0 sin(f; + 02)  cos(01 + 02)
cos(fy —6s5) —sin(6; — 03) 0 0
G — sin(fy — 03)  cos(6, — 03) 0 0
2 0 0 cos(6y + 05) —sin(0; + 03)

0 0 sin(0y +6s)  cos(6y + 03)
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7 Isotropy Representation of 500

cos(fy — O5) —sin(fy — 03) 0 0
Con — sin(fy — 03)  cos(fy — 03) 0 0
3 0 0 cos(0y + 03) —sin(fy + 03)
0 0 sin(fy + 63)  cos(fz + 03)

7.1 Ricci Curvature of Sp(3)/Sp(1)?

We use the following formula

Killing form
BIX.Y )5y = 2(n + Dir(XY) (16)

Ricci Curvature Tensor [5]

1 1 1
P X) = =5 SN XL I = B0 X) + 5 30X Xl X2 (1)
j ij
Here [,] is the bracket of the Lie algebra and B is the Killing Form and (X;) are
an orthonormal basis with respect to the metric g.

Let
Y-E{Xl Xo Xz Xy X5 X X7o Xg X9 X0 Xn X12}
! Vai ar Ja Var Jay' \ar Jar Jarl \Jas Jas' \Jas \Jas
Now

2

_ Ly _a o, e Na=wan 1 by b )
2 222a1a2 222a1a3 2 b1b2 b1b3

5|2z

2

— _l 4 as +4 a1 a’i:(é/Q)bi _1 ﬁ + i )
2 222611(12 222a2a3 2 blbg b2b3

A

2

S R — aoe (2 )
2 222(116L3 222a2a3 2 blbg bgbg

32,
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7 Isotropy Representation of 500

1 X9 X 1 Xz 1 4 1 2 a= . 4
(2L ) e (22) )= S (22 (2 ) = S 2
2 /a3 +/03 2 as 2 as 2 as b3

Similar to subsection 6.1, we calculate

([ 2] 2.

So the sum

1 1 /1 b
- X, Xi]p, X 2=8(-—
2 Xl XV = (3or)
b3 by 4 1 b
( by | blbg) "o 2y
( X5 X5 ) 1
r{—, —)=—-=
NN A
X9 X 1/0b b 4 156
r _97_9 e (P N I
Vas vas) 2 \biby | babs) by 2biby
Remark 7.1 Taking the trace of the above Ricci curvature tensor, we obtain the

_ 1,1, 1 b b b '
scalar curvature Sspes)/spa)s = 16 <E + 5 T E) -2 <ﬁ + 5 T ﬁ) with respect
to the background metric V(X,Y) = —tr(XY).
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8 Numerics

25

We begin with the reduced Ricci Soliton equation. The Ricci Soliton equation for
U(3)/T? with the metric § = dt* + f1(t)*hl,, + fo(t)*Ql,, + f3(t)*Ql,, reduces to

LR R (BB B
7 +fl+ 2 (f1 b f)ﬁ
W BB (R f3>f2
fz‘ +f2+ fa <f1 fo f3) fo
A SN0 O A
7 +f3+ fs <f1 f2 f3> Iy

o — 4 (f1+f2 f3)—eu:C’.

Lo o fs

o Ji 13 f3 €
+2fl+ <f2f3 IEE f1f2)+2 .
Ea /i fi f3) € _
+2f2+ (flf?, pr nE) Y
i 3 f3 fl) €
EETER (flf e rr) T

To run the Runge Kutta algorithm, we put the above in normal form by setting

2= f
23 = fo
25 = f3
Zr =U

:f{
24:f§
:fé
=

Then the equations become the first order system,

2 2 2 2
z z z z 3 z z z z €

, 5 2 4 6 1 1 3 5

2y = —= + 2829 — 229 +—+— )+t -+ =53 55— 33| ts4
21 L 221 4 \ 2528 2725 2723 2

/

2o = Z

3 4
2 2 2
z z z z 3 z z z z €

/ 4 2 4 3 3 1 5

Zg = — + 2824 — 224 +—+— )t -+ =3 55 33|t 5%
23 21z 25 223 4 \z{zs 2325 2173 2

:C+Z§—228 (Q

21 z3

Remark 8.1 Note that we have chosen the background metric V(x,y) =

for the above system 18
Similarly the system for Sp(3)/Sp(1)?

zZ. Z|
+—4+—6>+6z7
<5

(18)

—2tr(XY)
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2 2 2

z 2z z 2 4 2z z z z €

' 4 4 3 3 1 5

Z4————|—ZSZ4—4Z4(—+—+—)+—+—<22— 53 — 22>+—Z3.
z3 21

ZE = 2

2 2 2 2
z z z 2 4 z z z z €
, 6 2 4 6 5 5 3 1
2= —+222 4% | —+—+— | +—+ = — — + —25.
> 2.2 2.2 2.2

5 21 zZ3 25

zh = 73

zZ z. Z
2y =C+ 25 — 4z (—2+—4+—6>—|—€Z7.
21 z3 Z5

(19)

Remark 8.2 Note that we have chosen the background metric V(z,y) = —tr(XY)
for the above system 19

8.1 Procedures and preliminaries

In both of our spaces SU(3)/T? and W&p(l)’ we will work with the initial con-
ditions (21, 29, 23, 24, 25, 26, 27, 28) = (0,1,a,0,a,0,b,0) which will enforce the smooth-
ness condition around the singular orbit. Each algorithm contains seven parameters
which contain the initial conditions, the starting and ending point of the Runge Kutta
algorithm, the constants ¢, and C' denoted by astart, b, start, acc, limit, epsilon, and

C respectively.

Table 1: Table of Summary

a b u’(0) | Cle
Steady Soliton >0|#0 | —-1/3|-1|0
Ricci Flat >01|0 n/a 00
Expanding Solitons >0|<0 |b/3 0|1
Negative Einstein >010 0 01
Compact Einstein >0[b=0|-b/3| 0| -1
Non-Compact Einstein | >0 | n/a | =b/3 | 0| —1

8.2 Procedure

We proceed as follows:
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1. Generate finite polynomials (up to order 10, although only up to only order 5 were
used at most) for the system 18 and 19 by Maple and the metric’s components shown
in the systems 18 and 19 are replaced by the polynomials.

2. We use the usual power series approximating method to eliminate the arbitrary
coefficients using the prescribed initial conditions.

3. We use Maple to generate initial solutions for small values near 0 to reset the usual
starting point of the 4th-Order Runge-Kutta. The identification is done through the
human (author’s) eyes.

The steps 1,2, and 3 are done to work around the irregular singular points in 18 and
19 at t = 0.

4. For the compact soliton case, we first plot the quantity of SOL = 2?2 + (25 +1)? +
22 + 22 + 22 vs the initial values of a to locate values of SOL close to 0 which helps
us find compact Einstein metrics.

The quantity hits 0 whenever 2z, = —1 and all other metrics hit 0 at the point of
interest. By a permutation we also get a second SOL in the form of 23+ 23+ (z,+1)*+
22 + 22 with similar construction. The derivatives of the metrics are plotted to ensure
the numerical Einstein metric found satisfies the expected theoretical asymptotics.
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8.3 The effects of homothety

This section begins with a discussion of the effects of homothety.

Let us consider the Ricci soliton equation and the conservation law once more

Ric(g) + Hess(u) +

U+ (—u+tr(L)u— eu=C.

By applying the transformation § = c¢2g for some ¢ > 0, then above equations would
change to

5022 =0

Ric(c?g) + Hess(u) + 5¢ 2

i+ (—u+tr(L))i —eu=C.
Then the metric § = di° + g, becomes the metric ¢2g = c2dt* + 2g;. Now this means

that # — ct, then f,(1)? = 2f?(t) = f,(I) = cf;(t) and the smooth function u which
has no association with the metric g will remain the same, that is a(¢) = u(t) = u(t/c).

Their derivatives follow

So the above implies

and

There are two cases to consider,
Case 1: e=0

By a homothetic change we may assume C' = —1, then the conservation law implies
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-1

(dy + 1)i(o) = C + eu(0) = u(0) = 1

where d; stands for the dimension of p;. This means that the initial value of i(0)
is fixed by the choice C. Therefore the quadruplet solution (f1, fa, f3, f4) can never
include homothetic solutions.

Case 2: € # 0

If € # 0, then i(0) = sgn(e)% where we normalize € to be sgn(e) and instead of

u(0) = 0, we choose C' = 0 to rule out homothetic solutions.

Note that in the numerics, all d; = 2 for i = 1,2, 3.

9 SU(3)/T

The blue curves are the polynomial solutions and the red are the approximations from
the Runge-Kutta.
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9.1 Steady Solitons

Alg(1,1,0.01,0.005,50,0,-1)
10 T T T T T T

z1
on
T

a ] 10 15 20 25 30 35 40
time

Figure 1: Steady Case of SU(3)/T? with z;,a =1,b=1

a0

30
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Alg(1,1,0.01,0.005,50,0,-1)
1(" T T T T T T

zd

a a 10 15 20 25 30 35 40 45 ag
time

Figure 2: Steady Case of SU(3)/T? with z3,a =1,b=1

Remark 9.1 The curves in figure (1) and (2) are asymptotically ~ /1, indicating
asymptotically paraboloidal behavior as in the case of the Bryant soliton and the steady
soliton found in [9]

Proposition 9.1 [16] The soliton potential is strictly decreasing and strictly concave
on (0, 00)
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T T T T T T

50 i i i i i i i i i
a i 110 15 20 25 30 35 40 45 50

time

Figure 3: Steady Case of SU(3)/T? with z7,a =1,b=1

Remark 9.2 Asin agreement with 9.1, the potential is strictly decreasing and concave
down on (0, 50)

Proposition 9.2 [16] The mean curvature trL is strictly decreasing and satisfies
0 <trL < %. The generalized mean curvature n = —u +trL is strictly decreasing and
tends to v/ —C as t tends to occ.
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Figure 4: The Mean Curvature of SU(3)/T? in the Steady Case.
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Figure 5: The Generalized Mean Curvature of SU(3)/T? in the Steady Case.
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9.2 Ricci-flat

- AlgRic(1,0,0.01,0.005,50,0,0)
L] 1 L] 1 L] 1

a a 111] 15 20 25 30 35 40
time:

Figure 6: Ricci-flat Case of SU(3)/T? with 2,a =1
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AlgRic(1,0,0.01,0.005,50,0,0)
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Figure 7: Ricci-flat Case of SU(3)/T? with z3,a =1
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Figure 8: Ricci-flat Case of SU(3)/T? with z;,a = 10
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Figure 9: Ricci-flat Case of SU(3)/T? with z3,a = 10
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Figure 10: Ricci-flat Case of SU(3)/T? with z1,a = 50
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11: Ricci-flat case of SU(3)/T? with z3,a = 50
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9 SU(3)/T?

AlgRic(1,0,0.01,0.005,50,0,0)
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0. 56
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Figure 12: The graph of Ricci-flat of SU(3)/T? with z;,a = 1 and its linear interpo-

lation
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Figure 13: The graph of Ricci-flat of SU(3)/T? with z3,a = 1 and its linear interpo-
lation
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Figure 14: The graph of Ricci-flat of SU(3)/T? with z;,a = 10 and its linear inter-
polation
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Figure 15: The graph of Ricci-flat of SU(3)/T?
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with 2z3,a = 10 and its linear inter-



9 SU(3)/T?

z1

50

45

40

35

30

25

20

10

0. 844611
z1

AlgRic{50,0,0.01,0.005,50,0,0)
T T T
i i i
20 25 30
time

35

a0

45

Figure 16: The graph of Ricci-flat of SU(3)/T? with z;,a = 50 and its linear inter-

polation
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—— S0 2TASS
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Figure 17: The graph of Ricci-flat of SU(3)/T? with z3,a = 50 and its linear inter-
polation

Remark 9.3 From these graphs, it is clear that figures 6, 7, 8, 9, 10, and 11 are
asymptotically linear

Remark 9.4 We also see that we have a one-parameter family of solutions with the
wnitial condition a being the parameter
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9.3 Expanding Solitons

AlgExpand(1,-1,0.01,0.005,50,1,0)
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Figure 18: Expanding case of SU(3)/T? with 2;,a =1,b= —1
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time

Figure 19: Expanding case of SU(3)/T? with 23,a =1,b= —1
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Figure 20: Expanding case of SU(3)/T? with 27,a =1,b= —1
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: Expanding case of SU(3)/T? with z;,a = 10,b = —1
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Figure 22: Expanding case of SU(3)/T? with 23,a = 10,b = —1
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Figure 23: Expanding case of SU(3)/T? with 27,a = 10,b = —1
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Figure 24: Expanding case of SU(3)/T? with z;,a =1,b= —10
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Figure 25: Expanding case of SU(3)/T? with 23,a =1,b= —10
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AlgExpand(1,-10,0.01,0.005,50,1,0)
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Figure 26
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time

: Expanding case of SU(3)/T? with z7,a = 1,b = —10
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Figure 27: The graph of expanding case of SU(3)/T? with z;,a = 1,b = —1 and its
linear interpolation.
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Figure 28: The graph of expanding case of SU(3)/T? with z3,a = 1,b = —1 and its

linear interpolation.
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Figure 29: The graph of expanding case of SU(3)/T? with 21,a = 10,0 = —1 and its
linear interpolation.
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Figure 30: The graph of expanding case of SU(3)/T? with 23,a = 10,0 = —1 and its
linear interpolation.
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Figure 31: The graph of expanding case of SU(3)/T? with 2z;,a = 1,0 = —10 and its
linear interpolation.
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. AlgExpand(1,-10,0.01,0.005,50,1,0)
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Figure 32: The graph of expanding case of SU(3)/T? with 23,a = 1,0 = —10 and its
linear interpolation.

Remark 9.5 The asymptotic linear behaviours of fi, fa, f3 can also be observed in
examples of [16], [9], [2], [19]
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9.4 Negative Einstein

. AlgNE(1,0,0.01,0.005,50,1,0)
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Figure 33: Negative Einstein case of SU(3)/T? with z;,a = 1,0 =0
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Figure 34: Negative Einstein case of SU(3)/T? z3,a=1,b=0
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Figure 35: Log Graph of negative Einstein case of SU(3)/T? with 2;,a =1,b=10
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AlgNE(1,0,0.01,0.005,50,1,0)
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Figure 36: Log Graph of negative Einstein case of SU(3)/T? z3,a=1,b=0

Remark 9.6 Compare the figures 34 and 35 with their log graphs reveals that the
solutions may be exponential.
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: Negative Einstein case of SU(3)/T? z1,a =10,b=0
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Figure 38: Negative Einstein case of SU(3)/T? 2z3,a = 10,0 =0

9.5 Compact and non-compact Shrinking soliton

We did not find any numerical solutions for the case of non-compact shrinking solitons.
However there are results for the compact Einstein solitons where there is an initial
cluster of infinitely many Einstein metrics and a first independent Einstein metric.

The following is a graph of SOL vs initial value a which helps us detect Einstein
metrics
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Figure 39: Compact Einstein case of SU(3)/T?. Graph of SOL vs initial value a.
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Figure 40: Compact Einstein case of SU(3)/T?, Graph of SOL vs initial value a with
a closer shot at the first Einstein metric
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Figure 41: Cluster of figure 39

We estimate the point of interest at a = 1.0619. Note this is not a true value of
the Einstein metric as we cannot numerically determine when SOL = 0. Hence we
are only drawing values in a neighborhood of the Einstein metric which should have
similar features.

It will shown that the results for this case is similar to Sp(3)/Sp(1)?, this is due to a
minor change in the soliton equation.
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Figure 42

: Compact Einstein case of SU(3)/T? with 21, a = 1.0619,b =0
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AlgCpt(1.0619,0,0.01,0.005,50,-1,0)
T T T T T

Figure 43: Compact Einstein case of SU(3)/T? with z3, a = 1.0619,0 = 0

As expected, the first graph of z; = f; closes up on the boundary point with negative
slope and the graph of z3 = f5 ends with shows a negative slope.

10 Sp(3)/Sp(1)Sp(1)Sp(1)

This section features plots for the principal orbits of Sp(3)/Sp(1)Sp(1)Sp(1). The
remarks from SU(3)/T? carry over in this section.
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10.1 Steady Solitons

. AlgSPS5(1,1,0.01,0.005,50,0,-1)
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Figure 44: Steady Case of Sp(3)/Sp(1)® with 2;,a =1,b=1
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Figure 45: Steady Case of Sp(3)/Sp(1)® with 23,a =1,b=1
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Figure 46: Steady Case of Sp(3)/Sp(1)® with 27,a =1,b=1
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10.2 Ricci-flat

. Alg5PRic(1,0,0.01,0.005,50,0,0)
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Figure 48: Ricci-flat Case of Sp(3)/Sp(1)? with 21,a =1
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Figure 49: Ricci-flat Case of Sp(3)/Sp(1)? with 23,a =1
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Figure 50: Ricci-flat Case of Sp(3)/Sp(1)? with 2,a = 10
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Figure 51: Ricci-flat Case of Sp(3)/Sp(1)? with 23,a = 10
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Figure 52: Ricci-flat Case of Sp(3)/Sp(1)? with 21, a = 50
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Figure 53: Ricci-flat Case of Sp(3)/Sp(1)? with 23,a = 50
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10.3 Expanding Solitons
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Figure 54: Expanding Case of Sp(3)/Sp(1)? with z1,a =1,b = —1
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Figure 55: Expanding Case of Sp(3)/Sp(1)? with z3,a = 1,0 = —1
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Figure 56: Expanding Case of Sp(3)/Sp(1)? with z7,a = 1,b = —1
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Figure 57: Expanding Case of Sp(3)/Sp(1)? with z;,a = 10,b = —1

a0

86



10 Sp(3)/Sp(1)Sp(1)Sp(1)

. AlgSPEX{10,-1,0.01,0.005,50,1,0)
T T T T T T

45
40

35

25
20

/N

-]U i 1 i i i i i i i i

a ] 10 15 20 25 30 35 40 45
time

Figure 58: Expanding Case of Sp(3)/Sp(1)? with z3,a = 10,b = —1
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Figure 59: Expanding Case of Sp(3)/Sp(1)? with z7,a = 10,b = —1
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Figure 60: Expanding Case of Sp(3)/Sp(1)? with z1,a = 1,b = —10
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Figure 61: Expanding Case of Sp(3)/Sp(1)? with z3,a = 1,b = —10
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Figure 62: Expanding Case of Sp(3)/Sp(1)? with z7,a = 1,b = —10
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10.4 Negative Einstein
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Figure 63: Negative Einstein of Sp(3)/Sp(1)? with z;,a = 1,0 =0
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Figure 64: Negative Einstein of Sp(3)/Sp(1)® with 23,a =1,b=10
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Figure 65: Log Graph of negative Einstein case of Sp(3)/Sp(1)® with z;,a=1,b=0
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Figure 66: Log Graph of negative Einstein case of Sp(3)/Sp(1)? 23,4 =1,0=0

10.5 Compact and non-compact Shrinking soliton

There are (currently) no results for the non-compact shrinking case, but we have
results for the Compact Einstein solitons
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Figure 67: Compact Einstein case of Sp(3)/Sp(1)3. Graph of SOL vs initial value a

This graph is used to locate the Einstein metrics described earlier in this chapter.
As the human eye can see, there is a cluster of Einstein metrics near 0 and a more
interesting point to the right of the cluster. Zooming into the region of interest on
[1,1.2],
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Figure 68: Compact Einstein case of Sp(3)/Sp(1)3. Graph of SOL vs initial value a

Remark 10.1 We estimate the point of interest at a = 1.0618. Note this is not a
true value of the Finstein metric as we cannot numerically determine when SOL = 0.
Hence we are only drawing values in a neighborhood of the Finstein metric which
should have similar features. Interestingly this point is very close to the value for
SU(3)/T?. We suspect they may lie in the same neighborhood.
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Figure 69: Cluster of figure 67
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Figure 70: Compact Einstein case of Sp(3)/Sp(1)? with 21, a = 1.0619,b = 0
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Figure 71: Compact Einstein case of Sp(3)/Sp(1)? with 23, a = 1.0619,b = 0

As expected the first graph of z; = f; closes up on the boundary point and the graph
of z3 = f5 shows a negative slope.
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