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Abstract: This dissertation explores numerical solutions for the cohomogeneity one
Einstein and Ricci soliton equations when the principal orbits are SU(3)/T 2 and
Sp(3)/Sp(1)3. We present new numerical evidence for steady, expanding solitons as
well as Einstein metrics with positive scalar curvature. In the case of steady solitons
we produced a one-parameter family of solutions. In the expanding case, we generated
a two-parameter family of solutions and in particular in the negative Einstein case
we generated a one-parameter family of solutions. In the compact Einstein case we
found numerical evidence for an infinite number of Einstein metrics.
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1 Overview 1

1 Overview

A Ricci soliton consists of a complete Riemannian metric g and a complete vector
field X on a manifold which satisfy the equation

Ric(g) +
1

2
LXg +

ε

2
g = 0

where L is the Lie derivative. If ε > 0 the soliton is called expanding, if ε < 0
shrinking, and steady if ε = 0 [1]. In particular if the middle term on the left hand
side is zero, then we have an Einstein metric. In the Einstein case, this reduces the
soliton equation to Ric(g) = − ε

2
g. This happens precisely when X is a Killing vector

field for the metric g. Thus the scalar curvature is positive (resp negative) if ε < 0
(resp ε > 0). If ε = 0, such Einstein metrics are called Ricci-flat.

Most known examples of Ricci solitons are of gradient type, that is, X = grad(u) for
some smooth function u. In this case, the Ricci soliton equation becomes

Ric(g) + Hess(u) +
ε

2
g = 0.

This dissertation presents numerical solutions in cases where the soliton is expand-
ing, or steady and for the Einstein case with ε < 0. We consider cohomogeneity one
metrics in which case, the Einstein and soliton conditions reduce to a system of non-
linear ordinary differential equations on the orbit space I with appropriate boundary
conditions to ensure we have a smooth metric. As none of the ordinary differential
equations have known analytic solutions we make use of computer algebra softwares
and known numerical schemes to provide numerical solutions.

Various analytic solutions were found in the past. For the principal orbit SO(p+1)×SO(q+1)
SO(p)×SO(q)

there are results for compact Einstein metrics [6], Ricci flat and negative Einstein met-
rics [7], and steady soliton solutions [9][19]. For U(n + 1)/U(n), both [10] and [11]
found results for the compact Einstein case as well the Ricci-flat metric with [4]. For
SO(n + 1)/SO(n), there also exists steady soliton solutions due to Bryant. Finally
for the case Sp(2)/Sp(1)U(1), only the Ricci-flat solutions were generated [13].

In 1989, Bryant and Salamon showed that the cone R+ × SU(3)
T 2 has an incomplete

Ricci-flat metrics with G2 holonomy [14]. In section 8 of Bohm’s paper [6], he showed
analytically that there are infinitely many Einstein metrics with positive scalar cur-
vature on
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Sk 5 ≤ k ≤ 9

Sk × S` 5 ≤ k + ` ≤ 9, 2 ≤ k ≤ `

Sk+1 ×Q 3 ≤ k + 1 ≤ 9− dimQ, 1 < dimQ ≤ 6

Finally there are also numerical work done in [1] and [15]. The algorithm used in this
dissertation was partly and independently developed by Jonathan Baker.

In section 2, 4, 3, and 5 we provide brief background material. In sections 6 and 7 we
lay the groundwork for the numerics and finally section 8 presents the main result.

2 The Adjoint Representation and Isotropy Rep-

resentation

Let G be a Lie group, then a manifold M is a homogenous space of G if the group G
acts smoothly and transitively on M . Let K be a closed subgroup of G, it is possible
to introduce a smooth structure on the set G/K = {gK : g ∈ G} of all left cosets of
K in G [3]. In particular we may select K to be an isotropy subgroup for the G−
action on M .

A Riemannian manifold M whose isometry group I(M) acts transitively is called a
Riemannian homogenous space. The isometry group of a Riemannian manifold
is a Lie group, this is a result of Myers-Steenrod [17].

Let G/K be a homogeneous space and π : G→ G/K defined by

π(g) = gK

be the projection map. Let k be the Lie algebra of K ⊂ G and g be the Lie algebra
of G. Let X ∈ g and exp(tX) be the corresponding one-parameter subgroup. The
differential dπe : g→ To(G/K) where o = π(e) = K can be computed in the following
way,

dπe(X) =
d

dt
(π ◦ exp(tX))

∣∣∣∣
t=0

=
d

dt
(exp(tX)K)

∣∣∣∣
t=0

.

From this we see that dπe(k) = 0, and in fact ker dπe = k [20]. Furthermore, because
dπ is onto [20], we obtain the canonical isomorphism,

g/k = g/ ker dπe ≈ To(G/K).
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If K is compact, then there is an AdK−invariant inner product on g by averaging.
So since k ⊂ g, we can define an orthogonal complement p = k⊥ ⊂ g through this
inner product. Because of the quotient vector space structure, from the previous
isomorphism, we also obtain the isomorphism,

p = k⊥ ≈ To(G/K).

It is known that the isotropy representation of K in To(G/K) is equivalent to the
adjoint representation of K in p through the commutative diagram.

p p

To(G/K) To(G/K)

dπe|p

AdG(k)

dπe|p
(dτk)o

Here τk (gK) = kgK is the left translation. The proof of this can be found e.g. in [3].

Hence we conclude that the isotropy representation of G/K can be computed by
computing the adjoint representation of K in p where p = k⊥ denotes the complement
of the Lie algebra of K in the orthogonal decomposition g = k⊕ k⊥ = k⊕ p.

3 Cohomogeneity One Manifold

Let G be a compact Lie group acting smoothly on the n−dimensional manifold M
such that the orbit space M/G is connected.

Then by a theorem from [8], there exists a maximum orbit type G/K for G on M
(i.e., K is conjugate to a subgroup of each isotropy). The union of orbits of type G/K
is open and dense in M and its image in M/G is connected.

The maximum orbit type for orbits in M guaranteed by the above theorem is called
the principal orbit type and orbits of this type are called principal orbits. Let
P ' G/K be a principal orbit and Q ' G/H be any other orbit. Then K is conjugate
to a subgroup of H, and so we may assume that K ⊂ H. Then there is an equivariant
map P → Q is a fiber bundle projection G/H → G/K with fiber K/H. If dimP >
dimQ (i.e., dimK/H > 0), then Q is called a singular orbit [8].

A cohomogeneity one manifold M is a Riemannian manifold acted on by a compact
Lie group G with orbit space of dimension one. Here in this dissertation, we will
restrict our discussion to the case where the orbit space is either a closed interval or
a half open interval.
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Now let (M, g) be a cohomogeneity one manifold of dimension n + 1. Let p ∈ M be
a point in a principal orbit and P = G/Gp be the corresponding principal orbit with
isotropy subgroup Gp. Similarly we select singular point q ∈ M and let Q = G/Gq

be the corresponding singular orbit with isotropy subgroup Gq. Define the projection
map

π : M →M/G = I.

Let I = [0, a) and define Î = int(I). The preimage π−1(Î) consists of principal
orbits and π−1({0}) is the singular orbit Q. Select a geodesic γ : [0,∞) → M
parametrized by arclength starting from the point q intersecting all principal orbits
orthogonally1. All points on this geodesic in the principal orbits then have the same
isotropy subgroup. Further, there is also a diffeomorphism

φ : Î ×G/Gγ(t) →M0 ⊂M

φ(t, gGγ(t)) = gγ(t).
(1)

Here M0 denotes the union of principal orbits in M , Î = (0,∞), and Gγ(t) is the
isotropy subgroup of the points γ(t) for t > 0. Then Pt = φ(t, G/Gγ(t)) = G/Gγ(t) is
the principal orbit passing through the point γ(t).

Once again we take q from one of its singular orbit G/H where H = Gq and consider
its tangent space Tq(G/H) ⊂ Tq(M) and its normal space Nq(G/H) ⊂ Tq(M). In its
isotropy subgroup H, select h ∈ H and consider its derivative dh : TqM → TqM .

Now since dh|Tq(G/H) : Tq(G/H) → Tq(G/H) and dh acts by isometry, we have

dh|Nq(G/H) : Nq(G/H)→ Nq(G/H) by invariance (as Nq(G/H) is the orthogonal com-

plement to Tq(G/H)). On each normal space Nq(G/H), there exists Sdr ⊂ Nq(G/H)
with a positive radius r where dh maps Sdr into Sdr by the isometry of dh. Now let us
select and fix a non-zero element v ∈ Nq(G/H). Set

L = {dh(v) |h ∈ H},

to be the image set of all derivatives of h applied to v. We claim L = Sdr . First we
have the inclusion L ⊂ Sdr , but now suppose there is an element w ∈ Sdr − L, then
the projection π : M → M/G = I will map w into the orbit space. By a proposition
from [8], which asserts that there is a one-to-one correspondence between the orbit
space M/G and orbit space Nq(G/H)/H, the projection map will take w into a point
different from π(v).

But since M is a cohomogeneity one manifold, the orbit space is one-dimensional and
all other vectors in the radial geodesic defined from q to v all mapped into a different
point into the orbit space as each point belongs to a principal orbit. The element w

1A consequence of Gauss’s Lemma, but we use the normal exponential map.
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is at a fixed radius r from the point q, the same r of v by definition. This means that
the point w cannot exist, hence L = Sdr ' H/K and so H acts transitively on Sdr .

4 Cohomogeneity One Metrics

In this section we will describe cohomogeneity one Riemannian metrics on the space
M . Using (1) and its constructions for this entire section, consider the metric g on
Î ×G/K, that is the pullback of g through the map φ.

φ∗(g) = dt2 + g(t) (2)

Here g(t) as described in the introduction are the G− invariant metrics on the hyper-
surfaces G/Kγ(t).

Let p ' T (G/Gγ(t)) be the tangent space to γ(t) of the hypersurface G/K, with

t ∈ Î and the adjoint representation of K in p. As discussed in section (2), if K is
compact we may first select an AdG(K)−invariant inner product Q on p. Then we
may decompose p into Q−orthogonal real AdG(K)−irreducible subspaces,

p = p1 ⊕ p2 ⊕ · · · ⊕ pr. (3)

such that the first k− direct summands p1⊕· · ·⊕pk ' TK(H/K) and pk+1⊕· · ·⊕pr '
TH(G/H).

Lemma 4.1 If each of the pis are pairwise inequivalent AdG(K) representations, then
Schur’s lemma imply that 〈, 〉|pi = g2iQ|pi for some functions g2i to be determined.

Proof:

The metric can be written as g(X, Y ) = 〈TX, Y 〉 |p for some self-adjoint linear oper-
ator T : p → p and π ◦ T : pi → pj where π : p → pj is the projection map of p onto
the jth component of p.

The existence of T follows from the fact that if (ei) is an orthonormal basis for
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background metric 〈〉 of p, then that means

g(X, Y ) = g

(
X,
∑
i

〈Y, ei〉 |pei

)
=
∑
i

g(X, ei) 〈Y, ei〉 |p

=
∑
i

〈Y, ei〉 |pg(X, ei)

=

〈
Y,
∑
i

g(X, ei)ei

〉
|p

= 〈Y, TX〉 |p.

This map is linear and self adjoint because 〈TX, Y 〉 |p = g(X, Y ) = g(Y,X) =
〈TY,X〉 |p and is K−invariant because

〈T (kX), Y 〉 |p = g(kX, Y )

= g(k−1kX, k−1Y )

= g(X, k−1Y )

=
〈
TX, k−1Y

〉
|p

=
〈
kTX, kk−1Y

〉
|p

= 〈kTX, Y 〉 |p.

The linear map T is self-adjoint, therefore it has real eigenvalues λ. The map (π ◦
T − λI)|pi : pi → pi is also self-adjoint and Ker(π ◦ T − λI) 6= 0 is not trivial as λ
is an eigenvalue and is an invariant subspace of pi, therefore Schur’s lemma implies
that the non-injective map on pi is Ker(π ◦ T − λI) = pi meaning π ◦ T − λI is the
zero map. In other words, π ◦ T = λI. On the other hand if the kernel is trivial for a
map π ◦ S : pi → pj, then this means S ◦ π is an linear isomorphism, but this cannot
happens as pis are inequivalent.

�

In this dissertation, we will consider two cases where r = 3 and the action of AdG(K)
on the inequivalent pi, so that such a decomposition is unique up to permutation and
the summands pi are orthogonal with respect to the background metric/inner product
Q, that is,

g(t)|pi ∼ 〈, 〉t = g2i (t)h
∣∣
p1
⊥ g2i (t)h

∣∣
p2
⊥ · · · ⊥ g2i (t)h

∣∣
pr.

(4)
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5 Ricci Soliton Equation Reduction

This part will borrow notations from [12]. Denote by ∇̂ and R̂ the Levi-Civitia
connection and curvature tensor of ĝ respectively for our cohomogeneity Riemannian
manifold (M̂, ĝ).

Let N = dφ
(
∂
∂t

)
. Then it is a unit normal field for the hypersurface family except at

t = 0, and let L(t) be the shape operator of the hypersurface Pt = φ(P ×{t}) defined
by

L(t)X = ∇̂XN

for any X ∈ TPt. We consider the shape operator as a one parameter family of en-
domorphisms on TP through the diffeomorphism φ described in the previous section.
Then using the fact the bracket between [N,X] is 0 for X ∈ TPt (because we are on
a product manifold on M0) we get,

∂

∂t
gt(X, Y ) = 2gt(L(t)X, Y ) = 2(g ◦ L)(X, Y ).

Now using the Riccati equation for L(t) and the Gauss-Codazzi equations for the
hypersurfaces Pt, we obtain for X, Y ∈ TPt and an orthonormal basis {ei} of ĝ,

R̂ic(X, Y ) = Ric(X, Y )− tr(L)g(L(X), Y )− g
(
∂L

∂t
(X), Y

)
R̂ic(X,N) =

∑
i

〈(∇eiL)X, ei〉 − 〈(∇eiL)X)ei, ei〉

= −tr(X¬δ∇L)

R̂ic(N,N) = −tr

(
∂L(t)

∂t

)
− tr

(
L(t)2

)
Here δ∇ = 〈(∇eiL)X, ei〉 and ¬ is the interior product.

Let r(t) denote the Ricci endomorphisms of TP of the metrics gt, then g(rt(X), Y ) =
Ric(gt)(X, Y ). We do the same for ĝ and denote r̂(t) for the Ricci endomorphisms for
ĝ. The gradient Ricci soliton equation on M0 now reduces to the system

Proposition 5.1
L′ = u′L− tr(L)L+ r − εI (5)

tr(L′) = u′′ − tr(L2)− ε (6)

−tr(X¬δ∇L) = 0 (7)
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Remark 5.1 Equations (5) refer to the components of the equation in the tangential
direction to the hypersurfaces and (6) refer to the components in the ∂

∂t
direction.

Finally (7) represents the equation in mixed direction.

In the case where ĝ is an Einstein metric we have

Proposition 5.2
g′ = 2gL (8)

L′ = −tr(L)L+ r − εI (9)

tr(L′) = −tr(L2)− ε (10)

−tr(X¬δ∇L) = 0 (11)

Remark 5.2 If we take the trace of (9) and use (10), we obtain the conservation law
equation

s− tr(L)2 + tr(L2) = (n− 1)ε. (12)

Here s(t) = tr(r(t)) denotes the scalar curvature of g(t).

Remark 5.3 Note that (8) implies L = 1
2
g−1g′.

Finally if there is a special orbit of dimension strictly smaller than n, and furthermore
if (9) holds for a sufficiently smooth (C3) metric and potential, then (6) also holds. If
the well-known conservation law

ü+ (−u̇+ tr(L))u̇− εu = C (13)

holds for some fixed constant C, then (10) also holds. Therefore we can use (13) in
place of (10)
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6 Isotropy Representation of SU(3)/T 2

This section concerns with the triplet (G,H,K) = (SU(3), S(U(2)U(1)), T 2) where
S(U(2)U(1))/T 2 ' S2 and SU(3)/S(U(2)U(1)) ' CP 2

Let us denote the Lie group of special matrices (unitary matrices with determinant
1) as

G = SU(n) = {A ∈ Un(C) : A∗A = AA∗ = I and det(A) = 1}.

Here A∗ = A−1 denotes the the adjoint of A.

Let A(t) ∈ SU(n) and suppose A(0) = I and B = A′(0). Differentiating A∗A =
AA∗ = I and evaluating at t = 0 yields B + B∗ = 0. In other words this is the set
su(n) of traceless skew-Hermitian matrices. The space su(n) has dimension n2 − 1.

Let g = su(n) denote the Lie algebra of SU(n),

su(n) = {B ∈ gl(n,C) : B = −B∗}.

The objects B have the form

B =


iθ1 W12 . . . W1n

−W 12 iθ2 . . . W2n
...

...
. . .

...
−W 1n −W 2n . . . iθn


In the above Wjk are complex numbers.

Let us choose the background metric for su(n) to be Q(X, Y ) = −1
2
tr(XY ) with

X, Y ∈ k, then we see that su(n) is spanned by the orthonormal basis


0 0 0 0

0
. . . Hij 0

0 −H ij 0 0
0 0 0 0


1≤i<j≤n

,


0 0 0 0
0 −iθj 0 0
0 0 iθk 0
0 0 0 0


1≤k<j≤n

:
∑

θi = 0,

Hij ∈
{(

0 1
−1 0

)
,

(
0 i
i 0

)}
In particular for n = 3, we select



6 Isotropy Representation of SU(3)/T 2 10

 0 1 0
−1 0 0
0 0 0

 ,

0 i 0
i 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 i
0 0 0
i 0 0

 ,

0 0 0
0 0 1
0 −1 0

 ,

0 0 0
0 0 i
0 i 0


= (X1, X2, X3, X4, X5, X6)

to be our orthonormal basis for p = k⊥

Let T 2 =


eiθ1 0 0

0 eiθ2 0
0 0 eiθ3

 : θ1 + θ2 + θ3 = 0

 be the maximal torus of SU(3).

This is a torus because of the isomophism

diag(eiθ1 , eiθ2 , . . . , eiθn)→ diag(ei(θ1), ei(θ2), . . . , ei(θn−1))

that maps T onto the maximal torus U(n− 1).

The Lie algebra of T is

t =


iθ1 0 0

0 iθ2 0
0 0 iθ3

 : θ1 + θ2 + θ3 = 0

 .

Its isotropy representation is the map AdG(K) : k⊥ → k⊥

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

Xi

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


Now we calculate for i = 1 . . . 6.

tX1t
−1 =

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 1 0
−1 0 0
0 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 eiθ1e−iθ2 0
−eiθ2e−iθ1 0 0

0 0 0


=

 0 ei(θ1−θ2) 0

−ei(θ1−θ2) 0 0
0 0 0


= cos(θ1 − θ2)X1 + sin(θ1 − θ2)X2
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tX2t
−1 =

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

0 i 0
i 0 0
0 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 eiθ1e−iθ2 0
−eiθ2e−iθ1 0 0

0 0 0


=

 0 iei(θ1−θ2) 0

iei(θ1−θ2) 0 0
0 0 0


= − sin(θ1 − θ2)X1 + cos(θ1 − θ2)X2

tX3t
−1 =

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 0 1
0 0 0
−1 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 ei(θ1−θ3) 0

−ei(θ1−θ3) 0 0
0 0 0


= cos(θ1 − θ3)X3 + sin(θ1 − θ3)X4

tX4t
−1 =

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

0 0 i
0 0 0
i 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 iei(θ1−θ3) 0

iei(θ1−θ3) 0 0
0 0 0


= − sin(θ1 − θ3)X3 + cos(θ1 − θ3)X4

tX5t
−1 =

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

0 0 0
0 0 1
0 −1 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

0 0 0
0 0 ei(θ2−θ3)

0 −ei(θ2−θ3) 0


= cos(θ2 − θ3)X5 + sin(θ2 − θ3)X6
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tX6t
−1 =

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

0 0 0
0 0 i
0 i 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

0 0 0
0 0 iei(θ2−θ3)

0 iei(θ2−θ3) 0


= − sin(θ2 − θ3)X5 + cos(θ2 − θ3)X6

tX1t
−1 = cos(θ1 − θ2)X1 + sin(θ1 − θ2))X2

tX2t
−1 = − sin(θ1 − θ2)X1 + cos(θ1 − θ2)X2

tX3t
−1 = cos(θ1 − θ3)X3 + sin(θ1 − θ3)X4

tX4t
−1 = − sin(θ1 − θ3)X3 + cos(θ1 − θ3)X4

tX5t
−1 = cos(θ2 − θ3)X5 + sin(θ2 − θ3)X6

tX6t
−1 = − sin(θ2 − θ3)X5 + cos(θ2 − θ3)X6

The complement k⊥ is decomposed into three irreducible pieces k⊥i for i = 1 . . . 3 and
each component pi

⊥ is a two-dimensional vector subspace that can be denoted by
pi = span{Xi, Xi+1} ⊂ p for i = 2i− 1 . . . 2i and p = p1 ⊕ p2 ⊕ p3

Therefore the isotropic representation is given by:
cos(θ1 − θ2) sin(θ1 − θ2) 0 0 0 0
− sin(θ1 − θ2) (cos(θ1 − θ2) 0 0 0 0

0 0 cos(θ1 − θ3) sin(θ1 − θ3) 0 0
0 0 − sin(θ1 − θ3) cos(θ1 − θ3) 0 0
0 0 0 0 cos(θ2 − θ3) sin(θ2 − θ3)
0 0 0 0 − sin(θ2 − θ3) cos(θ2 − θ3)

 ,

and its smooth metric g is a 6 × 6 matrix with 2 × 2 block entries with numbers
ai ∈ R>0.

g(X, Y ) = Y t

a1I2 0 0
0 a2I2 0
0 0 a3I2

X.

In section 8, these values ai shall be set to functions ai = g2i (t) to be evaluated.

6.1 Ricci Curvature of SU(3)
T 2

We use the following formulaes
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Killing form
B(X, Y )SU(n) = 2ntr(XY ) (14)

Ricci Curvature Tensor [5] (page 185)

r(X,X) = −1

2

∑
j

‖ [X,Xj] ‖2 −
1

2
B(X,X) +

1

4

∑
ij

([Xi, Xj]p, X)2 (15)

Here [̇, ]̇ is the bracket of the Lie algebra and B is the Killing Form and (Xi) is
an orthonormal basis with respect to the G−invariant metric g.

We calculate r(X1, X1).

−1

2
B

(
X1√
a1
,
X1√
a1

)
= − 1

2a1
6tr(X2

1 ) = − 3

a1
(−2) =

6

a1

ai=4bi=
3

2b1
.

Now

−1

2

∑
j

‖ [X1, Xj] ‖2 = −1

2

(
2a3
a1a2

+
2a2
a1a3

)
ai=4bi= −1

4

(
b3
b1b2

+
b2
b1b3

)
.

Note
[
X3√
a2
, X5√

a3

]
= − 1√

a2a3
X1 and by anti-commutativity and the fact that X4 ∈ p2,

we introduce a factor of 4 to account for [X3, X5], [X4, X5], [X3, X6], and [X4, X6]

4

([
X3√
a2
,
X5√
a3

]
p

,
X1√
a1

)2

= 4

(
− 1
√
a1a2a3

g (X1, X1)

)2

= 4
1

a1a2a3
a21 = 4

a1
a2a3

ai=4bi=
b1
b2b3

So the sum
1

4

∑
ij

([Xi, Xj]p, X1/
√
a1)

2 =
1

4

b1
b2b3

Therefore in accordance with section 8, we get

r(X1, X1) =
3

2b1
− 1

4

(
b3
b1b2

+
b2
b1b3

)
+

1

4

b1
b2b3

Likewise the calculations for r(X3, X3) and r(X5, X5) follow

r(X3, X3) =
3

2b2
− 1

4

(
b1
b2b3

+
b3
b1b2

)
+

1

4

b2
b1b3
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r(X5, X5) =
3

2b3
− 1

4

(
b1
b2b3

+
b2
b1b3

)
+

1

4

b3
b1b2

Remark 6.1 Taking the trace of the above Ricci curvature tensor, we obtain the

scalar curvature SSU(3)/T 2 = 3
(

1
b1

+ 1
b2

+ 1
b3

)
− 1

2

(
b3
b1b2

+ b2
b1b3

+ b3
b2b3

)
with respect to

the background metric V (X, Y ) = −2tr(XY ).
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7 Isotropy Representation of Sp(3)
Sp(1)×Sp(1)×Sp(1)

This section concerns with the triplet (G,H,K) = (Sp(3), Sp(2) × Sp(1), Sp(1) ×
Sp(1)× Sp(1)) where Sp(2)×Sp(1)

Sp(1)×Sp(1)×Sp(1) ' S4 and Sp(3)
Sp(2)×Sp(1) ' HP 2

Let us denote the Lie group of n× n unitary matrices by

U(n) = {A ∈ GLn(C) : AA∗ = I}.

Here we identify the adjoint as the complex transpose A∗ = A
t

of A.

Let us denote the symplectic Lie group matrices with quaternion entries as

Sp(n) = {A ∈ Gln(H) : AA∗ = I}.

The conjugate of the quaternion q = t+ ix+yj+kz is q = t− ix−yj− iz. Sometimes
it is more convenient to use the equivalent definition

Sp(n) = {A ∈ U(2n) : AtJ = JA−1},

where J = diag(E, . . . , E) and E =

(
0 −1
1 0

)
.

The matrices in this space take the form

A =



a11 b11 . . . . . . a1n −b1n
−b11 a11 . . . . . . −b1n a1n

...
...

. . . . . .
...

...
...

...
. . . . . .

...
...

an1 bn1 . . . . . . ann −bnn
−bn1 an1 . . . . . . −bnn ann


Here each ajk = tjk + ixjk and bjk = yjk + izjk.

Let q = t + ix + yj + kz ∈ H be a quaternion, which is identified with the point
(t, x, y, z) ∈ R4 or the point (t + ix, y + iz) ∈ C2. There is an isomorphism between
the quaternions and certain 2× 2 matrices given by

φ : q ↔
(

t+ ix y + iz

−(y + iz) t+ ix

)
=

(
t+ ix y + iz
−(y − iz) t− ix

)
∈M2(C)

In terms of real matrices we have,
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ψ : q ↔


t x y z
−x t −z y
−y z t −x
−z −y x t

 ∈M4(R).

Denote sp(3) by the Lie algebra of Sp(3). Following the same procedures for the
previous calculations in SU(3)/T 2 we obtain

sp(3) = {B ∈ g(6;C) : B +B∗ = 0 and BtJ + JB = 0}

The objects B have the form

B =


R11 W12 . . . W1n

−W ∗
12 R22 . . . W2n

...
...

. . .
...

−W ∗
1n −W2n . . . Rnn


HereRjj =

(
iuj −vj
vj −iuj

)
andWjk =

(
ajk bjk
−bjk ajk

)
with entries uj ∈ R and ajk, bjk, vj ∈

C. The Rjj are obtained from the skew-Hermitian condition B = −B∗ and Wjk are
obtained from BtJ + JB = 0.

If one selects the background inner product Q(X, Y ) = −2tr(XY ) where X, Y ∈ k,
then we have the following orthonormal basis for sp(n) from decomposing B:

1

2


0 0 . . . 0

0
. . . 0 0

0 . . . Ejj 0
0 . . . 0 0


1≤j≤n

,
1

2
√

2


0 0 0 0

0
. . . Hij 0

0 −H∗ij
. . . 0

0 0 0 0


1≤i<j≤n

:

Eii ∈
{(

i 0
0 −i

)
,

(
0 −1
1 0

)
,

(
0 i
i 0

)}
,

Hij ∈
{(

i 0
0 −i

)
,

(
1 0
0 1

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

)}
So in particular for the 3× 3 case,

B =

 R11 W12 W13

−W ∗
12 R22 W23

−W ∗
13 −W ∗

23 R33
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The Lie algebra of K = Sp(1)× Sp(1)× Sp(1)) is the subalgebra

k =


sp(1) 0 0

0 sp(1) 0
0 0 sp(1)


So by direct sum decomposition, we obtain

p = k⊥ =


 0 W12 W13

−W ∗
12 0 W21

−W ∗
13 −W ∗

21 0


The adjoint representation of Sp(1)× Sp(1)× Sp(1) = K in k⊥ is given by the map

φX : X → kXk−1

for X ∈ k⊥.

We calculate the isotropy representation of the compact connected Lie group K by
taking advantage of the fact that the representation is uniquely determined by its
restriction to a maximal torus. This is a consequence of corollary 2.8 from [18]. We
therefore consider,

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

Xi

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3

 .

Here eiθα are the unit complex numbers lying in Sp(1). To make the calculation
simpler, we shall identify each of the Hij by its quaternion form and we will drop
the constant 1

2
√
2

for the remainder of the calculation and we will remember their
presences in future calculations. For example, let

X1 =

 0 H12 0
−H21 0 0

0 0 0

with H12 =

(
1 0
0 1

)
↔ q = 1
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eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 H12 0
−H21 0 0

0 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 eiθ1e−iθ2 0
−eiθ2e−iθ1 0 0

0 0 0


=

 0 ei(θ1−θ2) 0

−ei(θ1−θ2) 0 0
0 0 0


= cos(θ1 − θ2)X1 + sin(θ1 − θ2)X2

X2 =

 0 H12 0
−H21 0 0

0 0 0

with H12 =

(
i 0
0 −i

)
↔ q = i

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 H12 0
−H21 0 0

0 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 eiθ1ie−iθ2 0
eiθ2ie−iθ1 0 0

0 0 0


=

 0 ei(θ1−θ2)i 0

ei(θ1−θ2)i 0 0
0 0 0


= − sin(θ1 − θ2)X1 + cos(θ1 − θ2)X2

X3 =

 0 H12 0
−H21 0 0

0 0 0

with H12 =

(
0 i
i 0

)
↔ q = k

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 H12 0
−H21 0 0

0 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 eiθ1ke−iθ2 0
eiθ2ke−iθ1 0 0

0 0 0


= ei(θ1+θ2)X3

= cos(θ1 + θ2)X3 − sin(θ1 + θ2)X4
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X4 =

 0 H12 0
−H21 0 0

0 0 0

 with H12 =

(
0 1
−1 0

)
↔ q = j

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 H12 0
−H21 0 0

0 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 eiθ1je−iθ2 0
eiθ2je−iθ1 0 0

0 0 0


= ei(θ1+θ2)X3

= cos(θ1 + θ2)X4 + sin(θ1 + θ2)X3

X5 =

 0 0 H13

0 0 0
−H31 0 0

 with H13 =

(
i 0
0 −i

)
↔ q = i

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 0 H13

0 0 0
−H31 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 0 ei(θ1−θ3)i
0 0 0

ei(θ1−θ3)i 0 0


= cos(θ1 − θ3)

 0 0 i
0 0 0
−i 0 0

+ sin(θ1 − θ3)

0 0 −1
0 0 0
1 0 0


= cos(θ1 − θ3)X5 − sin(θ1 − θ3)X6

X6 =

 0 0 H13

0 0 0
−H31 0 0

 with H13 =

(
1 0
0 1

)
↔ q = 1
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eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 0 H13

0 0 0
−H31 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 0 ei(θ1−θ3)

0 0 0

−ei(θ1−θ3) 0 0


= cos(θ1 − θ3)

 0 0 1
0 0 0
−1 0 0

+ sin(θ1 − θ3)

 0 0 i
0 0 0
−i 0 0


= cos(θ1 − θ3)X6 + sin(θ1 − θ3)X5

X7 =

 0 0 H13

0 0 0
−H31 0 0

 with H13 =

(
0 i
i 0

)
↔ q = k

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 0 H13

0 0 0
−H31 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 0 eiθ1ke−iθ3

0 0 0
eiθ3ke−iθ1 0 0


= cos(θ1 + θ3)

0 0 k
0 0 0
k 0 0

− sin(θ1 + θ3)

0 0 j
0 0 0
j 0 0


= cos(θ1 + θ3)X7 − sin(θ1 + θ3)X8

X8 =

 0 0 H13

0 0 0
−H31 0 0

 with H13 =

(
0 1
1 0

)
↔ q = j

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

 0 0 H13

0 0 0
−H31 0 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

 0 0 eiθ1je−iθ3

0 0 0
eiθ3je−iθ1 0 0


= cos(θ1 + θ3)

0 0 j
0 0 0
j 0 0

+ sin(θ1 + θ3)

0 0 k
0 0 0
k 0 0


= sin(θ1 + θ3)X7 + cos(θ1 + θ3)X8
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X9 =

0 0 0
0 0 H23

0 −H32 0

 with H23 =

(
i 0
0 −i

)
↔ q = i

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

0 0 0
0 0 H23

0 −H32 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

0 0 0
0 0 ei(θ2−θ3)i

0 ei(θ2−θ3)i 0


= cos(θ2 − θ3)X9 − sin(θ2 − θ3)X10

X10 =

0 0 0
0 0 H23

0 −H32 0

 with H23 =

(
1 0
0 1

)
↔ q = 1

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

0 0 0
0 0 H23

0 −H32 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

0 0 0
0 0 ei(θ2−θ3)

0 −ei(θ2−θ3) 0


= sin(θ2 − θ3)X9 + cos(θ2 − θ3)X10

X11 =

0 0 0
0 0 H23

0 −H32 0

 with H23 =

(
0 i
i 0

)
↔ q = k

eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

0 0 0
0 0 H23

0 −H32 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

0 0 0
0 0 ei(θ2+θ3)k
0 ei(θ2+θ3)k 0


= cos(θ2 + θ3)X11 − sin(θ2 + θ3)X12

X12 =

0 0 0
0 0 H23

0 −H32 0

 with H23 =

(
0 1
−1 0

)
↔ q = j
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eiθ1 0 0
0 eiθ2 0
0 0 eiθ3

0 0 0
0 0 H23

0 −H32 0

e−iθ1 0 0
0 e−iθ2 0
0 0 e−iθ3


=

0 0 0
0 0 ei(θ2+θ3)j
0 ei(θ2+θ3)j 0


= cos(θ2 + θ3)X11 + sin(θ2 + θ3)X12

kX1 = cos(θ1 − θ2)X1 + sin(θ1 − θ2)X2

kX2 = − sin(θ1 − θ2)X1 + cos(θ1 − θ2)X2

kX3 = cos(θ1 + θ2)X3 − sin(θ1 + θ2)X4

kX4 = sin(θ1 + θ2)X3 + cos(θ1 + θ2)X4

kX5 = cos(θ1 − θ3)X5 − sin(θ1 − θ3)X6

kX6 = sin(θ1 − θ3)X5 + cos(θ1 − θ3)X6

kX7 = cos(θ1 + θ3)X7 − sin(θ1 + θ3)X8

kX8 = sin(θ1 + θ3)X7 + cos(θ1 + θ3)X8

kX9 = cos(θ2 − θ3)X9 − sin(θ2 − θ3)X10

kX10 = sin(θ2 − θ3)X9 + cos(θ2 − θ3)X10

kX11 = cos(θ2 + θ3)X11 − sin(θ2 + θ3)X12

kX12 = sin(θ2 + θ3)X11 + cos(θ2 + θ3)X12

Thus the isotropy representation is given by the 12× 12 matrixG11 0 0
0 G22 0
0 0 G33


with block sub-matrices Gjj

G11 =


cos(θ1 − θ2) sin(θ1 − θ2) 0 0
sin(θ1 − θ2) cos(θ1 − θ2) 0 0

0 0 cos(θ1 + θ2) − sin(θ1 + θ2)
0 0 sin(θ1 + θ2) cos(θ1 + θ2)



G22 =


cos(θ1 − θ3) − sin(θ1 − θ3) 0 0
sin(θ1 − θ3) cos(θ1 − θ3) 0 0

0 0 cos(θ1 + θ3) − sin(θ1 + θ3)
0 0 sin(θ1 + θ3) cos(θ1 + θ3)
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G33 =


cos(θ2 − θ3) − sin(θ2 − θ3) 0 0
sin(θ2 − θ3) cos(θ2 − θ3) 0 0

0 0 cos(θ2 + θ3) − sin(θ2 + θ3)
0 0 sin(θ2 + θ3) cos(θ2 + θ3)



7.1 Ricci Curvature of Sp(3)/Sp(1)3

We use the following formula

Killing form
B(X, Y )Sp(n) = 2(n+ 1)tr(XY ) (16)

Ricci Curvature Tensor [5]

r(X,X) = −1

2

∑
j

‖ [X,Xj]p ‖
2 − 1

2
B(X,X) +

1

4

∑
ij

([Xi, Xj]p, X)2 (17)

Here [̇, ]̇ is the bracket of the Lie algebra and B is the Killing Form and (Xi) are
an orthonormal basis with respect to the metric g.

Let

Yj ∈
{
X1√
a1
,
X2√
a1
,
X3√
a1
,
X4√
a1
,
X5√
a2
,
X6√
a2
,
X7√
a2
,
X8√
a2
,
X9√
a3
,
X10√
a3
,
X11√
a3
,
X12√
a3

}

Now

−1

2

∑
j

∥∥∥∥∥
[
X1√
a1
, Yj

]
p

∥∥∥∥∥
2

= −1

2

(
4

a3
222a1a2

+ 4
a2

222a1a3

)
ai=(1/2)bi

= −1

2

(
b3
b1b2

+
b2
b1b3

)
.

−1

2

∑
j

∥∥∥∥∥
[
X5√
a2
, Yj

]
p

∥∥∥∥∥
2

= −1

2

(
4

a3
222a1a2

+ 4
a1

222a2a3

)
ai=(1/2)bi

= −1

2

(
b3
b1b2

+
b1
b2b3

)
.

−1

2

∑
j

∥∥∥∥∥
[
X9√
a3
, Yj

]
p

∥∥∥∥∥
2

= −1

2

(
4

a2
222a1a3

+ 4
a1

222a2a3

)
ai=(1/2)bi

= −1

2

(
b2
b1b3

+
b1
b2b3

)
.
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−1

2
B

(
X1√
a1
,
X1√
a1

)
= −1

2

(
2(3 + 1)tr

(
X2

1

a1

))
= −1

2

(
2

4

a1

(
−1

2

))
=

2

a1

ai=(1/2)bi
=

4

b1

−1

2
B

(
X5√
a2
,
X5√
a2

)
= −1

2

(
2(3 + 1)tr

(
X2

1

a2

))
= −1

2

(
2

4

a2

(
−1

2

))
=

2

a2

ai=(1/2)bi
=

4

b2

−1

2
B

(
X9√
a3
,
X9√
a3

)
= −1

2

(
2(3 + 1)tr

(
X2

9

a3

))
= −1

2

(
2

4

a3

(
−1

2

))
=

2

a3

ai=(1/2)bi
=

4

b3

Similar to subsection 6.1, we calculate([
X5√
a2
,
X9√
a3

]
p

,
X1√
a1

)2

=

(
− 1
√
a1a2a3

g

(
X1

2
√

2
, X1

))2

=

(
1

a1a2a3222
a21

)
=

(
a1

8a2a3

)
ai=(1/2)bi

=
1

4

b1
b2b3

So the sum
1

4

∑
ij

([Xi, Xj]p, X1/
√
a1)

2 =
1

4
8

(
1

4

b1
b2b3

)

r

(
X1√
a1
,
X1√
a1

)
= −1

2

(
b3
b1b2

+
b2
b1b3

)
+

4

b1
+

1

2

b1
b2b3

r

(
X5√
a2
,
X5√
a2

)
= −1

2

(
b3
b1b2

+
b1
b2b3

)
+

4

b2
+

1

2

b2
b1b3

r

(
X9√
a3
,
X9√
a3

)
= −1

2

(
b2
b1b3

+
b1
b2b3

)
+

4

b3
+

1

2

b3
b1b2

Remark 7.1 Taking the trace of the above Ricci curvature tensor, we obtain the

scalar curvature SSp(3)/Sp(1)3 = 16
(

1
b1

+ 1
b2

+ 1
b3

)
− 2

(
b3
b1b2

+ b2
b1b3

+ b3
b2b3

)
with respect

to the background metric V (X, Y ) = −tr(XY ).
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8 Numerics

We begin with the reduced Ricci Soliton equation. The Ricci Soliton equation for
SU(3)/T 2 with the metric ĝ = dt2 + f1(t)

2h|p1 + f2(t)
2Q|p2 + f3(t)

2Q|p3 reduces to

−f ′′1
f1

+
f ′21
f 2
1

+ u′
f ′1
f1
− 2

(
f ′1
f1

+
f ′2
f2

+
f ′3
f3

)
f ′1
f1

+
3

2f 2
1

+
1

4

(
f 2
1

f 2
2 f

2
3

− f 2
2

f 2
1 f

2
3

− f 2
3

f 2
1 f

2
2

)
+
ε

2
= 0.

−f ′′2
f2

+
f ′22
f 2
2

+ u′
f ′2
f2
− 2

(
f ′1
f1

+
f ′2
f2

+
f ′3
f3

)
f ′2
f2

+
3

2f 2
2

+
1

4

(
f 2
1

f 2
1 f

2
3

− f 2
1

f 2
2 f

2
3

− f 2
3

f 2
1 f

2
2

)
+
ε

2
= 0.

−f ′′3
f3

+
f ′23
f 2
3

+ u′
f ′3
f3
− 2

(
f ′1
f1

+
f ′2
f2

+
f ′3
f3

)
f ′3
f3

+
3

2f 2
3

+
1

4

(
f 2
3

f 2
1 f

2
2

− f 2
2

f 2
1 f

2
3

− f 2
1

f 2
2 f

2
3

)
+
ε

2
= 0.

u′′ − u′2 + 2u′
(
f ′1
f1

+
f ′2
f2

+
f ′3
f3

)
− εu = C.

To run the Runge Kutta algorithm, we put the above in normal form by setting

z1 = f1 z2 = f ′1
z3 = f2 z4 = f ′2
z5 = f3 z5 = f ′3
z7 = u z8 = u′

.

Then the equations become the first order system,

z′1 = z2

z′2 =
z22
z1

+ z8z2 − 2z2

(
z2
z1

+
z4
z3

+
z6
z5

)
+

3

2z1
+
z1
4

(
z21
z23z

2
5

− z23
z21z

2
5

− z25
z21z

2
3

)
+
ε

2
z1.

z′3 = z4

z′4 =
z24
z3

+ z8z4 − 2z4

(
z2
z1

+
z4
z3

+
z6
z5

)
+

3

2z3
+
z3
4

(
z23
z21z

2
5

− z21
z23z

2
5

− z25
z21z

2
3

)
+
ε

2
z3.

z′5 = z6

z′6 =
z26
z5

+ z8z6 − 2z6

(
z2
z1

+
z4
z3

+
z6
z5

)
+

3

2z5
+
z5
4

(
z25
z21z

2
3

− z23
z21z

2
5

− z21
z23z

2
5

)
+
ε

2
z5.

z′7 = z8

z′8 = C + z28 − 2z8

(
z2
z1

+
z4
z3

+
z6
z5

)
+ εz7

(18)

Remark 8.1 Note that we have chosen the background metric V (x, y) = −2tr(XY )
for the above system 18

Similarly the system for Sp(3)/Sp(1)3 is,
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z′1 = z2

z′2 =
z22
z1

+ z8z2 − 4z2

(
z2
z1

+
z4
z3

+
z6
z5

)
+

4

z1
+
z1
2

(
z21
z23z

2
5

− z23
z21z

2
5

− z25
z21z

2
3

)
+
ε

2
z1.

z′3 = z4

z′4 =
z24
z3

+ z8z4 − 4z4

(
z2
z1

+
z4
z3

+
z6
z5

)
+

4

z3
+
z3
2

(
z23
z21z

2
5

− z21
z23z

2
5

− z25
z21z

2
3

)
+
ε

2
z3.

z′5 = z6

z′6 =
z26
z5

+ z8z6 − 4z6

(
z2
z1

+
z4
z3

+
z6
z5

)
+

4

z5
+
z5
2

(
z25
z21z

2
3

− z23
z21z

2
5

− z21
z23z

2
5

)
+
ε

2
z5.

z′7 = z8

z′8 = C + z28 − 4z8

(
z2
z1

+
z4
z3

+
z6
z5

)
+ εz7.

(19)

Remark 8.2 Note that we have chosen the background metric V (x, y) = −tr(XY )
for the above system 19

8.1 Procedures and preliminaries

In both of our spaces SU(3)/T 2 and Sp(3)
Sp(1)Sp(1)Sp(1)

, we will work with the initial con-

ditions (z1, z2, z3, z4, z5, z6, z7, z8) = (0, 1, a, 0, a, 0, b, 0) which will enforce the smooth-
ness condition around the singular orbit. Each algorithm contains seven parameters
which contain the initial conditions, the starting and ending point of the Runge Kutta
algorithm, the constants ε, and C denoted by astart, b, start, acc, limit, epsilon, and
C respectively.

Table 1: Table of Summary

a b u′′(0) C ε
Steady Soliton > 0 6= 0 −1/3 −1 0
Ricci Flat > 0 0 n/a 0 0
Expanding Solitons > 0 < 0 b/3 0 1
Negative Einstein > 0 0 0 0 1
Compact Einstein > 0 b = 0 −b/3 0 −1
Non-Compact Einstein > 0 n/a −b/3 0 −1

8.2 Procedure

We proceed as follows:
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1. Generate finite polynomials (up to order 10, although only up to only order 5 were
used at most) for the system 18 and 19 by Maple and the metric’s components shown
in the systems 18 and 19 are replaced by the polynomials.

2. We use the usual power series approximating method to eliminate the arbitrary
coefficients using the prescribed initial conditions.

3. We use Maple to generate initial solutions for small values near 0 to reset the usual
starting point of the 4th-Order Runge-Kutta. The identification is done through the
human (author’s) eyes.

The steps 1, 2, and 3 are done to work around the irregular singular points in 18 and
19 at t = 0.

4. For the compact soliton case, we first plot the quantity of SOL = z21 + (z2 + 1)2 +
z24 + z26 + z28 vs the initial values of a to locate values of SOL close to 0 which helps
us find compact Einstein metrics.

The quantity hits 0 whenever z2 = −1 and all other metrics hit 0 at the point of
interest. By a permutation we also get a second SOL in the form of z22 +z23 +(z4+1)2+
z26 + z28 with similar construction. The derivatives of the metrics are plotted to ensure
the numerical Einstein metric found satisfies the expected theoretical asymptotics.
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8.3 The effects of homothety

This section begins with a discussion of the effects of homothety.

Let us consider the Ricci soliton equation and the conservation law once more

Ric(g) + Hess(u) +
ε̄

2
g = 0

ü+ (−u̇+ tr(L))u̇− εu = C.

By applying the transformation g = c2g for some c > 0, then above equations would
change to

Ric(c2g) + Hess(u) +
ε

2
c2
g

c2
= 0

ü+ (−u̇+ tr(L))u̇− εu = C.

Then the metric g = dt
2

+ gt becomes the metric c2g = c2dt2 + c2gt. Now this means
that t→ ct, then f i(t)

2 = c2f 2
i (t) =⇒ f i(t) = cfi(t) and the smooth function u which

has no association with the metric g will remain the same, that is ū(t) = u(t) = u(t/c).

Their derivatives follow{
ūt = 1

c
ut

ūtt = 1
c2
utt

{
dfi
dt

2 = 1
c
cdfi
dt

= dfi
dt

d2fi
dt

2 = 1
c
d2fi
dt2

So the above implies
(f i)t
f i

=
1

c

(fi)t
fi

,

and

(f i)tt
f i

=
1

c2
(fi)tt
fi

.

There are two cases to consider,

Case 1: ε = 0

By a homothetic change we may assume C = −1, then the conservation law implies
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(d1 + 1)ü(o) = C + εu(0) =⇒ ü(0) =
−1

d1 + 1

where d1 stands for the dimension of pi. This means that the initial value of ü(0)
is fixed by the choice C. Therefore the quadruplet solution (f1, f2, f3, f4) can never
include homothetic solutions.

Case 2: ε 6= 0

If ε 6= 0, then ü(0) = sgn(ε) u(0)
d1+1

where we normalize ε to be sgn(ε) and instead of
u(0) = 0, we choose C = 0 to rule out homothetic solutions.

Note that in the numerics, all di = 2 for i = 1, 2, 3.

9 SU(3)/T 2

The blue curves are the polynomial solutions and the red are the approximations from
the Runge-Kutta.
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9.1 Steady Solitons

Figure 1: Steady Case of SU(3)/T 2 with z1, a = 1, b = 1
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Figure 2: Steady Case of SU(3)/T 2 with z3, a = 1, b = 1

Remark 9.1 The curves in figure (1) and (2) are asymptotically ∼
√
t, indicating

asymptotically paraboloidal behavior as in the case of the Bryant soliton and the steady
soliton found in [9]

Proposition 9.1 [16] The soliton potential is strictly decreasing and strictly concave
on (0,∞)
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Figure 3: Steady Case of SU(3)/T 2 with z7, a = 1, b = 1

Remark 9.2 As in agreement with 9.1, the potential is strictly decreasing and concave
down on (0, 50)

Proposition 9.2 [16] The mean curvature trL is strictly decreasing and satisfies
0 < trL < n

t
. The generalized mean curvature η = −u̇+ trL is strictly decreasing and

tends to
√
−C as t tends to ∞.
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Figure 4: The Mean Curvature of SU(3)/T 2 in the Steady Case.
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Figure 5: The Generalized Mean Curvature of SU(3)/T 2 in the Steady Case.
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9.2 Ricci-flat

Figure 6: Ricci-flat Case of SU(3)/T 2 with z1, a = 1
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Figure 7: Ricci-flat Case of SU(3)/T 2 with z3, a = 1
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Figure 8: Ricci-flat Case of SU(3)/T 2 with z1, a = 10
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Figure 9: Ricci-flat Case of SU(3)/T 2 with z3, a = 10
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Figure 10: Ricci-flat Case of SU(3)/T 2 with z1, a = 50
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Figure 11: Ricci-flat case of SU(3)/T 2 with z3, a = 50
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Figure 12: The graph of Ricci-flat of SU(3)/T 2 with z1, a = 1 and its linear interpo-
lation



9 SU(3)/T 2 42

Figure 13: The graph of Ricci-flat of SU(3)/T 2 with z3, a = 1 and its linear interpo-
lation
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Figure 14: The graph of Ricci-flat of SU(3)/T 2 with z1, a = 10 and its linear inter-
polation
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Figure 15: The graph of Ricci-flat of SU(3)/T 2 with z3, a = 10 and its linear inter-
polation
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Figure 16: The graph of Ricci-flat of SU(3)/T 2 with z1, a = 50 and its linear inter-
polation
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Figure 17: The graph of Ricci-flat of SU(3)/T 2 with z3, a = 50 and its linear inter-
polation

Remark 9.3 From these graphs, it is clear that figures 6, 7, 8, 9, 10, and 11 are
asymptotically linear

Remark 9.4 We also see that we have a one-parameter family of solutions with the
initial condition a being the parameter



9 SU(3)/T 2 47

9.3 Expanding Solitons

Figure 18: Expanding case of SU(3)/T 2 with z1, a = 1, b = −1
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Figure 19: Expanding case of SU(3)/T 2 with z3, a = 1, b = −1
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Figure 20: Expanding case of SU(3)/T 2 with z7, a = 1, b = −1
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Figure 21: Expanding case of SU(3)/T 2 with z1, a = 10, b = −1
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Figure 22: Expanding case of SU(3)/T 2 with z3, a = 10, b = −1
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Figure 23: Expanding case of SU(3)/T 2 with z7, a = 10, b = −1
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Figure 24: Expanding case of SU(3)/T 2 with z1, a = 1, b = −10
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Figure 25: Expanding case of SU(3)/T 2 with z3, a = 1, b = −10
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Figure 26: Expanding case of SU(3)/T 2 with z7, a = 1, b = −10
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Figure 27: The graph of expanding case of SU(3)/T 2 with z1, a = 1, b = −1 and its
linear interpolation.
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Figure 28: The graph of expanding case of SU(3)/T 2 with z3, a = 1, b = −1 and its
linear interpolation.
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Figure 29: The graph of expanding case of SU(3)/T 2 with z1, a = 10, b = −1 and its
linear interpolation.
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Figure 30: The graph of expanding case of SU(3)/T 2 with z3, a = 10, b = −1 and its
linear interpolation.
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Figure 31: The graph of expanding case of SU(3)/T 2 with z1, a = 1, b = −10 and its
linear interpolation.
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Figure 32: The graph of expanding case of SU(3)/T 2 with z3, a = 1, b = −10 and its
linear interpolation.

Remark 9.5 The asymptotic linear behaviours of f1, f2, f3 can also be observed in
examples of [16], [9], [2], [19]
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9.4 Negative Einstein

Figure 33: Negative Einstein case of SU(3)/T 2 with z1, a = 1, b = 0
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Figure 34: Negative Einstein case of SU(3)/T 2 z3, a = 1, b = 0
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Figure 35: Log Graph of negative Einstein case of SU(3)/T 2 with z1, a = 1, b = 0
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Figure 36: Log Graph of negative Einstein case of SU(3)/T 2 z3, a = 1, b = 0

Remark 9.6 Compare the figures 34 and 35 with their log graphs reveals that the
solutions may be exponential.
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Figure 37: Negative Einstein case of SU(3)/T 2 z1, a = 10, b = 0
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Figure 38: Negative Einstein case of SU(3)/T 2 z3, a = 10, b = 0

9.5 Compact and non-compact Shrinking soliton

We did not find any numerical solutions for the case of non-compact shrinking solitons.
However there are results for the compact Einstein solitons where there is an initial
cluster of infinitely many Einstein metrics and a first independent Einstein metric.

The following is a graph of SOL vs initial value a which helps us detect Einstein
metrics
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Figure 39: Compact Einstein case of SU(3)/T 2. Graph of SOL vs initial value a.
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Figure 40: Compact Einstein case of SU(3)/T 2, Graph of SOL vs initial value a with
a closer shot at the first Einstein metric
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Figure 41: Cluster of figure 39

We estimate the point of interest at a = 1.0619. Note this is not a true value of
the Einstein metric as we cannot numerically determine when SOL = 0. Hence we
are only drawing values in a neighborhood of the Einstein metric which should have
similar features.

It will shown that the results for this case is similar to Sp(3)/Sp(1)3, this is due to a
minor change in the soliton equation.
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Figure 42: Compact Einstein case of SU(3)/T 2 with z1, a = 1.0619, b = 0
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Figure 43: Compact Einstein case of SU(3)/T 2 with z3, a = 1.0619, b = 0

As expected, the first graph of z1 = f1 closes up on the boundary point with negative
slope and the graph of z3 = f2 ends with shows a negative slope.

10 Sp(3)/Sp(1)Sp(1)Sp(1)

This section features plots for the principal orbits of Sp(3)/Sp(1)Sp(1)Sp(1). The
remarks from SU(3)/T 2 carry over in this section.
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10.1 Steady Solitons

Figure 44: Steady Case of Sp(3)/Sp(1)3 with z1, a = 1, b = 1
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Figure 45: Steady Case of Sp(3)/Sp(1)3 with z3, a = 1, b = 1
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Figure 46: Steady Case of Sp(3)/Sp(1)3 with z7, a = 1, b = 1
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Figure 47: Mean Curvature of Sp(3)/Sp(1)3
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10.2 Ricci-flat

Figure 48: Ricci-flat Case of Sp(3)/Sp(1)3 with z1, a = 1
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Figure 49: Ricci-flat Case of Sp(3)/Sp(1)3 with z3, a = 1
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Figure 50: Ricci-flat Case of Sp(3)/Sp(1)3 with z1, a = 10
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Figure 51: Ricci-flat Case of Sp(3)/Sp(1)3 with z3, a = 10
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Figure 52: Ricci-flat Case of Sp(3)/Sp(1)3 with z1, a = 50
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Figure 53: Ricci-flat Case of Sp(3)/Sp(1)3 with z3, a = 50
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10.3 Expanding Solitons

Figure 54: Expanding Case of Sp(3)/Sp(1)3 with z1, a = 1, b = −1
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Figure 55: Expanding Case of Sp(3)/Sp(1)3 with z3, a = 1, b = −1
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Figure 56: Expanding Case of Sp(3)/Sp(1)3 with z7, a = 1, b = −1
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Figure 57: Expanding Case of Sp(3)/Sp(1)3 with z1, a = 10, b = −1
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Figure 58: Expanding Case of Sp(3)/Sp(1)3 with z3, a = 10, b = −1
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Figure 59: Expanding Case of Sp(3)/Sp(1)3 with z7, a = 10, b = −1
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Figure 60: Expanding Case of Sp(3)/Sp(1)3 with z1, a = 1, b = −10
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Figure 61: Expanding Case of Sp(3)/Sp(1)3 with z3, a = 1, b = −10
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Figure 62: Expanding Case of Sp(3)/Sp(1)3 with z7, a = 1, b = −10
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10.4 Negative Einstein

Figure 63: Negative Einstein of Sp(3)/Sp(1)3 with z1, a = 1, b = 0
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Figure 64: Negative Einstein of Sp(3)/Sp(1)3 with z3, a = 1, b = 0
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Figure 65: Log Graph of negative Einstein case of Sp(3)/Sp(1)3 with z1, a = 1, b = 0
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Figure 66: Log Graph of negative Einstein case of Sp(3)/Sp(1)3 z3, a = 1, b = 0

10.5 Compact and non-compact Shrinking soliton

There are (currently) no results for the non-compact shrinking case, but we have
results for the Compact Einstein solitons
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Figure 67: Compact Einstein case of Sp(3)/Sp(1)3. Graph of SOL vs initial value a

This graph is used to locate the Einstein metrics described earlier in this chapter.
As the human eye can see, there is a cluster of Einstein metrics near 0 and a more
interesting point to the right of the cluster. Zooming into the region of interest on
[1, 1.2],
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Figure 68: Compact Einstein case of Sp(3)/Sp(1)3. Graph of SOL vs initial value a

Remark 10.1 We estimate the point of interest at a = 1.0618. Note this is not a
true value of the Einstein metric as we cannot numerically determine when SOL = 0.
Hence we are only drawing values in a neighborhood of the Einstein metric which
should have similar features. Interestingly this point is very close to the value for
SU(3)/T 2. We suspect they may lie in the same neighborhood.
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Figure 69: Cluster of figure 67
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Figure 70: Compact Einstein case of Sp(3)/Sp(1)3 with z1, a = 1.0619, b = 0
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Figure 71: Compact Einstein case of Sp(3)/Sp(1)3 with z3, a = 1.0619, b = 0

As expected the first graph of z1 = f1 closes up on the boundary point and the graph
of z3 = f2 shows a negative slope.
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