
CONTRIBUTIONS TO THE TESTING OF BENFORD’S LAW



CONTRIBUTIONS TO THE TESTING OF BENFORD’S LAW

By Amanda BOWMAN, B.Sc.

A Thesis Submitted to the School of Graduate Studies in the Partial

Fulfillment of the Requirements for the Degree of Master of Science

McMaster University © Copyright by Amanda BOWMAN 2016

http://www.mcmaster.ca/


McMaster University

Master of Science (2016)

Hamilton, Ontario (Department of Mathematics and Statistics)

TITLE: Contributions to the Testing of Benford’s Law

AUTHOR: Amanda BOWMAN B.Sc. (University of Guelph)

SUPERVISOR: Dr. Fred M. HOPPE

NUMBER OF PAGES: x, 68

ii

http://www.mcmaster.ca/
http://www.math.mcmaster.ca/


Abstract

Benford’s Law is a statistical phenomenon stating that the distribution of leading dig-

its in a set of naturally occurring numbers follows a logarithmic trend, where the dis-

tribution of the first digit is P (D1 = d1) = log10(1+1/d1), d1 ∈ {1,2, ...,9}. While most

commonly used for fraud detection in a variety of areas, including accounting, tax-

ation, and elections, recent work has examined applications within multiple choice

testing. Building upon this, we look at test bank data from mathematics and statis-

tics textbooks, and apply three commonly used conformity tests: Pearson’s χ2, MAD,

and SSD, and two simultaneous confidence intervals. From there, we run simulation

studies to determine the coverage of each, and propose a new conformity test using

linear regression with the inverse of the Benford probability function. Our analysis

reveals that the inverse regression model is an improvement upon the χ2 goodness of

fit test and the regression model that was previously proposed in 2006 by A.D. Saville;

however, still presents some asymptotic issues at large sample sizes. The proposed

method is compared to the previously utilized tests through numerical examples.
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Chapter 1

Introduction

1.1 A Brief History of Benford’s Law

An intriguing statistical phenomenon, Benford’s Law, is contrary to one’s initial as-

sumption that the leading significant digits of numbers in real-life datasets should

be uniformly distributed, and instead states that they follow a logarithmic distribu-

tion. Although named after physicist Frank Benford, the first-digit law, referring to

the leftmost digit in a number, was originally observed by the mathematician and

astronomer Simon Newcomb in 1881 [11]. Newcomb realized that the pages at the

start of his logarithmic book wore out much quicker than those later in the book, and

therefore, numbers with a smaller leading digit appear more often [11]. He also noted

the distribution of the second leading digits.

This effect was rediscovered in 1938 by Benford, and applied to 20 real datasets to

develop an empirical result in an effort to prove the validity of the law without using

a theoretical approach [2]. The 20 datasets were chosen from a variety of sources,
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from the surface areas of 335 rivers to American League baseball statistics to num-

bers appearing in Reader’s Digest articles, with an effort to obtain a diverse collection.

Without setting strict limits or criteria, the data collected ranged from 91 to 5000 ob-

servations, with a combined total of 20,229 values [2]. While some of the datasets

examined did not conform to the first-digit law, the combined average was very close

to the expected proportions and Benford showed that large datasets approximately

conform to the logarithmic probabilities. The distribution for the first, second, and

first two leading digits can be expressed in the following forms:

P (D1 = d1) = log10

(
1+ 1

d1

)
d1 ∈ {1,2, ...,9} (1.1)

P (D2 = d2) =
9∑

d1=1
log10

(
1+ 1

d1d2

)
d2 ∈ {0,1, ...,9} (1.2)

P (D1D2 = d1d2) = log10

(
1+ 1

d1d2

)
d1d2 ∈ {10,11, ...,99} (1.3)

showing that the likelihood of, for example, a first digit being 1 is approximately

30.1% but only about 4.6% for it being a 9. The proportions for the first, second,

and third leading digit are provided in Table 1.1. It can also be noted that the distri-

bution of the digits becomes more uniform for the later digit positions: for example,

by the third leading digit, the proportions only range from approximately 10.178% to

9.827%.

Neither Newcomb nor Benford provided any theoretical basis to explain or support

2
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TABLE 1.1: Benford’s Law proportions for the first, second, and third
leading digits

Digit First Second Third

0 - 0.11968 0.10178

1 0.30103 0.11389 0.10138

2 0.17609 0.10882 0.10097

3 0.12494 0.10433 0.10057

4 0.09691 0.10031 0.10018

5 0.07918 0.09668 0.09979

6 0.06695 0.09337 0.09940

7 0.05799 0.09035 0.09902

8 0.05115 0.08757 0.09864

9 0.04576 0.08500 0.09827

Benford’s Law, and while Benford suggested that {1,2,3,..} is not the natural num-

ber scale, rather that nature counts e0,ex ,e2x , ... since it appears that many natural

functions are of the logarithmic form in base e [2], an analytical approach was not

developed until Theodore Hill in 1995 [7]. In addition, Hill provided a generalization

of (1.1) and (1.3), so that they could be extended to find the expected frequency of

any combination of leading digits. The expression for this is as follows:

P (D1 = d1,D2 = d2, ...,Dk = dk ) = log10

(
1+ 1∑k

i=1 di ×10k−i

)
(1.4)

where d1 ∈ {1,2, ...,9} and d j ∈ {0,1,2, ...,9} for j ∈ {2, ...,k} for any positive integer k [7].

A 1976 article by Ralph Raimi [16] gave a thorough review of the proposed explana-

tions of Benford’s Law at that time, explaining hypotheses and results while omitting

most proofs. While some believed that the phenomenon was the natural result of

the number system we use [6, 20], the basis of this came from the idea that there is

a natural way to calculate the "density" for the set of values beginning with a integer

3
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on the positive portion of the real number line that yields log(d1 +1). Although this

result can be found through certain summability methods, it was stated without ob-

served facts or supportive justification. Raimi supported the idea that mathematics

alone cannot account for Benford’s Law [16]. Additionally, he took issue with some of

the proposed properties of the law, such as scale invariance as proposed by Pinkham

[14], and the need for widely spread data [16].

Since Raimi’s article, interest in Benford’s Law greatly increased, though Hill’s expla-

nation, in which he used the assumptions of both scale and base invariance, is still

seen as one of the most convincing arguments. This created a theoretical basis for

the law using probability theory. In addition, Hill was able to show that, while not

every dataset conforms to the law, as seen in Benford’s research, a combination of

random samples from a random selection of distributions do [7]. As Hill developed

theoretical support for the base and scale invariance assumptions, other properties

of datasets that follow, or would be expected to follow, Benford’s Law were found, as

will be discussed in the subsequent sections.

1.2 Properties

The assumption of base invariance described in Hill’s work states that datasets that

conform to Benford’s Law will continue to do so if the base used is changed from base

10 to, say, base 8 or base 20. Hill defined base invariance as a probability measure P

on (R+,M ) where P (S) = P (S1/n) for all positive integers n and all S ∈ M [7] where

4
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M is the decimal mantissa σ-algebra, which is a subfield of the Borels, so that:

S ∈M ⇔ S =
∞⋃

n=−∞
B n

for some Borel B ⊆ [1,10)

The mantissa σ-algebra M has the following properties: every non-empty set in

M is infinite with 0 and +∞ having accumulations of points; M is closed under

scalar multiplication (s > 0, S ∈ M → sS ∈ M ) and under integral roots (n ∈ N,

S ∈ M → S1/n ∈ M ) but not under powers; M is self-similar, so if S ∈ M then

10nS = S [7]. Hence, the probability measure for any set of real numbers in (R+,M )

should be the same for any base. Therefore, in base 10, every set of real numbers

S ∈M is identical to the set of real numbers S1/2 in base 100 in M .

In a similar manner, a probability measure P on (R+,M ) is said to be scale invariant

if P (S) = P (sS) for all s > 0 and all S ∈ M [7]. Therefore, multiplying a Benford set

by a positive value will still produce a Benford set. For instance, converting company

profits from Canadian dollars to Euros will not impact conformity.

In addition, the underlying logarithmic basis of the Law indicates that conformity re-

quires the mantissas of the log of the dataset to be uniformly distributed, where the

mantissa is the decimal portion of the log [13].

There are criteria for datasets that are expected to follow Benford’s Law. First, one

should not test the first two digits on sample sizes less than 300, and good confor-

mity should not be expected for datasets smaller than 1000 observations, due to the

commonly used χ2 goodness of fit test which requires an expected cell count of 5

[13]. For the first two digits, 99 has an expected count of 4.36, which is generally

considered close enough in practical settings. Moreover, there should not be a strict

5
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minimum or maximum, other than if numbers are constrained to be positive; obser-

vations should not be values assigned as labels or for identification; there should be

more small records than large, meaning the median should be greater than the mean

and values should not be clustered tightly around an average [13]. With these criteria

in mind, the next section will examine a sample of applications of Benford’s Law.

1.3 Current Work

To date, Benford’s Law has found applications in a diverse range of research areas,

from forensic accounting to election data to fraud detection in scientific research. In

addition, there are many mathematical series and sequences that have been found to

follow the Law, including the Fibonacci sequence and most geometric series. In this

section, we look at several detailed examples to illustrate some of the widespread

applications.

1.3.1 Fraud Testing in Accounting

It has long been known that humans are not able to create sets of random numbers

manually; analogously, it is also difficult to produce a set of numbers that follows

Benford’s Law. This allows for conformity tests to be used as a method of fraud de-

tection, or at least to signify financial accounts that need to be examined to a more

in-depth level. Mark Nigrini, a leading expert in the field, was one of the first to pro-

pose the use of Benford’s Law as a testing tool for fraud in accounting data, and it

has now become commonplace in digit analysis. In cases where there are significant

6

http://www.mcmaster.ca/


Master of Science– Amanda BOWMAN; McMaster University– Statistics

deviations from the expected proportions, the likelihood of fraud having occurred is

much greater.

The first study that utilized Benford’s Law for such an application was by Charles

Carslaw in 1988, when he conducted a second digit analysis on the profits of a sam-

ple of New Zealand firms. His results showed an excess of the second digit 0 and a

lack of 9’s, suggesting that managers round up the profit values to make them appear

more impressive, showing goal oriented behaviour [4]. This is similar to psycholog-

ical methods used when pricing goods, where a value of $1.99 appears significantly

lower or more appealing to consumers than $2.00. This is thought to be due to the

fact that humans place more emphasis on earlier leading digits [3].

Nigrini (2012) provides numerous examples of the use of Benford’s Law in forensic

accounting. In the case of State of Arizona vs Wayne James Nelson, Nelson, who was

a manager in the office of the Arizona State Treasurer, was found guilty in a $2 mil-

lion defraud case. The 23 fraudulent checks were all in amounts under $100,000,

where values over $100,000 would likely have received more review or have required

someone else’s signature, and there were no round numbers or duplicates [13]. The

amounts started small and increased until over 90% of the values began with a 7, 8,

or 9, and did not conform to Benford’s Law in the first or first-two digits [13]. In ad-

dition, 87, 88, 93, and 96 were all used twice as the first two digits, and 16, 67, and

83 reappeared as the final two digits, all of which would prove to be suspicious to an

auditor.

7
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1.3.2 Test Bank Questions

A novel application for Benford’s Law was investigated in a 2015 paper by Slepkov et

al., who tested if knowledge of the law could give an advantage in physics numeri-

cal multiple choice tests. They hypothesized that the correct answers should follow

Benford’s Law, while the distractors, if chosen at random, should not [19]. Three com-

monly used undergraduate physics textbooks were chosen, and end of chapter prob-

lems were recorded by hand, excluding unphysical numbers, numbers too narrowly

confined in domain, all unit-less values, percentages, degrees, answers of exactly 0,

and any non-numerical answers [19]. Using three conformity tests (MAD, SSD, and

Pearson’s χ2 goodness of fit test), all three textbooks showed compliance with the

Benford proportions. They then simulated 5,000 mock multiple choice questions,

where the correct answers followed Benford’s Law and the distractors were uniformly

distributed. For 3-, 4-, and 5-option tests, the Benford approach of selecting answers,

where one selects the answer with the lowest leading digit, proved to have an advan-

tage with scores of 51%, 41%, and 33% respectively, compared to 33%, 25%, and 20%

for random guessing [19]. Slepkov et al. then applied this to an actual physic test

bank, and for the four option questions, a score of 24.6% was achieved using a "Ben-

ford attack", which is no better than randomly guessing [19]. This should not come as

a surprise as distractors are not determined by random selection, and also followed

Benford’s Law, meaning that they are secure against a Benford approach.

Following the above, Hoppe developed a closed form solution for the probability of

a correct answer when using a Benford approach, for test banks where the correct

answers follow Benford’s Law while the distractors follow a uniform distribution [8].

Recently, Nigrini examined test banks in accounting textbooks and the effect of the

8

http://www.mcmaster.ca/


Master of Science– Amanda BOWMAN; McMaster University– Statistics

excessive use of large, rounded numbers, which in real data should be a sign for con-

cern [12]. Results showed that the first digits of the textbook data follow Benford’s

Law but the second digits do not. In addition, there was an excessive amount of the

second digit 0, where 80% of the numbers were multiples of 100 and 70% of 1000 [12].

While Nigrini’s article does not look at Benford’s Law in conjunction with test bank

data as a method for improving test scores, it is posed as a future topic for research.

Rather, it looks at the impact of the data on the views of accounting students and

whether they will view the numbers commonly seen in class as unrealistic in a real

forensic accounting setting. Nigrini states that while the first digits may conform, the

subsequent digits can show significant deviations from Benford’s Law and should be

examined [12]. In addition, it should be emphasized to students that the examples

seen in class and within textbooks are used for simplicity and should be considered

suspicious in an analysis of real world data.

1.4 Motivation

Benford’s Law is a complex problem, and while there are many explanations and hy-

potheses, none satisfactorily explain why such a wide variety of real life datasets have

this distribution. Also unexplained is why a combination of data from multiple con-

texts, such as those seen in a test bank, would also conform to this law.

While the present work does not attempt to provide an explanation for the above

questions, we will carry out an analysis of a collection of mathematics and statistics

multiple choice test bank questions. Using this data and through simulations, we will

examine some of the currently used tests for conformity and propose a new method

9
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utilizing linear regression.

This thesis is organized as follows. In Chapter 2, we describe our method of data col-

lection and provide the methodology for the commonly used statistical techniques

for testing for conformity with Benford’s Law. We then apply these tests to our multi-

ple choice dataset and provide the results in Chapter 3. This is followed by our pro-

posed method of using linear regression as a test for conformity in Chapter 4, then

present our conclusions in Chapter 5.

10
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Chapter 2

Methodology

2.1 Data Collection

In order to collect a large sample of multiple choice questions, textbook banks were

chosen based on both their availability within the McMaster Mathematics and Statis-

tics department and publicly online. Nine textbooks were used in addition to a col-

lection of midterm exams from Dr. George Wesolowsky, a professor emeritus at the

DeGroote School of Business. Table 2.1 provides an index of the utilized sources

and the number of rejected and accepted questions from each. Data was manually

recorded after going through the entirety of each test bank, while adhering to a set

of rejection criteria. Questions were rejected for having non-numerical answers, and

for having options that each contained multiple numbers. Questions that reappeared

in the test bank were only recorded once, and answers of exactly zero were excluded

since there is no leading digit. Answers without units or context were also rejected;

11
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however, differing from the method used by Slepkov et al. [19], percentages and pro-

portions were not. It has been shown that numbers bounded by 0 and 1 satisfy Ben-

ford’s Law and therefore they were not rejected here [1]. Overall, 13.6% were omitted

due to a lack of units, 0.8% were duplicate questions, and approximately 68% of all

questions were excluded due to being non-numerical, having multiple numbers per

option, or having a value of exactly zero. This left the remaining 17.6%, which were

accepted, and which were composed of 3-, 4-, 5-, and 6-option multiple choice ques-

tions, giving an overall sample size of 3683 observations.

2.2 Statistical Tests for Conformity

Testing a dataset’s goodness of fit to Benford’s Law can be accomplished in numerous

ways, and a variety of tests are available for this purpose. In this section, we examine

three test statistics that are commonly applied to assess conformity with Benford’s

Law.

2.2.1 Pearson’s χ2 Goodness of Fit Test

The most frequently used statistic to determine compliance with Benford’s Law is the

χ2 goodness of fit test, which is calculated as follows:

χ2 =
K∑

i=1

(AC −EC )2

EC

12
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TABLE 2.1: Summary of accepted and rejected test bank question

Test Bank
Rejected due

to units

Rejected due to

non-numerical/zero/

multiple answers

Rejected due

to repeat
Accepted Total

Stewart Calculus: Early Transcendentals,

8th edition by Stewart

(Cengage Learning, 2015)

357 696 24 90 1,167

Statistical Reasoning for Everyday Life,

1st edition by Bennett, Briggs, and Triola

(Addison Wesley, 2000)

25 347 6 94 472

Elementary Statistics, 10th edition

by Triola (Pearson, 2005)
60 181 0 154 395

The Basic Practic of Statistics, 7th edition

by Moore, Notz, and Fligner

(MacMillian Learning, 2015)

17 445 4 81 547

Probability and Statistics for Engineering

and the Sciences, 8th edition by Devore

(Duxbury Press, 2011)

17 256 0 13 286

Introduction to the Practice of Statistics,

2nd edition by G. McCabe and L. McCabe

(W.H. Freeman, 1993)

1 42 0 9 52

The Basic Practice of Statistics,

3rd edition by Moore, Notz,

and Fligner (W.H. Freeman, 2004)

41 383 2 162 588

Finite Mathematics, 3rd edition

by Warner and Costenoble

(Thomson Learning, 2004)

29 172 0 36 237

Introduction to Probability and Statistics,

14th edition by Mendenhall, R. Beaver,

and B. Beaver (Cengage Learning, 2012)

74 499 3 139 715

Dr. Wesolowsky’s Midterm Test Bank

(McMaster, 1998-2006)
54 353 1 97 505

TOTAL 675 3,374 40 875 4,964

13
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where AC and EC are the actual and expected counts of each leading digit respec-

tively, and K is the number of possible leading digits, meaning if we are testing the

first leading digits K=9 and if testing the first two then K = 90. The calculated statistic

is then compared to a critical χ2 value with K −1 degrees of freedom to test the null

hypothesis that the data conforms to Benford’s Law.

However, issues with theχ2 statistic present themselves with large sample sizes (those

approximately greater than 5000) [13]. The test statistic has an excess of power at

close alternatives, and therefore small deviations from the expected values will cause

a result of nonconformity that would not be an issue at a smaller sample size. This

means a large dataset can be rejected, while a smaller dataset with larger deviations

from the Benford proportions will be accepted as following the law.

2.2.2 Mean Absolute Deviation

An alternative test for conformity was proposed by Nigrini to negate the issues seen

with the χ2 goodness of fit test. The mean absolute deviation (MAD) test does not

include the number of observations in its calculation and therefore, he states that it

is not affected by sample size [13]. The formula for the test is as follows:

M AD =
∑K

i=1 |AP −EP |
K

where AP and EP are the actual and expected proportions of each leading digit, and

K is the number of bins, again being 9 for the first digit and 90 for the first two.

14
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To determine the ranges of MAD for conformity with Benford’s Law, Nigrini empir-

ically derived critical values based on personal experience and testing done on nu-

merous datasets [13]. The ranges proposed for the first leading digits are 0.000-0.006

for close conformity, 0.006-0.012 for acceptable conformity, 0.012-0.015 for marginally

acceptable conformity, and values greater than 0.015 show non-conformity. For the

first two leading digits, these ranges become 0.0000-0.0012, 0.0012-0.0018, 0.0018-

0.0022, and greater than 0.0022 respectively.

2.2.3 Sum of Squares Difference

While not as commonly utilized as Pearson’s χ2 goodness of fit test or MAD, sum of

squares deviation (SSD) is used as a comparison measure when examining Benford’s

Law. Proposed by Kossovsky, SSD is a measure of the distance from the logarithm

and not a test for conformity [9]. The formula is given by:

SSD =
K∑

i=1
(AP −EP )2 ×104

where again AP and EP are the actual and expected proportions of each leading digit

respectively, and K is the number of possible leading digits.

As sample size is not included in the calculation, statistical theory cannot be used

to identify critical values, and therefore, as with MAD, ranges for compliance were

empirically derived. Kossovsky states that, for first digits, SSD values that are less

than 2 are perfect Benford, those falling within [2, 25) are acceptably close, values be-

tween [25, 100] are marginally Benford, and values greater than 100 are non-Benford.

For the first two leading digits these ranges become less than 2, [2, 10), [10, 50], and

15
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greater than 50 respectively. However, he also states that an SSD value should be

subjectively judged to determine the distance from the logarithmic expectation [9].

2.3 Simultaneous Confidence Intervals

Since confidence intervals can provide more information about deviations from the

Benford proportions than conformity tests, due to their ability to determine the val-

ues that are outside the confidence interval, we examined two simultaneous confi-

dence intervals in order to take the multinomial proportions into account. The two

simultaneous confidence intervals chosen were Goodman and Sison & Glaz, based

on the examinations by Lesperance and her student Wong, for testing the first and

first two digits respectively [10, 21]. After testing multiple simultaneous confidence

intervals for multinomial proportions, the following two were recommended for as-

sessing Benford’s Law.

2.3.1 Goodman

The Goodman simultaneous confidence intervals modify the Quesenberry and Hurst

calculations to create less conservative, and therefore shorter, intervals [5, 15]. Let-

ting n1,n2, ...,nk be the observed cell frequencies from a multinomial distribution of

size N , and p1, p2, ..., pk be the corresponding probabilities that an observation will

fall into the i th cell, the formula is as follows:

pi = B +2ni ±
p

B [B +4ni (N −ni )/N ]

2(N +B)
i = 1,2, ...,k
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where B =χ2
α/k,1, the upperα/K quantile of the chi-square distribution with 1 degree

of freedom, and k must be greater than 2. It should be noted that pi ≥ 0,
∑k

i=1 pi = 1,

and
∑k

i=1 ni = N .

2.3.2 Sison & Glaz

The method of Sison and Glaz was the preferred choice by Lesperance and Wong;

however, it has no closed form and therefore must be calculated computationally, so

it should only be utilized if the computational power is available [10, 18, 21]. Let Vi be

independent Poisson random variables with mean ni , and let Yi be its truncated form

to [ni −τ, ni +τ] for some constant τ. For a sample of N observations from a multino-

mial distribution, let n∗
1 ,n∗

2 , ...,n∗
k be the observed cell frequencies with probabilities

p̂1, p̂2, ..., p̂k . The central and factorial moments of Yi are denoted as:

µi = E [Yi ]

σ2
i =V ar [Yi ]

µ(r ) = E [Yi (Yi −1)...(Yi − r +1)]

µr,i = E [Yi −µi ]r

In addition, we define the following:

γ1 =
1
k

∑k
i=1µ3,ip

k(
∑k

i=1σ
2
i )3/2

17
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γ2 =
1
k

∑k
i=1µ4,i −3σ4

ip
k(

∑k
i=1σ

2
i )2

fe (x) =
(

1p
2π

e−x2/2
){

1+ γ1

6
(x3 −3x)+ γ2

24
(x4 −6x2 +3)+ γ2

1

72
(x6 −15x4 +45x2 −15)

}

v(τ) = n!

nne−n

{
k∏

i=1
P (ni −τ≤Vi ≤ ni +τ)

}
fe

N −∑k
i=1µi√∑k

i=1σ
2

 1√∑k
i=1σ

2

The Sison and Glaz interval then takes the subsequent form:

(
p̂i − τ

N
≤ pi ≤ p̂i + τ+2γ

N
; i = 1,2, ...k

)

where γ= (1−α)−v(τ)
v(τ+1)−v(τ) and τ satisfies v(τ) < 1−α< v(τ+1).

18
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Chapter 3

Analysis

3.1 Histograms of Data

The collected test bank data were analyzed looking at first digits, first two digits, and

second digits. Histograms were used to visualize the data, as seen in Figure 3.1, where

the bars show the observed digit proportions for the subsets of the data and the con-

tinuous curve passes through the Benford’s Law proportions. In all three cases, for

the correct answers, distractors, and combined dataset, the observed first digit pro-

portions are lower than the expected Benford values for the digit 1 and slightly higher

than expected for the digits 7 through 9. In addition, the three plots of the first two

digits show peaks on the intervals of 10, while the plots of the distractors and full data

also show notable peaks at 25 and 75.

Due to the peaks observed at the multiples of 10, the makeup of the dataset was

examined and it was noted that a large number of the collected questions had single

digit answers, which would lead to values where the second digit is 0. A subset of the

data was taken, where questions with two or more single digit answers were removed.
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FIGURE 3.1: The first and first two digits of collected test bank data,
with the true Benford proportions indicated with a red line
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FIGURE 3.2: The first and first two digits of collected test bank data
without single digit questions, with the true Benford proportions indi-

cated with a red line

This data was plotted in Figure 3.2.

While the first digit distributions did not appear to change significantly with the re-

moval of the single digit answers, the histograms of the first-two digits appear much

closer to the true Benford proportions. It can still be noted that there are peaks at 75

and 50 for all three graphs, and at 25 for both the distractors and the full dataset.

The second digits were plotted for the correct answers, distractors, and the full data

all with the single digit answers removed, as shown in Figure 3.3. The graphs show

a large observed proportion of 0’s and 5’s, even when the single digit answers are
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FIGURE 3.3: The second digits of collected test bank data without the
single digit answers, with the true Benford proportions indicated with

a red line

removed, which could be evidence of both rounding error and of the psychological

preference for numbers ending in 0 and 5. In addition, the correct answers had signif-

icantly larger deviations in the proportions of the second digits, with 0 and 9 having

smaller frequencies and 6 having a higher proportion than in the distractors or full

dataset.
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3.2 Statistical Tests for Conformity

Testing for conformity with Benford’s Law for the first and first two digits of subsets

of the full collected test bank data was completed using three tests: MAD (mean ab-

solute deviation), Pearson’s χ2 goodness-of-fit, and SSD (sum of squares deviation).

Tables 3.1 and 3.2 show the results, with none of the datasets conforming to Benford’s

Law according to the χ2 goodness-of-fit test, although as previously stated, this test

statistic is known to be overly sensitive to larger datasets.

TABLE 3.1: First digit tests for conformity with Benford’s Law, applied
to multiple choice test bank datasets

Dataset MAD Chi-square p-value SSD

Correct Answers- Full 0.0260 1.5470 ·10−10 82.1983

Distractors- Full 0.0123 8.6871 ·10−11 28.8247

Combined- Full 0.0147 2.5570 ·10−19 36.5517

Correct Answers- Without Single Digit 0.0250 1.3815 ·10−08 75.0003

Distractors- Without Single Digits 0.0109 1.7719 ·10−07 25.0996

Combined- Without Single Digits 0.0130 6.4233 ·10−14 31.2360

In all cases, the datasets where single digit answers were removed had smaller

test statistics than the corresponding full data. Using MAD for the first digits, the

distractors when the single digit answers were removed showed acceptable confor-

mity with Benford’s Law, and the distractors for the full dataset and the full set, both

with and without the single digit answers removed, all showed marginally acceptable

conformity. Both sets of correct answers gave MAD values greater than 0.015, which

23

http://www.mcmaster.ca/


Master of Science– Amanda BOWMAN; McMaster University– Statistics

TABLE 3.2: First two digit tests for conformity with Benford’s Law, ap-
plied to multiple choice test bank datasets

Dataset MAD Chi-square p-value SSD

Correct Answers- Full 0.0044 1.0494 ·10−26 34.1571

Distractors- Full 0.0040 9.6947 ·10−122 34.3143

Combined- Full 0.0038 5.9955 ·10−164 31.2472

Correct Answers- Without Single Digit 0.0038 1.4433 ·10−07 22.7837

Distractors- Without Single Digits 0.0030 1.6051 ·10−26 16.0344

Combined- Without Single Digits 0.0028 7.7156 ·10−40 14.5272

shows nonconformity. The SSD statistics all gave values within the marginally Ben-

ford range, although for the distractors with the single digit answers removed, the

SSD value of 25.0996 was only slightly greater than the cut off value of 25 for accept-

able conformity.

Table 3.2 looks at the calculated conformity values for the first two digits, and as pre-

viously stated, the χ2 test shows that none of the test bank subsets conform to Ben-

ford’s Law. The MAD values conclude the same results, as the calculated statistics are

all greater than the cut off value of 0.0022 for any level of conformity in the first-two

digits. The SSD, on the other hand, produced all values between the range of 10 to

50, and therefore states marginal Benford. However, as noted in Section 2.2.3, SSD

is a measure of the distance from the logarithm and not a test of conformity, and

therefore the cut off values are considered to be rough guidelines [9].

3.2.1 Simultaneous Confidence Intervals

The results from running both the Goodman and Sison & Glaz simultaneous confi-

dence intervals for multinomial proportions on the test bank datasets are provided
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in Tables 3.3 and 3.4. The tables show the digit proportions that fall outside the lower

and upper limits of the calculated simultaneous confidence intervals.

TABLE 3.3: Observed digit proportions outside the simultaneous con-
fidence intervals for testing first digit conformity with Benford’s Law

Dataset Goodman Sison & Glaz

Correct Answers- Full 1 7 9 1 7

Distractors- Full 1 9 1 9

Combined- Full 1 7 8 9 1 9

Correct Answers- Without Single Digit 1 7 8 9 1

Distractors- Without Single Digits 1 8 9 1 9

Combined- Without Single Digits 1 7 8 9 1 9

The results show more values falling outside of the Goodman confidence intervals

than the Sison & Glaz. Moreover, for the first digit analysis, the digit 1 consistently de-

viates from the expected Benford proportion using both methods. For the first two

digits, the correct answers without the single digit options had the fewest deviations;

however, it also has the smallest number of observations, and as the sample size in-

creases the confidence intervals narrow. The leading digit 11 is identified to deviate in

all cases except for the Goodman intervals for the correct answers without the single

digit questions. This can be visually seen in Figures 3.1 and 3.2, where the observed

proportion is much lower than the expected Benford line.
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TABLE 3.4: Observed digit proportions outside the simultaneous confi-
dence intervals for testing first two digit conformity with Benford’s Law

Dataset Goodman Sison & Glaz

Correct Answers- Full 11 50 60 70 75 80 90 11 50 60 75

Distractors- Full
10 11 13 14 20 21 25 30

40 50 60 70 75 80 90 95

10 11 13 14 20 21 25 30

40 50 60 70 90

Combined- Full
10 11 13 14 20 21 25 30 40

44 50 60 70 75 80 90 95 99

10 11 13 14 20 21 25 30

40 50 60 70 75 80 90

Correct Answers- Without Single Digit 75 80 11

Distractors- Without Single Digits 11 14 25 50 75 90 95 99 11 13 14 25

Combined- Without Single Digits 11 14 25 50 75 80 95 99 11 13 14 25 75

3.3 Simulations

3.3.1 Simultaneous Confidence Intervals

Simultaneous confidence intervals are utilized when the goal is to obtain a set of k

intervals with an overall coverage of (1−α)× 100%. Often, k single (1−α)× 100%

binomial confidence intervals are used with multinomial proportions, however the

probability that all k intervals simultaneously contain the Benford proportions is not

(1−α)×100%, rather often closer to (1−kα)×100% [10]. Simultaneous (1−α)×100%

confidence intervals are utilized instead to create a set where the probability of the

corresponding Benford proportion being contained in each interval is approximately

(1−α). Simulations were run in R to identify the exact coverage for a sample size that

matched that of our test bank dataset. Using a sample of size 3800 and sampling

from a multinomial distribution with the Benford proportions, 10,000 simulations

were run, with the coverage of the two simultaneous confidence intervals for the first

digits being as follows:
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• For Sison and Glaz, at the 95% level, coverages were 94.48% and 94.75% as the

simulation was ran twice.

• At the 99% level for Sison and Glaz the coverages were 98.85% and 99.01%.

• For Goodman, the coverage at the 95% level was 95.22%, and was 99.11% at the

99% level.

The coverage for the first two digits was also simulated for Sison and Glaz, producing

coverages of 94.62% and 99.01% for the 95% and 99% confidence levels, respectively.

The first two digit intervals for Goodman produced coverages of 93.61% and 98.35%.

Showing that at a sample size comparable to our dataset, the overall coverage of the

intervals is close to the desired (1−α)×100% level; however, the coverage of Sison &

Glaz is slightly more accurate with a larger number of bins.

3.3.2 Pearson’s χ2 Goodness of Fit Test Statistic

Simulations were also run to examine the coverages for Pearson’s goodness of fit test,

again sampling from a multinomial distribution following Benford’s Law and using

sample sizes equal to that of our own data. The results showed that for samples of

size 3800, the coverage of Pearson’s χ2 at the 95% level were 95.06% and 94.99% for

the two simulations run, and at the 99% level, the coverages produced were 98.94%

and 99.16%.
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3.3.3 MAD

Due to the lack of statistical theory for the MAD test statistic and its critical values,

the simulations run were more in depth than those in the previous two subsections.

Using the same method as for the χ2 test statistic, where we were sampling from

a multinomial distribution with the Benford proportions and using a sample of size

3800 to be comparable to the test bank dataset, results showed that 96.94% of the sim-

ulations fell within the close conformity range and 3.06% fell within the acceptable

conformity range, whereas none of the samples were considered to be marginally ac-

ceptable or to have nonconformity. Although Nigrini states that the MAD statistic

ignores sample size since n is not included in its calculation [13], we wished to ex-

amine the distribution of the MAD values at various sample sizes when simulating

samples from the Benford proportions, seen in Table 3.5. Since only N=10,000 simu-

lations were run due to time constraints, values are rounded to three decimals places,

since the accuracy of the fourth decimal value is not known.

TABLE 3.5: Acceptance probabilities for MAD conformity levels simu-
lated from a Benford distribution; N=10,000

Sample Size

Conformity Ranges 100 500 1000 5000 10,000

Close Conformity (0.000 to 0.006) 0.000 0.046 0.252 0.995 1.000

Acceptable Conformity (0.006-0.012) 0.024 0.662 0.729 0.005 0.000

Marginally Acceptable Conformity (0.012-0.015) 0.062 0.219 0.018 0.000 0.000

Nonconformity (greater than 0.015) 0.915 0.072 0.001 0.000 0.000

While samples are expected to asymptotically approach the true distribution as

sample sizes increase, by 10,000 observations 100% of the samples are within the

close conformity range. If we treat MAD as a two-sided hypothesis test, where H0 is
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that the sample conforms to Benford’s Law and H1 is that it does not, then the pro-

portion of samples that fall within the nonconformity range is equivalent to α, or the

Type I error. Since by samples of size 10,000 the rejection rate is 0%, and since MAD

is often used to test samples much larger than this, one might expect an increase in

the number of false negatives, or the Type II error, as the two error types are inversely

related. In addition, Nigrini states that good conformity should not be expected for

samples smaller than 1,000 [13], however for simulations of size 1000, only 25.2% fall

within the close conformity range when sampling from Benford. It is worth noting

that only 1% are rejected for nonconformity.

To take this further, MAD can be treated as three separate hypothesis tests, where

one can test a null hypothesis that the sample has close conformity, has acceptable

or better conformity, or conforms within any of the three ranges. This can be written

as:

P [M AD ≤ 0.006]

P [M AD ≤ 0.012]

P [M AD ≤ 0.015]

P [M AD ≥ 0.015]

where the P [M AD ≥ 0.015] is equal to our α or P[Reject H0|H0 is true] for testing

for any level of conformity. However, when testing if the sample has close confor-

mity, our α level becomes the sum of the other three probabilities. As previously

mentioned, as the sample sizes increases, α approaches 0 for all three possible tests,

allowing for an increase in the P[Accept H0|H0 is false]. This may not pose an issue if

one is interested in datasets that are approximately but not exactly Benford. However,

29

http://www.mcmaster.ca/


Master of Science– Amanda BOWMAN; McMaster University– Statistics

one thing to note is that, unlike in the framework of statistical hypothesis testing, as

the sample size changes, the α value changes rather than the critical values.

To examine this in more depth, simulations were run on samples from a multino-

mial distribution with proportions that were relatively close, but not exactly equal, to

those expected under Benford’s Law. The probability set chosen was {31.755, 16.11,11.015,

8.287,10.163, 6.028,4.982, 5.037,6.624}, which uses the proportions from a dataset

of corporate payments used in Nigrini’s 2012 book that contained over 185,000 ob-

servations [13]. The MAD of the dataset was 0.0132, which falls into the marginally

acceptable range. Results from the simulations are seen in Table 3.6.

TABLE 3.6: Acceptance probabilities for MAD conformity levels simu-
lated from a distribution with proportions {31.755, 16.11, 11.015, 8.287,

10.163, 6.028, 4.982, 5.037, 6.624}; N=10,000

Sample Size

Conformity Ranges 100 500 1000 5000 10,000

Close Conformity (0.000 to 0.006) 0.000 0.002 0.001 0.000 0.000

Acceptable Conformity (0.006-0.012) 0.010 0.138 0.218 0.178 0.110

Marginally Acceptable Conformity (0.012-0.015) 0.030 0.400 0.441 0.671 0.827

Nonconformity (greater than 0.015) 0.958 0.588 0.420 0.151 0.063

As before, as sample size increased the majority of the samples fell within the

marginally acceptable conformity range since they asymptotically approach the true

distribution. For large samples, none of the simulations fell within the close confor-

mity range.
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Chapter 4

Linear Regression as a Test of

Conformity with Benford’s Law

4.1 Linear Regression Using the Inverse of the Benford

Probability Function

Given that the Benford probabilities are specified by:

pi = log10

(
1+ 1

i

)
i = 1,2, ...,9 (4.1)

let X1, X2,..., X9 be the number of observations with each leading digit. Therefore,

Xi ∼ Binomial(n, pi ), where n is the sample size. Since the Xi ’s are Binomial(n, pi ),

the estimates of the probabilities are p̂i ∼ 1
n Binomial(n, pi ). We now want to invert

(4.1) and solve for i.

pi = log10

(
1+ 1

i

)
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10pi = 1+ 1

i

10pi −1 = 1

i

i = 1

10pi −1
(4.2)

Here, i is the expected values of the leading digits (integer values from 1 to 9); how-

ever, we observe "î ", from now on referred to as Ui . Examining (4.2), we define:

Ui = 1

10p̂i −1

= 1

10
bi nomi al (n,pi )

n −1
(4.3)

Given that Ui is a random variable that should approximate i for large n, one would

expect that the relationship between the observed and expected values could be uti-

lized to determine whether the observed digits significantly deviate from Benford’s

Law. Linear regression can be applied to the inverse Benford model, comparing the

slope and intercept parameters to the 1:1 line, as a sample with close conformity to

the Benford proportions would yield almost perfect correlation. Therefore, the re-

gression line takes the following form:

Ui =β0 +β1i +εi

where Ui is the observed leading digit value from the sample proportions; β0 and β1

are the intercept and slope parameters respectively; i is the expected leading digit

value; εi is the random error term.
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A similar model was proposed in a 2006 article by Saville, using the standard regres-

sion model to test for conformity with Benford’s Law using the expected and ob-

served proportions of the first leading digits [17]. His model is as follows:

Yi =β0 +β1Xi +εi

where Yi is the observed proportion of the i th leading digit, Xi ’s are the known Ben-

ford probabilities, β0 and β1 are the intercept and slope parameters, and εi is the

random error term, with an expected value of 0. He then proposed jointly testing if

the intercept and slope differed from 0 and 1 respectively [17].

However, data following Benford’s Law would not be expected to fit the statistical

framework used in the ordinary least squares (OLS) regression model. The OLS model

assumes linearity, errors that are normally distributed with a mean of 0 and constant

variance, and observations, and therefore errors, that are independent of each other.

Since the proportions must sum to 1, our observations cannot be independent as

they are calculated from the observed proportions and as one increases another must

decrease. Due to the aforementioned issues, simulations were run at various sample

sizes to determine the true distribution of the β estimates for linear regression us-

ing the Inverse Benford model; issues with Saville’s model are discussed in detail in

Section 4.2. Ten thousand simulations were run for each sample size and the β es-

timates were plotted. The summary statistics are recorded in Table A.1. In addition,

the values of the 2.5th and 97.5th percentiles are recorded to be used as critical values

for two-sided hypothesis testing, along with the percentiles for the α= 0.01 and 0.10

levels of significance; these results are seen in Table A.5. This method was repeated

using regression through the origin, and the results are seen in Tables A.2 and A.6.

33

http://www.mcmaster.ca/


Master of Science– Amanda BOWMAN; McMaster University– Statistics

The simulation size of 10,000 was chosen due to the number of sample sizes to be

tested and, as a result, the time constraints. Therefore the critical values recorded are

approximate.

Due to the formula for the inverse, each leading digit must appear at least once for

this method to be used to test for conformity with Benford’s Law, since an observed

proportion of 0 for one digit will give a value of 0 in the denominator for the corre-

sponding Ui . Therefore, this test only works for larger datasets, which through sim-

ulations, was determined to be samples of size at least 200. The simulated β̂ values

are plotted in Figure 4.1. Since the correlation between the β0 and β1 values is ap-

proximately -0.977 for all sample sizes, the overall shape of the β0 and β1 plots are

almost reflections of each other. For small sample sizes, theβ distributions are highly

skewed and there appears to be a small second mode in the right tail.

While the aforementioned issue in (4.2) only appeared in the simulations for sam-

ples smaller than 200, the probability of Ui being undefined due to a denominator of

0 is greater than 0 at large sample sizes as well. In order to resolve this issue, we pro-

pose using the multivariate normal approximation of the multinomial distribution.

The vector of the estimated probabilities, p̂ = (p̂1, p̂2, ..., p̂9), are 1
n Multinomial(n,p),

where p is the vector of Benford proportions. Using the multivariate normal approx-

imation, p̂ ∼ 1
n MVN(np, Σ) where Σ is the k × k symmetric covariance matrix with

diagonal elements npi (1−pi ) and off-diagonal elements −npi p j where i 6= j . There-

fore, p̂ ∼MVN(p, Σ∗), where Σ∗ = 1
n2Σ, allowing us to rewrite equation 4.3 as:

U = 1

10p̂ −1

= 1

10MV N (p,Σ∗) −1
(4.4)
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FIGURE 4.1: Simulated β̂ distributions from the Inverse Benford Re-
gression
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This formulation removes the possibility of a denominator of 0, even if the proportion

of one of the leading digits is 0, allowing it to be utilized for all sample sizes and for a

wider variety of applications. Simulations were run to compare the critical values in

Table A.5 to those identified through running the simulations using the multivariate

normal approximation, and at the 5% level, the critical values were almost equiva-

lent. The same appears to be true for the inverse regression through the origin using

the multivariate normal approximation.

Simulations were run to determine the variability in the Ui values using the multi-

nomial and multivariate normal formulations, plotted in Figures 4.2 and 4.3. The

simulations both show heteroscedasticity, where, as the value of the leading digit in-

creases, the variation in the estimated values becomes larger. The points are skewed

to the right, and the plot using the multivariate normal approximation appears to

have a slightly greater variation of estimated values for the higher leading digits. To

compare summary statistics, Tables 4.1 and 4.2 contain the mean, median, and vari-

ance of the multinomial and multivariate normal forms respectively, at four sample

sizes. The variance for samples of size 500 and 1000 is slightly greater at the higher

leading digits using the multivariate normal approximation, as was seen when com-

paring Figures 4.2 and 4.3. However, excluding this, all three statistics from both ta-

bles are almost identical, showing that the multivariate normal approximation can

be successfully utilized here.
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FIGURE 4.2: Simulated Ui values from multinomial distribution with
Benford proportions for n=1000; N=10,000

FIGURE 4.3: Simulated Ui values from multivariate normal approxi-
mation for n=1000; N=10,000
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TABLE 4.1: Mean, median, and variance of simulated integer estimates
from a multinomial distribution with Benford proportions; N=10,000

Integer Values

n
Summary

Statistics
1 2 3 4 5 6 7 8 9

500 Mean 1.006 2.020 3.050 4.093 5.149 6.210 7.269 8.350 9.386

Median 1.005 2.001 3.026 4.042 5.083 6.093 6.999 8.195 8.950

Variance 0.009 0.059 0.182 0.414 0.840 1.443 2.338 3.372 4.867

1000 Mean 1.003 2.014 3.018 4.039 5.066 6.098 7.139 8.165 9.235

Median 1.000 2.001 2.998 3.996 5.013 5.995 6.999 8.025 9.160

Variance 0.005 0.028 0.085 0.202 0.372 0.623 1.023 1.536 2.175

5000 Mean 1.000 2.003 3.006 4.006 5.010 6.018 7.024 8.034 9.044

Median 0.999 2.001 3.004 4.005 4.999 6.014 6.999 8.025 9.033

Variance 0.001 0.005 0.017 0.037 0.071 0.117 0.184 0.276 0.397

10,000 Mean 1.000 2.001 3.002 4.005 5.009 6.006 7.009 8.021 9.025

Median 1.000 1.998 3.001 4.000 5.006 5.995 6.999 8.009 9.012

Variance 0.000 0.003 0.008 0.019 0.034 0.060 0.092 0.133 0.190
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TABLE 4.2: Mean, median, and variance of simulated integer estimates
from the multivariate normal approximation; N=10,000

Integer Values

n
Summary

Statistics
1 2 3 4 5 6 7 8 9

500 Mean 1.007 2.024 3.053 4.084 5.135 6.216 7.297 8.346 9.453

Median 1.002 1.999 2.999 3.991 4.995 6.024 7.007 7.983 8.994

Variance 0.009 0.060 0.194 0.434 0.857 1.532 2.654 4.140 5.680

1000 Mean 1.004 2.012 3.026 4.041 5.063 6.104 7.137 8.156 9.183

Median 1.000 2.001 2.998 3.994 4.992 6.006 7.012 7.981 8.971

Variance 0.005 0.029 0.091 0.201 0.387 0.661 1.062 1.594 2.276

5000 Mean 1.001 2.002 3.005 4.008 5.016 6.018 7.018 8.029 9.034

Median 1.000 2.000 2.998 3.998 5.002 6.000 6.996 7.996 8.992

Variance 0.001 0.006 0.017 0.038 0.070 0.119 0.186 0.269 0.389

10,000 Mean 1.000 2.000 3.002 4.005 5.007 6.007 7.012 8.017 9.027

Median 1.000 1.999 2.999 3.999 5.002 6.002 7.000 7.999 9.006

Variance 0.000 0.003 0.008 0.019 0.036 0.059 0.092 0.137 0.189

In addition, for the smaller sample sizes, the median, being more robust than the

mean, deviates only slightly from the expected integer values. While the probability

distribution function of Ui is complicated analytically, and therefore finding the ex-

pected value posed problems, we were able to derive the formulation of the median.

Using (4.3) and the definition that the median is any real number that satisfies both

P (Ui ≤ medi an) ≥ 1
2 and P (Ui ≥ medi an) ≥ 1

2 , by letting 1/m represent the median,

we have:
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P

[
Ui ≥ 1

m

]
= 1

2

P

[
1

10Xi −1
≥ 1

m

]
= 1

2

P
[
10Xi −1 ≤ m

] = 1

2

P
[
10Xi ≤ m +1

] = 1

2

P

[
Xi ≤ log(m +1)

log10

]
= 1

2

using

Z = Xi −pi√
pi (1−pi )

n

∼ N (0,1)

P

Z ≤
log(m+1)
log 10−pi√

pi (1−pi )
n

 = 1

2

However,

log(m +1)

log10
= pi

and so,

log(m +1) = pi log10

m +1 = 10pi
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But

pi = log

(
1+ 1

i

)
so,

10pi = 1+ 1

i

m = 1

i
1

m
= i

Therefore, as the simulations showed, the median of Ui is i .

The heteroscedasticity seen in Figures 4.2 and 4.3, which can numerically be seen

in Tables 4.1 and 4.2, suggests the need for weighted least squares regression to ac-

count for the increase in variation at larger values. The weights used are the inverse of

the variance simulated using the multinomial approximation, and the critical values

for this can be found in Table A.9.

4.2 Issues in Saville’s Regression Analysis

As previously discussed, the model utilized by Saville to test for conformity with Ben-

ford’s Law using the expected and observed proportions of leading digits is as follows:

Yi =β0 +β1Xi +εi

where Yi is the observed proportion of the i th leading digit, Xi ’s are the known Ben-

ford probabilities, β0 and β1 are the intercept and slope parameters, and εi is the
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random error term, with an expected value of 0. The model was applied individu-

ally to datasets from 34 companies on the Johannesburg Stock Exchange by jointly

testing if the intercept and slope differed from 0 and 1 respectively [17]. However, as

mentioned in Section 4.1, the Benford model does not meet the assumptions of OLS

regression and so his method was not statistically sound. One large violation of this

is the lack of independence between observations. Saville used the observed pro-

portions as his independent variable, however, since the proportions must sum to 1,

they are directly related to each other since as one value decreases, another must in-

crease. Furthermore, Saville jointly tests the hypotheses for the slope and intercept.

In this case, however, these are directly related to each other, as testing that the in-

tercept is at the origin also falls on the 1 to 1 line for which we are testing the slope

for. Both Nigrini and Kossovsky critiqued his method and showed that it can not be

utilized as a measure of conformity through examples [9, 13]. Kossovsky also derived

the relationship between the intercept and slope, where intercept=(1-slope)/9 for the

regression line [9].

In addition to the above, there appears to be some issues with the datasets that Sav-

ille used, as he mixed manipulatable and non-manipulatable numbers. In account-

ing, manipulatable numbers are defined as those easily manipulated, including a

company’s quarterly or annual profits and a taxpayer’s taxable income, whereas non-

manipulatable are values such as totals, subtotals, and numbers from tables or other

pages [13]. He also initially classified each company as either errant or compliant,

with the errant group being companies that had committed or were alleged to have

committed accounting fraud and had their shares suspended or delisted. Nigrini

states that the comparison is more between small companies that are doing poorly

and large, successful companies, rather than errant and compliant companies[13].
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Both Nigrini and Kossovsky note that the method used by Saville will reject conform-

ing datasets and is believed to have a large error margin[9, 13].

In order to support our belief that the Benford model does not follow the OLS as-

sumptions that Saville used, we simulated 10,000 samples from a multinomial distri-

bution with Benford proportions to determine the rejection rate at three significance

levels: α=0.01, 0.05, and 0.10. The results are shown in Table 4.3. From these results,

TABLE 4.3: Rejection rate of Saville’s Benford Regression using OLS crit-
ical values at three α levels; N=10,000

n α=0.01 α=0.05 α=0.1
50 0.0339 0.1226 0.2025
100 0.0320 0.1198 0.2064
500 0.0324 0.1224 0.2145
1000 0.0330 0.1232 0.2046
2000 0.0298 0.1154 0.2097
4000 0.0324 0.1247 0.2030
5000 0.0326 0.1280 0.2123
10,000 0.0332 0.1260 0.2055

we can see that following Saville’s method, and therefore using the OLS critical values,

the Type I error rate is, on average, at least twice the significance level for α=0.05 and

0.10, and three times as large for α=0.01. Accordingly, the β values are not normally

distributed and the OLS assumptions do not hold. Using this method and testing for

a regression line with a slope of 1 and an intercept of 0, the β values for the intercept

and slope become highly correlated since they fall on the same 1 to 1 line. Due to

this, we decided to set the intercept to 0 and examine Saville’s model using regres-

sion through the origin (RTO). While RTO is seen as a controversial method and can

introduce bias into the model, we felt it was worth examining since 1 is the small-

est possible first leading digit and so the line should not be able to vary at any lower

values. Table 4.4 shows the results of the Type I error simulation for this model. It
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TABLE 4.4: Rejection rate of Saville’s Benford Regression through the
origin using OLS critical values at three α levels; N=10,000

n α=0.01 α=0.05 α=0.1
50 0.00 0.00 0.0003
100 0.00 0.00 0.0005
500 0.00 0.00 0.0003
1000 0.00 0.00 0.0001
2000 0.00 0.00 0.0001
4000 0.00 0.00 0.0004
5000 0.00 0.00 0.0004
10,000 0.00 0.00 0.0001

can be seen that the rejection rate is essentially 0 for all three α levels, showing the

regression assumptions do not hold here either.

Following this, we ran simulations using Saville’s model, both in it’s original form

and regressing through the origin, to determine the true distribution of the β values,

as was done with the inverse Benford regression. The results of the distribution of

the β values are presented in Tables A.3 and A.4. Table A.3 shows that the correlation

between the β̂0 and β̂1 values is -1 for all sample sizes, which gives further evidence

to the fact that one does not have to simultaneously test both hypotheses as Saville

was doing. Due to the nature of the data, where the proportions must sum to 1, it

would not be possible to get a slope of 1 and an intercept that differs from 0. Table

A.1 provided the correlation between the β values for our proposed inverse regres-

sion model, and for all sample sizes the correlation was approximately -0.977, which,

while not quite -1, also suggests we do not need to test simultaneous hypotheses but

rather testing the slope alone should be sufficient. Appendix A contains the approxi-

mate critical values for all of the regression models atα=0.01, 0.05, and 0.10 in Tables

A.5 to A.9.
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4.2.1 Power

Using the same proportions as in Table 3.6, the power of each of the five regression

methods was tested at various sample sizes. This probability set was chosen since

it provides similar but not exactly Benford values. As previously mentioned, it falls

within the marginally acceptable conformity range when using the MAD test statistic.

The rejection rates for the weighted inverse Benford regression are included on Table

4.5, and the results for the other four regression methods are included in Appendix A

in Tables A.10 to A.13 due to the similarity of all 5 tables. Since we want a test statistic

that is not overly sensitive to small deviations, the regression techniques provide a

lower rejection rate than seen using MAD in 3.6, at least for these proportions.

TABLE 4.5: Rejection rate of Weighted Inverse Benford Regression
simulated from a distribution with proportions {31.755, 16.11, 11.015,

8.287, 10.163, 6.028, 4.982, 5.037, 6.624}; N=10,000

n α=0.01 α=0.05 α=0.1
200 0 0 0
500 0 0 0
1000 0 0 0
2000 0 0 0
4000 0 0.0001 0.0001
5000 0.0001 0.0001 0.0001
10,000 0.0001 0.0001 0.0001

4.2.2 Applied Examples

In this section, we look at eight datasets and test for conformity with Benford’s Law

using the five regression models, Pearson’s χ2, MAD, and SSD. For the regression

models, the results using OLS assumptions were also provided for the comparison

45

http://www.mcmaster.ca/


Master of Science– Amanda BOWMAN; McMaster University– Statistics

of the model Saville suggested, to the same model using the critical values that fit

the true distribution, at the 5% level. The datasets used were: the first 1002 terms

of the Fibonacci sequence, the first 1002 terms of the powers of two and the pow-

ers of 100.05, the Sino Forest dataset which contained the numbers from Sino Forest

Corporation’s 2010 financial report, two datasets made from the sets of proportions

used by Kossovsky to critique Saville’s regression model [9], and two datasets used in

Nigrini’s 2012 book, which were the 2005 journal entries in a company’s accounting

system and a collection of the daily returns for Apple [13]. Results are presented in

Tables 4.6 through 4.13. All five regression models matched the test statistic results

for the Fibonacci sequence, powers of 2, the Sino Forest data, and the second set of

Kossovsky’s proportions. It must be noted that while Saville’s regression accepts con-

formity to Benford’s Law here, this is only due to this identification of the new critical

values through the previous run simulations. Saville used the OLS model in his pa-

per, and therefore adopts the assumption of normally distributed β values, and that

method rejects conformity here [17].

Disagreements between the different regression models and the test statistics are

seen for both the powers of 100.05 and the first set of Kossovsky’s proportions. For the

powers of 100.05, both Pearson’s Goodness-of-Fit test and MAD show nonconformity,

and while the SSD statistic has a relatively high value, it shows marginal conformity.

Using the regression methods, only the inverse Benford regression model and the

weighted inverse regression model identified nonconformity with Benford’s Law. In

the first set of Kossovsky’s proportion, which he used in his work to show that Sav-

ille’s method would accept data that strongly deviated from Benford’s Law, the same

result was seen. All three test statistics show nonconformity; however, both Saville’s
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regression and his model regressing through the origin show conformity. All three in-

verse regression models identified that the data did not follow Benford’s Law, which

shows improvements upon Saville’s model even when using critical values from the

true distribution.

The journal entry and Apple returns datasets apply the conformity tests to real data

of larger sample sizes. The journal entry data has 154,935 observations and shows

where the χ2 goodness of fit test fails. MAD and SSD show close and acceptably close

levels of conformity respectively, while the χ2 test shows nonconformity. This is ex-

pected for such a large sample size, since it is known that the χ2 becomes overly sen-

sitive as the sample size increases. The results of the regression tests are interesting,

as both tests following Saville’s model reject conformity, as does the weighted inverse

Benford regression and inverse Benford through the origin. Only the inverse Ben-

ford provides conformity results. The Apple returns data, with sample size 6799, also

showed the issues with the χ2 test statistic which rejected the null hypothesis, while

both MAD and SSD showed acceptably close conformity. All 5 regression tests gave

results of nonconformity as well. The proportions of leading digits for this data are

{0.30099, 0.20186, 0.13758, 0.10063, 0.074196, 0.06819, 0.04566, 0.036648, 0.03424},

which are very close to the actual Benford probabilities, showing some issues that

exist with the regression methods. It should be noted that simulations were run to

calculate the approximate critical values for both sample sizes of 154,935 and 6799 to

have accurate results. While Tables 4.6 through 4.13 look at a 5% significance level for

the regression methods, as mentioned in Section 3.3.3, the MAD test statistic is using

an α of approximately 0 for these larger sample sizes; therefore, one can not make a

fair comparison between these methods. The critical values for these sample sizes

were calculated for smaller significance levels, such as α=0.005 and 0.0001, using the
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weighted inverse Benford regression. While the method still rejected conformity in

both cases, the critical values became closer to the estimated slope and intercept,

and so an increase in the number of simulations run would provide more accurate

critical values and could change the result seen.

TABLE 4.6: Conformity tests for the Fibonacci Sequence; n=1002

Test Statitics Conform to Benford’s Law

Chi-square p-value 0.9999995 close conformity

MAD 0.0007385 close conformity

SSD 0.0710728 close conformity

Regression Type β̂0 Estimate β̂1 Estimate Conform to Benford’s Law

Using OLS Using New Criteria

Inverse Benford Regression -0.005938 1.002407 yes yes

Inverse Benford Regression Through the Origin 1.001469 yes yes

Weighted Inverse Benford Regression -0.004310 1.002113 yes yes

Saville’s Benford Regression -0.0002271 1.0020438 yes yes

Saville’s Regression Through the Origin 1.0006713 yes yes

TABLE 4.7: Conformity tests for the Powers of 2; n=1002

Test Statitics Conform to Benford’s Law

Chi-square p-value 0.9999983 close conformity

MAD 0.00079596 close conformity

SSD 0.09970152 close conformity

Regression Type β̂0 Estimate β̂1 Estimate Conform to Benford’s Law

Using OLS Using New Criteria

Inverse Benford Regression -0.004204 1.01247 yes yes

Inverse Benford Regression Through the Origin 1.005836 yes yes

Weighted Inverse Benford Regression -0.005695 1.002832 yes yes

Saville’s Benford Regression -0.0003138 1.002824 yes yes

Saville’s Regression Through the Origin 1.0009275 yes yes
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TABLE 4.8: Conformity tests for the Sino Forest dataset; n=772

Test Statitics Conform to Benford’s Law

Chi-square p-value 0.4682064 conformity

MAD 0.00659813 acceptable conformity

SSD 7.08275 acceptable conformity

Regression Type β̂0 Estimate β̂1 Estimate Conform to Benford’s Law

Using OLS Using New Criteria

Inverse Benford Regression 0.5229 0.85 yes yes

Inverse Benford Regression Through the Origin 0.93251 yes yes

Weighted Inverse Benford Regression 0.04945 0.98818 yes yes

Saville’s Benford Regression 0.005166 0.953505 yes yes

Saville’s Regression Through the Origin 0.98473 yes yes

TABLE 4.9: Conformity tests for Powers of 100.05; n=1002

Test Statitics Conform to Benford’s Law

Chi-square p-value 1.902427e-12 nonconformity

MAD 0.02037764 nonconformity

SSD 60.02087 marginal conformity

Regression Type β̂0 Estimate β̂1 Estimate Conform to Benford’s Law

Using OLS Using New Criteria

Inverse Benford Regression 1.0704 0.8182 yes no

Inverse Benford Regression Through the Origin 0.98717 yes yes

Weighted Inverse Benford Regression -0.1146 1.1535 yes no

Saville’s Benford Regression 0.006046 0.945583 yes yes

Saville’s Regression Through the Origin 0.98213 yes yes
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TABLE 4.10: Conformity tests for {21.7%,36.8%,9.6%,14.5%,1.0%,1.0%,3.4%,6.5%,5.5%};
n=1000

Test Statitics Conform to Benford’s Law

Chi-square p-value 8.418438e-79 nonconformity

MAD 0.05846416 nonconformity

SSD 559.2187 nonconformity

Regression Type β̂0 Estimate β̂1 Estimate Conform to Benford’s Law

Using OLS Using New Criteria

Inverse Benford Regression 5.3442 1.6112 yes no

Inverse Benford Regression Through the Origin 1.9908 yes no

Weighted Inverse Benford Regression -2.085 3.134 yes no

Saville’s Benford Regression 0.0000156 0.999986 yes yes

Saville’s Regression Through the Origin 0.99996 yes yes

TABLE 4.11: Conformity tests for {30.4%,17.8%,12.6%,9.7%,7.9%,6.6%,5.6%,5.0%,4.4%};
n=1000

Test Statitics Conform to Benford’s Law

Chi-square p-value 0.9999928 close conformity

MAD 0.00134 close conformity

SSD 0.2291279 close conformity

Regression Type β̂0 Estimate β̂1 Estimate Conform to Benford’s Law

Using OLS Using New Criteria

Inverse Benford Regression -0.146443 1.048685 no yes

Inverse Benford Regression Through the Origin 1.025563 no yes

Weighted Inverse Benford Regression -0.035870 1.016932 no yes

Saville’s Benford Regression -0.0021241 1.019117 no yes

Saville’s Regression Through the Origin 1.006279 yes yes
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TABLE 4.12: Conformity tests for the Journal Entry data (Nigrini 5.16
[13]); n=154,935

Test Statitics Conform to Benford’s Law

Chi-square p-value 3.200135e-54 nonconformity

MAD 0.00464314 close conformity

SSD 4.826008 acceptably close conformity

Regression Type β̂0 Estimate β̂1 Estimate Conform to Benford’s Law

Using OLS Using New Criteria

Inverse Benford Regression 0.04682 1.02009 yes yes

Inverse Benford Regression Through the Origin 1.02748 yes no

Weighted Inverse Benford Regression -0.15085 1.07305 no no

Saville’s Benford Regression -0.008274 1.074470 yes no

Saville’s Regression Through the Origin 1.02446 yes no

TABLE 4.13: Conformity tests for Apple Returns data (Nigrini 11.16
[13]); n=6799

Test Statitics Conform to Benford’s Law

Chi-square p-value 3.309764e-08 non-conformity

MAD 0.009638653 acceptably close conformity

SSD 13.59194 acceptably close conformity

Regression Type β̂0 Estimate β̂1 Estimate Conform to Benford’s Law

Using OLS Using New Criteria

Inverse Benford Regression -1.4816 1.4746 no no

Inverse Benford Regression Through the Origin 1.24071 no no

Weighted Inverse Benford Regression -0.1702 1.1014 yes no

Saville’s Benford Regression -0.008528 1.076749 yes no

Saville’s Regression Through the Origin 1.02521 yes no
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Chapter 5

Conclusions

A remarkable distribution in the statistical literature is Benford’s law. This law de-

scribes a phenomenon wherein the leading digits of a set of naturally occurring num-

bers follows a decreasing logarithmic trend. In the present thesis, we examined three

conformity tests by applying them to mathematics and statistics multiple choice test

banks, and by using more in depth simulation studies. While the full test bank dataset

and its subsets did not conform to Benford’s Law using Pearson’s χ2 goodness of fit

test, the full dataset, both with and without the single digit answers, and the full

distractors had marginally acceptable conformity in the first digit when using MAD

and SSD. The distractors without the single digit answers had acceptable confor-

mity, again when using MAD and SSD. When testing the first two digits, both the

χ2 and MAD resulted in non-conformity, while SSD produced all values within the

marginally acceptable conformity range. We examined the power of theχ2 test statis-

tic and the two simultaneous confidence intervals, Goodman and Sison & Glaz, at the

sample size of our dataset. Since the confidence intervals and χ2 statistic have signif-

icance levels, we were able to compare the accuracy, which was as expected.
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Although the test bank questions did not conform to Benford’s Law for both the cor-

rect answers and the distractors, as was seen in the study done by Slepkov et al. on

physics test banks, it is worth noting that Selpkov only examined the first leading

digits. Nigrini states that the first digit test is at too high of a level to be utilized in a

thorough data analysis, and significant deviations can be present in the later digits

[13]. So while the physics multiple choice test bank questions conformed in the first

digit, an investigation into the first two or second digits may result in non-conformity,

as was seen in both the present study and Nigrini’s examination of accounting test

banks [12].

The MAD statistic was examined at various sample sizes to develop a statistical frame-

work in the context of hypothesis testing. Through simulations to determine the

power of the test, it was observed that the α level adjusts as the number of obser-

vations changes since the critical values are fixed. By large sample sizes, where this

test is often applied, the α value is essentially 0. In addition, the test statistic can be

viewed at three separate hypothesis tests as one can test if the observed MAD value

falls below the upper limit of any of the three conformity ranges.

An inverse Benford regression procedure was proposed as an alternative conformity

test in an effort to form a test with statistical framework that was not as sensitive to

slight deviations as the χ2 goodness of fit test at large sample sizes. The approximate

critical values were simulated, both when including and excluding an intercept term.

Additionally, the regression method suggested by Saville [17] was examined, showing

that the model does not follow the OLS assumption that he utilized, and critical val-

ues reflecting the true distribution of the β estimates were found. As the residuals of

the inverse regression method were heteroscedastic, we proposed using weighted re-

gression as the model. Applied examples were utilized to compare the five regression
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methods with the three test statistics. While the inverse regression models slightly

outperformed the χ2 test statistic, there appear to some similar asymptotic issues

present at larger sample sizes.

Overall, our contributions included the proposal of the aforementioned inverse Ben-

ford regression model, the thorough examination of the MAD test statistic and the

α levels associated with treating it as a hypothesis test, and further justification that

Saville’s regression model does not meet the OLS assumptions. We also showed ap-

proximate critical values for all 5 regression models.

Due to the computational time required to run the critical value simulations, the ta-

bles provided are only approximate. Future work could explore running 100,000 or

more simulations to get more accurate critical values. In addition, one could extend

the weighted inverse Benford regression model to the first two digits, which may have

improved performance at large sample sizes.
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Appendix A

Chapter 4 Tables

TABLE A.1: Summary statistics for Inverse Benford Regression;
N=10,000

n Estimate Mean Standard Deviation Correlation

200 β̂0 -0.299 1.357 -0.978

β̂1 1.157 0.405

500 β̂0 -0.103 0.636 -0.977

β̂1 1.055 0.186

1000 β̂0 -0.049 0.417 -0.977

β̂1 1.027 0.121

2000 β̂0 -0.022 0.282 -0.976

β̂1 1.013 0.082

4000 β̂0 -0.016 0.199 -0.977

β̂1 1.008 0.058

5000 β̂0 -0.008 0.178 -0.977

β̂1 1.005 0.051

10,000 β̂0 -0.004 0.123 -0.976

β̂1 1.002 0.036
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TABLE A.2: Summary statistics for Inverse Benford Regression through
the Origin; N=10,000

n Estimate Mean Standard Deviation

200 β̂1 1.076 0.196

500 β̂1 1.037 0.088

1000 β̂1 1.018 0.058

2000 β̂1 1.009 0.040

4000 β̂1 1.005 0.028

5000 β̂1 1.003 0.025

10,000 β̂1 1.002 0.017
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TABLE A.3: Summary statistics for Saville’s Benford Regression;
N=10,000

n Estimate Mean Standard Deviation Correlation

50 β̂0 0.0004669 0.028 -1

β̂1 0.9958 0.254

100 β̂0 0.00004 0.020 -1

β̂1 0.9996 0.180

500 β̂0 -0.00002412 0.009 -1

β̂1 1.000 0.079

1000 β̂0 -0.00001818 0.006 -1

β̂1 1.000 0.056

2000 β̂0 -0.00001587 0.005 -1

β̂1 0.9999 0.041

4000 β̂0 -0.00001334 0.003 -1

β̂1 1.000 0.028

5000 β̂0 -0.0000574 0.003 -1

β̂1 1.001 0.025

10,000 β̂0 -0.000006261 0.002 -1

β̂1 1.000 0.018
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TABLE A.4: Summary statistics for Saville’s Benford Regression through
the Origin; N=10,000

n Estimate Mean Standard Deviation

50 β̂1 1.000 0.083

100 β̂1 1.000 0.059

500 β̂1 0.999 0.026

1000 β̂1 1.000 0.019

2000 β̂1 1.000 0.013

4000 β̂1 1.000 0.009

5000 β̂1 1.000 0.008

10,000 β̂1 1.000 0.006
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TABLE A.5: Critical values for Inverse Benford Regression; N=10,000

α=0.01 α=0.05 α=0.1

n Estimate 0.5% 99.5% 2.5% 97.5% 5% 95%

200 β̂0 −5.355 1.937 −3.520 1.460 −2.591 1.239

β̂1 0.543 2.765 0.652 2.124 0.713 1.832

500 β̂0 −2.327 1.209 −1.516 0.942 −1.218 0.792

β̂1 0.674 1.712 0.759 1.475 0.796 1.383

1000 β̂0 −1.316 0.880 −0.927 0.691 −0.764 0.587

β̂1 0.763 1.397 0.816 1.285 0.845 1.236

2000 β̂0 −0.822 0.634 −0.608 0.487 −0.498 0.412

β̂1 0.827 1.248 0.865 1.183 0.885 1.153

4000 β̂0 −0.565 0.451 −0.426 0.359 −0.352 0.306

β̂1 0.872 1.167 0.900 1.125 0.914 1.103

5000 β̂0 −0.492 0.417 −0.375 0.322 −0.306 0.276

β̂1 0.884 1.146 0.909 1.109 0.923 1.091

10,000 β̂0 −0.349 0.307 −0.253 0.233 −0.212 0.194

β̂1 0.914 1.103 0.934 1.074 0.944 1.063
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TABLE A.6: Critical values for Inverse Benford Regression through the
Origin; N=10,000

α=0.01 α=0.05 α=0.1

n Estimate 0.5% 99.5% 2.5% 97.5% 5% 95%

200 β̂1 0.810 2.025 0.855 1.579 0.883 1.451

500 β̂1 0.858 1.326 0.892 1.234 0.910 1.196

1000 β̂1 0.889 1.197 0.917 1.144 0.930 1.121

2000 β̂1 0.920 1.124 0.938 1.093 0.947 1.078

4000 β̂1 0.939 1.079 0.953 1.060 0.961 1.050

5000 β̂1 0.944 1.070 0.956 1.053 0.964 1.045

10,000 β̂1 0.959 1.049 0.969 1.037 0.974 1.031
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TABLE A.7: Critical values for Saville’s Benford Regression; N=10,000

α=0.01 α=0.05 α=0.1

n Estimate 0.5% 99.5% 2.5% 97.5% 5% 95%

200 β̂0 −0.037 0.035 −0.027 0.027 −0.023 0.023

β̂1 0.681 1.329 0.757 1.247 0.793 1.206

500 β̂0 −0.023 0.022 −0.017 0.017 −0.015 0.015

β̂1 0.800 1.203 0.844 1.157 0.869 1.133

1000 β̂0 −0.016 0.016 −0.012 0.012 −0.010 0.010

β̂1 0.856 1.143 0.893 1.110 0.908 1.092

2000 β̂0 −0.011 0.011 −0.009 0.009 −0.007 0.007

β̂1 0.898 1.102 0.921 1.078 0.935 1.065

4000 β̂0 −0.008 0.008 −0.006 0.006 −0.005 0.005

β̂1 0.928 1.073 0.946 1.054 0.954 1.045

5000 β̂0 −0.007 0.007 −0.005 0.006 −0.005 0.005

β̂1 0.934 1.064 0.950 1.049 0.959 1.041

10000 β̂0 −0.005 0.005 −0.004 0.004 −0.003 0.003

β̂1 0.955 1.046 0.965 1.035 0.971 1.030
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TABLE A.8: Critical values for Saville’s Benford Regression through the
Origin; N=10,000

α=0.01 α=0.05 α=0.1

n Estimate 0.5% 99.5% 2.5% 97.5% 5% 95%

200 β̂1 0.892 1.107 0.918 1.081 0.931 1.068

500 β̂1 0.936 1.069 0.949 1.052 0.957 1.044

1000 β̂1 0.952 1.048 0.964 1.037 0.969 1.030

2000 β̂1 0.965 1.034 0.974 1.026 0.978 1.022

4000 β̂1 0.976 1.023 0.982 1.018 0.985 1.015

5000 β̂1 0.978 1.021 0.983 1.016 0.986 1.014

10000 β̂1 0.985 1.015 0.988 1.011 0.990 1.010
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TABLE A.9: Critical values for Weighted Inverse Benford Regression;
N=10,000

α=0.01 α=0.05 α=0.1

n Estimate 0.5% 99.5% 2.5% 97.5% 5% 95%

200 β̂0 −0.832 0.806 −0.639 0.557 −0.552 0.443

β̂1 0.677 1.568 0.774 1.421 0.824 1.358

500 β̂0 −0.464 0.457 −0.355 0.314 −0.307 0.256

β̂1 0.819 1.266 0.876 1.199 0.900 1.173

1000 β̂0 −0.309 0.303 −0.243 0.224 −0.206 0.185

β̂1 0.873 1.166 0.906 1.129 0.924 1.111

2000 β̂0 −0.219 0.212 −0.166 0.157 −0.141 0.132

β̂1 0.908 1.111 0.932 1.085 0.944 1.073

4000 β̂0 −0.150 0.144 −0.116 0.111 −0.099 0.091

β̂1 0.937 1.074 0.951 1.058 0.960 1.049

5000 β̂0 −0.130 0.135 −0.100 0.099 −0.086 0.082

β̂1 0.940 1.064 0.956 1.049 0.964 1.042

10,000 β̂0 −0.094 0.095 −0.073 0.071 −0.061 0.059

β̂1 0.957 1.045 0.968 1.036 0.974 1.030
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TABLE A.10: Rejection rate of Saville’s Benford Regression simulated
from a distribution with proportions {31.755, 16.11, 11.015, 8.287,

10.163, 6.028, 4.982, 5.037, 6.624}; N=10,000

n α=0.01 α=0.05 α=0.1

200 0 0 0

500 0 0.0001 0.0001

1000 0 0 0

2000 0 0 0

4000 0 0 0.0001

5000 0 0 0

10,000 0 0 0.0001

TABLE A.11: Rejection rate of Saville’s Benford Regression through the
Origin simulated from a distribution with proportions {31.755, 16.11,

11.015, 8.287, 10.163, 6.028, 4.982, 5.037, 6.624}; N=10,000

n α=0.01 α=0.05 α=0.1

200 0 0 0

500 0 0 0

1000 0 0 0

2000 0 0 0.0001

4000 0 0.0001 0.0001

5000 0 0 0

10,000 0 0 0.0001
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TABLE A.12: Rejection rate of Inverse Benford Regression through the
Origin simulated from a distribution with proportions {31.755, 16.11,

11.015, 8.287, 10.163, 6.028, 4.982, 5.037, 6.624}; N=10,000

n α=0.01 α=0.05 α=0.1

200 0 0 0

500 0 0 0

1000 0 0 0.0001

2000 0 0 0

4000 0 0 0.0001

5000 0 0.0001 0.0001

10,000 0.0001 0.0001 0.0001

TABLE A.13: Rejection rate of Inverse Benford Regression simulated
from a distribution with proportions {31.755, 16.11, 11.015, 8.287,

10.163, 6.028, 4.982, 5.037, 6.624}; N=10,000

n α=0.01 α=0.05 α=0.1

200 0.0001 0.0001 0.0001

500 0 0.0001 0.0001

1000 0 0 0

2000 0.0001 0.0001 0.0001

4000 0.0001 0.0001 0.0001

5000 0.0001 0.0001 0.0001

10,000 0.0001 0.0001 0.0001
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