
An Efficient Implementation of a Robust Clustering

Algorithm

AN EFFICIENT IMPLEMENTATION OF A ROBUST

CLUSTERING ALGORITHM

BY

MARTIN BLOSTEIN, B.Sc.

a thesis

submitted to the department of mathematics & statistics

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Science

c⃝ Copyright by Martin Blostein, July 2016

All Rights Reserved

Master of Science (2016) McMaster University

(Statistics) Hamilton, Ontario, Canada

TITLE: An Efficient Implementation of a Robust Clustering Al-

gorithm

AUTHOR: Martin Blostein

B.Sc., (Mathematics and Statistics)

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Paul D. McNicholas

NUMBER OF PAGES: xii, 59

ii

To my parents, Steven and Dorothea Blostein, for their constant support and

enthusiasm for all of my endeavours.

Abstract

Clustering and classification are fundamental problems in statistical and machine

learning, with a broad range of applications. A common approach is the Gaussian

mixture model, which assumes that each cluster or class arises from a distinct Gaus-

sian distribution. This thesis studies a robust, high-dimensional extension of the

Gaussian mixture model that automatically detects outliers and noise, and a compu-

tationally efficient implementation thereof.

The contaminated Gaussian distribution is a robust elliptic distribution that al-

lows for automatic detection of “bad points”, and is used to make robust the usual

factor analysis model. In turn, the mixtures of contaminated Gaussian factor an-

alyzers (MCGFA) algorithm allows high-dimesional, robust clustering, classification

and detection of bad points. A family of MCGFA models is created through the

introduction of different constraints on the covariance structure. A new, efficient

implementation of the algorithm is presented, along with an account of its develop-

ment. The fast implementation permits thorough testing of the MCGFA algorithm,

and its performance is compared to two natural competitors: parsimonious Gaussian

mixture models (PGMM) and mixtures of modified t factor analyzers (MMtFA). The

algorithms are tested systematically on simulated and real data.

iv

Acknowledgements

First, I thank my supervisor Dr. Paul McNicholas for his guidance in the completion

of this thesis and the opportunities he has provided for me as a graduate student

at McMaster. It was Dr. McNicholas who opened my eyes to the field of statistical

learning, and model-based clustering and classification in particular. He is also an

invaluable source of career advice, both academic and otherwise.

In addition, I thank Dr. Antonio Punzo of the University of Catania. Dr. Punzo

provided feedback and testing of my computational implementations, as well as a

plan for how to proceed with my research.

Dr. Narayanaswamy Balakrishnan, Associate Chair of Statistics at McMaster,

helped me immensely to prepare for the M.Sc. Statistics program coming from a

background in mathematics. Dr. Balakrishnan is a phenomenal resource for all things

statistical and his course in Biostatistics helped peak my interest in that field.

I thank Dr. Petar Jevtic and Dr. Bartok Protas for serving on my thesis committee

along with Dr. McNicholas. My defence was a very enjoyable experience due the

insightful comments, corrections and discussion provided by each committee member.

My colleagues and classmates made my time as a graduate student at McMaster

greatly enjoyable, and I thank them all for their support and company.

v

Contents

Abstract iv

Acknowledgements v

1 Background 1

1.1 Finite Mixture Models . 1

1.2 Clustering and Classification . 1

1.2.1 Clustering . 2

1.2.2 Classification . 3

1.2.3 Full and Semi-Supervision . 4

1.3 Model-Based Clustering and Classification 4

1.3.1 Gaussian Mixtures Modelling and Alternatives 5

1.4 Mixture of Factor Analyzers Model 6

1.5 Parsimonious Gaussian Mixture Models 8

1.6 The Mixtures of Modified t Factor Analyzers Model 11

2 The MCGFA Model 13

2.1 The Contaminated Gaussian Distribution 13

2.2 Probabilistic Model . 14

vi

2.2.1 Model Selection . 15

2.3 Parameter Estimation Algorithms . 16

2.4 AECM Algorithm for the MCGFA Model 17

2.4.1 First cycle . 18

2.4.2 Second cycle . 20

2.4.3 The Woodbury Identity . 22

2.4.4 Convergence Criterion . 22

3 Implementation 24

3.1 Parallelization . 24

3.2 Profiling . 27

4 Performance & Evaluation 33

4.1 Efficiency of Implementation . 34

4.1.1 Serial Implementation . 35

4.2 Parallel Implementation . 37

4.3 Simulated Data . 40

4.3.1 Gaussian Clusters . 41

4.3.2 Contaminated Gaussian Clusters 42

4.3.3 t-distributed Clusters . 43

4.3.4 Gaussian Clusters with Uniform Noise 44

4.3.5 Gaussian Clusters with One Severe Outlier 46

4.4 Real Data Analysis . 47

4.4.1 Breast Cancer Wisconsin Data Set 47

4.4.2 Wine Data . 48

vii

4.4.3 AIS Data . 50

5 Conclusions 53

viii

List of Tables

1.1 Eight parsimonious covariance structures of the PGMM family. 9

1.2 The twelve parsimonious covariance structures of the EPGMM family,

with PGMM equivalencies. 11

3.1 Profiling results for original code, before any improvements. 28

3.2 Profiling results for the first code revision, avoiding redundant Mahalanobis-

distance updates. 28

3.3 The profiling results for the second code revision, with analytical up-

dates of α. 29

3.4 The profiling results the third code revision, with more efficient updates

to the sample covariance matrix S. 30

3.5 The profiling results for the fourth and final code revision, with more

efficient Mahalanobis distance updates. 31

4.1 Running time of MCGFA implementations in seconds. 36

4.2 Clustering performance on Gaussian clusters. 41

4.3 Model selection performance of mixtures of factor analyzer models on

Gaussian clusters . 41

4.4 Clustering performance of mixtures of factor analyzer models on con-

taminated Gaussian clusters. 42

ix

4.5 Model selection performance of mixtures of factor analyzer models on

contaminated Gaussian clusters. 42

4.6 Clustering performance of factor analyzer models on t-distributed clus-

ters. 43

4.7 Model selection performance of mixtures of factor analyzer models on

t-distributed clusters. 43

4.8 Clustering performance of mixtures of factor analyzer models on Gaus-

sian clusters with uniform noise. 44

4.9 Model selection performance of mixtures of factor analyzer models on

Gaussian clusters with uniform noise. 45

4.10 Outlier detection results for MCGFA algorithms on Gaussian clusters

with uniform noise. 45

4.11 Clustering Performance on Gaussian Clusters with Single Outlier . . 46

4.12 Model Performance on Gaussian Clusters with Single Outlier 46

4.13 Outlier detection by MCGFA on uniform noise data. 47

4.14 Contingency tables of each method for breast cancer data. 48

4.15 Classification results for each model for breast cancer data. 48

4.16 Contingency tables for each model on wine data. Each model is fit

with G ∈ {1, . . . , 4}, q ∈ {1, 2, 3} and every covariance structure. . . . 49

4.17 Performance Measures for each model on wine data. 49

4.18 Contingency tables for each model on AIS Data. Each model is fit with

G ∈ {1, . . . , 4}, q ∈ {1, 2, 3} and every covariance structure. 50

4.19 Performance Measures for AIS Data, G = 1, 2, 3 51

x

4.20 Contingency tables of each method for AIS Data, with the constraint

G = 2. 51

4.21 Performance measures for each method on AIS Data, with the con-

straint G = 2. 51

xi

List of Figures

3.1 Breakdown of computation time by version. 32

4.1 Computational speed-up afforded by parallelization, for a typical set

of models of differing numbers of components and latent factors. . . . 37

4.2 Computational speed-up when all tasks are of the same size. 39

xii

Chapter 1

Background

1.1 Finite Mixture Models

A parametric finite mixture model assumes that data arise from one of a finite set of

probability distributions with density functions {f1, . . . , fG}, and parameter vectors

Θ = {θ1, . . . ,θG}. The density of such a model is written

p(x|Θ,π) =
G∑

g=1

πg fg(x|θg), (1.1)

where πg is the prior probability a given observation arises from the g-th distribution.

It is often assumed that each mixture component is of the same distributional family,

with only parameters varying between components, so f1 = · · · = fG = f .

1.2 Clustering and Classification

This thesis is centred on two fundamental problems in statistical learning: clustering

and classification. Each problem has a great breadth of applications across scientific

1

M.Sc. Thesis - Martin Blostein McMaster - Statistics

and industrial fields.

1.2.1 Clustering

Very broadly, the clustering problem is to partition a set of objects or observations

into self-similar groups (called clusters), which may have some useful interpretation,

or help uncover the structure of the data. Clustering is called an unsupervised learning

problem, because no examples of correctly partitioned data are used. For a simple

example of such a problem, consider a company that possesses data on many of their

current or potential costumers and wishes to improve their marketing strategy. If

the market could be clustered into segments of customers with similar requirements

and priorities, each segment may be targeted specifically with different promotions

or campaigns.

Another application in a highly active research area is the clustering of gene

expression data. There are many ways clustering is applied in this context, but

many approaches involve clustering genes with similar expression patterns. These

related genes may contribute similarly to processes in the body and could help further

understanding of related diseases or mechanisms. A survey of the application of

clustering to this area is given in Jiang et al. (2004).

To begin to make the clustering problem statement precise, one must define exactly

what a cluster is. There is no universal consensus on the best definition for a cluster,

however, this thesis uses the following definition from McNicholas (2016):

A cluster is a unimodal component within an appropriate finite mixture

model.

In this definition, a model is appropriate for a given data set if it can accurately

2

M.Sc. Thesis - Martin Blostein McMaster - Statistics

capture the structure of the data. McNicholas (2016) provides a thorough discussion

and justification of this definition and the history that led to it.

Armed with this definition, the clustering problem is to (1) determine the number

and nature of clusters in the data and (2) accurately assign data into the correct

clusters. Because the true number of clusters is not known, and there are no examples

of correctly clustered data, it is not obvious how to test the performance of clustering

algorithms. Approaches used herein are described in Chapter 4.

1.2.2 Classification

The classification problem similar to clustering, but less open ended. It also involves

assigning observations to groups (or classes), but for classification the number and

nature of groups is known, and examples of correctly assigned observations are avail-

able. The act of assigning an observation to some class often termed labelling. The

set of data with known labels is referred to as the training data. The existence of this

training data makes classification a supervised learning problem. The task may be

stated as follows:

Given a set of labelled training data, determine a rule to correctly assign

an unlabelled data to the correct

The assignment is performed through the construction of a classification rule, based

on the training data. New unlabelled data is then classified in accordance to this rule.

A well-known application is the classification of hand-written letters and digits.

Given correctly-labelled examples of each glyph to learn from, the goal is to convert

hand-written text into a computer-readable format as accurately as possible.

3

M.Sc. Thesis - Martin Blostein McMaster - Statistics

The performance of a classification algorithm can be easily measured by setting

aside some labelled data as test data. The labels for the test data are known but

hidden from the algorithm. The classification produces by the algorithm may then

be compared with the true labels.

1.2.3 Full and Semi-Supervision

This thesis considers both fully supervised and semi-supervised classification. The

difference is that in a fully supervised approach, only labelled data is used to construct

the classification rule. Meanwhile a semi-supervised method uses both labelled and

unlabelled data to train the classifier. The unlabelled training data may help uncover

the structure of the data, even if it does not explicitly provide class information.

There are advantages and disadvantages to either approach. Zhu and Goldberg

(2009) provide an overview and state “Semi-supervised learning . . . can use readily

available unlabelled data to improve supervised learning tasks.” Meanwhile Cozman

et al. (2003) caution that the use of unlabelled data can actually worsen classification

performance in the presence of model error.

1.3 Model-Based Clustering and Classification

The definition of clustering given in the previous section naturally to a mixture-model

based clustering paradigm. With only slight modifications, the same approach can be

applied to classification, even though the concept of a mixture model is not needed

to define the classification problem. In both cases, each mixture component is viewed

as a different group, or subpopulation, or class, or cluster, in the data.

4

M.Sc. Thesis - Martin Blostein McMaster - Statistics

For clustering, the method must allow one to determine the appropriate number

of components using only the data. Several mixture models are fit to the data via

maximum likelihood estimation, and some model selection procedure is used to de-

termine the best model for the data. This selection procedure thus determines the

number of clusters. After parameter estimate and model selection, each observation

xi is assigned to group g, where g maximizes

ẑig =
f(xi|θ̂g)∑G
j=1 f(xi|θ̂j)

. (1.2)

This is known as maximum a posteriori (MAP) classification. An advantage of the

model-based clustering approach is that each cluster assignment has a natural measure

of its degree of certainty. The closer ẑig is to 1, the more likely it is that xi belongs

to group g.

The procedure for classification is similar. In a fully supervised approach, the

model is fit to the labelled data only, conditioned on the training set membership

information. Then, once the model parameters are estimated, the unlabelled data

can be classified by MAP classification just as in the clustering case.

In a semi-supervised approach, the model is fit to all of the available data, la-

belled or otherwise. Thus the unlabelled data contribute information to parameter

estimation. Again, once the model is fit, the unlabelled data is classified by MAP.

1.3.1 Gaussian Mixtures Modelling and Alternatives

Gaussian mixture modelling is a well-known approach to model-based clustering. It

is assumed that each mixture component is multivariate Gaussian, with parameter

5

M.Sc. Thesis - Martin Blostein McMaster - Statistics

vectors {µg,Σg}Gg=1. This model is popular due to its familiarity, mathematical con-

venience, and computational efficiency.

However, as it is built upon the Gaussian distribution, the Gaussian mixture model

is not robust to outliers or asymmetry. So, it is common to substitute heavier-tailed

or skewed distributions for the Gaussian. Examples include mixtures of Student’s

t distributions (Peel and McLachlan, 2000), mixtures of skew normal distributions

(Lin et al., 2007), and mixtures of generalized hyperbolic distributions (Browne and

McNicholas, 2015). A recent and comprehensive treatment of finite mixture modelling

is provided by McNicholas (2016).

Additionally, the general Gaussian mixture model is highly parameterized. If the

dimensionality of the data is p, the number of parameters grows as p2. This may lead

to overfitting, and heavy computation. In the following section, a model is introduced

that is used to control the number of parameters through dimensionality reduction.

1.4 Mixture of Factor Analyzers Model

The factor analysis model originated with Spearman (1904) as a two-factor model of

intelligence. In its modern incarnation, this model views p-variate data as arising as

a linear combination of q independent standard Gaussian latent (unobserved) factors,

where q < p.

Given p-dimensional data vectors X1, . . . ,XN , the model assumes that

Xi = µ+ΛUi + ϵi

ϵi ∼ Np(0,Ψ)

Ψ = diag(ψ1, . . . , ψp),

(1.3)

6

M.Sc. Thesis - Martin Blostein McMaster - Statistics

where µ is the mean, and Ui ∼ N(0, Iq) is a q-dimensional vector of latent factors.

The Ui are assumed to be mutually independent and independent from the ϵi, which

are also independent from one another. Here Λ is a p × q matrix of factor loadings,

which determine how the q factors are combined to produce the p observed variables.

The random variable ϵi represents the error related to the combination, and the

diagonal matrix Ψ determines the error variance related to each of the p variables.

It follows that

Xi ∼ Np(µ,ΛΛ′ +Ψ) = Np(µ,Σ). (1.4)

It should be noted that the model is invariant to rotations in the factor loading

matrix Λ; that is, if Q is any orthogonal matrix and Λ is replaced by ΛQ, then

ΛQ(ΛQ)′ = ΛΛ′. However, this is only an issue when interpreting the entries of

the loading matrix. In the context of clustering and classification, the factor analysis

model is used as a tool for dimensionality reduction and so this is not a problem.

Introduced by Ghahramani and Hinton (1997), the mixture of factor analyzers

(MFA) model is a Gaussian mixture model in which each mixture component is itself

a factor analysis model. In its most general form, each of the parameters µ, Λ, and

Ψ may vary between the mixture components. The model assumption in this case is

that given an observation Xi,

Xi = µg + ΛgUig + ϵig (1.5)

with probability πg, for g = 1, . . . , G. As usual, πg is the prior probability of mem-

bership to the g-th component. Thus, the latent factors may be combined differently

in different regions of the sample space, allowing local dimensionality reduction. Ad-

ditionally, components may have different error variances. In other words, different

7

M.Sc. Thesis - Martin Blostein McMaster - Statistics

subpopulations can have unique covariance structures. This is why the MFA model

is favoured over a two-step approach of global dimensionality reduction, followed by

clustering.

In the original formulation of Ghahramani and Hinton (1997), the error variance

matrix is fixed across components, i.e. Ψ1 = · · · = ΨG. This form of the model is

consistent with the interpretation of Ψ as sensor noise that affects all observations

equally. Ghahramani and Hinton (1997) note that this assumption is not necessary

and indeed McLachlan et al. (2003) consider the general MFA model where Ψ is

allowed to vary between groups. Meanwhile the probabilistic principal components

analysis model of Tipping and Bishop (1999) is a special case of MFA that allows the

noise variance to vary between groups, but assumes that the noise is isotropic within

groups, i.e. Ψg = Iψg.

1.5 Parsimonious Gaussian Mixture Models

McNicholas and Murphy (2008) go on to extend and unify the different approaches to

MFA with a family of eight parsimonious Gaussian mixture models (PGMM). First

the authors suggest that for greater parsimony, the factor loading matrices may also

be constrained across groups. This constraint prevents local dimensionality reduction,

but if the mixture components indeed share similar covariance structures, provides

a simpler model and greater stability for parameter estimation. Together with the

two possible constraints on Ψ discussed above, this gives three possible constraints

for the MFA model:

1. Loading matrices constrained across groups, Λ1 = · · · = ΛG = Λ

8

M.Sc. Thesis - Martin Blostein McMaster - Statistics

2. Error variance matrices constrained across groups, Ψ1 = · · · = ΨG = Ψ

3. Isotropic errors within groups Ψg = Iψg

Each constraint may be applied or not, independently of the other two, yielding

the eight models. The models are named in three letter codes where U indicates

unconstrained and C indicates constrained. The full PGMM family of models is

presented in Table 1.1, along with their number of covariance parameters.

Table 1.1: Eight parsimonious covariance structures of the PGMM family.

Λg = Λ Ψg = Ψ Ψg = Iψg # Cov. Parameters
C C C pq − q(q − 1)/2 + 1
C C U pq − q(q − 1)/2 + p
C U C pq − q(q − 1)/2 +G
C U U pq − q(q − 1)/2 +Gp
U C C G[pq − q(q − 1)/2] + 1
U C U G[pq − q(q − 1)/2] + p
U U C G[pq − q(q − 1)/2] +G
U U U G[pq − q(q − 1)/2] +Gp

The MFA model of Ghahramani and Hinton (1997) corresponds to UCU, the more

general MFA model of McLachlan et al. (2003) is the fully unconstrained model UUU,

and probabilistic principal components analysis model of Tipping and Bishop (1999)

is UUC.

McNicholas and Murphy (2010) introduce the expanded parsimonious Gaussian

mixture models (EPGMM) family. EPGMM extends PGMM to 12 models by repa-

rameterizing the error variance matrix as Ψg = ωg∆g, where ωg is a positive real

number and ∆g is a diagonal matrix with determinant 1. The resulting covariance

9

M.Sc. Thesis - Martin Blostein McMaster - Statistics

structure

Σg = ΛgΛ
′
g + ωg∆g , (1.6)

is termed the modified factor analysis covariance structure. The matrix ∆g deter-

mines the relative size of error variance across each variable in group g, while the

values (ω1, . . . , ωG) represent the overall amount of error in each group. So, some

subset of the following four constraints may be introduced on to a mixture of modi-

fied factor analyzers:

1. Loading matrices constrained across groups: Λ1 = · · · = ΛG

2. Relative error variances constrained across groups: ∆1 = · · · = ∆G

3. Overall error variance constrained across groups: ω1 = · · · = ωG.

4. Isotropic errors within groups ∆g = Ip

Ignoring equivalent cases, this leads to the 12 EPGMM models presented in Table 1.2.

Where applicable, the equivalent PGMM model is indicated. The EPGMM model

is implemented in the pgmm package (McNicholas et al., 2015) for the R statistical

programming language (R Core Team, 2016). Additionally, a parallel implementation

of PGMM is presented by McNicholas et al. (2010).

10

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Table 1.2: The twelve parsimonious covariance structures of the EPGMM family,
with PGMM equivalencies.

Λg = Λ ∆g = ∆ ωg = ω ∆g = Ip PGMM Equivalent Covariance Structure
C C C C CCC Σg = ΛΛ′ + ωIp
C C U C CUC Σg = ΛΛ′ + ωgIp
U C C C UCC Σg = ΛgΛ

′
g + ωIp

U C U C UUC Σg = ΛgΛ
′
g + ωgIp

C C C U CCU Σg = ΛΛ′ + ω∆
C C U U - Σg = ΛΛ′ + ωg∆
U C C U UCU Σg = ΛgΛ

′
g + ω∆

U C U U - Σg = ΛgΛ
′
g + ωg∆

C U C U - Σg = ΛΛ′ + ω∆g

C U U U CUU Σg = ΛΛ′ + ωg∆g

U U C U - Σg = ΛgΛ
′
g + ω∆g

U U U U UUU Σg = ΛgΛ
′
g + ωg∆g

1.6 The Mixtures of Modified t Factor Analyzers

Model

Despite its advantages, the EPGMM family of models is still built upon the Gaussian

distribution and thus may not be sufficiently robust for some applications. To address

this concern, Andrews and McNicholas (2011b) introduce the mixtures of modified

t-factor analyzers (MMTFA) model, which generalizes EPGMM by utilizing the mul-

tivariate t distribution in place of the Gaussian. The heavier-tailed t distribution is

better able to account for outlying points, but it is still an elliptical distribution.

The model of Andrews and McNicholas (2011b) builds on the work of several au-

thors. McLachlan and Peel (1998) originally introduce the mixtures of multivariate

11

M.Sc. Thesis - Martin Blostein McMaster - Statistics

t-distributions model. McLachlan et al. (2007) who extend the mixture of factor ana-

lyzers model to incorporate the t-mixture models. Andrews and McNicholas (2011a)

then develop the mixture of modified t factor analyzers model of McLachlan et al.

(2007) into a family of six models. The six models are generated by combining con-

straints on the factor loading matrix Λg, the error variance matrix Ψg, and the degree

of freedom parameter of the multivariate t-distribution, νg. To be precise, each of

these parameters may be constrained to be equal across groups or free to vary.

The MMTFA family of Andrews and McNicholas (2011b) uses the same covariance

constraints as the EPGMM, along with the option of an additional constraint on νg.

This yields a family of 24 models. The MMTFA model is implemented in the mmtfa

package (Andrews et al., 2015) for R.

12

Chapter 2

The MCGFA Model

2.1 The Contaminated Gaussian Distribution

The contaminated Gaussian distribution (CGD) is an elliptical, heavy-tailed gener-

alization of the Gaussian distribution. In this way it is similar to the multivariate t

distribution; in fact both are Gaussian scale mixture models (Punzo and McNicholas,

2014). However, unlike the t distribution, the CGD explicitly breaks observations

into two classes, automatically identifying outlying points.

The CGD is a mixture of two Gaussian components, with the same mean and

proportional covariance matrices. With a high probability α, an observation will be

“good” and drawn from a Gaussian distribution with covariance matrix Σ. Otherwise

it will be a “bad” observation drawn from a distribution with covariance ηΣ, where

η > 1. (The factor η must be strictly greater than one for the identifiability of

the GCD model.) Throughout the rest of this thesis, the word “bad” will be used

as a blanket term for outliers, noise or spurious observations—any type of atypical

observation that may affect the performance of a clustering algorithm.

13

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Because at least half of the data must be “typical”, α is constrained to lie in the

range (0.5, 1). In practice, this α may be constrained to be even greater. Succinctly,

if X is a contaminated Gaussian random variable with parameters {µ,Σ, α, η}, then

X ∼ N(µ,Σ) w.p. α

X ∼ N(µ, ηΣ) w.p. 1− α .

(2.1)

The density of a contaminated Gaussian random variable with parameters (µ,Σ, α, η)

is thus

pCG(x | µ,Σ, α, η) = αϕ(x | µ,Σ) + (1− α)ϕ(x;µ, ηΣ), (2.2)

where ϕ(x;µ,Σ) is the usual multivariate Gaussian density. The contaminated Gaus-

sian is indeed a direct generalization of the Gaussian distribution, because if at least

one of α or η tend to 1, then X ∼ N(µ,Σ).

2.2 Probabilistic Model

The factor analysis model may be generalized by introducing a contaminated Gaussian

distribution in place of the usual Gaussian density. Following Punzo and McNicholas

(2014), the modelling assumption is that given a data vector Xi and latent factor UiXi

Ui

 ∼ CN(µ∗,Σ∗, α, η), (2.3)

where

µ∗ =

µ

0

 and Σ∗ =

ΛΛ′ +Ψ Λ

Λ′ I

 . (2.4)

14

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Punzo and McNicholas (2014) note that unlike in that Gaussian factor analyzer

case, “the factors [Ui] and error terms [ϵi] are no longer independently distributed

. . . however, they are uncorrelated.”

Assuming this distribution in each mixture component then generalizes the MFA

model to yield the mixtures of contaminated Gaussian factor analyzers (MCGFA)

model. The most general MCGFA model has density

f(x) =
G∑

g=1

πg pCG(x | µg,Σg, αg, ηg), (2.5)

where

Σg = ΛgΛ
′
g +Ψg , (2.6)

and fCG is the contaminated Gaussian density as defined in Equation 2.2.

As with the MFA model, different constraints can be imposed on the covariance

structure of the MCGFA model. In this thesis, MCGFA is extended to a family of

eight models completely analogous to the eight PGMM models of McNicholas and

Murphy (2008). This family combines the constraints Λg = Λ, Ψg = · · · = Ψ and

Ψg = ψgI.

2.2.1 Model Selection

When fitting several MCGFA models to the same data, the Bayesian information

criterion (BIC; Schwarz, 1978) is used to select the number of groups G, the number

of latent factors q, and the covariance structure of the model. The BIC is defined as

follows:

BIC = 2l(x, ϑ̂)− k log n , (2.7)

15

M.Sc. Thesis - Martin Blostein McMaster - Statistics

where l(x, ϑ̂) is the log-likehood of the data given the current parameter estimates ϑ̂,

k is the number of free parameters in the model, and n is the number of observations.

2.3 Parameter Estimation Algorithms

The expectation-maximization (EM) algorithm, formulated by Dempster et al. (1977),

is a widely used iterative method for maximum likelihood parameter estimation in the

presence of latent variables or missing data. The EM algorithm alternates between the

expectation step (E-step), in which the expected log-likelihood of the data is calculated

based on the current model parameter estimates, and themaximization step (M-step),

in which that likelihood is maximized with respect to the model parameters.

The EM algorithm is commonly applied in the clustering and classification context

by viewing component membership as missing data. In the mixture modelling con-

text, the E-step generally involves updating the expected group membership of each

observation, based on the current distributional parameter estimates, and the M-step

involves updating the parameter estimates based on the expected group memberships.

The expectation-conditional maximization (ECM) algorithm (Meng and Rubin,

1993) is a variation on the EM algorithm in which the M-step is broken down into

computationally simpler steps. It was developed as an alternative to the EM al-

gorithm when maximum likelihood estimation of the complete-data log-likelihood is

complicated in its own right. The M-step is replaced by several simpler conditional-

maximization steps on different subsets of the parameters. Meng and Rubin (1993)

show that the ECM algorithm shares all of the important convergence properties of

the EM algorithm.

The alternating expectation-conditional maximization (AECM) algorithm (Meng

16

M.Sc. Thesis - Martin Blostein McMaster - Statistics

and Van Dyk, 1997) is yet another EM variant that incorporates two alternating

cycles of the ECM algorithm. Each cycle defines the complete data and missing data

differently.

2.4 AECM Algorithm for the MCGFA Model

The MCGFA model parameters are estimated using maximum likelihood estimation.

Given data X = {x1, . . . ,xN}, the underlying optimization problem is to find the set

of parameters {πg, µg,Λg,Ψg, αg, ηg} that maximize the likelihood function:

L({πg,µg,Λg,Ψg, αg, ηg}Gg=1 | X) =
N∏
i=1

G∑
g=1

πg pCG(xi | µg,Σg, αg, ηg) , (2.8)

where Σg = ΛgΛ
′
g+Ψg. For computational convenience, the log-likelihood (logarithm

of the likelihood function), is maximized instead.

The AECM algorithm introduced in Section 2.3 is used to iteratively find the max-

imum likelihood parameters for the MCGFA model. Three notations are introduced

to encode missing data. The variables {zig} indicate group membership: zig = 1 if

observation i is in group g and zig = 0 otherwise. The status of each observation

as a typical or “good” point versus an outlier or “bad” point is represented by the

random variables vig: if observation i in group g is good and vig = 0 if observation i in

group g is bad. These random variables are collected into the matrices Z = {zig} and

V = {vig}. Finally, an observation xi has a corresponding q-dimensional realization

of latent factors, uig for each of the G factor analysis models in the mixture. Denote

the collection of all realizations of the latent factors U = {uig}.

In the first AECM cycle, the complete data is {X,Z,V} with missing data

17

M.Sc. Thesis - Martin Blostein McMaster - Statistics

{Z,V}, and in the second cycle, the complete data is {X,Z,V,U} with missing

data {Z,V,U}. The model parameters ϑ are partitioned as ϑ = {ϑ1, ϑ2}, where

ϑ1 = {πg,µg, αg, ηg}Gg=1

ϑ2 = {Λg,Ψg}Gg=1 .

(2.9)

The first cycle updates ϑ1 given ϑ2, and the second vice-versa.

2.4.1 First cycle

In the first cycle, the missing data are {Z,V}, and the complete data are {X,Z,V}.

In this cycle, the proportion, location and contamination parameters {πg,µg, αg, ηg}Gg=1

are updated, given the covariance parameters. Because the covariance parameters are

fixed, the entire first cycle is identical for each of the eight parsimonious models.

Following Punzo and McNicholas (2014), the complete-data log-likelihood is

l1c (ϑ1) = l1c1

(
{πg}Gg=1

)
+ l1c2

(
{αg}Gg=1

)
+ l1c3

(
{µg, ηg}Gg=1

)
, (2.10)

where

l1c1

(
{πg}Gg=1 | X,Z,V

)
=

n∑
i=1

G∑
g=1

zig log (πg)

l1c2

(
{αg}Gg=1 | X,Z,V

)
=

n∑
i=1

G∑
g=1

zig [vig log (αg) + (1− vig) log(1− αg)]

l1c3

(
{µg, ηg}Gg=1 | X,Z,V

)
= −1

2

n∑
i=1

G∑
g=1

[
zig log |Σg|+ zig(1− vig) log (ηg)

+ zig

(
vig −

1− vig
ηg

)
(xi − µg)

′ (Σg)
−1 (xi − µg)

]
,

(2.11)

with Σg = ΛgΛ
′
g +Ψg.

18

M.Sc. Thesis - Martin Blostein McMaster - Statistics

E-step

In the E-step, it suffices to replace Z and V by their expected values to obtain the

expected complete-data log-likelihood Eϑ(k)(l1c | X,):

z
(k)
ig = Eϑ(k)(Zig | xi) =

pCN

(
xi;µ

(k)
g ,Σ

(k)
g , α

(k)
g , η

(k)
g

)
∑G

h=1 pCN

(
xi;µ

(k)
h ,Σ

(k)
h , α

(k)
h , η

(k)
h

) (2.12)

v
(k)
ig = Eϑ(k)(Vig | xi) =

α
(k)
g ϕ

(
xi;µ

(k)
g ,Σ

(k)
g

)
pCN

(
xi;µ

(k)
g ,Σ

(k)
g , α

(k)
g , η

(k)
g

) , (2.13)

where Vig is the random variable related to vig.

CM-step 1

The parameters {πg,µg, αg}Gg=1 are updated, to maximize E
(
l1c | X,ϑ(k)

)
:

π(k+1)
g = n(k)

g /n,

α(k+1)
g = max

{
1

n
(k)
g

n∑
i=1

z
(k)
ig v

(k)
ig , αmin

}
,

µ(k+1)
g =

n∑
i=1

z
(k)
ig

(
v
(k)
ig +

1− v
(k)
ig

η
(k)
g

)
xi

n∑
i=1

z
(k)
ig

(
v
(k)
ig +

1− v
(k)
ig

η
(k)
g

) ,

where n
(k)
g =

∑n
i=1 z

(k)
ig .

The update for µg gives an example of how the MCGFA model avoids fitting

to noise and outliers and provides greater robustness as compared to the PGMM

model. Rather updating the group mean to the usual average value, it is updated to

19

M.Sc. Thesis - Martin Blostein McMaster - Statistics

a weighted average with weights

w
(k)
ig = v

(k)
ig +

1− v
(k)
ig

η
(k)
g

. (2.14)

Intuitively, if the i-th observation is considered to be a likely bad point in the g-

th group, vig is small, and wig tends to 1/ηg. So, the larger the estimate of the

covariance inflation factor for the g-th group, ηg, the smaller the contribution of the

i-th observation to the estimate of µg. Thus outlying points have less chance of

greatly affecting the estimates of groups means.

CM-step 2

Because no analytical maximum exists, {ηg}Gg=1 are updated numerically to maximize

E
(
l1c | X,ϑ(k+1)

1 ,ϑ
(k)
2

)
given the previous updates. This amounts to maximizing

l1c3
({

µ(k+1)
g , ηg

}
| X,Z(k+1),V(k+1)

)
(2.15)

from (2.11), over the interval [1, ηmax].

2.4.2 Second cycle

The second cycle of the AECM algorithm treats {Z,V,U} as the missing data and

{X,Z,V,U} as the complete data. It updates the covariance parameters {Σg,Ψg}Gg=1

given all others. The details of the updates for this cycle differ between the eight

parsimonious models, but are almost identical to the updates for the AECM algorithm

for the PGMM model, found in full in Section 3 and Appendix A of McNicholas and

20

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Murphy (2008). The only difference is that the matrix S from PGMM:

S(k+1)
g =

1

ng

n∑
i=1

zig
(
xi − µ(k+1)

g

) (
xi − µ(k+1)

g

)′
, (2.16)

is adjusted to down-weight observations that are likely to be bad:

S(k+1)
g =

1

ng

n∑
i=1

zig

(
vig +

1− vig

η
(k+1)
g

)(
xi − µ(k+1)

g

) (
xi − µ(k+1)

g

)′
. (2.17)

The complete-data log-likelihood in this cycle is

l2c (ϑ2) = C +
G∑

g=1

{
−ng

2
log |Ψg| −

ng

2
tr
(
Ψ−1

g S(k+1)
g

)
+

n∑
i=1

zig

(
vig +

1− vig

η
(k+1)
g

)(
xi − µ(k+1)

g

)′
Ψ−1

g Λguig

− 1

2
tr

[
Λ′

gΨ
−1
g Λg

n∑
i=1

zig

(
vig +

1− vig

η
(k+1)
g

)
uigu

′
ig

]}
,

where ng =
∑n

i=1 zig, and C is constant respect to ϑ2.

E-step

The E-step on the second cycle involves the calculation of the expectation of l2c

given X and the parameter updates so far: ϑ(k+1/2) =
{
ϑ
(k+1)
1 , ϑ

(k)
2

}
. The group

membership indicators zig and vig are updated exactly as in (2.12) and (2.13) of the

E-step in the first cycle and denoted by z
(k+1/2)
ig and v

(k+1/2)
ig . Following Punzo and

McNicholas (2014), the expected complete-data log-likelihood for the second cycle is

Eϑ(k)(l2c | X) = C +
G∑

g=1

n(k+1/2)
g

{
1

2
log
∣∣Ψ−1

g

∣∣− 1

2
tr
(
Ψ−1

g S(k+1)
g

)
+ tr

(
Ψ−1

g Λgβ
(k)
g S(k+1)

g

)
− 1

2
tr
[
Λ′

gΨ
−1
g ΛgΘ

(k+1/2)
g

]}
,

21

M.Sc. Thesis - Martin Blostein McMaster - Statistics

where C is a constant with respect to ϑ2 andΘ
(k+1/2)
g = Iq−β

(k)
g Λ

(k)
g +β

(k)
g S

(k+1)
g β

(k)′
g .

CM-step

The CM-step of the second cycle is identical to that of PGMM, with S modified as

in Equation 2.17. The second term from Equation 2.11, l2c (ϑ2), is maximized with

respect to ϑ2. The resulting updates for ϑ2 are

Λ(k+1)
g = S(k+1)

g β(k)′

g

(
Θ(k+1/2)

g

)−1

Ψ(k+1)
g = diag

(
S(k+1)

g −Λ(k+1)
g β(k)

g S(k+1)
g

)
.

(2.18)

2.4.3 The Woodbury Identity

The updates of z, v and η require the inversion of the p × p covariance matrix

Σ−1
g for each group—a costly operation. Fortunately, the special form of the matrix

Σ = (ΛgΛ
′
g + Ψg)

−1 allows the application of the Woodbury identity (Woodbury,

1950):

(ΛgΛ
′
g +Ψg)

−1 = Ψ−1
g −Ψ−1

g Λg

[
Ip +Λ′

gΨ
−1
g Λg

]−1
Λ′

gΨ
−1
g . (2.19)

Here only the diagonal matrix Ψ and the q× q matrix I+Λ′Ψ−1Λ requires inversion.

This trick is commonly applied in fitting algorithm for mixtures of factor analyzer

models. It was noted in the first presentation of the AECM for Gaussian factor

analyzers in Ghahramani and Hinton (1997), and applied in McNicholas and Murphy

(2008), and Andrews and McNicholas (2011b).

2.4.4 Convergence Criterion

The stopping time for the AECM algorithm is determined using the Aitken Accel-

eration (Aitken, 1926), one of several methods to determine termination of iterative

22

M.Sc. Thesis - Martin Blostein McMaster - Statistics

likelihood-based model-fitting algorithms. The Aitken acceleration at the k-th itera-

tion is defined as follows:

a(k) =
l(k+1) − k(k)

l(k) − l(k−1)
, (2.20)

where l(k) is the observed log-likelihood at iteration k. As per Böhning et al. (1994),

the asymptotic estimate of the log-likelihood at iteration k + 1 is

l(k+1)
∞ = l(k+1) +

l(k+1) − l(k)

1− a(k+1)
. (2.21)

As proposed in McNicholas et al. (2010), the AECM algorithm terminates when

l(k+1)
∞ − l(k) < ϵ (2.22)

for a given convergence tolerance ϵ. For the implementation herein, ϵ is a user-specified

constant, takes on default value 0.001.

23

Chapter 3

Implementation

The model fitting algorithm for MCGFA is implemented using a combination of the R

and C programming languages. The user interface and model selection code is written

in R, with the computationally intensive parameter estimation in C. This combination

provides an interface familiar to statisticians, with maximum computational efficiency.

A functioning R version of the MCGFA fitting algorithm existed as a reference

for testing, but significant effort is made to improve upon the efficiency. A significant

amount of code is adapted from existing C code from the pgmm package for R, due to

the similarities in the models and parameter estimation procedures.

3.1 Parallelization

Parallel processing is a method of computation where a large task is split up and

executed simultaneously on separate processors or “cores”. Because most computers

today have several processors, this allows a speed up even on consumer level electron-

ics. Dedicated high-performance computing “clusters”, tightly connected computers

24

M.Sc. Thesis - Martin Blostein McMaster - Statistics

that work together, may have hundreds of cores. A broad introduction to parallel

computing is provided by Barney (2016).

A common model of parallel computation is the master/worker model, in which

one master core distributes tasks to the other worker cores, and combines their results.

Often master core is also able to perform computation while it is not busy distributing

work to the workers, allowing the potential speedup to be close to the number of cores.

Fitting numerous models independently and then selecting the model according

to some criterion is a “trivially parallelizable” task. Each worker is able to fit a

model with no communication with others, and after fitting is complete the master

can simply select the model with the highest BIC.

There are different schemes for distributing tasks to the workers. Dynamic bal-

ancing is contrasted with static load balancing as follows. Consider the computation

of 100 tasks using 10 parallel processors. A static load balancing scheme assigns 10

of these tasks to each core. This scheme results in low overhead but performs poorly

if tasks are not all of the same size, because then at the end of computation some

cores will be sitting idle.

A basic dynamic scheme assigns one task to each core, and then assigns the re-

maining tasks in sequence as cores finish their current task. (For smaller tasks, several

may be assigned at once in blocks.) This model can have greater overhead due to

more master-worker communication, but promises to keep as many workers busy as

possible at any given time.

Because the number of models is not that high, but the different models vary

greatly in their required computational time, it is important that the parallelization

of model fitting algorithms employ dynamic load balancing.

25

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Another consideration for the use of parallel computing is that of memory archi-

tecture. Memory stores information for immediate use by a computer, and herein is

considered to store both the data and instructions that a processor needs to carry

out its task. Two types of architectures are considered, shared memory systems and

distributed memory systems.

In a shared memory system, all processors share access to the same memory.

This type of system is usually employed on a single computer that features several

processors. The shared memory architecture has the advantage of simplicity for the

programmer Barney (2016). However, using shared memory limits the scalability of

the parallel implementation. As more processors are added, processes compete for

access to the memory, slowing down computation. Additionally, there is a physical

limit as to how many processors can be built into a single computer.

In a distributed memory system, each processor has its own private memory. Thus

a processor is free to access memory without competing with others. Distributed

memory systems easily allows the computation to be spread to large network of in-

dependent computers. One downside is that any necessary communication between

processors needs to be explicitly implemented by the programmer, and sometimes dif-

ferent algorithms and data structures must be used to accommodate for the complete

independence of memory. Luckily, for model fitting the necessary communication is

minimal.

Parallelization for MCGFA is implemented using the parallel package in R (R

Core Team, 2016), which implements shared-memory parallelism with a very con-

venient interface. The function mclapply is used and dynamic load balancing is

specified by setting the parameter mc.preschedule=FALSE. In the dynamic case, the

26

M.Sc. Thesis - Martin Blostein McMaster - Statistics

mcapply function creates a process for each model-fitting task using the UNIX fork

command. Each of these processes has a separate copy of R that executes one of the

model-fitting tasks.

3.2 Profiling

One advantage of writing in C is that, as a multi-purpose language often used in

high-performance contexts, there are many existing high-quality tools to assist with

improving efficiency. Allinea MAP, made available through the Sharcnet computing

consortium, is used to profile the C portion of the mcgfa implementation. The main

tool applied is a profiling sampler, which estimates the proportion of computation time

spent in different functions during program execution. The sampler pauses execution

in short intervals and records which subroutines of the main program are active at

that time.

Profiling is performed once the algorithm is implemented but greater efficiency is

desired. A large data set is generated to provide a test case for profiling. Drawn from

a two-component Gaussian mixture with noise, it is made up of 3020 observations

in 15 dimensions. The unconstrained UUU model is fit with q = 4 and G = 3 and

100 AECM iterations. To increase profiling sample accuracy, each test is repeated 25

times and the results are averaged.

The initial, pre-profiling version of the code completes the task in 339.1 seconds.

The profiling results in Table 3.1 show that, in this incarnation, the algorithm spends

approximately 75% of its time updating just z, v and η. The BIC value for the

resulting model is -138338.3.

27

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Table 3.1: Profiling results for original code, before any improvements.

update z, v η α S other

time (%) 47.7 26.9 13.9 10.4 1.1

Each of these three updates requires the calculation of the squared Mahalanobis

distance, δig, of each observation, as a member of each model component:

δig = (xi − µg)
′Σ−1

g (xi − µg) . (3.1)

Here µg and Σg are the current estimates of the mean and covariance of the g-th

group. Investigation of the profile data reveals that the bulk of computation time is

spent on the computation of δig, due to the matrix inversion and matrix operations

associated with the application of the Woodbury identity.

A major inefficiency is found through this profiling—for each cycle of the AECM

algorithm, δig is calculated three times. By computing the Mahalanobis distance in a

separate function and storing it, the same calculation could be used for the η update

and the z, v update in the first cycle of the AECM algorithm.

The running time after this modification is 272.5 seconds, for a 19.6% speed-up.

The BIC value remained unchanged, as expected. The profiling results are shown in

Table 3.2.

Table 3.2: Profiling results for the first code revision, avoiding redundant

Mahalanobis-distance updates.

update δ α S η z, v other

time (%) 50.5 16.7 14.1 10.5 7.2 1.0

At this point, the δ-update is still taking up the majority of computational time,

28

M.Sc. Thesis - Martin Blostein McMaster - Statistics

but the next largest task is the α-update. As in the R version of the code, the α-

update is performed numerically, even though an analytical update is easily derivable

using calculus. It is stated in Punzo and McNicholas (2013) that this is done to allow

a constraint on the range of α, i.e. α ∈ [αmin, 1). However, this constraint can be

imposed by simply using the update α(k+1) = max{αmin, α̂}, where α̂ is the update

given in Chapter 3. This works because the log-likelihood is strictly concave down as

a function of α, for zig ∈ (0, 1], vig ∈ (0, 1), and αg ∈ (0, 1).

The analytical α update is implemented in Revision 2, and the profiling results

of this version are shown in Table 3.3. The analytical α results in a further 13.4%

reduction in computation time (total running time: 236.0 seconds). The analyti-

cal update yields a slightly different model fit, due to the elimination of numerical

approximations. This change is for the better, as the BIC improved to -138338.1.

Table 3.3: The profiling results for the second code revision, with analytical updates

of α.

update Mahal. S η z, v µ other

time (%) 58.7 19.3 11.3 8.1 1.3 1.3

With the α update now taking insignificant computational time, the update of the

sample covariance matrix S is more dominant. The flop count of this update was cut

down by simply taking advantage of the symmetry of S: Rather than compute each

of the p2 elements, p(p−1)/2 were computed and then the upper-triangular elements

were copied to the lower triangle. Isolating the S-update function and timing 10000

iterations, it is determined that this modification reduced computation time for S by

approximately 40%. Revision 3 of the code implements this change, and gives a total

running time of 214.7 seconds, a further 9.3% speed up. The BIC remains unchanged.

29

M.Sc. Thesis - Martin Blostein McMaster - Statistics

This speed up is more modest but required only a tiny modification to the code.

Table 3.4: The profiling results the third code revision, with more efficient updates

to the sample covariance matrix S.

update Mahal. z, v η S µ other

time (%) 65.4 11.6 10.4 10.2 1.3 1.1

At this point, the δ-updates still dominate the computation, and there is no ob-

vious way to speed up the other updates. Faster algorithms for matrix inversion, like

those in the well-known Lapack linear algebra library were investigated. However,

because of the Woodbury trick, the matrices being inverted were only of order q.

Thus the overhead involved in calling the Lapack routines actually slows compu-

tation. Testing revealed that it is not until order 15 that the Lapack algorithms

began to outperform the Gaussian Elimination C implementation from pgmm. Be-

cause fitting models with more than q = 15 latent factors is unlikely, this approach

is abandoned.

Further investigation of the code profile data reveals that approximately 10% of the

operational time is spent just on dynamic memory allocation for matrix calculations.

The code is altered so that memory is allocated for these operations once, and then

reused, leading to expected 10% speed up.

However, finally, the root cause of the slowdown is determined. The same function

both performed the inversion of Σg, and computed the Mahalanobis distance for

each observation. Thus the inverse is computed for each observation and group. By

splitting this function apart so that each inverse is only computed once per group,

additional time savings of 58% were obtained, for a running time of only 105.7 seconds.

30

M.Sc. Thesis - Martin Blostein McMaster - Statistics

This final iteration of the code, Revision 4, is profiled and the results are shown in

Table 3.5. The BIC and model fit remained unchanged from the second revision.

Table 3.5: The profiling results for the fourth and final code revision, with more

efficient Mahalanobis distance updates.

update Mahal. η S z, v µ other

time (%) 31.0 22.5 20.9 20.7 2.1 2.8

This actually left the code faster than the PGMM code from which it is adapted,

at least on this data. This inefficiency shows the downside to working in a language

like C: because matrix operations involve more lines of code, the task can become

obscured, and a counter-intuitive implementation may be written.

Overall, the changes resulting from the profiling accounted for a 3.2 times speed up

in the code. This demonstrates that profiling is an important tool for the statistical

programmer. The evolution of the computational time and breakdown of computation

time is shown in Figure 3.1.

31

M.Sc. Thesis - Martin Blostein McMaster - Statistics

0

100

200

300

Initial Revision1 Revision2 Revision3 Revision4
version

tim
e

update

zv

Mahal.

eta

alpha

S

other

Figure 3.1: Breakdown of computation time by version.

32

Chapter 4

Performance & Evaluation

In this chapter, the performance of the novel mcgfa implementation is evaluated

on both simulated and real data. First, the computational efficiency of the new

implementation is considered. The speed of serial execution is contrasted with the

existing R code, and the efficiency of the parallel implementation is measured. Then,

the clustering and classification performance of MCGFA is compared to two natural

competitors: EPGMM, as implemented in the R package pgmm, and MMTFA, as

implemented in mmtfa.

It is difficult to directly evaluate the performance of unsupervised learning algo-

rithms like those of model-based clustering. A straightforward approach is to take

fully labelled data sets, apply the clustering algorithm as if the labels were not pro-

vided, and then evaluate performance using the labels. There are two issues with this

approach. First, there is the “label switching problem”, which occurs when all of the

labels for several classes are permuted. Stephens (2000) discusses this issue in depth,

in a way relevant to mixture model-based clustering. The second, more substantial

problem is that clustering algorithms may select the wrong number of components.

33

M.Sc. Thesis - Martin Blostein McMaster - Statistics

It is then impossible to use the classification rate as a performance measure.

Both of these issues are resolved by the use of the Rand index (Rand, 1971),

which measures agreement between two data partitions by considering all pairs of

observations. Given a partition, every pair of two observations are either members

of the same component (together), or members of different components (separated).

Given two partitions, the Rand index is then defined as the ratio:

R =
pairs together in both partitions + # pairs separated in both partitions

total # pairs
.

(4.1)

The total number of pairs is simply
(
N
2

)
. Perfect agreement between partitions

thus gives R = 1. Hubert and Arabie (1985) introduce the Adjusted Rand Index

(ARI), a modified version of the index that takes into account the expected agreement

of two random clusterings. The ARI is defined as:

ARI =
Rand Index− Expected Rand Index

Max. Rand Index− Expected Rand Index
. (4.2)

The ARI takes the value zero under the expected Rand Index, and is bounded above

by 1. If one of the partitions is known to be correct, then the ARI can be viewed as

a measure of performance.

4.1 Efficiency of Implementation

In this section, the computational efficiency of the novel MCGFA implementation is

measured by timing the total elapsed time of large model-fitting tasks. Execution

times are produced using the system.time command in R. All timing is performed

34

M.Sc. Thesis - Martin Blostein McMaster - Statistics

on the Orca system of the SHARCNET computing consortium. SHARCNET is a

consortium of 18 Canadian academic institutions who share a network of high per-

formance computers. The Orca computing cluster is a network of 394 computers,

each of which have either 16 or 24 computing cores. One of the development nodes,

orc-dev4 is used for all tests. The orc-dev4 has 24 cores, an AMD Opteron 2.2GHz

CPU, 32 GB of memory, and runs the CentOS 6.7 operating system.

4.1.1 Serial Implementation

The reduction in computation time due to the novel implementation is not subtle. As

a demonstration, a 20-dimensional data set with two components of 100 observations

each, and 20 noise points, is produced. Three implementations of mcgfa are run on

this data: the original R code, the R code modified to make use of the Woodbury

identity, and the novel C implementation. For each version, all 8 mcgfa models are

fitted with G = 2, 3, q = 1, 2, 3, a stopping tolerance of 0.0001 and a maximum of 200

iterations per model fit. All versions utilized pgmm as an initialization. The timing is

repeated ten times to account for any irregularities or variations in the CPU activity

during testing. The timing results are shown in Table 4.1.

35

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Table 4.1: Running time of MCGFA implementations in seconds.

Repetition Original R R with Woodbury C
1 195.1 190.3 12.0
2 186.9 178.3 11.3
3 192.7 177.4 11.8
4 182.4 174.6 11.2
5 184.8 166.1 11.3
6 188.1 164.5 11.2
7 184.2 171.4 11.2
8 186.9 164.8 11.2
9 184.0 171.4 11.2
10 185.2 171.2 11.2

Mean 187.0 173.0 11.4

These results show that the Woodbury trick does not greatly reduce the computa-

tion time of the R implementation, providing only an 8% speedup. This indicates that

the inversion of Σ = Λ′Λ +Ψ does not make up the majority of the computational

load, as is the case with the C implementation. Meanwhile, the C implementation

allows a speed up of 16.4 times as compared to the original R code, or 15.1 times

compared to the R code that makes use of the Woodbury trick.

This test compares the computational efficiency over the exact same set of 48

models, using a single processor. It take advantage of the fact that the C version

avoids fitting redundant one-component models. The goal is to demonstrate the

speed-up provided by the new implementation on the same models using the same

processing power.

The C code is shown to be substantially faster than the original R version, and

produces the same results. Thus in the tests below only the C version is indicated

when referring to mcgfa or mcgfa km.

36

M.Sc. Thesis - Martin Blostein McMaster - Statistics

4.2 Parallel Implementation

Once the serial code is verified to show improved performance, the parallel version of

the same code is tested to see how efficiently it utilizes more computational resources.

Ideally, a linear speedup would be achieved, in which the use of p processors would

decrease computation time by a factor of p. This ideal situation is rarely achieved,

except in special circumstances relating to the physical layout of computer hardware.

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Number of Cores

S
pe

ed
up

Ideal Speedup
Actual Speedup

Figure 4.1: Computational speed-up afforded by parallelization, for a typical set of

models of differing numbers of components and latent factors.

37

M.Sc. Thesis - Martin Blostein McMaster - Statistics

A simulated data set of 800 observations in 12 dimensions is produced as an ex-

ample of a moderately large data set. The MCGFA model fitting procedure takes 874

seconds to execute on one core. The procedure is repeated using 2 to 8 processors of

the same cluster. The results of the this application of parallelism is not impressive—

performance is reasonable only up to 4 cores. Of course, the use of more processors

decreased computation time, but as shown in Figure 4.1, the actual speedup fell well

short of the ideal.

There are several possible reasons for this deviation from the ideal. It is possible

that overhead results from communication traffic due to the shared-memory archi-

tecture. Creation and deletion of several copies of the current R session could also

contribute to overhead. There could also be a loss of efficiency due to the communi-

cation needed between cores to implement dynamic load allocation.

Additionally, because the model-fitting tasks vary greatly in size, it is unlikely for

all available computational resources to be used for the full duration of computation.

It is difficult to account for this variation, because the running time of each model

fit cannot be estimated reliably ahead of time. While a more highly-parameterized

model (for, instance an unconstrained UUU model with many latent factors) will

generally take longer to fit than a simpler one, differences in the number of steps

needed for convergence make this difficult to account for. Still, grouping model by

their likely computational size and intelligently distributing them among processors

could reduce overhead. This additional fine control also necessitates the use of a more

flexible tool than the parallel package provides.

To determine which of these possibilities explain most of the departure from ideal

speedup, the same parallelization method is applied to eight identical model-fitting

38

M.Sc. Thesis - Martin Blostein McMaster - Statistics

tasks, with 1, 2, 4, and 8 cores. When the tasks were all identical, the scaling is

near-linear, as shown in Figure 4.2. This indicates that most of the lost speedup is

due to the great differences in computational time per task, not overheads inherent

in the parallel implementation.

Figure 4.2: Computational speed-up when all tasks are of the same size.

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Number of Cores

S
pe

ed
up

Ideal Speedup
Actual Speedup

As an alternative to the parallel package, the message passing interface (MPI)

could be used to provide parallel computing capability. MPI is a specification for

communication between processors in a computing cluster, and has a widely available

C version. MPI requires a distributed-memory architecture and would thus improve

the scalability of the parallel implementation. Furthermore, implementing parallelism

within the C code would eliminate any overhead caused by initializing many copies of

39

M.Sc. Thesis - Martin Blostein McMaster - Statistics

R. McNicholas et al. (2010) found success applying MPI to the model-based clustering

problem.

While message passing can increase overhead in many situations, for the model-

fitting application this is unlikely due to the minimal communication required between

processes. The use of MPI would not solve the load-balancing issue, however the

greater control over the process distribution method might allow more sophisticated

load-balancing strategies.

4.3 Simulated Data

In this section, five types of data sets are considered:

1. Gaussian clusters

2. Contaminated Gaussian clusters

3. t-distributed clusters

4. Gaussian clusters with noise

5. Gaussian clusters with one severe outlier

A total of 100 repetitions of each type of data set are produced before any testing

happens, using seeds from 1 to 100. This is to prevent any chance of bias in the

selection of test data. The repetitions are six-dimensional with two components, to

keep computation time reasonable. The first four types have no latent structure,

while the last two types are simulated as two-factor latent factor models.

40

M.Sc. Thesis - Martin Blostein McMaster - Statistics

4.3.1 Gaussian Clusters

For each of 100 simulations, two equally-sized six-dimensional Gaussian clusters

are generated. The first has mean at the origin and the other has a mean vector

drawn from a Gaussian distribution centred at the origin. Random covariance ma-

trices are created for each component using the genPositiveDefMat function of the

clusterGeneration package (Qiu and Joe, 2006). The clustering and model selection

are shown in Tables 4.2 and 4.3.

Table 4.2: Clustering performance on Gaussian clusters.

mcgfa mcgfa km mmtfa pgmm

Mean ARI 0.780 (0.34) 0.780 (0.34) 0.785 (0.32) 0.782 (0.32)

Mean BIC -3167.269 -3167.369 -3151.937 -3148.111

Table 4.3: Model selection performance of mixtures of factor analyzer models on

Gaussian clusters

G mcgfa mcgfa km mmtfa pgmm

1 14 14 12 12

2 85 86 84 82

3 1 0 4 6

errors 15 14 16 18

As expected, pgmm achieves the best BIC values—it does not include the extra

unnecessary parameters that allow fatter tails. The mcgfa models have the worst

BIC, likely because they require the estimation of two extra parameters per group

(α and η), while mmtfa needs only to estimate the degrees of freedom. Still, it is

41

M.Sc. Thesis - Martin Blostein McMaster - Statistics

confirmed that extending pgmm to mcgfa does not significantly affect the ability to

capture Gaussian clusters, and in fact mcgfa is most likely to select the correct number

of components. Interestingly, mmtfa actually outperforms pgmm in terms of ARI. This

could be due to differences in the implementation of the respective EM algorithms.

4.3.2 Contaminated Gaussian Clusters

Two six-dimensional clusters are generated similarly to the previous section. However,

a covariance inflation factor η for each component is drawn from an exponential

distribution with mean β = 10. Ten percent of observations in the first group and

twenty percent of those in the second group are designated as “bad.” Combining

these parameters yields a pair of contaminated Gaussian clusters. The four methods

are applied to each of 100 repetitions and the results are shown in Tables 4.4 and 4.5.

Table 4.4: Clustering performance of mixtures of factor analyzer models on contam-

inated Gaussian clusters.

mcgfa mcgfa km c mmtfa pgmm

Mean ARI 0.822 (0.27) 0.832 (0.24) 0.800 (0.24) 0.700 (0.25)

Mean BIC -2793.4 -2791.5 -2808.3 -2835.5

Table 4.5: Model selection performance of mixtures of factor analyzer models on

contaminated Gaussian clusters.

G mcgfa mcgfa km mmtfa pgmm

1 7 5 0 0

2 87 86 82 19

3 6 9 18 81

42

M.Sc. Thesis - Martin Blostein McMaster - Statistics

As expected, mcgfa performs best on its own model, in terms of ARI, BIC and

model selection. It is clear that the pgmm algorithm is greatly affected by this de-

parture from normality. The application of mmtfa is successful, but does tend to

over-select for the number cof components.

4.3.3 t-distributed Clusters

Two six-dimensional t-distributed clusters are generated, one with mean at the origin

and the other with a mean drawn from a Gaussian distribution centred at the origin.

Two positive definite covariance matrices are created using the genPositiveDefMat

function of the clusterGeneration package. The number of degrees of freedom for

each component is uniform drawn on the range 1, . . . , 50. The results for each of the

four algorithms are shown in Tables 4.6 and 4.7.

Table 4.6: Clustering performance of factor analyzer models on t-distributed clusters.

mcgfa mcgfa km mmtfa pgmm

Mean ARI 0.841 (0.28) 0.833 (0.30) 0.857 (0.25) 0.798 (0.32)

Mean BIC -2786.6 -2788.5 -2739.5 -2868.9

Table 4.7: Model selection performance of mixtures of factor analyzer models on

t-distributed clusters.

G mcgfa mcgfa km mmtfa pgmm

1 9 9 2 6

2 89 90 90 84

3 2 1 8 10

43

M.Sc. Thesis - Martin Blostein McMaster - Statistics

While mcgfa km and mmtfa both correctly select 2 component models in 90 of

the simulations, they make opposite errors: mmtfa tends to select too few groups,

while mcgfa and mcgfa km select too many. Predictably, mmtfa performs best on this

data in terms of both BIC and ARI. The pgmm model is better able to capture the

t-distributed clusters than the contaminated Gaussian ones in the previous section.

4.3.4 Gaussian Clusters with Uniform Noise

Two six-dimensional Gaussian clusters with 100 observations each are simulated from

a factor analysis model with 2 underlying factors. For each simulation, the mean

vectors are generated as above, along with two random loading matrices (Λ1,Λ2) are

generated, and with two random error variance vectors (Ψ1,Ψ2). Finally 20 uniform

noise points are added to the data. The noise observations are not considered in the

evaluation of clustering performance. Results are shown in Tables 4.8 and 4.9.

Table 4.8: Clustering performance of mixtures of factor analyzer models on Gaussian

clusters with uniform noise.

mcgfa mcgfa km mmtfa pgmm

Mean ARI 0.901 (0.15) 0.897 (0.15) 0.898 (0.16) 0.840 (0.25)

Mean BIC -3254.8 -3259.8 -3265.6 -3338.0

The mcgfa algorithm yielded the best performance on this data. While the mean

ARI is very similar for mcgfa and mmtfa, the mcgfa procedure is more likely to take

on the correct number of components, and the mcgfa models have a higher mean

BIC.

44

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Table 4.9: Model selection performance of mixtures of factor analyzer models on

Gaussian clusters with uniform noise.

G mcgfa mcgfa km mmtfa pgmm

1 0 0 0 0

2 97 95 93 16

3 3 5 7 84

q mcgfa mcgfa km mmtfa pgmm

1 6 9 6 30

2 92 89 92 70

3 2 2 2 0

Noise Detection

The mcgfa algorithm proved successful at detecting noisy observations with either

initialization scheme. To evaluate this detection, both sensitivity and specificity are

considered. The sensitivity is the proportion of bad points successfully detected,

and the specificity is the proportion of good points successfully labelled as such.

The detection results are shown in Table 4.10. The specificity figures are impressive

considering noise points may easily lie within clusters.

Table 4.10: Outlier detection results for MCGFA algorithms on Gaussian clusters

with uniform noise.

mcgfa mcgfa km

Mean # Correctly Detected 17.72 17.77

Mean # Falsely Detected 4.68 5.29

Mean Sensitivity 88.6% 88.9%

Mean Specificity 97.7% 97.4%

45

M.Sc. Thesis - Martin Blostein McMaster - Statistics

4.3.5 Gaussian Clusters with One Severe Outlier

Two six-dimensional Gaussian clusters are simulated, as in the uniform noise case.

One fixed outlying point is added to every simulation, at (15, 0, 0, 0, 0, 0). Results are

shown in Tables 4.11 and 4.12.

Table 4.11: Clustering Performance on Gaussian Clusters with Single Outlier

mcgfa mcgfa km mmtfa pgmm

Mean ARI 0.920 (0.13) 0.915 (0.14) 0.924 (0.13) (0.896 (0.18)

Mean BIC -1272.9 -1273.7 -1289.7 -1312.6

Table 4.12: Model Performance on Gaussian Clusters with Single Outlier

G mcgfa mcgfa km mmtfa pgmm

1 0 0 0 0

2 69 71 82 21

3 31 29 18 79

q mcgfa mcgfa km mmtfa pgmm

1 17 21 17 37

2 75 74 80 63

3 8 5 3 0

Here the mmtfa proved to be the best tool for both model selection and clustering

performance, while the mcgfa algorithms yielded the best average BIC value. Overall,

however, the three robust methods had very similar ARI scores. Predictably the

application of pgmm is most likely to lead to the selection of a three-component model,

as this is the only way the light-tailed model can capture outlying points. On the

other hand, mmtfa is most likely to lead to the correct 2-component model. This

reflects the ability of its fitting algorithm and model to capture the outlying point as

an anomalous member of one of the two main components, rather than a separate

component.

46

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Noise Detection

With either initialization approach, the outlying point is detected on 86% of the runs,

as shown in Table 4.13. Considering the severity of the outlier, this is not impressive.

This occurs because a three component model is often selected, with the outlier as the

centre of the third component. When considering only runs that lead to the selection

of one- or two-component models, the outlier is correctly detected 100% of the time,

for both initialization schemes.

Table 4.13: Outlier detection by MCGFA on uniform noise data.

mcgfa mcgfa km

Mean # Correctly Detected 0.86 0.86

Mean # Falsely Detected 4.08 5.36

Mean Sensitivity 86% 86%

Mean Specificity 95.9% 94.6%

4.4 Real Data Analysis

4.4.1 Breast Cancer Wisconsin Data Set

All of the above tests evaluate the four methods in an unsupervised learning context.

The Breast Cancer Wisconsin data set, first studied in Street et al. (1993), provides

an opportunity to investigate semi-supervised performance. The data consists of 569

observations of 32 features. The numerical features are derived from digital images of

breast mass, and are classified as either malignant or benign. One sixth of the data

is randomly selected to act as a labelled portion, and semi-supervised classification

47

M.Sc. Thesis - Martin Blostein McMaster - Statistics

is carried out using every version of each method and q = 1, . . . , 5. The classification

results are shown in Tables 4.14 and 4.15.

Table 4.14: Contingency tables of each method for breast cancer data.

mcgfa mcgfa km mmtfa pgmm

B M B M B M B M

benign 300 9 284 25 299 10 275 34

malignant 12 176 20 168 17 171 17 171

Table 4.15: Classification results for each model for breast cancer data.

mcgfa mcgfa km mmtfa pgmm

Model UUU CUU UUUC UUU

Misclass. Rate 3.4% 9.1% 5.4% 10.3%

BIC -10702.7 -11201.91 -9372.886 -13080.72

This study highlights the importance of initialization. The mcgfa method gives

by far the best classification, but only when using the pgmm initialization. When

initialized by k-means clustering, its performance is nearly as bad as the pgmm model

itself. This is somewhat up to chance, however, and more random starts may allow

the mcgfa km method to find a better local maximum for the model likelihood. mmtfa

gave the best BIC model, although in a supervised or semi-supervised context, a test

set would likely be used as a more direct measure of performance.

4.4.2 Wine Data

The wine data set (Forina et al., 1986) consists of 27 chemical properties of 178 bottles

of wine, of three different types: Barolo, Grigolino and Barbera. It is included with

48

M.Sc. Thesis - Martin Blostein McMaster - Statistics

the pgmm package for R. There also exists a thirteen-dimensional version of the wine

data, but the full version is considered in this study. Each method is fit to the data

with every set of constrains, G = 1, . . . , 4 and q = 1, 2, 3. The data was scaled before

fitting in every case and model selection was performed with the BIC as usual. The

results are shown in Tables 4.16 and 4.17.

Table 4.16: Contingency tables for each model on wine data. Each model is fit with

G ∈ {1, . . . , 4}, q ∈ {1, 2, 3} and every covariance structure.

mcgfa mcgfa km mmtfa pgmm

1 2 3 1 2 3 1 2 3 4 5 1 2 3 4

Barolo 59 0 0 59 0 0 59 0 0 0 0 57 0 2 0

Grignolino 1 68 2 1 68 2 0 49 21 1 0 0 49 22 0

Barbera 0 0 48 0 0 48 0 0 0 24 24 0 0 1 47

Application of both versions of mcgfa recovered the three-component structure,

and in fact the exact same partitioning. However, as detailed in McNicholas and

Murphy (2008), the extra partitioning in the pgmm and mmtfa may not be erroneous,

but correspond to different years of production.

Table 4.17: Performance Measures for each model on wine data.

mcgfa mcgfa km mmtfa pgmm

model CUU CUU CCCC CCUU

ARI 0.901 0.897 0.898 0.840

BIC -3254.8 -3259.8 -3265.6 -3338.0

49

M.Sc. Thesis - Martin Blostein McMaster - Statistics

4.4.3 AIS Data

The AIS data Cook and Weisberg (1994) contain 11 numerical measurements of 202

athletes, along with their classification by gender and sport. The methods are eval-

uated on their ability to separate the athletes by gender, ignoring their sport. All

versions of each method were fit to the data with G ∈ {1, . . . , 4} and q ∈ {1, 2, 3},

and models were selected via BIC as usual. The contingency tables and measures of

performance are shown in Tables 4.18 and 4.19.

Table 4.18: Contingency tables for each model on AIS Data. Each model is fit with

G ∈ {1, . . . , 4}, q ∈ {1, 2, 3} and every covariance structure.

mcgfa mcgfa km mmtfa pgmm

1 2 3 1 2 3 1 2 3 1 2 3

female 1 24 75 58 2 40 59 40 1 0 3 97

male 57 44 1 3 98 1 3 1 98 36 65 1

Every method selected a three-component model, possibly due to the skewness

in present in the data. Applying pgmm gives the best partition, yielding the least

confusion between the genders. The mcgfa km and mmtfa clusterings both subdivided

women in two components, while that of pgmm broke up the men. The mcgfa model

that used pgmm as an initialization yielded the worst partition, confusing a large

proportion of men and women.

50

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Table 4.19: Performance Measures for AIS Data, G = 1, 2, 3

mcgfa mcgfa km mmtfa pgmm

Model CUU CUU CUUC UUCU

ARI 0.438 0.672 0.687 0.702

BIC -2908.3 -2981.8 -2952.6 -2938.7

Because every partition chose the incorrect number of components, the models

were fit a second time and forced to choose two components. The contingency tables

resulting from forcing G = 2 are shown in Table 4.20, and the performance measures

in Table 4.21.

Table 4.20: Contingency tables of each method for AIS Data, with the constraint

G = 2.

mcgfa mcgfa km mmtfa pgmm

F M F M F M F M

female 97 3 99 1 96 4 97 3

male 3 99 4 98 3 98 2 100

Table 4.21: Performance measures for each method on AIS Data, with the constraint

G = 2.

mcgfa mcgfa km mmtfa pgmm

ARI 0.884 0.903 0.866 0.903

BIC -3023.0 -3024.0 -3008.5 -3105.6

Now the algorithms produce very similar partitions. This means that the issues

here were primary with model selection, not with capturing the distribution of the

51

M.Sc. Thesis - Martin Blostein McMaster - Statistics

data. It is notable the model with the best BIC value actually yields the worst

clustering performance. This highlights that the model with the best BIC does not

necessary provide the most accurate clustering.

52

Chapter 5

Conclusions

This thesis introduced a family of models extending the mixtures of factors analyzers

model, with a new, efficient implementation. The use of the contaminated Gaussian

robustifies the factor analysis model and allows automatic outlier detection. The

family of eight parsimonious models for the permit different degrees of local or global

dimensionality reduction.

Significant computational work led to the discovery concrete efficiency improve-

ments be made to existing implementations of both MCGFA and PGMM. Future

computational work will involve a more specialized parallel implementation, increas-

ing the speed up per processor. For example, parallelization at the C level directly will

eliminate the overhead of initializing more R sessions and provide better portability.

The increased computational efficiency allowed thorough trial and evaluation of

the MCGFA model. Tests on both simulated and real data verified that the contami-

nated Gaussian distribution provides both robustness and automatic outlier detection.

MCGFA was shown to outperform the Gaussian model on a variety of simulated and

53

M.Sc. Thesis - Martin Blostein McMaster - Statistics

real data sets. Overall, the model based on the contaminated norm performed sim-

ilarly to the MMtFA model in terms of clustering performance and model selection.

The key difference is that MCGFA permits automatic detection of outliers, without

a subjective choice of threshold.

The two competitors to MCGFA studied above give inspiration for further exten-

sion to MCGFA. As the EPGMMmodel extends PGMM, MCGFA could be expanded

to a family of 12 models. Furthermore, the MMTFA allows an additional constraint

on the degrees of freedom parameter. The analogous parameters in MCGFA are η

and α. Thus, further extensions to MCGFA could allow the constraints αg = α

and/or ηg = η. In fact, Andrews and McNicholas (2011a) state that “models with

constrained degrees of freedom can give better clustering performance than the un-

constrained models.”

Finally, it noted that of the models evaluated herein are based on symmetrical

distributions. Employing a contaminated skewed distribution in the mixtures of factor

analyzers model could provide the same advantages of the MCGFA model, with even

more distributional flexibility. A logical candidate is the contaminated skew normal,

discussed in a linear modelling context in Lachos et al. (2010).

54

Bibliography

Aitken, A. C. (1926). A series formula for the roots of algebraic and transcendental

equations. Proceedings of the Royal Society of Edinburgh, 45, 14–22.

Andrews, J. L. and McNicholas, P. D. (2011a). Extending mixtures of multivariate

t-factor analyzers. Statistics and Computing, 21(3), 361–373.

Andrews, J. L. and McNicholas, P. D. (2011b). Mixtures of modified t-factor analyzers

for model-based clustering, classification, and discriminant analysis. Journal of

Statistical Planning and Inference, 141(4), 1479–1486.

Andrews, J. L., McNicholas, P. D., and Chalifour, M. (2015). mmtfa: Model-Based

Clustering and Classification with Mixtures of Modified t Factor Analyzers. R pack-

age version 0.1.

Barney, B. (2016). Introduction to parallel computing. https://computing.llnl.

gov/tutorials/parallel_comp. Accessed: 2016-09-01.

Böhning, D., Dietz, E., Schaub, R., Schlattmann, P., and Lindsay, B. (1994). The

distribution of the likelihood ratio for mixtures of densities from the one-parameter

exponential family. Annals of the Institute of Statistical Mathematics, 46(2), 373–

388.

55

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Browne, R. P. and McNicholas, P. D. (2015). A mixture of generalized hyperbolic

distributions. Canadian Journal of Statistics, 43(2), 176–198.

Cook and Weisberg (1994). An Introduction to Regression Graphics. Wiley, New

York.

Cozman, F. G., Cohen, I., Cirelo, M. C., et al. (2003). Semi-supervised learning

of mixture models. In Proceedings of the Twentieth International Conference on

Machine Learning, pages 99–106.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39(1), 1–38.

Forina, M., Armanino, C., Castino, M., and Ubigli, M. (1986). Multivariate data

analysis as a discriminating method of the origin of wines. Vitis - Journal of

Grapevine Research, 25, 189–201.

Ghahramani, Z. and Hinton, G. E. (1997). The EM algorithm for mixtures of factor

analyzers. Technical Report G-TR-96-1, University of Toronto.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification,

2(1), 193–218.

Jiang, D., Tang, C., and Zhang, A. (2004). Cluster analysis for gene expression

data: a survey. IEEE Transactions on knowledge and data engineering, 16(11),

1370–1386.

Lachos, V. H., Ghosh, P., and Arellano-Valle, R. B. (2010). Likelihood based inference

for skew-normal independent linear mixed models. Statistica Sinica, 20, 303–322.

56

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Lin, T. I., Lee, J. C., and Yen, S. Y. (2007). Finite mixture modelling using the skew

normal distribution. Statistica Sinica, 17, 909–927.

McLachlan, G., Peel, D., and Bean, R. (2003). Modelling high-dimensional data by

mixtures of factor analyzers. Computational Statistics & Data Analysis, 41(34),

379–388.

McLachlan, G. J. and Peel, D. (1998). Robust cluster analysis via mixtures of mul-

tivariate t-distributions. In Joint IAPR International Workshops on Statistical

Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern

Recognition (SSPR), pages 658–666. Springer.

McLachlan, G. J., Bean, R., and Jones, L. B.-T. (2007). Extension of the mixture

of factor analyzers model to incorporate the multivariate t-distribution. Computa-

tional Statistics and Data Analysis, 51(11), 5327–5338.

McNicholas, P. D. (2016). Mixture Model-Based Classification. Chapman and

Hall/CRC, Boca Raton.

McNicholas, P. D. and Murphy, T. B. (2008). Parsimonious Gaussian mixture models.

Statistics and Computing, 18(3), 285–296.

McNicholas, P. D. and Murphy, T. B. (2010). Model-based clustering of microarray

expression data via latent Gaussian mixture models. Bioinformatics, 26(21), 2705–

2712.

McNicholas, P. D., Murphy, T. B., McDaid, A. F., and Frost, D. (2010). Serial

and parallel implementations of model-based clustering via parsimonious Gaussian

mixture models. Computational Statistics & Data Analysis, 54(3), 711–723.

57

M.Sc. Thesis - Martin Blostein McMaster - Statistics

McNicholas, P. D., ElSherbiny, A., McDaid, A. F., and Murphy, T. B. (2015). pgmm:

Parsimonious Gaussian Mixture Models. R package version 1.2.

Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM

algorithm: A general framework. Biometrika, 80(2), 267–278.

Meng, X.-L. and Van Dyk, D. (1997). The EM algorithm—an old folk-song sung

to a fast new tune. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 59(3), 511–567.

Peel, D. and McLachlan, G. J. (2000). Robust mixture modelling using the t distri-

bution. Statistics and Computing, 10(4), 339–348.

Punzo, A. and McNicholas, P. D. (2013). Parsimonious mixtures of contaminated

Gaussian distributions with application to allometric studies. arXiv preprint

arXiv:1305.4669.

Punzo, A. and McNicholas, P. D. (2014). Robust high-dimensional modeling with the

contaminated Gaussian distribution. arXiv preprint arXiv:1408.2128v1.

Qiu, W. and Joe, H. (2006). Generation of random clusters with specified degree of

separation. Journal of Classification, 23(2), 315–334.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rand, W. (1971). Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association, 66(336), 846–850.

58

M.Sc. Thesis - Martin Blostein McMaster - Statistics

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,

6(2), 461–464.

Spearman, C. (1904). “General Intelligence,” objectively determined and measured.

The American Journal of Psychology, 15(2), 201–292.

Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 62(4), 795–809.

Street, W. N., Wolberg, W. H., and Mangasarian, O. L. (1993). Nuclear feature

extraction for breast tumor diagnosis. In Society for Imaging Science and Tech-

nology/International Society for Optics and Photonics: Symposium on Electronic

Imaging: Science and Technology, pages 861–870. International Society for Optics

and Photonics.

Tipping, M. E. and Bishop, C. M. (1999). Mixtures of probabilistic principal compo-

nent analyzers. Neural Computation, 11(2), 443–482.

Woodbury, M. A. (1950). Inverting modified matrices. Technical Report 42 of the

Statistical Research Group, Princeton University, Princeton, New Jersey.

Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning. Syn-

thesis Lectures on Artificial Intelligence and Machine Learning, 3(1), 1–130.

59

