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ABSTRACT 

 The advent of large-scale genomic sequencing is providing researchers 

with an unparalleled wealth of information which can be used to elucidate the 

evolutionary relationships of living organisms. The newly available genome 

sequence data have enabled the use of comparative genomic techniques for the 

identification of novel molecular signatures, shared uniquely by evolutionarily 

related groups of organisms: conserved signature indels (CSIs) and conserved 

signature proteins (CSPs). These signatures allow for the unambiguous 

delineation of the prokaryotic taxa, independent of gene and genome based 

phylogenetic trees, and provide insights into novel aspects of their evolutionary 

relationships. The phylum Spirochaetes and the class Betaproteobacteria are 

large, diverse groups of bacteria, containing many important pathogenic and 

environmental organisms, which are classified primarily on the basis of 16S 

rRNA gene analysis. Here, I describe phylogenetic analyses of the phylum 

Spirochaetes based on genome derived molecular signatures. These analyses have 

yielded substantial evidence for differentiation between the three main sequenced 

groups of organisms within the phylum Spirochaetes and between the genus 

Borrelia from other closely related Spirochaetes. These findings have prompted a 

proposal to create three new orders and a new family within the phylum. These 

analyses have also supported the differentiation of two clinically distinct groups 

within the genus Borrelia and a proposal to divide the genus Borrelia into two 

genera. The use of molecular signatures and phylogenetic analysis of major 
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groups within the class Betaproteobacteria are also described. The analyses of the 

order Neisseriales within this class resulted in a division of the order into two 

families, while the analyses of the genus Burkholderia supported the 

differentiation of the clinically relevant members of the genus Burkholderia from 

the plant-beneficial and environmental Burkholderia and a proposal to divide the 

genus into two genera. I also describe the use of phylogenomic techniques and 

molecular signatures to differentiate the seven main groups within the order 

Enterobacteriales and the integrated software pipeline used to produce the 

supermatrix based phylogenomic tree and genome distance calculations in the 

analysis of the order Enterobacteriales. The molecular signatures described in this 

thesis represent powerful new tools for evolutionary and systematic studies. 

Additionally, due to their taxon specificity, these molecular signatures are novel 

diagnostic markers for their specified group. Further analyses of these molecular 

signatures should lead to the discovery of novel functions and biological 

characteristics, mediated by CSIs and CSPs, which will provide important insights 

into the physiology, evolution, and adaptations of these groups. 
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PREFACE 

The following work is a sandwich thesis. Chapters 2, 3, 4, and 5 are 

unaltered manuscripts, published in the years 2013 and 2014 while Chapter 7 is an 

unaltered manuscript, submitted for publication in June 2016. The preface section 

in each Chapter describes the details of the published and submitted articles, as 

well as my contribution to the multiple-authored work.  Chapter 1, an introduction 

to the field of evolution and taxonomy research and the subjects of the 

manuscripts, provides context for the significance of the manuscripts included in 

this work. Chapter 6 describes an internally developed software pipeline for 

evolutionary genome analysis that has been utilized in the submitted manuscript 

included in Chapter 7. Chapter 8 reflects on the presented studies and describes 

the overall usefulness and future directions of the work. References for Chapters 

1, 6, and 8 are provided at the end of this thesis. All chapters have been 

reproduced with the consent of all co-authors. Irrevocable, non-exclusive license 

has been granted to McMaster University and to the National Library of Canada 

from all publishers. Copies of permission and licenses have been submitted to the 

School of Graduate Studies. 
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GLOSSARY 

16S ribosomal RNA or 16S rRNA: The small subunit of the 30S ribosomal 

complex. An integral part of protein production which is highly conserved and 

resistant to lateral transfer. 

Alignment Trimming: Removal of spurious sequences or poorly aligned regions 

from a multiple sequence alignment. 

Apomorphy:  Specialized (derived) characters of an organism. 

Archaea or Archaebacteria: One of the three domains of life, prokaryotic, 

differentiated from bacteria by genetic analysis, lacking peptidoglycan in their cell 

wall, and the presence of unique membrane lipids. 

Average Amino Acid Identity: The average percentage of identical amino acids 

in alignments of proteins in two organisms. 

Average Nucleotide Identity: The average percentage of identical nucleotides in 

alignments of genes in two organisms. 

Bacteria or Eubacteria: One of the three domains of life, prokaryotic, 

differentiated from Archaea by genetic differences and the presence of 

peptidoglycan in their cell walls. 

Bergey's Manual: The main resource for determining the identity of prokaryotic 

organisms, emphasizing bacterial species, using every characterizing aspect. 

Bootstrap: A statistical procedure to assess the reliability of a result that involves 

resampling subsets of the data with replacement from the original data set. 

Jacknife is a similar procedure without replacement. 

Clade: A group of species including all the species descending from an internal 

node of a tree and no others. Originated from the Greek word "klados", meaning 

branch or twig. 

Comparative Genomics: A field of biological research which compares genomic 

features of different organisms such as sequence characteristics, genes, proteins, 

gene order, regulatory sequences, and other genetic or molecular characteristics in 

order to determine biological and evolutionary links between organisms. 

Concatenation of Genes: Combining genetic data in a series and treating the 

combined data as a single gene for analysis. 

Conserved Signature Indel (CSI): Insertions or deletions of a specific size 

uniquely present in a specific location in gene/protein sequences of organisms 

from the group of interest and absent in every other bacterial group. Flanked on 

both sides by conserved regions to ensure reliability. 

Conserved Signature Protein (CSP): Lineage specific proteins found only in the 

group of interest with no homologs in any other bacterial group. 
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Convergent Evolution: The evolution of similar traits which occur due to similar 

adaptive benefits and not shared ancestry. 

Core Genome: A term referring to the shared genes/proteins present in all 

members of a specified group. 

Degenerate Oligonucleotide Primers: Primers to amplify the same region in 

related organisms. The sequence of the primers spans a range covering the 

different nucleotide sequences possible in region of amplification across different 

organisms. 

DNA-DNA Hybridization: A technique used to determine the genetic distance 

between two organisms.  

Effective Publication: A prokaryotic name which has been made generally 

available in published literature but has not met the requirements for valid 

publication. 

Eukaryote: One of the three domains of life, differentiated from prokaryotes by 

the presence of membrane-bound organelles. 

Genomic Distance: A measure of divergence between two genomes. 

Graphical User Interface: The visual component of a computer application 

encompassing windows, icons, and menus. 

Heuristic: Any approach that employs a practical method not guaranteed to be 

optimal, generally faster than optimal methods. 

Hidden Markov Model: A statistical representation of a multiple sequence 

alignment. 

Homologous genes/proteins: Sequences that are evolutionarily related by descent 

from a common ancestor. 

International Code of Nomenclature of Bacteria or Bacteriological Code: The 

set of rules which govern the scientific names for Bacteria and Archaea. 

Lateral Gene Transfer: Any movement of genetic material between organisms 

that does not occur during the transmission of DNA from a parent to a child. 

Likelihood Ratio Test or SH-Like Test: A test comparing the likelihood of a 

null model (no specific relationship between organisms) to an alternative model 

(organisms X and Y are more related than organims X and Z) to determine the 

goodness of fit of the alternative model. 

Lineage: Any continuous line of descent; any series of organisms connected by 

reproduction by parent of offspring. 

Long branch attraction: A phenomenon in phylogenetic analyses (most 

commonly those employing maximum-parsimony) whereby rapidly evolving 
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lineages are inferred to be closely related, regardless of their true evolutionary 

relationships. 

Maximum-Likelihood Tree: A phylogenetic tree built using the maximum-

likelihood method which optimizes tree topology to maximize the likelihood of 

the tree being produced by the given alignment. 

Monophyletic: Descriptive of a group of species on a phylogenetic tree sharing a 

common ancestor that is not shared by species outside the group. A clade is a 

monophyletic group. 

Multilocus Sequence Analysis: The analysis of multiple unlinked genes to 

determine phylogeny. 

Multilocus Sequence Typing: The analysis of multiple unlinked genes to 

characterize and differentiate organisms. 

Neighbour-Joining Tree: A phylogenetic tree built using the neighbor-joining 

method which clusters nodes based on a distance matrix. 

Orthologous Gene/Protein or Ortholog: Sequences from different species that 

are evolutionarily related by descent from a common ancestral sequence and that 

diverged from one another as a result of speciation. 

Outgroup: A species (or group of species) that is known to be the earliest-

diverging species in a phylogenetic analysis. Outgroup is added in order to 

determine the position of the root.  

Paralogs: Sequences within the same organism that have arisen by duplication of 

one original sequence. 

Paraphyletic: A group consisting of the group's last common ancestor and some, 

but not all, of the descendants of that ancestor. 

Phenotype: An observable characteristic or trait of an organisms caused by an 

underlying genetic difference. 

Phylogenetic Resolution: The ability to accurately elucidate the relationship 

between organisms. 

Phylogenetic Tree: A branching “tree” diagram where bifurcations in the tree 

represent speciation events. Phylogenetic trees can contain additional information 

about branch reliability and divergence time. 

Phylogenomic Tree: A phylogenetic tree based on the core genome of a group, 

can be produced using supertree or supermatrix methods. 

Phylogenomics: Phylogenetic analysis using genome-scale data, encompasses 

phylogenetic trees and genomic distance measures. 

Phylogeny: The evolutionary relationships between organisms. 
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Polyphasic Taxonomy: A methodology which includes disparate datatypes such 

as phenotypic, genotypic, molecular, and biochemical properties in taxonomy. 

Polyphyletic: Descriptive of a group of species on a phylogenetic tree for which 

there is no common ancestor not also shared by species outside the group. A 

polyphyletic group is evolutionarily ill-defined. 

Prokaryotes: Organisms which lack a membrane bound nucleus and organelles. 

Prokaryotes can be divided into two main categories, Bacteria and Archaea. 

SILVA: A curated 16s rRNA gene sequence database named after the Latin word 

silva, meaning forest. 

Supermatrix: A concatenated set of all genes/proteins in a core genome. 

Supertree: A consensus phylogenomic tree produced based on phylogenetic trees 

for all genes/proteins in a core genome. 

Synapomorphy: A derived character which, because it is shared by the taxa 

under consideration, is used to infer common ancestry (shared derived state). 

Systematics: A field of biology dealing with the diversity of kinds. Systematics is 

usually divided into the two areas of phylogeny and taxonomy. 

Taxonomic Framework: The structure of the nomenclatural classifications for a 

group of organisms. 

Taxonomic Ranks: The levels within the taxonomic hierarchy (from most to 

least specific): species, genus, family, order, class, phylum, and domain. 

Taxonomy: The science of naming and classifying organisms. 

Tree topology: The arrangement of the various branches in a phylogenetic tree. 

Valid Publication: A prokaryotic name is validly published if it is cited in the 

Approved Lists of Bacterial Names, published in the International Journal of 

Systematic and Evolutionary Microbiology or the International Journal of 

Systematic Bacteriology, or is published in a Validation List in one of the 

preceding journals. 
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Background and Introduction 
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“Taxonomy is described sometimes as a science and sometimes as 

an art, but really it's a battleground. Even today there is more 

disorder in the system than most people realize.” 

~Bill Bryson (A Short History of Nearly Everything, Chapter 23, 2003) 

 

An Early History of Prokaryotic Classification 

The evolutionary history of living organisms on earth spans the most 

recent 3.5 billion years of the planet’s 4.5 billion year history (Schopf, 1978; 

Woese et al., 1990).  Unravelling the complex and circuitous history of life on 

earth constitutes one of the most fundamental and fascinating questions within the 

study of the life sciences (Schopf, 1978; Gupta & Griffiths, 2002). In particular, 

an understanding of the groupings of living organisms and the nature of their 

relationships to one another, codified as biological classifications and taxonomy, 

acts as the foundation which underlies and informs all modern fields of biology.  

Carolus Linnaeus established the modern basis for rank-based taxonomic 

classification in the 18th century with the publication of the Systema Naturae 

(Linnaeus, 1758). However, it was not until Ferdinand Cohn began to classify 

bacteria into distinct genera in the 19th century, on the basis of their morphology, 

growth requirements, and pathogenic potential, that prokaryotes were given a 

meaningful standing in a modern Linnaean taxonomic classification system and 

were recognized as one of the earliest and most primitive divisions of life (Cohn, 

1872, 1875). In the following decades, the bacterial classifications described by 
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Cohn were followed by an explosion of additional bacterial descriptions as the 

scientific community began to recognize the importance of prokaryotes as 

etiological agents of disease and to understand their role in food processing, 

agriculture, and ecology (Lehman & Neumann, 1896). As the range of diversity 

within the prokaryotes began to be appreciated, increased research attention, 

focussed on microorganisms, led to a number of novel insights regarding 

fundamental aspects of prokaryotic biochemistry and physiology. These studies 

yielded the first breakthroughs in understanding the diversity of metabolic 

pathways, the nature of oxygenic and anoxygenic photosynthesis, the carbon 

cycle, the extreme limits of life, symbiosis, and the mechanisms of information 

transfer in living organisms (Fred & Wilson, 1934; Waksman, 1934; Starkey & 

Waksman, 1943; Virtanen, 1947; Cohen, 1948; Gest & Kamen, 1948; Gest et al., 

1950).  

The increasingly diverse array of prokaryotes identified by microbiologists 

in the late 19th and early 20th centuries, exhibiting varied morphologies, 

physiologies, survival strategies, and life histories (Orla-Jensen, 1909; 

Pringsheim, 1923; Stanier & Van Niel, 1941), prompted the integration of 

increasing biochemical, physiological, and morphological properties in their 

descriptions and attempts at classification (Bergey et al., 1923; Stanier & Van 

Niel, 1941). This effort ultimately culminated in a universal Code of 

Bacteriological Nomenclature, approved at the 4th International Congress for 

Microbiology in 1947 (Huddleson, 1947; Stackebrandt, 2007). However, the 
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number of readily determined phenotypic and biochemical properties in use to 

classify bacterial organisms in the first half of the 20th century were limited and 

were eventually found to exhibit high levels of convergence in unrelated 

organisms (Winogradsky, 1952; Stanier & Niel, 1962; Stanier et al., 1976). On 

this basis, many of the bacterial names described in the early 20th century were 

later found to be invalid or synonymous with other bacterial taxa.  

In the late 20th century, advances in the determination of the nucleotide 

and amino acid sequences of DNA, RNA and protein molecules began to shine a 

light on the large number of poor and redundant taxa among the prokaryotes. In 

response, an effort was undertaken to purge bacterial taxonomy of all poorly 

defined, redundant, or ambiguous taxa (Lessel, 1971). The culmination of this 

effort was the concept of valid publication of bacterial nomenclature in a central 

repository (Lapage et al., 1973) and the Approved Lists of Bacterial Names 

(Skerman et al., 1980), a publication which contained all bacterial names deemed 

validly published and available for use by biologists. Of the 132 genera and 2703 

species described in the 4th edition of Bergey’s Manual of Determinative 

Bacteriology (Bergey et al., 1934), only 75 genera and 205 species were included 

in the Approved Lists of Bacterial Names (Skerman et al., 1980; Oren & Garrity, 

2014). 
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16S rRNA and the Genetic Era of Prokaryotic Classification 

The failure of bacterial classification systems based on phenotypic and 

biochemical properties in the middle of the 20th century, created an opportunity 

for alternative methods of phylogenetic inference to develop and gain 

prominence. In the 1950s, the discovery of the information transfer role and 

structure of deoxyribonucleic acid (DNA) (Hershey & Chase, 1952; Watson & 

Crick, 1953) provided researchers with a novel molecular target thought to encode 

all information underlying the phenotypic, physiological, and biochemical 

properties of an organism (Crick, 1970). Thus, one of the first methodologies 

developed to address the shortcomings of phenotype and biochemistry based 

classifications of prokaryotic organisms was the DNA-DNA hybridization (DDH) 

technique (Schildkraut et al., 1961; McCarthy & Bolton, 1963; Wayne et al., 

1987). The DDH technique takes advantage of the weak bonds holding together 

the double strands of the DNA molecule. In the DDH technique, DNA molecules 

from two organisms are first heated and incubated, allowing the DNA strands to 

denature and dissociate, then then cooled, allowing the strands to reassociate. A 

subset of the reassociated DNA molecules is comprised of hybrids formed by the 

association of a strand from each of the two organisms. The strength of the 

association between the two strands of the hybridized DNA molecules is directly 

correlated with the similarity of the DNA sequences from those two organisms 

and can be calculated by determining the disassociation temperature (‘melting 

point’) of the hybridized DNA molecules. Thus, the DDH technique serves as a 
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measure of the degree of genetic similarity between two organisms at a genome-

wide level (McCarthy & Bolton, 1963; Wayne et al., 1987).  

As classification based on phenotypic and biochemical properties fell out 

of favour, the DDH technique became widely used in prokaryotic systematics. 

The standardized definition of a species in prokaryotic systematics eventually 

became a group of organisms which share >70% DDH, correlated with a 

hybridized DNA melting point of <5ºC ΔT relative to the pure DNA molecules 

(Wayne et al., 1987; Tindall et al., 2010). However, the DDH technique has 

several important shortcomings. Notably, the determination of DDH values is a 

complicated, error-prone, time-consuming, and extremely laborious process, for 

which only a few laboratories are properly equipped (Rosselló-Mora, 2006). 

Additionally, several different methods for the measurement of DDH values exist 

which can produce different results (Grimont et al., 1980; Huss et al., 1983; Goris 

et al., 2007). Lastly, due to the comparative and experimental nature of the DDH 

technique, in which no sequence information is obtained, it is not possible to 

create incremental databases or scale the technique in any meaningful way (Goris 

et al., 2007; Schleifer, 2009). Due to these limitations, the DDH technique has 

proven unable to keep up with the growing rate of prokaryotic research and the 

growing diversity of described prokaryotic organisms. 

In the late 1960s, the development of a method to partially characterize 

RNA sequences, referred to as oligonucleotide cataloguing (Sanger et al., 1965), 

and the development of the molecular clock concept, which allowed biological 
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macromolecules to act as documents of evolutionary history (Zuckerkandl & 

Pauling, 1965), paved the way for the use of gene sequence analysis in 

evolutionary research. The 16S ribosomal RNA (rRNA) component of the 30S 

small ribosomal subunit quickly become the new gold standard in determining the 

evolutionary history of the prokaryotes (Fox et al., 1977b; Woese, 1987; Wilson, 

1995; Garrity et al., 2001; Stackebrandt, 2006; Tindall et al., 2010). The 16S 

rRNA gene possessed a number of notable advantages that made it particularly 

suited to evolutionary inference. Firstly, the ribosome is essential for survival and 

directly comparable ribosomal genes are universally present in prokaryotes and 

eukaryotes, facilitating comparison between the multiple, disparate domains of 

life (Fox et al., 1980; Woese, 1987; Woese et al., 1990). Beyond its ubiquity, the 

16S rRNA gene is easily isolated, and, as part of the large ribosomal complex, 

unlikely to undergo lateral gene transfer (Olsen et al., 1994; Patel, 2001; Janda & 

Abbott, 2007). Furthermore, the 16S rRNA gene contains both highly conserved 

and variable regions facilitating the classification of both closely related and 

highly divergent bacterial groups and the development of universal PCR primers 

that are able to amplify 16S rRNA genes readily from uncultured organisms 

(Greisen et al., 1994; Marchesi et al., 1998; Wang & Qian, 2009). 

The use of 16S rRNA gene analysis was instrumental in one of the most 

significant advancements in modern taxonomy, the proposal of the three-domain 

model of life (Woese et al., 1990). Utilizing early oligonucleotide cataloguing 

techniques, Woese and colleagues compared the 16S rRNA genes of different 
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prokaryotic organisms and the 18S rRNA genes of eukaryotic organisms (Fox et 

al., 1977a; Fox et al., 1977b; Olsen et al., 1985). These analyses shed new light on 

the genetic diversity among the prokaryotes and provided the first evidence that 

the Archaeabacteria were as distinct from Eubacteria as they were from the 

Eukaryotes (Fox et al., 1977b; Woese et al., 1990). Ultimately, these studies 

resulted in the proposal of the three-domain model of classification, in which 

Bacteria, Archaea, and Eukaryota are considered coequal and fundamental 

divisions of life on earth, which remains the dominant model for biological 

classification at the highest taxonomic levels (Woese et al., 1990). 

The 16S rRNA gene has become the foundation of modern prokaryotic 

systematics. Analysis of the 16S rRNA gene sequence has been used to refine the 

classification of almost all described microbial groups (Garrity et al., 2005; Yarza 

et al., 2008; Kämpfer, 2012) and sequencing of the 16S rRNA gene has become 

an informal requirement for the description of all new prokaryotic species (Tindall 

et al., 2006; Tindall et al., 2010; Kämpfer & Glaeser, 2013). Bergey's Manual of 

Systematics of Archaea and Bacteria (Whitman, 2015a), the modern successor to 

Bergey’s Manual of Determinative Bacteriology, uses 16S rRNA gene sequence 

based phylogenies as its organizing basis and the All-Species Living Tree project, 

which has become the de facto tree of life for systematic purposes, is also based 

on alignments of the 16S rRNA gene sequence (Yarza et al., 2008; Yilmaz et al., 

2013). Additionally, the research effort that has been focussed on the 16S rRNA 

gene sequence has led to the development of large, comprehensive databases of 
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the 16S rRNA gene sequences, comprising nearly all described prokaryotic 

species and strains (Quast et al., 2013; Cole et al., 2014). 16S rRNA gene 

sequence similarity values have also superseded the use of DDH values for 

prokaryotic species demarcation (Stackebrandt & Goebel, 1994; Stackebrandt & 

Ebers, 2006; Tindall et al., 2006; Tindall et al., 2010). A 16S rRNA gene 

sequence similarity value of 97% is thought to correlate to the 70% DDH 

threshold for species demarcation (Stackebrandt & Goebel, 1994). However, the 

initial study that established that value was based on only 57 comparisons 

between 16S rRNA gene similarity values and DDH values (Stackebrandt & 

Goebel, 1994). Subsequent studies utilizing larger datasets have produced slightly 

different species thresholds, such as a 98.7% 16S rRNA gene sequence similarity 

threshold for species demarcation in a study using 380 comparisons (Stackebrandt 

& Ebers, 2006) and a 98.2% threshold in a study using 571 comparisons (Meier-

Kolthoff et al., 2013). An additional threshold of 95% 16S rRNA gene sequence 

similarity for genus level demarcation has also been established in literature 

(Tindall et al., 2010). Until recently, there were no robust guidelines for the 

demarcation of taxonomic ranks above the genus level. However, a recent study 

examining the 16S rRNA gene sequences of 8602 type strains within the SILVA 

16S rRNA database (Quast et al., 2013) established thresholds of 94.5%, 86.5%, 

82%, 78.5%, and 75% 16S rRNA gene sequence similarity for the demarcation of 

prokaryotic taxa at the level of Genus, Family, Order, Class, and Phylum, 

respectively (Yarza et al., 2014), providing novel guidance for 16S rRNA gene 
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based classifications. That said, it is important to note that all of the established 

thresholds are conservative guidelines and that their strict application can 

overlook important and distinct taxa that can be distinguished based on other 

means of analysis (Oren & Garrity, 2014; Yarza et al., 2014; Whitman, 2015b). 

Despite the usefulness of the 16S rRNA gene for evolutionary studies, use 

of the 16S rRNA gene to elucidate evolutionary relationships among the 

prokaryotes, independent of other forms of evidence, has limitations. Firstly, the 

16S rRNA gene has limited capacity to differentiate among very closely related 

and recently diverged species/strains of prokaryotes, due to the high sequence 

conservation and limited resolving power of the gene (Fox et al., 1992; Tang et 

al., 1998; Mignard & Flandrois, 2006; Janda & Abbott, 2007; Reller et al., 2007). 

The 16S rRNA gene also has limited capacity to resolve the relative branching 

orders of different prokaryotic phyla at the highest taxonomic levels (Garrity et 

al., 2001; Garrity et al., 2005; Yarza et al., 2008; Puigbo et al., 2009). 

Additionally, the GC content of 16S rRNA genes are correlated with the habitat 

and optimal growth temperatures of the prokaryote in which it is found; leading to 

convergent 16S rRNA gene GC content values in organisms with similar optimal 

growth temperatures (Stackebrandt et al., 2002; Stackebrandt et al., 2007; Gupta 

& Lali, 2013). Evolutionary inferences based on 16S rRNA gene sequence 

analysis can also be confounded by prokaryotic organisms possessing multiple 

copies of the 16S rRNA gene, which can differ by up to 2% or more of their 

sequence positions (Klappenbach et al., 2001; Boucher et al., 2004). Lastly, the 
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structural elements of 16S rRNA gene are constrained and cannot freely change, 

leading these elements to change in sudden jumps rather than along a continuum, 

creating the potential for erroneous conclusions about the prokaryotic 

relationships which they support (Ludwig et al., 1998; Ludwig & Klenk, 2001). 

Hence the interest in the identification and use of other genes and proteins which 

have the potential to resolve evolutionary questions not sufficiently resolved by 

16S rRNA gene sequence analysis. 

The primary category of genes used as alternative evolutionary markers to 

the 16S rRNA gene are essential, single copy housekeeping genes such as the β-

subunit of DNA gyrase (gyrB), the β-subunit of RNA polymerase (rpoB), the 

sigma 70 (sigma D) factor of RNA polymerase (rpoD), recombinase A (recA), the 

β-subunit of ATP synthase F0F1 (atpD), translation initiation factor IF-2 (infB), 

tRNA modification GTPase ThdF or TrmE (thdF), or the chaperonin GroEL 

(groEL) (Kämpfer, 2012; Glaeser & Kämpfer, 2015). These genes possess many 

of the same benefits as the 16S rRNA gene. They are ubiquitous among most 

organisms, essential for survival, large and slow evolving, and can be amplified 

and isolated using near universal degenerate PCR primer sets (Maiden et al., 

1998; Gevers et al., 2005; Maiden, 2006). Additionally, the use of multiple genes 

for evolutionary inference limits the confounding effects of atypical evolutionary 

rates, genetic recombination, and lateral gene transfers at a single genetic locus 

(Rokas et al., 2003; Ciccarelli et al., 2006; Wu et al., 2009). The use of multiple 

(usually 5-10) housekeeping genes in genotypic characterization among 
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prokaryotes is referred to as multilocus sequence typing (MLST) while the same 

methodology applied to the construction of prokaryotic phylogenetic trees is 

referred to as multilocus sequence analysis (MLSA) (Maiden et al., 1998; Gevers 

et al., 2005).  

Unique sets of genetic loci have been identified and validated for the 

MLST-based characterization and differentiation of pathogenic prokaryotic and 

eukaryotic groups exhibiting significantly greater strain-level resolution than 16S 

rRNA based characterization (Jolley et al., 2004; Maiden, 2006; Jolley & Maiden, 

2010; Maiden et al., 2013). Species and genus level MLST gene sequence 

similarity thresholds have been developed for specific groups to augment the 

universal 16S rRNA gene sequence similarity thresholds such as the genera 

Burkholderia (Vandamme & Peeters, 2014), Streptomyces (Rong et al., 2009), 

and Chlamydia (Sachse et al., 2015). These MLST gene sets have also been used 

for MLSA based phylogenetic analyses providing novel evolutionary and 

taxonomic insights for groups that are not clearly resolved based on the analysis 

of the 16S rRNA gene (Postic et al., 2007; Brady et al., 2013; Peeters et al., 2013; 

Glaeser & Kämpfer, 2015). Though universally conserved gene sets have been 

utilized for large-scale MLSA based phylogenetic analyses spanning the entire 

tree of life (Santos & Ochman, 2004; Jolley et al., 2012; Hug et al., 2016), these 

universally conserved gene sets cannot distinguish between many of the closely 

related organisms that group-specific MLST gene sets were designed to 

characterize and differentiate (Gevers et al., 2005; Glaeser & Kämpfer, 2015).  
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The Impact of Whole Genome Sequences on Prokaryotic Classification 

The sequencing of the first microbial genome in 1995, belonging to the 

organism Haemophilus influenzae (Fleischmann et al., 1995), heralded the 

beginning of the genomic age of evolutionary biology. The 1.8 megabasepair 

(Mb) genome of Haemophilus influenzae used conventional Sanger sequencing 

techniques and cost hundreds of thousands of dollars to produce (Loman et al., 

2012). The prohibitive cost of genome sequencing in the 1990s limited the use of 

sequenced genome data in evolution and taxonomy research. However, in 2005, 

the development of high-throughput next generation sequencing (NGS) 

technology massively reduced the cost of sequencing individual genomes 

(Metzker, 2005; Wetterstrand, 2016). With the advent of high-throughput NGS 

technologies, such as 454 parallel pyrosequencing, Sequencing by 

Oligonucleotide Ligation and Detection (SOLiD), ion semiconductor sequencing, 

and Illumina dye sequencing, the cost of genome sequencing has and continues to 

drop exponentially (Liu et al., 2012). Recently, the Illumina HiSeq X Ten, a 

genome sequencing platform which can generate up to 1 800 000 Mb of sequence 

data per run, has been able to sequence a human genome for less than $1000, a 

99.999% reduction in cost from the first human genome sequence produced in 

2001 (Venter et al., 2001; van Dijk et al., 2014; Wetterstrand, 2016). This massive 

decrease in the cost of genome sequencing has been associated with a 

commensurately massive increase in the number of available genome sequences. 
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To wit, here are currently over 75 000 genome sequences from over 16 000 

organisms available in the NCBI genome database (NCBI, 2016).  

This exponentially increasing wealth of genome sequence data has led to 

the development of several novel methods of understanding organismal 

relationships based on their genome sequences (Chun & Rainey, 2014). The most 

popular class of methods are overall genome relatedness indices. Overall genome 

relatedness indices are methods of measuring genome to genome distance, which 

serves as a proxy for the classic DDH value without its associated limitations. 

These indices include: average nucleotide identity (ANI), which measures the 

sequence identity of shared genes and has an established 95-96% identity 

threshold for species level demarcation (Konstantinidis & Tiedje, 2005; Richter & 

Rosselló-Móra, 2009; Kim et al., 2014; Varghese et al., 2015); average amino 

acid identity (AAI), which measures the sequence identity of shared proteins and 

provides greater stability for more distant comparisons than ANI (Konstantinidis 

& Tiedje, 2005; Rosselló-Mora, 2005; Thompson et al., 2013); percent of 

conserved proteins (POCP) and alignment fraction (AF), which measure the 

proportion of proteins/genes shared by two genomes (Qin et al., 2014; Varghese 

et al., 2015); genome BLAST distance phylogeny (GBDP) (Henz et al., 2005; 

Meier-Kolthoff et al., 2013), which uses a methodology similar to ANI but does 

not break the genome into artificial blocks and has a closer correlation to DDH 

values; and the maximal unique matches index (MUMi) (Deloger et al., 2009) and 

the related nucleotide matches (NUCMi) and protein matches (PROMi) indices 
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(Dias et al., 2011), which are based on the sequence similarity of shared genome 

segments identified during whole genome alignments. Each of these methods 

synthesizes large amounts of genome sequence data to determine evolutionary 

relationships. Their results generally correlate well with established phylogenies 

based on the 16S rRNA gene sequence while being robust against lateral gene 

transfer and other anomalous genetic information (Chun & Rainey, 2014; Zuo et 

al., 2015). In Chapter 3 of this thesis, AAI values are utilized to support the 

differentiation of two groups within the genus Borrelia, while POCP is utilized in 

Chapter 7 of this thesis to support the distinctiveness of the main groups within 

the order Enterobacteriales. An integrated software pipeline is described in 

Chapter 6 of this thesis, which can be utilized to produce both AAI and POCP 

values from genome sequence data. 

Another class of methods for understanding organismal relationships 

based on their genomes is referred to as alignment independent genome to 

genome distance measures (Bonham-Carter et al., 2014; Chan et al., 2014). These 

methodologies utilize the nucleotide or amino acid composition of genomes to 

infer their overall relatedness. Alignment independent genome to genome distance 

measures can be broken down into four broad categories: factor frequencies (Liu 

et al., 2008), composition vectors (Lu et al., 2008; Chan et al., 2012), data 

compression (Otu & Sayood, 2003; Ulitsky et al., 2006), and common substrings 

(Ukkonen, 1985). Each alignment independent genome to genome distance 

measure determines genomic similarity, using statistical methodologies to 
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compare the frequency of specific length sub-sections of the genome, referred to 

as words or k-mers, between pairs of genomes. Due to the alignment free nature 

of these methodologies, they can be computed extremely quickly and are often 

used as the first heuristic approach in sequence similarity search algorithms 

(Altschul et al., 1997; Kent, 2002; Edgar, 2010). However, alignment independent 

genome to genome distance measures only roughly correlate with 16S gene 

sequence analysis and are not regularly used in evolution and taxonomy research 

(Gao et al., 2007; Jun et al., 2010; Zuo et al., 2015). Moreover, none of the overall 

genome relatedness indices or alignment independent genome to genome distance 

measures can be used to produce phylogenetic trees which are significantly more 

robust than those already provided by analysis of the 16S rRNA gene (Verma et 

al., 2013; Chun & Rainey, 2014; Zuo et al., 2015). Thus, these methodologies are 

primarily limited to supplemental roles in polyphasic evolutionary analysis that 

already incorporates a robust phylogenetic methodology (Ramasamy et al., 2014; 

Vandamme & Peeters, 2014). 

 

Genome-Scale Phylogenetic Tree Construction 

Phylogenetic trees, which are hierarchal and bifurcating tree diagrams 

depicting the evolutionary history of a group of organisms, have formed the 

backbone of evolutionary and systematic research for the last 25 years (Woese et 

al., 1990; Stackebrandt & Goebel, 1994; Yilmaz et al., 2013; Oren & Garrity, 

2014; Parte, 2014). The construction of phylogenetic trees is generally based on 
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clustering similar organisms using measures of genetic or genomic distance, such 

as in the neighbour-joining approach (Saitou & Nei, 1987), or on the optimization 

of an overall tree score, such as in the maximum-parsimony (Fitch, 1971), 

maximum-likelihood (Felsenstein, 1981), and Bayesian inference (Rannala & 

Yang, 1996) approaches. Maximum-parsimony, maximum-likelihood, and 

Bayesian inference approaches attempt to optimize tree scores based on minimum 

number of changes required to reconcile the tree and the gene/protein alignment, 

the log-likelihood of the tree based on the gene/protein alignment, and the 

posterior probability of generating the tree from the gene/protein alignment, 

respectively, often using heuristic methodologies (Yang & Rannala, 2012). The 

strength (i.e. consistency) of the evolutionary relationships depicted in the 

phylogenetic tree are primarily determined by using statistical tests such as 

jackknife and bootstrap resampling (Quenouille, 1949; Efron, 1992) or likelihood 

ratio analysis (Shimodaira & Hasegawa, 1999; Anisimova & Gascuel, 2006). 

The availability of genome sequence data allows for phylogenetic tree 

construction based on large amounts of genetic information—potentially 

consisting of the entire core genome—which has consistently been shown to have 

higher reliability and resolving power and to be more resistant to lateral gene 

transfer events than phylogenetic trees based on any single gene or protein (Rokas 

et al., 2003; Dutilh et al., 2004; Delsuc et al., 2005; Ciccarelli et al., 2006; Wu & 

Eisen, 2008; Puigbo et al., 2009; Wu et al., 2009). There are two main approaches 

to utilizing genomic sequence data in the construction of robust phylogenetic 
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trees. The first approach involves the construction of individual phylogenetic 

trees, based on sequence alignments of each gene/protein in the shared core 

genome, which are later combined into a single consensus phylogenetic tree 

referred to as a supertree (Bininda-Emonds, 2004; Beiko et al., 2005; Puigbo et 

al., 2009; Lang et al., 2013). The supertree exhibits the dominant branching 

patterns present in the multiple individual phylogenetic trees, allowing their core 

trends to be readily visualized. This methodology has two main benefits. Firstly, 

due to the exponential increase in the difficulty of phylogenetic tree construction 

as the length of the analyzed gene sequence increases (Stamatakis, 2014), the 

supertree method is more computationally efficient than methods that attempt to 

analyze all of the genome at once. For example, reconstructing a phylogeny based 

on one alignment of size X takes more total computational power than 

reconstructing the phylogeny of ten alignments of size 0.1X. Secondly, the 

supertree method simultaneously produces individual gene trees as it produces the 

consensus supertree, providing additional gene based phylogenies which can be 

further analyzed and compared to the consensus supertree. The second approach 

to utilizing genomic sequence data in robust phylogenetic trees involves the 

individual alignment of either a limited number of genes/proteins or all 

genes/proteins in the shared genome, followed by the concatenation of these 

alignments into a single dataset referred to as a supermatrix (Brown et al., 2001; 

Snel et al., 2005; Ciccarelli et al., 2006; Lang et al., 2013; Segata et al., 2013; Hug 

et al., 2016). This supermatrix is then used to produce a highly robust 
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phylogenetic tree. The supermatrix method has a few notable advantages over the 

supertree method including improved resolution of the relationships among 

organisms in the tree and compatibility with traditional statistical methods to 

determine the strength of the topological relationships within the tree, including 

bootstrap resampling and likelihood ratio analysis (Gadagkar et al., 2005; Ren et 

al., 2009; Lang et al., 2013). Chapter 6 of this thesis discusses an integrated 

software pipeline that can produce supermatrix based phylogenetic trees from 

genome sequence data. 

The quality and reliability of supertrees and supermatrix based 

phylogenetic trees are dependent on the composition and size of the core genome 

of the examined organisms. In closely related organisms, where the core genome 

may consist of thousands of genes/proteins (Rasko et al., 2008; Bottacini et al., 

2010; den Bakker et al., 2010; Valot et al., 2015), phylogenetic supertrees and 

phylogenetic trees based on concatenated sequences are particularly robust and 

reliable. However, the core genome for distantly related groups of organisms is 

limited in size, consisting largely of genes which are functionally interlinked 

(Ciccarelli et al., 2006; Dagan & Martin, 2006; Hug et al., 2016). Thus, supertrees 

and supermatrix based phylogenetic trees for diverse groups of organisms are 

limited in the numbers of genes they can include, and should be supplemented 

with additional forms of analysis. 
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The Utility of Molecular Signatures in Evolutionary and Taxonomic Studies 

The wealth of available genomic sequence information also allows for the 

identification of conserved molecular signatures specific to related groups of 

prokaryotic organisms. The molecular signatures that are ideally suited for use in 

evolutionary studies as molecular signatures are homologous apomorphic 

characters that evolved only once (i.e. a synapomorphy) during the course of 

evolution (Stackebrandt & Schumann, 2006; Gupta, 2014). One such class of 

molecular signatures, that has been a focus of much recent evolutionary research, 

are Conserved Signature insertions and deletions, i.e. Indels, (CSIs) of defined 

lengths and locations in widely distributed proteins, which are specific for 

particular groups of organisms (Gupta, 2014; Gupta et al., 2015a; Gupta et al., 

2015b; Gupta, 2016; Gupta et al., 2016). Indels of a defined size, flanked on both 

sides by conserved regions to ensure they constitute reliable characteristics which 

are not a result of alignment errors, provide extremely useful phylogenetic 

information (Gupta, 2014). The high conservation of their location in the genome 

suggests that they have high functional significance and are likely under 

significant selective pressure for retention (Gao & Gupta, 2012b; Gupta, 2014). 

Many of these conserved signature indels (CSIs), such as those found in the 

GroEL and DnaK proteins of many bacteria, are essential for bacterial growth and 

lead to cell death if removed or significantly altered (Singh & Gupta, 2009). Thus, 

CSIs in widely distributed proteins in a defined group of bacteria are extremely 
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rare genetic changes and are highly specific molecular signatures which have 

functional significance and may be essential for bacterial growth (Rokas & 

Holland, 2000; Singh & Gupta, 2009; Zhi et al., 2012). The genetic changes 

which give rise to conserved indels are highly specific and extremely rare in 

occurrence, thus, such changes are unlikely to arise in different groups due to 

convergent evolution (Rokas & Holland, 2000; Naushad & Gupta, 2013; Gupta, 

2014). Hence, the most parsimonious explanation for the unique presence of a 

CSI in a particular group of organisms is that the rare genetic change responsible 

for the CSI first occurred in a common ancestor of the group of species where the 

CSI was found and was then transferred vertically to its various descendants 

(Rivera & Lake, 1992; Rokas & Holland, 2000; Gupta, 2014). However, it is 

important to consider the possibility that the shared presence of a CSI could be 

due to cases of lateral gene transfers. Further, based upon the presence or absence 

of a particular CSI in various outgroup species, it is possible to infer whether the 

CSI under consideration is an insertion or a deletion in a given group, and which 

of the two character states of the protein is ancestral and which is derived (Rivera 

& Lake, 1992; Gupta, 1998; Gupta, 2014). Thus, by making use of CSIs that have 

been introduced at various stages of evolution, it is possible to derive a rooted 

evolutionary relationship among various groups or taxa under consideration 

independently of phylogenetic trees (Gupta, 2001; Gupta, 2014). The applications 

of CSI based evolutionary inference to the taxonomy of specific groups of 

bacteria are described in Chapters 2, 3, 4, 5, and 7 of this thesis. 
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In addition to conserved indels, comparative genomic analyses have been 

an essential resource in identifying another important class of molecular 

signatures useful to evolutionary studies. These markers consist of whole proteins 

found uniquely in monophyletic clades of bacteria (Lerat et al., 2005; Gao et al., 

2006; Dutilh et al., 2008; Gupta, 2010; Gao & Gupta, 2012b). Many proteins of 

known and unknown functions, thought to be unique and distinctive, have been 

found to be characteristic of various species of bacteria from monophyletic clades 

of different phylogenetic depths (Snel et al., 2005; Dutilh et al., 2008; Gupta & 

Sharma, 2015; Gupta, 2016). Although the mechanisms responsible for the 

origin/evolution of genes for these proteins are unclear (Dutilh et al., 2008; Kuo & 

Ochman, 2009), their presence in a conserved state in all or most species/strains 

from a monophyletic clade, but nowhere else, suggests that the genes for these 

proteins first evolved in a common ancestor of these clades and were 

subsequently vertically passed down to its various descendants (Dutilh et al., 

2008; Fang et al., 2008; Narra et al., 2008). Thus, like CSIs, these Conserved 

Signature Proteins (CSPs) provide valuable molecular signatures for evolutionary 

studies of different bacterial clades (Dutilh et al., 2008; Gupta & Gao, 2010; Gao 

& Gupta, 2012a; Gupta & Sharma, 2015). The identification of a number of CSPs 

which distinguish two closely related groups within the genus Borrelia are 

described in Chapter 3 of this thesis. 
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Research Objective and an Overview of The Phylum Spirocheates and The 

Class Betaproteobacteria 

The overall objective of my graduate research has been the identification 

and analysis of molecular signatures, such as CSIs and CSPs, and the utilization 

of phylogenomic and comparative genomic techniques to elucidate the 

evolutionary history of the phylum Spirochaetes and the class Betaproteobacteria 

and their main constituent groups.  

The phylum Spirochaetes consists of a large and diverse group of motile 

bacteria which are widespread in the environment and are highly prevalent disease 

causing agents (Seshadri et al., 2004; Paster, 2011).  There are two particularly 

important genera within the phylum Spirochaetes whose species are the causative 

agents of many globally prevalent illnesses, Treponema and Borrelia (Bellgard et 

al., 2009). Treponema pallidum subspecies pallidum is the causative agent of 

syphilis, a sexually transmitted disease which affects at least twenty-five million 

adults worldwide (Gerbase et al., 1998). Members of the genus Borrelia are the 

causative agents of both Lyme disease, which is currently the most prevalent 

vector-borne disease in North America and temperate regions of Eurasia, and 

relapsing fever, which is a disease endemic to many disparate regions of the world 

(Lindgren & Jaenson, 2006; Cutler, 2010; Adams et al., 2013). However, despite 

the clinical importance and diverse characteristics of its members, the phylum 

Spirochaetes was, until recently, comprised of a single class, Spirochaetia, 
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containing a single order, Spirochaetales, which was made up of four families 

(Paster, 2011). 

Similarly, the class Betaproteobacteria is a large and diverse group within 

the phylum Proteobacteria, consisting of over 200 bacterial species divided into 

seven orders (Parte, 2014). Of the seven orders within the Betaproteobacteria, the 

orders Neisseriales and Burkholderiales are of particular interest due to their size 

and their pathogenic members. Namely, Neisseria gonorrhoeae, the causative 

agent of the increasingly drug resistant sexually transmitted infection gonorrhea, 

which affects approximately 88 million individuals a year worldwide (World 

Health Organization, 2011), Neisseria meningitides, the primary causative agent 

of infectious meningococcal meningitis (Stephens et al., 2007; Cohn et al., 2010), 

and the genus Burkholderia, a large group of soil bacteria which are ubiquitous in 

the environment and can act as opportunistic pathogens (White, 2003; Workowski 

et al., 2008; Lipuma, 2010). Despite the diversity within the order Neisseriales 

and the presence of important pathogens, until recently, all members of the order 

Neisseriales were placed within a single family, Neisseriaceae, and, until 

recently, all of the >70 diverse members of the genus Burkholderia were placed 

within one genus (Coenye & Vandamme, 2003; Palleroni, 2005). 

 

Research Overview 

The analyses completed in my research have been utilized to propose 

significant taxonomic revisions for the phylum Spirochaetes and major groups 



Ph.D. Thesis - Mobolaji Adeolu McMaster University - Biochemistry 

25 

 

within the class Betaproteobacteria, reflecting the diversity present in these 

groups (Adeolu & Gupta, 2013; Gupta et al., 2013b; Adeolu & Gupta, 2014; 

Sawana et al., 2014). In Chapter 2 of this thesis, I describe the use of CSIs and 

phylogenetic trees to differentiate the three main sequenced groups of organisms 

within the phylum Spirochaetes and to differentiate the genus Borrelia from other 

closely related Spirochaetes. The chapter concludes with a proposal for a novel 

taxonomic framework for the phylum Spirochaetes including three new orders 

and a new family. Chapter 3 of this thesis details a corollary study focused on the 

genus Borrelia. In this chapter, I describe the use of CSIs and CSPs, phylogenetic 

trees, and average nucleotide identity analysis to differentiate two clinically 

distinct groups within the genus Borrelia and a proposal to divide the genus 

Borrelia into two genera.  

In Chapter 4 of this thesis, I describe the use of CSIs and phylogenetic 

trees to differentiate the obligate host-associated members of the order 

Neisseriales from the other genera within the order and a proposal to recognize 

the distinctiveness of the host-associated members by limiting the family 

Neisseriaceae to only those members, while transferring the other genera within 

the order Neisseriales to a novel family. Chapter 5 of this thesis describes a 

subsequent study focused on the genus Burkholderia, in which CSIs and 

phylogenetic trees are utilized to differentiate the opportunistically pathogenic 

members of the genus Burkholderia from the plant-beneficial and environmental 
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Burkholderia and a division of the two groups within the genus into two distinct 

genera is proposed.  

Chapter 7 of this thesis describes the use of CSIs, protein based 

phylogenetic trees, and shared protein content to differentiate the seven main 

groups within the order Enterobacteriales and proposes that each of the seven 

groups should be treated as family-level taxa. Chapter 6 of this thesis describes an 

integrated software pipeline that produces supermatrix based phylogenetic trees 

and calculates both shared protein content and average amino acid identity from 

genome sequences which is utilized in the study described in Chapter 7. Lastly, 

Chapter 8 reflects on the studies and phylogenomic tools presented herein,and 

describes the overall usefulness and future directions of the work. 
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CHAPTER 2 

A phylogenomic and molecular signature based approach for 

characterization of the phylum Spirochaetes and its major clades: proposal 

for a taxonomic revision of the phylum 

 

 

This chapter describes the use of molecular signatures (CSIs) and 

phylogenetic trees to differentiate the three main sequenced groups of organisms 

within the phylum Spirochaetes. Additionally, this chapter describes the 

differentiation of the genus Borrelia from other closely related Spirochaetes 

genera (viz. Treponema, Spirochaeta, and Sphaerochaeta). The chapter concludes 

with a proposal for a novel taxonomic framework for the phylum Spirochaetes 

including three new orders and a new family. My contributions to the completion 

of this chapter include the construction of all phylogenetic trees shown, 

reexamination of the specificity of the identified of CSIs, the creation of the 

taxonomic proposals, the writing drafts and revisions of the manuscript, and the 

production of all main and supplemental figures and tables in the manuscript. 

 

 

Due to limited space, supplementary materials for this work are not included in the chapter but can 

be accessed along with the rest of the manuscript at: 

Gupta, R. S., Mahmood, S., & Adeolu, M. (2013). Frontiers in microbiology, 4, 217. 
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CHAPTER 3 

A phylogenomic and molecular marker based proposal for the division of the 

genus Borrelia into two genera: the emended genus Borrelia containing only 

the members of the relapsing fever Borrelia, and the genus Borreliella gen. 

nov. containing the members of the Lyme disease Borrelia (Borrelia 

burgdorferi sensu lato complex). 

 

This chapter describes the use of molecular signatures (CSIs and CSPs), 

phylogenetic trees, and genomic distance (average nucleotide identity) to 

differentiate two clinically distinct groups within the genus Borrelia. The chapter 

concludes with a proposal to divide the genus Borrelia into two genera, limiting 

the genus Borrelia to only the members of the relapsing fever Borrelia group, and 

transferring the members of the Lyme disease Borrelia group (also referred to as 

the Borrelia burgdorferi sensu lato complex) to the genus Borreliella. My 

contributions towards the completion of this chapter include the construction of 

all phylogenetic trees shown, identification of all CSIs and CSPs shown, the 

completion of the average nucleotide identity analysis, the creation of the 

taxonomic proposals, the writing of all drafts and revisions of the manuscript, and 

the production of all main and supplemental figures and tables in the manuscript. 

 

Due to limited space, supplementary materials for this work are not included in the chapter but can 

be accessed along with the rest of the manuscript at: 

Adeolu, M., & Gupta, R. S. (2014). Anton Leeuw Int J G, 105(6), 1049-1072. 
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CHAPTER 4 

Phylogenomics and molecular signatures for the order Neisseriales: proposal 

for division of the order Neisseriales into the emended family Neisseriaceae 

and Chromobacteriaceae fam. nov. 

 

This chapter describes the use of molecular signatures (CSIs) and 

phylogenetic trees to differentiate the obligate host-associated members of the 

order Neisseriales from the other genera within the order. The chapter also 

includes a brief discussion of the evolutionary history of the host-associated 

members of the order Neisseriales based on the phylogenetic trees and identified 

CSIs. The chapter concludes with a proposal to limit the family Neisseriaceae to 

the obligate host-associated members of the order Neisseriales, and to transfer the 

other genera within the order Neisseriales to the novel family 

Chromobacteriaceae. My contributions towards the completion of this chapter 

include the construction of all phylogenetic trees, identification of all CSIs, the 

creation of the taxonomic proposals, the writing of all drafts and revisions of the 

manuscript, and the production of all main and supplemental figures and tables in 

the manuscript. 

 

Due to limited space, supplementary materials for this work are not included in the chapter but can 

be accessed along with the rest of the manuscript at: 

Adeolu, M., & Gupta, R. S. (2013). Anton Leeuw Int J G, 104(1), 1-24. 
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CHAPTER 5 

Molecular signatures and phylogenomic analysis of the genus Burkholderia: 

proposal for division of this genus into the emended genus Burkholderia 

containing pathogenic organisms and a new genus Paraburkholderia gen. nov. 

harboring environmental species. 

This chapter describes the use of molecular signatures (CSIs) and 

phylogenetic trees to differentiate the opportunistically pathogenic members of 

the genus Burkholderia from the plant-beneficial and environmental 

Burkholderia. The chapter also describes unique CSIs which distinguish the 

clinically relevant Burkholderia cepacia complex, the pathogenic Burkholderia 

pseudomallei group, or the phytopathogenic Burkholderia group, and includes a 

brief discussion of their diagnostic potential. The chapter concludes with a 

proposal to limit the genus Burkholderia to opportunistically pathogenic members 

of the genus, and to transfer the plant-beneficial and environmental Burkholderia 

to the novel genus Paraburkholderia. My contributions towards the completion of 

this chapter include the construction of the 16S rRNA based phylogenetic tree, the 

initial identification of some CSIs, the creation of the taxonomic proposals, the 

writing of drafts and revisions of the manuscript, and involvement in the 

production of main and supplemental figures and tables in the manuscript. 

 

Due to limited space, supplementary materials for this work are not included in the chapter but can 

be accessed along with the rest of the manuscript at: 

Sawana, A., Adeolu, M., & Gupta, R. S. (2014). Frontiers in genetics, 5, 429. 
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CHAPTER 6 

GLIMPS: A User-Friendly Pipeline for the production of Core Genome and 

Concatenated Protein based Phylogenetic Trees and Protein based 

Comparative Genomic Analyses  
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Background 

The construction and analysis of accurate phylogenetic trees has come to 

form the backbone of modern evolutionary biology and systematics research 

(Woese et al., 1990; Stackebrandt & Goebel, 1994; Yilmaz et al., 2013; Oren & 

Garrity, 2014; Parte, 2014). The growing availability of whole genome sequences 

for a large number of microbial organisms provides researchers with a powerful 

tool for the production of large, robust, and accurate multi-gene phylogenetic 

trees. Phylogenetic trees, when based on the entire shared core genome of the 

analysed group, are referred to as phylogenomic trees. Phylogenomic trees 

provide a number of advantages over single gene trees, including increased 

phylogenetic signal, improved resolution of relationships among organisms in the 

tree, and resistance to phylogenetic artifacts caused by lateral gene transfers and 

other anomalous genetic events (Rokas et al., 2003; Dutilh et al., 2004; Delsuc et 

al., 2005; Ciccarelli et al., 2006; Wu & Eisen, 2008; Puigbo et al., 2009; Wu et al., 

2009). However, the production of phylogenomic trees is computationally 

intensive and presents three main challenges: identification of orthologous protein 

families, multiple sequence alignment (MSA), and the construction of the 

phylogenomic tree.  

A number of phylogenomic tree building pipelines have been previously 

described in published literature (Wu & Eisen, 2008; Robbertse et al., 2011; 

Rodriguez-R et al., 2012; Wu & Scott, 2012; Dunn et al., 2013; Pearse & Purvis, 

2013; Segata et al., 2013; Grant & Katz, 2014; Kumar et al., 2015). However, 
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these pipelines are primarily command-line tools (Wu & Eisen, 2008; Robbertse 

et al., 2011; Rodriguez-R et al., 2012; Wu & Scott, 2012; Dunn et al., 2013; 

Pearse & Purvis, 2013; Segata et al., 2013; Grant & Katz, 2014), are generally 

designed and validated for use on eukaryotic transcriptome data (Robbertse et al., 

2011; Dunn et al., 2013; Pearse & Purvis, 2013; Grant & Katz, 2014; Kumar et 

al., 2015), are often limited in their use of heuristics or computational acceleration 

methods (Wu & Eisen, 2008; Robbertse et al., 2011; Wu & Scott, 2012; Dunn et 

al., 2013; Pearse & Purvis, 2013; Grant & Katz, 2014), and, in a few cases, are 

designed to use preselected sets of near universal genes instead of the shared core 

genome of the organisms to be analyzed (Wu & Eisen, 2008; Wu & Scott, 2012; 

Segata et al., 2013).  

Here I describe an integrated software pipeline for the production of 

phylogenomic trees called the Gupta Lab Integrated Microbial Phylogeny and 

Supermatrix (GLIMPS) pipeline (Figure 6.1). The GLIMPS pipeline uses 

heuristic tools to accelerate the orthologous protein family identification and 

phylogenomic tree construction stages of the phylogenomic tree building process. 

Additionally, the GLIMPS pipeline uses thread-aware multicore processing 

strategies to accelerate the sequence search and MSA stages of the phylogenomic 

tree building process. As well as producing phylogenomic trees, the GLIMPS 

pipeline is capable of producing presence-absence matrices of the shared protein 

families in the analyzed genomes, and calculating matrices for both the proportion 

of shared protein content and average amino acid identity of the analyzed genome 
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sequences. Lastly, the GLIMPS pipeline includes a simple, user-friendly graphical 

user interface (GUI) which will allow researchers, who are outside of the field of 

bioinformatics or who may not be comfortable with command line based tools, to 

generate robust and reliable de novo phylogenomic trees. 

 

Description of the GLIMPS pipeline and Graphical User Interface 

Identification of Orthologous Protein Families 

Orthologous proteins, hereafter referred to as orthologs, are defined as 

members of homologous protein families which have been separated by 

speciation events (Fitch, 1970). For example, the DNA gyrase proteins in 

Escherichia coli and Bacillus subtilis are orthologs (i.e. they are the “same” 

protein in different organisms, separated by speciation). The identification of 

orthologs is the crucial first step in phylogenomic analysis. The optimal 

methodology for identification of orthologs is the tree reconciliation method, 

which involves the comparison of a known species tree to the phylogenetic tree 

generated by individual genes/proteins (Zmasek & Eddy, 2001; Kristensen et al., 

2011; Trachana et al., 2011). However, this methodology requires the 

computationally intensive task of creating accurate gene/protein based 

phylogenetic trees, and necessitates the presence of a known species tree, which is 

generally unavailable in microbial organisms. In contrast, the fastest current 

methods of ortholog identification involve threshold based protein clustering (Li 

& Godzik, 2006; Edgar, 2010; Fu et al., 2012). However, these methods are 
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limited to proteins sharing 50% or greater sequence identity, and they cannot 

distinguish between orthologs and other types of homologous proteins. 

Consequently, the most common methodology for the identification of orthologs 

is the reciprocal best hit methodology. The reciprocal best hit method involves the 

use of all-vs-all sequence similarity comparisons of each gene/protein in a pair of 

genomes. Proteins which share the highest similarity to each other in different 

genomes are identified as orthologs (Remm et al., 2001). However, due to the 

exponential rate of increase in the number of comparisons required, this 

methodology does not scale well beyond about 50 genomes (Lechner et al., 2011).  

In the GLIMPS pipeline, we utilize CD-Hit (Fu et al., 2012), a threshold 

based protein clustering program to generate initial protein families which share 

50% or greater sequence similarity with each other. We then use Clustal Omega 

(Sievers et al., 2011), a fast and accurate MSA program, to generate alignments of 

these protein families. These MSAs are converted into profile Hidden Markov 

Models (HMMs) (Eddy, 1998), which are statistical representations of the MSA, 

using HMMer (Eddy, 2011). The profile HMMs are then used to search for other 

members of the protein families in the input genomes. This process is similar to 

the highly sensitive PSI-BLAST algorithm (Altschul et al., 1997) and the 

phylogenomic clustering methodology utilized by the PATRIC database (Wattam 

et al., 2014). Overall, this methodology has the benefit of combining two 

extremely fast ortholog detection procedures, protein clustering and non-

reciprocal sequence similarity searches, to create a fast ortholog detection process 
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that manages to retain a significant amount of sensitivity. Once the identification 

of orthologous protein families steps are complete, the GLIMPS pipeline is able to 

generate a presence-absence table and calculate the percentage of shared proteins 

(Qin et al., 2014) for each pair of genomes in the analysis (Figure 6.1). 

 

Multiple Sequence Alignment 

The quality and accuracy of an MSA has significant impacts on the 

accuracy of the resultant phylogenetic tree, a property often referred to as the 

“garbage in, garbage out” principle (Ogden & Rosenberg, 2006; Talavera & 

Castresana, 2007; Liu et al., 2010a; Wang et al., 2011). The production of 

accurate MSAs is a computationally difficult task and there is a strong inverse 

relationship between alignment accuracy and alignment speed (Notredame et al., 

2000; Katoh & Toh, 2007; Liu et al., 2010b; Sievers et al., 2011). In the GLIMPS 

pipeline, we utilize the program Clustal Omega for our MSAs (Sievers et al., 

2011) which is a preferable MSA program for phylogenomic analyses for two 

main reasons. Firstly, Clustal Omega scores within 5-10% of the alignment 

quality of the most accurate MSA programs on benchmarks, similar to popular 

alignment programs such as MAFFT (Katoh & Standley, 2013) and MUSCLE 

(Edgar, 2004), while being up to two orders of magnitude faster than the most 

accurate MSA programs, and faster than other similarly accurate alignment 

programs (Sievers et al., 2011). Secondly, unlike the popular and accurate 

MAFFT (Katoh & Standley, 2013) L‐INS‐i setting, Clustal Omega does not 
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presuppose that the sequence being aligned is from a single domain, globular 

protein. This allows Clustal Omega to be more adaptable to the varied protein 

types encountered in whole genomes (Sievers et al., 2011). In the GLIMPS 

pipeline, we have accelerated the MSA stage of phylogenomic tree construction 

by utilizing the Python multiprocessing module to assign individual instances of 

Clustal Omega to each available thread of execution on the host computer. Once 

each of the protein families has been aligned, the GLIMPS pipeline is able to 

calculate the average amino acid identity (Thompson et al., 2013) of the shared 

proteins in each pair of genomes in the analysis (Figure 6.1). 

The quality of MSAs can be improved by removing poorly aligned regions 

in a process known as alignment trimming. Alignment trimming is thought to 

increase the signal to noise ratio of the MSA (Talavera & Castresana, 2007; 

Capella-Gutierrez et al., 2009; Wu et al., 2012) and has been shown to generally 

improve the power of phylogenetic inference (Talavera & Castresana, 2007; 

Löytynoja & Goldman, 2008; Cummins & McInerney, 2011). In the GLIMPS 

pipeline, we have utilized the alignment trimming program TrimAl (Capella-

Gutierrez et al., 2009) to trim our alignments before concatenation into a 

supermatrix. As a sequence based alignment trimming program, TrimAl processes 

alignments multiple orders of magnitude faster than confidence based alignment 

trimming programs (Chang et al., 2014) and, unlike the widely used sequence 

based alignment trimming program GBlocks (Castresana, 2000), TrimAl is 

capable of automatically optimizing the parameters used to trim each sequence 
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alignment in the core genome based on the sequence characteristics of each input 

MSA (Capella-Gutierrez et al., 2009). This quality facilitates the use of TrimAl 

for alignment trimming in large phylogenomic datasets. 

 

Phylogenomic Tree Construction 

The difficulty of phylogenetic tree construction increases exponentially 

with the length of analyzed alignment (Stamatakis, 2014), making phylogenetic 

tree construction based on supermatrices computationally intensive. Constructing 

a phylogenetic tree based on a genome-scale supermatrix can take weeks on a 

consumer grade desktop computer using the fastest maximum-likelihood based 

phylogeny programs currently available, PhyML (Guindon et al., 2010) and 

RAxML (Stamatakis, 2014). FastTree, a program developed specifically to create 

large-scale phylogenies, uses heuristic methodology to approximate maximum-

likelihood phylogenies, which are nearly as accurate as the maximum-likelihood 

phylogenies produced by PhyML or RAxML, and is at least two orders of 

magnitude faster in its execution (Price et al., 2010; Liu et al., 2011). In the 

GLIMPS pipeline, we utilize FastTree to construct an approximately maximum-

likelihood phylogenetic tree which we then pass as input to RAxML, instead of 

the default maximum-parsimony tree. This greatly reduces the time RAxML 

requires to optimize individual branch lengths and perform local rearrangements 

in order to identify the optimal maximum-likelihood topology. 
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Graphical User Interface 

The GLIMPS pipeline includes a simple GUI written using the Python Tk 

interface module (Figure 6.2). The GUI for the GLIMPS pipeline consists of three 

main components: the main input screen, the settings screen, and the activity log. 

The main input screen, shown in Figure 6.2A, allows the user to select the 

directory containing the translated protein files, in the fasta format, for each 

genome to be included in the phylogenomic analysis, and to select the save 

location for the GLIMPS output files. The main input screen also allows the user 

to optionally provide a user created file, in the fasta format, containing a set of 

curated protein sequences, such as multilocus sequence analysis proteins or 

ribosomal proteins, which can be used to generate the phylogenomic tree instead 

of the proteins in the core genome. The settings screen, shown in Figure 6.2B, 

allows the user to select which output files will be generated during the 

phylogenomic analysis, including the presence-absence table, the percentage of 

shared proteins matrix, and the average amino acid identity matrix. The user may 

also select the minimum percentage of the input genomes in which a protein must 

be found to be utilized in the phylogenomic analysis, and may select or modify 

the local paths for the software utilized by the GLIMPS pipeline. Lastly, the 

GLIMPS pipeline provides the user with a real-time log of the current status of 

the phylogenomic analysis, allowing the user to easily monitor the state and 

performance of the pipeline. 
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Discussion 

The GLIMPS phlyogenomic analysis pipeline is a simple, integrated tool 

capable of quickly producing accurate and robust phylogenomic trees for use in 

complete comparative genomic analyses. The GLIMPS pipeline uses well-

established and validated tools and several heuristic steps to rapidly generate 

publication quality phylogenomic trees. Early versions of the GLIMPS pipeline 

have already been utilized to produce phylogenomic trees in a number of 

published evolutionary microbiology and systematic studies (Campbell et al., 

2015; Gupta et al., 2015b; Naushad et al., 2015a; Gupta et al., 2016; Zhang et al., 

2016). The GLIMPS pipeline has also been utilized to generate the protein based 

phylogenetic trees and the percentage of conserved proteins matrix shown in the 

submitted manuscript presented in Chapter 7 of this thesis. The binary executables 

for Windows, macOS, and Linux for the GLIMPS pipeline will be available on 

the Gupta Lab Evolutionary Analysis Software website (GLEAnS.net) once 

completed and the source code for the pipeline will be hosted on GitHub. The 

GLIMPS pipeline represents a step forward in providing bioinformatics tools to 

the wider research community and will allow researchers to generate robust and 

reliable de novo phylogenomic trees without the requirement of extensive 

bioinformatics or computing skills. 
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Figure 6.1 A flowchart depicting the program logic of the GLIMPS pipeline. The 

three main phases of the pipeline are highlighted in different shades of grey. Each 

step of the pipeline is described in white rectangles. The names of the programs 

used in each step of the pipeline are in rounded rectangles beside the description 
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of the step. The five main outputs of the pipeline are shown in circles connected 

to the step in the pipeline in which they are produced. 

 

Figure 6.2 Examples of the user-friendly graphical user interface for the GLIMPS 

pipeline showing (A) the main input interface and (B) the settings screen. The 

user interface for the GLIMPS pipeline also provides the user with a real-time log 

of the status of the current phylogenomic analysis (not shown).  
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CHAPTER 7 

A molecular and genomic examination of the phylogeny and taxonomy of the 

order Enterobacteriales: proposal to divide the order Enterobacteriales into 

seven families (Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae 

fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. 

nov., and Budviciaceae fam. nov.) 

This chapter describes the use of molecular signatures (CSIs), protein 

based phylogenetic trees, and genomic distance (shared protein content) to 

differentiate the seven main groups within the order Enterobacteriales. A version 

of the tool described in Chapter 6 is utilized to produce the phylogenetic trees and 

to calculate shared protein content of the genomes examined in this chapter. The 

chapter concludes with a proposal to divide the order Enterobacteriales into seven 

families (Enterobacteriaceae, Erwiniaceae, Pectobacteriaceae, Yersiniaceae, 

Hafniaceae, Morganellaceae, and Budviciaceae). My contributions towards the 

completion of this chapter include the construction of phylogenetic trees based on 

the core genome, ribosomal proteins, and multi-locus sequence analysis proteins, 

the production of the shared protein content matrix and the presence absence 

matrix, the creation of the taxonomic proposals, the writing of all drafts and 

revisions of the manuscript, and involvement in the production of main and 

supplemental figures and tables in the manuscript. 

 

Due to limited space, supplementary materials for this work are not included in the chapter but 

will become available with the rest of the manuscript upon publication.  
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Figure 1 
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Figure 2 



Ph.D. Thesis - Mobolaji Adeolu McMaster University - Biochemistry 

174 

 

 

Figure 3 
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Figure4
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8  
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CHAPTER 8 

Discussion and Conclusions 
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The Impact of Genome Based Phylogeny and Taxonomy 

Elucidating the evolutionary history of an organism provides insights into 

the current, past, and potential future states of the ecological, phenotypic, 

physiological, molecular, and biochemical characteristics of that organism. Thus, 

biological classifications and taxonomy, the primary means by which the 

evolutionary relationships between organisms are systematized and conveyed, are 

centrally important to Biology as a whole. However, the bases by which 

prokaryotic taxonomic classifications are determined are often subjective and 

contain several drawbacks (Schleifer, 2009; Jones, 2012; Vandamme & Peeters, 

2014; Sutcliffe, 2015; Thompson et al., 2015). Most notably, the phenotypic and 

biochemical assays used in traditional, polyphasic taxonomic descriptions produce 

results which exhibit high variability and poor reproducibility, and the 

characteristics which these assays are used to assess are often highly plastic and 

can vary between strains of a single species (Vandamme & Peeters, 2014; 

Sutcliffe, 2015; Thompson et al., 2015). Thus, modern prokaryotic taxonomy is 

heavily reliant on the genetic component of taxonomic descriptions, which are 

often solely limited to analysis of the 16S rRNA gene (Schleifer, 2009; Sutcliffe, 

2015). 

The use of Genome sequence data in prokaryotic taxonomy, as seen in the 

studies described in Chapters 2, 3, 4, 5, and 7 of this thesis, has several promising 

advantages over genetic and traditional polyphasic taxonomy, and provides a 

sufficient basis to build a robust and reliable taxonomic framework for most 
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prokaryotes (Chun & Rainey, 2014; Rossello-Mora & Amann, 2015; Sutcliffe, 

2015; Whitman, 2015b). Firstly, the taxonomic thresholds established for 

measures of genomic distance, including those discussed in Chapter 1 of this 

thesis, provide a comprehensive representation of the average rate of divergence 

between two organisms. Taxonomic thresholds based on genetic distance, such as 

those based on the 16S rRNA gene, reflect the rate of divergence of a single gene, 

which may be under different evolutionary pressures than the remainder of the 

genome. Secondly, genome based taxonomic inferences can be informed by 

reliable and robust phylogenetic trees based on the entire shared core genome of a 

group, rather than phylogenetic trees based on a single gene. Phylogenomic trees 

utilized in genome based taxonomy can be produced using fast, simple, and 

automated tools such as the GLIMPS pipeline, discussed in Chapter 6 of this 

thesis. Furthermore, genome sequence data can be used to predict metabolic, 

physiological, and biochemical capabilities of an organism; largely eliminating 

the need for traditional biochemical and chemotaxonomic assays (Sutcliffe et al., 

2013; Thompson et al., 2015). Lastly, the application of comparative genomic 

analysis techniques to genome sequence data enables the identification of rare 

genomic changes useful in characterizing related groups of organisms (Rokas & 

Holland, 2000; Rokas et al., 2003; Delsuc et al., 2005). These rare genomic 

changes include discrete genetic events which can be readily identified from 

genomic sequence data such as gene rearrangements, gene fusions and fissions, 

gene duplication, and, most importantly for prokaryotic taxonomy, the occurrence 
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of insertions and deletions in amino acid sequences (CSIs) such as those described 

in Chapters 2, 3, 4, 5, and 7 of this thesis.  

 

The Utilization of Molecular Signatures in Phylogeny and Taxonomy 

The phylum Spirochaetes and the class Betaproteobacteria are large 

groups of diverse bacteria, classified primarily on the basis of 16S rRNA gene 

analysis. Until recently, the phylum Spirochaetes was comprised of a single class, 

Spirochaetia, containing a single order, Spirochaetales, which was made up of 

four families (Paster, 2011). In my work we have identified 38 CSIs which are 

specific for either all members of the phylum Spirochaetes or its different main 

clades. The relationships between the members of the phylum Spirocheates 

suggested by the identified CSIs are strongly supported by neighbour-joining and 

maximum-likelihood phylogenetic trees, based upon the concatenated sequences 

of 22 conserved proteins. On the basis of these findings, we have proposed that 

the four families within the phylum Spirocheates should be elevated to the order 

level taxonomic ranks (viz. Spirochaetales, Brevinematales, Brachyspiriales, and 

Leptospiriales) and that the genera Borrelia and Cristispira be transferred to a 

new family Borreliaceae within the order Spirochaetales (Gupta et al., 2013b). 

Additionally, we have identified 53 CSIs and 25 CSPs which distinguish the two 

groups of clinically distinct organisms within the genus Borrelia, the Lyme 

disease related Borrelia and the relapsing fever related Borrelia. The 

distinctiveness of the two groups of Borrelia is supported by average nucleotide 
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identity analysis and phylogenetic analysis based upon the 16S rRNA gene and 

the concatenated sequences for 25 conserved proteins. On the basis of these 

results, we have proposed a division of the genus Borrelia into two genera, 

limiting the genus Borrelia to only the members of the relapsing fever Borrelia 

group, and transferring the members of the Lyme disease Borrelia group to the 

genus Borreliella (Adeolu & Gupta, 2014).  

Within the class Betaproteobacteria, we have examined the phylogeny of 

the order Neisseriales, a group containing the causative agent of the increasingly 

drug resistant sexually transmitted infection gonorrhea and a number of other 

highly prevalent pathogenic and environmental bacteria classified as a single 

family (Stephens et al., 2007; Cohn et al., 2010; World Health Organization, 

2011). In my work, we have identified 54 CSIs in widely distributed proteins that 

are specific for either all of the Neisseriales, or which differentiate its subgroups. 

Importantly, the identified CSIs were able to distinguish a group of obligate host-

associated Neisseriales, containing the important pathogens in the order, from all 

other members of the order Neisseriales. This distinction is also supported by 16S 

rRNA and concatenated protein based phylogenetic trees. Additionally, the 

association of many of the identified CSIs with the obligate host-associated 

organisms in the order suggests that the CSIs may play a functional role in the 

evolution of obligate host-association within this order. On the basis of these 

findings, we have proposed a taxonomic revision limiting the family 

Neisseriaceae to the obligate host-associated members of the order Neisseriales 
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and transfering the other genera within the order Neisseriales to the novel family 

Chromobacteriaceae (Adeolu & Gupta, 2013). We have also examined the 

phylogeny of the genus Burkholderia, a group of over 70 species of soil bacteria 

which are ubiquitous in the environment and have varying pathogenic potential 

(White, 2003; Workowski et al., 2008; Lipuma, 2010). My work on the genus 

Burkholderia has led to the identification of 42 highly specific CSIs that delineate 

a number of well-defined groups of Burkholderia. Importantly, six of these CSIs 

are specific for a group of Burkholderia containing all clinically relevant members 

of the genus. Within clinically relevant groups we have also identified multiple 

CSIs that serve to clearly demarcate the B. cepacia complex, the B. 

pseudomallei group, and the phytopathogenic Burkholderia. A division between 

the clinically relevant members of the genus Burkholderia and the plant-beneficial 

and environmental Burkholderia is also observed in phylogenetic trees based 

upon concatenated sequences for 21 conserved proteins and the 16S rRNA gene. 

Based upon the identified CSIs, the pathogenicity profile of Burkholderia species, 

and phylogenetic analyses, we proposed that the genus Burkholderia should be 

limited to the clinically relevant group within the genus and that the plant-

beneficial and environmental Burkholderia should be transferred to the novel 

genus Paraburkholderia (Sawana et al., 2014). In addition to the groups described 

in this thesis, I have also been involved in published evolutionary and systematic 

studies of the phylum Chlamydiae (Gupta et al., 2015b), the class Coriobacteriia 

(Gupta et al., 2013a), the class Negativicutes (Campbell et al., 2015), the class 
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Halobacteria (Gupta et al., 2016), the order Xanthomonadales (Naushad et al., 

2015b), the order Bifidobacteriales (Zhang et al., 2016), and the family 

Pasteurellaceae (Naushad et al., 2015a). 

In each of these cases, molecular signatures provide a novel and powerful 

means for the unambiguous delineation of distinct monophyletic evolutionary 

linages, and provide support for elevated taxonomic status. Additionally, 

phylogenetic inferences derived from CSIs and CSPs are independent of gene or 

genome based phylogenetic trees, and are generally robust against long-branch 

attraction, compositional biases, differences in evolutionary rates, lateral gene 

transfers, and other artifacts in the construction of phylogenetic trees (Delsuc et 

al., 2005; Gupta, 2014). Evolutionarily informative CSIs also have an extremely 

reliable specificity for a given group of organisms. Notably, many CSIs were first 

identified when genome sequences were available for less than 100 species 

(Gupta, 1998; Gupta, 2001; Gupta & Griffiths, 2002). However, despite the 

availability of over 50 000 sequenced genomes today, these markers have retained 

their specificity for the indicated groups and are found in other, newly sequenced 

members of the indicated groups, providing evidence of their predictive ability 

(Bhandari et al., 2012; Gupta, 2014; Gupta, 2016). The CSIs and CSPs described 

here are predicted to have similar specificity and reliability for members of their 

group as the availability of sequence information continues to grow. The long-

term specificity and reliability of similar CSIs and CSPs has facilitated their use in 

taxonomic revisions and descriptions of prokaryotic groups ranging from species 



Ph.D. Thesis - Mobolaji Adeolu McMaster University - Biochemistry 

187 

 

to phylum level taxa (Bhandari et al., 2013; Gupta & Lali, 2013; Naushad & 

Gupta, 2013; Bhandari & Gupta, 2014; Howard-Azzeh et al., 2014; Naushad et 

al., 2014; Gupta et al., 2015a). Thus, the CSIs and CSPs described here also 

represent novel tools for the taxonomic placement of new members of these 

groups as they are discovered. 

 

Phylogenomics and the path forward 

The core strength of genome based systematic studies lies in the scale of 

data brought to bear in resolving phylogenetic relationships. In Chapter 7 of this 

thesis, I described an example of the use of genome scale data to resolve the 

phylogenetic relationships among the members of the order Enterobacteriales. 

The order Enterobacteriales is a large and diverse group of non-spore-forming 

rods within the class Gammaproteobacteria. The taxonomy of the order 

Enterobacteriales is based, primarily, on the 16S rRNA gene (Hauben et al., 

1998; Spröer et al., 1999; Francino et al., 2006; Naum et al., 2008). However, the 

16S rRNA gene has low discriminatory power and interrelationships of the 

members of the order Enterobacteriales are poorly resolved in 16S rRNA gene 

based phylogenetic trees (Hauben et al., 1998; Naum et al., 2008; Octavia & Lan, 

2014). Consequently, the >250 species within the order Enterobacteriales are all 

placed into a single family.  

We have identified 69 CSIs, in widely distributed proteins, which are 

unique characteristics of seven different groups within the order 
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Enterobacteriales. Independent of the identification of CSIs, we have also 

employed the GLIMPS pipeline, detailed in Chapter 6, to construct a highly 

robust phylogenetic tree based on 1548 shared core proteins from the whole 

genome sequences of 179 representative genome sequenced members of the order 

Enterobacteriales, as well as phylogenetic trees based on 53 ribosomal proteins 

and 4 MLSA proteins. Unlike phylogenetic trees based on the 16S rRNA gene, 

each of these phylogenetic trees supports the presence of the seven main groups 

suggested by the identified CSIs. Additionally, the proportion of shared protein 

families in the analyzed genomes (POCP), one of the measures of genomic 

distance discussed in Chapter 1, also supports the presence of seven main groups 

within the order Enterobacteriales. On the basis of these analyses, we are 

proposing a division of the order Enterobacteriales into seven families. 

The limited ability of the 16S rRNA gene to resolve phylogenetic 

relationships within the order Enterobacteriales has been a long-standing issue in 

bacterial classification (Hauben et al., 1998; Naum et al., 2008; Octavia & Lan, 

2014). We were able to employ independent means of analyzing genomic 

sequence data (viz. a supermatrix based phylogenomic tree, concatenated 

universal protein based phylogenetic trees, a measure of genomic distance based 

on shared protein families, and rare genomic changes) to show that the order 

Enterobacteriales possesses a robust and discernable phylogenetic structure. This 

study represents a powerful example of the strengths of genome based taxonomy. 

As genome based systematic research becomes increasingly prevalent, we expect 
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evolutionary and systematic studies to utilize similar multipronged approaches to 

genomic sequence analysis and for systematic studies, such as the one described 

in Chapter 7, to become the overarching basis for prokaryotic classification and 

taxonomy. 

 

Future Directions 

Genome sequence based evolution and systematics research is paving the 

way for future biological classifications and taxonomic frameworks (Chun & 

Rainey, 2014; Rossello-Mora & Amann, 2015; Sutcliffe, 2015; Whitman, 2015b). 

In this thesis, I have described the application of molecular signatures and 

phylogenomic techniques to the identification, differentiation, and classification 

of several distinct prokaryotic groups. The systematic studies presented here serve 

as exemplars for the utility of genomic sequence analysis in prokaryotic 

taxonomy. Further, I have described the GLIMPS phylogenomic analysis 

pipeline, an integrated software pipeline that produces supermatrix based 

phylogenomic trees and calculates genomic distance using multiple 

methodologies. We have made the GLIMPS pipeline freely available and easy to 

use for the wider research community. Recently, we have also made several tools 

for the identification of CSIs available on the Gleans.net website (Gupta, 2014). 

We hope that the availability of these tools will enable more researchers to 

attempt genome sequence based evolutionary research, and to identify novel and 

informative molecular signatures. 
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The use of the CSIs and CSPs described in this thesis is not limited to 

evolutionary and systematic studies. CSIs and CSPs possess a number of 

attractive attributes which make them ideal candidates for diagnostic probes. 

Firstly, due to the high level of sequence conservation within CSIs and CSPs, 

degenerate oligonucleotide PCR primers can be readily designed to specifically 

and reliably amplify CSI- or CSP-containing regions of DNA. CSIs and CSPs 

have also been shown to possess extremely reliable specificity for their given 

group of organisms as more genomes are sequenced (Gupta, 2016). Thus, their 

detection provides unambiguous evidence for the presence of a member of the 

group for which they are specific (Griffiths et al., 2005; Gupta & Griffiths, 2006). 

Consequently, highly robust diagnostic assays, based on CSIs found in certain 

proteins, have been developed for distinguishing strains of Bacillus anthracis 

from those of Bacillus cereus species/strains, and for the identification of 

enterohemorrhagic E. coli O157:H7 from other E. coli strains; bacterial strains 

which are not reliably distinguished from each other by most other means 

(Ahmod et al., 2011; Wong et al., 2014). Similarly, the sequences of CSIs and 

CSPs can be used to identify organisms based solely on genomic or metagenomic 

sequence data (Segata et al., 2012; Gupta & Sharma, 2015; Truong et al., 2015). 

Thus, the CSIs and CSPs described in this thesis have applications as novel 

diagnostic genomic markers. 

The CSIs and CSPs described in this thesis also represent novel targets for 

functional studies. Prior work by our laboratory has shown that CSIs are essential 
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for the proper function of the protein in the groups of bacteria in which they are 

found, and that their removal or any substantial changes in their sequences leads 

to a cessation of the cellular function of that protein (Singh & Gupta, 2009). 

Additionally, structural analyses of CSIs indicates that they are located within 

surface loops of the proteins, away from the active site (Hsing & Cherkasov, 

2008; Singh & Gupta, 2009; Gupta & Khadka, 2015). Surface loops are highly 

accessible regions of the protein that are indicated to play important roles in 

protein-protein and protein-ligand interactions, which may be modified or 

modulated by the presence of the identified CSIs (Akiva et al., 2008; Hashimoto 

& Panchenko, 2010). While the functional role of many of the CSPs described 

here is currently unknown, their presence in all members of a group of organisms 

suggests that they likely have an adaptive function, protecting them from the 

effects of purifying selection. Further analyses of the CSIs and CSPs described 

here has the potential to lead to the discovery of novel functions in these 

organisms, mediated by CSIs and CSPs, which may provide important insights 

into the physiology, evolution, and adaptations of these groups. 

 

Concluding Remarks 

The increasing availability of genomic sequence data is providing 

researchers with an unparalleled wealth of information from which we can 

elucidate the evolutionary relationships of living organisms. The use of this data is 

revolutionizing the fields of biological classification and taxonomy. Importantly, 



Ph.D. Thesis - Mobolaji Adeolu McMaster University - Biochemistry 

192 

 

this wealth of genome sequence data is enabling the detection of conserved 

molecular signatures, such as CSIs and CSPs, which are shared by evolutionarily 

related groups of organisms. Using these molecular signatures, it is possible to 

infer phylogenetic relationships, independent of gene and genome based 

phylogenetic trees. Thus, molecular signatures are powerful new tools for 

evolutionary studies. Additionally, these molecular signatures represent novel 

diagnostic markers for their specified group and further analyses of these 

molecular signatures should lead to the discovery of novel functions and 

biological characteristics, mediated by CSIs and CSPs, which will provide 

important insights into the physiology, evolution, and adaptations of these groups. 
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