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" INTRODUCTION

Thé Hardy-Littlewood Maximal Functions are of
considerable importance in the study of certain classes
of functions convoluted with specific kernels, since they
majorize many of these convolutions. This motivated the
research in this area.

Chapter 1 collects and extends a number of inequalities
~involving the maximal functions in certain weighted P spaces.

In the second chapter, inequalities between the
convolution of functions in weighted P spaces, 1€ p € oo
with certain kernels, and tﬁeir maximal functions are
studied., In the last half of Chapter 2, we study the case
0 < p <1, and ccllect the results of Chapter 1 and those
of the first half of Chapter 2.

Finally, in the last chapter, the main result, Theorem 3.3,
is proved, extending the original result of Fefferman and

Stein.

(vi)



" CHAPTER I

Section A. Basic Definitions

The following is a list of standard notation and
concepts that will be used throughout, Further notation

and definitions will be introduced when needed.

R = (~o,o) denotes the set of real numbers, and
rY = [O;m),.R” = (=@, 0].2 N will be the set of natural
numbers, N = §1, 2, 3,...3, while T = [0, 27) denotes
the "circle group"”. 1In the case of periodic functions on R,
with period 21, T will be any interval of length 27, If E
is any given set, then E" is the Cartesian product of n
copies of E, neN, thus R'? is the product of n copies
of RY and R™ is the "n-dimensional Euclidean space".

If E<€ R, then A(E) denotes the Lebesgue measure of E,

and jf(t)d?:(t) sff(t)dt is the Lebesgue integral of a
E E

function f defined on E, whenever the integral is well
defined. To denote any arbitrary positive measure on a
measure space X, we use the symbols u and 6, and if two
functions; f and g, on X are equal except for a set of
p-measure zero, we say £ = g pu-a.e. On the n~product of

. n
the measure space X, ie X', we denote the product measure

1



AXUX,...xu simply by p if no confusion arises. Sets or
functions that are Lebesgue measurable will be said to be

measurable, and )~-a.e. will be abbreviated to a.e.

We define the following functions and operations:

For E € X, we define the characteristic function,:xg, by

X’E(x)=g1 if x E

0 if x gE

Also, EC denotes the complement of E in the (whole)

space X. If E and Eqare subsets at X, then El\ E will
denote the set {x : x € Ey and x ¢ E$, while E is the
interior of E in the space X. For limit, we write lim,
while Tim and lim are the limit superior and limit inferior,
respectively. Finally C(X) denotes the space of continuous
functions on X. A, together with any subscripts, will
denote a constant depending on indicated parameters, and

is possibly different at each occurrence.

With these conventions, the spaces LP(X, dAx)= P (x)
of Lebesgue-locally integrable functions on the set X

are defined as follows:

Definitionm 1.1z If 0< pg «, then f ¢ LP(X) if

and only if fiflflp < ©, where



Il p = (§ £l Pat)1/P, ¢ <p<w
X
ess sup | £(x)| , p = .
XEX

Here,

ess sup |£(x)| = inffhz {dx =0, h > 0} -
xeX }{—x : £(x)|> n}

Although we speak of functions in LP(X) ¢« the fact is
that we really mean equivalance classes of functions modulo
a set of measure zero. This abuse of language is found

widely in the literature, and will not be rectified here.

For 1 p @« ”'“p defines a norm, under which P (x)
is a Banach space. For 0 < p <1, ﬂ'”g is a metric, under
which LP(X) is a Frechet gpace. These and other properties
can be found, for example, in Royden [I] , or Hewitt and

Stromberg [8].

For any given real or complex valued function defined

on X, let
E(f) = fx : xe Xxand [E| > n, ) 0] :

We now choose and fix a function @ such that it is measurable,

non-negative and non-zero a.e. on X. This will be one of our



weight functions in the sequel.

Definition 1.2: If 0 ¢ p  «, then define

1P(x, g(t)dr) = 1P(x,4) . to be the class of (equivalence

classes of) functions on X for which liflp, ¢ € w. where

iglp,g = (CflE@lPowran®® o0 ¢p <o
A
ess sup [f(x)| pP=o®
xeX
and
ess sup f(x) = infgh :h> 0 and g(t) dt = 0}.
xeX h(f)

If #(x) = 1 then these classes reduce of course to

the Lebesgue spaces, LP(X) .

" Definitjon 1.3: If f is a locally integrable, non-

negative function on R, then define the following functions,

wherever they existsz

£, (x) = sup — f(t)dt

* 1l (x
f,(x) = sup —— ) £(t)dt
2 x<g ¥ E};



* E * . * ‘3
£,(x) =max t£f;(x), £,(x)§.

f;(x) is called the Hardy-Littlewood maximal function of
f, and ff and f; are called the left and right maximal
functions of f, respectively. Thus ﬂ:, i=0,1,2 denotes
the respective maximal_functibns of the weight function 4,

wherever they exist.

In a manner analogous to Definition 1.2, we define for
an arbitrary positive measure j; on a measure space X the
classes LP(X, dn(x)), 0< psgcn. Examples of these classes

are tP(x, g (x)ax) = LP(x, g)).

The proofs of the following three theorems show the
close analogy that exists between weighted spaces and the

Lebesgue spaces.

Theorem 1.4z (Holder's Inequality) If p,g2l are

such that % + % = 1, and if f & Lp(x,ﬁ), g e Lq(X,ﬂ)

then the pointwise product f-gELl(X,ﬁ) and
he-gll. < lellp,glighq,2.
1,9 '

" Proof: If p = wcr q = o, then the theorem follows

immediately.

If1< p C'm;,apply Holder's Inequality for tP(x) as

follows:



f iEwgol soat = [ gl s Pigol se /%
X X

< lf(t)jpp(t)dt)l/P()’ lg () Ug(r)at) /e
X , . X

Since the right side of this inequality is finite, by

assumption, the use of Holder's Inequality is justified.

Theorem 1.52 (Minkowski's Inequality) If £, geLQXLm

<p § » then so is f+g, and

e+gllp, 8 € lgllp,gHigllp, 4.

Proof: The cases p =1 and p = ® are obvious.

For 1 < p <, and any x € X
1£(x)+g (x)| P € 2P (g (x)l P+lgx)1 P)
so that f+geLp(x,ﬂ). Furthermore,
5 I£(£)+g (£)] Pg(r)at <[ 1£(£)+g (8)] PHiE(0)] B(e)at
X X
+ 1£(E)+g ()] P~l1g(t)l p(e)at.
X

An application of Holder's Inequality shows thatsz

j;tf(t)+g(tﬂ Pligo)l peorae < g p, gl 15491 7Y g, 0



‘and
fxlf(t) rg(e) P ligee)] svrae € |lgllp.g If+g|1,p';||q.¢.
.

where = 1. But observe>that

o] Loy
Q-

lig+al P Y q,8 = (||e+g]|p.#)P/9.

Hence, the above inequalities imply
49|, 5 < ([lEllpes + liall p.#) (llE+dl|p)) /9
from which
liE+dllp,g € |lElped + |lof|p.o
follows.

Theorem 1.6: (Fatou's Lemma) Let gfngn}l be a

sequence of non-negative f-measurable functions which

converge a.e. on a set E to a function £. Then

f fwswars L (£ (0 p(r)dt.
E: n»>® /g

Proof: By the definition of the integral of a non-

negative function with respect to the measure ﬁ(t)dt,‘that is



L E@BEae = sup f qe)plade

where | ranges over all simple functions such that

0w £, it is sufficient to show that for any such (€ \

{erpe)ae < Lin £ (£)A(t)dt.
E n’w ‘E

If )’ Q) g(t)dt =, then there is a P-measurable
E .

set B € E, and a constant a > 0 with ; p(t)dt =cand
B

g >a on B, If
B, = {erifk(x»a for all k > ng,

m » 13 K .l
thenuiBnQ B, since (¢ £ 1lim fn' and B, S Boy1 -
n=1 n2>o
Therefore, limf g(t)dt = ©, from which it follows that
nx® Bn

5fn(t),0(t)dt = w, since
E

s |
jEfn(tm(t)dt, a/gnﬂ(t)dt_

_If j_LQ(t)ﬂ(t)dt < o, then there is a f-measurable
. B - - - — - L.

“. - S P Lo
ST . L

set B € E such that /('ﬂ(t)dt <®and ¢= 0 on B®. Let

B

M= maxte{x)', choose € >0, and let



B, = {xeEzf, (x) > (1-€)@(x) for all k » n3

It is clear that B_ € B and that B<UB . and hence
n n+l n=l '
o
EB\B If?n=1is decreasing with empty intersection. We recall

that, if {E 1-*1. is a sequence of u-measurable sets such
that E DE +17 in some space X,wn.th;u(E ) < =, then

,u(ﬂE ) = lim p(E ), whlch is proved in, e.g., Royden
l—l i»
[11,pp. 218 - 219]. It follows then that lim g(t)dt =0 .
n» @B\B

If n is chosen so large that for all k 2 n, [ g(t)dt< € ,

B\Bn
then
jfk(t)ﬂ(t)dt >/( £, (£)f(t)dt
E Bk
2 (1-¢) (t)B(t)dt
J«
> (1-¢) (t)g(t)dt- (t)g(t)at
5 fra
2 §Y(t)g(r)dt- € (t) B(t)dt+m
L [,g q ]
Thus

lim S EatpBRIaE > § Qoipeiat-¢ Uce(tm(t)dtm]

iy ®

which implies the theorem.
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Remark l: In Fatou's Lemma, the limit function, £, can

be replaced by lim £ . Fatou's Lemma would then state that
e o

§ lim £ (v g(t)at € Lim§ £ (£)g(t)dt.
E ' E '

The alternate form of Fatou's Lemma, which follows

readily from the above, is

Tinm SEfn(tm(t)dt $ jE Tim £_(t)#(t)de.

Remark 2: Minkowski’s Inequality essentially shows
that [l-ll; g and ll’-!lp,g; are norms for 1 € p o on their

respective spaces. Moreover, one can show that these spaces

are complete, and hence are Banach spaces.

Section B. Basic Theorems

For the sake of completeness, some useful theorems
applied in the sequel are stated or proved in this section.
These include the Calderon-~Zygmund Lemma (or Riesz Rising
Sun Lemma) and a theorem sometimes referred to asAChebyshev's

Inequality.

" Theorem 1.7: (Calderon-Zygmund Lemma {2, pp. 85 —‘13ﬂ )
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If y > 0, and £ is a non-negative function, integrable on Rp,
there exists a set of cubes, Ik - Rp, ke N, such that, for

I =C§Ik, we have
k=1"

l) £(x) € y for erc;
2) ’Iiknfj is empty, 'k # j;:

3) v <M?1[-k') jl £x)ax € 20y
k ’

" Proofz Decompose R™ into a mesh of cubes of common
diameter, and disjoint interiors, such that, for

each cube, I', in the mesh,

S
MIY J o

f(x)dx L' y
Let I' be a fixed cube in the mesh, and divide it into
2" cubes by bisecting the sides of I'. Then, for each new
cube Ii ¢ I', either
L f £(x)dx £y or 1 _[ £(x)dx > y.
A(Ii) 1 A(Ii) T
i i

If the second alternative holds, the cube I; is chosen
to satisfy the theorem. If the first alternatiVeAholds,.
the process is repeated. Obviously, the Ii chosen satisfy

condition 2). Also, since



12

1 ' n
Y < 571.) f f(x)dx € 2=,, § f@ax € 2%,
' A i ‘Ij_ A(1?) SI' ‘

property 3) is satisfied.

& .
Let I =Lin, where the union is over all cubes chosen
i=]1 '

by this process. Since the derivative of the indefinite
integral of an integrable function equals the function a.e.,

then

|
f(x) = lim ‘j fiy)dy a.e.
xe0 A(Q) 9

2(Q) =0

where the Q's are cubes centered at x. But each of the
cubes that enter into our decomposition which contains an
x € I° is a cube for which the first alternative holds.

Therefore, the theorem follows.

Remark 3: Properties 1) and 3) give the useful

result that

AME () < L [ £ (%) dx.
Yy Y‘jEy{f)

It's importance is in finding "weak type" estimates,

which will be discussed later.
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Definition 1.8: For an arbitrary measure 1 on a

. measure space X, and for a function £ on X let

Di(y) = nf:j£()|>y, v203 = n[E (0]

a——

We now deduce the following theorem, which can be

found in, e.g., Hewitt and Stromberg [8, p. 421 ] .

" Theorem 1.9z If E ¢ X, and if Q is a real valued, non-

. decreasing, differentiable function on R+ with &(0) = 0,
and £ is a non-negative function defined om X such that

j @ (£(x))du(x) < @, then
E

jl.Q(f(x))du(x) =f°;}1(EnEt(f))LQ' (t)at,
E

where (' denotes the derivative of (.

" Proof = j Q(f(x))dﬁ(x) =j)( (x)Q@Q(£ (x))dn(x)
E X E
f '
- J{( XE ) Jo (X)UL (t)dt)dn (x)
- foE ) (¥, £ (BIL" (£ ALV R (x)

oo ' ’
—fo Q' (t) yx)% (x)x{o,f(xn(t)d’l (x))dt

© ,_, :
-2« (6) pEm (0)at,

where the interchange of order of integration is justified

by Fubini'’s Theorem.
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Corollary: (Chebyshev's Inequality) If 0 <p <o,

then

y¥D} (v) sfxlf(x) |Pan x) ,

provided the right side is finité.

Proof: In Theorem 1.9, let E = X, and Y(x) = xp, for 0 { p<>™.
Clearly 1@ satisfies the conditions of Theorem 1.9, and
therefore, for arbitrary function £ on X, it follows that,

for any y > 0,

It

gfip(XﬂEf(t))tp-ldt
p-1
Lﬁn?f‘(t)t dt

> pﬁu‘fl(t)tp'lat.

Jrlf(x)lpdu(x)
X

Since Dg(t) is non-increasing in t,

YR p-1 _ y.p-1
pj;Df(t)t dt )pD};(y) TP ae

P (v) y°
P

YPD’fl(y) .

This proves the corollary.

The ‘£61lowing theorem is usually referred to ds a con-

verse to Holder's Inequality. The proof may be found, e.g.,
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in Zaanen [13, p. 127].

Theorem 1.10: Let £feLF(X,u), 1 €« p<€ ®. Then

4) |gllp,n = supyj;f(x)g(x)dn(xn
g

supf £ (x) g (x)] dn (x)
g 7X

where the supremum is taken over all functions g such that

llollam €1, £+ & = 1.

Proof: If 1 < p <, then by Holder's Inequality, it follows
that

Ifxf(x)g(x)du(x)l < |lElleen||gflam < [I£lpmn.

Moreover, this inequality is obvious for p =1 or p =w.
To complete the proof, it is sufficient to find one

function, g, satisfying the hypothesis, for which

' “f.“P;}l = l[Xf(x)g(x)d,u(x)|

From the above inequality, it is obviocus that if
ﬂf“p,u = 0>, the theorem is trivial, Hence, assume
Hf”p,n 20, 1€ p£w. For 1< p<w, define the function

~g(x) as follows:



g(x) = j'lf(x{]Pﬁlzf_’
S .

where
sgnf(x) =| £(x), £(x) #0
x)|
0 , f£(x) =0,
Hence
f lgx)| Yap ) = f leeal Y7 oy
X el gD
P/
= 1 flf(x)l Pap(x) =1,
— Iy
T
Therefore,
vf(X)g(X)d}l(X)l = M £0x) le G0 P an o)
X X

sgnt (x) [[] B™2

“f“Pr}l-

This completes the case 1 ¢ p ¢ ®.

For p =1, let

g{x) =y L , £f(x) #0
sgnt (x)

0 , f(x) =0
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then |lgleo,n = 1, from which it follows that

£ (x)d =f £ d = ||
H;{ (x) g (x)dn (x)] 'xl (x)] dn (x) ‘ ll£ll 1, .

For p =®, let € >0 be arbitrary. Then the set,
£x: |£(x)] 2 ||flko,n -€ contains a subset, E, of positive

measure. Define g(x) as

gx) ={_ 1

', X E€E
1 (E) sgnf (x)
0 s, X E ES

so that

j lg (x)| du(x) =f[ 1 |dr(x) = 1.
X E'n{E) sgnf (x)

Thus

Mf (x)g(x)dp(x)] Mf (%) 1 dﬁ”(x)l
. B G(EVEGaETH)

1 jtf(x)ldp(x)
n(E) “E '

1 fdlflla; -€)dp(x)
?'JJTES E s .

= [lelle =€,

Since £ >0 is arbitrary, the result follows.
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- Remark 4: Since simple functions are dense in Lq(x,u),
1S q <w, then for 1 < p £ » the supremum can be taken over

all simple functions, g, such that ligligu <1

"Definition 1.11: Let T be a linear operator defined

-.on simple functions on the measure space (X,n). 1If, for

0<P' qém;

frellq,m € allello,n,

where A is independent of £, then T is said to be of

strong type (p,q), or simply type (p,q).
If, for 0 <p, ¢ <o, and all y > 0,

Y(D)Tlf(y))l/qs Allfllp,n, A independent of £,

then T is said to be of weak type (p,q). If g = o, weak

and strong tvpes are defined to coincide.

Remark 5: Strong type (p,q) always implies weak

type (p,q). To see this, note that, for y > 0

(f I£ (x)] Yap x) /9 > J ' |T£ (x)] qd)u(X))l/qr
X E,OTE)) -

Y 'y%ap (x)) 179
B (7€) ~

= yB (y /9,
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The following theorem, which can be found in Hewitt
-and Stromberg [8, P. 423] is of considerable imporﬁance,
and as an immediate consequence, implies that weak type (1,1)

does not imply strong type (lgl).

Theorem 1.12: Let £ be any non-negative, locally

integrable function defined on R. Then, with

* : * . .
Eh(fi) = iX:fi(X) > h3l, i-= 011'120 h >0,

5) Dg* (h) =1 £(x)dx, i=1,2
i kL JE, (£)

6) Dg*(h)g 2j £ (x)dx.
o  BLJE ()

Proof: Inequality 6) follows immediately once 5) is

. *
established by noting that Ey (£,) = E, (£])UE, (£,).

1.

We consider first the case 1

Note that the map &€ 1 f(t)dt is continuous on
* X~-&J¢
(-°,x). Thus Eh(fl) is open and since any open set in
R is the union of mutually disjoint open intervals (proved

* =}
in, e.g., Bourbaki [l, P. 33i]) we get Eh(fl) =(~}(ak'bk)'
k=1

Consider (ak'bk)' where k is fixed. For each x ¢ (ak,bk), let

N, = {s:f;f(t) dt>h(x-s) sela, ,x)3 .
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" Claim= Nx is non empty.-

This claim is obvious if a, = -« Hence, suppose

a, > =% and that N is empty for some xe€ (a bk) . Then

k k'
there must be an w ¢ ayr such that ﬁ;f(t)dt > hix-w),

from which it follows that

ay _\j;; -
fw £(£)at =" J¥f (£)dt - ak_f(t)dt

> h(x-w) -h(x-ak)

= h(ak-w) .

*
Thus a, € Eh(fl ) which is a contradiction since the interval

(ak’bk) is open. Thus Nx is non-empty for each x € (ak'bk)'

Let 5, = ?.anx, and suppose that Sy > ap. Continuity

S

of the map E-};{%—E-f{f(t)dt implies that f‘* £(t)dt = h(x-5,).
£ X

NS is non empty and therefore, there must be some y € (ak,Sx)
X

such that
.Sx
f;:e-f(t)dt > h(Sx-y) .
This implies that

f’;f (t)dt > h(x-y)



contradicting y < Sx' Therefore, S < = By’ for all

X € (ak’bk) and

X
j;kf(t)dt 2 h(x-—ak) .

‘Letting x tend to bk shows that

b
k > -
fak.f (t)dt h(bk ak) .
If either a, or bk is infinite, 5) follows immediately.

If (ak,bk) is bounded, then

by
f(t)dt < h(bk-a

ak k) 14

*
since ay s bk & Eh(fl). Therefore, 5) follows, for i = 1.

By minor modifications of the above argument, the

case i = 2 in 5) follows, which completes the proof.
Inequality 6) states that the map, T, defined by
*
Tf(x) = fo (x) is of weak type (1,1), for any integrable

function £. Let f(x) = ~IX[0,1:] (x), thenff(x)dx = 1, and
R

* .
£,(x) = 1Lif 0§ xs1

21
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 Af x> 1 et

Hence

ff*(x)dx>[w'ldx ®
olXjax = = %
R 1l x

Therefore, there does not exist any A > 0 such that

ff:(x)dxs A[f(x)dx,'
R R

which proves that weak type, in general, does not imply

strong type.
Next, we state, without proof, a general form of
the continuous version of Minkowski's Inequality. See,

for example, Dunford and Schwartz [3, p. 530] .

" Theorem 1.13: Let (X,u) and (Y,8) be positive

measure spaces, and let £ be a ux6-integrable function

on XxY. Then, for p > 1,

f([ £ (x, v)] Pac(y) ) Pap (x) 2 (f ([)!f(x,y)idp(X))PdO’(y‘))l/P
X/Y : Y )

Finally in this section, the Marcinkiewicz Inter-—

polation Theorem is stated. For a proof, see Stein
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12, pp. 272 - 274].

Theorem 1.14: (Marcinkiewicz Interpolation Theorem).

Suppose T is a linear operator defined on simple functions,

and 1 £ Pis ,qis ®, i=20,1 and P°< Pyr 9, # 49y - 1f

T is of weak type (pi,qi)  1i=20,1 then T is of strong type

(prq), Where 1 =1-6 .8 1=1-8+8, 0<e <1.
P P Pr 2@ 9% 9

Moreover
el g £ allellp,n,
for all £ ¢ P(x,n) .

Remark 6: The case Py = qy = 1, Pp = 9 < ©is of

special interest, for then the theorem reads:

If T is of weak types (1,1) and (w,®), then T is of

strong type (p,p), for all 1< p <

It also states that, if T is of weak type (p.p) for

all 1 < p<®, then it is of strong type (p,p).
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Section C. ' Extensions of Inequalities of Maximal Functions

In this section, we extend the continuity property
of the Hardy-Littlewood maximal functions from P (R)
to Lp(lR,ﬂ) + 1 < p < o for certain, yet quite general,

weight functions, #.

The inequalities are obtained via the Marcinkiewicz
Interpolation Theorem, along the lines of the paper by
" C. Fefferman and E. M. Stein '[5, pp. 107 - 114] .

& % * o0
Lemma 1.15: If fe L (tR,ﬁo), then fi EL (R,P),

i=0,1,2, and

I, 2 < lello, 2*
O s

" Proof: We prove only the case i = 1, as the case i = 2

is similar, and the case i = 0 follows from the first two.

«® *
Without loss of generality, assume f € L (.[R,ﬂo)
is non-negative. Approximate f by continuous functions

g, » such that 0 £ g“s £, and o](.ﬂg = £ a.e. Thus, for

fixed X >0, the set E, (9«) is open, from which it follows

that

o
E (g) =U (a,,b ).
RO T PPy



. *
these intervals being mutually disjoint., Letting In1 be
the (right) maximal function of g4, then for each

X %
X € (ak,bk),'gai(x) > h, and hence
c *
E (9x) € E,; (gyq)-

Assuming for the moment that for any . X efa,,by)
* _ k
Box) > 1 [ “grat
B3 Tk

(the proof will follow the lemma), then

b
g (x)dx = zfaka; () dx
E, , X 2k
{9 jbk 1 [P
> e, BEma, MO 80 o

=Zj§kg(t)dt =f plt)dt
kK Ph(gx)

Hence

{h:/ g5 x)ax = 03 ¢ h:f Krydt = 0
Ep (ga) © J < ¢ E; (g«) 3 |

= {h;f . HAvdt = 0}:

Eh (gql)

The last inclusion follows easily, noting that if Eh(gx)

- 25



' *
has measure zero, then Eh(g'xl) is empty. Taking infimums

yields
* %
“gq]'”mlﬁ 6' "g,,(”“’,ﬂo.
As X 3w, applying Fatou's Lemma completes the proof.

" Lemma 1.16: Let £ be a non-negative, measurable

*
function on R, and fo its maximal function. Then for any

finite interval (a,b) & R,

f (x) > Ff(t)dt, for all x € (a,b).
a—

Proof: We have

\ |
£1(x) = max fsup 1} Xe (e)dt, sup- lff(t)dt}
£4x X=- X<E XK=

> max 1f‘f(t)dt, lff(t)dt ,
{ -a p—x/* 3

One of 1 }gf(t)dt, 1 Jgf(t)dt is larger. Assume,
X~a b- '

without loss of generality, that for fixed x

f(t)dt 2 - f‘f t)dt
57_—-}5 2= (®)

Therefore

26
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(x—a)f:f(t)dt 2 ‘(;i:—x-)jzf (t)dt

> (x-a)ﬁ:f (t)dt+bﬁ‘:f(t)dt > (b—x)f:f (t)dt+bﬁ:f(t)dt
Y (b-a)ﬁgf (t)dt+x ﬁ:f(t)dt 2b jif (t)dt-x f:f(t)dt
> (b—a)ﬁf(t)dtf) (b-x)f;’f(t)dt

> 1 ﬁzf(t)dt 2 1 Ef(t)dt
b-x/* b-a

. Thus f;(x) 2 1 f:f(t)dt, for all x € (a,b).
b-a

This completes the proof of Lemma 1.15.

Lemma 1.17: If f ¢ Ll(iR,ﬁ:), then for h > 0,

¥ % )
D”, (h) g 1 « £(x) 8 (x)dx, i =0,1,2
E .

£5 y(fi)

511

Proof: The same approximation argument is used as in
Lemma 1.15. Let 0g& gy« f, where, without loss of
generality, f is assumed non-negative and gy continuous.

We show only the case i = 1.

* co .
Let Ep (gyq) =kL={ I, where I, /) I; is empty for

k # j, and I = (ak,bk). The proof of Theorem 1,12

shows that



bk—a.k k
Therefore
Ky )8 (x)ax 3’kagx(x)dx (fT%E"JEkbétidt)
9y o -~ Za k "k "k
ay k
b
- 1Px .. [o
—.j;kﬂ(t)‘—AL—f/;kgq(x)dx dt
bk-ak k
b
;hj;kﬁ(t)dt.
k
Thus,

ﬂ *
', (h) £ + (X)) B (x)dx
o1 Enlayy)

from which the Lemma follows.

Theorem 1.18: (Hardy's Inequality) If

* *
0sfe LPR,p), 1 <p< o then £, € IP[®R,H) for

i=0,1,2. Further,

28



29.
"f;“Prg < Ab”fnpcﬂZJm i=20,1,2.

Proof: Define the maps T.i on simplé fgnctions, £, by
T,(£) = £;, i = 0,1,2. Then Lemma 1.15 states that T,
is of type (»,o9, and Lemma 1.17 implies that Ti is of
weak type (1,1). Therefore, by the Marcinkiewicz Inter-
polation Theorem, Ti is of strong type (p,p), 1< P< o,

that is
Hf;“Plﬂ < Ap"f”Prﬂ;r i=2o0,1,2,

. ‘
and f ¢ LP(IR,JJO) . Since simple functions are dense in

*
_LP(cR,go) , the result follows.

" Corollary 1: Let X = (a,b)¢ R, and £ and g be

. c P * ' * P
zero in X~, If fe¢ L (X,ﬂo), 1< p <, then fie LY (X, 2)

and

g * *
f(fiwnpmt)dts Af(ff(tmpﬂ ()t
X BJx °

" Proof: Since

* P * p
(fi(t)) g(t)dt = (fi(t)) g(t)dt
X R

and
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[(If(t)l )P (t)at =f (1£ ()] ) Py (v)at,
X R

the corollary follows immediately.

‘Corollary 2: If g is an even function defined on R,

- and non-increasing on R%, then for 1 < p< o

J{h,%Jﬁf(t)dtlpg(x)dx 3 AE/'lf(x” p(%-zﬂ(t)dt)dx
R R |

Proof: Without loss of generality, let f be non-negative.

Then, if x > 0

‘;l{-f’;f(t)dt N fi(x) and ﬂ:(x) £ %[i:}?)(t)dt.

Similarly, if x <0,

1

—f‘f(t)dt < £ (x) and £ (x) < ?-]xﬂ(t)dt
xjo N 2 o ~ x Jo y

Therefore,

1 P -0 ¢ TV R Lo | .
[m(fﬁ;f(t)dt) #(x)dx = & ’;f(t)dt) Pﬂ(x)dx-l-fo(gﬁf(t)dt)Pﬂ(x)dx

¢ ‘f‘fo;f; (x)) P (x)ax+] - (€] (x))Pg(x) ax

s [® e* P
f—co(fo ) Ppyax




31
Applying Theorem 1.18, then
(£, (x)) P (x) dax éaf (£ (x)) P (x) ax
R Yr

\<'A§[R(f )P Fateratyax |

Thus combining the last two inequalities yields the result.

Corollary 3: If, in addition to the hypotheses of

Corollary 2

| :’-!-ﬁﬂ(t)dt < ap(x),

.then for 1< p < ©
1l P P
[Iilifof(t)dtl g (x)dx sAJR[f(x)l g (x)dx

Proof: Apply Corollary 2.

Remark 7: For any interval (a,b) £ R, Corollaries
2 and 3 can be modified in the same manner as Corollary 1
modifies Theorem 1.18.

™ Example (1): Let gix) ;ﬁa, where 6§ = 0 or 1

x € [0,0), and 0 £ ¥ {1 is fixed, then



‘ A
fﬁ"‘fdt?s_

To see this, consider the following three cases:

. L=
(a.) If 8 = 0, thenf —th = —l——d' thus

‘1x1 2
Lt‘*dtsl_—?i’“'

(b) I£f 8=1, and 0K x <1,

N

Lfx L4x%,. ¢ 1
:?fc» 1t™ t\<"§' o 20t< 12,

(¢c) If 8=1, and 1 £ X < w, then

xl+x %Ix 1
j I"'Td+t t\—on 'Eb(dt
2x% x1™% 2

x10(=l-o('

Therefore,

L Ix < A .
xL Fredt S grxe

Hence, by the last Vtheorel'n,

* o . ' ‘.,~ .:..‘ p )
, P . < {£ ()]
[R+(f-‘*-(x” Ereadx S A o B

32
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which was shown by Kaneko [9].

. N * .
Example (2) = If @g(x) = 1, then ﬂi =1, 1i=20,1,2 and

Theorem 1.17 reduces to the Hardy-Littlewocd maximal

inequalities,
® ,
f(fi(x))deé A[ |£ (x)| Pax.
R P/r _
For a direct proof, see Hewitt and Stromberg [8, p. 424] .

For the rest of the chapter, we assume f# & Ll(T) to be
even and periodic and of period l27f. Also, for a function
on [0,2')'{], we denote it's maximal functions restricted
to [0,27] by £,(x), i =0,1,2. If f is extended periodically,
with period 2%, to [—TT,3T(], then we define

sup L X £(vyat,

*
£..(x) = —_—
1b -MT S €< x & 30 ¥&7%

* *
with fOb(x) and fzb(x) also defined similarly. .

* *
We denote fOb(x) by fb(x) .

With the above definitions, we have the folloWi‘ng theorem:z

" Theorem 1.19: Let £ be periodic, with period 2T,

. *
non-negative, and f e Lp(n:,ﬂo‘) + 1 < p< ®, Then
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fgrr (£ () Pp(x)ax € Ap[g'(fm)%;(xmx. i=0,1,2.

Proof: - Since § is an even function, one verifies that the

following relations hold:

20y (x-2) » gy (x), x ¢ [2N,37].
By Corollary 1 of Theorem 1.18, we have
- F ’
JFel, ) Pa ax < Apff,T(f(x))Pﬂ;(me, i=0,1,2.

* *
By the above observations on ﬂo and ﬁb’ and by periodicity

of £, we have.
ff’r(f (x)) Pp, (x)ax € 4]3”(1: (x))Pg (x)dx .

The theorem follows by combining the two inequalities.

Corollary l: Under the conditions of Theorem 1.19,

fg’(rf;(x))Pﬂ(x)dth Apﬁ”(f(x))%;_(x)dx. i=0,1,2
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' * * :
Proof: Use the obvious fact that fibﬂ~$ fib(x) for

X € [9,27(:] and apply Theorem 1.19.

. Remark 8: The condition that § be even in the last
theorem can be weakened to the condition that there ekist an

A > 0 such that
ok * N .
B, (x) € A g (x) if x e [0,27]
ke x '
ﬁb(x)-. A ﬂo(x+2K) if x e'[ﬁﬂ,O‘]
. . _ L
g, (x) € A gy(x-20  if x ¢ [27,37].
" Remark 9: The interval [}X,Bﬂj does not appear to be
a natural domain as the functicns are defined on T.

However if we look at the Poisson function, P(r,e-t),

where

o L2
2N 1+4r“-2rcos(8-t)

o € [0,2)] and t € [-T, K], then 6-t € [-W,37].
This widely used function will be discussed in the second

chapter,

Using Theorem 1.19, we now deduce an extension of an
inequality of Hardy and Littlewood, by modifying their

argument. See e.g. Duren [4, p. 234].
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'Theoiem 1.20:z Let £ be a periodic function, period 2IT.

. *
If £ € Lp('[‘,ﬂo), 1< p<w, and
* - '
f (x) = sup ' |%J%f(x+t)dt v
o<lg) & T
*
" then £ e LP (r,8) and

’ *
l£N e, 0 < 2 Jille. g5

Proof: Without loss of generality, £ is assumed to be

non-negative. Now define Fl and F, by

1 (0 1{¢
F, (x) = sup —‘]: f(x+t)dt F,(x) = sup -]’f(x+t)dt.
1 ocesT € J-E o2 0< e¢T £/0

Consider F,. A change of variable shows that

F,(x) = sup EJE f(x+t)dt
0<EsT /7€

sup f—%ij%f(t)dt

. *
From this equality, it follows that Fl(x) £ flb(x),

*
X € [p,zﬂ], where flb is as in Theorem 1.19. Therefore,

»

j%“(rl(x))%(x)dx ¢ Mgl x))Ppxax.

Theorem 1.20 applied to the last inequality yields
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fﬁ’rml (x))Pp(x)ax & Apﬁ(f (x)) Ppg (x)ax.

. : *
A similar argument shows, first, that F, x) £ be(x) for

X € ‘[0,27{], and then that

ff,’rwz (x)) Phx)ax & Apff,"(f(x))%;(x)dx.

. .
Since £ (x) { Fy(x) + F,(x) for x € [0,271'], the theorem

‘ follows.



- CHAPTER 11

" Section A. 1Inequalities Involving Convolutions and

Maximal Functions for Weighted Lp—spaces,

1 pv @

In this chapter, we relate the Hardy-Littlewood
maximal function to convolutions of functions with a
. suitable kernel. Specifically, we shall give conditions
" on the kernel, such that its convolution with a function £
is majorized by the Hardy-Littlewood maximal function. The
specific kernels of Fejer and Poisson will illustrate the
results. We also investigate the boundary behaviour
of these convolution integrals for a general class of

functions.

# is a weight function with restrictions specified
when needed, and we consider the spaces Lp(w,ﬂ), LP(r) and

p * ‘
L*(r,p), 1L p<x

Definition 2.1z If 0L r <1, and 0 £ & < 2T,

we define the Poisson kernel, P(r,8) by

1 1-r?

P(r,9) = wm )
2T 1-2rcosé+r

38
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The convolution of P with a measurable function f
defined on T is called the Poisson integral of £,

wherever it exists, and is denoted by u. That is,

u(r,8) = (Paf) (8) = - fgrP(r,e-t)f(t)dt.

.‘:-"\

Remark 10: If £ is extended to R periodically,

then for any ¢ € R,
ji"zn'"p,(r,e-t)f(t)dt =ngP(r,0-t)f(t)dt-

Thus the choice of interval of integration can be changed

whenever convenient, without changing the value of u(r,9).
Lemma 2.2: If 0 r <1, 8 €0 H] t € [-N,T] then
ol ~ ’ 'y 1

2
1-r® l-r
5 <a

1-2rcos(8-t)+r2 ~  (l-r)%+(8-t)°

where A is independent of €, t, and r.
Proof: Let X = (8-t) € [—Tl',;—]zlj Assume first that
0L \< %— Then
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Also, ' e
1
PR SN T
) 1
1302 7 (10n) 2

. from which it follows that

------ 1 i@l
1-2rcos+r (1-r) "+«

For %‘- £r 1, and using the identity cos¥ = l-—2sin27°<,.

we have

1-r? - 1-r? £ 1-r2
1-2rcosatr®  (l-r) °+4rsin®

»

X 2 . 2
5 (1-r) “+2sin 5

It is easily verified that, for € [—71, 37{],

%2

gin? X >

4§

- and that 1-r2 < Z(lFr) . Theréforé',

2 e ‘ .
(1-r) 24258022~ (1) 2+(3°;—‘) Z= (1-r) 2+°

so that, with A = s(1+(1721)2) , the lemma follows .
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Theorem 2.3: Let £ be a periodic function, with period

2K, 1If u(r,8) is it s Poisson integral, and

*e) = VA Fex)a
F T ocpeten 'tfﬁfﬁ e,

thenlu(r,8)] £ A £ (8).

Proofs It suffices to consider non-negative £.

Fix 8 € [-T,¥], and let

. _ [t
fe(t) = }; £ (x+8)dx.
Using the periodicity of £, rewrite u(r,9) as

u(r,8) =[Tr;f(t) P(r,e~-t)dt ~=[Ttﬂ_f(t+e) P(r,t)dt

o,

Integrating the right hand side of the last equality yields

- 2
fe(t) (1=-x*) 7 "‘.1'._[1?-“- fe(t) (l-r_2)2rsint dt

u(r,8) =1 e
oY [1-2rcost+r”]

21 (l-2rcost+r2)

Bl + BZ'

b

*
respectively. By the definitions of £ and fg, it follows

.
that B, < £ (8), since

1
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Now,

fr £4(8).(1-r?) 2r |sint]

—_— dt
2 o) -m [l-2rcost+r232

I~ " - T 1. - e
< f*(g),f (1 r)erts:Lntlz e
- [1—2rcost+r%1

‘ 2
% T Tyl
< 2Af (8) / (I-r)t > dt
=N [l-Zrcost+r%]

£ 2f*(e)A/"' SIS 2 Y
=N (1-2r+r°)+t

*
£ 2l (8)A.
This completes the proof ¢f the theorem.
Remark 11z If u(r,8) is infinite at some point,
*

8, and for some r, it is easily verified that £ (8)

is also infinite, and the inequality of Theorem 2.3 holds
trivially. Thus the theorem applies to a very wide class

of functions.

In the following, we consider kernels which satisfy the

following: -

'Definition 2.4: A kernel K(x,y), defined for xe IR+

and periodic in y, with period 2], is said to satisfy

condition M if



i3
i) [ K(x,y)dy = 1
-

ii) there ‘exists a function, G, such that
< " T <
[K(x,y)| K G6(x,y) and - G(x,y)dy & AI ,

iii) for each 6 > 0,

lim ( -6 G(x,.y_)dy +jn G(x,y)dy) =0
XP® /- 8

. T | 360, y) |40
iv) u“_'y ——iy—l— dy A,

Theorem 2.5: If K(x,y) satisfies conﬁitionbe, then

for all £ e IP(M), 1€ p<

m
1jm ) K(X,y—t)f(t)dt = f(y) d.C.
x9x/ =T

Proof: To prove the result, we use [7, Theorem 44.8,

pp. 636 - 637 | of Hewitt and Ross. By this theorem, it

suffices to show that

lim w K(x,y=t)E(x)dt = £(y)
X9y oo/ =T

for _all £ in a dense subset of LP(T) and that for all

- £ €& LP(T)r

T .
supj Kix,t)E(y-t)dt < o a.e.
X =T

43
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Consider g € C(T), then condit;i.ons (i}, (iii)

and [7, Theorem 28.52, pp. 87 - 8§] imply that

T
lim |7 K(x,y-t)g(x)dt = g(y)
Xy’ =J

" in the LY (T)-norm. To show that

L] ﬂ 3
lim |© K(x,t)g(y-t)dt = g(y) pointwise,
xyo/ =T .

let _£> 0 be given. By (iii), there exists N, such that

for x » N, and 8 > 0,

(f' SG(x,t)dt +[TrG(x,t)dt)<~€ .
=TT &

By continuity of g, we choose 8 > 0 such that for t ¢ (-5,8),

|g(y-t) - g | <E.

Hence, by boundedness of g,

l[““ K(x,t) [g(y-t)-g(y)] at |
1 [~S _ | fr ' ‘
éU 5 FEt) [g-t)-gyijae + f s K(x,t) [g(y-t) g (v)at |
+ [l fgy-t-gmlat

< 2A(ﬁ78r}K(x,t)l at +fgh<(x,t)ldt) + ef_fgx(x,t)l dt
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$2RE +en)

- where A is the bound of gq.
It remains to show that, for all f ¢ 1P (r) P

T
sup ’f K(x,t)f(y—t)dtl < o,
X -
Clearly, we may assume £ 2 0, then
m '
'/ 1 K(x,t)f(y—t)dt,l 5]11’-” G(x,t)E(y-t)dt.

Let

£,(h) =ﬁ,‘ £ (y-t)dt,

then integration by parts yields

n _ LA AL VG (X, t)
f_,n, G(x,t)f(y-t)dt fy(t)G(Xpt)l-_"_ [-'IT fy(t) '“'S' oo dt

£ £" (y) 2 e (x,M -6 (x,-N ] +£ " () jﬂni DLEE) g,

Since the last integral is bounded, by (iv), it remains

to show that [G (x,) - G(x,-,7T)1 is bounded. To do this,

we show that

i’G(x.Ti_) - G(x,-N -fnﬂ_ G(x,y)dyl $ A+ A,.
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This, however, clearly follows from (iv) on integrating

by parts.

N .
Since f (y) exists a.e. for f € LP(T), 1l p o

the result follows.

"Rémark 12: Suppose that K(xX,y) is defined on
[0,2) xR, and that t ='i%§, then substituting t for x
makes K a function of t and y. Thus if K(t,y) satisfies

condition® , the conclusion for K(x,y) reads,

. [T ' ~
lim K(x,y)f(h-y)dy = £(h) a.e.,
xya/ =T

for all f ¢ LP(T), 1 & p < o,

[s0]
Let SKn(yi}n=l be a sequence of functions defined on R.

Define the function K(x,y) by

K(x,y} = (K;(y) , 0&x<1

Then, if K(x,y) satisfies condition)(, the conclusion is

stated as
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m . .
¥§%Jf;ﬁ Kn(t)f(y-t)dt = f(y) a.e.,

for all £ € LP(T), 1L £ P < oo

Example (1): I% is well known that the Poisson kernel,

P(r,0), satisfies

jﬁ. P(r,0)de = 1
=T ‘

for all 0 £ r < 1. Also, by Lemma 2.2,

and obviously

lim_( :;G(r,e)de +ﬂf G(r,8)de) = 0
rsl

for all & > 0. Since

G(rJT) = G(z,-N - Al-r) <A
| (1-r) 242 T2

then

T vG(r,8) - a(l-r)2e?
o 2C(x,8) 44 - de
}[;n 2 ® ] ((l—r)2+92)2



48

< 2A(1-r) / m'———f—('l' r) ;a ae

Hence, by Theorem 2.5 and Remark 12 '

Lim_| " P(r,t)£(6-t)dt = £(8) a.e.,
r»l -~

for all £ € IP(1), 1 € p < o

o BN o

Example (2): Let Kn(t) =

sih%—nt 2
—T |+ DE N,
_sini-t

™
be the Fejer kernel. Again, it is known that/ Kn(t)dt =1,

for all n¢ N. If we set

ATl
G, (t) = _._41]:2_._2,
(L+n]t])

then noting that Kn(t) £ min gn,—-73 0 < tg ', and that

implies K (t) & G_(t) for all t € [T, . since, for any
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T 28 2 0 we have

-5 ' ™ < -5 4T%n Jﬁﬂ' 4T%n
G_(t)dt +J( G _(t)dt \)[' =48 _ae+fg =2 at
-/;n n & n -T (1+n8)° .7 B (14ns)?

= 8T2(T-g)n
(1+ng) 2

then it is clear that, for such a §,

: -8 T =
}1‘1;23 ( s G, (t)dt +fs G,(t)dt) =0,

Also
/" G (t)dt=41T2[Tr —pdt
mr -7 (l+n|t|)

= 8T 0 dt

(1+t) 2

1+Tn
and, for t € (0,7,
2,72
|t Gg(t)| = t _EE_EE;_§
(1+n |tt)
a2
< __EE;E__E =2 G (%),
(L+n|t)) n

which implies that/n It e (t)|dt < 16712,
-7t
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Hence, by Theorem 2.5 and Remark 12,

mw
lim || K _(t)f(e-t)dt = £(8) a.e.,
nyo/ - B

for all £ € 1LP(M), 1€ p< o

Benjamin Muckenhoupt, in his paper "Weighted Norm
Inequalities” ,‘ [10], gives necessary and sufficient
conditions on the weight function @ to ensure that the
Poisson integral of a function f & Ll('ll') converges in the
P (T, 4) norm to the function £ on the boundary. Suppose
instead that £ € L1 (T,#) and K(x,y) is a kernel satisfying
condition ¥, then the following theorem gives sufficient

conditions for norm convergence of the convolution integral.

Theorem 2.6z Let the weight function § be integrable

on [0,2777. If K(x,y) satisfies condition®, and is also
even in y, then for £ e Ll(il?,ﬁ)

lin %W'[gn £ (y-£) K (x,t)dt| g (y) dy =ﬁ2]‘T|f(y)my)dy
Xy®

Proof: Without loss of generality, £ is assumed non-

negative. By periodicity, it follows that

ﬁ”,_f(y~t)x(x,t)dt =ﬁ2)7'f (£)K (x,y-t)dt.
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Multiplying by f@(y) and integrating yields e

/?,F( gwf(t)K(er"t)dt)ﬂ(Y)dy = ﬁ“ £(t) (ff K(x,y-t)g(y)dy)dt

where the formal interchange of order of imtegration will

be justified by Fubini's Theorem.

We now apply first Fatou's Lemma, Thesrem 1.6, and

~then Remark 1 to the right side of the last equality:

@ Lim |2z (e) ([ k(x,y-t) p(pray)at
X9 0
o
x?oo
2
[f(tw(t)dt,
and

Lim 2Me(e) [27 xx,y-t) p(yrayat
X» 0

27"(f(t) uim 27 k(x,t-y) g(y)apat

X3

‘[ZWf (t)g(t)dt .,
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Thus e e e o

ﬁ)”f () porat £ 1im [ (e) (27 k(x,y-t) B(y)ay)at
X0

& T e (0) (M e y-0) B () appat
X

sfﬁ“f (£) B (t)at

which proves the Theorem.

Note that, in the last theorem, Theorem 2.5 was
applied to the convolution integral of K and #, and that

2

inequality (a) shows that‘/; f(t)RK(x,y-t)dt exists a.e.,

at least for large x.

The following theorem shows that pointwise convergence
of j%nf(t)K(x,y-t)dt at y is a local property of £. It

is an analogue of the Riemann Localization Principle.

Theorem 2.7: Let K(x,y) be even in y and satisfy

. condition®. If gé€ Ll(T) , and f € o (T,#) then convergence
of.}%“f(t)K(x,y—t)dt at y€& T depends only on the bghaviour
of £ in an arbitrarily small neighborhood of y. '
gggggz Without loss of generality, we can assume £ 2> 0.
Since f ¢ Ll(T;ﬂ); it is finite’a;e., and measurable.

Therefore, letivn(y-t1} be a sequence of simple functions

n»l
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on T, such that 0§ v_(y-t) £ £(y-t) and lin v_(y-t) = £(y-t) a.e.
n nyo B .

‘Since for all 0 < § £, and G the majorant of K,

. -5 iy _
%.;.tg ([“ G(x,y)dy +fs G(x,y)dy) = 0,

we consider j-; vn(Y-t)K(x,t)dt. Since vn(y-t) is simple,

it is bounded, and thus has a maximum, say Al > 0, on T.

' Therefore, for all n 2 1,

Lim |8 v_(y-t)k(x,0)at|g Lin [7B

A G(x,t)dt
xy» /=TT xy0/J -1 1

=0

. : v =
Similarly, )JE%I/S K(x,t)vn (y-t)dt | = 0.

Since lim v (y-t) = £{y-t), then for any @20,
n)y®

there exists an N € N such that for all n & N,
vy (y-t)-£(y-t)}| < @ .

except on a set EE" with 7\(Ee) < e . It follows that

0 = lim ['Si Thg Yy @-t) G(x,t)dt
oo " LY
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1'[‘ G(x,t) (£ (y-t)-g)dt
> lin Jrg gl s G0 (£(r-t)-g)

=1',[' £(y-t) G(x,t)dt = 0
xil).mm [S,TEI\E (y-t) (x,t)

Since e is arbitrary, it follows that

* W
lim ]Sf (y-t)R(x,t)dt < lim [Sf(y-t)G(x,t)dt =0
X 3co 3 O

4Therefore,
lim gﬂf(t)K(x'Y-t)dt = lip (z,nf (y-t)K{x,t)dt
XS0 - X3®

- 1jm|:fgf(y-t)K(x,t)dt + [fsf(y-t)x(x,t)dt +[6f(y-—t)K(x,t)dt.!
X 40 il 3

= lim fsf(y-t)K(x,t)dt

X>®
which completes the theorem.

We now turn attention to Theorem 2.3, where it was
*
shown that |u(r,8)|< Af (8). The following theorem,
which can be found in [14; P- 155], shows that this same

property is true of the kernel K(x,y) satisfying condition K.
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Theorem 2.8: If K(x,y) satisfies condition X and

[N#VK(X,t)f.(y-t)dt exists a.e., then
| w ,
| 'nK(x,t)f(y-t)dt|\<Af (¥).

Proof:z Without loss of generality, let £ 2 0, then

integrating by parts, we obtain, with

u

= [t g(ym
£,(¢) —fo £ (y~h)dh

that

I/an (y~t)K(x,t)dt| £ /n_”f(y—t) G(x,t)dt

< fy(t) G{x,t)

LI i d2G(x,y)
< _n+f £ (6) | 2550 ae

-

* * *
£ f ()3, + £ (Y)A, = Af (y),

- Section B, - ‘Ine‘cfuél’i'ti'es for the Case 0 < v ¢ 1

Up to this point, the case 0 { p < 1 bas been neglected,
even though we have defined the corresponding LP spaces.

Since the LP(X,ﬂ) r 0 < p <1, function spaces are of interest
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for specific weight functions, we conclude this chapter with

some results concerning them.

*
We first consider the spaces LP(R,ﬂ) and LP(R,ﬁO). Then
the following lemma will be used to establish some inequalities

(see Hewitt and Ross [7, P. 425] and Heinig [6, pPpP. 8 - li]).

" Lemma 2.9: If £ is a function defined on IR, then,

for 0 < k <1,

|£ () | B ().
£)

o, < hy
£4(¥) Y JE (£

Proof: Without loss of generality, assume £ ) 0. Define

g(x) = £(x) if £(x) > yk and g(x) = 0 otherwise. Then

f:(x) = sup [§%E/% f(t))( (t)dt
£< X £ Eyk(f)' ’

1l [x
+ £(t t)dt
§:€/; ( ))(Eik(f)( ) ]

< _*.
~ gl(x) + yk.
. 1 ® ‘
Letting N = §x:g,(x) > s, s > 0} then
. 1

' E * Tk -
Ey(£)) = {xz£; (x) > Yefx:g (x)+yk > y3 = Ny (1-k)

Applying Lemma 1.17 with £ replaced by g,



yiﬁ’:*(y) = .Yf 2 Fx)dx & yfml- #(x)dx

1

Similarly

Eg(£) ¥ (1-k)

£ 2 (x) Bh(x)dx
Ik Nt g 0
y (1-k)

‘1.& 8 *
= I.TELL CE(x) f,(x)dx
: y(l-k)nEyk(f')

< 1};];[5: £ (x) ﬂ’;(x)ax.

gx ()

*
Y Dg*(y) S 1%]2[5 £(x) Bg(x)ax ,

Therefore

Y Dﬂ*(Y)
£o

£

N *
sm[E £(x) f,(x)ax

2 yk (&)

Y[ « fR)dx = yf x LD(x)ax
E Ey(fl)UEy(fZ)

Y[ x Px)dx + y[ £ B(x)dx
Ey(fl) Ey(fz)

(V]

gk (E)
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Lemmas 1.17 and Z.SLgive-weakxtype (1,1) estimates
for the Hardy-Littlewood maximal function. The following

lemma gives another estimate.

Lemma 2.10: If 0 < k ¢ 1, and # is integrable on R,

then
ff*(x)xa(x)dx-< L] sxyax + 20| [E(x)log" £ (x]] By (x)ax
g0 SR %)y g 0

where log+f(x) = log f(x) if £(x) > 1, and is zero
otherwise.

Proof sz Applying Theorem 1.9 and Lemma 2.9 yields

ff;'(X)ﬂ(X)dx =ff,° o, (y)dy
R -7 f0

=ﬁ./k D’ﬁ ( /oo ']
y)dy + D7 . (y)dy
0 fz 1/k f;

. w 1 *
éﬁ,/k(/E ot Sy + I‘ETJl/k}’([E fé’)‘)”’o‘}‘)dx’di"
y o ' vk

s e o0 &
Cf BxIAx +y=f B, (x)£(x) ( (x) Dax
ESR ﬁtR 0 l/]éXEYk(f) Y

Since

58
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£(x)/k '
ay - f 1T Ay o yoqt
L/kx k(f) (x) 7= 1/x Y log £(x},

the lemma follows .

" Theorem 2,112z If f and § are non-negative functions

on R and § is integrable, and if £ € Ll (iR,ﬁ:;), then
*
£, € P(R,8), 0 <p <1 and

f (£, (x))Pg(x)dax € A (/ﬂ(x)dX)l'P(/f(xm;(:c)dx)P
R PR R

" Proof: Let A >0, 0 < k < 1, then by definition of

Dﬁ*(y), and Lemma 2.9,

£o

S
/ (£, x)) Pp (x) dx = p/oyp'lvﬂ* (y)dy
R fo

@D
- -1
=P %‘/kyp of (pay pL{ 37 o, (y)dy
£ / £o

@
o9 -
f/k P ([ ﬂ(*c)dX)dy + P[o(/kyp D’;*(y)dy

<
0
< P pooax + (28 [P £ (x) g (x) dx)dy
k 23 0
R g (£)
. Lo
=,(°‘)P/mx)dx * 2Pff(xm*(x) (/ % (x) dy) dx
¥ g Tk £ 20 ™) o™ X x)dy)dx

EYk(f)
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However,

® p=2y o o f(x)/k p-2
/ ikl X & B = o dy
vk

l-p .- » -
lf:p_ @) P iE £y >

0 if 0 < f(x) < X

so that

* p %y P 2p xy Pp~1 *
fR(fo(X)) Bx)dx & () /E,G(X)dx TR (I=p) () fmf(x)ﬂo(X)dx,

A straight forward calculation shows that the right hand

side of the last inequality is at a minimum for

X = ([ﬁ(x)dx) Lk f(xw (x)ax.

Upon substituting this ¥ into the inequality, the result

follows.
"Remark 13: If § and £ are defined on any subinterval
XS R, and if E is any subinterval of X, with Jrﬂ(x)dx < o
_ . E
oS
then setting :ﬁ = ﬂ!;( » and applying Theorem 2.11 to #
E

yields
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- (! ~ l...p [ ~k p
fo(X),ﬁ(X)dx A (] g(x)dx) ( Xf(X)ﬂo(X)dX) .
E P g '
* *
Since Bo(x) € #4(x), it follows that

ff*'('xmx)ax <a (]mx)dx)l‘P( <F (x) g (x) dx) P
E O PJg : 0

We now unify the results of.Chapters 1 and 2 by

finding conditions, such that
*
”K*f”p'ﬂ N Ap”f“P:ﬂ:_ﬁo

Theorem 2.12: Let @ be a convex, increasing, non-

negative function on [R+. If K(x,y) 2 0 satisfies condition

K and is even in y, and

hix,y) = /ﬂ-nK (x,t)E(y-t)dt

is finite a.e. for some £, then for g €& Ll(ﬁ') '

- _
]Wﬂ(y)ke(hh(x.y) lNdy ¢ A/Nn,ﬂ* (Y)QUIE(y)|)dy »

provided the right side is finite.

" Proof:  Clearly

m .
|h(x,y)| £ [“_K(x,y-t) jE£(t)]dt «
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Therefore, by Jensen's Inequality, . -

Q ({hix,n|) ¢ CQ(fn“ K (x,y-t) [£(t) |dt)
< [T
£ [WK(x,y-t)cquf(t)[)dm

Multiplying by # and integrating yields

‘ /‘N g(9)QUIn(x,y) Pdy £ /‘"‘ B(y) (/TrK(x,y—t)q(lf(t)l)dt)ay
-% -7 -T
=[7r ([‘“ F(YIR(x,y-t)ay)R(J£(¢)])dt
, A
T %
£ A/ ﬂﬂ (£)Q(IE(E) )dat .

The second last step is justified by Fubini's Theorem,

and the last step is just Theorem 2.8.

For the cases 0 < p X1 and 1 £ p < ® we have the

following theorem.

- Theorem 2.13: Under the hypotheses of Theorem 2.11,

(a) fnnlh(x ) 1PB(y)dy € Afnﬁif(y) [Pﬁ* (y)dy
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for 1 £ p ¢ ws provided the right side is finite.

For 0 < p ¢ 1, we have

(b) [_n_lh(x.y)l B(y)dy & Ap( _“ﬁ(y)dy) (,-nf(x)ﬁo(x)dx) ]

Proofz: (a): 1In Theorem 2.12, let Q(x) = xp, for 1 £ p € o

and (a) follows immediately.

*
(b) = By Theorem 2.8, |[h(x,y)] < Apf (y) .

Applying Theorem 2.1l shows that

fﬁnlh(x,y) | Po(y)dy < Af“ﬂ(f* (v))Pp(y)ay
<a (" pia )1‘1“’(fT £(y) By (y)an) P
N PJ-?T d -7 0

for 0 < p <1,

The following two examples give another illustration of

Theorem 2.12.

Example (1): If @(x) =€%, then.

" Example -'('2-4) 3z If @¢(x) = gx log x, x> 1
0 0£x &1

then @ is convex, and, since



then

/NT‘_ Ih(x,y)! log+ lh(x,y)|#(y)dy

£ Aﬁr#ﬂ;(Y) £ () log+lf(y)|dy .
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" 'CHAPTER III e e i

In this chapter, some inequalities of Fefferman and
Stein, [_5, P-P. 107—11711 , are extended from the discrete
case to the n~-dimensional case.

We commence by introducing another function space.

Definition 3.1l: For 04<p,r<we, we define the spaces

Lp'r(Ran+m) to consist of all (equivalemce classes of)

functions f(x,y) defined on IRanR+m such that

" fuLp'r = (fmn (JR'.H“ I£ (%, _Y” rdY) p/rdX) 1/p

is finite.

These spaces can be shown to be limear metric spaces

by straightforward calculation.

Definition 3.2: Let f(x,y)be defimed on R"xr 7

Define, for fixed yeR °
£f (x,y) = su A [f(t,y)dt .
QENQ5 Q |

65
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“where the sup is taken over all cubes centered at x.

We now obtain the main theorem of this chapter, the
proof of which is a modification of that of Fefferman and
Stein. It s importance lies in the fact that it incorporates
a Banach valued Hardy-Littlewood maximal theorem on R®, from
which the result of Fefferman and Stein follows.

‘Theorem 3.3: If £feIP'Y ®R™xrR™), Kp,r<wm, then

1) (1£"Ipr € A, IEllge.r -

2) If I r<w, and x>0, then

A{xemn:(fa_,_m]f* (=, 9)| Fap) Vo3 € Brjellp1,x

Proof: If the right hand side of either 1) or 2) is
infinite, the inequality is trivial. Therefore, they are

assumed finite, Without loss of generality, let £%0.

The proof will now proceed as follows: (a): the case

p=r in 1) ; (b): proof of 2} ; (¢): proof of the case

psr in 1) ; and finally, (d): the case pp»r in 1).

(a): p=r: By Fubini's Theorem, and the n-dimensional

form of the Hardy- Littlewood maximal theorem, {s=e, for
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example, [5,p.p. 107-114]), it follows that

(fn(fﬁn(f* (er))rdY)r/rdx)l/r
R R

* r 1l/x
.(l;fm(l;n(f (x,y}) Tdx)dy)
Ar,r(j[R-l-m([{Rn(f(ch)) dx)dy)

] v r 1/r
Ar'r(fﬂn([mm(fix.yn ay)ax) /%,

A

proving (a).

(b): Inequality 2): By the Calderon-Zygmund Lemma,

there exists cubes, Qk' with the properties: If

o0 = (f ey Tan T and 0 = Ug,
R k

and >0, then
SN < é—/ F(x)dx ,
k Rr®

Fi{x)${Xfor all x¢ Q%, and

1‘.

[ Y dw < o
m‘r[akﬁ' {x)dx $ AX, :

A depending on n. Now de&ompose £ into two functions,
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h and g, such that f(x,y) =_'_g(x,y,) + h(x,y); where}

g(x,9) = £, )X (%) , hix,y) = £0x,3)X,0x) .
‘ Q

Since

.. 3 * - X l/r
ot fap 1/ & ([ o ta” Gy Tay)
([!R+'m(f (x,y)) *ay) R !

#( L o (B (x,9)) Tap) /7

where we denote the first member of the right hand side
by G(x) and the second by H(x), then 2) will be proved
if we show that

Ay

A r 1/
3) DG(D()S "o('mn([@m(f‘x'y” dy) dx

and

A

- 4) plx) £ ymn(/;[;+m(f(X.y))rdy)l/r

dx .

From the obvious fact that

. f o) -]_/r r 1/]‘.‘
An%R+m(g(X.y)) dy)~/*ax) é/Rn(j;,fm(f(x.yn dy) ~/Fax
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N

: i
and since F(x)¢%“€or all erc,_then

5 i r . { r-'l Y l/r
fun(/a;“mm o)) iapax S [Rn([lR+m(f(x'y” dy)~/Tax.
Therefore,from the case p=r,

x r r -1 r 1/x
[Rn([m_,_m(g (x,y)) dy)dax \<Ar,,r°$ /|Rn([m+m(f(x.y)) dy) 7’ "dx.

Since, by Chebyshev's Inequality,

KDl € fmn (G(x)) Fax

then

Dg(x)\( azr/tRn([*_m(f(x.Y))rdy)l/rdx

which is 3).

To prove 4), let

rfv(er) = ‘—(‘é;r/Qkf (t,y)at, XGQk

0 , xe0F.



70

Thén, for erk, _

B

' " ro l/r =« _ 1 r. .l/r
([[Rm(g(X,Y)) dY) = F(X) = (/[R'_’m m[Qkf(X,y)dX] dY)

, 1 r 1l/r
§ m Qk(/{;{+m(f(x’)7)) dy)

dx,

v

by the continuous version of Minkowski's Inequality. From

< the right
the fact that 7\731?_ QkF (x)dx € A, t& ght hand side of this

?.pequality is £ Ax, for xeQ, and for xc—Qc_,:, g(x,y) = 0 and

hence F(x)=0. Therefore, ¥(0) has support in Q, and is

bounded by AK, Since z;\(Qk)< &fnl? (x)dx, it follows that
k R .

-

~t
/!Rn‘[[R+m‘f‘x'Y”rdY’dx ¢ BN

L () Fap M R,

r
X AX
}Rn le-i-m

From the case p=r, and by Chebyshev's Inequality,
r.A ~k r
& D) éfan(jl—R_,_m(fz(x,y)) dy)dx,

it follows that

»

,, A i
7\EstRn: (//,R+m(g* (x,y))rdy)l/rz‘vﬁ’}‘&‘ an([!Rﬂn(f(x,Y)) dy) 1/tg,.
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This will imply 4) if there exists a constant A such that

* ~k
h (x,) §Af (x,y).
For any cube J, let ¥ denote a cube concentric with

Cf, but having diameter 4n times as large. Let '6 =6é‘;{
k=1
Since ZA(Qk)<-1&/ F(x)dx, it follows that
k.. R

Al € %{'—]Rn( / o (£ (2 a¥)) Fdy) /T ax,
R

. & ’ ! ;
Since h (x,y) = %qpm[jh(t,y)dt, and for any fixed cube

I with xeI,

af L

[ h(x,y)dx
KEA anI

where A = gkelN: anI is non-empty}, and if anI and

~ s . B
I\QSI\QK, are non-empty for some k, then Qif{él, it follows

that

1 1
2CI) > (h(x,y))dx & ST 2 [ (h(x,y))dx
All ken anl Y A ,I keA Qk o

X (£(x,y))ax
AD kZe:\ Q

1 ~
s-am-[i’(f(xr}’))dx
A '[“,,,

4}7}7{ 7£ (x,y)dx

~¥k
LAf (x,Y).
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Therefore

AfedC: ([Rmm*cx.ynrdy)lfr > ax]

€ ALt ([+m(f (x.y)) Fay) 0

< 3—[ (f_m(f(X.y)) ay) /T ax.

Since
Afxed: ([Rm(h* (x, ) Tap H/F > aed £ 28
< gfﬁn(/;m(f(xd))rdy)l/rd:t,
then 4) follows. This completes the proof of 2).
(c): 1l<pgr: By (a), the operator T defined by

T(E(x,-)) = (/R+m(f*(x,y))rdy)l/r

has been shown to be of étrong type (r,r), 2) can be restated

to say T is of weak type (lpD. Hence, by the Marcinkiewicz
Interpolation Theorem, T is of strong type (p.p) where
1<p<r, that is

*0
el p,r € A, oliEllperz.
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This is (c).

(d): To prove the case p2r, we observe [?,‘p.p 107-11§]

that for positive £ and g

[Rn(f* enTgeax <af (2T ax,

Hence for fixed yfR+m

/n(f*(x,y))rg (x)dx < Ar[nmx,ynrﬂ*(x)dx .
R R

Therefore, by Fubini's Theorem,

* r .
,([ (£ (x,y)) dy)@g(x)dx
Joafom

_ -
_vf+m(/n(f (x,v)158 (x) dx) dy

£A /.,_m( 0 o (£ (x,v)) Zg* (x)dx) dy
/ (] o (Ex,y)Tay) g (x)ax
= X,y da .
B Jgn Jpm (5 O
L " q,.0 1 r _
Letting @ run over the unit ball of L*{R), where q + 5= 1,

and applying the converse of Holder's Inequality for

‘n-dimensional space, then

Enr
[E3IE FER A} p/erﬂip.r
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- XX
\< AJ:.,p“f”LPvr .

This completes (d), and thus the theorem is totally

proved.

o Coi-ol'l'a‘ry '1: (Fefferman and Stein) Let f = (fl,fz,...)

be a sequence of functions on R". Form the sequence f¥*,

whose kthterm is the maximal function of fk' Then for

I<r,p<x,
[w s
5) (/ (> [ (x)] )P Tax) 1/P
R™ k=1,[k ]

(/ (z £, ()] 5) P Tax) 1/P

< rrP
provided the right hand side is finite.
For 1 < r < o,

O Afx €m0y [g (]I > < “[n‘ L, |£, 0| ax,

Proof: This follows by letting m = 1 and setting for neN,

f(x,y) = fn(x), n-1 £y <n, in Theorem 3.3,

~ " “corollary 2f If £ € IPR), 1¢ p< w, then £, € IP(R),

0

and
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1ol < 2] %]le-

Proof: In Corollary 1, let n =1, and set £ = (£,0,0,...),

and the result follows. f

We conclude by stating that Theorems 2.3 and 2.8 have
their appropriate extensions if one considers convolutions
of functions of two variables and the maximal functions

defined in this chapter.
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