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·. 'IN'rRODUC~ION 

The Hardy-Littlewood.Maximal Functions are of 

considerable importance in the study of certain classes 

of functions convoluted with specific kernels, since they 

majorize many of these convolutions. This motivated the 

research in this area. 

Chapter 1 collects and extends a number of inequalities 

. involving the maximal functions in certain weighted Lp spaces. 

In the second chapter, inequalities between the 

convolution of functions in weighted Lp spaces, 1 S p < 00, 

with certain kernels, and their maximal functions are 

studied. In the last half of Chapter 2, we study the case 

0 < p < 1, and collect the results of Chapter 1 and those 

of the first half of Chapter 2. 

Finally, in the last chapter, the main result, Theorem 3.3, 

is proved, extending the original result of Fefferman and 

Stein. 

(vi} 
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CHAPTER I 

Sec·tion· A. Basic Definit·ions 

The following is a list of standard notation and 

concepts that will be used throughout. Further notation 

and definitions will be introduced when needed. 

R = . (- CX) 1 oo ) denotes the set of· real numbers 1 and 

+ -R = LO, oo), IR = . (- oo 1 0]. · JN will be the set of natural 

numbers, IN= tl, 2, 3, ••• ], while t' = [0, 2JI') denotes 

the "circle group". In the case of periodic functions on IR, 

with period 2IT, T will be any interval of length 2K. If E 

is any given set, then En is the Cartesian product of n 

copies of E, n e N, thus [R +n is the product of n copies 

of rR+ and [Rn is the "n-dimensional Euclidean space". 

If E c tR, then ~(E) denotes the Lebesgue mea~ure of E, 

and JEf(t)dll(t) ;; hf{t)dt is the Lebesgue integral of a 

function f defined on E, whenever the integral is well 

defined. To denote any arbitrary positive measure on a 

measure space X, we use the symbols~ and o, and if two 

functions, f and g, on X are equal except for a set of 

}l-measure zero, we say f =. _g )l-a.e. On the n-product of 

the measure space x, ie Xn, we denote the product measure 

1 
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)lX,UX ••• xp simply by p. if no confusion arises. Sets or 

functions that are Lebesgue measurable will be said to be 

measurable, and ~-a.e. will be abbreviated to a.e. 

We define the following functions and operations: 

For E ~X, we define the characteristic function,~' by 

~(x)=[: if X E 

if X ¢ E 

Also, E0 denotes the complement of E in the {whole) 

space X. If E and E1are subsets at x, then E1 ' E will 
0 

denote the set fx : x E E1 and x ~ E}, while E is the 

interior of E in the space X. For limit, we write lim, 

while lxm and lim are the limit superior and limit inferior, 

respectively. Finally C(X) denotes the space of continuous 

functions on X. A, together with any subscripts, will 

denote a constant depending on indicated parameters, and 

is possibly different at each occurrence. 

With these conventions, the spaces LP(x, dA{x»= LP{x) 

of Lebesgue-locally integrable functions on the set X 

are defined as follows: 

~n·i tio·n· ·1· .1 : If 0 < p (. m, then f E. LP (X) if 

and· only if tlftl p < oo , where 



Here, 

~ 

U£11 p = ( i lf (t)l Pdt) l/p I . () < p < (X) 

X 

ess sup I f (x)f , 
XEX 

p =co 

ess sup 1£ (x)l 
x~X 

= inf [h,: r clx = 0 1 h > 0 J • 
)(x : lf (x) i> hJ 

Although we speak of functions in LP(x), the fact is 

3 

that we really mean equivalence classes of functions modulo 

a set of measure zero. This abuse of language is found 

widely in the literature, and will not be rectified here. 

For 1 ( p ~co, 11·\f p defines a norm, under which iP (X) 

is a Banach space. For 0 ( p ( 1, IJ·IIP is a metric, under 
p 

which Lp (X} is a Frechet space.· These and other properties 

can be found, for example, in Royden [fj 1 or Hewitt and 

Stromberg [8] • 

For any given real or complex valued function defined 

on X, let 

Eh(f) = fx : x ~ X and (f(x)l > h,· h) o] 

We now choose and fix a function ~ such that it is measurable 1 

non-negative and non-zero a.·c. on X. This will be one of our 



weight functions in the sequel. 

Defi'ni tion ·1. 2 : If 0 < p ' CD'· then define 

~P (X, ,0 (t) dt) = LP (x,¢'). ;~ to be the class of (equivalence 

classes of) functions on X for which Hfilp, ¢ < CD, where 

and 

II £11 p ~~t~ ~-·. 

ess sup 
x~X 

= l( fx l:t (t)l p- (t)dt) l/p 0 ("p <cc 

ess sup If (x) I p = CD 

XEX 

f(x} = inf£h .: h ) 0 and l ~ ( t) d t = 0 ]. 
Eh (fj 

If ~(x) = 1 then these classes reduce of course to 

the Lebesgue spaces_, Lp(X) • 

· D"ef·in·i·t·ion 1. 3: If f is a locally integrable, non-

4 

negative function on R, then define the following functions, 

wherever they exist: 

= sup. ···:E ~xf(t)dt 
x<( x l 
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* £ 0 (x) is called the Hardy-Littlewood maximal function of 

* * f, and £1 and £2 are called the left and right maximal 

* functions of f~ respectively. Thus ~·r i = 0,1,2 denotes 
~ 

the respective maximal functions of the weight function ~, 

wherever they exist. 

In a manner a~alogous to Definition 1.2, we define for 

an arbitrary positive measure p on a measure space X the 

classes Lp (X, d).l {x)) , 0 < p-'. oo. Examples of these classes 

are LP(x, ~~(x)dx) = LP(x, ~~). 
1 ~ 

The proofs of the following three theorems show the 

close analogy that exists between \veigh.ted spaces and the 

Lebesgue spaces. 

Theorent 1 .. 4 : (Holder's Inequality) If p,q~l are 

such 1 1 1 1 and if fc LP(x,,ff), Lq(X,~) that-+-= g E p q 

then the pointwise product 1 f • 9c L ex, .en and 

· ·proof: If p = oo or q = oo, then the theorem follows 

immediately. 

!f 1 < p <oo, .apply Holder's Inequality for LP(X) as 

follows: 
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5 lf(t}g(t)j,fJ(t)dt = .f ff(t)J ,0(t) 11P_Ig(t)J .8(t)l/qdt· 
X X 

" ( Jx If (t) l P_e (t) dt) 
1
/P cfx lg (tll q .6 (t) dt) 

1 /q. 

Since the right side of this inequality is finite, by 

assumption, the use'of Holder's Inequality is justified. 

Theorem· 1. 5: (Minkowski 1 s Inequality) If f, geLJtx,J'J 
-
~ ~p ~ al1 then so is f+g, and 

·proof: The cases p = 1 and p = oo are obvious. 

so that f+g€LP{x,J'). Furthermore, 

5 ff(t)+g(t)j Pjj{t)dt .( ( lf(t)+g(t)l·p-llf(t)l ,fJ(t)dt 
X - ~ 

+jx If Ctl +g Ct>l p-llg Ctl I .fl Ctl dt. 

An application- of Holder's Inequality shows that: 

), tf(t)+g(t)l p-l t£Ct>l.eCt)dt ~ \lf(lp,,0 II .lf+gf p-lfi q,/J 
X -
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and 

. l· - 1 
where - + - = 1. But observe that p q 

Hence, the above inequalities imply 

from which 

follows. 

Theorem ·1. 6: (Fatou' s Lemma) Let [f ? 1 be a n ... n~ 

sequence of non-negative ~-measurable functions which 

converge a.e. on a set E to a function f. Then 

Proof: By the definition of the integral of a non-

negative function with respect to the measure }1(t)dt, that is 



~ f{t),S(t)dt = sup ( ~ (t) .S {t) dt 
~ ./E . 

where ~ ranges over all simple functions such that 

0 ·~ te ~ f, it is sufficient to show that for any such c.e 1 

), ~ (t)JJ(t)dt ~· l'im 5, f {t).fl(t)dt. 
E . n~ cD E n 

If f lf( (t) .S (t) dt = oo 1 then there is a .8-measurable 
E 

set B ~ E, and a constant a> 0 with fB!J(t)dt =ccand 

~ >a on B. If 

B = fx~E:f, (x)> a for all k ~ n], n .K 

co . 
then[)B 2 B, since 

n=ln 
lP ~ 1 im f , and B c B +l • .. n n- n 

n-too 

Therefore, lim)[ ~(t)dt = oo, from which it follows that 
n~oo B 

n 

( f (t),(t)dt =co, since 
/En 

f_£ (t),fJ(t)dt~ a.£ jJ(t)dt. 
E n Bn 

I 

If J ~(t):jJ (t) dt < oo, then· there is a fJ-measurable 
, E -. . ·-

-
set B ~ E such that i~(t)dt <ooand<(= 0 on Be. Let 

. B 

M = maxce(x) I choose £ > 0 I and let 

8 
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Bn = [x6-E:fk(x.) > (1-E)ce(x) for a.ll k ~ n] 

CD-

It is clear that B ~ Bn+l and that B su Bn _· 
n n=l 

and hence 

m 
[B\B~=:::J.is decr_easing with empty intersection. We recall 

that, if [Ei]r=l· is a sequence of ~-measurable sets such 

that Ei 2 Ei+l ,_ in some space X, with ...u (E 1) < oo, then 

co 
~(nE.) =lim p(E.), which is proved in, e.g., Royden 

. 1~ ' ~ 
~= ~+ Q) 

[ll,pp. 218 - 219]. It follows then that lim ( ,iJ(t)dt =0 • 
n'* miJ\B n 

If n is chosen so large ·that for all k ~ n, ( j1 (t) dt < E. , 
JB,B 

then 

Thus 

~ f fk(t)~(t)dt 
Bk 

~ (1-E.) J ~ (t) j1 (t) dt 

Bk 

n 

) (1-£) 5 te<t),0(t)dt- i LQ(t)J:'(t)dt 
E B'-Bk 

~ it.e<t)J}(t)dt- E[i'e<t> iJ(t)dt+M] 
E . E 

= i·im 5. f <t> .0 <t> dt ~ 5 £o <t>, <t> at-£..r r c..e<t>, <t> dt+MJ 
n~(X) E n E' UE 

which implies the theorem. 
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Remar:k 1:· In Fatou•s Lemma, the limit function, f, can 

be. replaced by lim f. Fatou's Lennna would then state that 
n.;&> n 

The alternate form of Fatou's Lemma,- which follows 

readily from the above, is 

l.un 5 f (t)~(t)dt ~ 5. lJ..m f (t),9(t)dt. 
En . E n 

Remar·k 2: Minkowski' s Inequality essentially shows 

• that H·Jip,¢ · and ll'·llp,¢.· are norms for 1 ~ p ~ oo on their 
J.· 

respective spaces. rvtoreover, one can show that these spaces 

are complete, and hence are Banach spaces. 

Section B. Basic Theorems 

For the sake of completeness, some useful theorems 

applied in the sequel are stated or proved in this section. 

These include the Calderon-Zygmund Lemma (or Riesz Rising 

Sun Lemma·) and a theorem sometimes referred to a-s Chebyshev's 

Inequality. 

Theor·em· 1·.-1: (Calderon-Zygmund Lemma [2, pp. 85 - "!39J) 
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n If y >_O, and f is a non-negative function, integrable on fR , 

n there exists a set of cubes, Ik ~ IR , ke IN, such that, for 
co 

I =Uik, we have 
k=l. 

1) f(x) ~ y for x~Ic; 

2) iktlij is empty, ·.k · ~ j; 

3) y J.ci ) j f(x)dx ~ 2ny 
k Ik , 

·pro·of: Decompose fRn into a mesh of cubes of cormnon 

diameter, and disjoint interiors, such that, for 

each cube, I', in the mesh, 

Let I' be a fixed cube in the mesh, and divide it into 

2n cubes by bisecting the sides of I I • Then, for each new 

cube I. C 
l. 

I I , either 

'1 r. f(x)dx ~ y 1 L. f(x)dx > )\( Ii) or ;)(I.) y. 
ji. l. 

l. l. 

If the second alternative holds, the cube Ii is chosen 

to satisfy the theorem. If the first alternative. holds, 

the process is repeated. 

condition 2). Also, since 

Obviously, the I. chosen satisfy 
l. 
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1 
y < ~TI.) 

. l.. 

property 3) is satisfied. 

cO" 
Let I =lJI., where·the union is over all cubes chosen 

. ll.. l.= 

by this process. Since the derivative of the indefinite 

integral of an integrable function equals the function a.e. 1 

then 

f (x) = lim ;/fQ) j f (y) dy a. e. 
XEQ Q 

~(Q)~O 

where the Q's are cubes centered at x. But each of the 

cubes that enter into our decomposition which contains an 

x E Ic is a cube for which the f~rst alternative holds. 

Therefore, the theorem follows. 

Remark 3: Properties 1) and 3) give the useful 

result that 

"). 1 ( 11CE (f)) < - .. f (x}dx. 
y y )E :{'f) 

y 

ItJs ±mportance is in finding "weak type" estimates, 

which will be discussed later. 



o·ef:in·it·io·n· ·1·.8: For an arbitrary measure ll on a 

. measure space x, and for a function f on X let 

_ ~ (y) = .u[x: Jf.(x))> y, y>O) = )l [Ey (f} J. 
-

We now deduce the following theorem, which can be 

found in, e_.g., Hewitt and Stromberg [8,_ p. 421 ] .. 

13 

· Theorem· 1·. 9: If E ~ x, and if \Q is ~ real valued, non­

. decreasing, differentiable function on IR+ with ta.(O) = 0, 

and f is a non-negative function defined on X such that 

k lQ (f (x) ) du (x) < "" , then 

JE lQ (f (x)) du (x) = J~ }l (EilEt (f))LQ' (t)dt, 

where~· denotes the derivative of~. 

Proof: JE I:R(f (x)) dp (x) = fx )(E (x)l{t(f (x)) dp (x) 

= r X (X) ( (f (x)V(_, (t) dt) dp. (x) 
Jx E 'j 0 

= fxXE <x> <]';Yto,ftx>J<tkq' <tldtldJ.l<x> 

= J: Ul' (t) <f~\ (xl\>,f cxn (t)dp (x}) dt 

= J: lQ..' (t) )l (EflEt(f)) d t, 

where the interchange of order of integration is justified 

by Fubini•s Theorem. 



then 

Corol'lary: {Chebyshev's. Inequality) If 0 < p < m, 

yP~ (y) ~ J.l £ (x) !Pd.ll (x), 
X 

provided the right·side is finite. 

14 

Proof: In Theorem 1.9, let E = X, and ~{x) ~ xP, for 0 ( p <m ~ 

Clearly ··l.Q satisfi.es the conditions of Theorem 1. 9, and 

therefore, for arbitrary function f on X, it follows that, 

for any y > o, 

~I£Cxll P~txl = ~aucxnE£(tlltP-1dt 

= ~~(t)tp-ldt 

~ p~~(t)tp-ldt. 

Since D~(t) is non-increasing in t, 

pftoj_ (t) tp-ldt ~Pr{ (y)f~ tp-ldt 

= pr{{y)yP 
p 

= yPr{ (y) • 

This proves the corollary. 

Tne 'following theorem is ·usually referred -to as a con­

verse to Holder I s . Inequality. The proof may be . found, .e.g. , 



in Zaanen [13, .P• 127]. 

Theorem· ·1.10: Let fe-LP (X,)l), 1 ~ p ~ "'· Then 

4 > 11£Jip,}l = supf r t <x> g <x> d)l <x>l 
q Jx 

= sup i 1£ (x)g (x)l d}l (x) 
. g X 

15 

where the supremum is taken over all functions g such that 
. 1 . 1 

.!lg1fq,.u "1, p + q = 1. 

Proof: If 1 < p < co 1 then by Holder's Inequality, it follows 

that 

Moreover, this inequality is obvious for p = 1 or p =co • 

To complete the proof, it is sufficient to find one 

function, g, satisfying the hypothesis, for which 

· ll£Jip,)l = ifx f (x) g (x) d)l (x)j 

From the above inequality, it is obvious that if 

ff£Jip,ll = O, the theorem is trivial. Hence, _assume 

ff flf p,}l > 0, 1 ~ p ~ oo. For 1 < p < oo, define the function 

g (x) as follo\vs: 



where 

Hence 

Therefore, 

. 1 . 
. g (X) = . . . 1·£• (X') I p-. : . . 

. . 1 . I 

sgnf(x) = 

ll fiJP~ sgnf (x) 
P;Jl 

f(x) :j 0 

f (x) = 0 ., 

lfx f (x) g (x) dp (x) J = I] f(x) lf(xll p-l dp(x>l 

X sgnf (x} lf£11 p-1 
PIJ.l 

=If£ JIPIJl• 

This completes the case 1 < p < oo. 

For p = _1 1 let 

g{x) = .. ·1· I 

sgnfTx} 
f (X) rF _0 

0 I f(x) = 0 

16 

= 1 t 



then U9'fla> 1 ll = 1, from which it follows that 

tfxf- (x) g (x) dJ.l (x>f = _(X If (x)l dJJ. (x) = !JfJI !Jl J~ 1,}1. 

For p = oo, let E > 0 be arbitrary. Then the set, 

fx: If (x)f ~ ii£Jiro,,u -E.j contains a subset, E, of positive 

measure. Define g(x) as 

- g (x) = ..... 1· . . . I 

ll (E) sgnf (x) 
X € E 

0 I 

so that 

'x Jg <x>l d;u <x> = r 1 1 
1
d;u <x> = 1. J' ) E Jl (E) sgnf (x) 

Thus 

= I( f (x) 1 d;u(x) j JE A(E)sgnf(x) 

= · · ·1 J If (x) I d)l (x) 
Jl(E) E -

~ . 1 f. (11£11 ~p"'f.)dJl(X) 
~ E . 

= U£l~ '}1 -E. 

Since E. > 0 is arbitrary, the result follows. 

17 
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·Remark 4: Since simple functions are dense in Lq(X,Jl) 1 

1 ~ q < OJ6 then for 1 < p ~ m the supremum can be taken over 

a11 simple functions,_ g, such that llgllq,)l ~ 1 

· o·ef·in·it·io·n· 1·.11: Let T be a linear operator defined 

· . on ·simple functions on the measure space (X,)l) • If 1 for 

0 < p, q ~OJ, 

where A,is independent of £ 1 then Tis said to be of 

strong type (p,q), or simply type (p,q). 

If, for 0 < p, q <oo, and ally> 0, 

then T is said to be of weak type (p 1 q). If q = co, weak 

and strong types are defined to coincide. 

Remark 5: Strong type (p,q) always implies weak 

type (p,q). To see this, note that, for y > 0 

<11Tf (x)J %p (x)) 1/q ~ if · iTf (x)l %p. (x)) 1 /q 
X Ey( lTf I) 

~ (( J y%p (x)) 1/~ 
J E ( JTf 1} , · 

,y 

= y(D~f(y))l/q. 



The following theorem, which can be found in Hewitt 

.a~~ Stromberg [8, p. 423] is of considerable ~portance, 
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and as an. ~ediate consequence, implies that weak type (1,1) 

does not imply strong type (1,1). 

T·he·o·rem 1·.·12: Let f be any non-negative, locally 

integrable function defined on fR. Then, with 

* * Eh ( f . r = £x: f . (x) .> h] I i = 0 I 1, 2 I h > 0 I 
1 1 

Df* (h) . = 1 ( f (x)dx, 
i n jEh (f) 

5) i = 1,2 

6) D f * (h) ~ 2 f f (x) dx. 
o · li)Eh (f) 

Proof: Inequality 6) follows ~ediately once 5) is 

* * * established by noting that Eh(£
0

) = Eh{f1 )UEh{f2). 

We consider first the case i = 1. · 

Note that the map£+ _!_(xf (t)dt is continuous on 
* x-E:Je 

(-oo,x). Thus Eh(£1 ) is open and since any open set in 

R is the union of mutually disjoint open intervals (proved 

~ * 00 in, e.g., Bourbaki [1, p. 337.J) we get Eh (f1 ) =U (ak,bk). 
k=l 

.-



· C"la:im·: Nx is non empty.· 

This claim is obvious if ak = -~ Hence, suppose 

ak > -c:c, and that Nx is empty for some xe (ak,bk). Then 

there must be an w < ak' such that ~~f(t)dt > h(x-w), 

from which it follows that 

J:kf(t)dt ='f~f(t)dt- t. f(t)dt 
~ 

> h(x-w)-h(x-ak) 

* 

20 

Thus ak € ~(f1 ) which is a contradiction since the interval 

(ak,bk) is open. Thus Nx is non-empty for each x c (ak,bk}. 

Let Sx = infNx' and suppose that Sx > ak. Continuity 

of the mapE...;./~,J;f(t)dt implies that J~xf(t)dt,.; h(x-Sx). 

N5 is non empty and therefore, there must be some y E (ak,Sx) 
X 

such that 

J~~~ (t)dt > h(Sx -y) • y 

This implies that 

j;f (t)dt > h(x-y) 



contradicting y < sx. Therefor-e, Sx = .ak, for all 

x E {ak,bk) and 

·Letting x tend to bk shows that 

If either ak or bk is infinite, 5) follows immediately. 

* since ak, bk i Eh(f1 ). Therefore, 5) follows, fori= 1. 

By minor modifications of the above argument, the 

case i = 2 in 5) follows, which completes the proof. 

Inequality 6) states that the map, T, defined by 

* Tf(x) = f
0

(x) is of weak type (1,1), for any integrable 

function f. Let f (x) = ?<J:o ,l] (x) , then L. f (x) dx = 1, and 

* f . (x) = 1 if 0 ~ x :f. 1 
0 

21 
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=·l,ifx>l ·-X 

- '1 
- ·T"""'::" I 

. .L-X 
X ( 0 • 

Hence 

Therefore, there does not exist any A > 0 such that 

which proves that weak type, in general, does not imply 

strong type. 

Next, we state, without proof, a general form of 

the continuous version of Minkowski's Inequality. See, 

for example, Dunford and Schwartz [3, p. 53~. 

· T'heorem 1·.13: Let (X,)l) and (Y,6") be positive 

measure spaces, and let f be a px~-integrable function 

on XXY. Then, for p ~ 1, 

1 ( r t£ (x,-y) I pd6'(y) )'l/pd)l (x) ~ ( ( ( r,f (x, y) I d)l (X) )'pd~(y}) l/p 
x)y - )y}x • 

Finally in this section, the ·Marcin·kiewicz _+nt.er.~ · 

polation Theorem is stated. For a proof, see Stein 
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[12 I .PP• . 272 - 27 4] • 

Theorem: T.-14 :· (Marcinkiewicz Interpolation Theorem). 

Suppose T is a linear operator defined on simple functions, 

T is of weak type (p. ,q.) ' i 
l. l. 

= 0,1 then T is of strong 

(p, q) , where 1 = 1·-e +! 1 = 1-e + e , 0 <a < 1. -p Po 1?1' q % ql 

Moreover 

for all f E Lp (X ,p.) • 

Remark 6: The case p1 = q1 = 1, p0 = q0 = oois of 

special interest, for then the theorem reads: 

type 

If Tis of weak types (1,1) and (oo,oo), then Tis of 

strong type (p,p), for all 1 < p <; Q)• 

It also states that, if T is of weak type (p,p) for 

all 1 < p ~ Q)' then it is of stro~g type {p,p). 



In this section~ we extend the continuity property 

of the Hardy-Littlewood maximal functions from Lp(~) 

to Lp(fR,~), 1 < p < m, for certain, _yet quite general, 

weight functions, J'. 

The inequalities are obtained via the Marcinkiewicz 

Interpolation Theorem, along the lines of the paper by 

c. Fefferman and E. M. Stein o[s, pp. 107 - 114] • 

co * * 00 
Lemma 1 • 15 : If f E L (lR 1 ,00

) , then f i c. L {tR , ,0) , 

i = 0,1,2, and 

Proof: We prove only the case i = 1 11 as the case i = 2 

24 

is similar, and the case i = 0 follows from the first two. 

00 * Without loss of generality, assume f f:. L (r.R,~ ) 
0 

is non-negative. Approximate f by continuous functions 

goc, such that 0 ~ get~ f, and lim g = f a.e. Thus, for 
o(+(X) 

fixed 0{ > 0, the set Eh (~) is open, from which it follows 

that 

to 
Eh (gc<) = U {ak' bk) • 

k=l .. 



these intervals being mutually disjoint. * Letting g0( 1 be 

the (right) maximal function of g~, then for each 

* x E (ak,bk)'· g~1 (x) > h, and hence 

Assuming for the moment that for any . X r:{ak,bk) 

(the proof will follow the lemma), then 

Hence 

• 
= oJ. 

The last inclusion follows easily, noting that if Eh(gO() 
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* has measure zero, then Eh.<c.{1( 1 ) is empty. Taking infimums 

yj.elds 

As Q( +m, applying Fa tou • s Lemma completes the proof. 

· L·emma· '1' •. 16: Let f be a non-negative, measurable 

* function on R, and f its maximal function. Then for any 
0 

finite interval (a ,b) C tR, 

f* (x) ).· ~1· }:_f (t) d t, for all x E: (a,b) • 
o . a-b a 

·proof: We have 

One of 1 p:f(t)dt, 1 {bf(t)dt is larger. Assume, x=a:Ja b-x)x . 

without loss of generality, that for fixed x 

. 1 ·. {bf (t)dt ~ . 1 'f (t)dt 
h-x)x x=aJa 

Therefore 
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• (x-a)J~f(t)dt+bJ~f(t)dt 

• (b-a) J~f (t)dt+x ~f (t)dt 

* (b-a) fxf(t)dt~ (b-x)J~f(t)dt 

+ .. '1 (bf (t) dt ~· '1 lbf (t) dt 
r;::x)x b-aJa 

. Thus f~ (x) ~ 1 (bf (t)dt, for all x e (a,b). 
b-a)a 

This completes the proof of Lemma 1 •. 15. 

Lemma 1.17~ 1 * If f € L (£R, ~0 ) , then for h > 0, 

D.0* (h)~ 1 J * f(x) .0* (x)dx, i = 0,1,2 
f. h E (f.) 0 

l. y l. 

Proof: The same approximation argument is used as in 

Lemma 1.15. Let 0 ~ gO(,< f, where, without loss of 

generality, f is assumed non-negative and gq continuous. 

We show only the case i = 1. 

* 00 
Let Eh(gC(l) = U Ik' where Ik 11 Ij is empty for 

k=l 

k #- j, and Ik = (ak,bk). The proof of Theorem 1.12 

shows that 
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Also, from Lemma 1.16, 

Therefore 

. 1 f:kgO((x)dx dt 
bk-ak k 

~ hJ:kJ! (t) dt. 
k 

Thus, 

from which the Lemma follows. 

Theorem 1.18: (Hardy's Inequality) If 

p * * p 0 ~ f E L {IR,JJ
0
), 1 < p < CD1 .then fi 6 L (rR,JU for 

i = 0,1,~. Further, 
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Define the maps T. on simple functions, f, by 
·~ 

Then Lemma 1.15 states that T. 
~ 

is of type (en,~, .and Lemma 1.17 implies that Ti is of 

weak type (1,1). Therefore, by the Marcinkiewicz Inter­

polation Theorem, T. is of strong type (p,p), 1 < P< m, 
l. 

that is 

i = 0,1,2, 

and f E Lp(~,~*). Since s~ple functions are dense in 
0 

Lp(~,~:), the result follows. 

· Corollary 1: Let X = (a,b) ~ IR, and f and ~ be 
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zero in Xc. If f E LP(x,,0:), 1 < p < oo," then f: e LP(X,.,kl) 

and 

1 (f~ (t))pt1(t)dt~ A ( ( ff(t) I>P.s* {t)dt 
X J. P)x o 

· ·pr·oof: Since 

r <f~<t>>PJJ<t>dt = r <£~<t>>p;J<t>dt Jx 1 J IR l. 

and 



the corollary ~allows ~ediately. 

· ·corol'la·ry· 2: If ~ is an even function defined on IR, 

+ and non-increasing on ~ , then for 1 < p < m 

( .,l_(xf(t)dtiP,3(x)dx ~A ( lf(x)l p(l(xjJ(t)dt)dx 
)JR xjo P)ra. X) o 
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Proof: Without loss of generality, let f be non-negative. 

Then, if x > 0 

. ~j~f(t}dt f f~ (x) and jJ:(x} ~ ~J~jl{t)dt. 

Similarly, if x < o, 

Therefore, 

" ~~ fo• · * p 1 raJ * p ~ ).:.. cJ£2 (x)) ~ (x)dx-+y 
0 

{£1 (x)) ~ (x) dx 



.31 

Applying Theorem 1.18, then 

( (f* (x)) PJ' (x) dx ~ A ( (f (x)) p~* (x) dx JiR o p)IR o 

~·.A: ( Cf(x) >P.c11XJJ(t)dt)dx. 
P}m:. x}o 

Thus combining the last two inequalities yields the result. 

co·roll·ary· 3 ~ If I in addition to the hypotheses of 

Corollary 2 

. ~t~(t)dt ~ A~(x), 

. then for 1 < p <; co 

Proof: Apply Corollary 2. 

Remark 7: For any interval (a,b) £ tR, Corollaries 

2 and 3 can be modified in the same manner as Corollary 1 

modifies Theorem 1.18. 

-~ 
. .. ''1. 

'EXan\ple · ( ll : Let ~ (x) = S+Xo. , _where S = 0 or 1 

x E [0, oo) , and 0 ~ 0( < 1 is fixed, then 



To see this, consider the fol1ow~g three cases: 

.. 

!.Jx .. 1 dt /. . 2 1 
xjo t~ · ~ 1-D( i1B< • 

(b) If s = 1, and. o·< x ~ 1, 

l_(x l+xoe.dt~ l& 2dt~ 2 
x)o l+tr.( ~ x)o ~ • 

(c) If S = 1 , and 1 ~ x < oo, then 

Therefore, 

1 (x l+xo<.dt < ~ x o<(x 1 dt 
x)o I+t« ' x )o '£b< 

2x « xl-o<.. 2 
= x- 1-~ = r--c<. . 

1 fx: . 1 dt < A • 
x)o S+tb( ' B+xO( 

Hence, by the last theorem, 
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which was shown by Kaneko C9] • 

* Example '('2): If ~(x) == 1, .then ~i - 1, i = 0,1,2 and 

Theorem 1.17 reduces to the Hardy-Littlewood maximal 

inequalities, 

For a direct proof, see Hewitt and Stromberg (8 1 p. 424]. 

1 For the rest of the chapter. we assume~ E L (T) to be 

even and periodic and of period 2~. Also, for a function 

on [o,2Tf], we denote it's maximal functions restricted 

to ~,2TI] by f:(x), i = 0,1,2. Iff is extended periodically, 

with period 2F, to [-IT,3R], then we define 

sup ~&'f(t}dt, 
-IT ""E. < x ~ 3[· x-{J£ 

* * with fOb (x) and f 2b (x) also defined similarlY• 

With the above definitions, we have the following theorem: 
I 

· The·orem "1.19: Let f be periodic, with period 2Jf, 

p . * non-negative, and f E. L or ,;10) I 1 < p < oo. Then 
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·Proo·f: Since iJ i~ an even function, one verifies that the 

follow~g relations hold: 

* * _ [o, 21T], 21' 0 {x) ~ .Sb(x), X (; 

* * f-Jr, o], 21'0 (x+27l") ~ ~b (x), xe 

* ~ * [21f 1 3Tr] • 21' 0 (x-21t") iJb(x), X E. 

By Corollary 1 of Theorem 1.18, we have 

i = 0,1,2. 

* * By the above observations on ~O and ~b' and by periodicity 

of f, we have,.:. 

The theorem follows by-combining the two inequalities. 

Corollary 1: Under the conditions of Theorem 1.19, 

6Jr * p ~ (2 rr p * = ) 0 { f i ( x) ) ,fJ (x) dx :~ Ap} 0 (f. (x) ) ,0 O· (x) dx , i 



Proof: Use the obvious fact that f: (x) -~ f~b (x) for 

x 6. [o, 21t]. and apply Theorem 1.19. 

Remark 8: The condition that ~ be even in the last 
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theorem can be weakened to the condition that there exist an 

A > 0 such that 

* ~ * [o,21t"] ,ilb(x) A J'o (x) if X ~ 

* ~ * . [-JT,o J ~b(x) A JJ 0 {x+2)'[) if X E. 

* * [2JT,3n]. ~b(x) ~A ~O (x-21[) if X E 

Remark 9: The interval [-~,3~] does not appear to be 

a natural domain as the functions are defined on 'E'. 

However if we look at the Poisson function, P(r,e-t), 

where 

P(r,e-t) = 
. . 2 

1 l.o...r . 

2JT l+r2-2rcos ( e- t.) 

e € [o, 2JTj and t E [-1(, "IT], then e-t t. [-1{,311]. 
This widely used function will be discussed in the second 

chapter. 

Usi~g Theorem·l.l9, we now deduce an extension of an 

inequality of Hardy and Littlewood, .bY modifying their 

a~gument. See e .• g. Duren [4, p. 234}. 
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· T'heorem: 1·. '20: Let f be a periodic function, period tiT. 
.. p * . If f E L (I' 1 ~ 0) , 1 < p < Q) , and 

* . 1}! l f ex>= sup · 1 e 0£cx+t>dt, 
o ·<I El ~ JT 

* then f E. LP (U' 1 .S> and 

·Proof: Without loss of generality, f is assumed to be 

non-negative. Now define F1 and F2 by 

F1 (x) =sup ; ~cf(x+t)dt, 
0<£~Jf c. ) -c. 

F2 (x) =sup 
1£J~f(x+t)dt. 

o < E~1f 

Consider F1 • A change of variable shows that 

F1 (x) 

* From this equality, it follows that F1 (x) ~ f 1b(x), 

x E [9,2~, where f~b is as in Theorem 1.19. Therefore, 

Theorem 1.20 applied to the last inequality yields 



* A s~ilar argument shows, first, that F2 (x) ~ f 2b(x) for 

x ~ ·[o,i1f], and then that 

Since f* (x) ,( F1 {x) + F
2 

(x) for x E [o,2Jr], the theorem 

follows. 
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. CHAPTER ~rr 

s-ect·i·on· A. ·rne·qualities· Invo·lvin<.t Convo·lutions ·and 

Max·imal· Functions for Weighted LP-spac·es, 

l otl ·p <· 00 

In this chapter, we relate the Hardy-Littlewood 

maximal function to convolutions of functions with a 

suitable kernel. Specifically, we shall give conditions 

on the kernel, such that its convolution with a function f 

is majcrized by the Hardy-Littlewood maximal function. The 

specific kernels of Fejer and Poisson will illustrate the 

results. We also investigate the boundary behaviour 

of these convolution integrals for a general class of 

functions. 

~ is a weight function with restrictions specified 

when needed, and we consider the spaces LP(re,~), LP(t) and 
p * . 

L or ,J' ) I 1 ~ p < cq 

D'ef·init·ion 2.1: If 0$ r < 1, and 0 ~ 9 < 2Tf, 

we define the Poisson kernel, P(r,e) by 

P(r,e) · 1 : l-r2· = - 2 27l l-2rcos9+r 
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The convolution of P with a measurable function f 

defined on~ is called the Poisson integral of f, 

wherever it exists, and is denoted by u. That is, 

- (ir 
u (r ,e) = _ (P1\'f) ( 9) = ·:, _: j 0 P (r ,9-t) f ( t) dt • . ' ·' \ 

Remar·k 10: If f is extended ~to IR periodically, 

then for any €. e rR, 

;~·tiJf p {r I e-t) f {t) dt = j~1fp {r 1 e-t) f (t) dt. 

Thus the choice of interval of integration can be changed 
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whenever convenient, without changing the value of u(r,e). 

Lenuna· 2. 2: If 0 ~ r ("' 1 I e €. La I~], t e [ -Tf I rr] then 

l~r2 < 1-r 

l-2rcos ( e-t) +r2 ' A (1-r) 2+ ( e-t) 2 ' 

where A is independent of e, t, and r • 

Proof: 
. 3Jf. 

Let 0( = (e-t) E [-1f, 2 ]. Assume first that 
. 1 -_ 

0 ~ r ~ 2 . -Then 
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Also, 

from which it follows that 

1 ....: 1 d . h "d . 1 2 . 2 
0( ·For -,: - r ~ , an usJ..ng t e J.. entJ..ty cos()(= - SJ..n 2 , 

we have 

It is easily verified that, for 0( € [..?T,~]. 

. 2' oc > ,·-J2 d.. 2 
sJ..n 2 ~ !il ~) 

and that l-r2 ~ 2 (l~r} • 
. . 

Therefore~ 

. ·. . 1-r 2 . .( . ( 1-r) . ~ 2 ( 371) 2 . . . '1'-r 
2 20C: ....... 2 2 2 ""' 2 2 , 

(1-r) +2sin 2 (1-r) +(~ (1-r) ~ 

so that, ".vith A = 8 (1+. (37T) 2 ) , the lemma follows . 
2 
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Theor·em: 2.3:· Let f' be a periodic function, with period 

-2Jt'. If u(r,e) is it's Poisson integral, and 

* f (t) = sup · ., ·t:c {tf (x) dx1 1 

0< lt-£1 ~ Tf . c.}e 

then 1 u ( r , e >t ~ * A f ce>. 
Pro·of: It suffices to consider non-negative f. 

Fix e E [-n,~ , and let 

Using the periodici·ty off, rewrite u(r,e) as 

u(r,e) =Jrr~f(t) P(r,e-t)dt·=f1T f(t+e) P(r,t)dt 
-}( -Tr 

-
Integrating the right hand side of the last equality yields 

u (r, e) 
= 1 fe (t) (1-r

2
) 

21T (l-2rcost+r2 ) 

J7 + 1 !11'" £ 9 ( t) (1-r2 ) 2rsint dt 
-~ ~ -X [ 2]2 211 . l-2rcost+r 

+ 

* respectively. By the definitions of f and fe, it follows 

* tbat B1 ~ f (e), since 



Now, 

1 j-!f. £ 9 {.t.).(l-r
2
).2r J.sint1 

B2 ~ 27T -lt [l-2rcost+r::J2 dt 

~ 2A£* (e) fn .... (l-r)t2 2 2 dt 
-~ [l-2rcost+r] 

* ~ 27Tf (Q)A. 

This completes the proof of the theorem. 

Remark 11: If u{r,e) is infinite at some point, 

* e, and for some r, it is easily verified that f (9) 

is also infinite, and the inequality of Theorem 2.3 holds 

trivially. Thus the theorem applies to a very wide class 

of functions. 
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In the followi~g, we consider kernels which satisfy the 

following: 

· Def·ini·tion· 2 • 4: A kernel K .(x, y) , de£ ined for x e. lR + 

and periodic in y, with period 2TI, is said to satisfy 

condition~ if 



i) (K K(x,y)dy = 1 
) -lf 

ii) there exists a function, G, such that 

IK(x,y>f ~ G(x,y) and Jlf G{x,y)dy ~ A1 -lT . 

iii) for each S > 0, 

lim ( ( ... ~ G (x,.y) dy + (Tr G (x, y) dy) = 0 
X~ (X) ) -V J s 

iv) jlT jy ~G(x,y) dy = A2 
-lf ~y 

Theorem 2.5: If K(x,y) satisfies condition?Je, then 

for all f E. LP (I') 1 1 ~ p < co 

lim r~ K(x,y-t)f(t)dt = f(y) a.e~ 
x.;co} -1T 

Proof: To prove the result, we use [7 7 Theorem 44.8, 

pp. 636 - 637] of Hewitt and Ross. By this theorem, it 

suffices to show that 

1~ ;n K(x,y-t)f(x)dt = f(y) 
x~oo -Tf 

for all ·f in a dense subset of Lp(l') and that for all 

~ f E Lp (If), 

J1T . 
sup K(x,t)f(y-t)dt 

X -"'f 
·< oo a.e. 
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Consider g e c (T) ,, then conditions (i), . (iii) 

and (7, Theorem 28.52, pp. 87- 88] imply that 

lim f7T K(x,y-t)g(x)dt = g(y) 
x~oo -1{' 

in the L1 (~)-norm. To show that 

lim 1~ K(x,t)g(y-t)dt = g(y) pointwise, 
x+m -Tf 

let .;c> 0 be given. By (iii) , there exists N, such that 

for x ~ N, and S > 0 , 

( r-_ SG(x,t)dt + ~~ G(x,t)dt) <. £. 
J-n 
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By continuity of g, we· choose 8 > 0 such that for t E (-S,S), 

lg<y-t> - g<y> I<£. 

Hence_, by boundedness of g 1 

Jjlf K(x,t) [g(;-t)-g{yi] dt I 
-~ . 

~.tt.: K~(x,t) [g(y-t)-g(y>Jdt +J~ K(x,t) [_g(y-t)~g(y]dt l 
+ tJK(x~-t~l ~ g (y-t) -g (y)j dt ' 

~ 2A([:~IK(x,t)l dt + j~IK(x,t)la.t> + £/-~K(x,t>l dt 
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where A is the bound of. ·g. 

It remains to show that, for all f € LP (if) , 

I (lT • 
sup ~ _ K (X ,t) f (y-t) d tl < oo. 

X -lf' 

Clearly, we may assume f ~ 0 ,. then 

If K(x,t)f (y-t)dtl ~ jrr G(x,t)f(y-t)dt. 
-n . -~ 

Let 

fy(h) = !~ f(y-t)dt, 

then integration by parts yields 

J.1f G(x,t)f(y-t)dt = f (t)G(x,t)lrr -J7T f (t)1l~tx,t) dt 
-Tf y -Tf -lT y 0. t 

~ f* (y) 21T[G (x,ll) -G (x, -11)] +f~ (y)J:7Tl t 'b ;~ ~~' t) !at. 

Since the last integral is bounded, by (iv), it remains 
I 

to show that [G {x ,Jr) - G (x, ~7T>] is bounded. To do this, 

we show that 



This, however, _clearly follows from (iv) on integrati~g 

by parts. 

Since f* (y) exists a.e. for f E LP (T) , 1 ~ p < CDr 

the-result follows. 

Remark 12: Suppose that K(x,y) is defined on 
.. '1 

ro,a) xR, and that t - then substituting t for x c - I~x' 

makes -K a function of t and y. Thus if K(t.ry) satisfies 

condition~, the conclusion for K(x,y) reads, 

lim (rr K(x,-y)f(h-y)dy = f(h)_ a.e., 
x-»ta-J -7T ,_ . -~ . . 

for all f € LP ('fr) , 1 ~ p < oo. 
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Let [Kn<YB:=l be a sequence of functions defined on~. 
Define the function K(x,y) by 

K(x,y) = , 0~ X < 1 

1,$ X <2 
• 

. 
Kn (y) I n-1 .s:_ 

~ 
x'("n .. 

• 
• 

Then, if K(x,y) satisfies condition~, the conclusion is 

stated as 
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lim}":-. K (t) f {y-t) cit = f (y) a. e., 
n+&o ~7T n 

for all f E LP{~), 1 ~ p < oo. 

Example ("1) : I't is well known that the Poisson kernel, 

P(r,e), satisfies 

Jrr P(r,e)de = .l 
-1T . 

for all 0 ~ r < 1. Also, by Lemma 2.2z 

. '1'-r· . 
P(r 11 Q).~ A 2 2 

SG{r,e) 
(1-r) +9 

and obviously 

lim_<f-# G(r,e)de + J~ G(r,e)de) = o 
r~l 

for all 5 > 0. Since 

G (r ,]f) 

then 



f lT ·. · ·iA (T-r-) 
~ 2 2 dQ 

-7T (1-r) +9 

~ 2A(l~r) j~~ · · · ·1·
2
· · 

2 
de 

(1-~) +e 

~ 2A1T. 

Hence, by Theorem 2.5 and Remark 12, 

Example· · (2) : 
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be the Fejer kernel. Again, it is known thatfrr K (t)dt = 1, 
-IT n 

for all n E fi.\1. If we set 

. rr2 
then· noting that K {t) ~ min Cn,~], 0 < t." Tf, and that 

n t nt~-

Gn (t) > n, '1 
o ~ t ~ n' 

•1 
-~t~rr, n 

implies Kn (t) .5 Gn (t) for all t f [-rr,·7[1 • Since, for any 



" ~ 6 7 0 we have 

I 

f...:s G {t)dt. +JTI' G (t)dt ~J-s · 411'
2
n dt +J'Tfs· 41f

2
n· dt 

-1T n 8 n -1f' (l+nS) 2 (l+nS) 2 

. . 
= ~a·w~·(lf~s·) n 

(l+ns) 2 

then it is clear that,_ for such ~ B, 

Also 

lim <J-£, G <t> dt +Jrrs Gn (t) dt) = o • 
_n~m -Tr n . 

~rr G (t)dt = 4U2fn ndt 
-N n -n (l+njtj ) 2 

== arr2 J:n at 
(l+t) 2 ' 

= alf2 (1- __!_.._> < a1J2 , 
1+7fn 

an~ for t € (Oa~], 

I 2n·24TT2 
~ t G~ (t) l =. t. -----=-

(l+n It 1> 3 

( · · 81f2·n· · = 
(l+n 1t t> 2 2 Gn(t), 

which .implies that/7T It G' (t) 1 dt < 1.67f2 • 
-7i n 
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Hence, by Theorem 2.5 and Remark 12, 

lhl f" K (t) f (9-t)dt = _f (9) a.e., 
n~ m -7f n 

Benjamin Muckenhoupt. in his paper "Weighted Norm 

Inequalities", [10] 1 gives necessary and sufficient 

conditions on the we~ght function ~ to ensure that the 

1 Poisson integral of a function f 6 L (T) converges in the 
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Lp(~ 1 ~) norm to the function f on the boundary. Suppose 

ins~ad that f € L1 (~ 1 ~) and K(x,y) is a kernel satisfying 

condition lJt, then the follov.Ting theorem gives sufficient 

conditions for norm convergence of the convolution integral. 

Theorem 2. 6: Let the weight function Jl be integrable 

on - ~ L 0 I 271.J. If K(x,y) satisfies condition}{, and is also 

·proof: Without loss of generality, f is assumed non-

negative. By periodicity, it follows that 

h" ~~ . )o ,f(y~t)K(x,t)dt =;o f(t)K(~,y-t)dt. 
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Multiplying by ~(y) and integrating yields 

{2 rr jilT (21T (is )o ( 0 f(t)K(x,y-t)dt)J(y)dy = )o f(t) <jo K(x,y-t).(y)dy)dt 

where the formal interchange of order of integration will 

be justified by Fubini's Theorem. 

We now apply first Fatou's Lemma, Theorem 1.6, and 

.then Remark 1 to the right side of the last equality: 

. · (27T fitrr 
(a) 11m Jo f(t) ( 0 K(x,y-t)J'(y)dy)dt 

X+ CD 

and 

lim (27ff(t} (2
0

7T K(x,y-t)jj(y)dydt x::;;, Jo J < 

= }/'f(t)J'(t)dt. 



'l'hus 

~ !J.m fo7Tf (t) ( (~1!'K (X ,y-t) jl (y) dy) dt 
x~m }I 

~'filff (t) jl (t) dt 

which proves the Theorem. 

Note that, in the last theorem, Theorem 2. 5 was 

applied to the convolution .integral of K and ~' and that 

inequality (a) shows that ~~~f(t)K(x,y-t)dt exists a.e •• 

at least for large x. 
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The following theorem shows that pointwise convergence 

of ~~~f(t)K(x,y-t)dt at y is a local property of f. It 

is an analogue of the Riemann Localization Principle. 

The·orem 2. 7: Let K (x « y) be even in y and satisfy 

condition~ • If ~ € L 1 (I') , and f E L 1 (T.,jl) then convergence 

of ~lff (t) K (x, y-t) dt at y E 'r depends only on the behaviour 

of f in an arbitr~rily small neighborhood of y. 

·proof: Without loss of. generality, we can assume f ~ 0. 

Since f c: L
1 {T·,~) ~· it is finite a. e., and measurable. 

Therefore, letfvn(y-t)]n)l be a sequence of simple functions 
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on -r, such that 0 .~ vn(y-t) ~ f(y-t). and 1~ v {y-t) = f(y-t) a.e. 
n-tco n 

·Since for all 0 < 6 ~ Jr, and G the majorant of K, 

f-s ~lT 1~ ( G(x,y)dy + 8 G{x,y)dy) = 0, 
X-tCD _if 

we consider t_s v W-t)K(x,t)dt. Since vn(y-t) is simple, 
-7f n 

it is bounded, and thus has a maximum, say An ~ 0 1 on l' .. 

Therefore, for all n ~ 1, 

lim ffS v (y-t)K(x,t)dtf~ li.In~-S A G{x,t)dt 
x~oo ~ -7T n x7oo -1\ n 

= 0 

Similarly. lim I(~ K(x,t)v (y-t)dt l = 0. X~aJ J& n 

Since lim v (y-t) = f (y-t) I then for any e) 0' 
n~oo n 

there exists an N E IN such that for all n ~ N, 

except on a set Ee , with ]\ (Ee) ( e . It follows that 

0 = lim frs .. 'rf]\ E V (y-t) G (X 1 t) d t 
x+co I! , n 
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~ linl fr S lfl\ E G (x, t) (f (y-t) -~) dt 
x+oo L.: ' U 

Since e is arbitrary, it follows that 

lim U:f(y-t)K(x,t)dtj~ lim }!f(y-t)G(x,t)dt = 0 
x~ · x~= 

Therefore, 

1~ ~~"f(t)K(x,y-t)dt = 1~ (~~f(y-t)K(x,t)dt 
x~oo x~=}l 

= lim[J~f(y-t)K(x,t)dt + f~6f(y-t)K(x,t)dt + ~-6f(y-t)K{x,t)dtl 
x+OJ -7T J 

= lim ~sf(y-t)K(x,t)dt x~o:> ) -

which ~ompletes the theorem. 

We now turn attention to Theorem 2.3, where it was 

* shown that fu(r,e>l~ A£ (e). The following theorem, 

which can be found in [14~ p. 155], _shows that this same 

property is true of the kernel K(x,y) satisfyi~g condition~. 



f]f' 

-7f". 

·Theo·r·em 2.8:· If K(x,y) satisfies condition >t and 

K(x,t)f(y-t)dt exists a.e., then 

I (7!" K (x ,t) f (y-t)dt I~ Af* (y). v ~7r 

Proof: Without loss of_ generality, let f ~ O, _then 

integrating by parts, we obtain, with 

that 

1/r f(y-t)K(x,t)dtl~ J1f f(y-t) G(x,t)dt 
-n -rr 
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~ f (t) G(x,t)'Tf + .(Tt f (t) -~oG(~,y) jdt 
y -7T ) -1i y () 

* * * ~ f ( y) Al + f ( y) A2 = Af (y) • 

Up to this point, _the case 0 < p < 1 has been n~glected, 

even though we have defined the correspond~g Lp spaces.· 

Since the Lp(X,~>, 0 < p < 1, function spaces are of interest 
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for, specific weight .functions, .we conclude this chapter with 

some results concerning them. 

* We first consider the spaces Lp(IR,J'l and Lp(lR,.0'0). Then 

the following lemma will be used to establish some inequalities 

(see Hewitt and Ross [7, p. 425] and Heiniq [6, pp. 8 - 11]}. 

Lemm:a· 2·. 9: If f is a function defined on IR, then, 

for 0 < k < 1, 

Proof: Without loss of generality, assume f ~ 0. Define 

g(x) = f(x) if f(x) > yk and g(x) = 0 otherwise. Then 

f~ (x) = sup [ :c" fX f (t) X (t) dt 
£<X X )£. Eyk(f) · . 

+ x·:{rxf <t> X c <t>dt] 
Y E. Eyk (f) 

* ~ gl (X) + yk. 

Letting N; = * fx:gl(x) > s, s > oJ then 

Applying Lemma 1.17 with f replaced by. g, 



Similarly 

Therefore 

. 1 r * 
~ r:=Jt }Nl g (x) ~ 0 (X) dx 

y (1-k) 

~ 

;, l.k Y ·· f (x) .If~ (x) dx 

. y (1-k)(\Eyk ( fl 

~· l~kh ' f (x) ~~~ (x) dx, 
Eyk (f) 

.. ·2 r * 
~ r=f:.)E f{x) ,a 0 (x)dx o 

Eyk (f) 
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Lemmas·l.l7 and 2_8 .. give-weak type (1,1) estimates 

for the Hardy-Littlewood maximal function. The following 

lemma_ gives another es.timate. 

Lennna 2.10~ If 0 < k < 1. and JJ is integrable on tR, 

then 

J:/~(x)J6(x)dx * ~~J6(x)dx + l~k~ [f<x)log"" f <xH Jl~(x)dx 

+ where log f(x) = log f(x) if f(x) > 1, and is zero 

otherwise. 

·Pro·of.: Applying Theorem 1.9 and Lemma 2.9 yields 

( f~(x),!'J(x)dx =(00
D.I'l*(y)dy J01 · )o f · 

0 

fi . r(X) 1 * ~ 1/k ( ( * ~ (X) dx) dy + 2 y ( ( f (X) ~ Q (X) dx) dy 
0 ) E (f ) l-k 1/k.. )E (f) 

y 0 . yk 

~ ~kIf (x) dx +l~kL .0~ (x) f (x) J~10: (x). ~) dx , 
1R 1R . Eyk (f) 

Since 
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~co . ·d . (t (x} /k d . . + 
1/ kA <x> ~ =) 1/k · ~ = .. l~g £ <x> , 

E (f) y y 
yk 

the lemma follows. 

· Theo·r·em· ·2·. ·11 : If f and ~ are non-negative functions 

on Rand~ is integrable, and iff E L1 (~,J~), then 

f ~ ~ Lp (IR, jJ) , 0 < p < 1 and 

( (f ~ (x)) P_s (X) dx ~ A J jJ (x) dx) l-p ( ( f (x) Jl: {X) dx) p 
)R pj~ )~ 

· Proof:· · Let 0{ > o, .o < k ( 1, then by definition of 

~ D *(y), and Lemma 2.9, 
fo 
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However, 

= - ,l~<f (x)) p-l] if f (x) > o< • 

0 if 0 <. f (x) < 0( 

so that 

A straight forward calculation shows that the right hand 

side of the last inequality is at a minimum for 

Upon substituting this ~ into the inequality, the result 

follows. 

· Retnar·k ·13: If ~ and f are defined on any subinterval 

X SIR, and if E is any subinterval of x, with ~z~(x)dx < CXJr' 

~ w 
then setting ~ = 16X , .and applyi!lg Theorem 2 .11 to ;1 

E 

yields 
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·Since )~ (x) ~ * ~0 (x), it follows that 

( f;(x)~(x)dx ~A ( ( JHx)dx)l-p(fxf(x);§~(x)dx.)p 
JE p )E · 

We now unify the results of-Chapters 1 and 2 by 

finding conditions, such that 
-·- ... ~ 

Theorem 2.12: Let~ be a convex, increasing, non­

negative function on R+. If K(x,y) ~ 0 satisfies condition 

d{ and is even in y, and 

h(x,y) = f1r K(x,t)f(y-t)dt 
-il . 

is finite a.e. for some f, then for ~ € L1 (~), 

!7r /rr * .i)_(y)te(! h(x, y) I) dy ~ A /1 (y)~ (If {y} I) dy 1 

-W -R 

provided the right side is finite. 

· ·Pro·of·: · Clearly 

lh(x,~') I ~ f1f K(x,y-t) If (t) I dt • 
-lf 



Therefore, by Jensen• s. Inequality, .. 

1.Q. ( I~Cx .. y) I ) $ tQ. ( (7t K (x, y-t) If (t) I dt) )~n 

~ jTf K(x, y-t)~(l f (t) ll dt. 
-Jr 

Multiplying by ~ and integrating yields 

;rr ~ (y)~ (I h(x,y) ll dy ~ jtr. ~ (y) cfJT K (x,y-t)<f( If (t) I) dt) dy 
-it -11' -lf 

=J"Tr </71 ~(y)K(x,y-t)dy)t((Jf(t) 1 )dt 
-7\' -71 

!i1 * ~ A .0 (t)~( ff (t) I )dt • 
-7f 

The second last step is justified by Fubini's Theorem, 

and the last step is just Theorem 2.8. 

For the cases 0 < p ( 1 and 1 ~ p < 00, we have the 

following theorem. 

· The·o'rem 2. ·13: Under the hypotheses of Theorem 2 .11 1 

Jn jn· * {a) (h (x ,y) f P_m (y) dy ~ A · J·f {y) fPJJ (y) dy 
-n -n 
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for 1 .~ p < ~· provided the r~ght side is finite. 

For 0 < p ( 1, we have 
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·pra·of: (a): In Theorem 2.12, .let {((x) = xP, for 1 ~ p < cd 

and (a) follows immediately. 

(b) : By Theorem 2.8, fh{x,y)f 

Applying Theorem 2.11 shows that 

for 0 < p < 1 .. 

The following two examples give another illustration of 

Theorem 2 .12 • 

· Ex·ample· · (1) : If <e_ {x) = e. x, then . 

If ~(x) log x, .x > 1 

then ~ is convex, and, since 



lor/x =(log x, x > 1 

(o ,o~x~l 

then 

!Tr + _fh(x,y)llog lh(x,y)l~(y)dy 
-It. . 

~ A fjr .S~ (y) If (y)llog +1 f (y) I dy • 1_1T 

64 



In this chapter, _some inequalities of Fef"ferman and 

Stein, [?, p.,p. 107-114] , are extended from the discrete 

case to the n-dimensional case. 

We commence by introducing another function space. 

D"ef·inition 3· .. 1: For 0-<p,r<Q), we -define the spaces 

Lp'r(Rn~+m) to consist of all (equivalence classes of) 

functions f (x,-y) defined on IRnxR+m such that 

is finite. 

These spaces can be shown to be linear metric spaces 

by straightforward calculation. 

Def·ini tion 3 • 2: Let f (x, y) be defined on !RnxlR · ~ 

Define, for fixed y£1Rm. 

* f (x,y) = , 
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·where the sup is taken over all cubes centered at x. 

We now obtain the main theorem of t.his chapter, the 

proof of which is a modification of that of Feffer.man and 

Stein. It s importance lies in the fact that it incorporates 

a Banach valued Hardy-Littlewood maximal theorem on Rn, from 

which the result of Fefferman and Stein follows. 

· T'heorem J·.3: If fE.Lp,r (lRnxlR+m), l<p,r<co, then 

* 1) tf f fJLp' r ~ A jffJILp,·r • r,p 

2) If 1< r<co, and lX-)0, then 

Proof: If the right hand side of either 1) or 2) is 

infinite, the inequality is triv·ial. Therefore, they are 

assumed finite. Without loss of generality, let f~O. 

The proof will now proceed as follows: (a): the case 

p=r in 1) ; (b): proof of 2) ; (c): proof of the case 

p5r in 1) ; and finally, (d): the case p~r in 1). 

(a): p=r: By Fubini 1 s Theorem, :and the n-dimensional 

form of the Hardy- Littlewood maximal theorem, (see, for 

. ·, 
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example, .[S,p.p. 107-11{1), it follows that 

provi~q (a). 

(b): Inequality 2): By the Cal-d.eron-Zygmund Lemma, 

there exists cubes, Qk' with the properties: If 

and o() 0, then 

D<Ok} ( ~( F(x}dx , 
k lj (Rn 

F(x) ~ o(for all x f: Qc, and 

A depending on n. No\v decompose f into two functions, 
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h and g, such that f (x.y) = .. 9 (x,y) + h(x,.y), where 
.. 

g (x,y) = .f (x,y>X c (x) , .h(x,y) = f (x,y),X
0 

(x). 
. 0 

Since 

c{+~(f* (x,y) )rdy)1/r ~ cfm.+mcg* (x,y) )rdy)1/r 

+<fa+mch*(x,y))rdy)1/r , 

where we denote the first member of the right hand side 

by G(x) and the second by H{x), then 2) will be proved 

if we show that 

3) DGJ\ {{)(.) ~ ~ ( ( ( + (f (x, y)) rdy) l/rdx 
rJ. }fRn JfR m 

and 

From the obvious fact that 

j!Rn ~+m (g (x,y) )I.' dy) 1/rdx) ~~an cf:a+m (f (x,y)) rdy) 1/rdx 
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t'$ 

and since F (x)~ ~~1Jo7 all xEQc, .then 

Therefore,from the case p=r, 

1 L * r .; r _ r-tu i r 1/r n< +m(g (x,y)) dy)dx ~ Ar r~ n( +m(f(x,y)) dy) dx. 
LR. tR '' IR IR 

Since, by Chebyshev's Inequality, 

then 

which is 3). 

To prove 4), let 



'!'hen, for xEQk' . 
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. r I -1" ·r Jr 11r 
= ~JR-+m ~{Qk) Jokf (x,y) dx dy) 

.. - 1· r L r 1/r 
~ A(Q )}Q ( +m(f(x,y)) dy) dx. 

k . k tR 

by the continuous. version of Minkowski's Inequality. From 

the fact that ~(~k)"Jo.kF (x) dx ~Ad, the riqht hand side of this 

~equality is .SAo<, for xeQ, and for xEQ~, .f(x 1 y) = o and 
. . -~- ,. . -~~- . e . . . .;: . - . 

hence F{x) =0. Therefore, F(.Q) has support in Q, and is 

bounded by Ao(. Since ~l\(Qk) < ~nF (x) dx, it follows that 

-
( n ( r,t-m (f(x,y))rdy)dx ~ (AIX)r/HQl 

)IR jlR 

~ Aro(r-1Jf ( ( + (f (x,y) l rdyl 1/rd.x. 
fRn JtR m 

From the case p=r, and by Chebyshev's Inequality, 

it follows that 
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This will imply 4) if there exists a constant A such that ______ _ 

* "'* h (x,y)_ ~A~ (x, y). 

For any cube J, let J denote a cube concentric with 

J, but having diameter 4n times as large. 

Since L ~(Qk) < ~ r nF (x) dx, it follows that 
Jt J-,• YIR 

Since h*(x,y) = ~P~(~)kh(t,y)dt, and for any fixed cube 

I with X~ Iu 

where/\ = £kefN: Qkrti is non-empty}, and if OJ!li and 

~ - -~ I\ Q.SI \Qk' are non-empty for some k ,_ then Oit=I, it follo\vs 

that 

7\(i) :L fa "I(h(x,y))dx ~ .~~1rl L fo (h(x.y))dx 
kE'J\ ]{ I . ~1\ k 

~ i\lr> L fo cf ex ,yl lax 
, kEI\ k 

{i\lr> f.rcf<x,yl l dx 

~·7-tspfr_fcx,yldx 
"'* ~ Af (x,y). 
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Therefore 

AfxEQc: <fa-tm<h*(x,y))rdy) 1/r} Acx.] 

~ A(X£0c: <~+mcf*cx.y))rdy) 1/r>~ 

~· ~<in <l+m (£ (x,y)) rdy) 1/rdx. 
R IR . 

Since 

1\f.xE.Q: i+m<h*(x,y))rdy)l/r > Aoc} .f;I(QJ 

~ ~n(~+m(f(x,y))rdy) 1/rdx, 

then 4) follows. This completes the proof of 2). 

(c): l<p~r: By (a), the operator T defined by 

r * r 1/r T(f(x,·)) = ()
10

+m(f (x,y)) dy) 
R 

has been shown to be of strong type (r,r). 2) can be restated 

to say T is of weak type (1,~. Hence, by the Marcinkiewicz 

Interpolation Theoremr T is of strong type (p,p) where 

l<p<r, _that is 
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'!'his is (c) • 

(d): To prove the case p~r, we ·observe [6, .P•P 107-11~ 

that for positive f and if . 

Hence for fixed yEIR+m
1 

r * r r r* JUJ..n{f (x,y)) ,0 (x)dx ~ ArJtRn(f(x,y)} ¥' (x)dx. 

Therefore, by Fubini's Theorem, 

Letting.·~ run over the unit ball of Lq(Rn), where 1 + £ = 1, 
. q p 

and applying the converse of Holder's Inequality for 

n-dimensiona1 space, then 



This completes (d) , and thus the theorem is totally 

proved • 
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. · Corol"lary 1: (Fefferman and Stein) Let f = (£1 ,£2_, ••• ) 

be a sequence of functions on ~n~ Form the sequence f*, 

·~ kth . . 1 .. 
W110se term l.S the maxJ.ma functJ.on of fk. 

l<r ,p<GO, 

5) ( r ( ~ [f* (x)] r) p/rdx) l/p 
JCRn k=l k 

provided the right hand side is finite. 

For 1 < r < co. 

Then for 

6) ( n oo - * l r 1/r > ex? < Ark co "- t x € {R = ( L L f k ( x} J ) J ' -z- n ( L j f (x) I r ) 1 I r dx 
k=l "" lR k=l k p 

Proof: This follows by letting m = 1 and setting for neti, 
t 

f (x,y) = f (x), n-1 ~ y < n, in Theorem 3.3. 
n 

•tt 
then £ 0 E .LP (fR), 

and 
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Proof: In Corollary 1, .let n = .1. and set f = (f, O, O, ••• ), 

and the result follows. r 

We conclude by stating that Theorems 2.3 and 2.8 have 

their appropriate extensions if one considers convolutions 

of functions of two variables and the maximal functions 

defined in this chapter. 
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