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INTRODUCTION

The origin of this work lies in a statement made by
B. Banaschewski and E. Nelson in [ 4 ] that all proofs
presented in that paper on equational compactness of algebras
could be readily modified to give analogous results for atomic
compactness of structures; that is, sets endowed with a family
of relations as well as a family of operations.

Their work represents a highly successful attempt at
proving by purely algebraic methods the major results proved
model-theoretically by Taylor in [7 ]. It is these methods
which are employed here in their natural extensions to the
theory of structures. The most useful tool in moving from
algebras to structures is a generalization, due to Evelyn
Nelson, of the kernel of a homomorphism called the relation
kernel: For a structure homomorphism f: A + B the relation
kernel of f is the disjoint union of the set of pairs of
elements identified by f (ie. kerf) with the disjoint union
of the sets of sequences in A which are mapped pointwise by
f into the corresponding relation on B. A striking example
of the naturality of this generalization is the fact that,
simply by replacing "kernel" by "relation kernel”, we obtain

a Homomorphism Decomposition Theorem for structures.



A slight deviation from the practice of straight-
forward generalization is the setting with respect to which
our results are obtained. The classes of structures which
might be called varieties, ie. those which are productive,
hereditary and closed under formation of quotients, are noted
to be unnecessarily restrictive. Instead we work, quite
successfully, within quasi-primitive classes of structures
ie. classes which are productive, hereditary and closed
under formation of up-directed colimits.

Whereas Taylor's aim is stated as characterization of
those variéties which have "only" a set of subdirectly
irreducible (respectively, pure-irreduéible) members, that
of Banaschewski and Nelson can be viewed as characterization
of those varieties with enough (respectively, purely-enough)
equationally compact algebras. It is the latter emphasis
that is adopted here. |

The actual presentation of results herein follows
the ideology and style of [2 ] and [ 3 ]J. The characterizations
of quasi-primitive classes having, in certain senses, "enough”
atomic compact structures are given without the many cardinality
results of similar theorems for algebras in [ 7 ] and [ 4 ].
The significant point here is that good characterizations of
such classes may still be obtained without determining explicit
cardinality bounds, as in [ 7 ] and [ 4 ], for the small atomic

compact structures. A key component of this alternate method



of proof is the uniqueness of atomic compact hulls.

This presentation is entirely self-contained. 1In
Chapters 1 and 2 are given basic definitions and remarks about
structures and their homomorphisms including the significant
observation that, for structures, monomorphisms are one-one
maps and not necessarily embeddings. The relation kernel of
a homomorphism is defined and both a Homomorphism Decomposition
Theorem and a First Isomorphism Theorem are stated and proved
for structures. Chapter 3 provides some basic facts about
the category of structures of a given type and their
homomorphisms discussing, in particular, updirected colimits
and freeness in this category and some special full subcategories.

In Chapter 4 the concept of quasi-primitive classes
is introduced and studied as a suitable setting for our
discussion. Here a version of Birkhoff's Subdirect Representation
Theorem [5, Thm. 20.3] relativized to a fixed quasi-primitive
class 1is proved.

The focus of Chapter 5 is on the parallel developments
for monomorphisms, embeddings and pure embeddings of concepts
intimately related to atomic compactness.

Finally, in Chapter 6, we define the notion of an
atomic compact structure providing a large class of examples
of such, in the class of all structures whose underlying set
can be endowed with a compact Hausdorff topology compatible

with its operations and relations, and also a helpful



characterization theorem. Then we introduce the notion of
atomic compact hull and a characterization theorem for the
existence of such for a given structure in a given quasi-
primitive class. This characterization leads to an analogue of
Taylor's result about the representation of equationally
compact algebras [ 6 , Cor. 5.8) which is a major tool for
reaching our ultimate goal. |

Chapters 7 and 8 contain the main results of this
work, the characterization of quasi-primitive classeé of
structures with, in three senses, "enough" atomic compact

structures.



CHAPTER I

STRUCTURES AND THEIR HOMOMOPHISMS

This preliminary chapter contains some basic
definitions and facts in the theory of structures.

Definition 1.1: A type of structures is a pair (t1,0)

where T = (nA)AeA and o = (mp) are families of cardinals.

peP

A structure of type (1,0) is a triple A = (X'(fA)AeA' (gp)peP)
n ' »

where X is a set, each fA: X + X, and each 9 is a subset

m

of X P. X is the underlying set of A, fA is the A-th operation

of A, 9 is the p-th relation of A, If P is empty, A is called

a (universal) algebra of type t; if A is empty, A is called a

relational system of type o.

In order to clearly indicate the underlying set,
operations, and relations of a specific structure A, the

notation will be as follows: X = |A|, £, = },, 9y = Par

Within this discussion all structures will be finitary;
that is all n, . mp will be finite cardinals.

Definition 1.2: For structures A,B of type (1,0) a
homomorphism from A to B is a set map f£f: |A| + |B| for which

n m
ABf Ao fo for each AeA and £ p(pA)EipB for each peP.

Notation: f£f: A + B.

Remark 1.3: Because the identity map is a homomorphism
and the composition of two homomorphisms is a homomorphism, we
can speak of the category of all structures (of type (1,0)) and

their homomorphisms. Notation: ¥ (t,0).



Definition 1.4: A substructure of a structure A of

type (1,0) is a structure B of same type such that |B| is a

n m
subset of [|A|, A = AA/|B|.A for each AeA and py = 0,0 |B| P

for each peP. Notation: B ¢ A,

Remark 1.5:
1. If a subset Y of |A| is such that A, (X,,...,X_ )
A1 n,
is in Y whenever Xjreee,X, —are in Y, for each AeA, then Y is
A

the underlying set of a substructure of A.

2. The set-theoretic intersection of a family of sub-
structures is again a substructure.

3. The set-theoretic union of an updirected family of
substructures is again a substructure.

Proof of 2,3: Consider a family (Aa)aeQ of substructures

of a structure A. By Remark 1.5.1., it suffices to show that,

for each A,AA(xl,...,xnx)s[]lAal whenever xl,...,xnx>are in

n]Aal, but this is clearly guaranteed by the fact that each

Aa is a substructure of A.

Consider an updirected family (A ) of substructures

a’acd

of A. Again, it suffices to show that AA(xl,---,an) ELJIAal
whenever xl,...,xnx are in{J|A,|. Because n, is finite, there

exists oed w1th:ng..,xnk in lAul. Then AA(xl”"’an) =

lAa(xl,...,an) is in |A |, hence, in Ula,l.



Definition 1.6: If f: A - B in ¥(1,0), the image of f is
the substructure of B with underlying set f(|A]).
Notation: Im(f). A homomorphism f: A > B is an embedding iff
it is an isomorphism of A with Im(f).
These special maps have certain nice properties.
Remark 1.7:
1. The composite of two embeddings is an embedding.
2. If fg is an embedding, then g is an embedding.
and, hence,

3. If f has a left inverse, then f is an embedding.

Definition 1.8: Let (Aa)

aed be a family of st;uctures

of type (1,0). The product structure of the éa is a triple

A= (HlAal, (An) s (DA» where each ), is defined by pukA =

n
A for each a ( where the p, are the projection maps) and

- -

I p
Ad o

m
and each Pa is defined by XEP, iff P, p(x)epA for each a.
o

Remark 1.9: A is the categorical product in ¥ (t,0)

of the family (Aa)aw. Notation: A = HAa.

Definition 1.10: For f: A + B, the kernel of f is
{(a,b)e|A|?|f(a) = £(b)}. Notation: kerf.

Remark 1.11: Kerf, with operations and relations the
restriction of those on AxA (=A%), is a substructure of AZ.

With the use of this concept, we cah prove the first

part of the following statement.



Remark 1l.12:
1. Monomorphisms in §(t,0) are exactly one-one
homomorphisms.

2. Monomorphisms are not necessarily embeddings.

Proof: 1. Assume that f: A + B is one-one. Consider
g,h: C » A such that fg = fh, Then, since fg(x) = fh(x),

g(x) = h(x) for all xeC; hence, g = h.

Assume that f: A + B is a monomorphism. Consider x,y
elements of A with f(x) = £(y); that is, (x,y)ekerf. For p,q
the restrictions to kerf of the projections of‘A2 to A,
fp = fq; hence, p = q. In particular x = p(x,y) = q(x,y) = vy.

2. Consider the set N of natural numbers. Define N,
to be the structure (n,=), N2 the structure (N,s). Then, the

identity map is obviously one-one but there are elements which

are not related by = , yet are related by £.



CHAPTER II

CONGRUENCES AND RELATION KERNELS

The concepts introduced in this chapter are analogues.

of set-theoretic definitions and results.

Definition 2.1: A congruence on a structure A is a

substructure of A? which is an equivalence relation.

Remark 2.2:

1. The set-theoretic intersection of a family of
congruences is again a congruence.

2. The set-theoretic union of an up-directed family
of congruences is again a congruence.

Proof: 1. For a family (ea) of congruences on a

aed

structure A , by Remark 1.5.2.,(\6a is again a substructure of
A%, But, clearleﬁea is also still an equivalence. relation;

so, we are finished.

2. Consider an updirected family (ea)ae¢ of

congruences on A. Then 0 =lJ0a is, by Remark 1.5.3, a sub-

structure of A?. Clearly, 0 is reflexive and symmetric. If
(x,y)eb, (v,z)ed, there exist a,B in ¢ with (x,y) in 6,0 (v,2)
in eB.‘ The updirectedness of the family provides ye® with

(x,v),(y,z) and, hence, (x,z) in BY and so in 9.
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Definition 2.3: For a congruence 6 on a structure

A, the quotient structure of A modulo & is the triple

n
B = (|al/6, (A;), (py)) where each Ay is defined by Ayv * = vA

A

for v: |a| » |A|/8, the natural quotient map, and each o, is
m
defined by pp = v P (p,).

Remark 2.4:

1. B is a struéture of type (t,0). Notation: B = A/S

2. As for algebras, congruences are exactly the kernels
of homomorphisms. |

Because of their behaviour, the following special

maps are worthy of study.

Definition 2.5: An onto homomorphism f£: A + B is a

m
gquotient map iff Pg = f p(pA) for each peP.

We now introduce a generalization of the kernel of a

homomorphism which is useful in numerous instances.

Definition 2.6:

m
LA a2y Jép |a] P (the coproduct

l. For a structure A,A
in Set, of |A|2? with the coproduct, in Set, taken over the
indexing set of the relations of A, of the corresponding powers

of |A]).

2. FPor £f: A + B, the'relation kernel of f is

m
kerfup%L (f p)-l(pB) (which is a subset of A#). Notation: Rkerf.
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Utilizing this concept, we obtain a generalization of
a well-known theorem about algebras which is itself a direct
analogue of a set-theoretic result.

Proposition 2.7: If f: A + B and g: A + C onto, then
there exists a homomorphism h: C + B with f = hg iff
Rkerg € Rkerf. Moreover, Im(h) = Im(f) énd Rkerh = g#(Rkerf)
(where g# = gzu.#ﬁagmp). |

Proof: If there exists such an h, then Rkerf = Rkerhg
which contains Rkerg.

Assuming Rkerg & Rkerf, define h(x) = f(x), where,

because g is onto, there does exist XeA with g(x) = x. If

g(X) = x = g(x), then £(X) = f(x); so, h is well-defined.

, n, n, n,
Clearly, £ = hg. Then, for each AeA,ABh g = ABf =
. Dy , Lony n,
fAA = thA = hkcg : 80, because g is onto, ABh = hAC.
m_ -1 m_ -1 m, -1
For each peP, (g p) ((h p) (pB)) = (f p) (pB) which contains

1

m -1 m -
P) (pB) c Pei SO, h is a structure

g ?) (pn); hence (h
homomorphism.
Clearly, Im(h) = Im(f) and Rkerh = g' (Rkerf).
Corollary 2.8: If f: A - B and g: A + C quotient map,
there existé h: C -+ B with £ = hg iff kerg € kerf. In this
case, too, Im(h) = Im(f), Rkerh = g#(Rkerf).
Proof: It suffices to show that, when g is a quotient

map, kerg € kerf implies Rkerg &£ Rkerf.


http:AEA,).Bh

12

For peP, take xl,...,xmp with (g(xl),...,g(xmp))epc.

Because g is a quotient map, there exists (il,...,im ) €0,
o

with g(ii) = g(x;), i g m,.

Then (f(xl),...,f(xmp))= (f(il),...,f(imp))epB.

Corollary 2.9: 1If f: A + B quotient map, then

A/kerf=Im(f).

Proof: Because the natural quotient map v: A -+ A/kerf
is a quotient map, there exists g: A/kerf -+ B with
gv = £, Im(g) = Im(f). It suffices to show that g is an
embedding. Because Rkerg = v#(Rkerf), in particular, kerg

is trivial. For any (gv(xl),...,gv(xmp))epB, (gv(xl),...,gv(xmp))

= (f(xi),...,f(xm )); hence, because f is a quotient map, there
p

exists (il,...,imp)epA with (xi,ii)ekerf, igmg, and, thus,

(v(xl).---:V(xmp))epA/kerf.

Proposition 2.7 will be referred to as the Homomorphism
Decomposition Theorem and its second corollary as the First

Isomorphism Theorem.



CHAPTER III

BASIC PROPERTIES OF f(t,0)

Some basic facts about limits and colimits in $(t,0)

are essential to this discussion.
Proposition 3.1: ¥(t,0) is complete and cocomplete.

Proof: It is sufficient to show that f(t,0) has
products, equalizers, coequalizers and coproducts.

As has been previously noted, the product structure
of a family of structures in ¥(t,0) is the categorical product.

For f,g: A + B, define E = {acA|f(a) = g(a)}. Then E
is a substructure of A and, coupled with the natural injection
into A, is the equalizer of the pair (f,q).

For £f,g: A - B, define 6 to be the congruence generated
by {(f(a).g(a))]|acA}., Then B/8, coupled with the natural
quotient map, is the coequalizer of the pair (f,q).

Take (Aa) a family in f(t,0). Take R a representative

aed
set of those structures of type (t,0) which are generated by

at most I card Aa elements (where card A, is the cardinality of
lAal). Take H = {u = (ua)ae¢'udAa

Du}. Then, for each ®e¢, consider  f.u : A

+ D, DueR,(Jua(Aa) generates
M ugHDu defined
by P18y = 4, where P, is the u-~th projection. Take E, the

- 13 -
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substructure of ID generated bY’E““a(IAa|)- We have a family

(3,)

oa’acd
for all aeAa. Then ((ja),E) is the coproduct of (Aa)ae¢: take

of morphisms from A toE defined by ja(a) = nua(a)

a family (ga: A, ~ C) in f(T,d). Then there exists a ueH and
a DueR with u = (ua),{Jua(Aa) generating Du and an isomorphism
k: D, C with ku, = Iy for each aed. Define h: E + C by
h = kpu/E. Then hj = g, and h, is, in fact, uniquely
determined by this equation. |

In our discussion, special kinds of colimits, namely

updirected colimits, willi be used extensively. We define

these as follows.

Definition 3.2: For a category ¢ and a functor
D: I + £ (called a diagram in ¢), a colimit of D is a pair
((hi)iéI’A) with h;: D(i) + A in ¢ for all iel and h; = th(a)
for all a: i -+ §J in I such that, for any family
(g;: D(i) + B), ., in ¢ with g; = ng(a) for all a: i + j in
I, there exists a unique f: A + B in ¥ with g; = fh; for all

ieI. If I is an updirected partially ordered set, ((hi),A)

is an updirected colimit.

Remark 3.3: If ((fi),A) and ((gi),B) are colimits
in a category ¢ of the diagram D: I + %, there exists a
unique isomorphism f£: A + B such that ffi = g5 for all iel.

Because of this we speak of "the" colimit of a diagram.
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Proposition 3.4: For an updirected family

(a))

((haB: A agp o’ ael

0 AB) ) in £(t,0), ((hdAa + A),A) its
colimit in f(t,0), if each haB is an embedding, then each

ha'is an embedding.

Proof: It suffices, by the above remark, to find one
construction of the colimit of this family for which the
colimit homomorphisms are embeddings.

For each acI, define Ba to be the intersection of
the family of equalizers of the maps pB’haBpa for all B2a
where the p, are the projection maps from HAa to Aa' Then
define, for each a, a new structure C, = (IBaI,(ABa).(pCa)).

a m
where an element x of|B_| P is in p. iff p, °(x)ep, for all
a Ca B AB

B2a. Finally, for each acI, define q,: ¢, * A by q, = p,/B,.
For xe|B,|,v2B2a, hgyPg (x) = hBthBpa(x) = hy P, (x)

pY(x) so B G By whenever asB. Furthermore, for Ba, and

xl,...,xmp in C, with (pY(xl),...,pY(xmp))epAY whenever

Y28, because pY(xi) = h (xi), i g mp, and ha is an

ayPa Y

embedding, (pa(xl),...,pa(xm ))spA and, hence,
p a

(pB (xl) peoee rpB (xmp)) = (haBpa (xl) peove rhaBpa (xmp) )EQAB.

C < i == i :
Thus, CoS Cg whenever agf. 'Thus C aglca is a structure.
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If we define ea = kerqu for each aeI, because
kerqa = kerhasqa = ker(qs/ca) = (kerqB)/co = eB/ca if agg ,
the ea are an updirected family of congruences whose union
8 is a congruence on C.

The homomorphisms q, are quotient maps: Any a in
A, is qa((xB)BsI) where x, = a, Xg = haB(a),Bza.

If (al,...,amp)epAa, then (hae(al)""'haB(amp))epAB whenever
m
B2a; so, the preimage of a under q, P

is in Po - Thus, by
the First Isomorphism Theorem, for each a there exists an
isomorphism 8, with Ay = S,V,4 where Ve is the natural quotient
map Ca > Ca/ea. Also, for each a, because the restriction
V/Ca of the natural quotient map C + C/6 is a quotient map,
there exists an embedding u,: ca/ea + C/0 with v/Ca = uava;
We claim that ((h,),c/8), where each h, ='uasa_l, is

colimit of ((haB)’(Aa))‘ For agB, hBhana = thB/Ca

ugs, qB/C = quB/Ca = V/Cd = u v, = h,q, and so,

hsh o, = h,. For a family (g, ,: A, + D) in f(t,0) with

9y = gBhaB whenever ag¢B, the homomorphisms 9,9, are such that
9pdp/Cq = 9,9, SO, We can define £: C + D by £(x) = g,q, (x)
if xaCa. Then each ea is contained in kerf; hence, so is 9,

and we have g: C/6 + D with £ = gv. And 9y = gha for all

ael,
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With the help of this fact, we can establish a convenient

way of viewing updirected colimits in fir,0).

Remark 3,5: Consider an updirected family

((hyg: A,*Ag) g (B )y 1) in £(1,0). Define 6 = U{kerhaslase}.

Then define a structure B = (lAa/eal,(AAa/ea),(pBa)) where

m
p)-l(pA )). Then, for each ael, define
B

u,: A, > B by ua(x) = va(x) where vy is the natural quotient

map Aa + Aa/eu.
. - C s
Whenever agB, Rkeran.RkeruBhaB.kerua ea_ keruBhaB, and, if

(ua(xl),...,ua(xmp))epBa, there exist il""'imp in A with

(Em ))epy

(X4),...,h
1 aYo-' o YO

(xi,xi)skex‘hmY for some YiZG and (ha

i Yo

for some Y3a. Take Y> .,0&.<m . X.,) =
o ,B,YJ, 3~mp Then haY(xi) = hay(xi) and so

(hay(xl)"”'h (x ))epA; so, we have haB(xi), iSmp, in A8 with

ay m,
(hSY(haB(xl))""’hBY(haB(xmp)))epAY forcing
(uBhaB(xl)""’uBhaB(xmp))epBB' Therefore, by Homomorphism

Decomposition Theorem, there exists EaB: B, * By with

haeua umaB whenever agB8. Moreover, each haB is an embedding:

B - 2 . . S ood . = . -
kerhmB = u, (keruBhaB) which is trivial; so, haB is one-one.

Take ua(xl),...,ua(xmp) in B, with (Easua(xl),...,ﬁaeua(xm ))

))epB . Then there exist

(uBhaB(xl)""'uBhaB(xmp .
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xl,...,xmp in Ag with hayéxi) = hy

and (hBYO(xl),...,hBYO(xmp))epAYo for some yozB.

Yi(xi) for some v,28, igmg

Take szj, Osjsm . Then h  (x,) = hg (ii), i¢gm_, and so,

P Y Y
(h, (X4),...,h  (x_ )ep forcing (u_(x,),...,u_(x
aY 1 aY mp AY o1 o

p

Y)epy
mp B,

Consider the colimit ((ﬁa),A) of the family ((ﬁas), (B,))

in f(t,0). We will first show that A, together with the

homomorphisms ha = h is (up to isomorphism) the colimit in

ata’
f(t,0) of ((hae)'(Aa)) and then examine some properties of this

colimit ((ha)'A)°

Firstly, for any pair a,8 in I with agB,h = Eaua
= hBhaBua = hBumaB = hBhaB' Next, take a family (ga: Aa > AB)
] = . . [l C
with 9, gBhaB whenever agB. Then‘Rkerua - RkerhmB < RkergBhaB

= Rkerg, for each a; so there exists éa’ B, + B with
gaha = gy for each a. Then Toly = Iy = gBhaB = gBumaB

= gBhaBua and, hence, because u_ is onto, 9y = gBhaB whenever

a

a<B. Then, by the colimit properties of ((Ea),A), there exists

a unique homomorphism g: A + B with gﬁa = Ea and, hence, gh =g .

Note that, because each HaB is an embedding, so is each

ha;

thus, A is isomorphic to Im(ﬁa).
Finally, we discuss what the colimit looks like.
L/Im(ﬁa) (which is the union of an up-directed set of substructures

of A and, hence, a substructure of A), together with homomorphisms
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f, which are the corestrictions of the Ea to Im(ﬁa), is the
colimit of the family ((Eas)'(Ba)> (and, hence, isomorphic
to A): Whenever ogB, for XeB_, fa(x) = Ea(x) = KBEaB(x)

= fBEaB(x)' Take a family (g : A /6, - B) in £(t,0) with
g, = gBﬁaB whenever ag<B. Any xel)Im(ﬁa) is of the form

X = ﬁ;(y) for some oael and some YeB,. Define g(x) = ga(y).

is one-one,

vaﬁa(y) X =-Es(z), because each h

y
hyy(¥) = hBY(z) for some yza,8, and so, g, (y) = gyhay(y)

= gYhBY(z) = gB(z); thus, g is well-defined. The fact that

g is a homomorphism arises, also, from the updirectedness of I.
The uniqueness of g stems from the fact that the Im(ﬁa)
generate L)Im(ﬁa). But Im(ﬁa) = Im(h,) because the u, are onto.

So A is isomorphic to LJIm(ha).

Also the colimit homomorphisms ha are such that

Rkerha =BL§’aRkerhaB: kerha = kerhaua = kerua=6gakerha8.

m

" -1( ) = (u p)-l( ) because each h_ is an
Pp’ = pBa a

p
For peP, (hOl ) o

m
. . -1
embedding. B8y definition of py , this gives (h, ) (pp)
a

mp - mp mp -1 . . .
= (u, ") B%&ua ((hyg ™) (DAB))whlch certainly contains

1 By -1
Py~ (pAB). For (xl,...,xm ) in (hol ) (pA), because
p

ha is an embedding, (ua(xl),...,ua(xm

m
éfg(haﬁ
))epB . So, there exist
P o

, in A with (haB(il),...,haB(xmo))epAB and

xl'.ou'xm
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hay(xi) = hay(ii) for somefyza. Then, for 838,Y,

(haa(xl)""had(xm ))epA which says (xl,...,xm ) is in

P ) p
m
p, -1
RN (ep ) -
In short, the updirected colimit of an updirected
family ((haB)' (Aa)) in ¥(1,0) can be viewed as ((h,), UIm(h,))

-where Rkerha = BLZJaRkerhaB'

This observation is useful in proving the following
fact about the updirected colimit of a family of embeddings.

First we must explain this term. For an updirected family

((has)'(Aa)) in £(t,0) with colimit ((ha),A) and a family

(u,: B> A)) in f(t,0) for which ug = h gu  whenever

agB, haua = hBuB for all a,B in I. The homomorphism

u = haua for all oael is called the updirected colimit of the

u
a.

——

Proposition 3.6: The updirected colimit of a family
of embeddings is an embedding.
Proof of proposition: Using notation as above,

*)"(Rkern ) = (o, f)71 U Rkern_

Rkeru = Rker(h u ) = (u 83a

o B

= BgaRkerhaBua = égaRkeruB. Thus, if each u, is an embedding,
m m

keru is trivial and, for each p, (u p)'l(pA) = g%k(us p)-l(pA )
o B

= pgi SO, u is an embedding.
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The following definition will not be utilized
immediately but is a basic concept in the theory of structures

which should be mentioned here.

Definition 3.7: For a structure A of type (7,0), a

subdirect representation of A is a pair ((Aa) %) where

ael’

A are structures of type (t1,0), ¢: A + HAa is an embedding
and pa¢ is onto for all aeI where P, is the a-th projection

map.
Certain kinds of subclasses of the class of all
structures of a given type will prove important in this

discussion. Among these are the classes defined as follows.

Definition 3.8: 1. A subclass I of f(t,0) will be called

productive iff any structure isomorphic to a product of

structures in I is itself in I.
2. A subclass I of f(t,0) will be

called hereditary iff any structure A for which there exists

an embedding A -+ B where Bel is itself in L.
The significance of such classes of structures is

evident in the study of special structures which we now define.

Definition 3.9: For a class I of structures of type
(t,0) and a set X, a structure A in f(t,0) is free over X

relative to I iff X generates A and, for every Bel, every (set)

map £f: X - |B|, there exists a g: A - B with ¢g/X = £f.
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Remark 3.10: If I is the empty class, any structure
is free over any of its generating sets relative to I. If I
contains only the empty structure (assuming the type permits),
any structure is trivially freerelative to I over any of its
non-void generating sets and the structure with empty
genherating set is itself empty, hence, free over @ relative
to Z. If I contains only trivial (ie. one-element) structures,
because there is only one map from any set to a oné-element
set, again, any structure is free over any of its generating
sets relative to L. And, finally, this is still true if I
contains only the empty structure and trivial structures.

So, the more interesting situation is when I contains
nontrivial structures in which case we obtain the following

result.,

Proposition 3.11: If I is a productive, hereditary
subclass of ¥(t,0) which contains nontrivial structures, for
any set X, there exists a structure A in I free over X in I.

Proof: Consider a representative set R (up to
isomorphism) of structures in I Qﬁiéhggfevgenerated by at most
card X elements. Put H = {u: X + IDullDueR,u(X) generates D }.
We have a map nu: X -+ H_IDul defined by nu(x) = (u(x))

ueH ueH ueH
and can take the substructure A of IIDu generated by ny(X)

and the map j from X to A which is the corestriction of nuto A.

For BeI, f: X + |B|, there exists ueH, g: D, * B with
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gu = f where D, is the structure in R isomorphic to the
substructure of B generated by f(X). Then gpu/A: A+ B

(where Py is the u-th projection of nnu) with gpu/A’ = £,

Now j is one-one: Because I contains non-trivial
structures the maps from X to any one of these distinguish the
points of X and, hence, the ueH distinguish the points of X.
For this reason there exists a structure C, containing X,
isomorphic to A via a map which replaces each j(x) by x.

This structure C, by the remarks in the preceding paragraph,
is free over X relative to EI.

Note that nowhere in this construction have we

surpassed the bounds of our productive, hereditary class I.

Remark 3.12: If A,B are free structures relative to
I over a set X, there exists a unique isomorphism from A to
B mapping X identically.

A further notion, patterned after the topic of free
structures,will be especially useful in the study of atomic

compactness and purity.

Definition 3.13: 1. If an extension B of a structure
A is generated by A and some subset X of B, we say X generates
B over A.
2. An extension B of a structure A is

called a free extension of A by set X relative t

a subclass I
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of ¥(t,0) iff X generates B over A and for any map,

X + |c| and homomorphism g: A + C with CeZ, there exists
h: B » C with h/X = f,h/A = qg.

By a proof exceedingly similar to that used for free
structures, we prove the existence of such structures in

non-trivial productive, hereditary subclasses of f(1,0).

Proposition 3.,14: If I is a productive, hereditary
subclass of f(tr,0) which contains nontrivial structures then,
for any AeZ, any set X disjoint from |A|, there exists a free
extension of A by X relative to L.

Proof: Consider a representative set R (up to
isomorphism) of the structures in I which are generated by
at most card A + card X elements. Put H = {u%uo,ul)luo: A+ D,

u;: X lDul, D R generated by u,(A)U u, (X)}. We have

maps nNuy: A+ TN D, and nup;: X =+ HIDul and can take B the
ueH ucH ueH uecH

substructure of 1D generated by nuo(A)Ul1ul(X) and i; A + B

and j: X + |B| the corestrictions of MUy, Nu, respectively.
For CeI, f£f: X + |C|, g: A + C, there exists ueH and a

monomorphism h: Du + C with £ = hul, g = hu0 (ie. Du is

isomorphic to the substructure of C generated by f (X)Ug(Aa)).

Then pu/Bi = u, and pu/Bj = u, ; so, hpu/Bi = g and hpu/Bj = f,

Now, i,j are one-one: Since I contains non-trivial

structures, the maps from X and A to any of these distinguish
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points; hence, so do the Ugy,u, . Hence, there exists a
structure D containing A and X which is isomorphic to B by an
isomorphism mapping i(a) to a and j(x) to x. By the remarks
in the preceding paragraph, it is clear that this D is a free
extension over A by X relative to I.

Note that nowhere in this construction have we strayed

outside our productive, hereditary class I.

Remark 3.15: If B,C are free extensions of A by X
relative to I there exists a unique isomorphism from B to C

mapping A and X identically.



CHAPTER IV

QUASI-PRIMITIVE CLASSES

The primary setting for our discussion will be certain

classes of structures.

Definition 4.1: A subclass I of f(t,0) is quasi-
primitive iff it is productive, hereditary and, also, clbsed
under the formation of up-directed colimits; that is, if
((hae)'(Aa)) is an updirected family in I with colimit.

((ha),A), then A is in I, too.

Examples: 1. The class of partially ordered abelian.
groups is a quasi-primitive subclass of the class of structures
of type ((0,1,2): (2)).

2, The class of partially ordered rings is
a quasi-primitive subclass of the class of structures of type
((0,1,2,2); (2)).

3. The class of graphs is a quasi-primitive

subclass of the class of relational systems of type (2).

Remark 4.2: If this discussion were to be a direct
analogue of the results in [4] the setting would be classes of
structures closed under formation of quotient structures,

substructures and products (probably called primitive classes).

- 26 -~
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But such classes are too restrictive for our purposes because
they do not include in their number even such a familiar
class of structures as that of partially ordered abelian groups:
Although Z, the set of integers, is a partially ordered subgroup
of the additive abelian group R of reals with the usual ordering,
and 7 determines a congruence on R for which we denote the
quotient structure by R/Z, this R/Z is not a partially ordered
abelian group.

But, fortunately, quasi-primitive classes retain some
significant prqpegties of primigiyqulasses.

Firstly, because we are interested in remaining within
a quasi-primitive class I under certain constructions, we

must define a I-congruence on a structure A as kernel 6 of a

homomorphism from A to a structure in I. Noting that a quasi-
primitive class I in ¥ (t,0) is a full, reflective subcategory

of ¥(t,0), we define the following: The I-quotient of A

by 6 is the reflection of A/6 in I, Notation: Ag8. There

is then a natural map, called the natural quotient map, from

A to AyB.

Clearly the intersection of a family of I-congruences
is again such as is the union of an up-directed family of
Z-congruences.

Proposition 4.3: Quasi-primitive classes are complete
and cocomplete.

- Proof: Consider a quasi-primitive class I determining
a full subcategory of f(t,0). Because I is productive and
hereditary, it has products and equalizers as given in

Proposition 3.,1.
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As for coproducts, if we take for R a representative set
of structures in I which are so generated and then proceed
with the construction as in Proposition 3.1, we obtain coproducts
in Z.

It remains to be shown that I has coequalizers. For
f,g: A + B in I, take 06 the I-congruence generated by
{(f(a),g(a)) |acA}. Then B/8, coupled with the natural quotient
map B -+ B/8, is the coequalizer of f,qg in I.

The concept, introduced earlier, of subdireét
irreducibles seems to have little future. What does seem to

be of use is the following.

Definition 4.4: 1. A weak subdirect representation of a

structure A of type (t,0) is a pair (¢,(Aa)) where (Aa) is a family
in $(t,0), ®: A » HAQ a monomorphism and each paé onto (for
Py projections).

2. A structure A is weak subdirectly

irreducible in productive, hereditary I iff, for each subdirect

representation (¢, (A )) of A ,where each A ¢I some pg? is

one-one as well as onto.

Remark 4.5: For I a.quasi-primitive class, a
structure A is weak subdirectly irreducible in I iff the
identity congruence A of A is completely meet-irreducible in

the I-congruence lattice of A (that is, A cannot be expressed
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as the intersection of a family of I-congruences not
containing A). Assume A completely meet-irreducible, then,
for a weak subdirect representation (@,(Au)) in I of A,
A = kerd = f\kerpaQ; hence, some kerp, ¢ is trivial ie. some
pa¢ is a monomorphism. Now, assume A is weak subdirectly
irreducible in I, Consider a family (ea) of IL-congruences on
A with 16 = A. Define ¢: A » MAf8 , by p,® = v, for each a
(where v, is the a-th natural quotient map). Then (@,(Ajea))
is a weak subdirect representation in I of A; so some
kerpa° = 0, is trivial. |

On this result and a well-known result of lattice
theory hinges the following genexalizationof the Birkhoff

Representation Theorem for algebras.

Proposition 4,6: Por a quasi-primitive class I (of
finitary structures) any structure in I has a weak subdirect
representation by weak subdirect irreducibles in I.

Proof: The lattice-~theoretic contribution to this
result is the fact that every element of an algebraic lattice
is the meet of completely-meet-irreducible elements (this is
sometimes known as McCoy-Fuchs theorem). The finitariness of
the structure, call it A, and the fact that I is closed under
updirected colimits, guarantees that its I-congruence lattice
is algebraic. Consider a family (ea> of I-congruences on

A whose intersection is A, the identity congruence on A.
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Then each Aj@u is weak subdirectly irreducible because its
identity congruence is completely-meet-irreducible. And, for
$: A » IA/6, defined by p ¢ = v for each a, (¢,(A/Ba)) is a

weak subdirect representation of A.



CHAPTER V

SPECIAL MAPS

In this section we shall study certain special
homomorphisms in ¥(t,0) which play a role in the discussion

of atomic compactness, the notion central to this discourse.

Definition 5.1: 1. f: A+ B in I is an essential

monomorphism in I iff it is a monomorphism and,whenever gf is

a monomorphism for some g: B + C in I,g itself must be a
monomorphism,

2, f: A+ B in I is an essential
embedding in I iff it is an embedding and, whenever gf is an
embedding for some g: B -+ C in I g itself must be an embedding.
If the natural embedding of a substructure B of A into A is

an essential embedding, A is an essential extension of B.

Remark 5.2: 1. For I a quasi-primitive class, essential
monomorphisms in I may be characterized as follows.,

A monomorphism f: A + B is an essential monomorphism
in I iff, for any I-congruence 6 on B, 6 is trivial whenever
(fz)"l(e) trivial: If f is an essential monomorphism and
¢£2)71(8) is trivial, then kervf = (£2)71(8) is trivial for

v the natural quotient map B - B/#. This says that vf is a

- 31 -
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monomorphism; so, v is a monomorphism; hence, 6 is trivial.
If £ is a monomorphism with the property that (f’)‘l(e)
trivial implies 6 trivial for all I-congruences on B, for
g: B+ C in I with gf one-one, kergf = (fz)-l(kerg) is trivial;
so, kerg is trivial forcing g to be one-one.

2. Unfortunately, there does not seem to
be a suitable analogue of this characterization for essential

embeddings.

Remark 5.3: A composite of essential maps (monombrphisms
or embeddings) is again such.
Both of these classes of maps possess a property which

is sometimes called (E3) I[1].

Proposition 5.4: For a quasi-primitive class I, if
f: A » B is a monomorphism in I there exists g: B + C onto
in I for which gf is an essential monomorphism.

Loy

Proof: Put I = {6|8 E-congruence on B with (£2)°
trivial}. Then I is inductive. Take 6 a maximal element of
I. We claim that vf: A + B0, where v is the natural quotient
map B -+ B/P, is an essential monomorphism: Firstly, 8 was
picked in such a way as to make vf one-one. For Y a
I-congruence on B/6 with (vf)_z(v) trivial, (vz)-l(W) is a
I-congruence on B containing @ whose inverse image with respect

to f? is trivial. The maximality of 6 guarantees that

(v3)"1(¥) = o so ¥ is trivial.
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Proposition 5.5: For a quasi-primitive class I, if
f: A » B is an embedding in I, there exists g: B -+ C onto in
I for which gf is an essential embedding in L.

Proof: We begin in the manner of the proof of
Proposition 5.4, but carry the procedure one step further.

Put I = {elez-congruence on B, A + B/® embedding}.
Then I is inductive. mTake 6 a maximal
element of I. Now, put J = {C|identity i: B/ + C is a
homomorphism, CeI, ivf: A + C embedding}. Then J also is
inductive. Take C a maximal element of J. We claim that
uf: A » C, where u acts like the natural quotient map v and,
hence, is onto, is an essential embedding: Firstly, C was
picked in such a way as to make uf an embedding. Next, take
g: C + D in I with guf embedding. Of course, kergu contains
8. So, by Corollary 1 of the Homomorphism Decompasition Theorem,
there exists h: Bgkergu + D with huy = gu. But uf: A + Bjkergu
is an embedding in I for u the natural quotient map B =+ Bj/kergu;

so the maximality of 6 forces 0 = kergu.

For the same reason, there exists k: B/ -+ D with
kv = hy. But giv = gu = hy = kv; hence, gi = k. Kerk = v¥(kerhu)
which is trivial; so, gi and, hence, g is one-one.

m

For peP, p, C (g p)-l(pD). But the structure

m
C = (ICI,(KC),((Q p)—l(DD))) is in I, the identity i: B ~» C

is a homomorphism, and ivf: A » C is an embedding; so, by
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m

maximality of C, (g p).l(pD) = Hence, g is an embedding.

Dc-
The notion of essential maps is intricately related

to the following special structures.

Definition 5.6: 1. For a substructure A of B,A is
a retract of B iff there exists f: B + A with f£/A the identity
on A,
2. A structure A in a quasi-primitive

class I is an absolute retract in I iff any monomorphism A + B

in I has a left inverse.
3. A structure A in a quasi-primitive

class I is an f-absolute retract in I iff any embedding A + B

in Z has a left inverse.

(The letter ﬁ will subsequently appear often when we
are dealing with the class of embeddings in a category of
structures.,)

Note that A is an‘;—absolute retract in I iff it is a
retract of each of its extensions in I.

As hinted, these classes of objects may be characterized

by reference to essential maps.

Proposition 5.7: For any quasi-primitive class I,
the following are equivalent:

1. A is an absolute retract in I.

2. There exist no proper essential monomorphisms
A + B in I, that is, any essential monomorphism from A is an

isomorphism.
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Proof: 1. => 2, Assume A is an absolute retract in L.
‘Take f: A + B an essential monomorphism in IZI. Then there
exists g: B + A with gf the identity on A. Because gf is
a monomorphism so is g. Thus gfg = g implies fg is the
identity on B; so, £ is an isomorphism.

2, => 1, Assume A is domain of no proper

essential monomorphism in I. Take f: A -+ B monomorphism in
L. Then, by Proposition 5.4, there exists g: B - C in I with
gf an essential monomorphism from A and, hence, an isomorphism.

Clearly (gf)-lg provides a left inverse for f.

Proposition 5.8: For any quasi-primitive class I,
the following are equivalent:

1. A is an g-absolute retract in I

2. There exist no proper essential embeddings A + B

in I.

Proof: 1. => 2, Assume A is anﬁabsolute retract in I.
Take £f: A + B an essential embedding from A in I. Then f has
a left inverse g which is necessarily an embedding and
gfg = g implies fg is the identity on B; so, £ is an
isomorphism.
2, => 1, Assume A is domain of no proper
essential embedding in I. Take an embedding f: A + B in I.

Then, by Proposition 5.5, there exists g: B =+ C onto in I
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with gf an essential embedding, hence, an isomorphism.(gf)-lg
serves as left inverse for f£.

The abundance of essential maps (monomorphisms or
embeddings) from a structure is a significant property of that
structure; so we give names to those structures with "not too

many" essential maps.

Definition 5.9: I quasi-primitive class.

l, Ael is essentially bounded in I

iff there is only a set, up to isomorphism, of essential
monomorphisms from A in I.

2, Ael is glessentially bounded in I

iff there is only a set, up to isomorphism of essential
embeddings from A in L.

3. I is essentially bounded iff every

structure in I is essentially bounded in I.

4. I is g-essentially bounded iff

every structure in I is ;-essentially bounded in I.
One of the fortunate properties of such structures is

given in the next two propositions.

Proposition 5.10: For a quasi-primitive class I, any
structure A which is essentially bounded in I is domain of some
essential monomorphism A + C where C is an absolute retract

in Z.
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Proof: Because A is essentially bounded in I there
is, in particular, only a set I of non-isomorphic structures
B in I for which the identity map from A to B is an essential
monomorphism. This is equivalent to the existence of a set J
of non-isomorphic structures C in I for which the identity map
from A to C is an essential monomorphism and all |C]| are
subsets of some fixed set X. -(We need only pick an infinite
set X with cardinality greater than that of each member of I).
Order the set J by inclusion, as subalgebras, of underlying
algebras and set inclusion of relations. Then J is inductive.
Take C a maximal element of J,i: A - C the identity.

Wé claim that C is an absolute retract in I. Take
f: C + D a monomorphism in Z. Then, by Proposition 5.4,
there exists g: D - E onto in I with gfi an essential
monomorphism. The essentialness of i gives that gf is one-one;
so we have Elisomorphic to E and actually containing C,6obtained
by replacing gf(x) by x for each xeC. Call this isomorphism h.
Then hgfi, which is the identity on C and, hence, on A, is
still essential. Then there exists F containing C in J with
an isomorphism k: E+F over C: card E < card X and card C < card X by
the choice of X) and, because X is infinite, there are enough
elements of X outside C to be put in one-one correspondence
with the members of E outside C and this is how we obtain F.
But the maximality of C gives us that C = F. Then khg: D + C

with khgf the identity on C.
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Proposition 5.11: For a quasi-primitive class I, any
structure A which is g-essentially bounded in I is domain of
some essential embedding A + C where C is an ;-absolute retract
in Z.

Proof: As in Proposition 5.10, there exists a set J
of non-isomorphic structures C in I for which the identity map
from A to C is an essential embedding and all |C| are subsets
of some fixed suitably large set X. We order J by inclusion
as substructures. Then J is inductive.

In view of Proposition 5.5, exactly the same argument
works here to show that a maximal member of J is an g—absolute
retract in I.

We now introduce another class of maps in f(t,0) which

is critical in the study of atomic compactness.

Definition 5.12: f: A + B in ¥f(1,0) is a pure
embedding iff, for any finite subset K of A[x]#, A [X] the absolutely
free extension of A by a set X, if there exists g: A[X] - B
over f (ie., with g/A = f) with K contained in Rkerg, then there
exists h: A[X] +~ A over A (ie. mapping A identically) with K
contained in Rkerh. If the natural embedding of a substructure

A of B into B is a pure embedding, B is a pure extension of A.

Now there is a series of appropriate comments to be
made abouﬁ this concept.

Remark 5.13: The idea of a pure extension B of A is an
algebraic formulation of the model-theoretic statement: Any

finite set of atomic formulae with constants in A which is
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satisfiable in B is already satisfiable in A.

Remark 5.14: It should be noted that the A [X]
appearing in the definition of a pure embedding may be
considered, without changing the content of the condition, to
be free extensions of A by X in a fixed hereditary, productive

class containing B.

Remark 5.15: Any pure embedding is an embedding:
For f: A -+ B pure, take x,y in A with £(x) = £(y). This says
{(x,y)} € Rkerf; hence, by purity, there exists g: A[X] + A

over A with {(x,y)}<S Rkerg. So x = g(x) = g(y) = y. Take

m
x in A, with £ p(x)spB. Then {x} SRkerf; hence, by purity,
)

there exists g: A'[X] -+ A over A with {x}< Rkerg. So,

mo
g "(x) = XEP,

Remark 5.16: An embedding £f: A - B is pure iff
B is a pure extension of Im(f). Assume that B is a pure
extension of Im(f). Consider finite K¢ A[X]# with g: A[X] = B
over £ for which K is in Rkerf. If we take f: A[X] -+ Im(f) [X]
over X mapping A by £, then f#(K) is a finite subset of
Im(£) X]*. For §: Im(£) X] + B which maps Im(f) identically,
X by g, £ (K) is contained in Rkerg. Because B is a pure
extension of Im(f), there exists h: Im(f) [X] * Im(f) over
Im(f) with £'(K) in Rkerh. Now, because f is an embedding it

possesses a left inverse k from Im(f). For h = khf: AfX] + A



40

over A, K is contained in Rkerh.

Now assume that f is a pure embedding. Consider
finite K in Im(f)[X]# and g: Im(f) X] -+ B over Im(f) with K
in Rkerg. For k the left inverse of f from Im(f), put
k: Im(f) [X] - A[X] over X mapping Im(f) by k. Then E#(K) is
a finite subset of AIX]#. For g: A [X] - B over f mapping X

#(K) is in Rkerg. So, there exists h: A [X] + A over

by a, k

A with (E#XK) in Rkerg. For ? the corestriction of £ to Im(f),

h = fhk: Im(f) [X] » Im(f) over Im(f) is such that K is in Rkerh.
Pure embeddings retain some admirable properties of

embeddings.

Proposition 5.17: 1. Composite of two pure embeddingg
is a pure embedding.
2. If £fg is a pure embedding, then
g is a pure embedding.
3. The updirected colimit of a family
of pure embeddings is a pure embedding.
Pfoof: l, If g: A+ B, £f: B + C are pure embeddings,
K a finite subset of A D(]# for some set X, h: AX] + C over
fg with K in Rkerh, then for g: A[X] » B [X] over X mapping A
by g and f: BIX]) + C over f mapping X by h, (6#)(K) is in Rkerf
which says, by purity of £, that there exists k: B[X] + B over B
with (6#)(K) in Rkerk, For k: A[X] + B over g mapping X by

k, K is in Rkerk; hence, there exists A [X] + A over A whose
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relation kernel contains K.
2, For £: B » C, g: A + B, with fg a pure

embedding, consider finite subset K of A X]¥ with h: A[X] + B
over g whose relation kernel contains K. Then fh: AX] + C
over fg with K in Rkerfh; so, by purity of fg, there exists
A [X] + A over A whose relation kernel contains K.

3. For an updirected family “has)’(Aa)) in
f(t,0) with colimit ((ha),A), consider a family (ua: B » Aa)

in f(r,0) with h = u, whenever ag8 for which each u, is a

aBua
pure embedding. We claim that u = haua: B + A for all a is
a pure embedding: Consider, for some set X, a finite subset
K of BlX]# and f: B[X] - A over u with K in Rkerf. Because
(t,0) is finitary, there exists a finite subset Y of X with
K contained in Bt!]#. But we know that A = LJImha and

Rkerh =‘£LRkerha8 for each a. Then, because Y is finite
and the indexing set of the Aa updirected, there exists an
index B with f(Y) inside Im(hB). Define g: BI[X] ~+ AB over ug
such that th(x) = f(x) for all x in Y, Theh K is in
Rkethg; so, g#(K) is in Rketh. However, because g#(K) is

finite, there exists y>B with g#(K) in Rkerh and, thus, K in

By
RkethYg. But hBYg: B [X] -+ A, over hBYuB = uy; so, the purity
of u, provides h: B[X] + B over B with K in Rkerh.

Corollary 5.48: 1In f(t,0) any map with a left inverse

is a pure embedding.



42

Proof: This follows immediately from 2.
To round out this chapter we define a few more concepts

which will prove to be intimately related to atomic compactness.

Definition 5.19: Let I be a quasi-primitive class in
flr,0).

l. A structure A in I is pure-injective

in I iff for any pair of maps f: B+ A in I and g: B + C a pure
embedding in I, there exists h: C + A in I with hg = f.

2., A structure A in I is a pure-absolute

retract in I iff it is a retract of each of its pure extensions
in L.
3. A pure embedding £f: A + B in I is

a pure-essential embedding in I iff whenever gf is a pure

embedding for g: B » C in I g is necessarily an embedding.
For A substructure of B, B in £, if the natural embedding A + B

is pure-essential, B is a pure-essential extension of A in I.

Some comments about these notions are in order.

Remark 5.20: 1. Any injective (in category-theoretic
sense) structure in I is pure-injective in I,

2. Products and retracts of pure-injectives
in I are pure-injective in I: This argument follows immediately
from the properties of products, retracts and the definition of
pure-injectives.

3. An absolute retract in I is an

£ —absolute retract in I which is a pure-absolute retract in I.
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4. A map which is pure and an essential embedding
in I is pure-essential in £.
5. The composite of pure-essential embeddings
is not necessarily pure-essential: Taylor, in [ 8], gives an
example to show that pure-essential extensions need not be
transitive.
The class of pure-essential maps also possesses the

property (E3).

Proposition 5.21: For a quasi-primitive class I, if
f: A+ B is a pure embedding in I, there exists g: B + C onto
in I for which gf is a pure-essential embedding.

Proof: Put I = {6|6IZ-congruence on B,vf: A =+ B®
pure embedding}. Then, by 5.17,3, I is inductive. Take 6
a maximal element of I. Now, put J = {C|identity i: B » C
is a homomorphism, CeI, ivf: A + C pure embedding}. Then J
also is inductive. Take C a maximal element of J. We claim
that uf: A -+ C, where u = iv and, hence, onto, is a pure-
essential embedding in L. Firstly, C was picked in such a way
as to make uf a pure embedding. Then, take g: C + D in I
with guf pure. By an argument exactly parallel to that for

essential embeddings, g is shown to be an embedding.



CHAPTER VI

ATOMIC COMPACT STRUCTURES

In this chapter we define the concept central to this

discussion.

Definition 6.1: A structure A in ¥(t,0) is atomic
compact iff, for any subset K of Alxl#, A [X] the absolutely
free extension of A by a set X, there exists f: A X] + A over
A with K contained in Rkerf whenever this is true for all
finite subsets of K. If A is an algebra, it is said to be

equaticnally compact.

Remark 6.2: This notion, as is that of purity, is an
algebraic formulation of a model-theoretic statement: A system
of atomic formulae with constants in A is satisfiable in A iff
it is finitely satisfiable in A, |

It will be helpful to realize that, again as for purity,
the condition for atomic compactness of a structure in a
productive, hereditary class I is equivalent to the condition
obtained by replacing "absolutely free extension" by "free

extension in I".

- 44 -
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Lemma 6.3: For I a productive, hereditary class of
structures, a structure A in I is atomic compact iff, for any
free extension A [X] of A by X in I, for any subset K of A IXI#,
there is a map A [X] + A whose relation kernel contains K
exactly when this is true for all finite subsets of K.

Proof: For a set X, let AlX]o be the absolutely free
extension of A by X, A [X] the free extension of A by X in L.
Note the existence of an onto map u: A[X]o + A [X] over A,X
with the property that any f: A[X]o + B for Bel factors
uniquely‘through u via the map A [X] + B extending £/A, f/X.

.Now assume that A is atomic compact and consider a
subset K of AIX]# for which to every finite subset F of K
there corresponds fF: AX] - A over A with F inside RkerfF.
The ontoness of u (and, hence, u#) allows us to choose a
subset Ko of A[x]o# with u#(Ko) = K, Then the hypothesis on
K guarantees that each finite subset F of K, is in the relation
kernel of some A[X]o + A which, in turn, assures this for Ko
(because A is atomic compact). A map f: A[x]o + A with K, in
Rkerf factors (uniquely) through u via g as mentioned above.
And K is in Rkerg.

Now assume the "relative atomic compactness" condition
for A and consider K, a subset of A[X]o, whose finite subsets
have the appropriate property. Then, for any finite subset
G of u#(K), we may choose a finite subset F of K with u#(F) = G.

By assumption there exists fF:A[X]o +- A over A with F in RkerfF
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and, thus, G is in RkergF for fF = gpu. It follows that there
exists f: A[X] - A over A with u#(K) in Rkerf and, hence, K
in Rkerfu,

Some rationalization for the study of such structures,
in the form of assurances that some ("non-trivial") such do
exist, is valuable at this stage. In aid of this, we introduce

more definitions.

Definition 6.4: 1. A topological structure of type

(t,0) is an ordered four-tuple (X,(fA)AeA(gp)pep,G') where
A= (X,(fl),(gp)) is a structure of type (1,0), Y is a .
topology on X with respect to which the operations fA: X A, X
are continuous and the relations I as subsets of me, are
closed in the product topology.

2, A structure A of type (1,0) is

compactable iff, either A = ¢ and there exists a compact

topology T on |A| for which (A; T) is a topological structure
or A#¢ and there exists a compact Hausdorff topology T on

|a| for which (A; %) is a topological structure.

Examples 6.5: 1. Any finite structure is compactable
by the discrete topology on its underlying set.
2, [0,1] with the usual ordering is
compactable as a partially ordered set by the usual topology

on [0,1).
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3. [0,1] with the usual ordering and
multiplication is compactable as a partially ordered monoid

by the usual topology on [0,1].

Proposition 6.6: Any compactable structure is atomic
compact.

Proof: For A, a compactable structure in f(t,0), A X
the absolutely free extension of A by a set X, consider a subset
K of A[X]# for which to any finite subset F of K there corresponds
a map A[X] + A over A whose relation kernel contains F. (We |
prove the result for the case A#¢, noting the fact that, if
A=¢, the Hausdorff property is not needed).

To each element u of the compact Hausdorff space IAIX
(with the product topology) there corresponds u: A[X] + A
over A extending u. For eachp in A[X], we can define
g: |A|X + A by p(u) = G(p) for each u in IAlx. Then each P
is continuous: If p = aeA, p(u) = a for all u ie. p is
constant, hence continuous. If p = xeX, p(u) = u(x)
ie. p is evaluation at x which is continuous. Then, if

p = AA(ql""’qnl) where each &i is continuous, then
5 = AA(qln...nqn ) which is continuous. So the set of all
A

peA [X] with p continuous is a substructure of A [X] containing
A,X, hence is A[X] itself.
For each (p,q) in A[X?, define qu = {uelAlxl

"o
i<m e A[X] ¥, define

plu) = q(u)}; for each peP, each (p;)
P
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X2 . .
E = {ue|A . (u))e . Then each E__ is closed, for E
is the inverse image under the continuous map u » (p(u),qg(u))
of the diagonal of |A|? which is closed because |A| is
Hausdorff. .And each E( is closed, for E is the inverse
image under the continuous map u ~» (pi(u)) of Pa which is closed
because A is a topological structure. So {E|E = E for (p,q)ekK

pq

or E = for (p;)eK} is a system of closed sets of IAIX

(p.) .
ritigmg

with finite intersection property. Thus, there does exist some
ue|a|¥ with K a subset of Rkera.

If A =¢, |A[X]| is simply AUX. For this reason for
any subset K of A[X]#, there exists f: A[X] - A over A with
K< Rkerf iffbthis condition is satisfied for a subset K' of
A[XJ# which is obtained from K as follows: K' contains

exactly the elements of the form (pi)ism from K modified
p

according to the pairs (p,q) in K; that is, for each pair
(p,q) in K, each occurence of g in one of these mp-sequences
in K is replaced by p. Thus, in this case, we need only
consider sets E(pi) and so we need not employ the Hausdorff
property.
Corollary 6.7: Any finite structure is atomic compact.
1f we call a subset E of |A|x algebraic iff it is the

intersection of a family of E and E  as defined above, then

Pq
the family of algebraic subsets of |a]|X is a closure system.
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If this closure system is such that any set of its members for
which every finite subset has non-void intersection itself has
non-void intersection, we will call it, in analogy with the
topologic;l situation, compact. Then, we have that a structure
A is atomic compact iff the closure system of its algebraic
subsets for any set X is compact. In this manner, the notion
of atomic compactness is a structural analogue of that of
topological compactness.

Now that we believe these objects to be worthy of

scrutiny we will extend the methods of this scrutiny by means

of a characterization result.

Proposition 6.9: For a structure A in a quasi-primitive
class I, the following conditions are equivalent:
l. A is atomic compact.
2, A is pure-injective in I.
3. A is a pure-absolute retract in I.
4. A has no proper, pure-essential
extensions in I.

Proof: 1. => 2, Assume that A is atomic compact.
Consider f£f: B - A in I and g: B + C pure in I. Take a set X,
disjoint from |A|,|B| and large enough that there exists an
onto map h: B[X] - C over g. Our aim is to factor some map

B[X] + A through h in a suitable way.
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Define k: B[X] » A[X] over X extending f. Take a
finite subset F of k#(Rkerh). Then there exists a finite
subset F of Rkerh with F = k#(ﬁ). Because g .is pure, we have
a map u: B[X] = B over B with F in Rkeru. For v: A[X] + A
over A extending fu/X, vk = fu. Therefore, F = k#(§>g;

k#(Rkeru)Q:k#(Rkerfu) = k#(Rkervk) = Rkerv. But A is atomic

compact, so there exists, in fact, w: A[X] = A over A with
k#(Rkerh) contained in Rkerw and, hence, Rkerh contained in
Rkerwk. By the Homomorphism Decomposition Theorem, we have

2: C + A with 2h = wk. But then 2g = ¢h,. = wk

/e = W = T

2, => 3, Assume that A is pure-injective in I. Then,
in particular, for an arbitrary pure extension B of A in I,
there exists g: B + A with g/a the identity on A.

3. => 4, Assume that A is a pure-absolute retract in
L. Consider B a pure-essential extension of A in I. Then,
by assumption, there exists g: B + A mapping A identically. .
The pure-essentialness of the extension, coupled with the
fact that the identity map is a pure embedding, then gives

—

us that g is an embedding; hence, A = B.

4, => 1, Assume that A has no proper pure-essential
extensions in X. Take A {X] a free extension of A in I
and a subset K of A[x]# for which to each finite subset
F of K there corresponds a map fF: A [X] - A over A whose

relation kernel contains F.



51
For each finite subset F of K, define a structure
'A [x]F with same underlying set and operations as A [X] and
relations enlarged by the addition of all members of
m
FNAAIX] P for each peP. Consider BF the I-congruence on
AlX], and, hence, on AfX],, generated by FNA[X]*. Then, for

iF: AX] » A[X]F the identity, v, the natural quotient map

F
from A[X]F to A [X]F//BF, Up = Vpip: AX] - A lX]F//BF, RkeruF

is certainly contained in RkerfF: so, we have

Ip: A [X]F//BF + A with Iplp = fF‘ Because fF maps A identically,

each uF/A is left-invertible and, hence, pure. Now

RkeruF is contained in RkeruG whenever F is contained in G,

giving hFG: A D(]F/BF -+ A[X]G/OG with hFGuF = Ug.

For u: A[X] - A [x]K/eK, URkeruF = Rkeru, so there exists a
family (h]E,: A [X]F//BF + A [X]K/IGK) with each hFuF = u,
((hp),A x1 K//GK) is the updirected colimit of the updirected
family ((hFG), (A [X]F/GF)) in I; so u/A is the updirected

colimit of pure embeddings and, thus, is itself pure.
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Now we invoke Proposition 5.20 to get w: AIX]K/BK + B onto

in I with wu/A pure-essential. By our assumption, wu/A

must then be an isomorphism. Now we have a map, specifically
(wu/A)—lwu, from A[X] to A over A. But K is in Rkeru and,

hence, in the relation kernel of this map.

Before we give corollaries to this theorem we will
explain a choice of definition which perhaps until now seemed
to be arbitrary. If we were to directly generalize previous
notions, it would have been natural to define two notions of
"pure-essentialness" -- the one we have defined and another

as follows: A map f: A » B is a weak pure~essential embedding

in I iff it is a pure embedding and any map g: B + C in I
for which gf is a pure embedding is necessarily a monomorphism.
If the natural embedding i: A + B of A into an extension B

in I is weak pure-essential in I, B is a weak pure-essential

extension of A in I. But, in the situations under consideration,
these notions give identical results. For instance, with

regard to the above result, we realize that a structure has no
proper pure-essential extensions in I iff it has no proper

weak pure-essential extensions in I.
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Corollary 6.10: Any absolute or ;—absolute retract in
L is atomic compact.

Corollary 6.11: Products and retracts of atomic compact
structures are atomic compact.

Proof: This stems from the fact that such is easily
proven for pure-injectives in I by employing the properties of

products and retracts, respectively.

Corollary 6.12: Any maximal pure-essential extension
in I is atomic compact.

Proof: We show that a maximal pure-essential extension
B of A in I is a pure-absolute retract in I.

Consider a pure extension C of B in £, i: B + C the

natural embedding. Then i/ is a pure embedding and so, by

A
Proposition 5.20, there exists g: C + D onto in I with gi/A
pure-essential. Then, D gives rise to a pure-essential
extension of A, hence gi is an isomorphism. So (gi)-l g: C+ B
mapping B identically.

To certain structures there correspond in a natural

way, atomic compact structures.

Definition 6.13: In a quasi-primitive class I, an

atomic compact hull of a structure A in I is an atomic compact

pure-essential extension of A in L.
The existence of an atomic compact hull in I for a

structure can be characterized in familiar terms.
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Proposition 6.14: For I a quasi-primitve class, Acl,
the following are equivalent:

Proof: 1. A has an atomic compact hull in I.

2. A has a pure embedding into an atomic
compact structure in L.

3. A has, up to isomorphism, only a set of
pure-essential extensions in L.

Proof: 1. => 2, is obvious.

2, => 3, Let f: A + B be pure in I where B is
atomic compact, C any pure-essential extension of A in I with
i: A » C the natural embedding. Because B is pure-injective
in I, there exists g: C + B with gi = f. The pure-essentialness
of i guarantees that g is an embedding. Thus, C is isomorphic
to a substructure of B. But there is, up to isomorphism only
a set of such.

3. => 1, In view of Proposition 5.20, the
argument of Propositions 5.10 and 5.11 provide us with a
pure-essential embedding of A into a pure-absolute retract in
Z which is, of course, atomic compact.

Note that again here the notions of pure-essential and
weak pure-essential are indistinguishable: A structure has
only a set of non-isomOrphic pure-essential extensions in I
iff it has only a set of non-isomorphic weak pure-essential

extensions in I,
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Corollary 6.15: Atomic compact hulls, as far as they
exist, are unique up to isomorphism. |

Proof: Let B be an atomic compact hull of A in L.
Then A also has an atomic compact hull C which is a maximal
pure-essential extension of it in I. By pure-injectivity
of B, there exists f: C + B 6Ver A which, by pure-essentialness
is an embedding and then, by maximality of C, is onto. Thus,
the atomic compact hulls of A in I are, up to isomorphism,
the maximal pure-essential extensions of A in I and, hence,
any two are isomorphic. 1In the following, n will be the
cardinal number N'o + cardA + cardP.

Note that any structure generated by fewer than n

elements has at most n elements,

Lemma 6.16: For any extension B of structure A there
exists a structﬁre C such that Ae€¢C¢c B, cardC<n + cardA, B
is a pure extension of C.

Proof: This result is an immediate consequence of
the (downward) Lowenheim-Skolem theorem (see Gratzer, [5, p.236])
because elementary extensions are pure extensions.

Out of the class of all atomic compact structures of

a given type certain are fundamental in some sense.

Definition 6.17: An atomic compact structure is small

iff it is the atomic compact hull of a structure with at most

n elements.
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Remark 6.18: There exist, up to isomorphism, at most
2" small atomic compact structures: This fact results from
the uniqueness of atomic compact hulls and the fact that
there are at most 2" non-isomorphic structures with at most
n elements.

The fundamental nature of these'is explained in the

next result.

Proposition 6.19: Any atomic compact structure A has
a subdirect representation h: A » HAa where

1. each A, is a small atomic compact substructure of A

2. each A, is a retract of A via pah' and

3. h is a pure embedding.

Proof: For any finite subset F of A, put Bp the
substructure of A generzted by F. By Lemma 6.16, there ekists
a structure vCF with BFC_:_CFQA, cardCF < n + card BF = n.
Because C, has a pure atomic compact extension in I, by
Proposition 6.14, it has an atomic compact hull, call it Ap,
in I. The pure-injectivity of A in I gives a map from Ap to A

over C_ which, by the pure-essentialness of AF’ is necessarily

F
an embedding; so we may assume without loss of generality that
AF is a substructure of A.

The pu:e-injectivity of AF provides a map fF: A+ A,
over CF for which the pure-essentialness of AF says that
fF/AF_is an embedding. The maximality of A, as pure-essential
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extension of CF guarantees that fF/AF is also onto, hence
an isomorphism. Then hF = (fF/AF)-l fF: A - AL is a

a retraction of A to AF.

We claim that h = r1hF: A+ HAF is a pure embedding:
For a free extension A[X] of A and a finite subset K of A [x1*
with £: A[X] » A, over h whose relation kernel contains K,
there exists a finite subset F of A with K in B# where B is
the substructure of A {X] generated by B, and X.
Define qg: A[X] - A over A as extension of pr/x. Then

#

pr/B = g/B’ so K, being in B" and Rkerpr,'is in Rkeru/B

and, hence, in Rkeru.



CHAPTER VII

QUASI-PRIMITIVE CLASSES AND ATOMIC COMPACT STRUCTURES

This section presents characterizations, analogous
to those given for equational classes of algebras in [2]
of quasi-primitive classes which, in a certain sense, possess
"enough" atomic compact structures.

Within these characterizations we will need a couple

of notions not Yet presented.

Definition 7.1: For a class I of structures, a class

of cogenerators of I is a subclass ¢ of I such that for any

pair of distinct maps £,9: A - B in I there exists a Ced and a

map h: B + C in I such that hf # hgqg.

Remark 7.2: & is a class of cogenerators of a
productive, hereditary class I iff every member of I has a
monomorphism into a product of members of ¢: If the lattér is
true, for f,g: A + B, distinct, take u: B =+ HCa a monomorphism
with caeQ and acA with f(a) # g(a), then uf(a) # ug(a) so
pauf(a) # paug(a) for some a. If ¢ is a class of cogenerators
of I, take the structure in I free on one element x. For any
distinct elements a,b of A in I, there exist f,g: F + A with

f(x) = a,g(x) = b. The cogenerator property provides up: A + Bed

- 58 -
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with up(fa) # ugg(b). For u = nug: A + N{Bed| there exists

B

u,: A + B}, keru = ) keru_ which is trivial; so, u is the

B.
desired monomorphism.

B

In analogy with this concept, we introduce a related

notion.

Definition 7.3: A subclass ¢ of a productive, hereditary

class I of structure is a class of gzpogenerators of I iff

every member of I has an embedding into a product of members
of ¢.

We also specify the sense of "enough": A class of
structures has enough objects of a certain kind iff each member
of the class is domain of a monomorphism into one of the special
objects which is itself in the class. A class has E-enough
objects of a certain kind iff each member of the class is

domain of an embedding into such an object.

Proposition 7.4: For a quasi-primitive class I, the
following are equivalent:
1. I has enough atomic compact structures.
2. There is, up to isomorphism, only a set
of weak subdirect irreducibles in I.
3. I has a set of cogenerators.
4, I is essentially bounded.

5. I has enough absolute retracts.
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Proof: 2. => 3. follows from the comment that, in view
of Proposition 4.6, the weak form of the Birkhoff Representation
Theorem, the weak subdirect irreducibles in I form a class of
cogenerators of L. 4. => 5. has been proved as Proposition 5.10,

and 5. => 1. is obvious. So we are left to show 1. => 2. and

l. => 2, Take A, a weak subdirect irreducible
in Z, £f: A » B a monomorphism in I with B atomic compact. B, by
Proposition 6.19, has a subdirect representation g: B =+ nBa
in I which provides a weak subdirect representation gf: A + HBa
of A in I. The weak subdirect irreducibility of A in I then
implies that some pagf is a monomorphism. So, from each weak
subdirect irreducible in I, there is a monomorphism to a small
atomic compact structure of which there are at most 21 such,
but there is only a set of non-isomorphic structures with this
property.

3. => 4, Take Ael, f: A -+ B an essential
monomorphism in IZ. By assumption there exists a monomorphism
g: B + G, where the G  are members of the set ¢ = {G |aeI}
of cogenerators of I. We want to provide a cardinality bound
for B independent of B and the particular G, used. For distinct
elements a,b of A, there exists an index vy = Y,p Such that
pygf(a) # ngf(b). For J = {y = Yab[(a,b)eA’\diagonal of A},

we have a map from IIg to the partial product IG

ael® vegY
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- j i G hd G .
defined by th = pY for qY the y-th projection I y y
Then hgf is a monomorphism by the construction of J; so hg is

a monomorphism.cardJ £ ﬂfo + cardA; so, for k the supremum of

& .
cardGa for ael, card B £ k ° o + card A

From this result can be extracted, with little effort,

some facts about cardinalities.

Corollary 7.5: For any essentially bounded quasi-
primitive class £, 1. I has a set of cogenerators % with
at most 2" elements,

if we put k the supremum of the

cardinalities of small atomic compact structures

2. any codomain of an essential monomorphism
from A in I has cardinality < kﬂfo + card A, and

3. every weak subdirect irreducible in &
has cardinality < k.

Proof: The set of cogenerators mentioned in l. can

be taken as the set of small atomic compact structures of
which there are at most 2". Results 2.3, are completely
developed within the proof of the proposition.

About quasi-primitive classes with E-enough atomic

compact structures, extremely similar things can be said.
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Proposition 7.6: For a quasi-primitive class I, the
following are equivalent:
1. I has £-enough compact structures.
2. I has a set of f{-cogenerators.
3. I is £-essentially bounded.
4, T has ;Lenough ;-absolute retracts.
Proof: 1. => 2, Each A in I can be embedded in an atomic
compact structure B in I which can, in turn, be embedded into
a product of small atomic compact structures of which there
are, up to isomorphism, at most 2n
2, => 3, Take Ac¢Z, £f: A - B an essential
embedding in I. By assumption there exists an embedding
g: B » G, where the G are members of the set ¢ = {6 | ael} of
;-cogenerators of . We want to provide a cardinality bound
for B independent of B and the particular G, used. For distinct
elements a,b of A there exists an index y = vy such that

m ab

p.gf(a) # Py gf(b). Also for each x, 1n A p' not in Pa there

Y

exists an index y = Yy such that (ngf) p(x) is not in Pe *
Y

For J the collection of these indices Yab and Yy We have a

map h: NG, 2 + IG_ defined by th =Py for g

o the y-th projection
ael yed

Y

HGY -+ GY' Then hgf is an embedding; so, by the essentialness

of £, hg is an embedding. card J ¢ m, = card (AxA~diagonal of A)

+ Zcard(a p‘pA); so, for k the supremum of card Ga for acel,

m
card B € k A.
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3. => 4, has been proved as Proposition 5.11.
4, => 1, is obvious.

Again, we can immediately list some cardinality results.

Corollary 7.7: For any {-essentially bounded quasi-
primitive class I, 1. £ has a set ofﬁcogenerators with at most
2" elements,

2. If k is the supremum of the cardinalities
of small atomic compact structures, any domain of an essential

. i m
embedding from A in I has cardinality < k A.



CHAPTER VIII

QQASI—PRIMITIVE CLASSES AND ATOMIC COMPACT HULLS

What has been said about quasi-primitive classes
where every member is domain of a monomorphism or embedding
into an atomic compact structure has a "pure" analogue.

We must introduce "pure" forms of familiar notions.

Definition 8.1: 1. A pure representation of a structure
A in ¥ (t,0) is a pair (h,(Aa)) where h: A » na, is é pure-
embedding in ¥ (t,0), p,h is onto for each a.
2., A structure A in a quasi-primitive

class I is pure-irreducible in I iff for any pure representation

h: A + A where all A, are in I, some p h is a monomorphism.

In (7], W. Taylor proves, for structures, a pure
analogue of Birkhoff's Representation Theorem which will be
referred to as the Pure Representation Theorem. The same
argument gives us that any structure in a quasi-primitive class
L of (finitary) structures has a pﬁre representation by
pure-irreducibles in I.

We will say that a class of structures has purely-
enough objects of a certain kind iff any member of the class

can be purely embedded into such an object. FPor additional
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convenience, a subclass ¢ of a class I of structures will be

called a class of pure cogenerators of I iff any member of I

can be purely embedded in a product of members of ¢ and a

class I of structures pure-essentially bounded in I iff each

%
member of it has“only’a set of pure-essential extensions in I.
Armed with these terms to tidy up its statement, we

state the main proposition of this section.

Proposition 8.2: For a quasi-primitive class I, the
following are equivalent:
l. I has purely-enough atomic compact
structures.
2. There is, up to isomorphism, only a
set of pure-irreducibles in E.
3. £ has a set of pure cogenerators.
4, I is pure-essentially bounded.
Proof: 1. => 2, Take A a pure~irreducible in
Z, £f: A - B a pure embedding in I with B atomic compact. B,
by Proposition 6.19, has a pure representation g: B -+ B, in I
where the B, are small atomic compact structures. The pure-
irreducibility of A then implies that some pagf is a
monomorphism. So each pure-irreducible in I has a one-one, onto
map to a small atomic compact structure of which there at most
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and, hence, there are only a set of pure-irreducibles in I.
2, => 3, By the modified version of the Pure

Representation Theorem, the pure-irreducibles in I form a
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set of pure-cogenerators of L.

| 3. => 4. Take a pure-essential extension B in I of A in
L, i: A + B the natural embedding. By assumption there exists
a pure embedding g: B -+ HGa where the Ga are members of the set
¢ = {GalaeI} of pure-cogenerators of I. We want to provide a
cardinality bound for B independent of B and the particular
G, used. On I, consider the equivalence relation
R = {(a,B)lpag = pegi}. Take J a representative set of the
equivalence classes of this relation and put s: I + J the map
from o€l to the element B of J for which (a,B)eR. Then we

have maps h: HGa > IIGB defined by th = Py for each BeJ,
acl BeJd

where p_ is the a-th projection INIG_ 2 + G, and q, the B-th
* ac1® o B

projection ngs -+ GB, and k: ngﬁ + agga defined by p k = 95 (a)

for each acI. Note that khgi = gi because, for each «,
Pykhgi = q  (,yhgl = p_ )91 = p,9i.

We claim that hfi is a pure embedding: Consider a free
extension A[X] of A and a finite subset K of A[Xj# with

u: Af[X] » IG, over hfi with K in Rkeru. Then ku: A[X] - HGa

B
over khfi = fi with K in Rkerku. But fi is pure, so we have
v: A[X] » A over A with K in Rkerv.

Now, the pure-essentialness of ﬁ guarantees that hf is
an embedding. In addition, note that the map from J to
{priIBeJ} which takes B to pri is one-one; so, card J ¢

card{A + G|Ge?}. If we denote the latter by m,, We now have
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m
card B <k A for k the supremum of cardinalities of members of

®.



BIBLIOGRAPHY

[1] B. Banaschewski, Injectivity and essential extensions in
equational classes of algebras, Proceedings of the
conference on Universal Algebra (1969), Queen's Papers

in Pure and Applied Mathematics 25 (1970), 131-147.

{2] B. Banaschewski, An Introduction to Universal Algebra.

Lecture Notes I.I.T. Kanpur, Summer 1972,

[3] B. Banaschewski, Equational Compactness in Universal

Algebra.manuscript. McMaster University 1973.

[4] B. Banaschewski and E. Nelson, Equational compactness in
equatiqnal classes of algebras. Alg. Univ. 2 (1972),
152-165.

[5] G. Gratzer: Universal Algebra, Van Nostrand (Princeton,

1968).

[6] W. Taylor: Some constructions of compact algebras. Ann.

Math. Logic 3 (1971), 395-436.

[7] W, Taylor: Residually small varieties. Alg. Univ. 2 (1972),
33-53 .

[8] W. Taylor: Note on pure-essential extensions. Alg. Univ.

2 (1972) 234-237.

- 68 -



	Structure Bookmarks
	Figure
	Figure
	Figure




